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POINCARÉ DUALITY AND COMMUTATIVE
DIFFERENTIAL GRADED ALGEBRAS

 P LAMBRECHTS*  D STANLEY

A. – We prove that every commutative differential graded algebra whose cohomology is
a simply-connected Poincaré duality algebra is quasi-isomorphic to one whose underlying algebra is
simply-connected and satisfies Poincaré duality in the same dimension. This has applications in ratio-
nal homotopy, giving Poincaré duality at the cochain level, which is of interest in particular in the study
of configuration spaces and in string topology.

R. – Nous démontrons que toute algèbre différentielle graduée commutative (ADGC) dont
la cohomologie est une algèbre simplement connexe à dualité de Poincaré est quasi-isomorphe à une
ADGC dont l’algèbre sous-jacente est à dualité de Poincaré dans la même dimension. Ce résultat a
des applications en théorie de l’homotopie rationnelle, permettant d’obtenir la dualité de Poincaré au
niveau des cochaînes, entre autres dans l’étude des espaces de configurations et en topologie des cordes.

1. Introduction

The first motivation for the main result of this paper comes from rational homotopy
theory. Recall that Sullivan [16] has constructed a contravariant functor

APL : Top→ CDGAQ

from the category of topological space to the category of commutative differential graded
algebras over the field Q (see Section 2 for the definition). The main feature of APL is that
when X is a simply-connected space with rational homology of finite type, then the ratio-
nal homotopy type of X is completely encoded in any CDGA (A, d) weakly equivalent to
APL(X). By weakly equivalent we mean that (A, d) and APL(X) are connected by a zig-zag
of CDGA morphisms inducing isomorphisms in homology, or quasi-isomorphisms for short,

(A, d)
'← . . .

'→ APL(X).
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498 P. LAMBRECHTS AND D. STANLEY

We then say that (A, d) is a CDGA-model of X (see [4] for a complete exposition of this
theory). We are particularly interested in the case whenX is a simply-connected closed man-
ifold of dimension n, since then H∗(A, d) is a simply-connected Poincaré duality algebra of
dimension n (a graded algebra A is said to be simply-connected if A0 is isomorphic to the
ground field and A1 = 0; see also Definition 2.1).

Our main result is the following:

T 1.1. – Let k be a field of any characteristic and let (A, d) be a CDGA over k such
that H∗(A, d) is a simply-connected Poincaré duality algebra in dimension n. Then there exists
a CDGA (A′, d′) weakly equivalent to (A, d) and such that A′ is a simply-connected algebra
satisfying Poincaré duality in dimension n.

Our theorem was conjectured by Steve Halperin over 20 years ago. TheA′ of the theorem
is called a differential Poincaré duality algebra or Poincaré duality CDGA (Definition 2.2). In
particular any simply-connected closed manifold admits a Poincaré duality CDGA-model.

Notice that the theorem is even valid for a field of non-zero characteristic. Also our
proof is very constructive: Starting from a finite-dimensional CDGA (A, d), it shows how
to compute explicitly a weakly equivalent differential Poincaré duality algebra (A′, d′). We
will also prove in the last section that under some extra connectivity hypotheses, any two
such weakly equivalent differential Poincaré duality algebra can be connected by a zig-zag
of quasi-isomorphisms between differential Poincaré duality algebras.

Aubry, Lemaire, and Halperin [1] and Lambrechts [9, p.158] prove the main result of
this paper in some special cases. Also in [15] Stasheff proves some chain level results about
Poincaré duality using Quillen models. An error in Stasheff ’s paper was corrected in [1].

Before giving the idea of the proof of Theorem 1.1, we describe a few applications of this
result.

1.1. Applications

There should be many applications of this result to constructions in rational homotopy
theory involving Poincaré duality spaces. We consider here two: The first is to the study of
configuration spaces over a closed manifold, and the second to string topology.

Our first application is to the determination of the rational homotopy type of the config-
uration space

F (M,k) := {(x1, . . . , xk) ∈Mk : xi 6= xj for i 6= j}
of k points in a closed manifold M of dimension n. When k = 2 and M is 2-connected,
we showed in [10, Theorem 1.2] that if A is a Poincaré duality CDGA-model of M then a
CDGA-model of F (M, 2) is given by

(1.1) A⊗A/(∆)

where (∆) is the differential ideal in A ⊗ A generated by the so-called diagonal class ∆ ∈
(A⊗A)n.

For k ≥ 2 we have constructed in [11] an explicit CDGA

F (A, k)
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POINCARÉ DUALITY AND CDGA’S 499

generalizing (1.1) and which is an A⊗k-DG-module model of F (M,k). Poincaré duality of
the CDGA A is an essential ingredient in the construction of F (A, k). If M is a smooth
complex projective variety then we can use H∗(M) as a model for M , and in this case
F (H∗(M), k) is exactly the model of Kriz and Fulton-Mac Pherson [8][7] for F (M,k).
However we do not know in general if F (A, k) is also a CDGA-model although it seems to
be the natural candidate.

A second application is to string topology, a new field created by Chas and Sullivan [3].
They constructed a product, a bracket and a ∆ operator on the homology of the free loop
space LM = MS1

of a closed simply-connected manifold M , that turned it into Gersten-
haber algebra and even a BV algebra. On the Hochschild cohomology HH∗(A,A) of a (dif-
ferential graded) algebra A, there are the classical cup product and Gerstenhaber bracket,
and Tradler [17] showed that for A = C∗(M) there is also a ∆ operator on Hochschild ho-
mology making it into a BV algebra. Menichi [12] later reproved this result and showed that
the ∆ can be taken to be the dual of the Connes boundary operator. Recently Felix and
Thomas [5] have shown that over the rationals the Chas-Sullivan BV structure on the ho-
mology ofLM is isomorphic to the BV structure on HH∗(C∗(M), C∗(M)). Their proof uses
the main result of this paper. Yang [18] also uses our results to give explicit formulas for the
BV-algebra structure on Hochschild cohomology.

1.2. Idea of proof

The proof is completely constructive. We start with a CDGA (A, d) and an orientation
ε : An → k (Definition 2.3). We consider the pairing at the chain level

φ : Ak ⊗An−k → k, a⊗ b 7→ ε(ab).

We may assume thatφ induces a non degenerate bilinear form on cohomology making H∗(A)

into a Poincaré duality algebra. The problem is that φ itself may be degenerate; there may
be some orphan elements (see Definition 3.1) a with ε(ab) = 0 for all b. Quotienting out by
the orphans O we get a differential Poincaré duality algebra A/O, and a map f : A→ A/O
(Proposition 3.3). With this observation the heart of the proof begins.

Now the problem is that f might not be a quasi-isomorphism - this happens whenever
H∗(O) 6= 0. The solution is to add generators toA to get a quasi-isomorphic algebra Â with
better properties. An important observation is that H∗(O) satisfies a kind of Poincaré dual-
ity so it is enough to eliminate H∗(O) starting from about half of the dimension and working
up from there. In some sense we perform something akin to surgery by eliminating the co-
homology of the orphans in high dimensions and having the lower dimensional cohomology
naturally disappear at the same time. In the middle dimension, the extra generators have the
effect of turning orphans which represent homology classes into non orphans. In higher di-
mensions some of the new generators become orphans whose boundaries kill elements of
H∗(O). In both cases the construction introduces no new orphan homology between the
middle dimension and the dimension where the elements of H∗(O) are killed. This together
with the duality in H∗(O) is enough to get an inductive proof of Theorem 1.1.
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500 P. LAMBRECHTS AND D. STANLEY

2. Some terminology

Just for the record we introduce the terms CDGA, Poincaré duality algebra and differen-
tial Poincaré duality algebra.

We fix once and for all a ground field k of any characteristic. So tensor product, algebras,
etc., will always be over that field. A commutative differential graded algebra, or CDGA,
(A, d) is a non-negatively graded commutative algebra, together with a differential d of de-
gree +1. If an element a ∈ A is in degree n, we write |a| = n. The set of elements of degree n
inA is denoted byAn. SinceA is graded commutative we have the formula ab = (−1)|a||b|ba

and a2 = 0 when |a| is odd, including when k is of characteristic 2. Also d satisfies the graded
Leibnitz formula d(ab) = (da)b+ (−1)|a|adb. CDGA over the rationals are of particular in-
terest since they are models of rational homotopy theory. For more details see [4].

C. – All of the CDGA we consider in this paper will be connected, in other
words A0 = k, and of finite type.

Note that every simply connected CW-complex of finite type admits such a CDGA model
of its rational homotopy type.

Poincaré duality is defined as follows:

D 2.1. – An oriented Poincaré duality algebra of dimension n is a pair (A, ε)

such that A is a connected graded commutative algebra and ε : An → k is a linear map such
that the induced bilinear forms

Ak ⊗An−k → k, a⊗ b 7→ ε(ab)

are non-degenerate.

The following definition comes from [10]:

D 2.2. – An oriented differential Poincaré duality algebra or oriented Poincaré
CDGA is a triple (A, d, ε) such that

(i) (A, d) is a CDGA,
(ii) (A, ε) is an oriented Poincaré duality algebra,

(iii) ε(dA) = 0.

An oriented differential Poincaré duality algebra is essentially a CDGA whose underlying
algebra satisfies Poincaré duality. The condition ε(dA) = 0 is equivalent to H∗(A, d) being
a Poincaré duality algebra in the same dimension [10, Proposition 4.8].

For convenience we make the following:

D 2.3. – An orientation of a CGDA (A, d) is a linear map

ε : An → k

such that ε(dAn−1) = 0 and there exists a cocycle µ ∈ An ∩ ker d with ε(µ) = 1.
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POINCARÉ DUALITY AND CDGA’S 501

Recall that s−nk is the chain complex which is non-trivial only in degree n where it is k.
Notice that the above definition is equivalent to the fact that ε : (A, d) → s−nk is a chain
map that induces an epimorphism Hn(ε) : Hn(A, d) → k. We will use this alternative defi-
nition of orientation interchangeably with the first without further comment. The definition
of differential Poincaré duality algebra can be thought of as a combination of Definitions 2.3
and 2.1.

If V is a vector space and v1, . . . , vl are elements of V , we let 〈v1, . . . , vl〉 or 〈{vi}〉 denote
the linear subspace spanned by these elements.

3. The set of orphans

In this section we consider a fixed CDGA (A, d) such that H∗(A, d) is a connected
Poincaré duality algebra in dimension n.

The proof of our main theorem will be based on the study of orphans, which is the main
topic of this section.

D 3.1. – If ε is an orientation on (A, d) then the set of orphans of (A, d, ε) is
the set

O := O(A, d, ε) := {a ∈ A|∀b ∈ A, ε(a · b) = 0}.

P 3.2. – The set of orphans O is a differential ideal in (A, d).

Proof. – O is clearly a vector space since O = ∩b∈A ker (ε(b · −)).

If a ∈ O and ξ ∈ A then for any b ∈ A we have ε((aξ)b) = ε(a(ξb)) = 0. Therefore O is
an ideal.

If a ∈ O then for any b ∈ A we have, using the fact that ε(dA) = 0,

ε((da)b) = ±ε(d(ab))± ε(a(db)) = 0.

Therefore dO ⊂ O.

ClearlyO ⊂ ker ε since ε(O·1) = 0. Thus the orientation ε : A→ s−nk extends to a chain
map ε̄ : Ā := A/O → s−nk that also induces an epimorphism in Hn, and so ε̄ : Ā → s−nk

is itself an orientation.

P 3.3. – Let (A, d) be a CDGA such that H∗(A, d) is a Poincaré duality alge-
bra in dimension n and let ε : An → k be an orientation. Assume that A is connected and of
finite type. LetO be the set of orphans of (A, d, ε), let (Ā, d̄) := (A, d)/O, and let ε̄ : Ā→ s−nk

be the induced orientation.

Then (Ā, d̄, ε̄) is an oriented differential Poincaré duality algebra and H(Ā, d̄) is a Poincaré
duality algebra in degree n.
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502 P. LAMBRECHTS AND D. STANLEY

Proof. – We know that ε̄(dĀ) = 0 since ε̄ is a chain map. As in [10, Definition 4.1] con-
sider the bilinear form

〈−,−〉 : Ā⊗ Ā→ k , ā⊗ b̄ 7→ ε̄(ā.b̄)

and the induced map
θ : Ā→ hom(Ā,k) , ā 7→ 〈ā,−〉.

Let ā = a mod O ∈ Ā \ {0}. Then a ∈ A \ O and there exists b ∈ A such that ε(a.b) 6= 0.
Set b̄ = b mod O ∈ Ā. Then θ(ā) 6= 0 because θ(ā)(b̄) 6= 0. Thus θ is injective and since Ā
and hom(Ā,k) have the same dimension this implies that θ is an isomorphism and (Ā, d̄, ε̄)

is a differential Poincaré duality algebra in the sense of 2.2. By [10, Proposition 4.7] H∗(Ā, d̄)

is a Poincaré duality algebra in dimension n.

L 3.4. – O ∩ ker d ⊂ d(A).

Proof. – Let α ∈ ker d of degree k. If α 6∈ im d then [α] 6= 0 in H∗(A, d) and by Poincaré
duality there exists β ∈ A∩ker d of degree n−k such that [α].[β] 6= 0. Therefore ε(α.β) 6= 0

and α 6∈ O.

Consider the following short exact sequence

(3.1) 0 // O �
�

// A
π // Ā = A/O // 0.

Notice that, in spite of Lemma 3.4, the differential ideal O is in general not acyclic. When
it is then the map π is a quasi-isomorphism and Proposition 3.3 shows that Ā is the desired
differential Poincaré duality model of A. The idea of the proof of our main theorem will be
to modify A in order to turn the ideal of orphans into an acyclic ideal. Actually a Poincaré
duality argument shows that it is enough to get the acyclicity ofO in a range of degrees above
half the dimension. In order to make this statement precise we introduce the following defi-
nition:

D 3.5. – The set of orphans O is said to be k-half-acyclic if Oi ∩ ker d ⊂
d(Oi−1) for n/2 + 1 ≤ i ≤ k.

In other words O is k-half-acyclic iff Hi(O, d) = 0 for n/2 + 1 ≤ i ≤ k. Clearly this
condition is empty for k ≤ n/2. Therefore an orphan set is always (n/2)-half-acyclic.

P 3.6. – IfO is (n+ 1)-half-acyclic and A is connected and of finite type then
π : A→ Ā := A/O is a quasi-isomorphism.

Proof. – By hypothesis H∗(A) is a Poincaré duality algebra in dimension n and by Propo-
sition 3.3 the same is true for H∗(Ā). Moreover since A0 = k, these cohomologies are con-
nected and π∗ = H∗(π) sends the fundamental class of Hn(A) to the fundamental class of
Hn(Ā). All of this implies that π∗ is injective.

Thus the short exact sequence (3.1) gives us short exact sequences

0 // Hi(A)
π∗ // Hi(Ā) // (cokerπ∗)i ∼= Hi+1(O) // 0.

By (n + 1)-half-acyclicity, Hi(O) = 0 for n/2 + 1 ≤ i ≤ n + 1. Also (cokerπ∗)>n = 0.
Thus (cokerπ∗)≥n/2 = 0. By Poincaré duality of H∗(A) and H∗(Ā) we deduce that
(cokerπ∗)≤n/2 = 0. Therefore cokerπ∗ = 0 and π is a quasi-isomorphism.
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POINCARÉ DUALITY AND CDGA’S 503

4. A certain extension of a given oriented CDGA

The aim of this section is, given an integer k ≥ n/2 + 1 and an oriented CDGA (A, d, ε),
to construct a certain quasi-isomorphic oriented CDGA (Â, d̂, ε̂). In the next section we will
prove that if the setO of orphans of A is (k− 1)-half-acyclic then the set Ô of orphans of Â
is k-half-acyclic.

In this section we will always suppose that (A, d) is a CDGA equipped with a chain map
ε : (A, d)→ s−nk satisfying the following hypotheses:

(4.1)


(i) A is of finite type

(ii) A0 ∼= k, A1 = 0, A2 ⊂ ker d

(iii) H∗(A, d) is a Poincaré duality algebra in dimension n ≥ 7

(iv) ε : (A, d)→ s−nk is an orientation.

We also suppose given a fixed integer k ≥ n/2 + 1.
Next we start the construction of the oriented CDGA (Â, d̂, ε̂). Set l := dim(Ok∩ker d)−

dim(d(Ok−1)). Choose l linearly independent elements α1, . . . , αl ∈ Ok ∩ ker d such that

(4.2) Ok ∩ ker d = d(Ok−1)⊕ 〈α1, . . . , αl〉.

In a certain sense the αi’s are the obstruction to Hk(O) being trivial. By Lemma 3.4 there
exist γ′1, . . . , γ

′
l ∈ Ak−1 such that dγ′i = αi.

Choose a family h1, . . . , hm ∈ A ∩ ker d such that {[hi]} is a homogeneous basis of
H∗(A, d). Using the Poincaré duality of H∗(A, d) there exists another family {h∗i } ⊂ A∩ker d

such that ε(h∗j .hi) = δij , where δij is the Kronecker symbol. We set

γi := γ′i −
∑

j

ε(γ′i.hj).h∗j

and

(4.3) Γ := 〈γ1, . . . , γl〉 ⊂ Ak−1.

The two main properties of this family are the following:

L 4.1. – d(γi) = αi and ε(Γ · ker d) = 0.

Proof. – The first equation is obvious since dγ′i = αi and h∗j are cocycles.
A direct computation shows that ε(γi · hj) = 0. On the other hand using the facts that

ε(im d) = 0 and αi ∈ O we have that for ξ ∈ A,

ε(γi · dξ) = ±ε(d(γi · ξ))± ε(αi · ξ) = 0.

Since ker d = 〈h1, . . . , hm〉 ⊕ im d, the lemma has been proven.

Next using the above data we construct a relative Sullivan algebra (Â, d̂) that is quasi-
isomorphic to (A, d) and with some new generators ci that bound the αi. To define (Â, d̂)

properly we distinguish two cases:
C 1: when char(k) = 0 or k is odd,

(4.4) (Â, d̂) := (A⊗ ∧(c1, . . . , cl, w1, . . . , wl); d̂(ci) = αi, d̂(wi) = ci − γi)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



504 P. LAMBRECHTS AND D. STANLEY

C 2: when char(k) is a prime p and k is even,

(Â, d̂) := (A⊗ ∧({ci, wi, ui,j , vi,j}1≤i≤l,j≥1)

with differential given by:

d̂(ci) = αi, d̂(wi) = ci − γi, d̂(ui,1) = wp
i , d̂ui,j = vp

i,j−1,

d̂vi,1 = (ci − γi)w
p−1
i , d̂vi,j = vp−1

i,j−1d̂vi,j−1.

Notice that deg(ci) = k − 1, deg(wi) = k − 2, deg(ui,1) = p(k − 2) − 1 and deg(vi,1) =

p(k−2). All the other generators ui,j and vi,j have degree larger than n. It will turn out that
only ci, wi, ui,1 and vi,1 will be relevant and the last two only when k is small and p = 2.

L 4.2. – The injection j : (A, d)→ (Â, d̂) is a quasi-isomorphism.

Proof. – The lemma follows since the cofibre Â ⊗A k of j is ∧(c1, . . . , cl, w1, . . . , wl) or
∧({ci, wi, ui,j , vi,j}1≤i≤l,j≥1 which are acyclic.

Our next step is to build a suitable orientation ε̂ on Â that extends ε. We construct this
orientation so that the ci are orphans (except when k is about half the dimension which re-
quires a special treatment). This will prevent the αi from obstructing the set of orphans from
having trivial cohomology in degree k. In order to define this orientation ε̂ we first need to
define a suitable complementary subspace of im d in A.

Next we choose a complement Z of O ∩ d(A) in O.

L 4.3. – d(Z) = d(O), Z ∩ Γ = 0 and (Z ⊕ Γ) ∩ d(A) = 0.

Proof. – The proof that d(Z) = d(O) is straightforward.
Let γ =

∑
i riγi ∈ Z ∩ Γ. Since Z ⊂ O, α :=

∑
riαi = dγ ∈ d(O). By equation (4.2)

this implies that each ri = 0, hence γ = 0 and Z ∩ Γ = 0.
Let z ∈ Z and γ =

∑
i riγi ∈ Γ. Suppose that z + γ ∈ im d. Then d(z + γ) = 0, hence

α :=
∑
riαi = dγ = −dz ∈ d(O). Again this implies that each ri = 0 and γ = 0. Therefore

z ∈ im d. By the definition of Z this implies that z = 0.

Choose a complement U of Z ⊕ Γ⊕ d(A) in A. Set

T := Z ⊕ Γ⊕ U

which is a complement of d(A) in A.
We are now ready to define our extension ε̂ on Â. For ξ ∈ A+ and t ∈ T we set

(4.5)



(i) ε̂(ξ) = ε(ξ)

(ii) ε̂(wid(ξ)) = (−1)kε(γiξ)

(iii) ε̂(cicj) = −ε(γiγj)

(iv) ε̂(wi) = ε̂(wit) = ε̂(ci) = ε̂(ciξ) = ε̂(cicjξ) = ε̂(ciwj) =

ε̂(ciwjξ) = ε̂(wiwj) = ε̂(wiwjξ) = ε̂(ui,1) = ε̂(wiuj,1) =

ε̂(vi,1) = ε̂(ui,1ξ) = ε̂(vi,1ξ) = 0

(v) ε̂(x) = 0 if deg(x) 6= n.

L 4.4. – The formulas (4.5) define a unique linear map ε̂ : Â→ s−nk.
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Proof. – Let x ∈ Ân. Since n ≥ 7, and |wi|, |ci| ≥ n/2 − 1, for degree reasons x is
of length at most 2 in the wi and ci. Similarly x is of length at most one in vi,1 and ui,1.
Moreover for j > 1, |vi,j | > |ui,j | > n, and vi,1wj , vi,1cj , and ui,1cj all have degree > n.
Also A = T ⊕ d(A). From these facts it follows that (4.5) defines ε̂ on each monomial of Â.
We can extend linearly to all of Â.

Notice that (4.5)(ii) is well defined since ε(Γ · ker d) = 0 by Lemma 4.1. Again using the
fact that A = T ⊕ d(A), the well definedness of ε̂ follows.

L 4.5. – ε̂ : Â→ s−nk is an orientation.

Proof. – We need to check that ε̂(d(Ân−1)) = 0. Using the fact that Â≤1 = Â0 = k and
that k ≥ n/2 + 1 we get that every element of Ân−1 is a linear combination of terms of the
form ξ, wiξ, ciξ for some ξ ∈ A and possibly terms of the form wiwj , wicj , cicj , ui,1ξ and
vi,1. Using the definition (4.5) of ε̂ we compute:

• ε̂(dξ) = ε(dξ) = 0.
• ε̂(d(wiξ)) = ε̂(ciξ)− ε̂(γiξ)+(−1)deg(wi)ε̂(widξ) = 0 by formulas (iv) and (ii) of (4.5).
• ε̂(d(ciξ)) = ε̂(αiξ)± ε̂(cidξ) = 0 because αi ∈ O.
• ε̂(d(wicj)) = ε̂(cicj) − ε̂(γicj) + (−1)k ε̂(wiαj) = −ε̂(γiγj) + (−1)k ε̂(wiαj) =

−ε̂(γiγj) + ε̂(γiγj) = 0.
• ε̂(d(cicj)) = ε̂(αicj)± ε̂(ciαj) = 0.
• ε̂(d(wiwj)) = ε̂(ciwj)− ε̂(γiwj)± ε̂(wicj)± ε̂(wiγj) = 0 because γi, γj ∈ T .
• ε̂(dui,1ξ) = ε̂(wp

i ξ)± ε̂(ui,1dξ) = 0.
• ε̂(dvi,1) = ε̂((ci − γi)w

p−1
i ) = 0 because γi ∈ T .

This proves that ε̂(dÂ) = 0, in other words ε̂ is a chain map. That it induces an epimor-
phism in cohomology in degree n follows immediately from the facts that ε does and that
ε = ε̂j.

This completes our construction of an oriented CDGA (Â, d̂, ε̂) quasi-isomorphic to
(A, d, ε).

5. Extending the range of half-acyclicity

The aim of this section is to prove that the construction of the previous section increases
the range in which the set of orphans is half-acyclic. More precisely we will prove the follow-
ing:

P 5.1. – Let (A, d, ε) be an oriented CDGA satisfying the assumptions (4.1)

and let k ≥ n/2 + 1. Then the CDGA (Â, d̂, ε̂) constructed in the previous section also satisfies
the assumptions (4.1).

Moreover if the setO of orphans of (A, d, ε) is (k−1)-half-acyclic, then the set Ô of orphans
of (Â, d̂, ε̂) is k-half-acyclic.

The proof of this proposition consists of a long series of lemmas. Recall the spaces Γ from
equation (4.3) and Z from above Lemma 4.3.

Notice that by assumption 4.1(iii), n ≥ 7 and hence k ≥ 5.

L 5.2. – If i > n− k + 2 then Oi ⊂ Ôi.
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Proof. – Since n − i < k − 2 we have that Ân−i = An−i. Therefore ε̂(Oi.Ân−i) =

ε(Oi.An−i) = 0. So Oi ⊂ Ôi.

L 5.3. – For i = k − 2, k − 1 or k, we have Ôi ∩ ker d ⊂ Oi ∩ ker d.

Proof. – C 1: i = k − 2.
We have Âk−2 = Ak−2 ⊕ 〈{wi}〉. Let ω = ξ +

∑
i riwi ∈ Âk−2 with ξ ∈ Ak−2 and ri ∈ k.

Then
dω = (dξ −

∑
riγi) +

∑
rici ∈ Ak−1 ⊕ 〈{ci}〉.

Therefore if dω = 0 then we must also have ri = 0 for each i. This implies that Âk−2∩ker d ⊂
Ak−2 ∩ ker d. Thus Ôk−2 ∩ ker d ⊂ Ok−2 ∩ ker d.

C 2: i = k − 1.
Since A1 = 0 and A0 = k, Âk−1 = Ak−1 ⊕ 〈{ci}〉. Let ω = ξ +

∑
rici ∈ Âk−1 with

ξ ∈ Ak−1. Suppose that ω ∈ Ôk−1 ∩ ker d. Then ξ ∈ Ok−1 because otherwise there would
exist ξ∗ ∈ A such that ε(ξξ∗) 6= 0, and since ε̂(ci.A) = 0 we would have ε̂(ω.ξ∗) 6= 0.

Also dω = 0 implies that
∑
riαi = d(−ξ) ∈ d(Ok−1). But by definition of {αi} we have

〈{αi}〉 ∩ d(Ok−1) = 0. Therefore ri = 0 for each i, hence ω = ξ ∈ Ok−1 ∩ ker d.

C 3: i = k.
Let {λj} be a basis of A2. By assumption 4.1(ii) this basis consists of cocycles. Since n ≥ 7,
we have k − 2 > 2 and Âk = Ak ⊕ 〈{wi.λj}〉. Let ω = ξ +

∑
rijwiλj ∈ Âk with ξ ∈ Ak.

Then
dω = (dξ −

∑
rijγiλj) +

∑
rijciλj ∈ Ak+1 ⊕ 〈{ci · λj}〉.

Therefore dω 6= 0 unless rij = 0 for all i, j. This implies that Âk ∩ ker d ⊂ Ak ∩ ker d, hence
Ôk ∩ ker d ⊂ Ok ∩ ker d

Now the rest of the proof of Proposition 5.1 splits into three cases: k = n/2+1 andn even,
k = (n+ 1)/2 + 1 and n odd, and k ≥ n/2 + 2.

5.1. The case n even and k = n/2 + 1.

L 5.4. – Let

0 // A
i // B p

// C //

r
uu

0

be a short exact sequence of vector spaces, r : C → B be a linear spliting of p and 〈_, _〉 : B ⊗
B → k be a non-degenerate bilinear form on B. If 〈im r, im i〉 = 0, then 〈r_, r_〉 : C ⊗C → k

is a non-degenerate bilinear form on C.

Proof. – For any γ ∈ C \ {0}, there is a b ∈ B such that 〈rγ, b〉 6= 0. Thus 〈rγ, rpb〉 6= 0,
since (rpb)− b ∈ im i.

Recall the space Γ = 〈{γi}〉 defined in (4.3).

L 5.5. – If n is even and k = n/2 + 1 then the bilinear form

Γ⊗ Γ→ k , γ ⊗ γ′ 7→ ε(γ.γ′)

is non degenerate.
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Proof. – Set n = 2m and k = m+ 1. As in the proof of Proposition 3.6, the short exact
sequence 0→ O → A→ Ā := A/O → 0 induces a short exact sequence

0 // Hm(A)
π∗ // Hm(Ā)

δ // Hm+1(O) // 0

where δ is the connecting homomorphism. SinceOm+1∩ker d = d(Om)⊕〈{αi}〉, we get that
Hm+1(O) = 〈{[αi]}〉. Let [γ̄i] ∈ Hm(Ā) be the cohomology classes represented by γ̄i = γi

mod O ∈ Am/O.

By Proposition 3.3, ε induces a non-degenerate pairing 〈·, ·〉 on Hn(A). Let [αi] 7→ [γ̄i]

define a linear section r of δ. By Lemma 4.1 we have ε(Γ · ker d) = 0, and hence
〈im r, imπ∗〉 = 0. Thus by Lemma 5.4 the pairing restricts to a non-degenerate pairing
on im r. Finally observe that under the identification of im r with Γ which sends [γ̄i] to γi

the restricted pairing is sent to the pairing given in the statement of the lemma.

L 5.6. – If n is even and k = n/2 + 1 then 〈{αi}〉 ∩ Ôk = 0.

Proof. – Let α :=
∑
riαi ∈ 〈{αi}〉. If the ri are not all zero then by Lemma 5.5 there

exist r∗j ∈ k such that ε
(
(
∑
riγi)(

∑
r∗j γj)

)
6= 0. Then

ε̂
Ä
(
∑

riαi)(
∑

r∗jwj)
ä

=
∑

rir
∗
j ε̂((dγi).wj) = ±

∑
rir
∗
j ε̂(γi.γj) 6= 0.

Hence α 6∈ Ô if α 6= 0.

L 5.7. – If n is even and k = n/2 + 1 then Ok−1 ⊂ Ôk−1.

Proof. – Let β ∈ Ok−1. Then Ân−(k−1) = Ak−1 ⊕ 〈{ci}〉. Let ω = ξ +
∑
rici with

ξ ∈ Ak−1. Then ε̂(βω) = ε(βξ) +
∑
riε̂(βci) = 0. Therefore β ∈ Ôk−1. So Ok−1 ⊂ Ôk−1

and we are done.

L 5.8. – If n is even and k = n/2 + 1 then Ô is k-half-acyclic.

Proof. – We only need to check that Ôk ∩ ker d ⊂ d(Ôk−1). By Lemma 5.3

Ôk ∩ ker d ⊂ Ok ∩ ker d = d(Ok−1)⊕ 〈{αi}〉..

By Lemma 5.7 this implies that

(5.1) Ôk ∩ ker d ⊂ d(Ôk−1)⊕ 〈{αi}〉.

Since the set of orphans is a differential ideal, we also have d(Ôk−1) ⊂ Ôk ∩ ker d. This
combined with Lemma 5.6 and inclusion (5.1) implies that Ôk ∩ ker d ⊂ d(Ôk−1).
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5.2. The case n odd and k = (n+ 1)/2 + 1.

Recall the space Z defined before Lemma 4.3

L 5.9. – If n is odd and k = (n+ 1)/2 + 1 then Zk−1 ⊕ 〈{ci}〉 ⊂ Ôk−1.

Proof. – Notice that n− (k− 1) = k− 2 and Âk−2 = Ak−2⊕ 〈{wi}〉. It is immediate to
check, using the definition (4.5) of ε̂ and the fact that Z ⊂ T ∩ O, that ε̂(Âk−2 · Zk−1) = 0.
Also ε̂(Âk−2 · ci) = 0 since cj 6∈ Âk−2.

L 5.10. – If n is odd and k = (n+ 1)/2 + 1 then Ô is k-half-acyclic.

Proof. – We only need to check that Ôk ∩ ker d ⊂ d(Ôk−1). Using Lemmas 5.3 and 4.3
we have that

Ôk ∩ ker d ⊂ Ok ∩ ker d = d(Ok−1)⊕ 〈{αi}〉 = d(Zk−1)⊕ d(〈{ci}〉).

By Lemma 5.9 the last set is included in d(Ôk−1).

5.3. The case k ≥ n/2 + 2.

L 5.11. – If n/2 ≤ i ≤ k − 3 then Ôi = Oi.

Proof. – If i ≤ k − 3 then Âi = Ai, so Ôi ⊂ Oi.
If n/2 ≤ i ≤ k − 3 then

i ≥ n/2 = n− n/2 ≥ n− (k − 3) > n− k + 2

and by Lemma 5.2 Oi ⊂ Ôi.

L 5.12. – If k ≥ n/2 + 2 then Zk−2 ⊂ Ôk−2.

Proof. – First suppose that n is odd or that k ≥ n/2+3. In these cases 2k > n+4, hence
k − 2 > n − k + 2 which implies by Lemma 5.2 that Ok−2 ⊂ Ôk−2. Since Zk−2 ⊂ Ok−2,
this completes the proof of the lemma in these cases.

Now suppose that n is even and k = n/2 + 2, then n − (k − 2) = k − 2. Since Z ⊂ O
we have ε(Zk−2 · Ak−2) = 0. Also by definition of ε̂ since Z ⊂ T , ε̂(Zk−2 · wi) = 0. Since
Ân−(k−2) = An−(k−2) ⊕ 〈{wi}〉 this implies that Zk−2 ⊂ Ôk−2.

L 5.13. – If k ≥ n/2 + 2 and O is (k − 1)-half-acyclic then so is Ô.

Proof. – For n/2 + 1 ≤ i ≤ k − 3, using Lemma 5.11 twice, we get that

Ôi ∩ ker d = Oi ∩ ker d ⊂ d(Oi−1) = d(Ôi−1).

By Lemmas 5.3, 4.3 and 5.12 we have

Ôk−1 ∩ ker d ⊂ Ok−1 ∩ ker d ⊂ d(Ok−2) = d(Zk−2) ⊂ d(Ôk−2).

Suppose that k ≥ n/2+ 3 (otherwise there is no need to check (k−2)-half-acyclicity.) By
Lemma 5.11 Ôk−3 = Ok−3 and so by Lemma 5.3 we have

Ôk−2 ∩ ker d ⊂ Ok−2 ∩ ker d ⊂ d(Ok−3) = d(Ôk−3).

L 5.14. – If k ≥ n/2 + 2 then 〈{ci}〉 ⊂ Ôk−1.
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Proof. – By definition of ε̂ the only products with ci which could prevent them from being
orphans are

ε̂(cicj) = −ε(γiγj)

but those are zeros for degree reasons.

L 5.15. – If k ≥ n/2 + 2 and O is (k − 1)-half-acyclic then Ô is k-half-acyclic.

Proof. – We already know by Lemma 5.13 that Ô is (k−1)-half-acyclic. Since k ≥ n/2+2

we have k − 1 > n− k + 2 and Lemma 5.2 implies that Ok−1 ⊂ Ôk−1.

By Lemma 5.14 and the definitions of dci, we have

〈{αi}〉 = d(〈{ci}〉) ⊂ d(Ôk−1).

Using Lemma 5.3 and the definition of {αi} we get

Ôk ∩ ker d ⊂ Ok ∩ ker d = d(Ok−1)⊕ 〈{αi}〉 ⊂ d(Ôk−1).

This proves that Ô is k-half-acyclic.

5.4. End of the proof of Proposition 5.1

Proof of Proposition 5.1. – Since n ≥ 7 we have k ≥ 5 and also using the fact that
j : A→ Â is a quasi-isomorphism by Lemma 4.2, and that ε̂ is an orientation by Lemma 4.5,
it is immediate to check that (Â, d̂, ε̂) satisfies the assumptions (4.1).

If O is (k − 1)-half-acyclic for some k ≥ n/2 + 1 then Lemmas 5.8, 5.10, and 5.15 imply
that Ô is k-half-acyclic.

6. Proof of Theorem 1.1

We conclude the proof of our main theorem.

Proof of Theorem 1.1. – If n ≤ 6 then by [14] the CDGA (A, d) is formal and we can take
its cohomology algebra as the Poincaré duality model.

Suppose that n ≥ 7. Since H(A, d) is simply-connected, by taking a minimal Sullivan
model we can suppose that A is of finite type, A0 = k, A1 = 0, and A2 ⊂ ker d. Also there
exists a chain map ε : A→ s−nk inducing a surjection in homology. So all the assumptions
(4.1) are satisfied. Taking k = n/2 + 1 if n is even or k = (n+ 1)/2 + 1 if n is odd, the set of
orphansO is (k−1)-half-acyclic because this condition is empty. An obvious induction using
Proposition 5.1 yields a quasi-isomorphic oriented model Â for which the set of orphans Ô is
(n+1)-half-acyclic. Propositions 3.3 and 3.6 imply that the quotientA′ = Â/Ô is a Poincaré
CDGA quasi-isomorphic to A.
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7. Equivalence of differential Poincaré duality algebras

The next theorem shows that if we have two 3-connected quasi-isomorphic differential
Poincaré duality algebras then they can be connected by quasi-isomorphisms involving only
differential Poincaré duality algebras.

T 7.1. – Suppose A and B are quasi-isomorphic finite type differential Poincaré
duality algebras of dimension at least 7 such that H≤3(A) = H≤3(B) = k and A≤2 = B≤2 = k.
There exist a differential Poincaré duality algebra C and quasi-isomorphisms A → C and
B → C.

Proof. – Let∧V be a minimal Sullivan model ofA. Then there exist quasi-isomorphisms
f : ∧V → A and g : ∧V → B. Consider the factorization of the multiplication map φ : ∧V ⊗
∧V → ∧V into a cofibration i : ∧V ⊗∧V → ∧V ⊗∧V ⊗∧U followed by a quasi-isomorphism
p : ∧V ⊗ ∧V ⊗ ∧U → ∧V . Since H≤3(∧V ) = H≤3(A) = k, we can assume that U≤2 = 0

and that U is of finite type. Next consider the following diagram in which C ′ is defined to
make the bottom square a pushout.

∧V
f

//

in1
��

A

in1
��

∧V ⊗ ∧V
φ

wwppp
ppp
ppp
pp

f ⊗ g
//

i
��

A⊗B

h
��

∧V ∧V ⊗ ∧V ⊗ ∧Up
oo

k
// C ′

The maps in1 denote inclusion into the first factor. Since p is a quasi-isomorphism and φ ◦
in1 = id, i ◦ in1 is a quasi-isomorphism. Also since f ⊗ g is a quasi-isomorphism, i is a
cofibration, the bottom square is a pushout, and the properness of CDGA [2, Lemma 8.13],
k is a quasi-isomorphism. Finally since f , k and i◦ in1 are quasi-isomorphisms, so too must
h ◦ in1 be a quasi-isomorphism.

Since A≤2 = B≤2 = k, the algebra A⊗B satisfies (i) and (ii) of (4.1). Also U is of finite
type with U≤2 = 0, so C ′ = A ⊗ B ⊗ ∧U satisfies (i) and (ii) of (4.1). Since C ′ is quasi-
isomorphic to A, it also satisfies (iii), and we can let ε : C ′ → snk be any orientation. Next
by using induction and Propositions 5.1, 3.3 and 3.6 we get a quasi-isomorphism l : C ′ → C

such that C is a differential Poincaré duality algebra. Clearly the map l ◦h◦ in1 : A→ C is a
quasi-isomorphism, and similarly l◦h◦in2 : B → C is a quasi-isomorphism, thus completing
the proof of the theorem.

C. – The hypotheses H≤3(A) = k, A≤2 = B≤2 = k and dimension of A at
least 7 in Theorem 7.1 can be removed.
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