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STABILITY OF OSCILLATING BOUNDARY LAYERS
IN ROTATING FLUIDS

 N MASMOUDI  F ROUSSET

A. – We prove the linear and non-linear stability of oscillating Ekman boundary layers
for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the
case where the viscosity and the Rossby number are both equal to ε. This study generalizes the study
of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was
treated.

R. – On prouve la stabilité linéaire et non-linéaire de couches limites oscillantes de type
Ekman pour les fluides tournant dans le cas de données mal préparées sous une hypothèse spectrale.
On s’intéresse au cas où la viscosité et le nombre de Rossby sont du même ordre ε. Cette étude généra-
lise celle de [23] où une condition de petitesse était imposée et celle de [26] où les données bien préparées
étaient traitées.

1. Introduction

We consider the following system describing the evolution of a rotating fluid in a rectan-
gular domain

(1)

∂tu
ε + uε · ∇uε +

e× uε

ε
+
∇p
ε
− ε∆uε = 0,

∇ · uε = 0

for x = (y, z) ∈ Ω = T2
a × (0, 1) with the Dirichlet boundary condition

(2) uε/∂Ω = 0

and the initial condition

(3) uε/t=0 = uε,0.

Here T2
a is the periodic torus with periods a1 and a2, namely, T2

a = R2/(a1Z × a2Z) and
a1, a2 > 0. Moreover, e = e3 is the vertical unit vector and e×uε

ε is the Coriolis force.
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This system describes the motion of a rotating fluid as the Ekman and Rossby numbers
go to zero (see Pedlovsky [25], and Greenspan [14]). It can model the dynamics of the ocean
or the atmosphere far from the equator or a rotating fluid in a container. Note that, here, we
take the horizontal viscosity and the vertical viscosity to be equal. We point out that in many
previous works the horizontal viscosity was supposed constant whereas the vertical viscosity
ν goes to 0 (see for instance [17]) or in some other cases, the vertical viscosity was supposed
much smaller than the horizontal viscosity. This anisotropy has the advantage of making the
boundary layers more stable.

In this paper, we look at the case where the vertical and the horizontal viscosities are equal.
We study the convergence of solutions to (1) towards a solution of the limit system (9) defined
below once the time oscillations are filtered out.

We recall that this system and related ones were studied by several authors. In the “well-
prepared” case in domains with boundary, like Ω, we refer to Colin, Fabrie [5], Grenier, Mas-
moudi [17], Masmoudi [22]. For general initial data, and for the periodic case, we refer to
Grenier [15], Embid and Majda [9], Babin, Mahalov and Nicolaenko [2, 1], Gallagher [12]
or in particular cases where there is no boundary layer, or where the boundary layer can be
eliminated by symmetry (Beale and Bourgeois [3]). These results rely on the introduction of
a group to filter the oscillations in time, a method which was previously used by Schochet
[30] to investigate related problems in the torus concerning the compressible-incompressible
limit.

In [23], the “group method” was extended to the case of domains with boundary, by solv-
ing a superposition of an infinite number of boundary layers. These layers create an extra
term in the limit equation. In [23], the stability of these boundary layers was proved in the
case where the horizontal viscosity goes to zero slower than the Rossby number (or in the
small data case). In this paper, we would like to give a spectral assumption (which we think
is optimal) and which yields the stability of such boundary layers.

In the well prepared case, a similar spectral assumption was used to prove the stability
of the boundary layer [26]. This spectral assumption is optimal since the instability of the
boundary layer was proved in [7] if the spectral assumption does not hold.

In the following sections, we recall the main properties of the approximate solution of (1)
constructed in [23] (see also [4]), in particular, we recall the properties of the limit system,
of the boundary layers and the assumptions on the torus which are needed. Next, we shall
give our main assumption on the spectral stability of the boundary layers and state our main
result.
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1.1. Properties of the approximate solution

To state our main result, we first recall the main properties of the approximate solution
uapp of (1) constructed in [23]. In particular, uapp describes the formal limit of (1) and the
boundary layers. The details of the construction will be recalled later. The approximate so-
lution is under the form

(4) uapp = uint

Å
t

ε
, t, x

ã
+ ub

Å
t

ε
,
z

ε
,

1− z
ε

, t, y

ã
+ ur, x = (y, z) ∈ T2

a × (0, 1)

where the remainder term ur satisfies ur = O(ε) (a precise statement will be given later). The
interior term uint can be expressed as

uint(τ, t, x) = L(τ)wint(t, x)

where L(τ) = eτL, Lu = −P(e × u) and P is the Leray projector on divergence-free vector
fields with zero normal component in Ω. We denote Z3

a = 2π
a1

Z× 2π
a2

Z× 2π
2 Z, Z2

a = 2π
a1

Z× 2π
a2

Z
and we denote elements of Z3

a by k̄ = (k, k3) ∈ Z3
a with k ∈ Z2

a = 2π
a1

Z× 2π
a2

Z . We have an
expansion

(5) wint(t, x) =
∑
k̄∈Z3

a

b(t, k̄)eik·yM k̄(z),

so that

(6) uint(τ, t, x) = L(τ)(wint(t, x)) =
∑
k̄∈Z3

a

b(t, k̄)eik·yM k̄(z)eiλ(k̄)τ

and wint solves the limit system (9). Note that N k̄ = eik·yM k̄ is an eigenvector of L. We
assume that the initial data is chosen such that b(0, (0, k3)) = 0 for every k3 i.e. we exclude
initial values with modes which depend only on z. We shall also assume that the torus is non
resonant in the sense of [2] to insure that the condition b(t, (0, k3)) = 0 for every k3 remains
true for positive times (see below for a precise definition).

We can express the dominant boundary layer term ub as

ub(τ, Z, Z ′, t, y) = ub,0(τ, Z, t, y) + ub,1(τ, Z ′, t, y)

where

ub,σ(τ, Z, t, y) = −1

2

∑
k̄

b(t, k̄)eik·y+iλ(k̄)τ (−1)σk3

(
hk̄,+e

− 1+i√
2
ηk̄,+Z

+ hk̄,−e
− 1−i√

2
ηk̄,−Z

)
for σ = 0, 1, with

ηk̄,± =
»

1± λ(k̄), hk̄,± = M k̄(0)∓ ie×M k̄(0).

Note that since terms under the form (0, k3) are excluded in the above sum, we have ηk̄,± > 0

and hence, we have a superposition of terms which are small far from the boundary. Never-
theless, the rate of decay, ηk̄,±, goes to zero when k3

|k̄| tends to ±1.
In view of the above definition of the boundary layers, we introduce the operators

Bσ(τ, Z)q = −1

2

∑
k̄

qk̄e
iλ(k̄)τ (−1)σk3

(
hk̄,+e

− 1+i√
2
ηk̄,+Z

+ hk̄,−e
− 1−i√

2
ηk̄,−Z

)
for any sequence q = (qk̄)k̄∈Z3

a
so that if q is taken under the form qk̄ = b(t, k̄)eik·y, we have

Bσ(τ, y, Z)q = ub,σ(τ, Z, t, y).
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In a similar way, we also define

Lσ(τ)q =
∑
k̄

qk̄M
k̄(σ)eiλ(k̄)τ , σ = 0, 1.

Again, note that if q is taken such that qk̄ = b(t, k̄)eik·y, then we have Lσ(τ)q = w(t, y, σ).
We shall allways assume that the initial data is sufficiently smooth and vanishes at a suf-

ficient order at z = 0, z = 1 in order that b(t, k̄) decay to zero sufficiently fast. In particular,
we assume that

(7) ‖w0‖2V ssym
=
∑
k̄∈Z3

a

|b(0, k̄)|2|k̄|2s <∞ for some s big enough.

This yields that w(t) ∈ V ssym for 0 < t < T ∗ where T ∗ is the life span of a smooth solution
of the limit system (9). Hence, by using that s > 3

2 + 2, we have since( 1

ηk̄,±

)2

≤ |k̄|
|k̄| − |k3|

=
2|k̄|2

k2
1 + k2

2

≤ 2|k̄|2

that ∑
k̄

|b(t, k̄)|
(

1 +
( 1

ηk̄,+

)2

+
( 1

ηk̄,−

)2)
<∞

to finally obtain the important property

(8) sup
y

∫ +∞

0

∣∣∣∂ZBσ(τ, Z)(w(t, y, σ))
∣∣∣(1 + |Z|+ |Z2|) dZ < +∞, σ = 0, 1

which insures that the boundary layers are sufficiently localized in the vicinity of the
boundary.

1.2. The limit system

We denote by wint =
∑
k̄∈Z3

a
b(t, k̄)N k̄ the solution in L∞(0, T ∗;V ssym) of the following

system 

∂tw
int +Q(wint, wint) + S(wint) = −∇p in Ω,

∇ · wint = 0 in Ω,

wint · n = ±w3 = 0 on ∂Ω,

wint(t = 0) = w0,

(9)

whereT ∗ is the time of existence of the smooth solutionwint of (9) andQ(wint, wint), S(wint)

are respectively a bilinear and a linear operator of wint.
The bilinear operator is given by

(10) Q(wint, wint) =
∑
l̄,m̄,k̄

k̄∈A(l̄,m̄)

λ(l̄)+λ(m̄)=λ(k̄)

b(t, l̄)b(t, m̄)αl̄m̄k̄N
k̄(X).

The numbers αl̄m̄k̄ are constants and the setA(l̄, m̄) = {l̄+ m̄, Sl̄+ m̄, l̄+ Sm̄, Sl̄+ Sm̄}
with the notation

S(l̄1, l̄2, l̄3) = (l̄1, l̄2,−l3)

is the set of possible resonances.
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The linear operator is defined by

S(wint) =
∑
k̄

(D(k̄) + iI(k̄))b(t, k̄)N k̄(X)

where
D(k̄) =

√
2
¶

(1− λ(k̄)2)
1
2

©
, I(k̄) =

√
2
¶
λ(k̄)(1− λ(k̄)2)

1
2

©
.

Note that S(wint) is a damping term, since D(k̄) ≥ 0, that depends on the frequencies λ(k̄).

1.3. Non resonance assumption on the torus

In the case of a non resonant torus (see [2] for the definition), the quadratic termQ(w,w)

only includes trivial resonances, namely the resonances only take place with the 2d non os-
cillating geostrophic part:

(11) {(k̄, l̄, m̄) | k̄ ∈ A(l̄, m̄)} ⊂ {(k̄, l̄, m̄) | k3m3l3 = 0}

which yields in particular the global existence of strong solutions to the limit system. We also
know in that case that for k̄ ∈ A(l̄, m̄), and λ(l̄) + λ(m̄)− λ(k̄) 6= 0

(12)
1

λ(l̄) + λ(m̄)− λ(k̄)
≤ C(|l̄|d + |m̄|d)

for some d > 4. We recall that for almost all choices of a1 and a2, the torus T3
a is non resonant

(see [2]).
Besides, if at t = 0, we have ∫

x,y

w0 dxdy = 0,

we see that this holds for any t. Indeed, in the non resonant case there are only trivial
resonances, namely with the slow modes (the geostrophic modes) (k1, k2, 0). Notice then
that the modes (k1, k2, 0), and (−k1,−k2, k3) do not create a resonance with (0, 0, k3), since
(k1, k2) 6= (0, 0), and then |λ(−k1,−k2, k3)| < 1. Hence we get that for all t the modes such
that λ(k̄) = ±1 are absent. This is a crucial fact in our analysis since the boundary layers
for the modes λ(k̄) = ±1 behave like the boundary layers in the vanishing viscosity limit of
the Navier-Stokes equation without the fast rotation (these layers are of Prandtl-type). For
such a case, the stability of the boundary layer is known if the horizontal viscosity is much
bigger than the vertical one (see [22]), in other cases instability is more expected [16] except
in dimension 1 [27] or for analytic data [29].

1.4. Stability assumption on the boundary layer profiles

The main difficulty in the convergence proof is to get an estimate for (1) linearized about
the approximate solution uapp: we study

(13) ∂tv + uapp · ∇v + v · ∇uapp − ε∆v +∇p+
e× v
ε

= 0, x ∈ T2
a × (0, 1)

with the boundary condition (2) and the initial condition v/t=0 = v0(x). We would like to
prove an estimate like

‖v(T )‖2 ≤ eγT ‖v0‖2

for some norm ‖ · ‖ with γ > 0 independent of ε. Even in the well-prepared case such an
estimate is not always true, it depends on a spectral stability property of the boundary layer

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



960 N. MASMOUDI AND F. ROUSSET

profiles. If the boundary layer profiles are spectrally stable, this estimate can be proven as well
as nonlinear stability, [26]. Whereas if they are unstable, we can only get an estimate with
γ of the order of ε−1 and in this case nonlinear instability can be proven [7]. The spectral
stability depends on the amplitude of the boundary layer, numerically, one can prove that
boundary layers with too large amplitude are unstable [21]. The aim of the next subsection
is to formulate a stability assumption on the boundary layer profiles which generalize the
spectral stability assumption of the well-prepared case formulated in [26].

We start by freezing the slow variables t = t0 and y = y0 in the coefficients of the approx-
imate solution. Let us set q = q(t0, y0) = (b(t0, k̄)eik·y

0

)k̄∈Z3
a
. We want to study the stability

property of the equations

∂tv+
(
Lσ(

t

ε
)q+Bσ(

t

ε
,
z

ε
)q
)
·∇v+ v ·∇

(
Lσ(

t

ε
)q+Bσ(

t

ε
,
z

ε
)q
)

+
∇p
ε

+
e× v
ε
− ε∆v = 0.

Let us define for each sequence q = (qk̄)k̄∈Z3
a

the oscillating boundary layer profile V (τ, Z, q)

as

V σ(τ, Z, q) = Lσ(τ)q + Bσ(τ, Z)q,

we can take the Fourier transform in y and set Z = z/ε and τ = t/ε to get the family of
one-dimensional problems

∂τw + V σ(τ, Z, q) ·

(
iεk

∂Z

)
w + w ·

(
iεk

∂Z

)
V σ(τ, Z, q)

+

(
iεk

∂Z

)
p+ e× w + ε2|k|2w − ∂ZZw = 0,

iεk · wh + ∂Zw3 = 0

which is now set for Z ∈ (0,+∞) with the boundary condition

(14) w(τ, εk, 0) = 0.

We recall here that we use the notation k̄ = (k, k3) where k ∈ Z2
a. Finally, we can set ξ = εk

and use for ξ 6= 0 the Leray projection P+(ξ) in the half-space which is recalled in section 19
to rewrite the equation as

(15) ∂τw = P+(ξ)Lσ+(ξ, q)w, iξ · wh + ∂Zw3 = 0

where Lσ+(τ, ξ, q) is defined as

(16) Lσ+(τ, ξ, q)w = −V σ(τ, Z, q)·

(
iξ

∂Z

)
w−w·

(
iξ

∂Z

)
V σ(τ, Z, q)−e× w−|ξ|2w+∂ZZw.

The non-autonomous operator P+Lσ+(τ, ξ, q) generates a strongly continuous family of
evolution operators in the sense of [20], Chapter 7, Sσ+(τ, τ ′, ξ, q) onHξ = {w ∈ L2(0,+∞),

iξ · wh + ∂Zw3 = 0}. As usual, the main property of Sσ+(τ, τ ′, ξ, q) is that τ 7→
Sσ+(τ, τ ′, ξ, q)w0 is the unique solution of (15) for τ > τ ′ with value w0 for τ = τ ′.

Let us fix s0 > 1 such that (8) holds when we replace w(t, y, σ) by Lσ(τ)q. A set K ⊂
V s0sym(Ω) or more precisely in {q |

∑
k̄∈Z3

a
|k̄|2s0 |qk̄|2 < ∞} (using the identification between
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STABILITY OF BOUNDARY LAYERS 961

the function and its Fourier coefficients) will be called a uniform stability set if for every r,R,
0 < r < R, there exist C(r,R) and α(r,R) > 0 such that

(17) ∀v ∈ Hξ, |Sσ+(τ, τ ′, ξ, q)v|L2(R+) ≤ Ce−α(τ−τ ′)|v|L2(R+), ∀τ ≥ τ ′ ≥ 0, σ = 0, 1

for every q ∈ K and ξ such that r ≤ |ξ| ≤ R.
We point out that there are uniform stability sets. Indeed, a vicinity of zero is a uniform

stability set since we can prove as in [23, 6] that all weak amplitude boundary layers are stable
when (8) is matched.

Let wint(t) =
∑
k̄∈Z3

a
b(t, k̄)N k̄ be the solution of (9). Our main stability assumption is:

(H) We assume that the set K = {(qk(t, y) := b(t, k̄)eik·y)k̄∈Z3
a
, t ∈ [0, T ], y ∈ T2

a}, is a
uniform stability set.

R 1. – Note that we can define more generally the stability set K0 ⊂ V s0sym(Ω) as
the set of q having the property that for every 0 < r < R, there exist C(r,R, q) > 0 and
α(r,R, q) > 0 such that (17) holds. By continuity of S+ with respect to q and compactness,
we easily get that every compact set K ⊂ K0 is a uniform stability set. In particular, this
yields that for every bounded set B ⊂ V ssym(Ω) with s > s0, we have that if B is included
in K0, then B is a uniform stability set. Consequently, the assumption (H) is matched if
K ⊂ K0 (whereK is defined in the statement of (H) andK is bounded in V ssym(Ω) for s > s0.

Since the operator Lσ+ has only quasi-periodic coefficients there is no easy characteriza-
tion of the assumption (H), for example in term of the spectrum of L+. When the initial data
is prepared so that the coefficients of Lσ+ are periodic in time, we can use Floquet’s theory to
replace in the assumption (H) the decay estimate (17) by an assumption on the spectrum of
Sσ+(T, 0, ξ, q) where T is the period: if the spectrum σ(Sσ+(T, 0, ξ, q)) is contained in the open
unit disk D, then the estimate (17) is verified. Finally, we note that (H) is the natural general-
ization of the assumption used in the well-prepared case. Indeed, in the well prepared case,
since Lσ+ does not depend on τ the stability assumption was formulated in term of the spec-
trum of P+(ξ)Lσ+(ξ, q): it was basically assumed in [26] that the spectrum of P+(ξ)Lσ+(ξ, q)

is contained in {Reλ < 0}. By the standard theory of analytic semi-groups, it is easy to
prove that this assumption on the spectrum implies the estimate (17). This is proven in [13]
in a close setting.

1.5. Notations

We denote by ‖ · ‖ the norm of L2(T2
a× (0, 1)) and by (·, ·) the associated scalar product.

We also define the weighted higher order norms:

‖v‖21,ε = ‖v‖2 + ε2‖∇v‖2,
‖v‖22,ε = ‖v‖2 + ε2‖∇v‖2 + ε4‖∇2v‖2.

We will also use some anisotropic norms, namely

(18) ‖v‖2m =
∑

α∈Z3, |α|≤m

‖Zαv‖2

where Z1 = ∂y1 , Z2 = ∂y2 , and Z3 = εz(1 − z)∂z and denote by Hm
anis the Hilbert space

defined by this norm.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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1.6. Main result

Our main result is:

T 2. – We consider a torus T3
a non-resonant in the sense of [2] and w0 ∈ V ssym for

s sufficiently large such that in the expansion

w0(x) =
∑
k̄∈Z3

a

b0(k̄)eik·yM k̄(z)

we have b0(k̄) = 0 if k̄ = (0, 0, k3). Moreover, with the notation q0(y) = (q0
k̄
(y))k̄ =

(b0(k̄)eik·y)k̄, we assume that

(19)

{
‖uε,0 − w0 − B0(0, zε )(q0(y))− B1(0, 1−z

ε )(q0(y))‖m ≤ cεα

ε‖∇(uε,0 − w0 − B0(0, zε )(q0(y))− B1(0, 1−z
ε )(q0(y)))‖m ≤ cεα

for some m ≥ 2, 3/4 < α ≤ 1 and some constant c > 0. Let wint(t) be the solution of (9),
we assume that (H) holds. Then, there exists ε0 such that for all 0 < ε < ε0, the system (1)
has a unique weak solution uε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) with initial value uε,0.
Moreover,
(20)∥∥∥∥uε − LÅ tεãwint − B0

Å
t

ε
,
z

ε

ã
(q(t, y))− B1

Å
t

ε

1− z
ε

ã
(q(t, y))

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ CT εα.

In addition, if α = 3/4 in (19), there exists a time T0 which depends on w0 and on c (but not
on ε) such that (20) holds on (0, T0).

Let us give a few remarks about this theorem.

R 3. – 1) First, we note that when 3/4 < α ≤ 1, the uniform time of existence
and convergence T is only limited by the stability assumption (b(t, k̄)eik·y)k̄∈Z3

a
∈ K0, in

particular, it may be arbitrarily large even if the data is large. This is due to the regularity
of the limit system which is better than the regularity of the 3D Navier-Stokes in the non-
resonant case (see [2]).

2) We also point out that the assumption that the torus is non-resonant is used to ensure
that b(t, k̄) = 0 for k̄ = (0, 0, k3) and that the result holds if we know that b(t, k̄) = 0 for
k̄ = (0, 0, k3) as well as an estimate of the type (12). Indeed, for the modes k̄ = (0, 0, k3), the
boundary layer we get is of Prandtl type (the rotation does not play any part). It was handled
in [23] only with the crucial assumption that the vertical viscosity over the horizontal one also
goes to zero.

3) We shall see in the proof that the result is actually more precise. A sufficient condition
on the regularity of w0 is s > d+ 5 where d is given in (12). The convergence will take place
in a space with horizontal regularity m where 2 ≤ m ≤ s− d− 3. Moreover, we notice that
the error estimate, namely CT εα sees the boundary layer and hence the boundary layer can-
not be removed from the estimate (20). This is stronger than the estimates in [17, 23]. How-
ever, our result requires the use of an initial data which depends on ε and which is sufficiently
close to the approximate solution at t = 0. The convergence is stated in L∞(0, T ;L2(Ω))

but as will be seen from the proof in section 5.1, we need to prove estimates in a stronger

4 e SÉRIE – TOME 41 – 2008 – No 6



STABILITY OF BOUNDARY LAYERS 963

space, namely Ym. In particular, the solution we construct is a strong solution which yields
the uniqueness of the weak solutions by the classical strong-weak uniqueness argument.

4) Finally, we note that the proof of Theorem 2 is completely different from the proof of
the stability in the well-prepared case in [26] and the proof of the small data case in the ill-
prepared case [23].

The paper is organized as follows: in the next section, we give some details about the con-
struction of the approximate solution, then, in the next sections, we prove the linear stability
of this approximate solution; finally section 5 is devoted to the proof of Theorem 2. Ap-
pendix A is devoted to the definition and the proof of some simple properties of semi-classical
operator-valued pseudo-differential calculus. These properties are crucial in the study of the
linear stability. Finally, the Appendix B gathers some useful properties of the Leray projec-
tion in the strip and in the half-space.

2. Construction of an approximate solution

2.1. Some definitions and notations

We will use the notations of [23]. Let us denote by V 0 the subspace of L2(Ω)3 consisting
of divergence-free vectors (div u = 0), and tangent to ∂Ω (u3(z = 0) = u3(z = h) = 0 )

V 0 = {u ∈ L2(Ω)3,∇ · u = 0, u3(z = 0) = u3(z = h) = 0} ;

we also define, for m > 0, V m the space

V m = Hm(Ω)3 ∩ V 0,

where Hm(Ω) is the classical Sobolev space W 2,m(Ω).
Let T3

a = T2
a×]− 1, 1[= T2

a ×R/2Z be the torus of periods respectively a1, a2 and 2, and
E the linear operator from L2(Ω)3 into L2(T3

a)3 defined by Eu(z) = u(z) for 0 < z < h,
and for −h < z < 0

(21) Eu(z) = S(u(−z)),

where S is the linear operator from R3 into R3, defined by

(22) SX1 = X1 SX2 = X2 SX3 = −X3

for all X ∈ R3, which corresponds to a symmetry with respect to the plan X3 = 0.

We also introduce V ′m = {u ∈ Hm(T3
a)3,∇ · u = 0}, Hence E′E u = IdV 0 where E′ is

the restriction from L2(T3)3 onto L2(Ω)3. In the sequel we will work in the space V msym,

V msym = E′(V ′m ∩ E(V m)),

which consists of vectors u ∈ V m that satisfy extra boundary conditions on the vertical
derivatives.

We also introduce a norm on V msym

|u|2Vmsym
=

1

2
|Eu|2V ′m ,

which is conserved by the group L, namely |L(τ)u|Vmsym
= |u|Vmsym

, for every τ ∈ R. We will
also use the following notations (see the appendix 2.2 of [23] for a precise construction):
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• X = (y1, y2, z) = (y, z);
• N k̄(X) = M k̄(z)eik.y is an eigenvector of L associated to the eigenvalue iλ(k̄) =

i k3/|k|;
• for w ∈ L∞(0, T, V ssym), we set

(23) w(t,X) =
∑
k̄∈Z3

a

b(t, k̄)N k̄(X),

then we have for all t, |w(t)|2V ssym
= 2|Ω|

∑
k̄ |b(t, k̄)|2|k̄|2s.

2.2. Study of the group

We study here the group L, in particular, we give the expression of the eigenvectors Nk.
Using the construction in the appendix of [23], we get for k̄ = (k, k3) ∈ Z3

a and k 6= (0, 0)

that N k̄(X) = M k̄(z)eik.y where

M k̄(z) =

Ü
2 cos(k3 z)n1(k̄)

2 cos(k3 z)n2(k̄)

2i sin(k3 z)n3(k̄)

ê
(24)

and

n1(k̄) =
n3(k̄)

1− λ(k̄)2

Å
i
k2

|k̄|
− k1

|k̄|
λ(k̄)

ã
n2(k̄) =

n3(k̄)

1− λ(k̄)2

Å
−i k1

|k̄|
− k2

|k̄|
λ(k̄)

ã
n3(k̄) =

 
1− λ(k̄)2

2
.

Notice then that N k̄(X) ∈ V ssym, and that we have LN k̄ = λ(k̄)N k̄.

2.3. Approximate solution

Here, we construct the approximate solution Uapp = (uapp, papp). The aim is that Uapp

satisfies (1) up to a small error and the boundary condition (2) exactly.
To guess a good choice forUapp, we expand the solution in the following formU0 +εU1 +

ε2U2 + ... where

(25) U0 = U0(τ, t, x) + Ũ0(τ, t, y, Z) + Ŭ0(τ, t, y, Z ′),

where we recall that τ = t/ε, Z = z/ε and Z ′ = (1 − z)/ε. Even though it is not clear
whether we can push this expansion to all order, this will allow us to guess the first terms.
Hence, arguing as in [23], we get

u0(τ, t) = L(τ)u0(τ = 0, t) = L(τ)wint(t)

which is exactly the term uint in (4).
We notice that u0 does not vanish on ∂Ω; we only have (u0 · n)/∂Ω, where n is the nor-

mal to the boundary. This requires the introduction of a boundary layer. For the boundary
layer, we only construct Ũ0, near z = 0, since the construction of Ŭ0 near z = 1 is similar.
We recall that the modes (0, k3) are excluded due to the assumption on the initial data and
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on the resonances of the torus. So, we only deal with the case −1 < λ(k̄) < 1. Using the
construction in section 4 of [23], we get ũ0 =

∑
k̄∈Z3

a
Rk̄ where

Rk̄(z) = −1

2
b(t, k) exp

ï
i

Å
(k.y) +

λ(k)t

ε

ãò
(26)

×
ï
hk̄,+ exp(− (1 + i)√

2
ηk̄,+

z

ε
) + hk̄,− exp(− (1− i)√

2
ηk̄,−

z

ε
)

ò
.

In a similar way, we get that ŭ0 =
∑
k̄∈Z3

a
T k̄ where T k has the same formula as Rk. Hence,

ub = ũ0 + ŭ0.
It remains to construct the remainder term ur. Of course, a good guess for ur is to take

εU1. However, we would like to get an approximate solution uapp which is divergence-free
and which vanishes on the boundary. The rest term is under the form

ur =
∑
k̄

(Rk̄3 + T k̄3 ) +
∑
k̄

rk̄ + εY +R3

and hence consists of four terms. We refer to [23] for the details on the construction of these
four terms. The main property of this correction term is that for all |α|+ |β| ≤ s− d− 5,

(27) ‖(ϕ(z)∂z)
β∂αy u

r‖L∞ ≤ Cαε, ‖∂z(ϕ(z)∂z)
β∂αy u

r‖L∞ ≤ Cα,

where ϕ(z) is a smooth bounded function which is equivalent to z and 1 − z in the vicinity
of 0 and 1 respectively.

• Rk̄3 and T k̄3 which are introduced to insure that Rk̄ and T k̄ satisfy the divergence free
condition. However, Rk̄3 creates a trace at z = 0 and T k̄3 creates a trace at z = 1 of
order ε.

• rk̄ which is used to cancel the traces Rk̄3(z = 0) and T k̄3 (z = 1). Since, we have to
take rk̄ which is divergence-free, we have to construct rk̄1 and rk̄2 which have a trace at
z = 0 and z = 1 of order ε. This is actually easier to handle than the trace on the third
component we started with. Besides, the term 1

εe × r
k̄ is responsible for the Ekman

damping in the limit equation.
• εY is introduced to cancel the non resonant oscillating terms which do not yield a con-

tribution in the limit equation. More precisely, we have

Y(τ, t) = −L(τ)

∫ τ

0

[
L(−τ ′)Q(w,w)−Q(w,w)

]
(t)dτ ′.

We also point out that due to the non resonance assumption, we know that
‖Y(τ, t)‖Hs−d−1 ≤ C for a constant which does not depend on τ or t < T .

• R3 which takes into account the boundary condition of r, Y . This was constructed in
section 4.3 of [23].

3. Linear stability

We study the linearized system about the approximate solution:

(28) T ε(v, p) = F, ∇ · v = 0, x ∈ T2
a × (0, 1)

where
T ε(v, p) = ∂tv + uapp · ∇v + v · ∇uapp +∇p +

e× v
ε
− ε∆v
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with initial data

(29) v(0, x) = v0(x)

and the boundary condition (2). Let us define vHF byFyvHF = 1ε|k|≥rFyv, for some r > 0

and κs(εDy)v by Fy(κsv) = κs(εξ)Fyv(ξ) with κs(ξ) a smooth function which vanishes for
|ξ| ≥ 2r. The main result of this section is

T 4. – We assume that (H) holds. Then, there exist γ0 > 0, γ > 0 such that for
every ε > 0, T > 0, with εeγ0T ≤ 1, we have

(30) ‖v(T )‖2 + ε2‖∇vHF (T )‖2 +

∫ T

0

ε‖∇v‖2

. eγt
(
‖v0‖2 + ‖vHF0 ‖21,ε +

∫ T

0

∣∣∣(κsF, κsv)
∣∣∣+ ε

∫ T

0

‖F‖2
)
.

Throughout the paper, . stands for ≤ C where C > 0 is independent of ε ∈ (0, 1), T if
εeγ0T ≤ 1. Note that by using the Cauchy Schwarz inequality and the Gronwall inequality,
we can get from (30) the estimate

‖v(T )‖2 + ε2‖∇vHF (T )‖2 +

∫ T

0

(
ε‖∇v‖2 + ε−1‖vHF ‖21,ε

)
. eγ̃t

(
‖v0‖2 + ‖vHF0 ‖21,ε +

∫ T

0

(1 + ε)‖F‖2
)

for some γ̃ > γ which gives an estimate of v with respect to the source term F and the initial
data only. Nevertheless, in order to handle the nonlinear stability, it is important to keep the
term ∫ T

0

∣∣∣(κsF, κsv)
∣∣∣

in the right-hand side since it will allow to use the structure of the nonlinear term of the
Navier-Stokes equation and hence to get some better estimates.

The aim of the remaining part of the section is to prove Theorem 4. Note that for the
moment we have a control of the L∞(0, T,H1) norm only for the high frequency part of v.
We will derive an estimate for all the frequencies in paragraph 3.6.

3.1. Proof of Theorem 4

We start with a localization in frequency of the equation similar to the well prepared case
[26]. We will deal with large, medium and small frequencies in different ways. For a smooth
bounded function κ, we apply the Fourier multiplier κ(εDy) to the equation 13. We get

(31) T ε(κv, κp) = κF + C

where the commutator C is defined as

C = −[κ, uapp · ∇]v − [κ,Duapp]v.

By using the same argument as in [26], [28], we have the estimate

(32) ‖C‖2 . ε2‖∇v‖2 + ‖v‖2.
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Note that these commutator estimates are actually proven in a more general case in
Lemma 16.

We first deal with the case where κ = κL is supported in ε|k| ≥ R. We have

P 5. – There exists R > 0 sufficiently large such that we have for every ε ∈
(0, 1) and every T > 0:

‖κLv(T )‖21,ε + ε−1

∫ T

0

‖κLv‖21,ε .

∫ T

0

(
‖v‖21,ε + ε‖F‖2

)
+ ‖κLv0‖21,ε.

Note that for the proof of this lemma we do not need to use (H).

Proof. – We use the same argument as in the well-prepared case treated in [26]. Using that
uapp is divergence free, the standard energy estimate for (31) gives

‖κLv(T )‖2 +

∫ T

0

ε‖∇κLv‖2 . ‖κLv0‖2 +

∫ T

0

(
ε−1‖κLv‖2 + ‖F‖ ‖κLv‖+ ‖C‖2

)
. ‖κLv0‖2 +

∫ T

0

(
ε−1‖κLv‖2 + ε‖F‖2 + ‖C‖2

)
.

We notice that
‖∇κLv‖2 ≥ R2ε−1‖κLv‖2

so that forR sufficiently large, the singular term ε−1‖κLv‖2 in the right hand side of (33) can
be absorbed by the left hand side. By using also (32), this yields

(33) ‖κLv(T )‖2 + ε−1

∫ T

0

‖κLv‖21,ε .

∫ T

0

(
‖v‖21,ε + ε‖F‖2

)
+ ‖κLv0‖2.

To conclude, it suffices to estimate ε2‖∇κLv(T )‖2. This is an easy consequence of the fol-
lowing lemma:

L 6. – Consider u a solution of

(34) ∂tu− ε∆u+
e× u
ε

+∇p = H, ∇ · u = 0, x ∈ Ω

with the initial condition u(0, x) = u0(x) and the boundary condition (2). Then, we have the
estimate

(35) ε2‖∇u(T )‖2 +

∫ T

0

(
ε3‖∇2u‖2 + ε‖∂tu‖2

)
. ε2‖∇u0‖2 +

∫ T

0

(
ε−1‖u‖2 + ε‖H‖2

)
.

We first end the proof of Proposition 5 by using Lemma 6. We can use Lemma 6 with
u = κLv and

H = −uapp · ∇κLv − (κLv) · ∇uapp + κLF + C.
This yields

ε2‖∇κLv‖2 . ε2‖∇κLv0‖2 +

∫ T

0

(
ε−1‖κLv‖2 + ε‖∇κLv‖2 + ε‖F‖2 + ‖v‖21,ε

)
.

To conclude, it suffices to add (33) times a sufficiently large constant and the last estimate.

We now turn to the Proof of Lemma 6:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



968 N. MASMOUDI AND F. ROUSSET

Proof of Lemma 6. – We take the scalar product of (34) by ∂tu, since ∂tu is divergence free
and verifies the boundary condition (2); we have

(∇p, ∂tu) = 0, (−∆u, ∂tu) =
d

dt

(1

2
‖∇u‖2

)
and hence we get

ε‖∇u(T )‖2 +

∫ T

0

‖∂tu‖2 . ε‖∇u0‖2 +

∫ T

0

(
‖H‖+ ε−1‖u‖

)
‖∂tu‖.

By using the Young inequality, we find after multiplication by ε

(36) ε2‖∇u(T )‖2 +

∫ T

0

ε‖∂tu‖2 . ε2‖∇u0‖2 +

∫ T

0

(
ε‖H‖2 + ε−1‖u‖2

)
.

Next, we use the classical regularity result for the Stokes equation [11]. We consider (34) as

−ε∆u+∇p = H − e× u
ε
− ∂tu, ∇ · u = 0

and we find that

ε2‖∇2u‖2 . ‖H‖2 + ε−2‖u‖2 + ‖∂tu‖2.

To end the proof, it suffices to integrate in time, to multiply by ε the last estimate and to use
(36). This ends the proof of Lemma 6.

We now consider R as fixed. The next step is to consider the case where κ = κs is sup-
ported in ε|k| ≤ r.

P 7. – There exists r > 0 sufficiently small such that we have for every ε ∈
(0, 1) and every T > 0

‖κsv(T )‖2 +

∫ T

0

ε‖κs∇v‖2 .

∫ T

0

(
‖v‖21,ε + |(κsF, κsv)|

)
+ ‖κsv0‖2.

Again, note that the assumption (H) is not used.

Proof. – Again we use a direct energy estimate as in [26]. Since (e× κsv, κsv) = 0, we get

(37) ‖κsv(T )‖2 +

∫ T

0

ε‖κs∇v‖2 .

∫ T

0

(
‖C‖2 + ‖κsv‖2 + |(κsF, κsv)|+ Sε

)
+ ‖κsv0‖2

where the singular term Sε is defined by

Sε = ε−1

∫
Ω

|κsv3|
(
|∂Zub|+ |∂Z′ub|

)
|κsv| dx.

Again, we use (32) to estimate C and hence it remains to study Sε. To estimate this term, we
shall use the inequality

(38) |f(t, x)|2 ≤
(∫ z

0

|∂zf |
)2

≤ z
∫ z

0

|∂zf |2 ≤ z
∫ 1

0

|∂zf |2 if f/z=0 = 0.
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Note that since ∂zκsv3 = −∂1κ
sv1 − ∂2κ

sv2 because of the incompressiblity condition, we
can use (38) twice to get

|κsv3|2 ≤ z
∫ z

0

|∂zκsv3|2 . z

∫ z

0

|∇hκsvh|2 . z3

∫ 1

0

|∂z∇hκsvh|2,

|κsv|2 . z

∫ 1

0

|∂zκsv|2.

This yields

ε−1

∫
Ω

|κsv3| |∂Zub,0| |κsv| dx

. ε2‖∂z∇hκsv‖ ‖∂zκsv‖ sup
y

∫ +∞

0

Z2|∂ZB0(τ, Z)wint(t, y, 0)| dZ

. εr‖∇κsv‖2.

To get the last inequality, we have used that ε‖∇hκsf‖ ≤ r‖κsf‖ by definition of κs and our
regularity assumption which gives

sup
y

∫ +∞

0

Z2|∂ZB0(τ, Z)wint(t, y, 0)| dZ < +∞

following (8). The same argument in the vicinity of the boundary z = 1 shows that

ε−1

∫
Ω

|κsv3| |∂Z′ub,1| |κsv| dx . εr‖∇κsv‖2.

Consequently, we can choose r sufficiently small to absorb the singular term Sε in the left
hand side of (37). This ends the proof of Proposition 7.

Finally, it remains the most difficult case where κ(εk) = κl is supported in r/2 ≤ ε|k| ≤
2R. Note that r and R are now fixed. We have the following estimate:

P 8. – Under the assumptions of Theorem 4, we have for ε and T such that
εeγ0T ≤ 1

‖κlv(T )‖21,ε +

∫ T

0

ε−1‖κlv‖21,ε . eγ0T ‖κlv0‖21,ε +

∫ T

0

(
εeγ0T ‖F‖2 + ‖v‖21,ε

)
.

The assumption (b(t, k̄)eik·y)k̄∈Z3
a
∈ K is crucial in the proof of Proposition 8.

3.2. Proof of Proposition 8

In this section, due to the oscillations in the boundary layers, we use an approach com-
pletely different from the one of the well-prepared case used in [26]. The proof of this Propo-
sition is the most technical part and we split it into various steps. First, we rewrite (31) by
using the Leray projection P(Dy) which is recalled in section B.2. Let us set vl = κlv, we get
the equation

(39) ∂tv
l = P(Dy)κl(εDy)Lεvl + P(Dy)κl

(
κlF + κlC

)
, ∇ · vl = 0, x ∈ Ω,

where κl is compactly supported with a support slightly bigger than κl and takes the value 1

on the support of κl in order that κlκ = κ and Lε is defined by

Lεv = ε∆v − uapp · ∇v − v · ∇uapp − e× v
ε

.
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Next, we shall estimate differently vl in the interior of the domain and in the vicinity of the
boundary. We decompose vl as

(40) vl = χb(
z

δ
)vl + χint(z)vl + χb(

1− z
δ

)vl

where χb is compactly supported in [0, 2], and χint is compactly supported in [δ, 1− δ]. Note
that χint depends on δ though we forget this dependence in the notation. Multiplying (39)
by χ for χ one of the truncation functions χint, χb,0 = χb(z/δ), χb,1 = χb(1− z/δ), we get

∂t(χv
l) = P(Dy)κl(εDy)Lε(χvl) +H(41)

∇ · (χvl) = −∂zχ vl3(42)

where

(43) H = χP(Dy)κl
(
κlF + κlC

)
+ C1 + C2

with the new commutators C1 and C2 defined by

C1 =
[
χ,P(Dy)κl(εDy)

]
Lεvl,(44)

C2 = P(Dy)κl(εDy)
[
χ,Lε

]
vl.(45)

Thanks to (155) in Lemma 19, we get that

(46) ‖C1‖ . ‖vl‖+ ε‖∇vl‖+ ε2‖∆vl‖ . ‖vl‖2,ε.

Note that in the following . stands for≤ C and thatC may depend on δ. Besides, the explicit
computation of C2 and a new use of the commutator estimates (see the appendix of [26] or
Lemma 16) gives that

(47) ‖C2‖ . ‖vl‖+ ε‖∇vl‖ . ‖vl‖1,ε.

Finally, note that if we choose κ
l

such that the support of κ
l

is again slightly larger than the
one of κl then we have

(48) H = κ
l
(εDy)H.

3.2.1. Interior estimates. – We start with the case χ = χint. The estimate of χintvl can be
obtained by a direct energy estimate. We shall first establish the estimate:

(49) ‖χintvl(T )‖2 + ε−1

∫ T

0

‖χintvl‖21,ε . ‖χintvl0‖2 +

∫ T

0

(
ε‖vl‖22,ε + ε‖F‖2 + ‖v‖21,ε

)
.

The only difficulty is that we have to deal with the fact thatχintvl is not divergence free. When
we take the scalar product of (41) by χintvl, we can write(

P(Dy)κl(εDy)Lε(χintvl), χintvl
)

=
(
Lε(χintvl),P(Dy)κl(εDy)(χintvl)

)
=
(
Lε(χintvl), χintvl

)
+
(
Lε(χintvl), [P(Dy)κl(εDy), χint]vl

)
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since vl is divergence free. Hence by using again the commutator estimate (155) of Lemma
19, we get(

P(Dy)κl(εDy)Lε(χintvl), χintvl
)

=(
Lε(χintvl), χintvl

)
+O(1)

(
‖vl‖+ ε‖∇vl‖+ ε2‖∆vl‖

)
‖χintvl‖.

where O(1) is bounded by a constant which is independent of ε. The first term in the above
equality can be handled by standard integration by parts as previously. This yields

‖χintvl(T )‖2 +

∫ T

0

ε‖∇(χintvl)‖2(50)

. ‖χintvl0‖2 +

∫ T

0

(
(‖vl‖2,ε + ‖H‖) ‖χintvl‖+ Sε

)
where the singular term Sε is given by

Sε = ε−1
∣∣∣(χint∂Zu

bvl, χintvl
)∣∣∣+ε−1

∣∣∣(χint∂Z′u
bvl, χintvl

)∣∣∣ := Sε1 + Sε2 .

By using the localization of the support of χint we have

|Sε1 | .
∑
k,±

|b(t,k)||Mk(0)|ε−1 exp
(
− ηk,±δ√

2 ε

)
‖χintvl‖2(51)

.
∑
k,±

|b(t,k)|Mk(0)

ηk,±
‖χintvl‖2 . ‖χintvl‖2

and hence this term is well controlled. The estimate of Sε2 is similar. To conclude, we finally
notice that since the Fourier transform of vl is localized in ε|k| ≥ r, we can write

‖∇(χintvl)‖2 = ‖∇(χintκl(ε∂y)vl‖2 = ‖κ∇(χintvl)‖2

≥ ε−2‖χintvl‖2

and hence, we deduce (49) from (50) by using the Young inequality which gives for every
η > 0

(‖vl‖2,ε + ‖H‖) ‖χintvl‖ ≤ C(η)ε(‖H‖2 + ‖vl‖22,ε) + η ε−1‖χintvl‖2

and the estimates (32), (46), (47).

3.2.2. Estimates near the boundary. – We now explain how to estimate χb(z/δ)vl which will
be denoted as χbvl in the following in order to simplify the notations. The estimate of χb,1vl

which can be obtained in a similar way will not be detailled. We shall establish

‖χbvl(T )‖2 +

∫ T

0

(
ε−1‖χbvl‖2 + ε‖∇(χbvl)‖2

)
(52)

. eγ0T ‖vl(0)‖21,ε + εeγ0T

∫ T

0

‖F‖2

+ ε eγ0T

∫ T

0

(
‖v‖2 + ε2‖∇v‖2 + ε4‖∆vl‖2 + ε2‖∂tvl‖2

)
.

We study (41), (42) withχ = χb,0. Note that sinceχbvl is compactly supported in T2
a×[0, 2δ],

we can use Lemma 20 and replace the Leray projection P(Dy) by the Leray projection in the
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half-space P+(Dy) modulo a small remainder term. This means that we can study in T2
a×R+

the equation

(53) ∂t(χ
bvl) = P+(Dy)κ(εDy)Lε(χbvl) +H + E0, ∇ · (χbvl) = −∂zχ vl

where

E0 = χb
(
P(Dy)− P+(Dy)

)
κl(εDy)Lε(χbvl)

where χb is a smooth function with a support slightly bigger than χb. Thanks to Lemma 20,
we have

(54) ‖E0‖ . ‖vl‖+ ε‖∇vl‖+ ε2‖∆vl‖ . ‖vl‖2,ε.

Again, note that E0 verifies

(55) E0 = κ
l
(εDy)E0.

We add to (53) the only boundary condition

(56) χbvl(t, y, 0) = 0.

Since χbvl is not divergence free, we first lift the divergence to recover a problem with a di-
vergence free constraint. We choose in a classical way d such that

(57) ∇ · d = −∂zχb vl3, d(t, y, 0) = 0

and also in such a way that

(58) κl(εDy)d = d.

This is possible (see [11]) since∫
∂zχ

b vl3 = −
∫
χb∂zv

l
3 =

∫
z

χb(z)

∫
y

∇y · vlh = 0.

Moreover, we can have

(59) ‖d‖Hs+1 . ‖vl‖Hs , s ≥ 0.

Note that since d is chosen with the property (58), we can use that r . ε|k| on the support
of κl and (59) to get that

(60) ε−1‖d‖ . ‖vl‖.

Moreover, by taking the time derivative of (57), we also get that

(61) ε−1‖∂td‖ . ‖∂tvl‖.

Now, let us set w = χbvl − d, we deduce from (53), (57) that w solves

∂tw = P+(Dy)κ(εDy)Lb,εw +H + E0 + E1 + E2,(62)

∇ · w = 0(63)

for x = (y, z) ∈ T2
a × R+, with the boundary condition

(64) w(t, y, 0) = 0
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where Lb,ε is the operator

Lb,εw = ε∆w

−
(
uint( tε , t, y, 0) + ub,0( tε ,

z
ε , t, y) + χ( zδ )(uint( tε , t, y, z)− u

int( tε , t, y, 0))
)
· ∇w

− w · ∇
(
uint( tε , t, y, 0) + ub,0( tε ,

z
ε , t, y) + χ( zδ )(uint( tε , t, y, z)− u

int( tε , t, y, 0))
)

− e×w
ε .

In this operator, we have introducedχwhich is again a smooth compactly supported function
such that χχb = χb. Moreover, we recall that the notation ub,0 refers to the main boundary
layer in the vicinity of z = 0. The main interest of the introduction of χ is that the term

wδ = χ( zδ )
(
uint( tε , t, y, z)− u

int( tε , t, y, 0)
)

verifies

(65) ‖wδ‖L∞ . δ, ‖∇wδ‖L∞ . 1.

In the above estimates, . is independent of δ for 0 < δ ≤ 1. In the right-hand side of (62),
E1 is the error term coming from d, i.e

E1 = ∂td− P+(Dy)κ(εDy)Lb,εd.

Hence we have
‖E1‖ . ‖∂td‖+ ‖∇d‖+ ‖d‖+ ε‖∆d‖+ ε−1‖d‖

and hence, thanks to (59), (60), (61), we get

(66) ‖E1‖ . ε‖∂tvl‖+ ‖vl‖+ ε‖∇vl‖ . ‖∂tvl‖+ ‖vl‖1,ε.

The other error term E2 is defined as

E2 = −P+(∂y)κ(ε∂y)
(
ub,1( tε ,

1−z
ε , y, 0) + ur

)
· ∇(χbvl)

− χbvl · ∇
(
ub,1( tε ,

1−z
ε , t, y) + ur

))
so that by using (27) and the same trick as in (51) with the regularity assumption on the
coefficients, we get

(67) ‖E2‖ . ε‖∇vl‖+ ‖vl‖ . ‖vl‖1,ε.

Finally, note that E1 and E2 verify

(68) κ
l
E1 = E1, κ

l
E2 = E2.

To estimate the solution of (62), (63), we can use the following general principle:

L 9. – Consider a linear equation of parabolic type in a domain Ω

(69) ∂tw = Aεw + F

with the boundary condition w/∂Ω = 0 and the initial condition w(0, x) = w0(x). Consider
two weighted normsNε

T and ‖ ·‖T,ε. Assume that there exists an approximate solverGapp such
that if we define

wapp(t) = GappF , F = (F,w0)
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then wapp satisfies the boundary condition and the initial condition and moreover, there exists
CT,ε > 0 such that

(70) Nε
T (wapp) ≤ CT,ε‖F‖T,ε

and if we define the rest operator Rapp as

RappF = ∂tw
app −Aεwapp − F,

then, there exists C1
T,ε > 0 such that

(71) ‖(RappF , 0)‖T,ε ≤ C1
T,ε‖F‖T,ε.

Moreover, for every ε > 0 and T > 0 such that

(72) C1
T,ε < 1,

there exists C > 0 (C =
∑
k≥0(C1

T,ε)
k) such that the exact solution of (69) satisfies

(73) Nε
T (w) ≤ CCT,ε‖F‖T,ε.

The proof of this lemma which only relies on a simple iteration scheme is postponed to
the end of the section.

We shall first explain how we can use Lemma 9 to estimate the solution of (62), (63). In
other words, we need to find an approximate solver Gapp. A similar idea was used in [18];
nevertheless, here our approximate solver will be completely different. We define the dilation
operators

Mεf(Z) =
√
εf(εZ),Mεf(τ, Z) = εf(ετ, εZ).

Note thatMε is an isometry onL2(R+) andMε fromL2([0, T ]×R+) toL2([0, T/ε]×R+).
We notice that thanks to (65), we can rewrite the operator as

Lb,εw =
1

ε
M−1
ε Lb

(
q(t, y), εDy

)
Mεw +O(1)

(
δ|∇w|+ |w|

)
P+(Dy) = M−1

ε P+(εDy)Mε

where q(t, y) = (qk̄(t, y)) with
qk̄(t, y) = b(t, k̄)eik·y.

In the above equality,O(1) is bounded by a number independent of δ if ε/δ ≤ 1. The rescaled
operator Lb is defined by

Lb(q, ξ)w = (∂ZZ − |ξ|2)w −
(
L0q + B0(τ, Z)q

)
·

(
iξ

∂z

)
w

−w ·

(
iξ

∂z

)(
L0q + B0(τ, Z)q

)
− e× w.

Next, we use a frozen time approximation, we rewrite (62) as

(74)
1

ε
M−1

ε P+(εDy)κ(εDy)T (q(0, y), εDy)Mεw +Rεw = H1

where the symbol T (q, ξ) is the differential operator acting only on the τ and Z variables
defined by

T (q, ξ)w = ∂τw − L0
+(q, ξ)w,
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where L0
+ is defined in (16) andRεw is defined by

Rεw =
1

ε
M−1

ε P+(εDy)κ(εDy)
(
T (q(0, y), εDy)− T (q(t, y), εDy)

)
Mεw

+P+(Dy)O(1)
(
δ|∇w|+ |w|

)
and hence satisfies the estimate

(75)
∫ T

0

‖Rεw‖2 . (T 2 + δ2)

∫ T

0

‖∇w‖2 + ε−2(δ2 + T 2)

∫ T

0

‖w‖2.

The source term H1 in the right-hand side of (74) is defined by

(76) H1 = H + E0 + E1 + E2.

Thanks to our assumption (H), it is natural to define our approximate solver Gapp and our
approximate solution wapp as

(77) wapp = GappF =M−1
ε Opg κ

l
(εDy)MεDεF ,

where

F =

(
H1

w0

)
, DεF = (εH1, ε

1
2w0),

and with a slight abuse of notation, we defineMεF as

MεF = (MεH
1,Mεw0).

To define the operator-valued symbol g, we first define for data F(τ, Z) = (F (τ, Z), u0(Z)),
the operatorG(q, ξ) (acting on functions depending on τ andZ) such thatG(q, ξ)F(τ, Z) :=

u(τ, Z) is the solution of

(78) ∂τu = P+(ξ)L0
+(ξ)u+ F, iξ · uh + ∂Zu3 = 0

such that u(0, Z) = u0(Z), u(τ, 0) = 0.

By using the operator G(q, ξ), we can define a symbol g such that

(79) g(y, ξ) = G(q(0, y), ξ)

and then a semi-classical operator-valued pseudo-differential operator Opg as in the Ap-
pendix A. In particular for F(τ, y, Z), we have the definition

(80) OpgF =
∑
k

eikyG(q(0, y), εk)F̂(τ, k, Z).

With a slight abuse of notation, we shall sometimes use the notation G(q(0, y), εDy) in
place of Opg. Note that the operatorMε acts only on the τ and Z variables. Consequently,
we can write

(81) GappF = Opgapp , gapp(y, ξ) =M−1
ε g(y, ξ)MεDε

and hence Gapp is itself an operator valued semi-classical pseudo-differential operator with
symbol gapp.

Note that because of (48), (55), (68), since we want to solve (74) only for data such that

(82) κ
l
(εDy)H1 = H1, κ

l
w0 = w0,
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the introduction of κ
l

in the definition (77) is justified. To prove that wapp = GappF is a
good approximate solution, we want to use the semi-classical pseudo-differential calculus of
section A seeing the symbol g(y, ξ) as an operator onL2([0, T ]×R+) orL∞([0, T ], L2(R+)).

The aim of the following lemma is to study the dependence of G(q, ξ) in q. In particular,
we prove that it is smooth in q and we estimate the derivatives. This will imply that g is smooth
in y and hence we will be able to use Lemmas 16 and 17 of Appendix A.

We introduce the following notations:

|v|Θ,2 = ‖v‖L2((0,Θ)×R+), |v|Θ,∞ = ‖v‖L∞((0,Θ),L2(R+)),

‖v‖Θ,2 = ‖v‖L2((0,Θ)×T2
a×R+), ‖v‖Θ,∞ = ‖v‖L∞((0,Θ),L2(T2

a×R+)).

L 10. – Thanks to (H), for every ξ in the support of κ
l
, for every q inK and for every

m, there exist αm > 0 and Cm > 0 such that for every Θ > 0, for every F = (F (t, ·), u0(·)),
F (t, ·), u0(·) ∈ Hξ

|Dm
q G(q, ξ)F|Θ,∞ + |Dm

q G(q, ξ)F|Θ,2 + |∂ZDm
q G(q, ξ)F|Θ,2(83)

≤ Cm
(
|F |Θ,2 + |u0|L2(R+)

)
|∂ZDm

q G(q, ξ)F|Θ,∞ + |∂τDm
q G(q, ξ)F|Θ,2 + |∂ZZDm

q G(q, ξ)F|Θ,2(84)

≤ Cm
(
|F |Θ,2 + |u0|H1(R+)

)
.

We also postpone the proof of this Lemma to the end of the section.

Thanks to Lemma 10 and Lemma 15, we get that

‖wapp‖T,2 = ‖GappF‖T,2 =
∣∣∣∣∣∣Opg κ

l
(ε∂y)MεDεF(τ ′, Z) dτ ′

)∣∣∣∣∣∣
T/ε,2

. ε‖MεH1‖T/ε,2 +
√
ε‖Mεw0‖ . ε‖H1‖T,2 +

√
ε‖w0‖.

By the same method, we get

‖wapp‖T,∞ = ‖GappF‖T,∞ = ε−
1
2

∣∣∣∣∣∣Opgκl(ε∂y)MεDεF(τ ′, Z) dτ ′
)∣∣∣∣∣∣

T/ε,∞

. ε
1
2 ‖MεH1‖T/ε,2 + ‖Mεw0‖ . ε

1
2 ‖H1‖T,2 + ‖w0‖.

In a similar way, since

∂tM−1
ε = ε−1M−1

ε ∂τ , ∂zM−1
ε = ε−1M−1

ε ∂Z , ∂ZMε = εMε∂z,

we find

‖∂z(GappF)‖T,2 . ‖H1‖T,2 + ε−
1
2 ‖w0‖,

‖∂t(GappF)‖T,2 . ‖H1‖T,2 + ε−
1
2 ‖w0‖+ ε

1
2 ‖∇w0‖

‖∂zz(GappF)‖T,2 . ε−1‖H1‖T,2 + ε−
3
2 ‖w0‖+ ε−

1
2 ‖∇w0‖,

‖∂z(GappF)‖T,∞ . ε−
1
2 ‖H1‖T,2 + ε−1‖w0‖+ ‖∇w0‖.

Consequently, we define the weighted norm Nε
T (u) by

Nε
T (u) = ε−1‖u‖T,2 + ‖∇u‖T,2 + ‖∂tu‖T,2 + ε‖∇2u‖T,2 + ε−

1
2 ‖u‖T,∞ + ε

1
2 ‖∇u‖T,∞.
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Note that the normNε
T (w) involves∇w in our definition. Nevertheless, since we use only this

norm for functions whose Fourier transform in y is supported in r ≤ ε|ξ| ≤ R, the terms
involving ∇ in the norm actually give a useful, non redondant piece of information for ∂z
only.

We also define the weighted norm ‖F‖T,ε as

‖F‖T,ε = ‖H1‖T,2 + ε−
1
2 ‖w0‖+ ε

1
2 ‖∇w0‖;

we have actually proven that

(85) Nε
T (GappF) . ‖F‖T,ε.

Moreover, by using again Lemma 10 and Lemma 15, we get by the same method that

(86) Nε
T

(
OpDαy gappF

)
. Cα‖F‖T,ε.

We can now check that wapp is a suitable approximate solution. To have clear notations
in the following computation, we use the notation

OpT = T (q(0, y), εDy).

To check that Gapp is a good approximate solution, we write

1

ε
M−1

ε P+(εDy)κl(εDy)Op TMεOp gappF +RεOpgappF

=
1

ε
M−1

ε P+(εDy)Kl(εDy)Op TMεOp gappF +RεOpgappF + Cr

where Kl(ξ) is a smooth compactly supported function with a support slightly bigger than
the one of κ and such that

(87) Klκ = κ.

The commutator Cr is defined by

Cr =
1

ε
M−1

ε P+(εDy)Kl[κ,OpT ]OpgappF

and hence is very similar to C. In particular, thanks to (85), we have

(88) ‖Cr‖T,2 . ε‖F‖T,ε.

Next, we write

1

ε
M−1

ε P+(εDy)Kl(εDy)Op TMεOp gappF +RεOpgappF + Cr

=
1

ε
M−1

ε Op P+KlOpTMεgappF +RεOpgappF + Cr +R1F

=
1

ε
M−1

ε Op P+KlT gMεDεF +RεOpgappF + Cr +R1F +R2F .

Since by definition, the symbol g, is chosen such that

P+(ξ)Kl(ξ)T (q(0, y), ξ)g(y, ξ) = Kl(ξ)Id,
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we get thanks to (82) and (87) that

1

ε
M−1

ε P+(εDy)κ(εDy)Op TMεOp gappF +RεOpgappF

= Kl(εDy)H1 +RεOpgappF + Cr +R1F +R2F = H1 + Cr +R1F +R2F .

The remainderR1F is defined by

R1F =
1

ε
M−1

ε P+(εDy)κ(εDy)Opr1F

with the symbol r1 given by

r1(y, ξ) =
(
V (t/ε, q(t, y), Z) · εDy + ε2D2

y

)
gapp(y, ξ).

Consequently, thanks to (86), we have

(89) ‖R1F‖T,2 . ε‖F‖T,ε.

In a similar way, thanks to Lemma 16 and (86), we have for m > 7

(90) ‖R2F‖T,2 . ε
∑
|α|≤2

Nε
(

OpDαy gappF
)

. ε‖F‖T,ε.

Finally, thanks to (75), we also have

(91) ‖RεOpgappF‖T,2 . (δ + T )‖F‖T,ε.

To use the result of Lemma 9, we set

RappF = RεGapp(y, εDy)H1 + Cr +R1F +R2F

and we see thanks to (88), (89), (90), (91) that

(92) ‖RappF‖T,2 . (δ + T + ε)‖F‖T,ε.

Consequently, thanks to Lemma 9, for ε and δ sufficiently small, there exist T 0 and C0 > 0

such that

Nε
T 0(w) ≤ C0‖F‖T 0,ε.

To get an estimate on a longer interval of time, we can reiterate the process as long as
q(t, y) ∈ K. Indeed, since q(T 0, y) ∈ K, then we can use the same method as previously
for T ≤ T 0; we rewrite the analogous of (74) but we replace T (wint,0(0, y), εDy) by
T (wint,0(T 0, y), εDy). The same argument as previously allows to get an estimate on
[T 0, 2T 0]. The iteration of the argument finally allows to get for some C > 0, γ0 > 0

independent of T , that

(93) Nε
T (w) ≤ Ceγ0T ‖F‖T,ε

for every T > 0 such that wint(t, y, 0) ∈ K, for t ∈ [0, T ].

4 e SÉRIE – TOME 41 – 2008 – No 6



STABILITY OF BOUNDARY LAYERS 979

Finally, we can multiply (93) by ε
1
2 , use that w = χbvl − d and the estimates (43), (46),

(47), (66), (67), (59), (60) to get in particular that

‖χbvl(T )‖2 +

∫ T

0

(
ε−1‖χbvl‖2 + ε‖∇(χbvl)‖2

)
(94)

. eγ0T ‖vl0‖21,ε + εeγ0T

∫ T

0

‖F‖2

+ ε eγ0T

∫ T

0

(
‖v‖2 + ε2‖∇v‖2 + ε4‖∆vl‖2 + ε2‖∂tvl‖2

)
.

This ends the proof of (52).

We can now end the proof of Proposition 8. At this point, we shall restrict ε and T such
that εeγ0T . 1; this will allow to absorb the terms in the right hand side still depending
on vl which involve higher order derivatives by another estimates. At first, we can use the
decompositions (40) and (52), (49) (we recall that we get an estimate near the upper boundary
z = 1 completely analogous to (52)), to get

‖vl(T )‖2 +

∫ T

0

(
ε−1‖vl‖2 + ε‖∇vl‖2

)
(95)

. eγ0T ‖vl(0)‖21,ε + εeγ0T

∫ T

0

‖F‖2

+(1 + εeγ0T )

∫ T

0

(
‖v‖2 + ε2‖∇v‖2 + ε4‖∆vl‖2 + ε2‖∂tvl‖2

)
.(96)

To conclude, we use Lemma 6 to estimate higher order derivatives. We get

(97) ε2‖∇vl(T )‖2 +

∫ T

0

(
ε‖∂tvl‖2 + ε3‖∇2v‖2

)
. ε2‖∇v0‖2 +

∫ T

0

(
ε−1‖vl‖2 + ε‖∇vl‖2 + ε‖v‖2 + ε2‖∇v‖2 + ε‖F‖2

)
.

Finally we can add (97) and (95) times a sufficiently large constant to get

‖vl(T )‖2 + ε2‖∇vl‖2 +

∫ T

0

(
ε−1‖vl‖2 + ε‖∇vl‖2 + ε‖∂tvl‖2 + ε3‖∇2vl‖2

)
. eγ0T ‖v0‖21,ε + εeγ0T

∫ T

0

‖F‖2

+ (1 + ε eγ0T )

∫ T

0

(
‖v‖2 + ε2‖∇v‖2 + ε4‖∆vl‖2 + ε2‖∂tvl‖2

)
and hence, for ε sufficiently small, and εeγ0T ≤ 1, we finally get the result of Proposition 8.
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3.3. End of the proof of Theorem 4

To get (30), we collect the estimates of Propositions 5, 7, 8. We get for ε, T such that
εeγ0T ≤ 1:

‖v(T )‖2 + ‖∇vHF (T )‖21,ε +

∫ T

0

(
ε‖∇v‖2 + ε−1‖vHF ‖2

)
. eγ0T (‖v0‖2 + ‖vHF0 ‖21,ε) +

∫ T

0

(
εeγ0T ‖F‖2 + ‖v‖2 + ε2‖∇v‖2 + |(κsF, κsv)|

)
.

For ε sufficiently small, this gives

‖v(T )‖2 + ‖∇vHF ‖21,ε +

∫ T

0

(
ε‖∇v‖2 + ε−1‖vHF ‖2

)
(98)

. eγ0T (‖v0‖2 + ‖vHF0 ‖21,ε) +

∫ T

0

(
εeγ0T ‖F‖2 + ‖v‖2 + |(κsF, κsv)|

)
and hence Theorem 4 follows by using the Gronwall inequality.

3.4. Proof of Lemma 9

We represent the exact solution w of (69) as

w =
∑
k≥0

wk

where
w0 = Gapp(F,w0), R0 = Rapp(F,w0)

and for k ≥ 1 we define recursively wk and Rk as

wk = −Gapp(Rk−1, 0), Rk = Rapp(Rk−1, 0).

Thanks to (70), (71), we easily get by induction that

Nε
T (wk) ≤ CT,ε(C1

T,ε)
k‖(F,w0)‖T,ε, ‖Rk‖T,ε ≤ (C1

T,ε)
k+1‖(F,w0)‖T,ε

and hence, thanks to (72), we get that

Nε
T (w) ≤ CT,ε

(∑
k≥0

(C1
T,ε)

k)
)
‖(F,w0)‖T,ε ≤ CT,εC ‖(F,w0)‖T,ε.

3.5. Proof of Lemma 10

We start with the proof for m = 0. In this section, . means ≤ C where C is independent
of Θ.

We can write the solution of (78) under the form

G(q, ξ)F(τ) = S+(τ, 0, q, ξ)κ
l
(ξ)w0 +

∫ τ

0

S+(τ, τ ′, q, ξ)κ
l
(ξ)F (τ ′) dτ ′

and hence, thanks to (H), we get that

|G(q, ξ)F(τ)| . e−ατ |w0|+
∫ τ

0

e−α(τ−τ ′)|F (τ ′)| dτ ′.

This yields by standard results on convolutions that

‖G(q, ξ)F(τ)‖Θ,∞ . |w0|+ ‖F‖Θ,2
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and that

(99) ‖G(q, ξ)F(τ)‖Θ,2 . |w0|+ ‖F‖Θ,2.

Next, we can reintroduce the pressure and rewrite the equation (78) as

∂τu+ V (τ, Z, q) ·

(
iξ

∂Z

)
u+ u ·

(
iξ

∂Z

)
V (τ, Z, q) +

(
iξ

∂Z

)
p(100)

+e× u+ |ξ|2u− ∂ZZu = 0

with the divergence free condition

iξ · uh + ∂Zu3 = 0.

Consequently, the standard energy estimate gives

|u(τ)|2 +

∫ τ

0

|∂Zu|2 . |u0|2 +

∫ τ

0

|F |2 +

∫ τ

0

|u|2

and since the right-hand side is already estimated thanks to (99), we also get

(101) ‖∂ZG(q, ξ)F(τ)‖Θ,2 . |w0|+ ‖F‖Θ,2.

To estimate higher order derivatives, we use again Lemma 6 (with ε = 1); we get

‖∂Zu‖2Θ,∞ + ‖∂τu‖2Θ,2 + ‖∂ZZu‖2Θ,2 . |∂Zu0|2 + ‖F‖2Θ,2 + ‖u‖2Θ,2
and since the right-hand side is again already bounded thanks to (99), we get that

‖∂ZG(q, ξ)F‖Θ,∞ + ‖∂τG(q, ξ)F‖Θ,2 + ‖∂ZZG(q, ξ)F‖Θ,2 . |w0|+ ‖F‖Θ,2.

This ends the proof of (83), (84) for m = 0.

The general case follows by induction, we shall just explain how to handle the casem = 1.
The regularity of the solution of (78) with respect to q follows from standard regularity results
for solutions of parabolic equations whose coefficients smoothly depend on a parameter [10].
Taking the differential of (78) with respect to q in the direction h, we find that(

∂τ − P+(ξ)L+(τ, q, ξ)
)
Dqu · h = R1

with

R1 = −
(

(DqV · h) ·

(
iξ

∂Z

)
u+ u ·

(
iξ

∂Z

)
DqV · h

)
and Dqu · h/t=0 = 0. Consequently, we have

Dqu · h = G(q, ξ)(R1, 0).

By using (83), (84) for m = 0, we get

|Dqu · h|Θ,∞ + |Dqu · h|Θ,2 + |∂ZDqu · h|Θ,2
+|∂ZDqu · h|Θ,∞ + |∂τDqu · h|Θ,2 + |∂ZZDqu · h|Θ,2

. |R1|Θ,2 . |h|
(
|u|Θ,2 + |∂Zu|Θ,2

)
.

Consequently, we can use again (83), (84) for m = 0 to get the result for m = 1.
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3.6. Estimates of the gradient

The aim of this section is to estimate ‖∇v(T )‖2, we first give a crude estimate:

T 11. – Under the assumptions of Theorem 4, we have

ε3‖∇v(T )‖2 +

∫ T

0

(
ε2‖∂tv‖2 + ε4‖∇2v‖2 + ε2‖∇p‖2

)
(102)

. ε3‖∇v0‖2 + eγT
(
‖v0‖2 + ‖vHF ‖21,ε +

∫ T

0

|(κsF, κsv)|+ ε

∫ T

0

‖F‖2
)

Note that this estimate is relatively crude since we only have a control of ε3‖∇v(T )‖2
whereas, because of the size of the boundary layers, we would expect a control of ε2‖∇v(T )‖2
as we had for the large frequency part of the solution. Nevertheless, this estimate will be use-
ful in Section 4. The reason is that in the proof we do not use in an optimal way the structure
of the singular term ε−1e× v.

Proof of Theorem 11

To get (102), it suffices to use Lemma 6, then multiply the estimate (35) by ε and finally
use (30).

To get better estimates of some components of∇v, we shall rewrite the equation (28) un-
der an equivalent form which is classically used in fluid mechanics. We define η = ∂1v2−∂2v1

and w = v3. Note that η is the third component of the curl of v. Taking the curl of (28) and
using that v is divergence-free, we easily get that the equation for η is given by

∂tη −
∂zw

ε
− ε∆η(103)

= ∂1

(
uapp · ∇v2 + v · ∇uapp

2 + F2

)
− ∂2

(
uapp · ∇v1 + v · ∇uapp

1 + F1

)
.

For the equation on w, we first derive the equation for the pressure. We take the divergence
of (28) to get

(104) ∆p =
η

ε
+∇ ·

(
F − uapp · ∇v − v · ∇uapp

)
and next, we take the Laplacian in the third component of (28) and we use (104) to get

(105) ∂t ∆w +
∂zη

ε
− ε∆2w =

(
∆ ◦ π3 − ∂z∇ ·

)(
− uapp · ∇v − v · ∇uapp + F

)
where π3 stands for the projection on the third component i.e. π3(v) = v3. Next, thanks to
(2) and the fact that∇·w = 0, we notice that the boundary condition for (103), (105) is given
by

(106) η/∂Ω = w/∂Ω = ∂zw/∂Ω = 0.

For the system (103), (105), we can prove:
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T 12. – Under the same assumptions as in Theorem 4, we have

(107) ε2(‖η(T )‖2 + ‖∇w(T )‖2) . eγT
(
‖v0‖21,ε +

∫ T

0

|(κsF, κsv|+ ε

∫ T

0

‖F‖2
)

and also

(108) ε2(‖∇hvh(T )‖2 + ‖∇w(T )‖2) . eγT
(
‖v0‖21,ε +

∫ T

0

|(κsF, κsv)|+ ε

∫ T

0

‖F‖2
)

for some γ > 0.

Proof. – To estimate the solution of (103), (105), we multiply (103) by η and (105) by −w
and we add the two equations. We use (106) to get thanks to integration by parts that

d

dt

1

2

(
‖η‖2 + ‖∇w‖2

)
+ ε(‖∇η‖2 + ‖∆w‖2)− ε−1

(
(∂zw, η) + (∂zη, w)

)
.
(
‖∇v‖+ ε−1‖v ∂Zub‖+ ‖F‖

)(
‖∇η‖+ ‖∆w‖

)
.

The crucial fact in the above identity is that

(∂zw, η) + (∂zη, w) = 0

so that the singular term vanishes. Consequently, we can use the Young inequality, the esti-
mate (38) and multiply by ε2 to get

ε2(‖η(T )‖2 + ‖∇w(T )‖2) + ε3

∫ T

0

(‖∇η‖2 + ‖∆w‖2)

. ε2(‖η0‖2 + ‖∇w0‖2) +

∫ T

0

(
ε‖∇v‖2 + ‖v‖2 + ε‖F‖2

)
.

Since the right hand side of the above estimate was already estimated in (30), we get (107).

To get (108), we use that ∇ · v = 0, to get

∆hv2 = ∂1η − ∂2∂zw, ∆hv1 = −∂2η − ∂1∂zw, ∆h = ∂2
1 + ∂2

2 .

This immediately yields that

‖∇hvi‖ . ‖η‖+ ‖∂zw‖, i = 1, 2

and hence (108) follows from (107).

4. Higher order conormal derivatives

The estimates of Theorem 4 are sufficient to get a nonlinear stability result when it is pos-
sible to construct a very accurate approximate solution. Indeed, we can very easily estimate
weighted derivatives under the form ε|α|∂αy . It suffices to apply the operator ε|α|∂αy to (28),
to rewrite the obtained equation as

T ε(ε|α|∂αy v, ε|α|∂αy p) = ε|α|∂αy F + C

where C is a well-controlled commutator and then to apply Theorem 4. The drawback of this
approach is that this yields by Sobolev embedding a bad control of the L∞ norm which is
needed to prove the nonlinear stability by a fixed point argument. Since here we have been
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only able to construct an approximate solution with ‖Rε‖ . ε, we cannot use this rough
approach to conclude.

In order to conclude, we would want to prove as it was done in [26], [28] that we can esti-
mate tangential derivatives, i.e. ∂yv where v is still the solution of (28) without loss. This
means that we want to estimate ‖∂αy v‖ and not ε|α|‖∂αy v‖. Here a new difficulty appears
which was not present in the well-prepared case. Indeed, when we apply ∂y to (28), we have
in particular to handle the commutator

[∂y, (u
int + ub) · ∇]v = ∂yu

int · ∇v + ∂yu
b · ∇v.

The second term has the same property as in the well-prepared case since ub3 = 0, we get that

‖∂yub · ∇v‖2 . ‖∇hv‖2

and hence this term can be handled by a Gronwall type argument since it involves only first
order tangential derivatives. The main difficulty comes from the term ∂yu

int ·∇v. In the well-
prepared case, we have uint

3 = 0 and hence the same argument as above is valid. Nevertheless,
here we do not have uint

3 = 0, we only have uint
3/∂Ω = 0. Consequently, we have the estimate

‖∂yuint
3 ∂zv‖ . ‖ϕ∂zv‖

whereϕ(z) is a smooth bounded function which behaves as z and 1−z in the vicinity of z = 0

and z = 1 respectively. The usual method in the case of initial boundary value problems for
viscous conservation laws (see [24], [19], for example) is to work in conormal spaces and to
consider simultaneously the derivatives in the directions tangent to the boundary and the ad-
ditional vector field ϕ∂z. Note that it is legitimate to apply this last vector field ϕ∂z to the
equation since (ϕ∂zv)/∂Ω = 0. Nevertheless, in the case of our singularly perturbed incom-
pressible Navier-Stokes equation, it does not seem easy to use readily this method. Indeed
ϕ∂zv does not verify the incompressibility condition and moreover ∇ · (ϕ∂zv) is not small.
To overcome this difficulty, we shall use that uint

3 is highly oscillating in time. We recall that
uint

3 is defined by

uint
3 =

∑
k

b(t,k)eiλ(k)τeik·y2i sin(k3z) =
∑

k, k3 6=0

b(t,k)eiλ(k)τeik·y2i sin(k3z).

Thanks to this definition, we introduce

W ε
j (t, x) =

∑
k, k3 6=0

kj
b(t,k)

λ(k)
eiλ(k)t/εeik·y2i sin(k3z).

Note that we have

(109) ∂tW
ε
j = ε−1∂ju

int
3 +O(1)

and that

(110) W ε
j/∂Ω = 0.

Next, we introduce the vector fields

Zj = ∂j + εW ε
j (t, x)∂z, j = 1, 2, Z3 = εΓϕ(z)∂z

where Γ ≥ 1 will be chosen sufficiently large. Since |W ε
3 | . ϕ thanks to (110), we have

(111) |∂jv| . |Zjv|+ |Z3v|
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and hence we can recover good estimates on ∂yv from estimates on Zv. The main property
of these vector fields as we shall see below is that they have good commutation property with
respect to T . Consequently, let us define the weighted norms

‖v‖2m =
∑
|α|≤m

‖Zα3
3 Zα2

2 Zα1
1 v‖2,

Ym(v) = ‖v‖2m + ε2‖∇hvh‖2m + ε2‖∇v3‖2m + ε2‖∇vHF ‖2 + ε3‖∇v‖2,
YT,m(v) = sup

[0,T ]

Ym(v(T )),

DT,m(v, p) =

∫ T

0

(
ε−1‖vHF ‖2m + ε‖∇v‖2m + ε2‖∂tv‖2m + ε2‖∇p‖2m + ε4‖∇2v‖2m

)
.

Note that the norm ‖ · ‖m that we have just defined is equivalent to the norm ‖ · ‖m defined
in (18) because of (111), this is why we have abusively used the same notation. In order to
deal with the source term in an optimal way, we also use the notation

(u, v)m =
∑
|α|≤m

∣∣∣(Zα3
3 Zα2

2 Zα1
1 u, Zα3

3 Zα2
2 Zα1

1 v
)∣∣∣.

Our main result is:

T 13. – Under the same assumptions as in Theorem 4, we have for every m

(112) YT,m(v) +DT,m(v, p) . eγT
(
Ym(v0) +

∫ T

0

(κsF, κsv)m + ε

∫ T

0

‖F‖2m
)
.

Proof of Theorem 13

We shall prove (112) by induction onm. In the proof, the harmless numbers contained in
. are also independent of Γ ≥ 1.

Note that form = 0, the estimate (112) follows by collecting (102), (30), (108). To present
the main idea without too much technicalities, we first give the proof of (112) for m = 1. At
first, let us study what happens to (28) when we apply the vector field Zi for i = 1, 2. The
case where we apply Z3 is easier because of the ε weight in the vector field, and will not be
detailed. Moreover, most of the terms which appear in the computation are similar to the
ones which appear when we apply Zi to the equation since εW ε

i ∂z behaves in the same way
as Z3.

For i = 1, 2, we get

(113) T ε(Ziv, Zip) = ZiF − CZ

where

CZ = CZ1 + CZ2 ,

CZ1 = Ziu
app · ∇v − ε∂tW ε

i ∂zv

CZ2 = εuapp · ∇W ε
i v + v · Zi∇uapp + ε∂zp∇W ε

i + ε∆W ε
i v + 2ε∇W ε

i · ∇v.
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Note that thanks to the crucial property (109), we have, using the notation vh = (v1, v2) for
vectors of v ∈ R3, that

CZ1 = (∂iu
int
3 − ε∂tW ε

i )∂zv + ∂i(u
b + ur) · ∇v + ∂iu

int
h · ∇hv − εW ε

i ∂zu
app · ∇v

= O(ε)∂zv + ∂i(u
b + ur) · ∇v + ∂iu

int
h · ∇hv − εW ε

i ∂zu
app · ∇v.(114)

By using that
ϕ(z)∂zu

b = O(1)

since ϕ(z) vanishes on the boundary and by using also the inequality (38), we get that

(115)
∫ T

0

‖CZ‖2 .

∫ T

0

(
ε2‖∇v‖2 + ε2‖∇p‖2 + ‖∇hv‖2

)
. DT,0(v, p) +

∫ T

0

‖v‖21

where in the second inequality we have used the property (111).

Finally, let us notice that

(116) ∇ ·
(
Ziv
)

= ε∇W ε
i · ∂zv := di.

A difficulty comes from the nonvanishing divergence of Ziv. To estimate the solution of
(113), we follow the same scheme as in the proof of Theorem 4. We use the same localization
in frequencies. We begin with the small frequencies, which is actually the more difficult. We
apply κs(εDy) to (113) to get

(117) T ε(κsZiv, κsZip) = κsZiF − κsCZ + Cs

where the commutator Cs satisfies the estimate

(118) ‖Cs‖2 . ε2‖∇v‖21 + ‖v‖21.

We use the estimates (115), (118) and the standard energy estimate for (117) to obtain

‖κsZi(T )‖2 + ε

∫ T

0

‖κs∇Ziv‖2 + (κs∇Zip, κsZiv)

. Sε +DT,0(v, p) +

∫ T

0

(
‖v‖21 + ε2‖∇v‖21 + (F, v)1

)
where the singular term Sε is defined as

Sε =
∣∣∣(Ziv · ∂zub, Ziv)

∣∣∣.
As in the proof of Proposition 7, we can estimate the singular term

Sε . εr‖∇Ziv‖2

and hence we can absorb it in the left-hand side. Next, we have to be careful with the term
involving the pressure since Ziv is not divergence free. We write thanks to integration by
parts and (116)

(κs∇Zip, κsZiv) = ε(κsZip, κ
s∇W ε

i · ∂zv)

= −ε(κs∂zZip, κs∇W ε
i · v)− ε(κs∂zZip, κs∇∂zW ε

i · v)

and hence we get ∣∣∣(κs∇Zip, κsZiv)
∣∣∣ . ε‖∇p‖1‖v‖1,

4 e SÉRIE – TOME 41 – 2008 – No 6



STABILITY OF BOUNDARY LAYERS 987

so that we finally find

‖κsZi(T )‖2 + ε

∫ T

0

‖κs∇Ziv‖2(119)

. DT,0(v, p) +

∫ T

0

(
‖v‖21 + ε2‖∇v‖21 + ε‖∇p‖1 ‖v‖1 + (F, v)1

)
.

In a similar way, by combining the previous argument and the arguments in the proof of
Proposition 5, we get in the high frequency region

‖κLZi(T )‖2 +

∫ T

0

(
ε−1‖κLZiv‖2 + ε‖κL∇Ziv‖2

)
(120)

. DT,0(v, p) +

∫ T

0

(
‖v‖21 + ε2‖∇v‖21 + +ε‖∇p‖1 ‖v‖1 + (F, v)1

)
.

It remains the medium frequency estimates. In this range of frequency, we can lift the
nonzero divergence and use the result of Proposition 8. Indeed, let us first establish some
useful estimates on di. Thanks to (116), we have

(121)
∫ T

0

‖di‖2 . ε2

∫ T

0

‖∇v‖2 . εDT,0(v, p)

and

(122)
∫ T

0

‖∇di‖2 . ε2

∫ T

0

‖∇2v‖2 . ε−2DT,0(v, p).

Moreover, we notice that

(123) ‖di‖2 .
1

Γ2
‖Z3v‖2 + ε2‖∂zv3‖2 .

1

Γ2
‖Z3v‖2 + ε2‖∇hvh‖2 .

( 1

Γ2
+ ε2

)
Y1(v)

and hence, by taking the time derivative, we also have

(124)
∫ T

0

‖∂tdi‖2 .

∫ T

0

‖∂tv‖21.

Now let us choose as before Di which satisfies the boundary condition (2) and such that

(125) ∇ ·Di = di.

By using (121), (122), (123), (124), we get∫ T

0

(
‖Di‖2 + ‖∇Di‖2

)
. εDT,0(v, p),(126) ∫ T

0

‖∇2Di‖2 . ε−2DT,0(v, p),(127)

‖∇Di‖2 .
( 1

Γ2
+ ε2

)
‖v‖21,(128) ∫ T

0

(
‖∂tDi‖2 + ‖∇∂tDi‖2

)
.

∫ T

0

‖∂tv‖21.(129)

To estimate κlZiv, we shall consider the equation satisfied by

(130) u = Ziv −Di.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



988 N. MASMOUDI AND F. ROUSSET

A very usefull remark already used to get (60) is that

(131) ε−2‖κlDi‖2 . ‖κl∇Di‖2.

Combined with (126)-(129), this gives very good estimates on Di.

Thanks to (113), we get

(132) T ε(κlu, Zip) = κlZiF − κlCZ + Cl +Rl, ∇ · (κlu) = 0

where Cl is the commutator [κl, T ε] and hence still satisfies the estimate (118) and Rl is de-
fined by

(133) Rl = T ε(κlDi, 0).

Consequently, by combining (126), (127), (129) and (131), we get the estimate

(134)
∫ T

0

‖Rl‖2 .

∫ T

0

(
ε2‖∂tv‖21

)
+ ε2DT,0(v, p).

Next, since u solves (132), we can use the result of Proposition 8 to get

‖κlu(T )‖2 + ε2‖∇(κlu)(T )‖2 +

∫ T

0

(
ε−1‖κlu‖2 + ε‖κl∇u‖2

)
. eγ0T (‖κlu0‖2 + ε2‖∇(κlu0)‖2) + εeγ0T

∫ T

0

(
‖F‖21 + ‖κlCZ‖2 + ‖Cl‖2 + ‖Rl‖2

)
.

Now, we can use (126), (128) and (131) and the fact that u = Ziv − Di plus the estimates
(115), (118) and (134). From now on, we restrict ε and T such that εeγ0T ≤ 1. This yields

(135) ‖κlZiv(T )‖2 + ε2‖∇(κlZiv)(T )‖2 +
∫ T

0

(
ε−1‖κlZiv‖2 + ε‖∇(κlZiv)‖2

)
. eγ0T (‖v0‖21+ε2‖κl∇v0‖21)+DT,0(v, p)+

∫ T
0

(
εeγ0T ‖F‖21+‖v‖21+ε2‖∇v‖21+ε3‖∂tv‖21

)
.

Note that by combining (119), (120), (135), we have actually proven that

‖Zv‖2 +

∫ T

0

(
ε‖∇Zv‖2 + ε−1‖ZvHF ‖2

)
(136)

. eγ0TY1(v0) +DT,0(v, p) +

∫ T

0

(
‖v‖21 + εeγ0T ‖F‖21

)
.

Next, since u solves

(137) T ε(u, Zip) = ZiF − CZ +R, ∇ · u = 0

where

R = T ε(Di, 0),

we get thanks to the result of Lemma 11 that

ε3‖∇u(T )‖2 +

∫ T

0

(
ε2‖∂tu‖2 + ε4‖∇2Zv‖2 + ε2‖∇Zp‖2

)
. ε3‖∇u0‖2 +

∫ T

0

(
‖u‖2 + ε2‖∇u‖2 + ε2‖CZ‖2 + ε2‖R‖2

)
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and hence by using (130) and (126), (127), (128), (129), we find

(138) ε3‖∇Zv(T )‖2 +

∫ T

0

(
ε2‖∂tZv‖2 + ε4‖∇2Zv‖2 + ε2‖∇Zp‖2

)
. ε3(‖v0‖21 + ‖∇v0‖21) +DT,0(v, p) +

∫ T

0

(
‖v‖21 + ε2‖∇Zv‖2 +DT,0(v, p) + ε2‖F‖2

)
.

To conclude, we can add (112) form = 0 and a large constant (independent of ε) times (136)
plus (138) to get

‖v(T )‖21 + ε3‖∇v(T )‖21 +DT,1(v, p)

. Y1(v0) +

∫ T

0

(
(F, v)1 + ε‖∇p‖1‖v‖1 + ‖v‖21 + ε‖F‖21

)
.

Next, we use the Young inequality to write for every δ > 0

ε‖∇p‖1 ‖v‖1 ≤
δ

2
ε2‖∇p‖21 + C(δ)‖v‖21

and we choose δ sufficiently small to absorb ε2‖∇p‖21 in DT,1(v, p) so that we get

‖v(T )‖21 + ε3‖∇v(T )‖21 +DT,1(v, p)

. eγ0TY1(v0) +

∫ T

0

(
(F, v)1 + ‖v‖21 + εeγ0T ‖F‖21

)
,

and we conclude by using the Gronwall inequality as in the end of the proof of Theorem 4.

It remains to estimate ‖∇hZivh‖ and ‖∇v3‖. We use again (137). The result of Theorem
12 gives

ε2(‖∇huh(T )‖2 + ‖∇w(T )‖2)

. ‖u0‖21,ε +

∫ T

0

(
ε‖F‖21 + ε‖CZ‖2 + ε‖R‖2 + ‖u‖2 + ε‖∇u‖2

)
and hence we can use that u = Ziv −DI and (126)-(129) and (115) to get

ε2(‖∇hZiv(T )‖2 + ‖∇Ziv3(T )‖2) . Y1(v0) +DT,1(v, p) + ‖v(T )‖21 +
∫ T

0

(
ε‖F‖2 + ‖v‖21

)
and we can conclude since all the terms in the right-hand side have already been estimated.

We have given the proof for m = 1, the general case follows by induction, this is left to
the reader.

5. Nonlinear stability

In this section we prove the main theorem 2. We introduce a new notation, namely for
f ∈ Hm

anis(Ω), we denote for z ∈ (0, 1)

|f |2m(z) =
∑

α∈N3, |α|≤m

|Zαf |L2(T2
a)
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where the integration only takes place in the y variable. An important remark is that, for
every f ∈ Hm

anis(Ω), we have by Sobolev imbedding

|f(., z)|L∞(T2
a) ≤ |f(., z)|m m ≥ 2.

Consequently by Leibniz’ formula, we find

|fg|m . |f |m |g|m, m ≥ 2.

5.1. Proof of Theorem 2

For the proof of theorem 2, we recall that uapp = uint+ub+ur, then we can see that uapp is
an approximate solution to (1) with an error term F ε which has size

√
ε in L∞(0, T ;L2(Ω)).

Moreover, we can describe more precisely the structure of F ε. Namely, we have

(139) F ε = ∂tu
app +

e× uapp

ε
− ε∆uapp + uapp · ∇uapp +∇p

and we can see that F ε can be decomposed as

F ε = F ε,1 + F ε,2

with two types of terms. The first term F ε,1 contains boundary layer terms such as uapp ·∇ub
and hence has anL2 norm of size

√
ε and is concentrated near z = 0 or z = 1. The other type

is F ε,2 which has an L2 norm of size ε and which comes for instance from the time derivative
of Y .

For each ε > 0, the existence theory for the Navier-Stokes system yields the existence and
uniqueness of a solution uε to (1) inL∞(0, T ε;H1(Ω)) with the initial data uε,0 on some time
interval T ε > 0. Proving that the time T ε > 0 can be taken uniform in ε and the convergence
of uε − L( tε )w to zero will be done together. We set v = uε − uapp where we recall that
uapp = uint + ub + ur. Note that v depends on ε, but we drop this dependence in ε in the
notation. We find that v solves

(140)

{
∂tv + uapp · ∇v + v · ∇uapp + e×v

ε − ε∆v +∇p = −F ε − v · ∇v
div(v) = 0, v = 0 on ∂Ω v(t = 0) = uε,0 − uapp(t = 0).

We start with the case 3/4 < α ≤ 1. Let us define

T ε = sup{t0 | ∀t ∈ [0, t0], Ym(v(t)) ≤ C2
0ε

2α}

for some big constant C0. We recall that Ym(v(0)) ≤ c2ε2α for some constant c, hence by
continuity T ε > 0 with the choice C0 > c. Notice that (140) can be written as T ε(v, p) =

−(F ε + v · ∇v). Hence, we can use Theorem 13 to deduce that for 0 < T < T ε, we have

YT,m(v) +DT,m(v, p) . eγT
(
Ym(v0) +

∫ T

0

(κs(F ε + v · ∇v), κsv)m +(141)

ε

∫ T

0

‖(F ε + v · ∇v)‖2m
)
.(142)

We have to estimate the different terms appearing on the right-hand side of (141). We recall
that F ε can be written as F ε = F ε,1 + F ε,2 (for simplicity of notation, we assume that F ε,1
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is a boundary layer at z = 0, the term at z = 1 can be treated in a similar way by replacing
z by 1− z). We have∫ T

0

|
∫

Ω

(κs(F ε,1 + F ε,2), κsv)m|

.

∫ T

0

‖F ε,2‖2m + ‖v‖2m +

∫ T

0

∫
T2
a

(∫ 1

0

|z1/2F ε,1|mdz
(∫ 1

0

|∂zv|2mdz
)1/2)

dy ds

.

∫ T

0

‖F ε,2‖2m + ‖v‖2m + Cε3/2

∫ T

0

‖∇v‖mds

.

∫ T

0

‖v‖2m + C(1 + T )ε2 +
ε

8

∫ T

0

‖∇v‖2mds

Moreover, we also have∫ T

0

|
∫

Ω

(κs(v · ∇v), κsv)m| ≤ C
∫ T

0

‖v‖3/2m ‖∇v‖3/2m ds

≤ CT 1/4C
3/2
0 ε3/2α−3/4

(
ε

∫ T

0

‖∇v‖2m
)3/4

≤ CTC6
0ε

6α−3 +
1

8
ε

∫ T

0

‖∇v‖2mds

The first term in the above estimate yields the restriction 6α− 3 > 2α that is α > 3/4.
Besides,

ε

∫ T

0

‖v · ∇v‖2m . ε

∫ T

0

∫ 1

0

|vh|2m |∇hv|2m + |v3|2m |∂zv|2m dzdt

≤ ε
∫ T

0

‖∂zvh‖m ‖vh‖m ‖∇hv‖2m + ‖∂zv3‖m ‖v3‖m ‖∂zv‖2m dt

≤ ε sup
[0,T ]

(
‖vh‖m (‖∇hv‖m + ‖∂zv3‖m

)∫ T

0

‖∇v‖2m

≤ ε−1 sup
[0,T ]

Ym(v(t))2DT,m(v, p) ≤ C2
0 ε

2α−1DT,m(v, p)

and this term can be absorbed in the left-hand side if ε is small enough sinceα > 1/2. Finally,
we have

ε

∫ T

0

‖F ε‖2m . CTε2.

Hence, by Gronwall’s lemma, we deduce that for all T > 0, there exists an ε0 such that for
ε < ε0, we can take T ε > T and we have

(143) sup
0≤t≤T

‖v(t)‖2 +

∫ T

0

ε‖∇v‖2 ≤ CT ε2α

if α > 3/4.

R 14. – The proof of Theorem 2 shows that for α = 3/4, we have a similar result
but only on a finite time interval (0, T0) where T0 depends on the initial dataw0 and the con-
stant c appearing in (19). In some sense, it appears from the proof of the theorem that the
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value α = 3/4 is critical. However, it may seem more natural to have a critical result at the
value α = 1/2. But we were not able to prove Theorem 2 when 1/2 < α < 3/4. The main
problem comes from estimating the nonlinear term

∫ T
0
|
∫

Ω
(κs(v.∇v), κsv)m|.

Appendix A

Simple results about operator valued semi-classical pseudo-differential calculus

We consider smooth symbols A(y, ξ). Here, for each y, ξ, A(y, ξ) is an operator from Hξ

to L2(R+) where Hξ is a closed subspace of L2(R+). We only need to consider operators
associated with symbols of degree zero which basically verify

(144) |∂αy ∂
β
ξ A(y, ξ)|L(Hξ,L2(R+) ≤ Cα,β .

We associate to A a semi-classical pseudo-differential operator acting on functions on
T2
a × R+ defined by

(145) A(y, ε∂y)w = OpAw(y, z) =
∑
k∈Z2

eik·yA(y, εk)ŵ(k, ·)(z)

where ŵ(k, z) are the Fourier coefficients of w(·, z), that is to say:

w(y, z) =
∑
k

eik·yŵ(k, z), ŵ(k, z) =

∫
T2
a

e−ik·yw(y, z)dy ;

here we assume that dy is normalized such that
∫

T2
a
dy = 1. We shall only give the proof of

the properties that we have used; for more details, we refer for example to the book [8].

A.1. Continuity in L2

Let us define

|A|M,0 = sup
y,ξ

sup
|α|≤M

|∂αyA(y, ξ)|L(Hξ,L2(R+)).

We also introduce the space H ⊂ L2(T2
a × R+)

H = {w ∈ L2(T2
a × R+), ŵ(k, ·) ∈ Hεk}.

We have the following result

L 15. – There exists C > 0 such that for every ε, ε ∈ (0, 1),

∀w ∈ H, ‖OpAw‖L2(T2
a×R+) ≤ C|A|M,0‖w‖L2(T2

a×R+)

for M > 2.
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Proof. – We follow the method to prove the boundedness of pseudo-differential operators
in [31]. We expand A(y, εk)ŵ(k, ·) in Fourier series:

A(y, εk)ŵ(k, ·) =
∑
l

eil·yÂ(l, εk)ŵ(k, ·), Â(l, εk) =

∫
T2
a

e−il·yA(y, εk) dy.

Since A(y, εk) is smooth in y, we have

(1 + |l|2)N Â(l, εk) =

∫
T2
a

(I −∆y)N (e−il·y)A(y, εk) dy =

∫
T2
a

e−il·y(I −∆y)NA(y, εk) dy

and hence we get

(146) |Â(l, εk)|L(L2(R+) .
1

(1 + |l|2)N
|A|2N,0.

Since

OpAw =
∑
l

eil·y
(∑

k

eik·yÂ(l, εk)ŵk

)
,

we get by using the Bessel identity that for N > 1

‖OpAw‖ .
∑
l

∥∥∥∑
k

eik·yÂ(l, εk)ŵk

∥∥∥ =
∑
l

(∑
k

|Â(l, εk)wk|2
) 1

2

and hence thanks to (146), we obtain

‖OpAw‖ . |A|2N,0
∑
l

1

(1 + |l|2)N

∑
k

|wk|2,

which finally gives, by a new use of Bessel’s identity

‖OpAw‖ . |A|N,0 ‖w‖.

This ends the proof.

A.2. Product

Here we only need to study the product of a differential operator and of a pseudo-
differential operator of order 0 which is obvious and the product of a bounded Fourier
multiplier and a pseudo-differential operator of order zero. Note that here we want to prove
that the residual is small in ε.

L 16. – Let B(ξ) ∈ L(L2) and A(y, ξ) be two symbols; then

OpBOpAw = OpBAw + εOpRw, ∀w ∈ H

where there exists C such that for every ε ∈ (0, 1),

∀w ∈ H, ‖OpRw‖(L2(T2
a×R+)) ≤ C|B|0,1|A|M,0‖w‖H

for M > 5 where

|B|0,1 = sup
ξ
|∇ξB(ξ)|L(L2(R+).
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Proof. – We write

OpBOpAw(y, ·) =
∑
k,l

∫
T2
a

eik(y−y′)eily
′
B(εk)A(y′, εl)ŵ(l, ·) dy′

=
∑
l

eily
∑
k

ei(k−l)yB(εk)
(∫

T2
a

e−iky
′
A(y′, εl)dy′

)
ŵ(l, ·)

=
∑
l

eily
∑
k

ei(k−l)yB(εk)Â(k, εl)ŵ(l, ·)

=
∑
l

eily
(∑

k

eikyB(ε(k + l))Â(k, εl)
)
ŵ(l, ·).

Consequently, the symbol of OpBOpA is C defined by

C(y, εl) =
∑
k

eikyB(ε(k + l))Â(k, εl).

Note that the object is well-defined since B is uniformly bounded and Â(k, εl) is fastly de-
creasing in k. By Taylor’s expansion, we can write

B(ε(k + l)) = B(εl) + εB1(εl, εk) · k, B1(ξ, ζ) =

∫ 1

0

DB(ξ + tζ) dt

and hence we get
OpBOpAw(y, ·) = OpBAw(y, ·) + εOpRw(y, ·)

where R is defined by

R(y, ξ) =
∑
k

eik·yB1(ξ, εk) · kÂ(k, ξ).

SinceB1 is uniformly bounded and Â is fastly decreasing, we easily get thatR satisfies (144).
More precisely, we have

|R|M,0 . |B|0,1 |A|M+4,0.

We end the proof by using Lemma 15.

A.3. Version with time dependence

Here, we consider the case where for each y, ξ, A(y, ξ) is an operator from L2(0, T ;Hξ)

or L∞(0, T ;Hξ) to L2((0, T )× R+) or L∞((0, T );L2(R+)). Let us set

‖w‖T,2 = ‖w‖L2([0,T ],L2(T2
a×R)+), ‖w‖T,∞ = ‖w‖L∞([0,T ],L2(T2

a×R)+)

and

‖A‖M,0,T,2 = sup
y,ξ

sup
|α|≤M

|∂αyA(y, ξ)|L(L2([0,T ],Hξ),L2([0,T ],L2(R+)))

‖A‖M,0,T,∞ = sup
y,ξ

sup
|α|≤M

|∂αyA(y, ξ)|L(L∞([0,T ],Hξ),L2([0,T ],L2(R+))),

‖B‖0,1,T,2 = sup
ξ
‖∇ξB‖L(L2([0,T ],L2(R+))),

‖B‖0,1,T,∞ = sup
ξ
‖∇ξB‖L(L∞([0,T ],L∞(R+))).

Then we have the following properties:
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L 17. – There exists C > 0 such that

∀w ∈ L2([0, T ], H), ‖OpAw‖T,2 ≤ C‖A‖M,0,T,2‖w‖T,2,
‖OpAw‖T,∞ ≤ C‖A‖M,0,T,∞‖w‖T,2,

and
OpBOpAw = OpBAw + εOpR

with

∀w ∈ L2([0, T ], H), ‖OpRw‖T,2 ≤ C‖B‖0,1,T,2‖A‖M,0,T,2‖w‖T,2,
‖OpRw‖T,∞ ≤ C‖B‖0,1,T,∞‖A‖M,0,T,∞‖w‖T,2.

The proof can be obtained by the same method as in the previous version and we shall
not detail it.

Appendix B

The Leray projection

B.1. The case of a half space

In this section, we study the symbol P+(k) for k 6= 0. We look for a decomposition

(147) v = u+

(
ikp

∂zp

)
, z > 0, ik · uh + ∂zu3 = 0, u3(0) = 0

and we set P+(k)v = u. It is convenient to introduce also Q+(k) = Id − P+(k). We have
the following properties:

L 18. – i) The operator P+(k) can be written for every v ∈ L2(R+) as

P+(k)v(z) = Ihv(z)−
∫

R+

K+(k, z, z′)v(z′) dz′, ∀z ≥ 0

where

Ihv(z) =

(
vh(z)

0

)
and there exists C > 0 such that the matrix K+(k, z, z′) satisfies the estimate

(148) ∀k 6= 0, |K+(k, z, z′)| ≤ C|k|
(
e−|k| |z−z

′| + e−|k|(z+z
′)
)
.

ii) There existsC > 0 such that the operators P+(k) satisfy for k 6= 0 the uniform estimates

(149) ∀v ∈ L2(R+), |P+(k)v|L2(R+) ≤ C|v|L2(R+).

iii) Let κ(ξ) be a smooth bounded function which vanishes in the vicinity of zero and χ(z)

another smooth bounded function; then there exists C > 0 such that we have the uniform
estimate

(150) ∀ε ∈ (0, 1), ∀v ∈ L2(R+),
∣∣∣[χ(z),P+(k)κ(εk)

]
v
∣∣∣
L2(R+)

. ε|v|L2(R+).

The precise expression of K+ will be given in the proof.
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Proof. – Note that ii) is a direct consequence of i) and the Schur Lemma since

sup
z′≥0

∫
z≥0

|K+(k, z, z′)| ≤ C, sup
z≥0

∫
z′≥0

|K+(k, z, z′)| ≤ C.

Let us prove iii); we have[
χ(z),P+(k)κ(εk)

]
v = −

[
χ(z),Q+(k)κ(εk)

]
v

=

∫
z′
K+(k, z, z′)κ(εk)

(
χ(z)− χ(z′)

)
v(z′) dz′

and hence since χ is smooth, we get thanks to (148)∣∣∣ ∫
z′
K+(k, z, z′)κ(εk)

(
χ(z)− χ(z′)

)
v(z′) dz′

∣∣∣
.

∫ (
|k|e−|k| |z−z

′||z − z′|+ |k|e−|k|(z+z
′)(z + z′)

)
κ(εk)|v(z′)| dz′

.

∫ (
e−
|k|
2 |z−z

′| + e−
|k|
2 (z+z′)

)
κ(εk)|v(z′)| dz′

.

∫ (
e−

c
ε |z−z

′| + e−
c
ε (z+z′)

)
|v(z′)| dz′

for some c > 0, where in the two last lines, we have used the inequality Xe−X . e−
X
2 for

X ≥ 0 and the fact that on the support of κ, we have ε|k| ≥ c > 0. The result follows by a
new use of the Schur Lemma since

sup
z′≥0

∫
z≥0

e−
c
ε |z−z

′| + e−
c
ε (z+z′) dz ≤ Cε, sup

z≥0

∫
z′≥0

e−
c
ε |z−z

′| + e−
c
ε (z+z′) dz′ ≤ Cε.

It remains to prove i). The result follows by an explicit computation. Thanks to (147), we
find that p solves the ODE(

∂zz − |k|2
)
p = ikvh + ∂zv3, ∂zp(0) = v3(0).

The unique bounded solution is given by

p(z) =−
∫ +∞

z

(
ik · vh(z′) + ∂zv3(z′)

)
e−|k|z

′ cosh(|k|z)
|k|

dz′

−
∫ z

0

(
ik · vh(z′) + ∂zv3(z′)

)
e−|k|z

cosh(|k|z′)
|k|

dz′ − v3(0)

|k|
e−|k|z

and hence, after an integration by part, we find

p =−
∫ +∞

z

ik · vh(z′)e−|k|z
′ cosh(|k|z)

|k|
+ v3(z′)e−|k|z

′
cosh(|k|z) dz′

−
∫ z

0

ik · vh(z′)e−|k|z
cosh(|k|z′)
|k|

− v3(z′)e−|k|z sinh(|k|z′) dz′.

Note that this also yields

∂zp = v3(z)−
∫ +∞

z

ik · vh(z′)e−|k|z
′
sinh(|k|z) + v3(z′)|k|e−|k|z

′
sinh(|k|z) dz′

−
∫ z

0

−ik · vh(z′)e−|k|z cosh(|k|z′) + v3(z′)|k|e−|k|z sinh(|k|z′).
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Finally, since

P+v = v −

(
ikp

∂zp

)
= Ihv −

∫ +∞

0

K+(k, z, z′)v(z′) dz′,

it suffices to read the expression of K+; we find
(151)

K+(k, z, z′) =

Ü
k2

1

|k|e
−|k|z′ cosh(|k|z) k1k2

|k| e
−|k|z′ cosh(|k|z) −ik1e

−|k|z′ cosh(|k|z)
k1k2

|k| e
−|k|z′ cosh(|k|z) k2

2

|k|e
−|k|z′ cosh(|k|z) −ik2e

−|k|z′ cosh(|k|z)
−ik1e

−|k|z′ sinh(|k|z) −ik2e
−|k|z′ sinh(|k|z′) −|k|e−|k|z′ sinh(|k|z)

ê
,

for 0 ≤ z < z′, and
(152)

K+(k, z, z′) =

Ü
k2

1

|k|e
−|k|z cosh(|k|z′) k1k2

|k| e
−|k|z cosh(|k|z′) ik1e

−|k|z sinh(|k|z′)
k1k2

|k| e
−|k|z cosh(|k|z′) k2

2

|k|e
−|k|z cosh(|k|z′) ik2e

−|k|z sinh(|k|z′)
ik1e

−|k|z cosh(|k|z′) ik2e
−|k|z cosh(|k|z′) −|k|e−|k|z sinh(|k|z′)

ê
,

for z > z′ ≥ 0. The estimate (148) follows immediately from the above expressions.

B.2. The case of a strip.

We now study the operator P(k), for k 6= 0. We now look for the decomposition

v = u+

(
ikp

∂zp

)
, z ∈ (0, 1), ik · uh + ∂zu3 = 0, u3(0) = 0, u3(1) = 0.

L 19. – i) The operator P(k) can be written for every v ∈ L2(R+) as

P(k)v(z) = Ihv(z)−
∫

(0,1)

K(k, z, z′)v(z′) dz′, ∀z ≥ 0

where

Ihv(z) =

(
vh(z)

0

)
and there exists C > 0 such that the matrix K(k, z, z′) satisfies the estimate

(153) ∀k 6= 0, |K+(k, z, z′)| ≤ C|k|
(
e−|k| |z−z

′| + e−|k|(1−z+1−z′)
)
.

ii) There exists C > 0 such that the operators P(k) satisfy for k 6= 0 the uniform estimates

(154) ∀v ∈ L2(R+), |P(k)v|L2(0,1) ≤ C|v|L2(0,1).

iii) Let κ(ξ) be a smooth bounded function which vanishes in the vicinity of zero and χ(z)

another smooth bounded function; then there exists C > 0 and we have the uniform esti-
mate

(155) ∀ε ∈ (0, 1), ∀v ∈ L2(0, 1),
∣∣∣[χ(z),P+(k)κ(εk)

]
v
∣∣∣
L2(0,1)

. ε|v|L2(0,1).
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Proof. – We now solve the ODE

∂zzp− |k|2p = ik · vh + ∂zv3, z ∈ (0, 1), ∂zp(0) = v3(0), ∂zp(1) = v3(1).

The explicit resolution gives

p =

∫ z

0

(
ik · vh + ∂zv3

)
)
sinh(|k|(z − z′))

|k|
dz′

−
∫ 1

0

(
ik · vh + ∂zv3

)cosh(|k](1− z′)
|k| sinh |k|

cosh(|k|z) dz′

− v3(0)
cosh(|k|(z − 1)

|k| sinh |k|
+ v3(1)

cosh(|k|z)
|k| sinh |k|

and hence after an integration by parts, we find

p = −
∫ 1

z

(
ik · vh

cosh(|k|(1− z′)) cosh(|k|z)
|k| sinh |k|

+ v3
sinh(|k|(1− z′))

sinh |k|
cosh(|k|z)

)
dz′

+

∫ z

0

(
ik · vh

( sinh(|k|(z − z′))
|k|

− cosh(|k|(1− z′))
|k| sinh |k|

cosh(|k|z)
)

+ v3

(
cosh(|k|(z − z′))− sinh(|k|(1− z′))

sinh |k|
cosh(|k|z)

))
dz′.

Note that we have used the fact that

v3(0)
( cosh |k|
|k| sinh |k|

cosh(|k|z)− sinh(|k|z)
|k|

− cosh(|k|(z − 1)

|k| sinh |k|

)
= 0.

Finally, we can rewrite the pressure under the more convenient form

p = −
∫ 1

z

i
k

|k|
· vh
(e−|k|z′ cosh(|k|z)

1− e−2|k| +
e−|k|(2−z

′) cosh(|k|z)
1− e−2|k|

)
dz′

−
∫ 1

z

v3

(e−|k|z′ cosh(|k|z)
1− e−2|k| − e−|k|(2−z

′) cosh(|k|z)
1− e−2|k|

)
dz′

−
∫ z

0

i
k

|k|
· vh
(e−|k|z cosh(|k|z′)

1− e−2|k| +
e−|k|(2−z) cosh(|k|z′)

1− e−2|k|

)
dz′

+

∫ z

0

v3

(e−|k|z sinh(|k|z′)
(1− e−2|k|)

+
e−|k|(2−z) sinh(|k|z′)

1− e−2|k|

)
dz′.

By taking the derivative with respect to z, we also find

∂zp = v3(z)−
∫ 1

z

i
k

|k|
· vh|k|

(e−|k|z′ sinh(|k|z)
1− e−2|k| +

e−|k|(2−z
′) sinh(|k|z)

1− e−2|k|

)
dz′

−
∫ 1

z

v3|k|
(e−|k|z′ sinh(|k|z)

1− e−2|k| − e−|k|(2−z
′) sinh(|k|z)

1− e−2|k|

)
dz′

−
∫ z

0

i
k

|k|
· vh|k|

(
− e−|k|z cosh(|k|z′)

1− e−2|k| +
e−|k|(2−z) cosh(|k|z′)

1− e−2|k|

)
dz′

+

∫ z

0

v3|k|
(
− e−|k|z sinh(|k|z′)

(1− e−2|k|)
+
e−|k|(2−z) sinh(|k|z′)

1− e−2|k|

)
dz′.
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Consequently, since

Pv = v −

(
ikp

∂zp

)
= Ihv −

∫ +∞

0

K(k, z, z′)v(z′) dz′,

we find

K(k, z, z′) =

1

1− e−2|k|

Ü
k2

1

|k|a+(k, z, z′) k1k2

|k| a+(k, z, z′) −ik1a−(k, z, z′)
k1k2

|k| a+(k, z, z′)
k2

2

|k|a+(k, z, z′) −ik2a−(k, z, z′)

−ik1b+(k, z, z′) −ik2b+(k, z, z′) −|k|b−(k, z, z′)

ê
, 0 ≤ z < z′,(156)

=
1

1− e−2|k|

Ü
k2

1

|k|a+(k, z′, z′) k1k2

|k| a+(k, z′, z) −ik1b+(k, z′, z)
k1k2

|k| a+(k, z′, z)
k2

2

|k|a+(k, z′, z) −ik2b+(k, z′, z)

ik1a−(k, z′, z) ik2a−(k, z′, z) −|k|b−(k, z′, z)

ê
, 0 ≤ z′ < z(157)

where

a+(k, z, z′) = e−|k|z
′
cosh(|k|z) + e−|k|(2−z

′) cosh(|k|z),

a−(k, z, z′) = e−|k|z
′
cosh(|k|z)− e−|k|(2−z

′) cosh(|k|z),

b+(k, z, z′) = e−|k|z
′
sinh(|k|z) + e−|k|(2−z

′) sinh(|k|z),

b−(k, z, z′) = e−|k|z
′
sinh(|k|z)− e−|k|(2−z

′) sinh(|k|z).

Thanks to (156), (157), the estimate (153) follows easily and next, we obtain ii) and iii) as
previously.

B.3. Estimate of P− P+

L 20. – Let κ(ξ) be a smooth bounded function which vanishes in the vicinity of zero
and χ1(z), χ2(z) two smooth bounded functions which are compactly supported in [0, 1); then
there exist C > 0 and c > 0 such that we have the uniform estimate

(158) ∀ε ∈ (0, 1), ∀v ∈ L2(R+), |χ1

(
P− P+

)
κ(εk)χ2v|L2(R+) ≤ Ce−

c
ε |v|L2(R+)

Proof. – We can use the explicit expressions given by (156), (157) and (151), (152). This
yields

|χ1(z)
(
P− P+

)
κ(εk)χ2(z)v|

≤
∫ +∞

0

χ1(z)χ2(z′)κ(εk)|v(z′)|
(
|k|e−|k‖z−z

′|(
1

1− e−2|k| −1)+ |k|e−2|k|+|k|z+|k|z′
)
dz′
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and hence if the support of κ(ξ) is in |ξ| ≥ r > 0 and the supports of χ and χ′ are in [0, δ],
δ < 1, we find

|χ1(z)
(
P− P+

)
κ(εk)χ2(z)v|

≤
∫ +∞

0

χ1(z)χ2(z′)κ(εk)|v(z′)|
(
|k|e−|k‖z−z

′|e
−2r
ε + |k|e−2|k|(1−δ)

)
dz′

.

∫ +∞

0

χ1(z)χ2(z′)κ(εk)|v(z′)|e− rε dz′.

The estimate (158) follows by using again the Schur Lemma.
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