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SMALLNESS PROBLEM FOR QUANTUM AFFINE
ALGEBRAS AND QUIVER VARIETIES

 D HERNANDEZ

A. – The geometric small property (Borho-MacPherson [2]) of projective morphisms im-
plies a description of their singularities in terms of intersection homology. In this paper we solve the
smallness problem raised by Nakajima [37, 35] for certain resolutions of quiver varieties [37] (analogs
of the Springer resolution): for Kirillov-Reshetikhin modules of simply-laced quantum affine algebras,
we characterize explicitly the Drinfeld polynomials corresponding to the small resolutions. We use
an elimination theorem for monomials of Frenkel-Reshetikhin q-characters that we establish for non
necessarily simply-laced quantum affine algebras. We also refine results of [21] and extend the main
result to general simply-laced quantum affinizations, in particular to quantum toroidal algebras (dou-
ble affine quantum algebras).

R. – La propriété géométrique de petitesse (Borho-MacPherson [2]) des morphismes projec-
tifs implique une description de leurs singularités en termes d’homologie d’intersection. Dans cet article
nous résolvons le problème de petitesse posé par Nakajima [37, 35] pour certaines résolutions de va-
riétés carquois [37] (analogues de la résolution de Springer) : pour les modules de Kirillov-Reshetikhin
des algèbres affines quantiques simplement lacées, nous caractérisons explicitement les polynômes de
Drinfeld correspondant aux résolutions petites. Nous utilisons un théorème d’élimination pour les mo-
nômes des q-caractères de Frenkel-Reshetikhin, que nous établissons pour les algèbres affines quan-
tiques non nécessairement simplement lacées. Nous raffinons également des résultats de [21] et étendons
le résultat principal aux affinisées quantiques générales simplement lacées, en particulier aux algèbres
toroïdales quantiques (algèbres quantiques doublement affines).

1. Introduction

Borho and MacPherson [2, Section 1.1] introduced remarkable geometric properties
(smallness and semi-smallness) for a proper algebraic map π : Z → X where Z,X are irre-
ducible complex algebraic varieties: for a finite stratification of X into irreducible smooth
subvarieties, π is said to be semi-small if the dimension of the inverse image of a point in a
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272 D. HERNANDEZ

stratum is at most half the codimension of the stratum, and π is said to be small if moreover
the equality holds only if the stratum is dense. These properties do not depend on the
stratification.

This geometric situation is of particular interest as the Beilinson-Bernstein-Deligne-
Gabber decomposition Theorem [1] is simplified [2, Section 1.5] and provides an elegant
description of the singularities of such maps in terms of intersection homology sheaves
[15, 16]. A fundamental example of a semi-small morphism is given by the Springer res-
olution of the nilpotent cone of a complex simple Lie algebra, and the corresponding
partial resolutions [2]. Nakajima [30, 31] defined important and intensively studied varieties
called quiver varieties which depend on a quiver Q. They come with a resolution which is
semi-small [31, Corollary 10.11] for a finite Dynkin diagram (see [34, Section 5.2]).

The graded version of quiver varieties is also of particular importance, for example
for their deep relations with representations of quantum affine algebras (see [37]; the pre-
cise definition is reminded below). They also come with resolutions. A natural problem
addressed in the present paper is to study the small property of these resolutions: we
address [37, Conjecture 10.4] (see also [35]). Our study relies on the representation theory
of quantum affine algebras: let us explain the context for our study.

In this paper q ∈ C∗ is fixed and is not a root of unity. Affine Kac-Moody algebras
ĝ are infinite dimensional analogs of semi-simple Lie algebras g, and have remarkable ap-
plications in several branches of mathematics and physics (see [25]). Their quantizations
Uq(ĝ), called quantum affine algebras, have a very rich representation theory which has been
intensively studied (see [7, 10] for references). In particular Drinfeld [12] discovered that
they can also be realized as quantum affinization of usual quantum groups Uq(g). By us-
ing this new realization, Chari-Pressley [7] classified their finite dimensional representations:
they are parametrized by Drinfeld polynomials (Pi(u))1≤i≤n where n is the rank of g and
Pi(u) ∈ C[u] satisfies Pi(0) = 1 .

A particular class of finite dimensional representations, called special modules, attracted
much attention as Frenkel-Mukhin [13] proposed an algorithm which gives their q-character
(analogs of usual characters adapted to the Drinfeld presentation of quantum affine algebras
introduced by Frenkel-Reshetikhin [14]). Let us give some examples: for k > 0, i ∈ I, a ∈
C∗, the Kirillov-Reshetikhin module W (i)

k,a is the simple module with Drinfeld polynomials{
Pj(u) = 1 for j 6= i,

Pi(u) = (1− uaqk−1
i )(1− uaqk−3

i ) · · · (1− uaq1−k
i ).

(The qi are certain powers of q, see section 3.) The Vi(a) = W
(i)
1,a are called fundamen-

tal representations. The fundamental representations [13], and the Kirillov-Reshetikhin
modules [36, 21] are special modules (this is the crucial point for the proof of the Kirillov-
Reshetikhin conjecture). The corresponding standard module

M(X
(i)
k,a) = Vi(aq

1−k
i )⊗ Vi(aq3−k

i )⊗ · · · ⊗ Vi(aqk−1
i )

is not special in general.
The breakthrough geometric approach of Nakajima [32, 37] to q-characters of representa-

tions of simply-laced quantum affine algebras via (graded) quiver varieties led to remarkable
advances in the description of finite dimensional representations: for example this approach
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SMALLNESS PROBLEM FOR QUANTUM AFFINE ALGEBRAS 273

provides an algorithm [37] which computes the q-characters of any simple finite dimensional
representations. Although in general the algorithm is very complicated, in some situations
it provides a powerful tool to study these representations (for instance see [36]).

From the geometric point of view, the natural notion of small modules appeared in the
following way: the small property of modules [37] is the representation theoretical interpre-
tation of the smallness of certain resolutions of (graded) quiver varieties mentioned above.

A small module is special (but the converse is false in general). The representation theoret-
ical interest of this notion is that all simple modules occurring in the Jordan-Hölder series of
a small module are special, and so can be described by using the Frenkel-Mukhin algorithm.

A natural question is to characterize these small modules, and so the corresponding small
resolutions. In particular, Nakajima ([37, Conjecture 10.4], [35]) raised the problem of char-
acterizing the small standard modules corresponding to Kirillov-Reshetikhin modules.

In this paper we solve this problem by giving explicitly the corresponding Drinfeld poly-
nomials.

The crucial point for our proof is an elimination theorem for monomials of q-characters,
that we establish by refining our results of [21]. Indeed it is easy to produce monomials that
occur in a certain q-character (for example see remark 3.16 below). But in general it is not
clear if a given monomial does not occur in a q-character. The elimination theorem gives a
criterion which implies that a monomial can be eliminated from the q-character of a sim-
ple module. Beyond the main result of the present paper (answer to the geometric smallness
problem), we hope that this elimination theorem will be useful for other open problems in
representation theory of quantum affine algebras. We already used it in a weak (non explic-
itly stated) form to prove the Kirillov-Reshetikhin conjecture [21]. Moreover it is used in [23]
to study minimal affinizations of representations of quantum groups.

Let us state the main result of this paper. It can be stated in a simple compact way by
using the following elementary definitions (I = {1, . . . , n} is the set of vertices of the Dynkin
diagram of g):

D 1.1. – A node i ∈ {1, . . . , n} is said to be extremal (resp. special) if there is
a unique j ∈ I (resp. three distinct j, k, l ∈ I) such that Ci,j < 0 (resp. Ci,j < 0, Ci,k < 0

and Ci,l < 0).

For i ∈ I, we denote by di the minimal d ≥ 1 such that there are distinct i1, . . . , id ∈ I

satisfying Cij ,ij+1 < 0 and id is special (if there are no special vertices, we set di = +∞ for all
i ∈ I).

For example for g of type A, we have di = +∞ for all i ∈ I.

For an illustration, examples are given on the following pictures:

Extremal node i:

i j
· · ·
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274 D. HERNANDEZ

Special node i:

j i k
· · ·

1

Distance d to a special node:

1 0 1 2
· · ·

1

T 1.2 (Smallness problem). – Let k > 0, i ∈ I, a ∈ C∗. Then M(X
(i)
k,a) is small

if and only if k ≤ 2 or (i is extremal and k ≤ di + 1).

Remark: the condition is independent of the parameter a ∈ C∗.
In particular for g = sl2 or g = sl3, all M(X

(i)
k,a) are small (it proves the corresponding

[37, Conjecture 10.4]). In general it gives an explicit criterion so that the smallness holds. On
the geometric side, it characterizes the small resolutions mentioned above.

Besides the statement of Theorem 1.2 is also satisfied for all simply-laced quantum
affinizations Uq(ĝ) (g is an arbitrary simply-laced Kac-Moody algebra, not necessarily
semi-simple), in particular for quantum toroidal algebras (double affine quantum algebras).

The general idea of the proof is first to establish the result for type A by using the elimi-
nation strategy of monomials explained above. We prove by induction on the highest weight
that representations in a certain class are special. Then an argument allows to use the type
A to prove the result for general types.

Let us describe the organization of this paper. In section 2 we explain the geometric con-
text of our results. In section 3 we give some background on finite dimensional representa-
tions of quantum affine algebras and q-characters. In section 4 we recall from [37] the defini-
tion of small modules and the geometric characterization (Theorem 4.3). We refine a Theo-
rem of [37] and give a more representation theoretical characterization (Theorem 4.8). How-
ever this last result is not enough to prove Theorem 1.2, and technical work is needed in the
next sections. The first point is the (representation theoretical) elimination Theorem (The-
orem 5.1) which is proved in section 5: it gives a condition which implies that a monomial
does not appear in the q-character of a simple module. Additional technical results are also
proved in section 5: in particular the notion of thin modules (with l-weight spaces of dimen-
sion 1) is introduced and studied. In section 6, we complete the proof of Theorem 1.2: first
type A is discussed, and then the general case is treated. The proof of the result for general
simply-laced quantum affinizations is also discussed.
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2. The geometric problem: small property and graded quiver varieties

The geometric motivations and context of the results of the present paper have been ex-
plained at the beginning of the introduction. In this section we develop this discussion and
define more precisely the involved geometric objects.

2.1. Small property

Let us recall the notion of semi-small and small morphism maps in the sense of Borho-
MacPherson [2] for a proper algebraic map π : Z → X where Z,X are irreducible complex
algebraic varieties.

We consider a finite stratification X =
⊔
iXi into irreducible smooth subvarieties such

that π|π−1(Xi) is a topological fibration with base Xi and fiber π−1(xi) where xi ∈ Xi is a
distinguished base point.

D 2.1 ([2]). – The map π is said to be semi-small if for all i,

2 dim(π−1(xi)) ≤ dim(X)− dim(Xi).

π is said to be small if π is semi-small and if

(2 dim(π−1(xi)) = dim(X)− dim(Xi)⇒ dim(X) = dim(Xi)).

In this case Xi is said to be relevant.

Note that stratification X =
⊔
iXi exists ([17, 39]) and that the property of being semi-

small or small does not depend on the stratification.
When π is projective and Z is rationally smooth, this geometric situation is of particu-

lar interest as there is a very elegant description [2, Section 1.5] of the singularities of such
maps in terms of intersection homology sheaves [15, 16]: by using [2, Section 1.7] the decom-
position Theorem of Beilinson-Bernstein-Deligne-Gabber [1], for u ∈ X, the cohomology
groups Hi(π−1(u),Q) of the fiber π−1(u) are given by explicit formula involving the inter-
section homology of the closures Xi of strata such that u ∈ Xi. The formula [2, Section 1.5]
can be expressed as a sum indexed by certain pairs (Xi, φ) where:

• Xi is a relevant stratum,
• u ∈ Xi,
• φ is an irreducible representation of the fundamental group π1(Xi) of Xi,
• φ occurs in the decomposition of the representation of π1(Xi) on
H2 dim(π−1(xi))(π−1(xi),Q) by monodromy.

The case of small resolutions is remarkable, as the formula reduces to a single summand
(and in this case the result is essentially given in [16]).

A fundamental example of semi-small morphism is given by the Springer resolution
T ∗B → N of the nilpotent cone of a complex simple Lie algebra, and the corresponding
partial resolutions [2].

Nakajima [30, 31] defined important and intensively studied varietiesM(v, w),M0(v, w)

called quiver varieties which depend on a quiver Q (see [34, 38] for recent reviews). They
come with a resolution

π : M(v, w)→M0(v, w),
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276 D. HERNANDEZ

which gives an analog of the Springer resolution. It is proved in [31, Corollary 10.11] for Q
a finite Dynkin diagram type that π is semi-small (see [34, Section 5.2]).

The graded version of quiver varietiesM•(V,W ),M•0(V,W ) are also of particular impor-
tance, for example for their deep relations with representations of quantum affine algebras
(see [37]).

Let us recall the definition of these varieties:

2.2. (Graded) Quiver varieties

This section is essentially contained in [37].

Fix a Dynkin diagram and an orientation on this diagram. Let H be the set of oriented
edges of the Dynkin diagram. For h ∈ H, in(h) (resp. out(h)) is the incoming (resp. outgo-
ing) vertex of h, and h is the same edge as h with the reverse orientation. We fix q : H →
{1,−1} such that q(h) = −q(h) for any h ∈ H.

Let V =
⊕

i∈I,a∈C∗ Vi,a (resp. W =
⊕

i∈I,a∈C∗Wi,a) be a I × C∗-graded vector space
such that the Vi,a (resp. Wi,a) are finite dimensional and for at most finitely many i × a,
Vi,a 6= 0 (resp. Wi,a 6= 0). Consider for n ∈ Z:

L•(V,W )[n] =
⊕

i∈I,a∈C∗
Hom(Vi,a,Wi,aqn),

E•(V,W )[n] =
⊕

h∈H,a∈C∗
Hom(Vout(h),a,Win(h),aqn),

M•(V,W ) = E•(V, V )[−1] ⊕ L•(W,V )[−1] ⊕ L•(V,W )[−1].

The above three components for an element of M•(V,W ) are denoted byB,α, β respectively,
the Hom(Vout(h),a, Vin(h),aq−1)-component of B is denoted by Bh,a and we denote by αi,a,
βi,a the components of α, β. Consider the map

µ : M•(V,W )→ L•(V, V )[−2]

defined by

µi,a(B,α, β) =
∑

in(h)=i

q(h)Bh,aq−1Bh,a + αi,aq−1βi,a,

where µi,a is the (i, a)-component of µ. We have an action of GV =
∏
i,a GL(Vi,a) on

M•(V,W ) defined by

(B,α, β) 7→ g · (B,α, β) = (gin(h),aq−1Bh,ag
−1
out(h),a, gi,aq−1αi,a, βi,ag

−1
i,a ).

The subvariety µ−1(0) in M•(V,W ) is stable under the action.

Let us denote by µ−1(0)s the set of stable points (B,α, β) ∈ µ−1(0), that is to say satis-
fying the condition: if an I × C∗-graded subspace S of V is B-invariant and contained in
Ker(β), then S = 0. The stability condition is invariant under the action of GV , so we may
say an orbit is stable or not.

Consider the following quotient spaces of µ−1(0):

M•0(V,W ) = µ−1(0) // GV , M•(V,W ) = µ−1(0)s/GV .
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Here // is the affine algebro-geometric quotient, the second one is the set-theoretical quo-
tient. By [31, 3.18], there exists a natural projective morphism

π : M•(V,W )→M•0(V,W ).

For x ∈ µ−1(0)s, π(GV .x) is the unique closed orbit contained in the closure of GV .x.

Here M•(V,W ) is non singular and π can be considered as an analog of the Springer
resolution.

A natural problem addressed in the present paper is to study the small property of such
resolutions π: in the present paper we address [37, Conjecture 10.4] (see also [35]).

As our proof relies on the representation theory of quantum affine algebras, let us give
some background about this subject:

3. Quantum affine algebras and their representations

In this section we recall definitions and results about the representation theory of quantum
affine algebras.

3.1. Cartan matrix and quantized Cartan matrix

Let C = (Ci,j)1≤i,j≤n be a Cartan matrix of finite type. We denote I = {1, . . . , n}. C
is symmetrizable: there is a matrix D = diag(r1, . . . , rn) (ri ∈ N∗) such that B = DC is
symmetric. In particular if C is symmetric then D = In (simply-laced case).

We consider a realization (h,Π,Π∨) ofC (see [3, 25]): h is a n dimensionalQ-vector space,
Π = {α1, . . . , αn} ⊂ h∗ (set of the simple roots) and Π∨ = {α∨1 , . . . , α∨n} ⊂ h (set of simple
coroots) are set such that for 1 ≤ i, j ≤ n, αj(α∨i ) = Ci,j . Let Λ1, . . . ,Λn ∈ h∗ (resp.
Λ∨1 , . . . ,Λ

∨
n ∈ h) be the fundamental weights (resp. coweights): Λi(α

∨
j ) = αi(Λ

∨
j ) = δi,j

where δi,j is 1 if i = j and 0 otherwise. Denote P = {λ ∈ h∗ | ∀i ∈ I, λ(α∨i ) ∈ Z} the set of
weights and P+ = {λ ∈ P | ∀i ∈ I, λ(α∨i ) ≥ 0} the set of dominant weights. For example
we have α1, . . . , αn ∈ P and Λ1, . . . ,Λn ∈ P+. Denote Q =

⊕
i∈IZαi ⊂ P the root lattice

andQ+ =
∑
i∈INαi ⊂ Q. For λ, µ ∈ h∗, denote λ ≥ µ if λ−µ ∈ Q+. Let ν : h∗ → h linear

such that for all i ∈ I, we have ν(αi) = riα
∨
i . For λ, µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)). We use the

enumeration of vertices of [25].

We denote qi = qri and for l ∈ Z, r ≥ 0,m ≥ m′ ≥ 0 we define in Z[q±]:

[l]q =
ql − q−l

q − q−1
, [r]q! = [r]q[r − 1]q · · · [1]q ,

[
m

m′

]
q

=
[m]q!

[m−m′]q![m′]q!
.

For a, b ∈ Z, we denote qa+bZ = {qa+br | r ∈ Z} and qa+bN = {qa+br | r ∈ Z, r ≥ 0}.
Let C(z) be the quantized Cartan matrix defined by (i 6= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z.

C(z) is invertible (see [14]). We denote by C̃(z) the inverse matrix of C(z) and by D(z) the
diagonal matrix such that for i, j ∈ I, Di,j(z) = δi,j [ri]z.
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278 D. HERNANDEZ

3.2. Quantum algebras

3.2.1. Quantum groups

D 3.1. – The quantum group Uq(g) is the C-algebra with generators k±1
i , x±i

(i ∈ I) and relations:

kikj = kjki , kix
±
j = q

±Ci,j
i x±j ki,

[x+
i , x

−
j ] = δi,j

ki − k−1
i

qi − q−1
i

,

∑
r=0···1−Ci,j

(−1)r

[
1− Ci,j

r

]
qi

(x±i )1−Ci,j−rx±j (x±i )r = 0 (for i 6= j).

This algebra was introduced independently by Drinfeld [11] and Jimbo [24]. It is remark-
able that one can define a Hopf algebra structure on Uq(g) by:

∆(ki) = ki ⊗ ki,

∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−i ) = x−i ⊗ k

−1
i + 1⊗ x−i ,

S(ki) = k−1
i , S(x+

i ) = −x+
i k
−1
i , S(x−i ) = −kix−i ,

ε(ki) = 1 , ε(x+
i ) = ε(x−i ) = 0.

Let Uq(h) be the commutative subalgebra of Uq(g) generated by the k±1
i (i ∈ I).

For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of weight ω:

Vω = {v ∈ V | ∀i ∈ I, ki.v = q
ω(α∨i )
i v}.

In particular we have x±i .Vω ⊂ Vω±αi . We say that V is Uq(h)-diagonalizable if V =⊕
ω∈PVω (in particular V is of type 1).

3.2.2. Quantum loop algebras. – We will use the second realization (Drinfeld realization) of
the quantum loop algebra Uq(Lg) (subquotient of the quantum affine algebra Uq(ĝ)):

D 3.2. – Uq(Lg) is the algebra with generators x±i,r (i ∈ I, r ∈ Z), k±1
i (i ∈ I),

hi,m (i ∈ I,m ∈ Z− {0}) and the following relations (i, j ∈ I, r, r′ ∈ Z,m,m′ ∈ Z− {0}):

[ki, kj ] = [ki, hj,m] = [hi,m, hj,m′ ] = 0,

kix
±
j,r = q

±Ci,j
i x±j,rki,

[hi,m, x
±
j,r] = ± 1

m
[mBi,j ]qx

±
j,m+r,

[x+
i,r, x

−
j,r′ ] = δi,j

φ+
i,r+r′ − φ

−
i,r+r′

qi − q−1
i

,

x±i,r+1x
±
j,r′ − q

±Bi,jx±j,r′x
±
i,r+1 = q±Bi,jx±i,rx

±
j,r′+1 − x

±
j,r′+1x

±
i,r,∑

π∈Σs

∑
k=0···s

(−1)k

[
s

k

]
qi

x±i,rπ(1)
· · ·x±i,rπ(k)

x±j,r′x
±
i,rπ(k+1)

· · ·x±i,rπ(s)
= 0,
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SMALLNESS PROBLEM FOR QUANTUM AFFINE ALGEBRAS 279

where the last relation holds for all i 6= j, s = 1 − Ci,j , all sequences of integers r1, . . . , rs.
Σs is the symmetric group on s letters. For i ∈ I and m ∈ Z, φ±i,m ∈ Uq(Lg) is determined by
the formal power series in Uq(Lg)[[z]] (resp. in Uq(Lg)[[z−1]]):∑

m≥0
φ±i,±mz

±m = k±i exp(±(q − q−1)
∑

m′≥1
hi,±m′z

±m′),

and φ±i,∓m = 0 for m > 0.

Uq(Lg) has a Hopf algebra structure (from the Hopf algebra structure of Uq(ĝ)).

For J ⊂ I we denote by Uq(LgJ) ⊂ Uq(Lg) the subalgebra generated by the x±i,m, hi,m,
k±1
i for i ∈ J . Uq(LgJ) is a quantum loop algebra associated to the semi-simple Lie algebra
gJ of Cartan matrix (Ci,j)i,j∈J . For example for i ∈ I, we denote Uq(Lgi) = Uq(Lg{i}) '
Uqi(Lsl2).

The subalgebra of Uq(Lg) generated by the hi,m, k±1
i (resp. by the x±i,r) is denoted by

Uq(Lh) (resp. Uq(Lg)±).

3.3. Finite dimensional representations of quantum loop algebras

Denote by Rep(Uq(Lg)) the Grothendieck ring of (type 1) finite dimensional representa-
tions of Uq(Lg).

3.3.1. Monomials and q-characters. – Let V be a representation in Rep(Uq(Lg)). The sub-
algebra Uq(Lh) ⊂ Uq(Lg) is commutative, so we have:

V =
⊕

γ=(γ±
i,±m)i∈I,m≥0

Vγ ,

where: Vγ = {v ∈ V | ∃ p ≥ 0,∀i ∈ I,m ≥ 0, (φ±i,±m − γ
±
i,±m)p.v = 0}.

The γ = (γ±i,±m)i∈I,m≥0 are called l-weights (or pseudo-weights) and the Vγ 6= {0} are
called l-weight spaces (or pseudo-weight spaces) of V . One can prove [14] that γ is necessarily
of the form: ∑

m≥0
γ±i,±mu

±m = q
deg(Qi)−deg(Ri)
i

Qi(uq
−1
i )Ri(uqi)

Qi(uqi)Ri(uq
−1
i )

,

where Qi, Ri ∈ C(u) satisfy Qi(0) = Ri(0) = 1.

Consider the ring Y = Z[Y ±i,a]i∈I,a∈C∗ . The Frenkel-Reshetikhin q-characters morphism
χq [14] encodes the l-weights γ (see also [27]). It is an injective ring morphism:

χq : Rep(Uq(Lg))→ Y

defined by

χq(V ) =
∑

γ
dim(Vγ)mγ ,

where:
mγ =

∏
i∈I,a∈C∗

Y
qi,a−ri,a
i,a ,

Qi(u) =
∏

a∈C∗
(1− ua)qi,a , Ri(u) =

∏
a∈C∗

(1− ua)ri,a .

Themγ are called monomials (they are analogs of weight). We denote byA the set of mono-
mials of Z[Y ±i,a]i∈I,a∈C∗ . For an l-weight γ, we set Vγ = Vmγ . We will also use the notation
ipr = Y pi,qr for i ∈ I and r, p ∈ Z.
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For J ⊂ I, χJq is the morphism of q-characters for Uq(LgJ) ⊂ Uq(Lg). For an m mono-

mial we denote ui,a(m) ∈ Z such that m =
∏
i∈I,a∈C∗Y

ui,a(m)
i,a . We also denote

ω(m) =
∑

i∈I,a∈C∗
ui,a(m)Λi , ui(m) =

∑
a∈C∗

ui,a(m) , u(m) =
∑
i∈I

ui(m).

m is said to be J-dominant if for all j ∈ J, a ∈ C∗ we have uj,a(m) ≥ 0. An I-dominant
monomial is said to be dominant.

Observe thatχq, χJq can also be defined for finite dimensionalUq(Lh)-modules in the same
way.

In the following for V a finite dimensional Uq(Lh)-module, we denote byM(V ) the set
of monomials occurring in χq(V ).

For i ∈ I, a ∈ C∗, consider the analogs of simple roots for monomials:

Ai,a = Yi,aq−1
i
Yi,aqi

∏
{j|Cj,i=−1}

Y −1
j,a

∏
{j|Cj,i=−2}

Y −1
j,aq−1Y

−1
j,aq

∏
{j|Cj,i=−3}

Y −1
j,aq2Y

−1
j,a Y

−1
j,aq−2 .

As the Ai,a are algebraically independent [14] (because C(z) is invertible), for M a prod-

uct of A±1
i,a we can define vi,a(M) ∈ Z by M =

∏
i∈I,a∈C∗A

−vi,a(m)
i,a . We put vi(M) =∑

a∈C∗vi,a(M) and v(M) =
∑
i∈Ivi(M).

For λ ∈ Q+ we set v(λ) = −λ(Λ∨1 + · · ·+Λ∨n). ForM a product ofA±1
i,a , we have v(M) =

v(ω(λ)).
For m,m′ two monomials, we write m′ ≤ m if m′m−1 is a product of A−1

i,a .

D 3.3 ([13]). – A monomial m ∈ A − {1} is said to be right-negative if for all
a ∈ C∗, for L = max{l ∈ Z | ∃ i ∈ I, ui,aql(m) 6= 0}, we have ∀j ∈ I, uj,aqL(m) ≤ 0.

Observe that a right-negative monomial is not dominant.

L 3.4 ([13]). – 1) For i ∈ I, a ∈ C∗, A−1
i,a is right-negative.

2) A product of right-negative monomials is right-negative.
3) If m is right-negative, then m′ ≤ m implies that m′ is right-negative.

For J ⊂ I and Z ∈ Y , we denote by Z→J the element of Y obtained from Z by putting
Y ±1
j,a = 1 for j /∈ J .

3.3.2. l-highest weight representations. – The irreducible finite dimensionalUq(Lg)-modules
have been classified by Chari-Pressley. They are parameterized by dominant monomials:

D 3.5. – A Uq(Lg)-module V is said to be of l-highest weight m ∈ A if there is
v ∈ Vm such that V = Uq(Lg)−.v and ∀i ∈ I, r ∈ Z, x+

i,r.v = 0.

For m ∈ A, there is a unique simple module L(m) of l-highest weight m.

T 3.6 ([7, Theorem 12.2.6]). – The dimension of L(m) is finite if and only if m is
dominant.

For i ∈ I, a ∈ C∗, k ≥ 0 we set X(i)
k,a =

∏
k′∈{1,...,k}Yi,aqk−2k′+1

i

.

D 3.7. – The Kirillov-Reshetikhin modules are the W (i)
k,a = L(X

(i)
k,a).
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For i ∈ I and a ∈ C∗,W (i)
1,a is called a fundamental representation and is denoted by Vi(a)

(in the case g = sl2 we simply write Wk,a and V (a)).
For m ∈ Z[Yi,a]i∈I,a∈C∗ a dominant monomial, the standard module M(m) is defined

[32, 40] as the tensor product:

M(m) =
⊗

a∈(C∗/qZ)

(
· · · ⊗

(⊗
i∈I

Vi(aq)
⊗ui,aq(m)

)
⊗

(⊗
i∈I

Vi(aq
2)⊗ui,aq2 (m)

)
⊗ · · ·

)
.

It is well-defined as for i, j ∈ I and a ∈ C∗ we have Vi(a) ⊗ Vj(a) ' Vj(a) ⊗ Vi(a) and for
a′ /∈ aqZ, we have Vi(a)⊗Vj(a′) ' Vj(a′)⊗Vj(a). Observe that fundamental representations
are particular cases of standard modules.

Let g = sl2. The monomials m1 = Xk1,a1
, m2 = Xk2,a2

are said to be in special position
if the monomial m3 =

∏
a∈C∗Y

max(ua(m1),ua(m2))
a is of the form m3 = Xk3,a3

and m3 6=
m1,m3 6= m2. A normal writing of a dominant monomial m is a product decomposition
m =

∏
i=1,...,LXkl,al such that for l 6= l′, Xkl,al , Xkl′ ,al′ are not in special position. Any

dominant monomial has a unique normal writing up to permuting the monomials (see [7,
Section 12.2]). It follows from the study of the representations of Uq(Lsl2) in [6, 8, 14] that:

P 3.8. – Suppose that g = sl2.

(1) Wk,a is of dimension k + 1 and:

χq(Wk,a) = Xk,a(1 +A−1
aqk

(1 +A−1
aqk−2(1 + · · · (1 +A−1

aq2−k
)) · · · ).

(2) V (aq1−k)⊗ V (aq3−k)⊗ · · · ⊗ V (aqk−1) is of q-character:

Xk,a(1 +A−1
aqk

)(1 +A−1
aqk−2) · · · (1 +A−1

aq2−k
).

In particular all l-weight spaces of the tensor product are of dimension 1.
(3) For m a dominant monomial and m = Xk1,a1

· · ·Xkl,al a normal writing we have:

L(m) 'Wk1,a1 ⊗ · · · ⊗Wkl,al .

3.3.3. Special modules and complementary reminders. – Let us consider analogs of cones of
weights (for example used to define category O for affine Kac-Moody algebras) adapted to
monomials:

D 3.9. – For m ∈ A, D(m) is the set of monomials m′ ∈ A such that there are
m0 = m,m1, . . . ,mN = m′ ∈ A satisfying for all j ∈ {1, . . . , N}:

1. mj = mj−1A
−1
ij ,a1qij

· · ·A−1
ij ,arj qij

where ij ∈ I, rj ≥ 1 and a1, . . . , arj ∈ C∗,
2. for 1 ≤ r ≤ rj , uij ,ar (mj−1) ≥ |{r′ ∈ {1, . . . , rj}|ar′ = ar}| where rj , ij , ar are as in

condition (1).

The motivation for this definition comes from the two simple facts:
for all m′ ∈ D(m), m′ ≤ m,
if m′ ∈ D(m), then (D(m′) ⊂ D(m)),
and from the following result which gives a strong condition for a monomial to appear in

a q-character:

T 3.10 ([22, Theorem 5.21]). – For V a finite dimensional l-highest weight
module of highest monomial m, we haveM(V ) ⊂ D(m).
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In particular for all m′ ∈ M(V ), we have m′ ≤ m and the vi,a(m′m−1), v(m′m−1) ≥ 0

are well-defined. As a direct consequence of Theorem 3.10, we also have:

L 3.11. – For i ∈ I, a ∈ C∗, we have (χq(Vi(a))− Yi,a) ∈ Z[Y ±
j,aql

]j∈I,l>0.

This last result was first proved in [13, Lemma 6.1, Remark 6.2].
The notion of special module was introduced in [37]:

D 3.12. – A Uq(Lg)-module is said to be special if its q-character has a unique
dominant monomial.

This notion is of particular importance because an algorithm of Frenkel-Mukhin [13]
gives the q-character of special modules. Observe that a special module is a simple l-highest
weight module (as each simple module occurring in the Jordan-Hölder series of a represen-
tation contributes with at least one dominant monomial in the q-character). But in general
all simple l-highest weight modules are not special.

The following result was proved in [37, 36] for simply laced types, and in full generality
in [21] (see [13] for previous results). It gives a remarkable example of a family of special
modules and is the crucial point for the proof of the Kirillov-Reshetikhin conjecture:

T 3.13 ([21, Theorem 4.1, Lemma 4.4]). – The Kirillov-Reshetikhin modules are
special. Moreover for m ∈M(W

(i)
k,a), m 6= X

(i)
k,a implies m ≤ X(i)

k,aA
−1
i,aqk

i

.

Now let us recall a decomposition result of q-characters relatively to sub-Dynkin diagrams
corresponding to J ⊂ I (Proposition 3.14). This is the analog at the level of q-character of
the decomposition of a simple representation in simple representations for the subalgebra
Uq(LgJ). This result will be intensively used in the following.

Define
µIJ : Z[(A±j,a)→(J)]j∈J,a∈C∗ → Z[A±j,a]j∈J,a∈C∗ ,

the ring morphism such that µIJ((A±j,a)→(J)) = A±j,a. For m J-dominant, denote by
LJ(m→(J)) the simple Uq(LgJ)-module of l-highest weight m→(J). Define:

LJ(m) = mµIJ((m→(J))−1χJq (LJ(m→(J)))).

(Observe that from Proposition 3.8, we have explicit formulas for the L{i}(m) for i ∈ I.)

P 3.14 ([19, Proposition 3.1]). – For a representation V ∈ Rep(Uq(Lg)) and
J ⊂ I, there is unique decomposition in a finite sum:

(1) χq(V ) =
∑

m′ J-dominant

λJ(m′)LJ(m′).

Moreover for all m′ J-dominant we have λJ(m′) ≥ 0.

(In [19] the λJ(m′) ≥ 0 were assumed, but the proof of the uniqueness does not depend
on it.)

As a consequence:

C 3.15. – Let m be a dominant monomial and m′ such that

(i) m′ ∈M(L(m)),
(ii) m′ is J-dominant monomial,
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(iii) there are no m′′ > m′ satisfying m′′ ∈M(m) and m′ appears in LJ(m′′).

Then the monomials of LJ(m′) are inM(L(m)).

Proof. – From the last condition LJ(m′) occurs in the decomposition of Proposition
3.14. As the coefficients in this decomposition are positive, all monomials on LJ(m′) occur
in χq(L(m)).

R 3.16. – In Corollary 3.15, we can start with m′ = m, and then we use for m′

monomials in LJ(m), and so on. This process gives inductively from m a set of monomial oc-
curring in χq(L(m)).

4. Representation theoretical interpretation of the small property

In this section g is simply laced.

Originally the notion of small modules was given in terms of q, t-characters [37]. We recall
this definition and the relation [37] with the geometric small property of Section 2 (Theorem
4.3).

Although the representation theoretical meaning of q, t-character is not totally under-
stood (see [33, Conjecture 3.1.1]), the notion of small modules can be purely algebraically for-
mulated: we give an additional representation theoretical interpretation of the notion (The-
orem 4.8) by refining a proof of [37] (this provides an additional algebraic motivation for the
study of the small modules).

We also comment the main result of the present paper (Theorem 1.2).

4.1. Definition of small modules and q, t-characters

The notion of small modules is related to the notion of q, t-characters defined in [33, 37].
There are t-deformations of q-characters which can be purely algebraically defined (see [18]
for non-simply laced cases with a different approach including a purely algebraic proof of
the existence). They are a very powerful tool, as Nakajima proved they provide an algorithm
which allows to compute the q-character of any simple representation.

Consider the commutative ring Ŷt = Z[Vi,a,Wi,a, t
±]i∈I,a∈C∗ . A monomial of Ŷt is a

product of Vi,a, Wi,a. One says m′ ≤ m if m′m−1 is a product of Vi,a. The q, t-characters
map χq,t : Rep(Uq(Lg))→ Ŷt is a Z-linear map defined by three axioms in [37]:

1) the data of the image of χq,t,
2) a compatibility property of the tensor product with a certain twisted product on Ŷt,
3) for m ∈ Z[Yi,a]i∈I,a∈C∗ a dominant monomial of Y , the relation:

χq,t(M(m)) ∈M0 +
∑

m′<M0

Z[t±]m′ where M0 =
∏

i∈I,a∈C∗
W

ui,a(m)
i,a .

(Only the last axiom will be explicitly used in the following, and so we refer to [37] for
the details of the first two axioms).
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Let m be a monomial of Ŷt. For i ∈ I, a ∈ C∗, one defines wi,a(m), vi,a(m) ≥ 0 by

m =
∏
i∈I,a∈C∗W

wi,a(m)
i,a V

vi,a(m)
i,a , and:

ui,a(m) = wi,a(m)− vi,aq−1(m)− vi,aq(m) +
∑
j∈I

Ci,jvj,a(m),

d(m) =
∑

i∈I,a∈C∗
(vi,aq(m)ui,a(m) + wi,aq(m)vi,a(m)).

We define a Z-linear map Π̂ : Ŷt → Y by (m is a monomial):

Π̂(m) =
∏

i∈I,a∈C∗
Y
ui,a(m)
i,a , Π̂(t) = 1.

It is clear that Π̂ is a ring morphism.

A monomial m of Ŷt is said to be dominant if Π̂(m) is dominant. For m a dominant
monomial of Ŷt, one defines Mt(m) ∈ Ŷt by:

Mt(m) = td(m)m
Ä ∏
i∈I,a∈C∗

W
−ui,a(m)
i,a

ä
χq,t

Ä
M

Ä ∏
i∈I,a∈C∗

Y
ui,a(m)
i,a

ää
∈ Ŷt.

L 4.1. – For m a dominant monomial, we have Π̂(Mt(m)) = χq(M(Π̂(m))).

Proof. – From the defining axioms of q, t-characters, the evaluation at t = 1 gives
q-characters [37], that is to say:

Π̂
Ä
χq,t

Ä
M

Ä ∏
i∈I,a∈C∗

Y
ui,a(m)
i,a

äää
= χq

Ä
M

Ä ∏
i∈I,a∈C∗

Y
ui,a(m)
i,a

ää
= χq(M(Π̂(m))).

As Π̂
Ä
td(m)m

Ä∏
i∈I,a∈C∗W

−ui,a(m)
i,a

ää
= 1, the result is clear.

For m a dominant monomial and m′ ≤ m a monomial, cm,m′(t) ∈ Z[t±] is defined by:

Mt(m) =
∑
m′≤m

cm,m′(t)t
d(m′)m′.

D 4.2 ([37]). – Let m be a dominant monomial of Y . The standard module
M(m) is said to be small if for all dominant monomials m′,m′′ ≤ m, we have cm′,m′′(t) ∈
t−1Z[t−1].

Remark: Observe that in general there is no hope to have cm′,m′′(t) ∈ t−1Z[t−1] without
assuming that m′′ is dominant. For example for g = sl2, we have

χq,t(M(Wa)) = Wa +WaVaq , d(WaVaq) = 0 , cWa,WaVaq = 1 /∈ t−1Z[t−1].

However M(Wa) is small (see Proposition 6.2 below).
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4.2. Geometric characterization

The motivation for this Definition 4.2 comes from geometry [37] and from the relation to
the small property of Section 2:

Consider the monomials mW , mV ∈ Ŷt defined by

MW =
∏

i∈I,a∈C∗
W

dim(Wi,a)
i,a , mV =

∏
i∈I,a∈C∗

V
dim(Vi,a)
i,a .

As a consequence of the geometric construction of representations of quantum affine alge-
bras, we have the following geometric characterization of small standard modules (see [37,
Remark 10.2]):

T 4.3 ([37]). – Letm be a dominant monomial of Ŷt andW =
⊕

i∈I,a∈C∗Wi,a be
the graded space satisfying dim(Wi,a) = ui,a(m). The standard module M(m) is small if and
only if for all V such that MWmV is dominant, the resolution π : M•(V,W ) → M•0(V,W ) is
small.

4.3. Representation theoretical characterization

Let us give another characterization of small modules.

Consider the Z-linear involution of Ŷt defined by m = t2d(m)m, t = t−1. Observe that
for m a monomial of Ŷt, td(m)m is invariant by the involution.

In [37] Nakajima constructed a family L(m) ∈ Ŷt, indexed by the set of dominant mono-
mials m of Ŷt, characterized by the properties:

i) L(m) = L(m),
ii) L(m) ∈Mt(m) +

∑
{m′dominant|m′<m} t

−1Z[t−1]Mt(m
′).

They are analogs of canonical bases in Ŷ for the bar involution, and the transition coef-
ficients to the basis (Mt(m))m are analogs of Kazhdan-Lusztig polynomials.

Nakajima proved [37] the following deep result:

T 4.4 ([37]). – For any dominant monomial m of Ŷt, we have

Π̂(L(m)) = χq(L(Π̂(m))).

In particular this provides an algorithm to compute the q-characters of simple modules. It
is very complicated in general, and it is difficult to get explicit formulas from it, but it provides
applications in situations where the algorithm can be simplified (for example see [36]).

As a consequence of this result, we have:

T 4.5 ([37]). – Let m be a dominant monomial of Y . If M(m) is small, then for
all dominant monomial m′ ≤ m, L(m′) is special.

In fact the converse is true by using the following two results:

T 4.6 ([37, Theorem 3.5 (6)]). – For any dominant monomial m of Ŷt, the coeffi-
cient of a monomial occurring inMt(m) is a Laurent polynomial with nonnegative coefficients.
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L 4.7. – For M a dominant monomial of Ŷt, the set

{M ′ |M ′ ≤M and M ′ is dominant}

is finite.

Proof. – We can suppose that M ∈ Z[Yi,aqr ]i∈I,r∈Z where a ∈ C∗. Let K = max{r ∈
Z | ∃ i ∈ I, ui,aqr (M) 6= 0}. ForM ′ < M ,M ′M−1 is right-negative soM ′ dominant implies∑
i∈I,r≥K vi,aqr (M

′M−1) = 0. It is proved in [18, Lemma 3.14] that the set

{M ′ = MA−1
i1,aql1

· · ·A−1
iR,aqlR

|R ≥ 0 , l1, . . . , lR ≤ K,M ′ is dominant}

is finite, and so we can conclude (note that in [18], l1, . . . , lR≤K is replaced by l1, . . . , lR≥K,
but the proof is the same).

By using a slight modification of the proof of Theorem 4.5 in [37], we get the following
characterization:

T 4.8. – Letm be a dominant monomial of Y . M(m) is small if and only if for all
dominant monomial m′ ≤ m, L(m′) is special.

Observe that it is a purely representation theoretical characterization of small modules in-
volving q-characters, without q, t-characters. This provides an additional algebraic motiva-
tion for the study of the small modules: all simple modules which could appear in the “cone
of monomial” of a small module are special, and so can be described by using the Frenkel-
Mukhin algorithm.

Proof. – The only if part is the statement of Theorem 4.4. Let us prove the if part.
For m,m′ dominant monomials of Ŷt, we consider Zm,m′(t) ∈ Z[t±] defined by

Mt(m) =
∑

m′dominant

Zm,m′(t)L(m′).

By definition of L(m′) we have Zm,m(t) = 1 and Zm,m′(t) ∈ t−1Z[t−1] for m′ < m. If
m′ � m, we have Zm,m′(t) = 0.

As M = m(
∏
i∈I,a∈C∗W

ui,a(m)
i,a )−1 satisfies ui,a(M) = 0 for any i ∈ I, a ∈ C∗, we

can suppose that m =
∏
i∈I,a∈C∗W

ui,a(m)
i,a . Suppose that for all dominant monomial

m′ ≤ m, L(Π̂(m′)) is special. From Lemma 4.7, there is a finite number of dominant
monomial m′ ≤ m. Choose a numbering m1,m2, . . . ,mN = m of these monomials such
that mr < mr′ implies r < r′. Denote by Z ′mr,mr′ (t) the coefficients of m′r in L(mr). As

L(Π̂(mr)) is special, it follows from Theorem 4.5 that Z ′mr,mr′ (1) = 0. Let us prove by
induction r that

∀r′′ < r′ ≤ r , cmr′ ,mr′′ (t) ∈ t
−1Z[t−1] and Z ′mr′ ,mr′′ (t) = 0.

For r = 1, we have L(m1) = Mt(m1). Now we consider r > 1. By the induction hypothesis,
for all r′ < r, L(mr′) has no dominant monomial except mr′ . So for r′′ < r,

cmr,mr′′ (t) = Zmr,mr′′ (t) + Z ′mr,mr′′ (t).

From Theorem 4.6, we have

cmr,mr′′ (t) = tP+(t) + α+ t−1P−(t−1)
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where α ≥ 0, P+, P− ∈ N[t]. As Zmr,mr′′ (t) ∈ t
−1Z[t−1] and Z ′mr,mr′′ (t) = Z ′mr,mr′′ (t

−1),
we have

Z ′mr,mr′′ (t) = tP+(t) + α+ t−1P+(t−1).

Hence Z ′mr,mr′′ (t) has positive coefficients, so Z ′mr,mr′′ (1) = 0 implies Z ′mr,mr′′ (t) = 0.
Therefore cmr,mr′′ (t) = Zmr,mr′′ (t) ∈ t

−1Z[t−1]. As a conclusion, M(m) is small.

4.4. Main result

A natural question is to characterize small modules and so the corresponding small
resolutions. In particular, Nakajima [37, Conjecture 10.4], [35] raised the problem of
characterizing the Drinfeld polynomials of small standard modules corresponding to
Kirillov-Reshetikhin modules.

The main result of this paper is an explicit answer to this question (Theorem 1.2). First let
us note that in general the standard modules corresponding to Kirillov-Reshetikhin modules
are not necessarily small:

R 4.9. – Let g = sl4 and m = Y2,1Y2,q2Y2,q4 . Consider m′ = mA−1
2,q =

Y1,qY3,qY2,q4 . Then by using the process described in Remark 3.16, the monomials
Y −1

1,q3Y
−1
3,q3Y

2
2,q2Y2,q4 = m′A−1

1,q2A
−1
3,q2 and Y2,q2 = m′A−1

1,q2A
−1
3,q2A

−1
2,q3 occur in χq(L(m′))

and L(m′) is not special. So M(m) is not small.

A crucial step for the proof of Theorem 1.2 is the elimination theorem proved in the next
section.

5. Elimination theorem and preliminary results

In this section g is an arbitrary semi-simple Lie algebra. We prove several preliminary
results so that we can prove Theorem 1.2 in the last section of the paper.

5.1. Elimination Theorem

We have seen a (combinatorial) procedure which allows to produce monomials occurring
in a q-character (Remark 3.16). We first prove in this section a (representation theoretical)
theorem (Theorem 5.1) which gives a criterion so that a monomial m′ does not occur in the
q-character of a simple module L(m).

This theorem is used in [23] to study minimal affinizations of representations of quantum
groups.
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5.1.1. Statement

T 5.1. – Let V = L(m) be a Uq(Lg)-module simple module. Let m′ < m and
i ∈ I satisfying the following conditions

(i) there is a unique i-dominant M ∈ (M(V ) ∩m′Z[Ai,a]a∈C∗) − {m′} and its coefficient
is 1,

(ii)
∑
r∈Z x

+
i,r(VM ) = {0},

(iii) m′ is not a monomial of Li(M),
(iv) if m′′ ∈M(Uq(Lgi).VM ) is i-dominant, then v(m′′m−1) ≥ v(m′m−1),
(v) for all j 6= i, {m′′ ∈M(V ) | v(m′′m−1) < v(m′m−1)} ∩m′Z[A±1

j,a]a∈C∗ = ∅.

Then m′ /∈M(V ).

To prove this result, we first need some preliminary lemmas.

5.1.2. Technical lemmas. – First let us consider a refined version of the operators τj of
[14] which allows to study “independently” the subalgebras Uq(Lgi) of the quantum loop
algebra.

Let i ∈ I, h⊥i = {µ ∈ h |αi(µ) = 0} and let A(i) be the commutative group of monomials
generated by variables Y ±i,a (a ∈ C∗), kµ (µ ∈ h⊥i ), Z±j,c (j 6= i, c ∈ C∗). Let

τi : A→ A(i)

be the group morphism defined by (j ∈ I, a ∈ C∗):

τi(Yj,a) = Y
δj,i
j,a

∏
k 6=i,r∈Z

Z
pj,k(r)
k,aqr kν(Λj)−δj,iriα∨i /2.

The pj,k(r) ∈ Z are defined in the following way: we write C̃(z) = C̃′(z)
d(z) where d(z),

C̃ ′j,k(z) ∈ Z[z±] and (D(z)C̃ ′(z))j,k =
∑
r∈Zpj,k(r)zr.

Observe that we have ν(Λj) − δj,iriα
∨
i /2 ∈ h⊥i because αi(ν(Λj) − δj,iriα

∨
i /2) =

Λj(riα
∨
i )− riδi,j = 0.

This morphism τi was first defined [13], and then refined in [21] with the terms k which
will be used in the following. Moreover it is proved in [13, Lemma 3.5] (in [20, Lemma 20]
with the term k0) that:

L 5.2. – For j ∈ I, a ∈ C∗, we have τj(Aj,a) = Yj,aq−1
j
Yj,aqjk0.

This result indicates that the root monomials Aj,a are sent to their analogs of type sl2, as
announced above.

The following result was proved in [13, Lemma 3.4] without the term kµ, and in [20,
Lemma 21] the proof was extended for the terms kµ. It gives a decomposition of a q-character
“compatible” with the action of the subalgebra Uq(Lgi):

L 5.3. – Let V ∈ Rep(Uq(Lg)) and consider a decomposition τi(χq(V )) =∑
rPrQr where Pr ∈ Z[Y ±i,a]a∈C∗ , Qr is a monomial in Z[Z±j,c, kλ]j 6=i,c∈C∗,λ∈h⊥

i
and all

monomials Qr are distinct. Then the Uq(Lgi)-module V is isomorphic to a direct sum
⊕

rVr
where χiq(Vr) = Pr.

The following result gives information on a cyclic Uq(Lgj)-submodule of a Uq(Lg)-
module:
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L 5.4. – Let V ∈ Rep(Uq(Lg)) be a Uq(Lg)-module, m ∈ M(L(m)) and v ∈ Vm.
Then for j ∈ I, Uq(Lgj).v is a sub-Uq(Lh)-module of V and χq(Uq(Lgj).v) ∈ mZ[A±j,a]a∈C∗ .

Proof. – From the relation 3.2, Uq(Lgj).v is a sub-Uq(Lh)-module of V . Consider the de-
composition τj(χq(V )) =

∑
rPrQr of Lemma 5.3 and the decomposition of V as aUq(Lgj)-

module: V =
⊕

rVr. Then there is R such that τj(m) is a monomial of PRQR, and so
v ∈ VR. We haveUq(Lgj).v ⊂ VR. Let us write τj(m) = mRQR. It follows from [4, Theorem
7.2] for Uq(Lgj) ' Uqj (Lsl2), that the q-character of the Uq(Lgj)-module Uq(Lgj).v is in-
cluded inmRZ[(Yj,aq−1

j
Yaqj )

±]a∈C∗ . From Lemma 5.2, the q-character of Uq(Lgj).v viewed

as a Uq(Lh)-module belongs to mZ[A±j,a]a∈C∗ .

In the sl2-case, the following lemma produces a dominant monomial higher than a given
monomial in a q-character (note that a weak version was proved in [19, Lemma 3.2 (ii)]):

L 5.5. – Let L be a finite dimensional Uq(Lsl2)-module. For p ∈ Z, let Lp =∑
{λ∈P∗|λ(Λ∨)≥p}Lλ and L′p =

∑
r∈Zx

−
r .Lp. Then for m′ ∈ M(L′p) there is m ∈ M(Lp)

such that

(i) m is dominant,
(ii) m′ ≤ m,

(iii) (Uq(Lsl2).Lm) ∩ Lm′ 6= {0}.

Proof. – Let m′ ∈ M(L′p). Let us prove the result by induction on dim(Lp): if Lp =

{0} we have L′p = {0}. In general let v be an l-highest weight vector of Lp (it exists, see
for example the proof of [20, Proposition 15]) and denote by M the corresponding mono-
mial. Consider V = Uq(ĝ).v. It is an l-highest weight module and so it follows from The-
orem 3.10 that (Vm 6= {0} ⇒ m ≤ M). If Vm′ 6= {0} the result is clear with m = M .
Otherwise consider L(1) = L/V . Observe that χq(L) = χq(V ) + χq(L

(1)). We use the in-
duction hypothesis with L(1) and we get m ∈ M((L(1))p) ⊂ M(Lp) such that m ≥ m′

and (Uq(Lsl2).(L(1))m) ∩ (L(1))m′ 6= {0}. Let v ∈ (L(1))m and α ∈ Uq(Lsl2) such that
αv ∈ (L(1))m′ − {0}. Let w ∈ v + V and consider the decomposition w = wm + w′ where
wm ∈ Lm and w′ ∈

⊕
m′′ 6=m Lm′′ . Consider v ∈ (L(1))m; we have w′ ∈ V and wm ∈ v+V .

Then αwm = v′ + v′′ ∈ Lm′ ⊕ V where v′ 6= 0. As V ′m = {0}, there is h ∈ Uq(h) such that
hαwm = hv′ 6= 0 and so we get the result.

An analog result is available for general type:

L 5.6. – Let V = L(m) be a Uq(Lg)-module simple module and m′ < m in
M(L(m)). Then there are j ∈ I and M ′ ∈M(V ) such that

(i) M ′ is j-dominant,
(ii) M ′ > m′,

(iii) M ′ ∈ m′Z[Aj,b]b∈C∗ ,
(iv) ((Uq(Lgj).VM ′) ∩ (V )m′) 6= {0}.
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(A weak version of the following lemma was proved in the proof of [21, Lemma 4.4] with
different notations).

To prove this result, we need the following additional notations: for M ∈ A(i), we define
µ(M) ∈ h⊥i , ui,a(M) ∈ Z, by:

M ∈ kµ(M)

∏
a∈C∗

Y
ui,a(M)
i,a Z[Z±j,c]j 6=i,c∈C∗ .

We also set ui(M) =
∑
a∈C∗ui,a(M). Observe that form ∈ A and a ∈ C∗ we have ui,a(m) =

ui,a(τi(m)) and:

ν(ω(m)) = µ(τi(m)) + ui(m)riα
∨
i /2 = µ(τi(m)) + ui(τi(m))riα

∨
i /2,

or equivalently
µ(τi(m)) = ν(ω(m))− αi(ν(ω(m)))α∨i /2.

(See the definition of [20, Section 5.5].) Now let us prove Lemma 5.6:

Proof. – For m′′ ∈M(V ) define w(m′′) = v(ω(m′′)− ω(m)). Let

W =
⊕

{m′′|w(m′′)<w(m′)}

Vm′′ .

As V is an l-highest weight module, there is j ∈ I such that (Uq(Lgj).W )m′ 6= {0}. Consider
the decomposition τj(χq(V )) =

∑
rPrQr of Lemma 5.3 and the decomposition of V as a

Uq(Lgj)-module: V =
⊕

rVr.
For a given r, considerMr ∈M(V ) such that τj(Mr) appears in PrQr. For another such

M , we have µ(τj(M)) = µ(τj(Mr)) and so

ω(MM−1
r ) = uj(τj(MM−1

r ))α∨j /2,

and
uj(τj(M)) = uj(τj(Mr))− 2w(M) + 2w(Mr) = 2(p− w(M)) + pr,

where pr = −2p + 2w(Mr) + uj(τj(Mr)) (it does not depend on M ). So we have w(M) ≤
p ⇔ uj(τj(M)) ≥ pr. So W =

⊕
r((Vr)≥pr ) =

⊕
r(Vr ∩ W ). As Vr is a sub Uq(Lgj)-

module of V , we have Wj =
⊕

r(Vr ∩ Wj). Let M ∈ M(Wj) and let R be such that
τj(M) is a monomial of PRQR. We can apply Lemma 5.5 to the Uq(Lgj)-module VR with
p = pR and the monomialQ−1

R τj(m): we getm′′ ∈M(VR) dominant such thatQ−1
R τj(M) ∈

m′′Z[(Yj,aYj,aq2
j
)−1]a∈C∗ and ((Uq(Lgj).(VR)m′′) ∩ (VR)Q−1

R
τj(M)) 6= {0}. Let us trans-

late this result in terms of monomials of χq(V ). Consider the j-dominant monomial M ′ =

τ−1
j (QRm

′). ThenM ′ ∈M(W ) and (Uq(Lgj).VM ′)∩VM 6= {0}. From Lemma 5.2 we have
M ∈M ′Z[A−1

j,b ]b∈C∗ .

5.1.3. Proof of Theorem 5.1. – Suppose that m′ ∈M(V ). Let

W =
⊕

{M ′≤m|v(M ′m−1)<v(m′m−1)}

VM ′ .

As V is an l-highest weight module, there is k ∈ I such that
∑
r∈Z(x−k,r.W )m′ 6= {0}. From

condition (v) and Lemma 5.4, we have k = i. From Lemma 5.6 and condition (i), we have
(Vm′ ∩ Uq(Lgi)VM ) 6= {0}. Consider u ∈ VM and x ∈ (Uq(Lgi).u ∩ Vm′) such that x 6= 0.
From condition (ii), u is a highest weight vector for Uq(Lgi), so x ∈

∑
r∈Z Cx

−
i,r.u. By

condition (iii), x is in the maximal proper Uq(Lgi)-submodule of Uq(Lgi).x. By condition
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(iv), v(m′M−1) is maximal for this condition. So for all r ∈ Z, we have x+
i,r(x) = 0. For

j 6= i, r ∈ Z, it follows from Lemma 5.4 that x+
j,r(x) ∈

⊕
m′′∈m′Z[A±1

j,a
]a∈C∗

Vm′′ , and

so from condition (v) we have x+
j,r(x) = 0. So Uq(Lg).x is a proper submodule of V ,

contradiction.

5.2. Other preliminary results

In this section, g is an arbitrary semi-simple Lie algebra. We prove additional preliminary
results.

5.2.1. q-characters of simple modules

L 5.7. – Let L(m1), L(m2) be two simple modules. Then L(m1m2) is a subquotient
of L(m1)⊗ L(m2). In particularM(L(m1m2)) ⊂M(L(m1))M(L(m2)).

This first part of the lemma is proved in [7], and the second part is direct from [7, 14].

As a direct consequence of Theorem 3.10, we have:

L 5.8. – Let a ∈ C∗ and m be a monomial of Z[Yi,aqr ]i∈I,r≥0. Then for m′ ∈
M(L(m)) and b ∈ C∗, (vi,b(m′m−1) 6= 0⇒ b ∈ aqri+N).

(Observe that it is also a direct consequence of Lemma 3.11 since a simple module is a
subquotient of a tensor product of fundamental representations.)

The following result gives information on the sub Uq(LgJ)-module generated by a highest
weight vector (the definition of LJ(m) and LJ(m→(J)) has been given in section 3.3.3):

L 5.9. – Letm be a dominant monomial and J ⊂ I. Let v be a highest weight vector
of L(m) and let L′ ⊂ L(m) be the Uq(LgJ)-submodule of L(m) generated by v. Then L′ is a
Uq(Lh)-submodule of L(m) and χq(L′) = LJ(m).

In particular for µ ∈ ω(m)−
∑
j∈JNαj , we have

dim((L(m))µ) = dim((LJ(m→(J)))µ→(J)),

where µ→(J) =
∑
j∈Jµ(α∨j )ωj .

Proof. – It is clear that L′ =
⊕

µ∈ω(m)−
∑

j∈J N.αj (L(m))µ. So it is a Uq(Lh)-submodule

of L(m) and χq(L′) makes sense. Moreover χq(L′) ∈ mZ[A±j,a]j∈J,a∈C∗ and m′ ∈M(L′) is
uniquely determined by (m′)→(J). So it suffices to prove that L′ ' LJ(m→(J)) as Uq(LgJ)-
module. As L′ is a highest weight Uq(LgJ)-module of highest weight monomial m→(J), it
suffices to prove that L′ is simple. If it is not simple, there is w ∈ L′ ∩ (L(m))µ where µ <
ω(m) and such that for all j ∈ J , m ∈ Z, x+

j,m.w = 0. But as L(m) is a highest weight
module and the weights of L′ are in ω(m)−

∑
j∈J Nαj , for weight reason we have:

∀j ∈ (I − J) , ∀m ∈ Z , x+
j,m(L′) = {0}.

So Uq(Lg).w is a proper submodule of L(m), contradiction.
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5.2.2. Thin modules and thin monomials. – Let us introduce the notion of thin module:

D 5.10. – A Uq(Lg)-module V is said to be thin if its l-weight spaces are of di-
mension 1.

In [19, Theorem 3.2], we proved that for g of type A, B, C, all fundamental representa-
tions are thin (this result was also proved later by a different method in [5]. It should also be
possible to check this result directly from the formulas in [28]). We will discuss the notion
of thin modules in more details in [23], but let us give some results that will be used in the
present paper.

L 5.11. – Let V be a Uq(Lg)-module and m′ ∈M(V ) such that there is i ∈ I satis-
fying Min{ui,a(m′) | a ∈ C∗} ≤ −2. Then there is M ∈M(V ) such that

• M > m′,
• M is i-dominant,
• Max{ui,b(M) | b ∈ C∗} ≥ 2.

Proof. – Consider Li(M) occurring in the decomposition of χq(V ) described in Propo-
sition 3.14 and such thatm′ is a monomial of Li(M). Li(M) corresponds to the q-character
χiq(W ) where W is a Uq(Lgi)-simple module, so subquotient of a standard module. In par-
ticular m′ appears in

(2) M
∏
a∈C∗

(Y −1
i,a (1 +A−1

i,aqi
))ui,a(M).

By hypothesis there is b ∈ C∗ such that ui,b(m′) ≤ −2. As m′ appears in the formula (2),
necessarily (1 + A−1

i,aqi
) appears at least twice in (2), and so ui,bq−1

i
(M) ≥ 2. Moreover by

construction M > m′ and M is i-dominant.

D 5.12. – A monomial m is said to be thin if Maxi∈I,a∈C∗ |ui,a(m)| ≤ 1.

L 5.13. – Let V be a special module such that

Max{ui,a(m) |m ∈M(V ), i ∈ I, a ∈ C∗} ≤ 1.

Then V is thin. Moreover all m ∈M(V ) are thin.

Proof. – In [19, Proposition 3.3], the first statement is proved for fundamental represen-
tations. The proof of the first statement of the lemma is the same (χq(V ) is given by the
Frenkel-Mukhin algorithm, and so the property is proved by induction on the weight of
monomials, see the proof of [19, Proposition 3.3] for details).

Now consider m′ ∈ M(V ). If m′ is not thin, there are i ∈ I and a ∈ C∗ such that
ui,a(m′) ≤ −2. From Lemma 5.11, there are another monomial M ∈ M(V ) and b ∈ C∗
such that ui,b(M) ≥ 2, contradiction with the hypothesis on V , so m′ is thin.

P 5.14. – If V is thin then all m ∈ M(V ) are thin. If V is special and all
m ∈M(V ) are thin, then V is thin.
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Proof. – If V is special and all m ∈ M(V ) are thin, then the hypotheses of Lemma 5.13
are satisfied and so V is thin.

For the first statement, suppose thatV is thin and that there is a monomial ofM(V ) which
is not thin. We can suppose there arem ∈M(V ), i ∈ I, a ∈ C∗ such that ui,a(m) ≥ 2 (in the
case ui,a(m) ≤ −2 it follows from Lemma 5.11 that there is another monomial satisfying the
condition with≥ 2). Consider Li(M) occurring in the decomposition of χq(V ) described in
Proposition 3.14 and such that m is a monomial of Li(M). We can see as in the proof of
Lemma 5.11 that there is b ∈ C∗ satisfying ui,b(M) ≥ 2. From the explicit description of

simple modules in Proposition 3.8 in the case sl2, the monomial MA−1
i,bqi

∏
r>0A

−ui,bqr
i

(M)

i,b(qi)r+1

occurs with multiplicity at least 2 in the q-character of the Uqi(Lsl2)-module L(M→(i)), and
so it is not a thin module. As the coefficients in the decomposition of Proposition 3.14 are
positive, there is an l-weight space of V of dimension at least 2, and so V is not thin.

L 5.15. – Let L(m) be a simple Uq(Lg)-module and (m′, i) ∈ M(L(m)) × I such
that

• any m′′ ∈M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin,
• m′ is not i-dominant.

Then there is a ∈ C∗ such that ui,a(m′) < 0 and m′Ai,aq−1
i
∈M(L(m)).

Proof. – Consider Li(M) occurring in the decomposition of χq(V ) described in Propo-
sition 3.14 and such that m is a monomial of Li(M). From the first hypothesis M is thin.
If Li(M) corresponds to a Kirillov-Reshetikhin module of type sl2, the result follows from
the explicit formula of Proposition 3.8 (1). In general Li(M) is also known from the ex-
plicit description of q-characters of simple modules in the sl2-case in Proposition 3.8 (3), and
Li(M) corresponds to a product of Kirillov-Reshetikhin modules Li(M) =

∏
kWk. As M

is thin we have moreover the following property: for m1 appearing in Wk and m2 appearing
in Wk′ , we have

ui,a(m1) 6= 0 and ui,a(m2) 6= 0⇒ k = k′.

And so the result can be reduced to the case of Kirillov-Reshetikhin modules.

L 5.16. – Suppose that g = sln+1 and L(m) be a simple Uq(Lg)-module. Let
(m′, i, a) ∈M(L(m))× I × C∗ such that:

• any m′′ ∈M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin,
• ui,a(m′) = −1,
• m′Yi,a is dominant.

Then there is M ∈ M(L(m)) dominant such that M > m′ and vn(m′M−1) ≤ 1,
v1(m′M−1) ≤ 1.

Proof. – By using Lemma 5.15, we construct inductively a sequence of monomials of
M(L(m)) starting with m′. Indeed as ui,a(m′) = −1 we first get m′Ai,aq−1 ∈ M(L(m)).
Then from the property m′Yi,a dominant we have

(ui−1,b(m
′Ai,aq−1) < 0 or ui+1,b(m

′Ai,aq−1) < 0)⇒ b = aq−1.
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Then we use again Lemma 5.15 (i− 1, aq−1) and (i+ 1, aq−1) when it is possible. We get a
monomial and we apply Lemma 5.15 with (i− 2, aq−2) and (i+ 2, aq−2) when it is possible.
We continue by induction until this is not possible, and we get a monomial:

m1 = m′(Ai,aq−1Ai−1,aq−2 · · ·Ai−α,aq−1−α)

× (Ai+1,aq−2Ai+2,aq−3 · · ·Ai+β,aq−1−β ) ∈M(L(m)),

where α, β ≥ 0, i − α ≥ 1, i + β ≤ n. By construction m1 is (I − {i})-dominant and
we have (ui,b(m1) < 0 ⇒ b = aq−2). If α = 0 or β = 0, m1 is dominant and we take
M = m1. Otherwise, we can suppose α ≥ β (the case β ≥ α can be treated in the same way).
As at each step we get by construction thin monomials, we continue by induction, and for
2 ≤ r ≤ β + 1, we have

mr = mr−1(Ai,aq1−2rAi−1,aq−2r · · ·Ai−α+r−1,aq−α−r )

× (Ai+1,aq−2rAi+2,aq−2r−1 · · ·Ai+β−r+1,aq−r−β ) ∈M(L(m)),

and mr is (I − {i}) dominant. Moreover mβ+1 is dominant, so we take M = mβ+1. By
construction we have M > m′ and vn(m′M−1) ≤ 1, v1(m′M−1) ≤ 1.

L 5.17. – Let g = sln+1 and let L(m) be a simple Uq(Lg)-module. Let (m′, j) ∈
M(L(m))× I such that

• any m′′ ∈M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin,
• m′ is (I − {j})-dominant,
• if j ≤ n− 1, then for all a ∈ C∗, (uj,a(m′) < 0⇒ uj+1,aq−1(m′) > 0).

Then there is M ∈M(L(m)) dominant of the form

M = m′
∏

{a∈C∗|uj,a(m′)<0}

(Aj,aq−1Aj−1,aq−3 · · ·Aia,aqia−j−1),

where for a ∈ C∗, 1 ≤ ia ≤ j.

Proof. – If j < n, the additional hypothesis (uj,a(m′) < 0⇒ uj+1,aq−1(m′) > 0) allows
us to use the result for g{1,...,j}. So we can suppose that j = n. We prove the result by in-
duction on n. For n = 1 the result is clear. In general, by using Proposition 3.14 we get
m1 ∈ M(L(m)) n-dominant such that m′ is a monomial of Ln(m1). As m1 > m′ and
v(m1m

−1) ≤ P , we have by the explicit description of Ln(m1) in Proposition 3.8:

m′(m1)−1 =
∏

{a∈C∗|un,a(m′)<0}

An,aq−1 .

Moreover by construction:

• m1 is {1, . . . , n− 2}-dominant,
• ∀a ∈ C∗, (un−1,a(m1) < 0⇒ (un,aq−1(m1) = 1 and un−1,a(m1) = −1)).

By Lemma 5.15 there is m2 ∈M(L(m)) which is {1, . . . , n− 1}-dominant and such that
m1 is a monomial of L{1,...,n−1}(m2). Then by using the induction property for g{1,...,n−1}
on m1 monomial of L{1,...,n−1}(m2), we get the monomial M .
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6. Proof of Theorem 1.2

In this section, g is simply-laced. We complete the proof of Theorem 1.2: after a tech-
nical lemma on dominant monomials (Lemma 6.1), fundamental representations (Proposi-
tion 6.2) and standard modules of the form M(X

(i)
2,a) (Proposition 6.3) are studied. Then

the type A is discussed (Proposition 6.4), and finally we give the proof of Theorem 1.2 for
the general case.

6.1. Dominant monomials

First let us prove some properties of dominant monomials lower than a monomial X(i)
k,a.

To do this, let us define the following number attached to the structure of the Dynkin
diagram: for i, j ∈ I, we denote by d(i, j) the minimal d such that there is a sequence
(i1, . . . , id) ∈ Id satisfying i = i1, j = id and for all k ∈ {1, . . . , d− 1}, Cik,ik+1

= −1.

L 6.1. – Let i ∈ I, a ∈ C∗, k ≥ 0 and m = X
(i)
k,a. Let m′ ≤ m dominant. Then we

have:

• m′m−1 ∈ Z[A−1
j,aql

]j∈I,l∈Z,
• ∀j ∈ I, l ∈ Z, vj,aql(m′m−1) > 0⇒ (d(i, j) + 1− k ≤ l ≤ k − 1− d(i, j)),
• ∀j ∈ I, vj(m′m−1) > 0⇒ d(i, j) ≤ k − 1.

Proof. – The last statement is a direct consequence of the second statement.
Let us prove that for any j ∈ I, b ∈ C∗ we have:

vj,b(m
′m−1) 6= 0⇒ b ∈ aqk−1−d(i,j)−N.

We prove this statement by induction on d(i, j).
For d(i, j) = 1, we have j = i. Suppose that there is b ∈ (C∗ − aqk−2−N) such that

vi,b(m
′m−1) > 0. Let L ∈ Zmaximal such that there is p ∈ I satisfying vp,bqL(m′m−1) > 0.

We have bqL /∈ aqk−2−N. As m′ 6= m, we have m′ < m and m′m−1 is right negative.
So up,bqL+1(m′m−1) < 0. As moreover up,c(m) > 0 implies c ∈ aqk−1−N, we have
up,bqL+1(m′) = up,bqL+1(m′m−1) < 0. So m′ is not dominant, contradiction.

In general suppose that d(i, j) ≥ 2 and that there is b ∈ (C∗ − aqk−d(i,j)−1−N) such that
vj,b(m

′m−1) > 0. If b /∈ aqZ, we can prove as in the previous case that m′ is not dominant,
contradiction. Otherwise let L maximal such that∑

{p∈I|d(i,p)≥d(i,j)}

vp,aqL(m′m−1) > 0.

As vj,b(m′m−1) > 0, we have L > k − 1− d(i, j). Let P ∈ I such that d(i, P ) ≥ d(i, j) and
vP,aqL(m′m−1) > 0. We have

uP,aqL+1

Ä ∏
{p∈I|d(i,p)≥d(i,j)}

∏
c∈C∗

A−1
p,c

ä
< 0.

As uP,aqL+1(m) = 0 and m′ is dominant, there is j′ satisfying d(i, j′) = d(i, j) − 1 and
vj′,aqL+1(m′m−1) > 0. But L + 1 ≥ k + 1 − d(i, j) = k − d(i, j′), contradiction with the
induction hypothesis.

In the same way we can prove that for any j ∈ I, b ∈ C∗:

vj,b(m
′m−1) 6= 0⇒ b ∈ aq−k+1+d(i,j)+N.
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This implies the first two statements of the lemma.

6.2. Fundamental representations and k = 2 case

P 6.2. – All fundamental representations are small.

Proof. – Let i ∈ I and a ∈ C∗. Then from Lemma 6.1, a monomial satisfying m′ < Yi,a
is not dominant. So Vi(a) is small.

P 6.3. – Let i ∈ I, a ∈ C∗. Then M(X
(i)
2,a) is small.

Proof. – From Lemma 6.1, a dominant monomial m′ < X
(i)
2,a is equal to

m′ = X
(i)
2,aA

−1
i,a =

∏
j∈I|Ci,j=−1

Yj,a.

Consider a monomial m′′ < m′.

Suppose that there are j ∈ I, b ∈ (C∗ − aqZ) such that vj,b(m′′(m′)−1) > 0. Let L ∈ Z
maximal such that there is p ∈ I satisfying vp,bqL(m′′(m′)−1) > 0. We have up,bqL+1(m′′) =

up,bqL+1(m′′(m′)−1) < 0 and so m′′ is not dominant.

Otherwise let L ∈ Z maximal such that there is p ∈ I satisfying vp,aqL(m′′(m′)−1) > 0.
If L ≥ 0, we can prove as in the previous case thatm′′ is not dominant. Otherwise let L′ < 0

minimal such that there is p ∈ I satisfying vp,aqL′ (m
′′(m′)−1) > 0. We have up,bqL′−1(m′′) =

up,bqL′−1(m′′(m′)−1) < 0, and so m′′ is not dominant.

So L(m′) is special and M(X
(i)
2,a) is small.

6.3. Type A

In this section g is of type A.

P 6.4. – Let k ≥ 1, i ∈ I, a ∈ C∗. ThenM(X
(i)
k,a) is small if and only if (i = 1

or i = n or k ≤ 2).

In particular for g = sl2 or g = sl3, all M(X
(i)
k,a) are small.

We prove this proposition in three steps:

(1) we determine the dominant monomials m′ such that m′ ≤ X(1)
k,a (Lemma 6.5),

(2) we prove that the corresponding simple modules are special (Proposition 6.6),
(3) we study the remaining cases (Lemma 6.8).

L 6.5. – Let k ≥ 1, a ∈ C∗ and m′ ≤ X(1)
k,a dominant. Then m′ is of the form

m′ = Yi1,aql1Yi2,aql2 · · ·YiR,aqlR ,

where R ≥ 0, i1, i2, . . . , iR ∈ I, l1, l2, . . . , lR ∈ Z satisfy for all 1 ≤ r ≤ R− 1:

lr+1 − lr ≥ ir + ir+1.
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Proof. – Let m = Y1,aY1,aq2 · · ·Y1,aq2(k−1) and m′ ≤ m dominant. For i ∈ I, l ∈ Z, let
us define vi,l = vi,aql(m

′m−1) and ui,l = ui,aql(m
′). We set vn+1,l = 0. As m′ is dominant,

we have for 2 ≤ i ≤ n and l ∈ Z:

vi,l−1 + vi,l+1 ≤ vi−1,l + vi+1,l,

v1,l−1 + v1,l+1 ≤ 1 + v2,l.

From Lemma 6.1, for l ≤ i− 1 or l ≥ 2k − i− 2, we have vi,l = 0. Let us prove that for all
i ∈ I, (vi,l 6= 0⇒ (l ∈ i+ 2Z)). Indeed m′′ =

∏
i∈I,l∈i+1+2Z A

−vi,l
i,aql

is right negative and for
all i ∈ I, l ∈ i+ 2Z, ui,l(m′′) = ui,l(m

′). So m′′ = 1.
Let us prove that for all l ∈ Z we have v1,l ≤ 1, and for all n ≥ i ≥ 2, l ∈ Z we have

vi,l ≤ vi−1,l−1. We prove the result by induction on d = l− i ≥ 0. First suppose that d = 0.
Then we have v1,1 ≤ −v1,−1 +1+v2,1 = 1. For i ≥ 2, vi,i ≤ −vi,i−2 +vi−1,i−1 +vi+1,i−1 =

vi−1,i−1. Now consider a general d > 0. First we have v1,1+d ≤ 1 + v2,d − v1,d−1. But by
the induction hypothesis, v2,d ≤ v1,d−1. So v1,1+d ≤ 1. For i ≥ 2, vi,i+d ≤ (vi+1,d+i−1 −
vi,d+i−2) + vi−1,d+i−1. But by the induction hypothesis, vi+1,d+i−1 − vi,d+i−2 ≤ 0, and so
vi,i+d ≤ vi−1,d+i−1.

In particular for all i ∈ I, l ∈ Z, vi,l ≤ 1.
In the same way, for all n ≥ i ≥ 2, vi,l ≤ vi−1,l+1. Let n ≥ i ≥ 2. We have proved

vi,l ≤ Min{vi−1,l−1, vi−1,l+1, 1}. In particular

(vi,l = 1⇒ vi−1,l−1 = vi−1,l+1 = 1).

Moreover if vi,l−1 = vi,l+1 = 1, we have 2 = vi,l−1 + vi,l+1 ≤ vi+1,l + vi−1,l and so
vi+1,l = vi−1,l = 1. So

(vi,l = 1⇔ vi−1,l−1 = vi−1,l+1 = 1).

As a conclusion, this can be rewritten in the following way. m′m−1 is of the form:

m′m−1 = Bp1,f1Bp2,f2 · · ·BpR,fR ,

where R ≥ 0, n− 1 ≥ p1, . . . , pR ≥ 0, f1, . . . , fR ∈ Z,

Bp,f = (A1,aqf−pA1,aqf+2−p · · ·A1,aqf+p)

× (A2,aqf+1−pA2,aqf+3−p · · ·A2,aqf+p−1) · · · (Ap+1,aqf ),

fi − pi ∈ 1 + 2Z, f1 − p1 ≥ 1, fR + pR ≤ 2k − 3 and fi + pi + 4 ≤ fi+1 − pi+1.
If p ≤ n− 2, we have

Bp,l = (Y −1
1,qf−p−1Y

−1
1,qf−p+1 · · ·Y −1

1,qf+p+1)Yp+2,aqf ,

and we have
Bn−1,l = Y −1

1,qf−n
Y −1

1,qf−n+2 · · ·Y −1
1,qf+n

.

So we get the result.

P 6.6. – Letm = Yi1,aql1Yi2,aql2 · · ·YiR,aqlR whereR ≥ 0, i1, i2, . . . , iR ∈ I,
l1, l2, . . . , lR ∈ Z satisfying for all 1 ≤ r ≤ R− 1, lr+1 − lr ≥ ir + ir+1. Then:

(1) For m′ ∈M(L(m)), if viR,aqlR−1(m′) ≥ 1 then viR,aqlR+1(m′) ≥ 1.
(2) L(m) is special.
(3) L(m) is thin.
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To prove this proposition, we will need the following direct consequence of the results in
[13]:

L 6.7. – Let V be a fundamental representation of a quantum loop algebra Uq(Lg)
and let Yi,a (resp. Y −1

j,b ) be the highest (resp. lowest) weight monomial of χq(V ). Then we
have:

χq(V ) ∈ Yi,a
Ä
1 +A−1

i,aq

Ä
1 +

∑
{k∈I|Ci,k=−1}

A−1
k,bq2 .Z[A−1

l,d ]l∈I,d∈C∗
ää
,

χq(V ) ∈ Y −1
j,b

Ä
1 +Aj,bq−1

Ä
1 +

∑
{k∈I|Cj,k=−1}

Ak,bq−2 .Z[Al,d]l∈I,d∈C∗
ää
.

Proof. – As V is special, we can use the algorithm proposed by Frenkel-Mukhin [13] to
compute χq(V ) (see [13, Section 5.5] for details): we start with Yi,a. Then we get Yi,aA−1

i,aq

with multiplicity 1 as Li(Yi,a) = Yi,a + Yi,aA
−1
i,aq. As

Yi,aA
−1
i,aq = Y −1

i,aq2

∏
{k∈I|Ci,k=−1}

Yk,aq,

the next step of the algorithm gives the monomials Yi,aA−1
i,aqA

−1
k,aq2 with multiplicity one, and

then inductively the other monomials occurring in χq(V ) are lower than these monomials.
The second statement is obtained by the duality stated in [13, Proposition 6.18] (by re-

placing the Yi,aqn by Y −1
i,aq−n , we get the q-character of a fundamental representation).

Now let us prove Proposition 6.6:

Proof. – Let us denote by (1R) (resp. (2R), (3R)) the condition that the statement (1)
(resp. (2), (3)) of the proposition is satisfied for any R′ ≤ R. We prove by induction on R
simultaneously that (1R), (2R) and (3R) are satisfied. For R = 0 this is clear.

Now we prove the following for R ≥ 1:

• ((1R−1) and (2R−1) and (3R−1)) implies (1R),
• ((1R) and (2R−1) and (3R−1)) implies (2R),
• ((1R) and (2R) and (3R−1)) implies (3R).

Let us start with: ((1R) and (2R−1) and (3R−1)) implies (2R).
By Lemma 5.7

M(L(m)) ⊂ (mY −1
iR,aqlR

M(ViL(aqlR))) ∪ (M(L(mY −1
iR,aqlR

))YiR,aqlR ).

As all monomials of mY −1
iR,aqlR

(χq(ViR(aqlR)) − YiR,aqlR ) are lower than mA−1
iR,aqlR+1

(Theorem 3.13) which is right-negative, they are not dominant. Consider m′ in the set
M(L(mY −1

iR,aqlR
))YiR,aqlR − {m}. If viR,aqlR+1(m′m−1) ≥ 1 or viR,aqlR−1(m′m−1) ≥ 1, it

follows from the (1R) thatm′ is lower thanmA−1
iR,aqlR+1 which is right-negative, som′ is not

dominant. We suppose that

viR,aqlR−1(m′m−1) = viR,aqlR+1(m′m−1) = 0.

So we have uiR,aqlR (m′Y −1
iR,aqlR

) ≥ 0. By (2R−1), the monomial m′Y −1
iR,aqlR

∈
M(L(mY −1

iR,aqlR
)) is not dominant. So there are i ∈ I, b ∈ C∗, such that (i, b) 6= (iR, aq

lR)
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and ui,b(m′Y −1
iR,aqlR

) < 0. As ui,b(m′Y −1
iR,aqlR

) = ui,b(m
′), m′ is not dominant. So (2R) is

satisfied.
Now let us prove: ((1R) and (2R) and (3R−1)) implies (3R).
From property (2R) and Proposition 5.14, it suffices to prove that all monomials of

M(L(m)) are thin. Suppose that there is a monomial inM(L(m)) which is not thin. From
Lemma 5.11, we can suppose that there is m′ ∈ M(L(m)) such that there are i ∈ I, a ∈ C∗
satisfying ui,a(m′) = 2 and such that any m′′ satisfying v(m′′m−1) < v(m′m−1) is thin. In
particular from Proposition 3.14:

• m′ is ({1, . . . , i− 2} ∪ {i} ∪ {i+ 2, . . . , n})-dominant,
• (ui−1,b(m

′) < 0⇒ b = aq),
• (ui+1,b(m

′) < 0⇒ b = aq).

(Otherwise we could construct m′′ ∈ M(L(m)) not thin such that v(m′′m−1) <

v(m′m−1).) We can apply Lemma 5.17 for g{1,...,i−1} of type Ai−1 and then for g{i+1,...,n}
of type An−i. We get a monomial M ∈M(L(m)), and by construction

• M is I − {i}-dominant,
• uj1,aqj1−i(M) ≥ 1 with j1 ≤ i,
• uj2,aqi−j2 (M) ≥ 1 with j1 < j2, i ≤ j2.

Moreover as ui,a(m′) = 2, by construction M is dominant. From property (2R) we have
m = M . In particular there is r < r′ such that (ir, lr) = (j1, j1−i) and (ir′ , lr′) = (j2, i−j2).
We have

lr′ − lr = 2i− j2 − j1 = ir + ir′ + 2(i− j2)− 2j1 < ir + ir′ .

But we have

lr′ − lr = (lr′ − lr′−1) + · · ·+ (lr+1 − lr) ≥ ir′ + 2(ir′−1 + · · ·+ ir+1) + ir ≥ ir′ + ir,

contradiction. So (3R) is satisfied.
Finally we prove: ((1R−1) and (2R−1) and (3R−1)) implies (1R).
We prove (1R) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we have m′ = m

and the result is clear. In general consider a monomial m′ < m such that for m′′ sat-
isfying v(m′′m−1) < v(m′m−1), the property (1R) is satisfied. We suppose that more-
over the property is not satisfied for m′, that is to say that viR,aqlR−1(m′m−1) ≥ 1 and
viR,aqlR+1(m′m−1) = 0. It follows from Proposition 3.14 and the induction hypoth-
esis on v that m′ is (I − {iR})-dominant (otherwise we could construct m′′ such that
v(m′′m−1) < v(m′m−1) and the property is not satisfied for m′′).

If m′ is not dominant, m′ is not iR-dominant and so it follows from Proposition 3.14
that there is m′′ ∈ M(L(m)) iR-dominant such that m′′ > m′ and m′ is a monomial
of Lir (m

′′). Moreover there is b ∈ C∗ such that m′ ≤ m′AiR,b ≤ m′′, and m′AiR,b is a
monomial of LiR(m′′) and so in M(L(m)). By the induction hypothesis on v, m′AiR,b
satisfied the property (1R), and so we have b = aqlR−1. So viR,aqlR−1(m′′m−1) =

viR,aqlR+1(m′′m−1) = 0. In particular uiR,aqlR (m′′) ≥ uiR,aqlR (m) ≥ 1. By Lemma
5.7, we have m′ ∈ M(L(YiR,aqlR ))M(L(mY −1

iR,aqlR
)). But by Theorem 3.13 the monomials

of M(L(YiR,aqlR )) not equal to YiR,aqlR are lower than YiR,aqlRA
−1
iR,aqLR+1 . So we have

m′ ∈ YiR,aqlRM(L(mY −1
iR,aqlR

)). By the properties (2R−1) and (3R−1), L(mY −1
iR,aqlR

) is
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special and thin. In particular uiR,aqlR−2(m′′) ≤ 1, and so by Proposition 3.8, m′ is not a
monomial of LiR(m′′), contradiction. So m′ is dominant.

As L(mY −1
iR,aqlR

) is special, the monomial m′Y −1
iR,aqlR

is not dominant. So

• uiR,aqlR (m′Y −1
iR,aqlR

) = −1,

• uj,b(m′Y −1
iR,aqlR

) < 0⇒ (j = iR and b = aqlR).

So we can use Lemma 5.16 for the thin module L(m′Y −1
iR,aqlR

). Let α, β as in the proof of

Lemma 5.16. Let j = iR+β−α and b = aqlR−α−β−2. By construction ofm fromm′ in the
proof of Lemma 5.16, we have uj,b(mY −1

iR,aqlR
) ≥ 1 and m′ ∈ mY −1

j,b M(Vj(b)). Moreover
there is R′ < R such that j = iR′ and lR − α− β − 2 = lR′ . We have

α+ β + 2 = lR − lR′ ≥ iR + 2iR−1 + · · ·+ 2iR′+1 + iR′

≥ 2(iR + · · ·+ iR′+1) + β − α.

So iR + · · ·+ iR′+1 ≤ α+ 1 and (iR−α) + iR−1 + · · ·+ iR′+1 ≤ 1. As iR−α ≥ 1, we have
iR−1 + · · ·+ iR′+1 = 0, R′ = R− 1 and iR − α = 1.

By construction, we have m′m−1 ∈ Z[A−1
i,aqr ]i≤iR+β,r∈Z. So from Lemma 5.9 we can

suppose that iR + β = n.

We have iR = n+ 1− iR−1. As

ω(m(m′)−1) = (α1 + · · ·+ αn) + (α2 + · · ·+ αn−1)

+ · · ·+ (αiR−1
+ · · ·+ αn+1−iR−1

)

= α1 + αn + 2(α2 + αn−2) + · · ·+ iR−1(αiR−1
+ αn+1−iR−1

)

+ iR−1(αiR−1+1 + · · ·+ αn−iR−1
),

the monomial m′(mY −1

iR−1,aq
lR−1

)−1 is the lowest monomial of M(ViR−1
(aqlR−1)) (the

weight of the lowest weight of fundamental representations has been computed in [13,
Lemma 6.8]).

Let us prove that

(3) M(L(m)) ∩m′Z[AiR,d]d∈C∗ ⊂ {m′,m′AiR,aqlR−1}.

Letm′′ ∈ (M(L(m))∩m′Z[AiR,d]d∈C∗) different fromm′. In particularm ≥ m′′ > m′. By
construction ofm′ fromm, asR′ = R−1, we have for k 6= iR−1, vk,aqlk+1(m′m−1) = 0. So
by Theorem 3.13 (for fundamental representations, that is to say the particular case proved
in [13]), m′,m′′ ∈ mY −1

iR−1,aq
lR−1
M(ViR−1

(aqlR−1)). As m′(mY −1

iR−1,aq
lR−1

)−1 is the lowest

monomial ofM(ViR−1
(aqlR−1)), Lemma 6.7 gives:

(χq(ViR−1
(aqlR−1))YiR,aqLR − 1)A−1

iR,aqlR−1 ∈ 1 +AiR+1,aqlR−2Z[Ak,d]k∈I,d∈C∗

+AiR−1,aqlR−2Z[Ak,d]k∈I,d∈C∗ .

As by hypothesis viR−1(m′(m′′)−1) = viR+1(m′(m′′)−1) = 0, we get:

m′′(mY −1

iR−1,aq
lR−1

)−1 = m′AiR,aqlR−1(mY −1

iR−1,aq
lR−1

)−1.

Let us prove that

(4) m′′ ∈ (M(L(m)) ∩m′Z[A±1
iR,d

]d∈C∗)− {m′AiR,b} ⇒ viR(m′′(m′)−1) ≥ 0.
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Consider a monomial m′′ satisfying the left property of (4). By Lemma 5.8, for k 6= R − 1

we have vik,aqlk+1(m′m−1) = 0. So

m′′ ∈ m(Y −1

iR−1,aq
lR−1
M(ViR−1

(aqlR−1)))
Ä ∏
{k|ik=iR}

YiR,aqlk
ä−1 ∏

{k|ik=iR}

M(ViR(aqlk).

Let us write this decomposition

m′′ = mY −1

iR−1,aq
lR−1

(m′′)R−1

Ä ∏
{k|ik=iR}

YiR,aqlk
ä−1 ∏

{k|ik=iR}

(m′′)k.

(If iR−1 = iR we put (m′′)R−1 only once.) Let k 6= R − 1 satisfying ik = iR. Observe that
forR1 < R2, we have lR2

− lR1
≥ iR1

+ iR2
≥ 2. So by Lemma 5.8, viR+1,aqlk+2(m′m−1) =

viR−1,aqlk+2(m′m−1) = 0. So (m′′)k = YiR,aqlk or (m′′)k = YiR,aqlkA
−1
iR,aq

lk+1 . As a conse-

quence, (m′′)R−1 = Y −1
iR,aqlR

or (m′′)R−1 = Y −1
iR,aqlR

AiR,aqlR−1 (Lemma 5.8). So

viR(m′′(m′)−1) = viR((m′′)R−1YiR,aqlR ) +
∑

{k 6=R−1|ik=iR}

viR((m′′)kY
−1
iR,aq

lk
)

≥ viR((m′′)R−1YiR,aqlR ) ≥ −1.

If viR(m′′(m′)−1) = −1, then for all k satisfying ik = iR we have (m′′)k = YiR,aqlk and
(m′′)R−1 = Y −1

iR,aqlR
AiR,aqlR−1 . So m′′ = m′AiR,aqlR−1 and we can conclude the proof of

(4).

Now it suffices to prove that the conditions of Theorem 5.1 with i = iR are satisfied for
m′.

Condition (i) of Theorem 5.1. – The uniqueness follows from the statement (3) above. For
the existence, it suffices to prove that M = m′AiR,aqlR−1 is inM(L(m)). By Lemma 5.6,
there is j ∈ I, M ′ ∈ M(L(m)) j-dominant such that M ′ > m′ and M ′ ∈ m′Z[Aj,a]a∈C∗ .
By the induction hypothesis on v we have j = iR, and so by uniqueness M ′ = M .

Condition (ii) of Theorem 5.1. – We have by Lemma 5.4∑
r∈Z

x+
i,r(VM ) ⊂

∑
m′∈mZ[A±

i,d
]d∈C∗

(L(m))m′ ,

and so the result follows from the statement (4) above.

Condition (iii) of Theorem 5.1. – By Lemma 5.7, we have

M ∈M(L(YiR,aqlR ))M(L(mY −1
iR,aqlR

)).

But by Theorem 3.13 the monomials ofM(L(YiR,aqlR )) not equal to YiR,aqlR are lower than
YiR,aqlRA

−1
iR,aqLR+1 . So we have M ∈ YiR,aqlRM(L(mY −1

iR,aqlR
)). By (3R−1), the module

L(mY −1
iR,aqlR

) is thin and so uiR,aqlR−2(M) ≤ 1. Moreover by the induction hypothesis on v,

viR,aqlR−1(Mm−1) = viR,aqlR+1(Mm−1) = 0. So uiR,aqlR (M) ≥ 1. So by Proposition 3.8,
m′ is not a monomial ofM(LiR(M)).

Condition (iv) of Theorem 5.1. – The result follows from the statement (4) above.
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Condition (v) of Theorem 5.1. – Clear by the induction hypothesis on v.

The case of standard modules M(X
(n)
k,a ) can be studied in the same way by replacing i by

i = n− i+ 1.
We can conclude the proof of Proposition 6.4 with Proposition 6.2, Proposition 6.3 and

the following counter-examples:

L 6.8. – We suppose that n ≥ 3. Let k ≥ 3, a ∈ C∗ and 1 < i < n. Then M(X
(i)
k,a)

is not small.

Proof. – Consider m′ = X
(i)
k,aA

−1
i,aq−2k+2 ≤ X

(i)
k,a. Then m′ is dominant. As g{i−1,i,i+1}

is of type sl4, by using Lemma 5.9, we can check as in Remark 4.9 that L(m′) is not special,
and so M(X

(i)
k,a) is not small.

6.4. End of the proof of Theorem 1.2

In general for g not of type A, i extremal does not imply that M(X
(i)
k,a) is small. For ex-

ample:

R 6.9. – Let g be of type D4 and m = Y1,q3Y1,q5Y2,1. By using the process de-
scribed in Remark 3.16, the following monomials occur in χq(L(m)): 131521, 1113152−1

2 3141,
111315223−1

3 4−1
3 , 1112

3152−1
4 , 1113. So L(m) is not special. As Y1,q3Y1,q5Y2,1 = X

(1)
4,q2A

−1
1,1 ∈

M(M(X
(1)
4,q2)), M(X

(1)
4,q2) is not small.

Let us end the proof of Theorem 1.2:
The case k = 1 follows from Lemma 6.2. The case k = 2 follows from Lemma 6.3. In the

rest of the proof we suppose that k ≥ 3.
Suppose that i is not extremal. There is j 6= j′ such that Ci,j = Ci,j′ = −1. Consider

m′ = X
(i)
k,aA

−1
i,aq−2k+2 ≤ X(i)

k,a. Then m′ is dominant. Let J = {i, j, j′}. gJ is of type A3 and
so by using Lemma 5.9, we can check as in Remark 4.9 that L(m′) is not special.

Suppose that i is extremal. Let i2 be the unique element of I satisfying Ci,i2 = −1. Let
i3, . . . , idi such that for 2 ≤ r ≤ di − 1, Cir,ir+1 = −1 and idi is special. Let idi+1 6= idi+2

such that Cidi ,idi+1
= Cidi ,idi+2

= −1 and idi−1, idi+1, idi+2 are distinct.
For an illustration an example is given on the following picture:

i i2 i3 · · ·
idi idi+1· · ·

idi+2

Suppose that k ≥ di + 2. Let m′ = X
(i)
k,aA

−1
i,aq2−k

= Yi2,aq2−kX
(i)
k−1,aq. By Remark 3.16,

m′′ =m′(A−1
i2,aq3−k

A−1
i3,aq4−k

· · ·A−1
idi+1,aqdi+2−k)

× (A−1
idi+2,aqdi+2−kA

−1
idi ,aq

di+3−kA
−1
idi−1,aqdi+4−k · · ·A−1

i2,aq2di+1−k) ∈M(L(m′)).

But

(m′′)→(i) = X
(i)
k−1,aq(A

−1
i2,aq3−k

A−1
i2,aq2di+1−k)→(i)

= Yi,aq3−kYi,aq5−k · · ·Yi,aqk−1Yi,aq2di+1−k ,
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and 3− k ≤ 2di + 1− k ≤ k− 3. So m′′A−1
i,aq2di+2−k is dominant and occurs in χq(L(m′′)).

So L(m′′) is not special and M(X
(i)
k,a) is not small.

Suppose that k ≤ di + 1 and that there is a dominant monomial m′ < X
(i)
k,a. By Lemma

6.1, (vj(m
′m−1) 6= 0⇒ j ∈ {i1, . . . , idi}). So from Lemma 5.9, we can work with g{i1,...,idi}

of type Adi . So it follows from Proposition 6.4 that M(X
(i)
k,a) is small.

6.5. General simply laced quantum affinizations

The notion of quantum affinization can be extended beyond quantum affine algebras: the
quantum affinizationUq(ĝ) of a quantum Kac-Moody algebraUq(g) is defined with the same
generators and relations as the Drinfeld realization of quantum affine algebras, but by using
the generalized symmetrizable Cartan matrix of g instead of a Cartan matrix of finite type.
The quantum affine algebras, quantum affinizations of usual quantum groups, are the sim-
plest examples of quantum affinizations and have the particular property of being also quan-
tum Kac-Moody algebras. The quantum affinization of a quantum affine algebra is called
a quantum toroidal algebra (or double affine quantum algebra). It is not a quantum Kac-
Moody algebra, but it is also of particular interest, in particular in relation to double affine
Hecke algebras (Cherednik algebras).

In [29, 32, 20], the category O of integrable representations is studied. One can define
for general quantum affinizations analogs of Kirillov-Reshetikhin modules (these represen-
tations are not finite dimensional in general). We can also define the notion of small modules
by using the characterization in Theorem 4.8.

The statement of Theorem 1.2 is satisfied for all simply-laced quantum affinizations, by
using exactly the same proof, except that in the end of the proof of Theorem 1.2 (subsection
6.4), for J = {i, j, j′}, gJ may be of type A3 or of type A(1)

2 (in the second case we have
Ci,j = Ci,j′ = Cj,j′ = −1). In this case, we can check as in the following remark that for m′

as in subsection 6.4, L(m′) is not small.

R 6.10. – Let g be of A(1)
2 , consider m = Y2,1Y2,q2Y2,q4 , m′ = mA−1

2,q =

Y1,qY0,qY2,q4 . Then by using the process described in Remark 3.16, the monomials

Y −1
1,q3Y

−1
0,q3Y1,q2Y0,q2Y

2
2,q2Y2,q4 = m′A−1

1,q2A
−1
0,q2 ,

Y2,q2Y1,q2Y0,q2 = m′A−1
1,q2A

−1
0,q2A

−1
2,q3 ,

occur in χq(L(m′)) and L(m′) is not special. So M(m) is not small.
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