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CROSS RATIOS, ANOSOV REPRESENTATIONS
AND THE ENERGY FUNCTIONAL

ON TEICHMÜLLER SPACE

 F LABOURIE

A. – We study two classes of linear representations of a surface group: Hitchin and maxi-
mal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing
which means that their translation lengths are roughly controlled by the translations lengths on the
Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of
representations and that the energy functional associated to such a representation is proper. This im-
plies the existence of minimal surfaces in the quotient of the associated symmetric spaces, a fact which
leads to two consequences: a rigidity result for maximal symplectic representations and a partial result
concerning a purely holomorphic description of the Hichin component.

R. – Nous étudions deux classes de représentations linéaires d’un groupe de surface : les re-
présentations de Hitchin et les représentations symplectiques maximales. En reliant ces représentations
à des birapports, nous montrons qu’elles sont déplaçantes, c’est-à-dire que leurs longueurs de transla-
tion sont grossièrement contrôlées par celles du graphe de Cayley. Ceci nous permet de montrer que
le groupe modulaire agit proprement sur l’espace de ces représentations et que la fonctionnelle énergie
associée à une telle représentation est propre. Nous en déduisons alors l’existence de surfaces mini-
males dans les quotients d’espaces symétriques associés et en tirons deux conséquences : un résultat
de rigidité pour les représentations symplectiques et un résultat partiel concernant la description de la
composante de Hitchin en termes purement holomorphes.

1. Introduction

Let S be a closed connected oriented surface of genus greater than one. Monodromies
of hyperbolic structures on S define a distinguished class of homomorphisms from the fun-
damental group π1(S) into PSL(2,R). In this paper we study two generalisations of these
surface group representations, one in which we replace PSL(2,R) by PSL(n,R) and one in
which we generalise PSL(2,R) = PSp(2,R) to PSp(2n,R).

The first generalisation uses the irreducible representation of PSL(2,R) in PSL(n,R). A
Fuchsian representation from π1(S) into PSL(n,R) is a representation which decomposes as
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440 F. LABOURIE

the product of a faithful cocompact representation from π1(S) to PSL(2,R) and the irre-
ducible representation from PSL(2,R) to PSL(n,R) (see [30] and Section 4.1). The repre-
sentations we study, called Hitchin representations, are those which may be deformed into a
Fuchsian representation. In [26], Hitchin studies the moduli space of reductive (i.e. whose
Zariski closure is a reductive group) Hitchin representations. For a combinatorial point of
view on a related subject, see Fock and Goncharov in [16].

The second generalisation exploits the fact that the homogeneous space M associated to
PSp(2n,R) is Hermitian symmetric and thus carries an invariant symplectic form ω (see Sec-
tion 4.2.1 for details). Given a representation ρ from π1(S) to PSp(2n,R), if f is any ρ-equiv-
ariant map from the universal cover of S to M , then f∗ω is invariant under the action of
π1(S). The following number

τ(ρ) =
n

2π

∫
S

f∗ω

is then an integer independent of the choice of f . This number, called the Toledo invariant
of ρ, remains constant under continuous deformations of the representation and satisfies a
generalised Milnor-Wood Inequality (see [43])

|τ(ρ)| 6 n|χ(S)|.

By definition, a maximal symplectic representation is one for which the Toledo invariant
attains the upper bound in this inequality. The notion of maximality and a suitable ver-
sion of the Milnor-Wood Inequality extend to all Hermitian symmetric spaces. W. Gold-
man shows in [18, 19] that maximal representations in PSL(2,R) are precisely monodromies
of hyperbolic structures. In the general case, these maximal representations have been exten-
sively studied by Bradlow, García-Prada, Gothen, Mundet i Riera (as well as Xia in a specific
example) ([3, 5, 4, 17, 22, 45]) using Higgs bundle techniques on one hand and Burger, Iozzi
and Wienhard ([6, 9, 8, 44]) using bounded cohomology techniques on the other hand.

Both type of representations – Hitchin representations and maximal symplectic represen-
tations – can be thought of as generalisations of the PSL(2,R)-representations which arise
from monodromies of hyperbolic structures and hence as generalising Teichmüller-Thurston
theory.

The maximal symplectic representations and the Hitchin representations are known to
share several fundamental properties, including:

– They are Anosov as defined in [30]. For Hitchin representations this is proved in [30],
for maximal representations this is shown in [7] by Burger, Iozzi, Wienhard and the
author.

– The Zariski closure of the images are reductive. For Hitchin representations, see
Proposition 4.1.5. For maximal representations, this is proved by Burger, Iozzi and
Wienhard in [8].

– They are discrete: see [30] for Hitchin representations and the proof by Burger, Iozzi
and Wienhard in [8] for maximal representations.

The results presented in this paper extend this list of common features by showing that
both types of representation have the property that we call displacing. More precisely, let Γ

be a finitely generated subgroup of the isometry group of a metric space X: we say that Γ is
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displacing if, given a finite generating set G of Γ, there exist positive constants A and B such
that for all elements γ of Γ

inf
x∈X

d(x, γ(x)) > A inf
η∈Γ
‖ηγη−1‖G −B,

where ‖γ‖G is the word length of γ with respect to G. It is easy to check that this definition is
independent of the generating set G. Note that cocompact groups are always displacing, as
are convex-cocompact groups wheneverX is Hadamard (i.e. complete, nonpositively curved
and simply connected). If ρ is a representation from a finitely generated group Γ with values
in a connected semi-simple real Lie group G without compact factor and with trivial centre,
then ρ is displacing if the group ρ(Γ) is displacing as a group of isometries of the associated
symmetric space.

We now briefly summarise results of Delzant, Guichard, Mozes and the author in [13]
which compare this notion to the fact that orbit maps are quasiisometries. While the two
notions turn out to be equivalent for surface groups and more generally hyperbolic groups,
they are not equivalent for every group: there are known examples which have displacing
representations whose orbit maps are not quasiisometries and also nondisplacing represen-
tations for which the orbit maps are quasiisometries.

The starting point of this article is the following result.

T 1.0.1. – Hitchin and maximal symplectic representations are displacing.

It has already been observed by Burger, Iozzi, Wienhard and the author in [7] that the
orbit maps are quasiisometries for maximal symplectic representations. Here we prove the
theorem by relating Hitchin representations and maximal symplectic representations to cross
ratios (cf. Theorems 4.1.6 and 4.2.4).

The two main applications of this result are that

– the mapping class group acts properly on certain moduli spaces, and
– the energy functional on Teichmüller space is proper.

Let us be more specific. Let HomH(π1(S),PSL(n,R)) be the space of Hitchin homomor-
phisms and

RepH(π1(S),PSL(n,R)) = HomH(π1(S),PSL(n,R))/PSL(n,R),

where the action of PSL(n,R) is by conjugation.
Similarly, let HomT (π1(S),PSp(2n,R)) be the space of maximal symplectic homomor-

phisms and

RepT (π1(S),PSp(2n,R)) = HomT (π1(S),PSp(2n,R))/PSp(2n,R).

Both spaces HomH and HomT are unions of connected components, each of which is a
component of the corresponding space of reductive homomorphisms. Moreover, since they
consist of reductive representations, the quotient spaces RepH and RepT are Hausdorff

(hence locally compact). This last fact follows from the identification due to Hitchin [25] of
reductive representations with polystable Higgs bundle, although more direct proofs could
be obtained. The mapping class group M(S) – that is the group of outer automorphisms
of π1(S) which may be represented by orientation preserving diffeomorphisms – acts by
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precomposition on these spaces. The following result will be an immediate consequence of
Theorem 1.0.1.

T 1.0.2. – The mapping class groupM(S) acts properly by precomposition on the
spaces RepH(π1(S),PSL(n,R)) and RepT (π1(S),PSp(2n,R)).

In the case of PSL(3,R), W. Goldman proved in [20] that the mapping class group acts
properly on the moduli space of convex RP2 structures. Moreover, together with Choi in
[10], he identified this moduli space with the Hitchin component.

Our second main application concerns the energy functional. We first recall briefly the
general framework and refer to Paragraph 5 for precise definitions. Let ρ be a representation
from π1(S) to a connected semi-simple real Lie group G without compact factor and with
trivial centre. LetM be the symmetric space associated toG and letMρ be the flatM -bundle
over S defined by the representation ρ. Let Γ(S,Mρ) be the space of smooth sections ofMρ.
If J is a complex structure on S and f an element of Γ(S,Mρ), we define

EnergyJ(f) =

∫
S

〈df ∧ df ◦J〉.

Then, the energy functional eρ, associated to the representation ρ, is the map from the space
of all complex structures on S to the real numbers defined by

eρ(J) = inf{EnergyJ(f) | f ∈ Γ(S,Mρ)}.

The value of this function depends only on the isotopy class of the complex structure J ,
and hence defines a function on Teichmüller space. Denoted by eρ and also called the energy
functional, this function is smooth on Teichmüller space (cf. Paragraph 5.2). We shall prove
the following result

T 1.0.3. – If ρ is a Hitchin representation or a maximal symplectic representation,
then the energy functional eρ is a proper function on Teichmüller space.

It is classical that critical points of the energy functional are related to minimal surfaces.
Indeed, using Gulliver’s definition of a branched immersion ([24]), we obtain the following
consequence

C 1.0.4. – Let ρ be a Hitchin or maximal symplectic representation. Then there
exists a minimal branched immersion from S into M/ρ(π1(S)) which represents ρ at the level
of homotopy groups.

This corollary will lead to two applications that we shall explain in the next section.

I wish to thank L. Lemaire for his help on minimal surfaces and harmonic mappings,
F. Paulin for a very helpful comment on irreducible representations and many useful com-
ments on the writing up, A. Iozzi for clarifications on Toledo invariant, M. Burger, O. García-
Prada, O. Guichard and A. Wienhard for numerous conversations and useful remarks on
inconsistencies of the first draft, as well as W. Goldman for his interest and his help on the
writing up. I am also extremely grateful to S. Bradlow for his final comments on this article.
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2. Application of the main results and outline of the paper

2.1. The minimal area and the Toledo invariant

We restrict ourselves in this paragraph to representations of surface groups with values in
PSp(2n,R).

D 2.1.1 (Minimal area). – The minimal area of a representation ρ from π1(S)

to PSp(2n,R) is
MinArea(ρ) = inf{eρ(J) | J ∈ T (S)}.

D 2.1.2 (Diagonal representation). – A homomorphism ρ from π1(S) with
values in PSp(2n,R) is diagonal if it factors as ρ = ϕ ◦ δ ◦ σ where σ is a cocompact
homomorphism of π1(S) into PSL(2,R), δ is the diagonal mapping from PSL(2,R) into

i=n∏
i=1

PSL(2,R)

and ϕ is an embedding of this product in PSp(2n,R) corresponding to a decomposition of R2n

in a direct sum of 2-dimensional orthogonal symplectic vector spaces.

Note that the set of diagonal homomorphisms is invariant under conjugation.

T 2.1.3. – For every representation ρ, we have
n

2π
MinArea(ρ) > |τ(ρ)|,

where τ(ρ) is the Toledo invariant of ρ. If furthermore ρ is maximal and
n

2π
MinArea(ρ) = τ(ρ),

then ρ is a diagonal representation.

As a corollary of the proof, we have the following result

C 2.1.4. – Let ρ be a maximal representation. Assume that there exists a holo-
morphic equivariant map f from S to the associated symmetric space of PSp(2n,R). Then ρ
is diagonal and f is totally geodesic.

2.2. The Hitchin map is surjective

In his article [26], N. Hitchin gives explicit parametrisations of the Hitchin components
RepH(π1(S),PSL(n,R)). Namely, given a choice of a complex structure J over S, he pro-
duces a homeomorphism

HJ : Q(2, J)⊕ · · · ⊕ Q(n, J)→ RepH(π1(S),PSL(n,R)),

where Q(p, J) denotes the space of holomorphic p-differentials on the Riemann surface
(S, J). The first step in the construction of this map uses results from K. Corlette’s seminal
paper [11] – see also [15, 27] – to identify conjugacy classes of representations with harmonic
mappings to symmetric spaces. The second step is to associate holomorphic differentials to
a harmonic mapping with values in a symmetric space. This is accomplished by means of a
construction very similar to the construction of characteristic classes in Chern-Weil theory –
see Paragraph 8.1.3.
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However, in this construction, the homeomorphismHJ depends on the choice of the com-
plex structure J . In particular, this choice breaks the mapping class group symmetry. The
construction thus does not give any information on the topological nature of the quotient of
RepH(π1(S),PSL(n,R)) by the mapping class group.

We now explain a construction which is equivariant with respect to the action of the map-
ping class group and which conjecturally leads to a complex analytic description of the quo-
tient. Let E(n) be the vector bundle over Teichmüller space whose fibre above the (isotopy
class of the) complex structure J is

E(n)
J = Q(3, J)⊕ · · · ⊕ Q(n, J).

The dimension of the total space of E(n) is the same as that of the Hitchin component

RepH(π1(S),PSL(n,R)),

since the dimension of the “missing” quadratic differentials in E(n)
J accounts for the

dimension of Teichmüller space. The Hitchin map (1) is then the map from E(n) to
RepH(π1(S),PSL(n,R)) defined by

(J, ω)→ HJ(0, ω).

It follows from Hitchin’s construction that this map is equivariant with respect to the map-
ping class group action. We prove

T 2.2.1. – The Hitchin map is surjective.

Our strategy is to identify E(n) with the moduli space of equivariant minimal surfaces in
the associated symmetric space and then, by tracking a critical point of the energy, to prove
that there exists an equivariant minimal surface for every representation.

We conjectured in [30] that the Hitchin map is a homeomorphism. This would be a con-
sequence of the following:

C 2.2.2. – If ρ is a Hitchin representation, then there exists a non degenerate
minimum of eρ.

This conjecture is well known to be true forn = 2. Forn = 3, it is proved in [31] by relating
real projective structures, affine spheres and Blaschke metrics (as in [28, 31] or in [34]). By our
previous discussion, Conjecture 2.2.2 would imply the following consequence which sheds
light on the action of the mapping class groupM(S) on the Hitchin components:

C 2.2.3. – The quotient RepH(π1(S),PSL(n,R))/M(S) is homeomorphic to
the total space of the vector bundle E – in the orbifold sense – over the Riemann moduli space,
whose fibre at a point J is

EJ = Q(3, J)⊕ · · · ⊕ Q(n, J).

Again, by the previous discussion, this result is true for n = 2 and n = 3.

(1) We are aware that this terminology is awkward since this Hitchin map is some kind of an inverse of what is usually
called the Hitchin fibration.
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2.3. Outline of the paper

– 3. Cross ratios and the boundary at infinity. We recall the basic definitions (cross ratios,
periods), explain how cross ratios are related to flows and finally show how this relation
helps to control the growth of the periods (Proposition 3.3.1).

– 4. Representations and cross ratios. We explain that Hitchin and maximal symplectic
representations are reductive, how they generate curves in Grassmannian spaces and
how they relate to cross ratios.

– 5. The energy functional and the minimal area. We recall basic results about existence
of equivariant harmonic mappings in symmetric spaces as well as classical definitions
and results concerning minimal surfaces, energy and Teichmüller space.

– 6. Displacing representations and the energy functional. We introduce the notion of dis-
placing representations. Using the relation with cross ratios, we show that the Hitchin
and maximal symplectic representations are displacing. We then prove the main prop-
erties of displacing representations and obtain Theorems 1.0.2 and 1.0.3. As a con-
sequence, we deduce the existence of equivariant minimal surfaces for our two main
examples.

– 7. The Toledo invariant and the minimal area. We prove Theorem 2.1.3.
– 8. The Hitchin map. We prove Theorem 2.2.1.

3. Cross ratios and the boundary at infinity

3.1. The boundary at infinity

Let ∂∞π1(S) be the boundary at infinity of π1(S). We recall that ∂∞π1(S) is a circle with a
Hölder structure and is equipped with an action of π1(S) by Hölder homeomorphisms. Up
to equivariant Hölder homeomorphisms, this action can be characterised by the following
two properties

– every orbit is dense,
– every nontrivial element of π1(S) has exactly two fixed points: one attractive and one

repulsive.

If one fixes an uniformisation of the universal cover of the surface equipped with a com-
plex structure, then ∂∞π1(S) can be identified with the real projective line RP1 considered
as the boundary of the Poincaré disk model.

3.2. Cross ratios

Let X be a metric space equipped with an action of a group Γ by Hölder homeomor-
phisms. Let

X4∗ = {(x, y, z, t) ∈ X4 | x 6= t and y 6= z}.

We equip X4∗ with the diagonal action of Γ. In the sequel, our main examples are X =

∂∞π1(S) equipped with the natural action of π1(S) by Hölder homeomorphisms, or variants
of that.
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D 3.2.1 (Cross ratio). – A cross ratio on X is a real valued Γ-invariant Hölder
function B on X4∗ which satisfies the following rules

B(x, y, z, t) = B(z, t, x, y),(1)

B(x, y, z, t) = 0 ⇔ x = y or z = t,(2)

B(x, y, z, t) = 1 ⇔ x = z or y = t,(3)

B(x, y, z, t) = B(x, y, z, w)B(x,w, z, t),(4)

B(x, y, z, t) = B(x, y, w, t)B(w, y, z, t).(5)

The classical cross ratio b on RP1, defined in an affine chart by

b(x, y, z, t) =
(x− y)(z − t)
(x− t)(y − z)

,

is an example of a cross ratio with respect to the action of PSL(2,R).

D 3.2.2 (Period). – Let B be a cross ratio on ∂∞π1(S) and γ be a nontrivial
element in π1(S). The period `B(γ) is

`B(γ) = log |B(γ−, γy, γ+, y)|,(6)

where γ+ and γ− are respectively the attracting and repelling fixed points of γ on ∂∞π1(S) and
y is any element of ∂∞π1(S) different from γ+ and γ−.

Relation (4) and the invariance under the action of γ imply that `B(γ) does not depend
on y. Moreover, by Equation (1), `B(γ) = `B(γ−1).

For more information and examples on a related notion, see the work of Otal and Ledrap-
pier in [37, 33]. For other applications to representations of surface groups, see [29, 32].

3.3. Periods and lengths

The next proposition compares periods with length of geodesics.

P 3.3.1. – We fix a hyperbolic metric on S. For every nontrivial γ in π1(S),
let λ(γ) be the length of the closed geodesic associated to γ for this hyperbolic metric. Let B be
a cross ratio. Then there exists a positive constant A, depending only on the cross ratio and the
choice of the hyperbolic metric, such that or all nontrivial element γ in π1(S)

1

A
λ(γ) 6 `B(γ) 6 Aλ(γ).

The idea of the proof is to define compatible flows on the space of oriented triples of pair-
wise distinct points of ∂∞π1(S) and study their periodic orbits.
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3.3.1. Compatible flows on the space of oriented triples. – Recall first that the orientation on
S induces an orientation on ∂∞π1(S).

D 3.3.2 (Oriented triples). – We denote by ∂∞π1(S)3+ the space of oriented
triples of pairwise distinct points of ∂∞π1(S).

The quotient ∂∞π1(S)3+/π1(S) is compact and homeomorphic to the unitary tangent
bundle of the surface S for any auxiliary metric.

D 3.3.3 (Compatible flow). – A continuous flow {φt}t∈R on ∂∞π1(S)3+ is
compatible if

– every homeomorphism φt is π1(S)-equivariant,
– every homeomorphism φt acts without fixed points,
– for every real number t, for every triple (x, z, y) in ∂∞π1(S)3+, there exists u in ∂∞π1(S)

such that φt(x, z, y) = (x, u, y).

If we identify ∂∞π1(S)3+ with the unit tangent bundle of S for some hyperbolic metric,
then a compatible flow is nothing but a reparametrisation of the geodesic flow.

D 3.3.4 (Period for a flow). – For notational convenience, given a compatible
flow {φt}t∈R, we define for every real number t the map

φ̂t : ∂∞π1(S)3+ → ∂∞π1(S),

by the condition that (x, φ̂t(x, z, y), y) = φt(x, z, y).
If γ is a nontrivial element of π1(S), we then define the period of γ with respect to {φt}t∈R

to be the least positive number `φ(γ) such that

φ̂`φ(γ)(γ
−, y, γ+) = γ(y).

We first prove

P 3.3.5. – Let {φt}t∈R and {ψt}t∈R be two compatible flows. Then there
exists a constant K such that for all nontrivial element γ of π1(S)

`ψ(γ) 6 K`φ(γ).

Proof. – There exists a positive continuous π1(S)-invariant positive function Θ defined
on ∂∞π1(S)3+ such that

ψ̂1(x, y, z) = φ̂Θ(x,y,z)(x, y, z).

Since ∂∞π1(S)3+/π1(S) is compact, it follows that there exists a constantA such that for all
oriented triple (x, y, z)

0 < Θ(x, y, z) 6 A.

Then we have
`ψ(γ) 6 A`φ(γ) +A.

By compactness of ∂∞π1(S)3+/π1(S), there exists a constant l such that for all nontrivial
element γ of π1(S), we have

`φ(γ) > l > 0.
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Therefore it follows that
`ψ(γ) 6 (A+A/l)`φ(γ).

3.3.2. Proof of Proposition 3.3.1. – We show that every cross ratio is associated to a com-
patible flow and thereby conclude the proof of Proposition 3.3.1.

P 3.3.6. – Let B be a cross ratio. Let x and y be two distinct elements of
∂∞π1(S). Let I be one of the connected components of ∂∞π1(S)\{x, y}. Let z be an element
of I. Then the map from I to R given by

ϕ : t→ log(B(x, t, y, z)),

is a homeomorphism.

Proof. – By the definition of cross ratio, if (x, s, t, y) is cyclically oriented, then
B(x, s, y, t) is greater than 1. In particular B(x, t, y, z) is positive if z and t belong to I

and thus ϕ is well defined.

We now prove that ϕ is injective. Suppose that ϕ(s) = ϕ(t). This implies that

B(x, t, y, s) =
B(x, t, y, z)

B(x, s, y, z)
= eϕ(t)−ϕ(s) = 1.

Hence s = t by the definition of a cross ratio. The same proof shows that ϕ is increasing. It
follows that ϕ(I) is an interval ]α, β[.

We now prove that β = +∞. Assume on the contrary that β is finite. By definition

lim
t→y

log(B(x, t, y, z)) = β.

Choose an auxiliary compatible flow {ψt}t∈R on ∂∞π1(S)3+. Since (x, t, ψ̂1(x, t, y), y) is
cyclically oriented, we have

lim
t→y

ψ̂1(x, t, y) = y.

Hence,

lim
t→y

B(x, t, y, ψ̂1(x, t, y)) = lim
t→y

( B(x, t, y, z)

B(x, ψ̂1(x, t, y), y, z)

)
= 1.(7)

Now choose a sequence {tn}n∈N converging to y. Since the quotient ∂∞π1(S)3+/π1(S) is
compact, there exist a sequence {γn}n∈N of elements inπ1(S) and an oriented triple (X,Y, T )

of pairwise distinct elements in ∂∞π1(S) such that

lim
n→∞

(γn(x), γn(y), γn(tn)) = (X,Y, T ) ∈ ∂∞π1(S)3+.

If follows from Assertion (7) that

B(X,T, Y, ψ̂1(X,T, Y )) = lim
n→∞

B(γn(x), γn(tn), γn(y), ψ̂1(γn(x), γn(tn), γn(y))

= lim
n→∞

B(γn(x), γn(tn), γn(y), γn(ψ̂1(x, tn, y))

= lim
n→∞

B(x, tn, y, ψ̂1(x, tn, y))

= 1.
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This yields the conclusion that T = ψ̂1(X,T, Y ), which contradicts the fact that ψ1 has no
fixed points. A similar argument yields α = −∞. Therefore ϕ is a homeomorphism.

P 3.3.7. – There exists a compatible flow {φt}t∈R on ∂∞π1(S)3+ such that
log(B(x, z, y, φ̂t(x, z, y))) = t.

Proof. – By Proposition 3.3.6, the family of homeomorphisms {φt}t∈R is well defined.
The multiplicative cocycle relation

B(x, y, z, t).B(x, t, z, u) = B(x, y, z, u),

implies that {φt}t∈R is a one-parameter group.

Proposition 3.3.1 is now a consequence of Propositions 3.3.7 and 3.3.5.

4. Representations and cross ratios

We shall in the sequel distinguish between homomorphism from a group to an other and
representation which we consider as a class of homomorphism up to conjugation. Whenever
a property is defined for a homomorphism, this definition will be extended to representation
whenever the property is invariant by conjugation.

We explain that our two favourite classes of representations from π1(S) are associated to
cross ratios whose periods can be computed from holonomy. We also recall that these repre-
sentations are reductive.

4.1. Hitchin representations

D 4.1.1 (Deformation). – Let ρ0 and ρ1 be representations of π1(S) with values
in a topological group G. A deformation of ρ0 into ρ1 is a family of representations {ρt}t∈[0,1]

such that for every element γ of π1(S), the map t→ ρt(γ) is continuous.

D 4.1.2 (Hitchin homomorphisms). – Following [30], a Fuchsian homomor-
phism from π1(S) to PSL(n,R) is a homomorphism ρ which factors as ρ = ι ◦ ρ0, where ρ0 is
a convex-cocompact injective homomorphism with values in PSL(2,R) and ι is an irreducible
homomorphism from PSL(2,R) to PSL(n,R).

A Hitchin homomorphism is a homomorphism that may be deformed into a Fuchsian ho-
momorphism.

D 4.1.3 (Reductive homomorphism). – A homomorphism is reductive if the
Zariski closure of its image is a reductive group.

Later we will show that every Hitchin homomorphism is reductive. In [26], Hitchin studies
the moduli space of reductive Hitchin representations.

In [30], we showed the following result.

T 4.1.4. – Let ρ be a reductive Hitchin representation. Let γ be a nontrivial ele-
ment of π1(S). Then ρ(γ) is R-split.
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4.1.1. Reductivity. – Recall that a subgroup of (or a homomorphism with values in)
PSL(n,R) is irreducible if it does not preserve any proper subspace of Rn. We show the
following result.

P 4.1.5. – Every Hitchin representation is irreducible.

Proof. – In [30], Lemma 10.1, using elementary observations on Higgs bundle, we show
that every reductive Hitchin representation is irreducible. We now explain that every Hitchin
representation is reductive, hence irreducible.

Obviously the set of irreducible homomorphisms is open since its complement is closed.
Hence, to conclude the proof, it suffices to show that the set of irreducible Hitchin homo-
morphisms is closed.

Let ρ be a limit of Hitchin homomorphisms. LetG be the Zariski closure of ρ(π1(S)). Let
N be the nilradical of G. Let R = G/N be the reductive part of G – i.e the Levi component.
We identify R with a subgroup of G so that G = N o R. Let π be the projection from G

to R.

We first prove that π ◦ ρ is also a limit of reductive homomorphisms. Indeed, there exists
an element h in the centraliser of R such that for all u in N ,

lim
n→∞

h−nuhn = 1.

It follows that

π ◦ ρ = lim
n→∞

h−nρhn.

In particular, π ◦ ρ is also a limit of Hitchin homomorphisms and hence a Hitchin homo-
morphism itself. By construction, π ◦ ρ is reductive and hence irreducible.

We now prove by contradiction that N is trivial. Assume the contrary. Then, since N is
unipotent, the set of vectors fixed by N is a proper subspace of Rn. This set is fixed by R
and hence by π ◦ ρ, from which it follows that π ◦ ρ is not irreducible. Hence we obtain a
contradiction.

We have just shown that N is trivial. By definition ρ is reductive, and hence irreducible.

I owe this argument to F. Paulin.

4.1.2. Cross ratios. – In [29], we showed how to associate a cross ratio to every Hitchin
representation. More precisely, we showed the following:

T 4.1.6. – Let ρ be a Hitchin representation. Then there exists a cross ratio B on
∂∞π1(S)4∗ such that for every nontrivial element γ of π1(S), the period of γ is given by

`B(γ) = log

Å∣∣∣∣λmax(ρ(γ))

λmin(ρ(γ))

∣∣∣∣ã .(8)

Here λmax(ρ(γ)) and λmin(ρ(γ)) are respectively the eigenvalues of of ρ(γ) with the maximum
and minimum modulus.

Using O. Guichard’s work [23], we also proved a converse of this statement (see [29]).
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4.2. Symplectic Anosov structures

In [7], together with Burger, Iozzi and Weinhard, we studied maximal representations
from surface groups to PSp(2n,R). We first recall some definitions and notation from [8].

4.2.1. The symplectic structure. – In this section, we normalise the symplectic form on the
associated symmetric space M and construct the Toledo invariant.

We denote by g the Lie algebra of G = PSp(2n,R) and we identify g with the Lie algebra
of Killing vector fields on M . For every m in M , let km be the Lie algebra of the stabiliser
Km of m in G. We finally identify TmM with the orthogonal of km in g with respect to the
Killing form.

We choose a continuous map ∂θ from M to g such that, for every m in M , ∂θ(m) is a
generator of the centre of km verifying

exp(s∂θ(m)) = 1⇔ s ∈ 2πZ.

Observe that ∂θ is well defined up to sign. The complex structure on TM is then given by the
following map from TM to itself

J : A 7→ [∂θ, A].

We normalise the Killing form 〈 , 〉 so that ‖∂θ‖ = 1.

D 4.2.1 (Canonical complex structure). – The canonical symplectic structure
ω of M is given, for all tangent vectors X and Y , by

ω(X,Y ) = 〈[X,Y ], ∂θ〉.

4.2.2. The Toledo invariant. – The homomorphism

det : Km → T

is a degree n map when restricted to the centre of Km. It follows that n.ω is the curvature of
a line bundle L.

The following inequality is fundamental:

|τ(ρ)| 6 n|χ(S)|.

Forn = 1, this is the Milnor-Wood Inequality [36]. This specific inequality for the symplectic
group is due to V. Turaev [43]. It has been extended to other Hermitian symmetric spaces
(see in particular [14, 41, 42, 9, 8]). We shall restrict ourselves to PSp(2n,R) although the
discussion extends to the general case as well.

D 4.2.2 (Maximal representation). – A maximal representation is a represen-
tation, say ρ, for which

|τ(ρ)| = n|χ(S)|.

4.2.3. Reductivity. – Using bounded cohomology techniques, Burger, Iozzi and Wienhard
prove in [8]:

T 4.2.3. – Every maximal representation is reductive.
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4.2.4. Cross ratios and maximal representations: the main result. – For every A in
PSp(2n,R), let {λi}16i62n be the eigenvalues (with multiplicities) of A ordered so that

|λ1| 6 |λ2| · · · 6 |λ2n|.

We define

c(A) =
i=2n∏
i=n+1

|λi|.

The main result of this paragraph is the following.

T 4.2.4. – Let ρ be a maximal symplectic representation. Then there exists a cross
ratio B on ∂∞π1(S) such that

`B(ρ(γ)) = 2 log c(ρ(γ)).

We prove this theorem in Paragraph 4.2.8.

4.2.5. Positivity. – Let L(E) be the Grassmannian of Lagrangian spaces in a vector space
E equipped with a symplectic form ω.

D 4.2.5. – A triple of Lagrangian spaces (F,G,L) is positive if

• F ⊕ L = E and
• ω(uf , ul) is positive for every pair of vectors (uf , ul) in F ×L such that uf + ul belongs

to G,

D 4.2.6 (Positive curve). – An oriented curve ξ from the circle T toL(E) is pos-
itive if (ξ(x), ξ(y), ξ(z)) is positive for every oriented triple of pairwise distinct points (x, y, z)

in T.

With Burger, Iozzi and Wienhard, we proved the following result (see [7])

T 4.2.7. – LetE be a symplectic vector space. Let ρ be a maximal symplectic ho-
momorphism from π1(S) to PSp(E). Then there exists a positive Hölder ρ-equivariant curve ξ
from ∂∞π1(S) to L(E).

Furthermore, ξ(γ+) (respectively ξ(γ−)) is generated by the eigenvectors of ρ(γ) corre-
sponding to the eigenvalues of absolute value greater than 1 (resp. smaller than 1).

4.2.6. The cross ratio of four Lagrangian spaces. – Let (L1, L2, L3, L4) be a quadruple of
Lagrangian spaces in a symplectic space of dimension 2n. We suppose that L4 is transverse
to L1 and that L2 is transverse to L3. Let l1, l2, l3 and l4 be bases of L1, L2, L3 and L4

respectively. For every pair (a, b) ∈ {1, 2, 3, 4}2, we consider the n× n matrix

Ala,lb = (ω(lai , l
b
j)).

We observe that for every endomorphism g of La whose matrix in the basis la is G then

(9) Ag(la),lb = G.Ala,lb .

Similarly
Ala,lb = −Atlb,la .
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We now define

B(`1, `2, `3, `4) =
det(Al1,l2).det(Al3,l4)

det(Al1,l4).det(Al3,l2)
.

By Assertion (9), B(`1, `2, `3, `4) depends only on (L1, L2, L3, L4). Hence we can define

B(L1, L2, L3, L4) = B(`1, `2, `3, `4).

The following proposition follows easily from the definition

P 4.2.8. – We have

B(L1, L2, L3, L4)B(L1, L4, L3, L5) = B(L1, L2, L3, L5),(10)

B(L1, L2, L3, L4) = B(L2, L1, L4, L3).(11)

Finally, if (L,U, V ) are generic,

B(L,U,L, V ) = 1,(12)

B(L,L,U, V ) = 0.(13)

4.2.7. Cross ratios and positivity

P 4.2.9. – If the triples of Lagrangian spaces (E,F1, G) and (E,F2, G) are
positive, then

B(E,F1, G, F2) > 0.

If moreover the triple (F1, F2, G) is positive, then

B(E,F1, G, F2) > 1.

Proof. – We assume that (E,F1, G) and (E,F2, G) are positive. Let p be the projection
onto G along E. Let qi be the quadratic form on Fi defined by

qi(u) = ω(p(u), u).

Since (E,Fi, G) is positive, it follows that qi is positive definite. By simultaneous orthogonal-
isation, we can choose a basis f i of Fi, which is orthogonal for qi, such that p(f1) = p(f2) =

g. Let

ei = (1− p)(f i) = f i − g

be the corresponding bases of E. We then have

Aei,fj = Aei,g = −Ag,fi ,

and also

ω(eji , gk) = q(f ji , f
j
k) = ω(gi, f

j
k).

Furthermore, let

λi =
q(f2

i , f
2
i )

q(f1
i , f

1
i )
,

then

e2
i = λie

1
i .
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It follows that

B(E,F1, G, F2) =
det(Ae1,f1).det(Ag,f2)

det(Ae1,f2).det(Ag,f1)

=
det(Ae1,g).det(−Ae2,g)
det(Ae1,g).det(−Ae1,g)

=
∏
i

λi > 0.

Finally, assume that (F1, F2, G) is positive. Let π be the projection onto G along F1. Recall
that

f2
i = e2

i + gi = λie
1
i + gi = λif

1
i + (1− λi)gi.

It follows that

ω
(
π(f2

i ), (1− π)(f2
i )
)

= ω
(
(1− λi)gi, λif1

i

)
= (1− λi)λiω(gi, f

1
i )

= λi(λi − 1)q1(f1
i , f

1
i ).

Hence the positivity of (F1, F2, G) implies that λi > 1 and therefore

B(E,F1, G, F2) =
∏
i

λi > 1.

Finally, we have the following:

P 4.2.10. – Let S be a symplectic automorphism preserving two transverse
Lagrangian spaces E and F . Then, for every Lagrangian space G, we have

B(E,G, F, S(G)) =
det(S|E)

det(S|F )
= det(S|E)2.

Proof. – Let S be a symplectic transformation. Let e be a basis of a space K invariant
by S. We have

det(Ae,S(l)) = det(AS−1e,l) =
det(Ae,l)

det(S|K)
,

from which the formula follows.

4.2.8. Cross ratios and maximal representations. – We now prove Theorem 4.2.4. Let ρ be
a maximal symplectic homomorphism. Let ξ be the positive map from ∂∞π1(S) to L(R2n)

associated to ρ by Theorem 4.2.7. By Proposition 4.2.9 the following formula (using the no-
tation of Paragraph 4.2.6) defines a cross ratio on ∂∞π1(S)

B(x, y, z, t) = B(ξ(x), ξ(y), ξ(z), ξ(t)).

Furthermore, by Proposition 4.2.10, we have

`B(γ) = 2 log det
(
ρ(γ)|ξ(γ+)

)
.

The theorem follows from this.
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5. The energy functional and the minimal area

Let M be a Hadamard manifold — i.e. complete, nonpositively curved and simply con-
nected. Let

ρ : π1(S) −→ Iso(M)

be a representation from π1(S) to the group of isometries ofM and letMρ be the associated
M bundle over S. We denote by Fρ the space of ρ-equivariant smooth mappings from the
universal cover S̃ of S to M :

Fρ = {f : S̃ →M | f ◦ γ = ρ(γ) ◦ f}.

The space Fρ is canonically identified with the space Γ(S,Mρ) of smooth sections of Mρ.

5.1. The energy of a map and the energy functional

Let 〈, 〉 be the metric onM . Let f be an element ofFρ. Let J be a complex structure on S
lifted to S̃. Let u and v be tangent vectors in S̃, the following expression defines an exterior
differential 2-form on S̃

〈df ∧ df ◦J〉(u, v) :=
1

2
(〈Tf(v), Tf(Ju)〉 − 〈Tf(u), Tf(Jv)〉) .

Notice that 〈df ∧ df ◦J〉 is π1(S)-invariant, hence defines an exterior differential 2-form on
S also denoted by 〈df ∧ df ◦J〉.

D 5.1.1 (Energy of a map). – The energy of f with respect to J is the following
real number

Energy(J, f) =

∫
S

〈df ∧ df ◦J〉.

The definition above is slightly nonstandard and restricted to dimension 2. We use it in
order to emphasise the conformal invariance of the energy. Observe that for any diffeomor-
phism φ of S isotopic to the identity and lifted to a diffeomorphism Φ of S̃ we have

Energy(J, f) = Energy(Φ∗J, f ◦ Φ).(14)

D 5.1.2 (Energy functional on Teichmüller space). – Let ρ be a representation
of π1(S) in Iso(M). The energy functional associated to ρ is the real valued function on the
Teichmüller space T (S) of S defined by

eρ : J → eρ(J) := inf{Energy(J, f) | f ∈ Fρ}.

In the definition above, we have used that eρ(J) only depends on the isotopy class of J
which is a consequence of Equation (14).
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5.2. Harmonic mappings

By definition, a harmonic mapping is a critical point of the energy. Whenever ρ is reduc-
tive, the existence of a ρ-equivariant harmonic mapping is guaranteed by Corlette’s Theo-
rem in the context of symmetric spaces [11]. Note that [27] gives an alternative simpler proof
which works in the general context of Hadamard manifolds:

T 5.2.1 (Corlette). – Let ρ be a reductive representation from π1(S) into a con-
nected semi-simple real Lie group G without compact factor and with trivial centre. Let M be
the associated symmetric space. Then there exists a ρ-equivariant harmonic mapping f from S

to M . Furthermore this mapping is unique up to an isometry of M and minimises the energy.

The definition of the energy extends to maps from higher dimensional manifolds – al-
though in that case it is not anymore a conformal invariant – and the above statement holds
in this general context.

As a byproduct of the proof of this theorem, together with a simple application of the im-
plicit function Theorem, the energy functional is a smooth function on Teichmüller space.
Combining Corlette’s Theorem with Propositions 4.2.3, 4.1.5, we deduce the following re-
sult.

P 5.2.2. – Let ρ be a Hitchin or maximal symplectic representation. Let J be
a complex structure on S. Then there exists a unique (up to isometries) ρ-equivariant harmonic
mapping fρ,J . Moreover

Energy(J, fρ,J) = eρ(J).

5.3. Minimal area

Let f be an element of Fρ and let R(f) be the open set of points x in S for which Txf
is injective. We observe that the induced bilinear form f∗(gM ) is invariant under π1(S) and
defines a metric on R(f). We define the area of f to be the area of R(f) with respect to this
metric, i.e.

Area(f) = areaf∗(gM )(R(f)).

We recall that

Area(f) 6 Energy(J, f),(15)

with equality if and only if f is conformal with respect to J . Finally one can find a sequence
of complex structure {Jn}n∈N on S so that

Area(f) = lim
n→∞

Energy(Jn, f).(16)

D 5.3.1 (Minimal area). – The minimal area of ρ is

MinArea(ρ) = inf{eρ(J) | J ∈ T (S)}.

It follows from Assertions (15) and (16) that

MinArea(ρ) = inf{Area(f) | f ∈ Fρ}.

We also recall the classical results of Sacks–Uhlenbeck [39][38] and Schoen–Yau [40]:
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T 5.3.2 (Sacks–Uhlenbeck, Schoen–Yau). – Let J be a point in Teichmüller
space which is a critical point of the energy. Let f be a mapping such that

Energy(J, f) = MinArea(ρ).

Then f is harmonic and conformal.

6. Displacing representations and the energy functional

In Definition 6.1.2, we introduce the notion of displacing homomorphism. In Theorem
6.1.3, we prove that Hitchin and maximal symplectic representations are displacing and fi-
nally show in Theorem 6.2.1 that the energy functional associated to a displacing represen-
tation is a proper map.

6.1. Displacing representations

D 6.1.1 (Displacement function). – Let γ be an isometry of a metric spaceM .
The displacement of γ is

d(γ) = inf
x∈M

d(x, γ(x)).

IfM is the Cayley graph of a group Γ with set of generators G and word length ‖ ‖G , then

d(γ) = inf
η∈Γ
‖ηγη−1‖G .

The displacement function is explicit in the case of M = PSL(n,R)/SO(n,R). Let A be
an element in PSL(n,R). Let {λi}16i6n be the eigenvalues of A, then up to a multiplicative
constant that depends on the normalisation of the metric on M

d(A) =

Ã
n∑
i=0

(
log |λi|

)2
.(17)

D 6.1.2 (Displacing homomorphism). – Let M be a metric space. A homo-
morphism ρ from a finitely generated group Γ to Iso(M) is displacing if for every finite gen-
erating set G of Γ there exist positive constants A and B such that for every γ in Γ

d(ρ(γ)) > A. inf
η∈Γ
‖ηγη−1‖G −B,

where ‖γ‖G is the word length of the element γ of Γ.

In other words, the displacement of a displacing representation is roughly controlled by
the displacement in the Cayley graph. Alternatively, in the case Γ = π1(S), the representa-
tion ρ is displacing if for every hyperbolic metric g on S, there exist positive constantsA and
B such that for every nontrivial element γ in π1(S)

d(ρ(γ)) > A.λg(γ)−B.

Here λg(γ) is the length of the closed geodesic, with respect to g, representing the nontrivial
element γ.
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6.1.1. Examples of displacing representations. – Representations in Iso(M) are displac-
ing for cocompact groups. The same holds for convex-cocompact groups whenever M
is Hadamard. The use of cross ratios allows us to identify other examples of displacing
representations.

T 6.1.3. – Every Hitchin representation is displacing. Every maximal symplectic
representation is displacing.

Proof. – Let ρ be a Hitchin representation. Let B be the cross ratio associated to ρ by
Theorem 4.1.6. Let {λi}16i6n be the eigenvalues of the element ρ(γ). We order the eigen-
values so that |λj | > |λi| if j > i. Combining Equations (8) and (17), we obtain

d(ρ(γ)) =

Ã
i=n∑
i=1

(log |λi|)2 >
1√
n

i=n∑
i=1

|log |λi|| >
1√
n

(|log |λn||+ |log |λ1||) .

Since |λn| > 1 > |λ1|, we get

d(ρ(γ)) >
1√
n

log
|λn|
|λ1|

=
1√
n
`B(γ).

By Theorem 3.3.1, there exist positive constants A and B such that

`B(γ) > A.λ(γ)−B,

where λ(γ) is the length of the geodesic associated to γ in some auxiliary hyperbolic metric.
It follows that every Hitchin representation is displacing.

For maximal symplectic representations, we have a very similar argument. Let ρ be such
a representation and let B be the cross ratio associated to it by Proposition 4.2.4. Since the
injection i from PSp(2n,R) into PSL(2n,R) gives rise to a totally geodesic embedding of the
corresponding symmetric spaces, it suffices to show that i ◦ ρ is displacing. Let {λi}16i62n

be the eigenvalues, with multiplicities, of the element ρ(γ). We order them so that

|λ1| 6 |λ2| · · · 6 |λ2n|.

We observe that λiλ2n+1−i = 1 from which it follows that for i less than n, |λi| 6 1 6
|λ2n+1−i|. Then, we have

d(ρ(γ)) =

Ã
i=2n∑
i=1

(log |λi|)2 >
1√
n

i=2n∑
i=1

|log |λi||

>
1

n
log

∣∣∣∣∣
∏i=2n
i=n+1 λi∏i=n
i=1 λi

∣∣∣∣∣ > 1√
n

log

(
i=2n∏
i=n+1

|λi|2
)

=
1√
n
`B(γ).

The result follows from this last inequality.
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6.2. Energy of displacing representations

The main result of this section, proved in Paragraph 6.2.2, is the following.

T 6.2.1. – Let ρ be a displacing representation from π1(S) to the isometry group
of a Hadamard manifold. Then the energy functional eρ, defined from T (S) to R, is proper.

In particular, we recover as a corollary the result of W. Goldman and R. Wentworth [21]
that the energy functional is proper for convex-cocompact representations.

C 6.2.2. – Let ρ be a Hitchin or maximal representation. Then there exist a
complex structure J0 on S and a J0-conformal harmonic ρ-equivariant mapping f defined from
the universal cover of S to the corresponding symmetric space such that

Area(f) = Energy(J0, f) = MinArea(ρ).

Proof. – By Proposition 6.1.3 and the previous theorem, there exists a complex structure
J0 on S which achieves the minimum of the energy functional. By Proposition 5.2.2, there
exists a ρ-harmonic mapping f , such that

Energy(J0, f) = eρ(J0) = MinArea(ρ).

We conclude the proof by applying Theorem 5.3.2 of Sachs–Uhlenbeck and Schoen–Yau.

6.2.1. The intersection is proper. – Let g and g0 be two hyperbolic metrics on S. LetUS and
U0S be the associated unit tangent bundles, with geodesic flows {φt}t∈R and {φ0

t}t∈R gener-
ated by X and X0 respectively. Let µ and µ0 be the corresponding Liouville measures nor-
malised to be probability measures. We know that these two geodesic flows are orbit conju-
gate. In other words, there exist a homeomorphism F fromUS toUS0 and a positive contin-
uous function ψ(g,g0) on US such that F is differentiable along X and DF (ψ(g,g0)X) = X0.

D 6.2.3 (Intersection). – The intersection of g and g0 is

inter(g, g0) =

∫
US

ψ(g,g0)dµ.

The following proposition is a classical result. For the sake of completeness since we could
not find a good reference for it, we include a sketchy proof. For a less down to earth point
of view and for extra information on intersections, we refer to Francis Bonahon’s original
article ([1]) or to Curt McMullen’s notes ([35]).

P 6.2.4. – Fixing g0, the function g 7→ inter(g, g0) is a proper map from T (S)

to R.

Proof. – We denote by [γ] the free homotopy class of a closed curve γ. By definition, the
intersection of two homotopy classes of closed curves c1 and c2 in the compact surface S is

inter(c1, c2) = inf{](γ1 ∩ γ2) | [γi] = ci}.

If γ1 and γ2 are geodesics with distinct support for a negatively curved metric g, then

inter([γ1], [γ2]) = ](γ1 ∩ γ2).
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We denote by G(S) the set of closed geodesics in S. Let η be a simple closed curve. Using a
tubular neighbourhood of η, we see that there exists a constant C(η, g), depending only on
the isotopy class of η and the metric g, such that for every closed geodesic γ we have

(18) inter([η], [γ]) 6 C(η, g)λg([γ]).

Now let g be a hyperbolic metric and let

GL = {γ ∈ G(S) | λg(γ) 6 L}.

According to the equirepartition of closed geodesics due to R. Bowen in [2], for every con-
tinuous function f on US the following formula relates the integral of f with respect to the
Liouville measure for g with its average along closed geodesics∫

US

fdµg = lim
L→∞

Å
1

](GL)

∑
γ∈GL

∫
γ
fdt

λg(γ)

ã
.(19)

Hence, if g0 is another hyperbolic metric

inter(g, g0) = lim
L→∞

Å
1

](GL)

∑
γ∈GL

λg0(γ)

λg(γ)

ã
.

Furthermore, if η is a simple closed geodesic, then we also have

(20) λg(η) = lim
L→∞

Å
1

](GL)

∑
γ∈GL

inter(η, γ)

λg(γ)

ã
.

Combining Equation (20) and Inequality (18), we obtain that for every simple closed
geodesic η,

λg(η) 6 C(η, g0)inter(g, g0).

But we can find a finite set of simple closed curves A such that the function

λA : g →
∑
η∈A

inf
c∈[η]

λg(c)

is proper on Teichmüller space. The statement thus follows from the following inequality

λJ(g) 6 inter(g, g0)
∑
η∈A

C(η, g0).

6.2.2. The energy functional is proper. – We now prove Theorem 6.2.1 by adapting a beauti-
ful argument of C. Croke and A. Fathi ([12]). We use the notation of the previous paragraph.
Let ρ be a displacing representation. Let J be a complex structure on S and let g be the as-
sociated hyperbolic metric whose area form is dσ and Liouville measure – normalised to be
a probability measure – is dµ. Let g0 be a fixed hyperbolic metric. We now prove that there
exists a constant K dependent on g0 but independent of J such that

eρ(J) > K(inter(g, g0))2.

Let f be an element of Fρ. We consider the function from US to R

h : u→ ‖Tf(u)‖.

From the definition of the energy, we have

Energy(J, f) =
1

2

∫
S

trace(Tf∗Tf)dσ = 2π|χ(S)|
∫
US

h2dµ.
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By the Cauchy-Schwarz inequality

Energy(J, f) > 2π|χ(S)|
Å∫

US

h dµ

ã2

.

Let γ be a closed orbit of the geodesic flow of g and let λg(γ) be the length of γ with respect
to g. We denote also by γ the corresponding conjugacy class in the fundamental group. Let
c be the curve from the interval [0, λg(γ)] to M defined by

c : t→ f(γ̃(t)),

where γ̃ is a lift of γ in S̃. Then∫
γ

h dt = length(c)

> d(c(0), ρ(γ)(c(0))

> Aλg0(γ)−B = A

∫
γ

ψ(g,g0)dt−B.

From Equation (19), it follows that for every f 
Energy(J, f)

2π|χ(S)|
>

∫
US

h dµ lim
L→∞

Å
1

](GL)

∑
γ∈GL

∫
γ
hdt

λg(γ)

ã
> A lim

L→∞

Å
1

](GL)

∑
γ∈GL

∫
γ
ψ(g,g0)dt

λg(γ)

ã
−B lim

n→∞

Å
1

](GL)

∑
γ∈GL

1

λg(γ)

ã
> A

∫
US

ψ(g,g0)dµ = A inter(g, g0).

Hence

eρ(J) > 2π|χ(S)|A2(inter(g, g0))2.

Finally, by Proposition 6.2.4, the function g 7→ inter(g, g0) is proper. Hence, the energy
functional eρ is proper.

6.3. Mapping class group and displacing representations

6.3.1. Point set topology. – We recall some elementary point set topology. LetX be a topo-
logical space. We define an equivalence relation on X as follows: we say that x ∼ y, if for
any continuous function f from X to a Hausdorff topological space, we have f(x) = f(y).
We denote by X] the quotient X/ ∼. Observe that

P 6.3.1. – The space X] is Hausdorff. Moreover, we have a morphism from
the group of homeomorphisms ofX to the group of homeomorphisms ofX]. Finally, every con-
tinuous map from X to a Hausdorff space factors through X].

Proof. – Let us denote by [x] the equivalence class of a point x inX. For any continuous
function f fromX to a Hausdorff space, the preimage of any point is a union of equivalence
classes. This implies the last statement of the assertion. Moreover, by definition, if [x] 6= [y],
there exists a continuous function f with values in a Hausdorff space so that f(x) 6= f(y).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



462 F. LABOURIE

Then the preimage of disjoint neighbourhoods of f(x) and f(y) are disjoint neighbourhoods
of [x] and [y].

Let G be a topological group acting continuously on a topological space M .

D 6.3.2. – The action of G on M is proper if the map from G×M to M ×M
defined by (g,m)→ (gm,m) is proper, or equivalently if, for any compact K in M , the set

GK = {g ∈ G | gK ∩K 6= ∅}

is a compact of G.

This definition immediately implies the following result.

P 6.3.3. – Assume that the topological groupG acts continuously on the topo-
logical spaces M and N . Assume that the action on N is proper. Assume that there exists a
continuous G-equivariant map from M to N . Then the action of G on M is proper.

This notion of a proper action is mainly interesting under hypotheses onM whenever one
is interested in the quotient space: for instance the quotient of a locally compact Hausdorff

space by a proper action is Hausdorff. Moreover in the sequel, we shall only consider the
case of continuous actions on Hausdorff spaces.

6.3.2. Proper actions of the mapping class group. – Let Homdisp(π1(S), Iso(M)) be the space
of displacing homomorphisms from π1(S) to Iso(M). Let us define

Rep]disp(π1(S), Iso(M)) = [Homdisp(π1(S), Iso(M))/ Iso(M)]].

Observe thatM(S) acts continuously on Rep](π1(S), Iso(M)).

P 6.3.4. – The mapping class group M(S) acts properly on the space
Rep]disp(π1(S), Iso(M)).

Proof. – Let Rπ1(S) be the space of maps from π1(S) to R. We equip Rπ1(S) with the
product topology. We fix a hyperbolic metric on S and for every γ in π1(S) we denote by
λ(γ) the length of the closed geodesic associated to γ. Let

Rπ1(S)
hyp = {` ∈ Rπ1(S) | ∃A,B > 0, ∀γ ∈ π1(S), `(γ) > Aλ(γ)−B}.

For every divergent sequence {gn}n∈N of elements ofM(S), there exists an element γ in
π1(S) such that after extracting a subsequence

lim
n→∞

λ(gn(γ)) =∞.

It follows thatM(S) acts properly on Rπ1(S)
hyp . Let

S :

{
Homdisp(π1(S), Iso(M)) → Rπ1(S),

ρ 7→ {d(ρ(γ))}γ∈π1(S).

Observe that S is a continuous map, invariant under conjugation and equivariant with
respect to the action of the mapping class group. Therefore S yields the existence of a
continuous M(S)-equivariant map from Rep]disp(π1(S), Iso(M)) to Rπ1(S)

hyp . Thus, by

Proposition 6.3.3, the properness of the action ofM(S) on Rπ1(S)
hyp implies the properness

of the action ofM(S) on Rep]disp(π1(S), Iso(M)).
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R. – The Hausdorff space Rep]disp(π1(S), Iso(M)) is locally compact when M is a
symmetric space: indeed Hom(π1(S), Iso(M)) is locally compact. We do not know however
under which conditions on M such a result holds.

Our main goal is the following result.

C 6.3.5. – The mapping class group M(S) acts properly on the spaces
RepH(π1(S),PSL(n,R)) and RepT (π1(S),PSp(2n,R)). Moreover the quotient spaces
are Hausdorff.

Proof. – We write the proof only in the case of PSL(n,R), the other case being similar.
Let M be the symmetric space of PSL(n,R) and observe that PSL(n,R) is a subgroup of
Iso(M). Let

Rep]H(π1(S),PSL(n,R)) = [HomH((π1(S),PSL(n,R))/PSL(n,R)]].

From Theorem 6.1.3, it follows that HomH(π1(S),PSL(n,R)) consists only of dis-
placing homomorphisms. Since the induced map from Rep]H(π1(S),PSL(n,R)) to
Rep]disp(π1(S), Iso(M)) is anM(S)-equivariant continuous map, it follows from the previ-

ous proposition that the action ofM(S) on Rep]H(π1(S),PSL(n,R)) is proper.
We already know that RepH(π1(S),PSL(n,R)) is Hausdorff, this implies by the construc-

tion before Proposition 6.3.1 that

RepH(π1(S),PSL(n,R)) = Rep]H(π1(S),PSL(n,R)).

Hence the first part of the statement follows. The last part follows from the local compactness
of the spaces under consideration.

7. The Toledo invariant and the minimal area

We now restrict ourselves to the case of maximal symplectic representations.

T 7.0.6. – Let ρ be a representation of π1(S) in PSp(2n,R). Then
n

2π
MinArea(ρ) > |τ(ρ)|.

Moreover, if ρ is maximal and the inequality above is an equality, then ρ is diagonal. In this
situation, there exists a unique minimal equivariant immersion, realised by a totally geodesic
embedding, of S̃ in the symmetric space of PSp(2n,R).

We begin with a lemma which uses the identification of tangent vectors to elements of the
Lie algebra of Killing vector fields as in the beginning of Paragraph 4.2.1.

L 7.0.7. – LetM be an irreducible Hermitian symmetric space of noncompact type.
Let ω be its symplectic form. Let (u, v) be an orthonormal pair of tangent vectors at a point m
of M . Let κ be the sectional curvature of the plane generated by (u, v), then

|ω(u, v)| 6
√
−κ.(21)

Moreover the equality occurs exactly whenever the Lie bracket [u, v] generates the centre of the
Lie algebra of the stabiliser of m in the isometry group of M .
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Proof. – In the notation of Paragraph 4.2.1, the symplectic structure is given by

ω(u, v) = 〈[u, v], ∂θ〉 6
»
−〈[u, v], [u, v]〉.

The curvature tensor satisfies R(u, v)w = [[u, v], w]. The result then follows by»
−〈[u, v], [u, v]〉 6

√
−κ.

We can now prove Theorem 7.0.6.

Proof. – The first point is immediate. Let ω be the Kähler form on the associated sym-
metric spaceX. Let (u, v) be an orthonormal system in TxX. Then, ω(u, v) 6 1 with equal-
ity if and only if the plane generated by (u, v) is complex. It follows that, for every ρ-equiv-
ariant mapping f , we have

n

2π
Area(f) >

n

2π

∫
S

f∗(ω) = τ(ρ).(22)

Moreover, if the equality in (22) holds for an immersion f , then there exists an invariant com-
plex structure on S̃ for which f is a holomorphic map.

Assume now that ρ is maximal. According to Theorem 6.2.2, there exist a complex struc-
ture J on S and a J-conformal harmonic mapping f such that

Area(f) = MinArea(ρ).

Let f be such a conformal harmonic mapping. We know by Proposition 2.4 and Ex-
ample (3) of the article by Gulliver, Osserman and Royden [24] that f is a branched min-
imal immersion. Let x1, . . . , xn be the branch points of order k1, . . . , kn respectively. Let
Ŝ = S \ {x1, . . . , xn}. Denote by κ the curvature of the metric f∗gX on Ŝ. Note that

1

2π

∫
Ŝ

κdµ−
∑
i

(ki − 1) = χ(S).

Let κf be the sectional curvature of the 2-plane Tf(T Ŝ) and letB be the second fundamental
form of f . By the Gauss equation

κ = κf − ‖B‖ 6 κf .

Finally, assume that τ(ρ) = n
2πMinArea(ρ). Let µ be the measure of area of the metric f∗gX .

We have by Inequality (21)

2π|τ(ρ)| = n

∣∣∣∣∫
Ŝ

f∗ω

∣∣∣∣ 6 n

∫
Ŝ

√
−κfdµ

6 n

 
Area(f)

∫
Ŝ

−κfdµ

6
»

2nπτ(ρ)

 ∫
Ŝ

−κfdµ.
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It follows that

1

n
|τ(ρ)| 6 − 1

2π

∫
Ŝ

κfdµ

6 − 1

2π

∫
Ŝ

κdµ− 1

2π

∫
Ŝ

‖B‖dµ

6 −χ(S)−
∑
i

(ki − 1)− 1

2π

∫
Ŝ

‖B‖dµ

6
1

n
|τ(ρ)| −

∑
i

(ki − 1)− 1

2π

∫
Ŝ

‖B‖dµ.

As a first consequence, we see that ki = 1 for all i. In other words, f is an immersion. More-
overB vanishes everywhere. This means that f is totally geodesic. It follows from the equal-
ity case in Lemma 7.0.7 that f is associated to an embedding of PSL(2,R) in PSp(2n) whose
Lie algebra contains the centre of the Lie algebra of the maximal compact subgroup. Hence
ρ is diagonal.

C 7.0.8. – Let ρ be a maximal representation. Assume that there exists a holo-
morphic equivariant map f from S to the associated symmetric space of PSp(2n,R). Then ρ
is diagonal and f is totally geodesic.

Proof. – If f is holomorphic then f is minimal and Area(f) =
∫
S
f∗ω. By Inequality

(22), it follows that MinArea(ρ) = τ(ρ). Hence by the previous theorem, ρ is diagonal and
f is totally geodesic.

8. The Hitchin map

8.1. Representations and holomorphic differentials

We first recall that representations from π1(S) to a semi-simple connected real Lie group
G, without compact factor and with trivial centre, give rise to holomorphic differentials by a
construction quite similar to the basic construction in Chern-Weil theory. The construction
that we now describe associates to every reductive representation from π1(S) to G, to every
complex structure J on S and to every Ad(G)-invariant polynomial q of degree n on the Lie
algebra of G, a holomorphic n-ic differential on (S, J).

By Corlette’s Theorem ([11] and [27] for an alternative simpler proof), there exists a
ρ-equivariant harmonic mapping f from S to the symmetric space M associated to G.
Moreover this mapping is unique up to an isometry of M . We define

Homred(π1(S), G)

to be the space of reductive homomorphisms from π1(S) to G and

Repred(π1(S), G) = Homred(π1(S), G)/G.
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8.1.1. Harmonic maps on surfaces. – We begin with a standard observation on harmonic
maps on surfaces. Let S be a Riemann surface whose complex structure is denoted by J .
Let f be a smooth map from S to a smooth manifold M . Let

Ω1(S, f∗TM)

be the space of one-forms on S with values in the pullback vector bundle f∗TM and let

Ω1
C(S, f∗TM ⊗R C)

be the space of complex linear one-forms on S with values in the complexified vector bundle
f∗TMC = f∗TM ⊗R C. For every one-form ω on S with values in f∗TM , we denote by ωC
its complexification. This complexification is defined for every tangent vector u in S by

ωC(u) = ω(u)− iω(Ju).

The map ω → ωC is a linear map from Ω1(S, f∗TM) to Ω1
C(S, f∗TMC).

D 8.1.1 (Holomorphic one-form). – An element β of Ω1
C(S, f∗TMC) is holo-

morphic if

∇Juβ = i∇uβ.

We consider the tangent map Tf of f as a one-form on S with values in the pullback bun-
dle by f of TM . Then, we have the following classical observation.

P 8.1.2. – The map f is harmonic if and only if TfC is holomorphic.

Proof. – Indeed, f is harmonic if and only if for every X

∇XTf(X) +∇JXTf(JX) = 0.

Since∇XTf(Y ) is symmetric in X and Y , the condition above is equivalent to

∇XTf(Y ) +∇JXTf(JY ) = 0,

for all X and Y in TS. This turns out to be equivalent to

∇JXTf(Y )−∇XTf(JY ) = 0,

for all X and Y in TS. On the other hand, by definition

(∇JXTfC − i∇XTfC)(Y ) = (∇JXTf(Y )−∇XTf(JY ))− i(∇XTf(Y ) +∇JXTf(JY )).

The statement follows from these remarks.
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8.1.2. Holomorphic differentials. – Let M be a Riemannian manifold. Let p be a parallel
section of (T ∗M)⊗k. We denote by pC the parallel section of (T ∗MC)⊗k characterised by

pC
∣∣
(TM)⊗k

= p.

Let f be a map from a Riemann surface S to M . Then we have the following easy observa-
tion.

P 8.1.3. – Let β be an element in Ω1
C(S, f∗TMC). Suppose that β is holomor-

phic. Then pC(β, β, . . . , β) is a holomorphic differential of degree k.

As a specific example of this construction, we can take p = g, the Riemannian metric on
M . If f is harmonic by Propositions 8.1.1 and 8.1.3

H(f) := gC(TfC, T fC)

is a quadratic differential, which is called the Hopf differential of f . Observe that we have the
following result.

P 8.1.4. – Let f be a harmonic map from a surface S to M . Then the Hopf
differential of f vanishes if and only if f is minimal.

Proof. – Indeed, the quadratic differential gC(TfC, T fC) vanishes if and only if f is con-
formal and hence minimal.

8.1.3. Commutative Chern-Weil Theory. – When M is the symmetric space associated to
G = Iso(M), then every Ad(G)-invariant symmetric k-multilinear form P on the Lie al-
gebra of G gives rise naturally to a parallel k-tensor field function P̌ on M . Indeed such a
P gives naturally rise to a G-invariant tensor field P̌ on M . But on a symmetric space, any
tensor field invariant under isometries is parallel.

Let J be a complex structure onS andP be a symmetric Ad(G)-invariant multilinear form
P of degree k on G. Let Q(k, J) be the space of holomorphic k-differentials on S equipped
with the complex structure J . Combining the above constructions, we define a map FP,J
from Repred(π1(S), G) to Q(k, J) by

ρ 7→ FP,J(ρ) := P̌C(TfC, . . . , TfC),

where f is a ρ-equivariant harmonic mapping from S toM given by Corlette’s Theorem. The
uniqueness part of Corlette’s result shows that FP,J is well defined.

When G = PSL(n,R), let σk be the symmetric polynomial of degree k seen as a homo-
geneous function of degree k on the Lie algebra g of G. There exists a unique k-multilinear
symmetric Ad(G)-invariant form pk on g so that

pk(A, . . . , A) = σk(A).

Notice that up to a multiplicative constant Fp2 is the metric on M . We define the map

ξJ =
k⊕
k=2

Fpk,J .

We can now state Hitchin’s Theorem [26].
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T 8.1.5 (Hitchin). – The map ξJ is a homeomorphism from the space of Hitchin
representations RepH(π1(S),PSL(n,R)) to Q(2, J)⊕ · · · ⊕ Q(n, J).

As in the introduction, we define the Hitchin map

H

{
E(n) → RepH(π1(S),PSL(n,R)),

(J, ω) 7→ ξ−1
J (ω).

This map is equivariant with respect to the mapping class group action. The following result
is now immediate.

T 8.1.6. – The Hitchin map is surjective.

Proof. – Let ρ be a Hitchin representation. By Corollary 6.2.2, there exist a complex
structure J on S and a ρ equivariant conformal harmonic mapping f with respect to J . It
follows by Proposition 8.1.4 that the quadratic differential Fp2,J vanishes. This shows that
the Hitchin map is surjective.

8.1.4. The normal bundle to the space of Fuchsian representations. – We conclude with a par-
tial result. The energy functional associated to a faithful cocompact representation ρ with
values in PSL(2,R) is the same – up to a multiplicative constant only depending on n – as
the energy functional eρ̌ associated to the Fuchsian representation ρ̌ = ι ◦ ρ with values in
PSL(n,R). Hence the energy functional eρ̌ has a unique strict minimum. Therefore the same
holds for representations which are closed to being Fuchsian. It follows that the Hitchin map
is a diffeomorphism from a small neighbourhood of the zero section onto its image. This im-
plies that the normal bundle of the space of Fuchsian representations in the Hitchin compo-
nent can be identified – equivariantly with respect to the action of the mapping class group –
with E(n).

9. Comments and extensions

We conclude this article with two comments:

1. The theory of Hitchin representations extends to all real split groups. Similarly, the the-
ory of maximal representations extends to all isometry groups of Hermitian symmetric
spaces. It is quite natural to conjecture that the constructions of this article extend to
these more general cases. The fact that these representations are (at least conjecturally)
Anosov representations is certainly meaningful from this point of view. However, one
cannot expect all the results here to extend to all Anosov representations since one can
construct Anosov representations which are not reductive. It also remains a puzzle to
understand the algebraic conditions under which Anosov representations are associ-
ated to cross ratios; this is a crucial argument in our paper.

2. For maximal symplectic representations in other components than Hitchin’s, the map
from the space of equivariant minimal surfaces to the space of representation is surjec-
tive for the same reason that apply to the Hitchin component. However, in that case,
the structure of a generic fibre is mysterious.
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