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THE CONTRIBUTIONS OF HILBERT AND DEHN
TO NON-ARCHIMEDEAN GEOMETRIES AND
THEIR IMPACT ON THE ITALIAN SCHOOL

Cinzia Cerroni

Abstract. — In this paper we investigate the contribution of Dehn to the de-
velopment of non-Archimedean geometries. We will see that it is possible to
construct some models of non-Archimedean geometries in order to prove the
independence of the continuity axiom and we will study the interrelations be-
tween Archimedes’ axiom and Legendre’s theorems. Some of these interrela-
tions were also studied by Bonola, who was one of the very few Italian schol-
ars to appreciate Dehn’s work. We will see that, if Archimedes’ axiom does not
hold, the hypothesis on the existence and the number of parallel lines through
a point is not related to the hypothesis on the sum of the inner angles of a trian-
gle. Hilbert himself returned to this problem giving a very interesting model of
a non-Archimedean geometry in which there are infinitely many lines parallel
to a fixed line through a point while the sum of the inner angles of a triangle
is equal to two right angles.

Résumé (Les contributions de Hilbert et de Dehn aux géométries non-archimé-
diennes et leur impact sur l’école italienne)

Cet article présente les contributions de Max Dehn au développement des
géométries non archimédiennes. Un moyen pour montrer l’indépendance de
l’axiome d’Archimède par rapport aux axiomes d’incidence et d’ordre est de
construire des modèles de géométries non archimédiennes. Les travaux de Max
Dehn dans ce champ concernent pour l’essentiel les relations entre l’axiome
d’Archimède et les théorèmes de Legendre. Quelques-unes de ces liaisons ont
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été aussi étudiées par Bonola, un étudiant d’Enriques, qui est parmi les rares
Italiens à avoir apprécié le travail de Dehn. Un des principaux résultats, lorsque
l’axiome d’Archimède n’est pas satisfait, est que l’axiome des parallèles est in-
dépendant de celui de la somme des angles internes d’un triangle. Hilbert lui-
même revint sur ce problème en construisant un modèle de géométrie non ar-
chimédienne dans lequel il y a une infinité de droites passant par un point et
parallèles à une droite donnée, alors que la somme des angles internes d’un
triangle est égale à deux angles droits.

1. INTRODUCTION

The Grundlagen der Geometrie (1899) by David Hilbert triggered a new
phase in geometrical research. The analysis of the interrelation and inde-
pendence of the axioms gave rise to new geometries, the study of which ac-
quired the same importance as that of classical, Euclidean geometry. This
work is part of a research project on the creation of new geometries in the
first half of the 20th century and on the analysis of their interrelations with
algebra, which yielded its first result in a work [Cerroni 2004] on the study
of non-Desarguesian geometries. The present paper aims to pursue this
line of research, dealing with non-Archimedean geometries.

The starting point of research on non-Archimedean geometries was the
investigation of the independence of Archimedes’ axiom from other ax-
ioms.

As it is well known, Archimedes’ axiom states that if A and B are two seg-
ments, with A smaller than B (A < B), then there exists a positive integer
n such that n times A is greater than B (nA > B).

Giusepppe Veronese made the first attempt to construct a model of
non-Archimedean geometry 1. In Fondamenti di geometria [Veronese 1891],
he constructed, in abstract manner, a geometry in which he postulated
the existence of a segment which is infinitesimal with respect to another,
and where the straight line of geometry is not equated with the continu-
ous straight line of Dedekind. It is not our aim to develop in depth the
study of Veronese’s work, for which we refer to the literature 2 and to a
forthcoming paper. So, we limit ourselves to sketch the contributions by

1 For a study of the emergence of non-Archimedean systems of magnitudes see
[Ehrlich 2006]
2 For study of Veronese’s non-Archimedean straight line see [Busulini 1969/70] and
[Cantù 1999].
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Veronese and we want to go directly to Dehn’s contributions and to its
influence on Italian geometers.

Veronese attacked the question about the existence of a segment which
is infinitesimal in respect to another and so about the existence of a non-
Archimedean geometry while analyzing the independence of Archimedes’
axiom from the others:

“[.. .] The question about the existence of a segment which is infinitesimal
in respect to another is ancient; but neither the supporters neither the oppo-
nents have proved the possibility or the impossibility of this idea, because they
did not put the question in a right way, complicating it with philosophical con-
siderations unrelated with it. Instead, it has to be put in the same way than those
about the parallel axiom and the space dimensions; that is, if all the axioms hold,
is Archimedes’ axiom a consequence of the others? Or in other words, let A and
B be two segments (A < B), does there exist a geometry in which in general it
is not true that An > B , where n is a positive integer 1; 2; : : : n?

If one takes Dedekind’s axiom as the continuity axiom, or if one maps the
points of the line in to the real numbers, then the previous relation is a conse-
quence of it. But I gave a new definition of the continuity axiom that does not
contain Archimedes’ axiom [...]” 3 [Veronese 1898, p. 79].

Therefore, the central problem for the author is to find a definition of
the continuity axiom that does not contain Archimedes’ axiom 4, that is to
define a non-Archimedean continuous 5. The geometric continuous is the
way to define an abstract continuous independent from the numeric con-
tinuous. Veronese supposed, in a system of axioms and in his definition of
continuity, the existence of infinite limited segments and so the existence

3 “[...] La questione del segmento infinitesimo attuale è antica; ma né i sostenitori né gli op-
positori di tale idea ne hanno mai provata la possibilità o la impossibilità geometrica, perché essi
non hanno posta la questione in modo chiaro e determinato, complicandola talvolta con consid-
erazioni filosofiche ad essa estranee. Essa invece va posta in modo analogo a quelle relative ai
postulati delle parallele e delle dimensioni dello spazio; vale a dire dati tutti i postulati necessari
per costruire la figura corrispondente al campo della nostra osservazione esterna e considerati
come possibili tutti quei postulati che non contraddicono ai precedenti e non si contraddicono
fra loro, il postulato di Archimede è esso conseguenza degli altri? O in altre parole è possibile
una geometria nella quale dati due segmenti A e B (A < B ) non obbediscano in generale alla
relazione An > B , essendo n un numero intero qualunque della serie 1; 2; : : : ; n; : : : ? Se si dà
il postulato della continuità nella forma proposta da Dedekind, o facendo corrispondere biuni-
vocamente i punti della retta ai numeri reali ordinari, allora detta relazione si può considerare
come un’immediata conseguenza di esso. Ma io diedi della continuità un’altra forma che pur
mantenendo i caratteri del continuo rettilineo non racchiude quella di Archimede [...]”. All the
translations are by the author of the paper.
4 The first work of Veronese on this topic is [Veronese 1890].
5 For a study of Veronese’s non-Archimedean continuous see [Cantù 1999].
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of segments which are infinitesimal in respect to another, that is the exis-
tence of non-Archimedean geometry. Moreover, the existence of infinite
limited segments permits him to introduce a non-Archimedean system of
numbers 6 [Veronese 1891].

The work was criticized by many (including Wilhelm Killing (1847-
1923), Georg Cantor (1845-1918), Otto Stolz (1842-1905), and Arthur
Moritz Schönflies (1853-1928)) and was disapproved by Giuseppe Peano,
who ended his review with the words: “[.. .] the lack of accuracy and rigour
of the whole book removes every value from it” 7 [Peano 1892a].

Here, we briefly refer to the international discussion 8, which covers
the period from 1890 to 1907. It developed essentially around three ar-
guments: 1) the relation between Dedekind’s axiom of continuity and
Archimedes’ axiom and the existence of a non-Archimedean continuous;
2) the existence of infinite and infinitesimal segments and consequently
the existence of a non-Archimedean system of numbers; 3) the relation
between Archimedes’ axiom and the principle of completeness.

The first and the second arguments 9 are analyzed and discussed preva-
lently by Bettazzi [1890; 1891; 1892], Cantor [1895; 1897], Killing [1885;
1895–96; 1897], Levi Civita [1893; 1898], Peano [1892a; 1892b; 1892c],
Schönflies [1897a; 1897b], Stolz [1883; 1888; 1891], Veronese [1890; 1891;
1892; 1896; 1897; 1898] and Vivanti [1891a; 1891b]. In particular, in 1893
there was a turning-point in the discussion; Tullio Levi Civita (1873-1941)
published his work “Sugli infiniti ed infinitesimi attuali quali elementi analitici”
in which he constructed from the real numbers, in an analytical way, a num-
ber system whose numbers (the “monosemii”) are the marks of Veronese’s
infinite and infinitesimal segments. Thus, Levi Civita’s construction is com-
pletely analytic and it could be considered a first view of the so called non-
standard analysis. At last, the third point has been made in 1906 by Schön-
flies [Schoenflies 1906] and solved by Hahn in 1907 [Hahn 1907].

The discussion about the possibility of the existence of infinite and in-
finitesimal segments ended with the publication of Hilbert’s Grundlagen, in
which there is an analytic construction of a non-Archimedean geometry. 10

6 For study of Veronese’s non-Archimedean system of numbers see [Cantù 1999].
7 “La mancanza di precisione e di rigore di tutto il libro, tolgono ad esso ogni valore”.
8 For the national discussion see [Galuzzi 1980], [Manara 1986] and [Ehrlich 2006].
9 For a study of the contributions of Bettazzi, Cantor, Killing and Stolz see [Cantù
1999] and [Ehrlich 2006].
10 In 1904, H. Poincaré in a review of Grundlagen ([Poincaré 1904] admitted that
Veronese was the first to construct a non-Archimedean geometry, but said that
Veronese’s geometry used Cantor’s transfinite numbers and that Hilbert’s one is more
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This international discussion probably influenced Hilbert, who knew the
work of Veronese and referred to it as “deep work” 11 [Hilbert 1899, p. 48].

Hilbert systematically studied the independence of Archimedes’ axiom
from the others by constructing an analytical model of a non-Archimedean
geometry and he also analysed the relationship between Pascal’s theo-
rem 12 and Archimedes’ axiom. On Hilbert’s suggestion, Dehn studied
the relationship between Legendre’s theorems and Archimedes’ axiom.
This last analysis is based on the point of view of Hilbert’s Grundlagen 13.
In fact, in the proofs of Legendre’s theorems, that we can find in the
literature (i. e. those of Euclid, those of Saccheri and those of Legendre
himself) Archimedes’ axiom is used, in a more or less explicit way. In the
optic of Hilbert, and therefore of Dehn, it is meaningful to study whether
these theorems really depend on this axiom.

We recall that Legendre’s theorems 14 state that:

(1) The sum of the angles of a triangle is equal to or less than two right
angles.

(2) If in a triangle the sum of the angles is equal to two right angles, it
is so in every triangle.

Dehn showed that the first theorem is a consequence of Archimedes’
axiom and that the second is independent of it. He also showed that if
Archimedes’ axiom does not hold, the theorem on the sum of the inner
angles of a triangle is not equivalent to the parallel axiom. It might come
as a surprise, but we will see that if Archimedes’ axiom does not hold, the
hypothesis on the existence and number of parallel lines through a point

simple and original; it aroused the anger of Veronese, who in the work “La geometria
non archimedea. Una questione di priorità” [Veronese 1905] remarked that his tranfinite
numbers are different from Cantor’s and that Hilbert’s non-Archimedean geometry
is contained in his geometry.
11 See [Bottazzini 2001].
12 Pascal-Pappus’s theorem states: let A1 , B1 , C1 be three distinct points on a line l1
and let A2 , B2 , C2 be three distinct points on a line l2 , distinct from the line l1 . Then
the points A3 , B3 and C3—intersections, respectively, between the lines through the
points B2C1 and B1C2 , the points A1C2 and A2C1 , and the points A1B2 and A2B1—are
collinear.
13 Hilbert’s main goal in his Grundlagen is to show how to obtain from purely geo-
metric axioms the so-called “coordinatizating algebra”, i.e. to find an analytical model
Kn of this geometry, where K is a generic algebraic structure (Field or Ring, etc.). This
program is in many ways a prosecution of Staudt’s program which aims to derive the
axioms of real and complex numbers from the axioms of pure projective geometry. In
the works of Veronese and of Levi Civita we find many suggestions in this direction.
14 These theorems are already in [Saccheri 1733], and in Italy they are called Sac-
cheri’s theorems. Dehn called these theorems Legendre’s theorems.
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is not related to the hypothesis on the sum of a triangle’s inner angles.
Hilbert was amazed by Dehn’s result, and an elaboration of this result be-
came part of Hilbert’s lectures on the foundations of geometry in 1902.

We find Bonola’s attempt to give a different proof of some of Dehn’s re-
sults very interesting. He was following Saccheri’s classical approach and
thus obtained a much more intuitive and informal description of the links
between Archimedes’ axiom and the theory of parallels. Bonola, in his new
elaboration of Dehn’s result followed the point of view of his master Fed-
erigo Enriques, that is to prefer an elementary and intuitive model which
is deducible directly from the geometrical properties.

Enriques entered the discussion on Non-Archimedean geometry only
in 1907, when he published his contribution to the Encyklopädie der math-
ematischen Wissenschaften. In this work, however, he was able to refer to all
the previous debate on this subject and to the most recent developments
on it. Furthermore he placed Veronese’s work on the same level as that of
his contemporaries.

2. HILBERT AND NON-ARCHIMEDEAN GEOMETRIES

As is well known, Hilbert devoted Chapter II of his Grundlagen der Ge-
ometrie to proving the independence and non-contradictoriness of axioms.
In particular, he proved the independence of Archimedes’ axiom from the
other ones. More precisely, he showed that Archimedes’ axiom is not a con-
sequence of axioms I (of incidence (connection)), II (of order), III (of
parallelism), and IV (of congruence) 15 by exhibiting a geometry where
Archimedes’ axiom fails to be valid [Hilbert 1899].

Hilbert constructed a non-Archimedean number system on which he
based an analytic geometry. In particular, he considered the set �(t) con-
sisting of the algebraic functions of t obtained from the set of polynomi-
als with rational coefficients in t by the five operations of addition, sub-
traction, multiplication, division, and the operation

p
1 + !2 , where ! is

a function derived from the previous five operations [Hilbert 1899, § 12,
pp. 24-26].

The set �(t) is countable and �(t) can be regarded as the set of real-
valued functions of a real variable defined at all but a finite number of
points. Moreover, if c is a function in �(t), i.e. c is an algebraic function of
t, it will vanish only on finitely many values of t. Therefore, c, for positive

15 Usually, axioms III are on congruence and axioms IV are on parallelism, like in
the more recent editions of the Grundlagen.
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large values of t, is either always positive or always negative. The usual op-
erations are valid in �(t), and if a and b are two functions in �(t), a will
be greater than b (a > b) or a less than b (a < b) if a� b is always positive
or always negative for positive large values of t, respectively.

Let n be a positive integer. Then n is less than t (n < t) since n � t
is always negative for large positive values of t. Consider the numbers 1
and t in �(t). Every multiple of 1 is always less than t, so �(t) is a non-
Archimedean number system.

Hilbert constructed a 3-dimensional analytic geometry on this number
system, as follows: (x; y; z), where x; y; z 2 �(t) is a point; ux+vy+wz+r = 0,
where u; v; w; r 2 �(t) is a plane; a line is the intersection of two planes
[Hilbert 1899, § 12, pp. 24-26]. It is easy to see that such a geometry is non-
Archimedean; indeed, on the basis of the above, a line segment the length
of which is n times that of the unit segment will never exceed a segment of
length t on the same line.

In Chapter VI of Grundlagen der Geometrie, Hilbert studied the relation
between Pascal’s theorem and Archimedes’ axiom [Hilbert 1899, §§ 31-34,
pp. 71-76]. He assumed axioms I, II, III and Desargues’ theorem 16 to be
satisfied and therefore a calculus of segments without the axioms of con-
gruence 17 [Hilbert 1899, §§ 24-26, pp. 55-63], proving the following main
theorems:

“Pascal’s theorem can be proved on the basis of axioms I, II, III, V, i.e., it can
be proved without the congruence axioms and with the help of Archimedes’
axiom” 18 [Hilbert 1899, § 31, p. 71].

“Pascal’s theorem cannot be proved based on the axiom I, II, III, i.e. with-
out using either the congruence axioms or Archimedes axiom” 19 [Hilbert 1899,
§ 31, p. 71].

16 Desargues’ theorem states that if two triangles a1b1c1 , a2b2c2 are in perspec-
tive from a point V , then the lines containing the opposite edges intersect in three
collinear points, d1; d2; d3 .
17 In the Grundlagen Hilbert defined, using Desargues’ theorem, a calculus of seg-
ments without the axioms of congruence and showed that all the rules of a field are
satisfied, except the commutative law of multiplication [Hilbert 1899, §§ 24-26, pp.
55-63].
18 Der Pascalsche Satz ist beweisbar auf Grund der Axiome I, II, III, V, d.h. unter Ausschlies-
sung der Congruenzaxiome mit Zuhülfenahme des Archimedischen Axioms.
19 Der Pascalsche Satz ist nicht beweisbar auf Grund der Axiome I, II, III, d.h. unter Aus-
schliessung der Congruenzaxiome sowie des Archimedischen Axioms.
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To prove the first theorem, Hilbert first showed that a Desargue-
sian 20 number system fulfilling Archimedes’ axiom satisfies the com-
mutative law of multiplication [Hilbert 1899, §§ 31-32, pp. 71-73] and
then that Pascal’s theorem is valid in an analytic geometry over this
number system 21 [Hilbert 1899, § 34, p. 75]; in order to prove the sec-
ond theorem, he considered the set of all finite or infinite expressions
T = r0tn+r1tn+1+r2tn+2+r3tn+3+� � � , where t is a parameter, r0 ( 6= 0) and
ri are rational numbers and n is any integer, as well as the set of all finite
or infinite expressions S = smT0 + sm+1T1 + sm+2T2 + � � � where T0 ( 6= 0),
Ti are expressions of the previous form T and m is any integer. He then
defined a number system �(s; t), considering the set of all expressions
of the form S together with the number zero, with the following calculus
rules: the usual rule of addition for parameters t and s; the multiplication
of parameters t and s is defined by ts = 2 � st; addition and multiplication
of two forms S and S0 are defined component wise. He showed that the
number system �(s; t) is Desarguesian but non-Archimedean [Hilbert
1899, § 33, pp. 73-75]. He thus showed that an analytic geometry on this
number system does not satisfy Pascal’s theorem and Archimedes’ axiom
[Hilbert 1899, § 34, p. 75].

3. DEHN AND NON-ARCHIMEDEAN GEOMETRIES

One of Hilbert’s most prominent students was Max Dehn. Born in
Hamburg in 1878, he received his doctorate in Göttingen at the age
of twenty-one, under Hilbert’s supervision, with the dissertation “Die
Legendre’schen Sätze über die Winkelsumme im Dreieck” on the foundations
of geometry [Dehn 1900a]. He obtained his Habilitation in Munich in
1901, solving the third of Hilbert’s twenty-three problems [Dehn 1900b;
1901]; he was the first to solve one of Hilbert’s problems. The third prob-
lem concerned the foundations of geometry. His solution showed that
Archimedes’ axiom was needed to prove that two tetrahedra have the
same volume 22, if they have the same altitudes as well as bases of the same

20 In the Grundlagen Hilbert called a number system Desarguesian when all the laws
of the real numbers are satisfied, except for the commutative multiplication law, and
he showed that an analytic geometry on such a number system is Desarguesian and
conversely [Hilbert 1899, §§ 28-29, pp. 66-70].
21 In the Grundlagen Hilbert defined, using Pascal’s theorem, a calculus of segments
and showed that all the laws of field are satisfied [Hilbert 1899, § 15, pp. 32-35].
22 We refer to [Hartshorne 2000, §§ 26-27, pp. 226-239] for the general definition
of volume and for a study in depht of the problem.
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area. Dehn was Privatdozent in Munich from 1901 until 1911 and became
Ordinarius in Breslau in 1913. He moved to the University of Frankfurt
in 1921 where he lectured until 1935. Dehn’s lectures were especially
stimulating because of the new ideas they contained, and under his di-
rection a whole series of valuable dissertations were written. Dehn was
well versed in ancient and modern history, and was especially interested
in the conception and development of the fundamental insights of clas-
sical antiquity. He published several valuable essays on the relationship
between Greek philosophy and mathematics. In 1922 the seminar on the
History of Mathematics was founded, in Frankfurt, and Dehn was the
driving force of this institution. The seminar on the History of Mathe-
matics was held every semester until 1935. The rule of the seminar was
to study the most important mathematical discoveries from all epochs
in the original version. In 1939, since he was a Jew, he emigrated from
Germany to Copenhagen and later to Trondheim in Norway, where he
took over the post of a vacationing colleague at the Technical University
until 1940. In early 1941, when German troops occupied Trondheim,
Dehn emigrated to the United States. There he led an itinerant life until
he found a position offering some satisfaction. First he spent one year and
a half as Professor of Mathematics and Philosophy at the State University
of Idaho at Pocatello. The next year he worked at the Illinois Institute
of Technology in Chicago and then at St John’s College in Annapolis,
Maryland, where he was especially unhappy. Finally, in 1945, Dehn arrived
at the final station in his life. This was Black Mountain College in North
Carolina, where he stayed for the last seven years of his life, leaving only
for short periods as guest lecturer in Madison, Wisconsin. He died in 1952
in Black Mountain, North Carolina [Gillispie 1970–1990; Siegel 1965].

Dehn contributed substantially to three different areas of mathematics,
namely foundations of geometry, topology, and group theory. 23 From 1900
to 1906, he worked mainly on the foundations of geometry, to which he
returned in 1922 with the article “Über die Grundlagen der Geometrie und all-
gemeine Zahlsysteme” [Dehn 1922]. In 1926, he published “Die Grundlegung
der Geometrie in historischer Entwicklung” [Dehn & Pasch 1926], in which he
focused on insight and ideas. To describe Dehn’s character W. Magnus and
R. Moufang cited this significant extract from one of his lectures in 1928
on “The spiritual profile of a mathematician”. 24

23 For a survey of the mathematical work of Max Dehn and for an evaluation of
the secondary effects of Dehn’s work see [Magnus & Moufang 1954] and [Magnus
1978/79].
24 „Über die geistige Eigenart des Mathematikers“.
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“The mathematician has from time to time the passion of the poet or of the
conqueror, the rigor of thinking of a public official conscious of his responsibil-
ity or, more simply expressed, of a family head with worries, the experience and
the resignation of an old sage; he is both revolutionary and conservative, totally
sceptical and yet has the optimism of a believer” 25 [Magnus & Moufang 1954,
p. 225].

Another evocative memory of Dehn is that of André Weil:

“I have met two men in my life who make me think of Socrates: Max Dehn
and Brice Parain. Both of them — like Socrates as we picture him from the ac-
counts of his disciples — possessed a radiance which makes one naturally bow
down before their memory: a quality, both intellectual and moral, that is per-
haps best conveyed by the word “wisdom”; for holiness is another thing alto-
gether. In comparison with the wise man, the saint is perhaps just a specialist
— a specialist in holiness; whereas the wise man has no specialty. This is not to
say, far from it, that Dehn was not a mathematician of great talent; he left be-
hind a body of work of very high quality. But for such a man, truth is all one,
and mathematics is but one of the mirrors in which it is reflected — perhaps
more purely than it is elsewhere” [Weil 1992, p. 52].

On Hilbert’s suggestion, Dehn, in his dissertation “Die Legendre’schen
Sätze über die Winkelsumme im Dreieck”, analysed the relationship between
Legendre’s theorems and Archimedes’ axiom. In particular, he asked:

“Can one prove Legendre’s theorems without an axiom of continuity, i.e.
without making use of the Archimedian axiom?” 26 [Dehn 1900a, p. 405]

To answer this question, Dehn first showed that Legendre’s second theo-
rem is only a consequence of the incidence, order and congruence axioms
by proving, in a geometry where such axioms hold, the following more gen-
eral theorem:

“If the angle sum of one triangle is less than two right angles then this is true
for every triangle.

“If the angle sum of one triangle is equal to two right angles then it is so for
every triangle.

“If the angle sum of one triangle is greater than two right angles then the
same holds for every triangle” 27 [Dehn 1900a, pp. 430-431].

25 „Der Mathematiker hat zuweilen die Leidenschaft des Dichters oder Eroberers, die Strenge in
seinen Überlegungen wie ein verantwortungsbewußter Staatsmann oder, einfacher ausgedrückt,
wie ein besorgter Hausvater, die Nachsicht und Resignation eines alten Weisen; er ist revolu-
tionär und konservativ, ganz skeptisch und doch gläubig optimistisch.“
26 “Kann man die Legendre’schen Sätze ohne irgend ein Stetigkeitspostulat beweisen, d.h. ohne
vom Archimedischen Axiom Gebrauch zu machen?”
27 “Ist in irgend einem Dreieck die Winkelsumme kleiner als zwei rechte Winkel, so ist in jedem
Dreick die Winkelsumme kleiner als zwei rechte Winkel.
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Note that the second statement is Legendre’s second theorem.
Subsequently, Dehn showed that it is impossible to prove Legendre’s

first theorem with the incidence, the order, and the congruence axioms
and without Archimedes’ axiom by constructing a “Non-Legendrian geom-
etry” in which there are infinitely many lines parallel to a fixed line through
a point, Archimedes’ axiom does not hold and the sum of the inner angles
of a triangle is greater than two right-angles, and by constructing a “semi-
Euclidean geometry” in which there are infinitely many lines parallel to a
fixed line through a point, Archimedes’ axiom does not hold but the sum
of the inner angles of every triangle is still equal to two right angles [Dehn
1900a, pp. 431-438].

3.1. Legendre’s second theorem

Dehn constructed a “Pseudogeometry” in which he defined a relation
of pseudoparallelism and of pseudocongruence in order to show that Leg-
endre’s second theorem is valid in a geometry in which Archimedes’ axiom
does not hold [Dehn 1900a, pp. 410-411].

In particular, his aim is to immerse a geometry in which the axioms of
connection hold into a “projective geometry”, completing it by introduc-
ing “ideal” points and “ideal” lines.

He remarked that given two lines in a plane �, in which the axioms of
connection hold, they may or may not intersect and that given, in the plane
�, a point P outside a line r , there exists at least a line s through P which
does not intersect r . Moreover, he noted that it is possible to project from a
point the plane � into a plane �0 , so that the projections r0 and s0 of r and
s are two lines that intersect in a point Q0 2 �. In this way he could say that
the two lines r and s intersect in an “ideal” point in � and that a line t 2 �
passes through Q when his projection passes through Q0 . In the same way,
he called “ideal” line a line that passes through two not intersecting planes
or a line through two “ideal” points, which does not lie on a “real” line.
Then he showed that, if the axioms of congruence are valid for the “real”
points and the “real” lines of �, all the perpendiculars to one fixed line m
intersect in one “ideal” point, named pole of m and that the poles of every
line intersecting in a “real” point O belong to one “ideal” line, named the
polar line of O and vice versa [Dehn 1900a, pp. 406-409].

Ist in irgend einem Dreieck die Winkelsumme gleich zwei rechten Winkeln, so ist sie in jedem
Dreick gleich zwei rechten Winkeln.
Ist in irgend einem Dreieck die Winkelsumme grösser als zwei rechte Winkel, so ist sie in jedem
Dreick grösser als zwei rechte Winkel.“
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Therefore, he considered the plane geometry completed with “ideal”
points and “ideal” lines and he fixed a base point O and the polar line t of
O. He then stated:

“The real points in our Pseudogeometry are all real and ideal points of the
funding geometry, without the points on t.

The real lines in our Pseudogeometry are all real and ideal lines of the fund-
ing geometry, without the line t” 28 [Dehn 1900a, p. 411].

Dehn then showed that in the constructed Pseudogeometry the axioms
of connection and of order hold and he introduced the relation of pseu-
doparallelism as follows:

“We call pseudoparallel two lines a and a0 that intersect on the line t” 29

[Dehn 1900a, p. 411].

In this Pseudogeometry two segments AB and A0B0 are called pseudocon-
gruent if one is mapped into the other one by a pseudoparallel transforma-
tion or if they are mapped by a pseudoparallel transformation into two seg-
ments OE and OF such that the line EF passes through the Pole of the bi-
sector of the angle dEOF . The angles of the pseudogeometry are only those
which have real vertices and real sides, and two angles dABC and [A0B0C 0 are
called pseudocongruent (in symbols dABC � [A0B0C 0) if one is mapped into
the other by a Pseudoparallel transformation or if they are mapped by a
Pseudoparallel transformation into two angles dEOF and [GOH with O com-
mon vertex, and the congruence relation is the one of Euclidean plane ge-
ometry [Dehn 1900a, p. 413, p. 418, p. 419].

Dehn defined two triangles as pseudocongruent if they have respectively
sides and angles pseudocongruent and stated the first theorem of pseudo-
congruence:

“If two triangles have two sides and the angle inside them pseudocongruent
respectively, then they have the other sides and the other angles pseudocongru-
ent respectively” 30 [Dehn 1900a, p. 419].

28 „Wirkliche Punkte im Sinne unserer Pseudogeometrie sind alle wirklichen und idealen
Punkte der zu Grunde gelegten Geometrie mit Ausnahme der Punkte auf t.
Wirkliche Geraden im Sinne unserer Pseudogeometrie sind alle wirklichen und idealen Geraden
der zu Grunde gelegten Geometrie mit Ausnahme der Geraden t“.
29 „Zwei Geraden a und a0 , welche sich auf der Geraden t schneiden, nennen wir pseudopa-
rallel“.
30 „Sind in zwei Dreiecken zwei Seiten und der eingeschlossene Winkel beziehungsweise pseu-
docongruent, dann sind auch die übrigen Stücke in den beiden Dreiecken beziehungweise pseu-
docongruent“
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He concluded that:

“The elements of our pseudogeometry, except those of the line t, satisfy all
the axioms of the ordinary Euclidean geometry, including the parallel axiom,
and line t plays the role of the ‘ideal’ or ‘line at infinity’ 31 [Dehn 1900a, p. 422].

From this consideration it follows immediately that “the sum of the in-
ner angles of any triangle is pseudocongruent to two right angles” 32 [Dehn
1900a, p. 422].

Dehn then introduced the symbols � of pseudoequality, � of pseudo-
smaller, and � of pseudogreater, and showed the interrelation between the
congruence and the pseudocongruence relations: “Let A and A1 , two real
points on the line n through O and OA (or a), be congruent to the segment
AA1 (or a1) and let B and B1 , two other points on the same line or on
another line m through O and OB (or b), be congruent to BB1 (or b1),
then we have: if a � a1 or a � a1 or a � a1 then b � b1 or b � b1 or
b � b1 , respectively” 33 [Dehn 1900a, p. 426].

All these considerations were necessary to demonstrate Legendre’s sec-
ond theorem without Archimedes’ axiom. In particular, as we said, Dehn
showed that: if the sum of the inner angles of one triangle is less, equal or
greater than two right angles, respectively, then so it is for every triangle 34.

We will now briefly outline Dehn’s argument.

First, he noted that since every triangle can be divided into two right-
angled triangles, drawing the perpendicular from one vertex to the oppo-
site side (Fig. 1), the theorem can be proved just for right-angled triangles.

Since every right-angled triangle can be mapped into this by a congru-
ent transformation, Dehn considered a right-angled triangle with O vertex
of the right angle (AOB). He then observed that it is necessary to show that
the sum of the inner angles of the triangle (AOB) is less than, equal to, or
greater than two right-angles, in order to obtain the first, the second, or
the third “hypothesis” of the theorem and consequently to obtain that the
sum of the inner angles of every triangle is less than, equal to, or greater

31 “Die Elemente unserer Pseudogeometrie mit Ausnahme der Elemente der Geraden t erfüllen
alle Axiome der gewöhnlichen Euklidischen Geometrie einschliesslich des Parallelenaxioms, und
die Gerade t spielt die Rolle der „idealen“ oder „unendlich fernen“ Geraden”
32 “Die Winkelsumme in irgend einem Dreieck ist pseudocongruent zwei Rechten”
33 „Seien A und A1 wirckliche Punkte auf der Geraden n durch O und OA (oder a) der Strecke
AA1 (oder a1 ) congruent, ferner B und B1 zwei beliebige andere Punkte auf derselben oder einen
anderen Geraden m durch O und OB (oder b) congruent BB1 (oder b1 ), dann behaupten wir:
Ist a � a1 oder a � a1 oder a � a1 dann ist bezüglich auch b � b1 oder b � b1 oder b � b1“.
34 See p. 268, note 27.
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than two right angles. Since the sum of the inner angles of a right-angled
triangle is pseudocongruent to two right angles, and pseudocongruence
and congruence are the same relation for the angle with a vertex in O, he
showed that each angle dOAB and dOBA is pseudosmaller (or pseudoequal
to or pseudogreater) than a part of the angle dAOB [Dehn 1900a, pp. 430-
431].
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Figure 2.

In particular, he considered the point C that divides the side AO in two
halves. He considered on OA the segment DO pseudocongruent to AC . D
is thus between C and O (either D is on C or C is between D and O) and
he drew lines through C and through D perpendicular to the side AO (see
Fig. 2). Let F be the intersection point between the perpendicular through
C and the side AB and G be the intersection point between the perpendic-
ular through D and the line through F perpendicular to the side OB (see
Fig. 2). Then DG is pseudocongruent to CF . The triangle (ACF ) is con-
gruent to the triangle (OCF ), and therefore the angle dOAB is congruent
to the angle [DOF and the triangle (ACF ) is pseudocongruent to the tri-
angle (GOD), and therefore the angle dOAF is pseudocongruent to the an-
gle dDOG. Also, the angle [DOF is � (pseudosmaller) or � (pseudoequal),
or � (pseudogreater) than the angle dDOG. Therefore, the angle dOAB is
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mapped by a congruence transformation onto the angle dAOF and is pseu-
dosmaller or pseudoequal or pseudogreater. The same holds for the angle
dOBA [Dehn 1900a, p. 431].

3.2. Non-Legendrian Geometry

As is well known, Legendre’s first theorem states that the sum of the
inner angles of a triangle is less than or equal to two right angles. Dehn
showed that Archimedes’ axiom is necessary to prove this theorem, and
analysed the relationships between Archimedes’ axiom, the number of
lines through a point parallel to a fixed line, and the sum of the in-
ner angles of a triangle [Dehn 1900a, pp. 431-436]. It is known that, if
Archimedes’ axiom holds, there are the following relationships between
the hypothesis on the existence and the number of parallel lines through
a point and the sum of the inner angles of a triangle: if the sum of the
inner angles of a triangle is greater than, equal to, or less than two right
angles, then no line parallel to a fixed line passes through a point, there
is exactly one line parallel to a fixed line and passing through a point,
and there are infinitely many lines parallel to a fixed line through a point,
respectively.

Dehn constructed a non-Archimedean geometry where there are in-
finitely many parallel lines through a point and where the sum of the
inner angles of a triangle is greater than two right angles. He then stated:

“Thus the improvability of Legendre’s first theorem is shown; and also the
hypothesis of the obtuse angle, as Saccheri called it, is not equivalent to the hy-
pothesis of the finiteness of the line” 35 [Dehn 1900a, p. 432].

Like Hilbert, Dehn considered the following non-Archimedean num-
ber system: the set�(t) of the algebraic functions of t obtained by applying
to t the five operations of addition, subtraction, multiplication, division,
and the operation

p
1 + !2 , where ! is a function obtained by the previ-

ous five operations. He then constructed an analytic geometry over the set
�(t) as follows: the points are the pairs (x; y), with x, y in �(t), and the
lines have the equations ux+vy+w = 0, with u; v; w in �(t) [Dehn 1900a,
p. 432]. In the previous geometry all the axioms hold with the exclusion of
Archimedes’ axiom.

35 “Damit ist dann die Unbeweisbarkeit des ersten Legendre’schen Satzes bewiesen und gezeigt,
dass die Hypothese des stumpfen Winkels, wie sie Saccheri nennt, sich nicht deckt mit der Hy-
pothese der Endlichkeit der Geraden”.
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Dehn constructed, over this non-Archimedean plane, an “elliptic” or
“Riemannian” geometry, 36 as follows. He took the imaginary conic

x2 + y2 + 1 = 0;

and considered as points and lines of the elliptic geometry all the points
and lines of the non-Archimedean plane, together with the line at infinity
with its points, and considered as congruences of his elliptic geometry the
real transformations that establish the conic. 37 In this geometry, axioms I,
IV, and the modified axiom II are valid. He then considered, as points of
the new geometry, the points of the “elliptic” geometry (x; y) satisfying the
following conditions:

�n

t
< x <

n

t
;

�n

t
< y <

n

t
;

where n is an integer. He considered as lines those lines the points of which
satisfy the above conditions. The segments and angles are defined as in “el-
liptic” geometry. Therefore, if two segments or two angles are congruent
in elliptic geometry, they will be congruent in this new geometry [Dehn
1900a, p. 433]. Dehn showed that every segment that is congruent to a seg-
ment of the limited zone is in the limited zone and that points of the new
geometry correspond to points in the following rotations [Dehn 1900a, p.
434]:

x0 =
a

p
a2 + b2

x� b
p

a2 + b2
y

y0 =
b

p
a2 + b2

x+
a

p
a2 + b2

y

Dehn therefore showed that all the axioms are valid except Euclid’s paral-
lel axiom and Archimedes’ axiom and that the sum of the inner angles of a
triangle is greater than two right angles [Dehn 1900a, pp. 433-436]. Thus,
as he wrote:

“We have constructed a geometry where axioms I, II and IV hold, where
through one point there exist infinitely many lines parallel to a fixed line but
where nevertheless the angle sum of a triangle is greater than two right-angles.

36 In dieser “Nicht-Archimedischen” Ebene construiren wir uns zunächst eine gewöhn-
liche „elliptische“ oder „Riemannsche“ Geometrie [Dehn 1900a, p. 433]. (In this „non-
Archimedean plane“ we will construct first an usual „elliptic“ or „Riemaniann“ geom-
etry.)
37 This construction in the Archimedean case was done by Klein [Klein 1871].
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Archimedes’ axiom does not hold. Thus it is shown that Legendre’s first the-
orem cannot be proven without the help of Archimedes’ axiom. Thus we can
call the auxiliary geometry used in this proof, a “non-Legendrian” geometry
[.. .]” 38 [Dehn 1900a, p. 436].

Further, Dehn showed that in the elliptic geometry constructed over the
non-Archimedean plane the sum of the inner angles of a triangle is greater
than two right angles:

“If in a geometry where there are no parallel lines and where axioms I and IV
and the correspondingly modified axioms II hold, the angle sum of a triangle
is always greater than two right-angles” 39 [Dehn 1900a, p. 438].

Therefore, in the case of the non-existence of parallel lines a theorem
analogous to the first Legendre theorem is valid.

3.3. Semi-Euclidean Geometry

Dehn continued his analysis of the relationship between the hypothe-
sis on the sum of the inner angles of a triangle and the hypothesis on the
existence and the number of parallel lines through a point by construct-
ing another geometry. He considered the above non-Archimedean plane
and constructed over it a new geometry as follows: the points of the new ge-
ometry are the points (x; y) of the non-Archimedean plane satisfying the
following conditions,

�n < x < n;

�n < y < n;

where n is a positive integer and the lines are the lines of the non-
Archimedean plane the points of which satisfy the conditions above. The
segments and the angles are defined as in Euclidean geometry. Therefore,
if two segments are congruent in Euclidean geometry then they will also
be congruent in the new geometry [Dehn 1900a, p. 436]. Dehn further

38 „Folglich haben wir eine Geometrie construirt, die allen Axiomen I, II, IV Genüge leistet, in
der ferner durch jeden Punkt zu jeder Geraden unendlich viele Parallelen möglich sind, in der
aber nichtsdestoweniger die Winkelsumme in jedem Dreieck grösser als zwei rechte Winkel ist.
Das Archimedische Axiom gilt dann natürlich nicht.
Damit ist die Unbeweisbarkeit des I. Legendre’sche Satzes ohne Zuhülfenahme des Archimedi-
schen Axioms nachgewiesen.Die zu diesem Beweise benutzte Hülfsgeometrie können wir deshalb
„Nicht-Legendre’sche“ Geometrie nennen [...]“.
39 „Giebt es in einer Geometrie keine Parallelen und gelten in derselben alle Axiome der Grup-
pen I, IV, und die entsprechend modificirten der Gruppe II, dann ist die Winkelsumme stets
grösser als zwei rechte Winkel.“
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showed that every point of the new geometry is mapped into a point of it,
under the following transformations:

x0 = x+ a;

y0 = y + b;

x0 =
a

p
a2 + b2

x� b
p

a2 + b2
y

y0 =
b

p
a2 + b2

x+
a

p
a2 + b2

y

and thus axioms I, II, and IV hold in this geometry [Dehn 1900a, p. 437].
Therefore, Legendre’s first theorem is valid:

“[.. .] Furthermore all theorems of the usual Euclidean geometry, as long
as they involve only a bounded area (ein beschränktes Raumstück) are still valid
[in this geometry]. The angle sum is equal to two right-angles in every triangle
[.. .]” 40 [Dehn 1900a, p. 437].

However, it is easy to see that through a point there exist infinitely
many lines parallel to a fixed line. To show this, Dehn considered the line
through the points (t; 0) and (0; 1); this is a line of the new geometry,
since it passes through the points (0; 1) and (1; t�1t ), which are points of
the new geometry, but intersects the x axis in a point that is not a point of
the new geometry. He then considered the line through the points (�t; 0)
and (0; 1); this line is a line of the new geometry which intersects the x
axis in a point that is not a point of the new geometry. The two previous
lines pass through the point (1; 0) and are parallel to the x axis. Thus,
Dehn showed that:

“There are non-Archimedean geometries in which the parallel axiom is not
valid but where the angle sum of a triangle is equal to two right-angles” 41 [Dehn
1900a, p. 438].

Dehn therefore constructed a geometry where the theorem on the sum
of the inner angles of a triangle of Euclidean geometry holds, but where
the parallel axiom does not; Dehn called this geometry “semi-Euclidean”
geometry.

Dehn summed up the above results in the following diagram:

40 „Ferner haben aber auch sämmtliche Sätze der gewöhnlichen Euklidischen Geometrie, soweit
sie mit einem “beschränkten” Raumstück zu thun haben, in derselben Gültigkeit. Die Winkel-
summe ist in jedem Dreieck gleich zwei rechten Winkeln [...]“.
41 „Es gibt Nicht-Archimedische Geometrien, in denen das Parallelenaxiom nicht gültig ist
und dennoch die Winkelsumme in jedem Dreieck gleich zwei rechten Winkeln ist.“
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The sum of the Lines through a fixed point and parallel to a given line:
inner angles of
a triangle is:

No parallel
lines

One parallel
line

Infinitely many
parallel lines

> 2R Elliptic Geom-
etry

(impossible) Non-
Legendrian
geometry

= 2R (impossible) Euclidean
geometry

Semi-
Euclidean
geometry

< 2R (impossible) (impossible) Hyperbolic ge-
ometry

These results were probably achieved by Dehn in 1899. Hilbert men-
tioned them in a letter to Hurwitz written on 5 November 1899 [quoted in
Toepell 1986, p. 257]. Hilbert also summarized the results in detail in his
conclusion to the French and English translations of the Festschrift [Hilbert
1899], and from the second edition of the Grundlagen on there are short
remarks on Dehn’s work at the end of Chapter III. 42

4. HILBERT LECTURES ON THE FOUNDATIONS OF GEOMETRY (1902)

Hilbert gave some lectures on the foundations of geometry in the
summer semester of 1902. There is an elaboration by August Adler (1863-
1923) of these lectures [Hilbert 1902]. Inspired by Dehn’s result, Hilbert
constructed another model of “semi-Euclidean” geometry, emphasizing
the fact that the theorem about the sum of the inner angles of a triangle
is not equivalent to the parallel axiom:

“Therefore the theorem of the sum of the inner angles of a triangle is not
equivalent to the parallel axiom [...]” [Hilbert in Hallet & Ulrich 2004, p. 568].

It follows from these lectures that Hilbert was struck by this kind of ge-
ometry and consequently by Dehn’s result, which he called a “remarkable
geometry”. 43

Hilbert first constructed a non-Archimedean system of numbers, as fol-
lows. A number of the system is an expression:

� = a0t
n + a1t

n+1 + a2t
n+2 + � � �

where t is a symbol and a0; a1; a2; : : : ; n are real positive or negative num-
bers. He showed the following properties:

42 See [Hallet & Ulrich 2004, pp. 527-529 & 601-602].
43 „Merkwürdige Geometrie“ [Hilbert in Hallet & Ulrich 2004, p. 566].
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(1) The four operations are valid and the exponentiation of 2 is de-
fined:

�2 = a0t
2n + 2a0a1t

2n+1 + � � � ;
(2) � > 0 if and only if a0 > 0 and � < 0 if and only if a0 < 0;
(3) from the second point it follows that:

if �� �0 > 0 then � > �0;

if �� �0 < 0 then � < �0:

Then, from 2) and 3) it follows that the axiom of order is valid but
Archimedes’ axiom fails. For let us consider a number of the system mt�a,
where a and m are positive real numbers. Then mt � a = �at0 + mt1 < 0
and so mt < a . Therefore, having fixed t and a; it is impossible to find m
such that mt > a [Hilbert in Hallet & Ulrich 2004, pp. 564-565].

To construct a semi-Euclidean geometry, Hilbert considered the “inte-
ger” numbers of the above system, that is the numbers of the type:

� = a0t
n + a1t

n+1 + � � � ;

where n � 0, and then constructed over this number system an analytical
geometry in which the points are the pairs (x; y), with x and y integer num-
bers, and the lines are the linear equations ux + vy + w = 0 through two
points with integer coordinates.

Archimedes’ axiom is not valid in this geometry, since it is not valid in
the constructed number system and the axioms I (of connection), II (of
order) and III (of congruence) are valid. Hilbert also showed, as follows,
that the parallel axiom is not valid; he considered the two lines

tx+ y = 1 and � tx+ y = 1:

These lines pass, respectively, through the points (0; 1), (1; 1� t) and the
points (0; 1), (1; 1 + t) which are points of the geometry. These lines in-
tersect the x axis, respectively, in the points

�
1
t ; 0

�
and

�
� 1t ; 0

�
which are

not points of our geometry. Therefore, the parallel axiom fails (see Fig. 3)
[Hilbert in Hallet & Ulrich 2004, pp. 566–567].

On the contrary, the theorem on the sum of the inner angles of a trian-
gle is valid in this geometry, as Hilbert remarked:

“On the contrary the angle sum of every triangle of our geometry is 2R” 44

[Hilbert in Hallet & Ulrich 2004, p. 567].

44 „Dagegen ist die Winkelsumme eines jeden Dreieckes unserer Geometrie 2R“.
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(0,1)

Figure 3.

To show this, Hilbert remarked that the angles of this geometry are de-
fined by the rotation:

x0 =
a

p
a2 + b2

x� b
p

a2 + b2
y;

y0 =
b

p
a2 + b2

x+
a

p
a2 + b2

y;

and that two lines are parallel if one is mapped into the other by the fol-
lowing transformation:

x0 = x+ a;

y0 = y + b:

Hilbert concluded thus:

“Then the internal alternate angles are equal to each other, which arise when
two parallel lines are intersected by a transversal line; therefore Euclid’s proof of
the sum of the inner angles of a triangle is valid” 45 [Hilbert in Hallet & Ulrich
2004, p. 567].

45 „Dann sind offenbar die Wechselwinkel einander gleich,welche beim Schnitte von 2 unserer
„Parallelen“ mit einer dritten Geraden entstehen; es gilt also auch der Euklidische Beweis für die
Winkelsumme im Dreicke“.
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5. THE PRINZIPIEN DER GEOMETRIE OF ENRIQUES

In 1907 Federigo Enriques (1871-1946) published in the Enzyclopaedie
der mathematischen Wissenschaften the article “Principien der Geometrie” 46.
The article was planned after 1892 and the author continued to work on
it until its publication. In this article, Enriques was inspired by the ideas
of Klein, finding in him an authoritative and precious interlocutor 47.
The article puts together the results on the foundations of geometry ob-
tained until then; it is divided in seven chapters and the last of them is on
non-Archimedean geometry. Moreover, the author distinguishes “the ele-
mentary orientation” 48, or questions directly deducible by the geometric
properties from “the superior orientation” 49, which is needed to study in
depth questions concerning the “theory of continuum”, the “projective
geometry” and so on. In particular:

“After the presentation of these different orientations, the last chapter re-
ports on the new developments, which, by abstraction from the common con-
cept of continuum, have given rise to the construction of non-Archimedean ge-
ometries” 50 [Enriques 1907, p. 15].

Enriques’ point of view on geometry emerges from the previous con-
siderations: Geometry is a science about physical or intuitive facts and its
results, logically established, must not be considered as a mature achieve-
ment until they can be understood intuitively [Enriques 1900].

In fact, the author emphasizes the difference between the so-called “ele-
mentary” questions and the “advanced” ones, evidencing the not immedi-
ate intuitive understanding of these last ones. Enriques, in the “elementary
questions”, devoted a paragraph to “continuity and Archimedes’ axiom”
in which he explained the postulates of continuity of Dedekind, Cantor
and Weierstrass, as well as the relationships between these postulates and
Archimedes’ axiom. Moreover, he described Veronese’s geometric model
of non-Archimedean geometry and exposed, as Schoenflies [Schoenflies
1906] did, the difference between Veronese’s and Dedekind’s definitions
of continuity:

46 A French translation has been published in 1911 in Encyclopédie des sciences mathe-
matiques [Enriques 1911].
47 See [Bottazzini 2001].
48 “die elementare Richtung”
49 “die höhere Richtung”
50 „Nach der Darstellung dieser verschiedenen Richtungen berichtet der letzte Abschnitt über
die neuen Entwicklungen, die durch Abstraktion von dem gewöhnlichen Begriffe des Kontinu-
ums zur Konstruction der nicht-Archimedischen Geometrien geführt haben.“
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“The difference between Cantor and Dedekind’s concept of continuity and
Veronese’s one can be presented as follows. Divide all the points of a segment
OM in accordance with 20) [Dedekind’s continuity] in two classes namely M 0

and M 00 [that is in two non intersecting classes such that O belongs to the first
class, M to the second, every point of the segment belongs to one of the two
classes and at the end, every point of the first class belongs to a segment which
joins O with a point of the second class.], then we can have four cases:
(1) M 0 has a last point, A0 , and M 00 has a first point, A00 (we have a “jump”);
(2) M 0 has a last point A0 , M 00 does not have a first point;
(3) M 0 does not have a last point, M 00 has a first point A00 ;
(4) neither M 0 has a last point, nor M 00 has a first point (we have a “gap”).

Dedekind’s conception of continuity excludes the existence of jumps as well
as of gaps. Veronese’s conception excludes the existence of jumps, but that of
“gaps” only under specific conditions” 51 [Enriques 1907, p. 38].

Note that Enriques gave to Veronese’s conception of continuity the
same importance than to Cantor’s and Dedekind’s axioms.

The last chapter of the Prinzipien is devoted, as already said, to non-
Archimedean geometry. It is divided into six paragraphs: Introduction;
The one dimension continuum of superior kind; Veronese’s ideas; Non-
Archimedean projective geometry; non-Archimedean Euclidean geom-
etry; non-Archimedean development about the theory of parallels [En-
riques 1907]. Enriques, in the second paragraph, reported on the results
in non-Archimedean geometry obtained in the period from the study of
the angle of contingency (that is the angle between a curve and its tangent
or the angle between two curves) to the models of Veronese, Levi Civita
and Hilbert [Enriques 1907, pp. 117-120]. In the third paragraph he ex-
posed the ideas of Veronese on non-Archimedean geometry at more than
one dimension [Enriques 1907, pp. 121-122]. In the fourth paragraph he
spoke about the relationships between Pappus’ and Desargues’ theorems
and Archimedes’ axiom [Enriques 1907, pp. 122-124] and in the fifth
paragraph he dealt with Hilbert’s in depth study of non-Archimedean
Euclidean geometry [Enriques 1907, pp. 124-126]. Finally, Enriques, in

51 „Der Unterschied zwischen dem Cantor-Dedekindschen und dem Veroneseschen Stetigkeits-
begriff kann man auch folgendermaßen formulieren.
Werden alle Punkte einer Strecke OM gemäß 2 0 ) in zwei Klassen M 0 und M 00 geteilt, so sind
folgende vier Fälle möglich:
1) M 0 hat einen letzen Punkt A0 , und M 00 hat einen ersten A00 (es liegt ein Sprung vor)
2) M 0 hat einen letzten Punkt A0 , M 00 keinen ersten;
3) M 0 hat keinen letzten Punkt A0 , M 00 einen ersten A00 ;
4) weder hat M 0 einen letzten, noch M 00 einen ersten Punkt (es liegt eine Lücke vor).
Die Dedekindsche Stetigkeit schließt nun sowohl Lücken wie Sprünge aus. Die Veronesesche
schließt Sprünge immer aus, Lücken aber nur unter gewissen Bedingungen.“
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the last paragraph, exposed Dehn’s results on the relationships between
Saccheri’s or Legendre’s theorems and Archimedes’ axiom [Enriques
1907, pp. 126-128].

It emerges, from the previous summary that Enriques dealt exhaustively
with all the results obtained before 1907 on non-Archimedean geometry,
but did surprisingly not quote the results 52 of his student Bonola 53 on Sac-
cheri’s theorem. Perhaps, Enriques considered Bonola’s results on Legen-
dre’s theorem too elementary and not sufficiently original [Amaldi 1911,
p. 149].

6. BONOLA’S RESEARCH ON SACCHERI’S THEOREM

Roberto Bonola was born in 1874 in Bologna and died there prema-
turely in 1911. He graduated in Mathematics in 1898 under the supervi-
sion of Enriques, who choose him as his assistant. In 1900 he became a
teacher of mathematics in schools for girls, first in Petralia Sottana, then
in Pavia, where he spent the best years of his short life. In 1902 he became
assistant to the course of Calculus at the University of Pavia and in 1904
he gave lectures on the Foundations of Geometry. Moreover, from 1904 to
1907, he taught a mathematics course for Chemistry and Natural Science
students. In 1909 he obtained the “Libera Docenza” of Projective Geometry
and in 1910 he became Ordinary Professor on the Regio Istituto Superiore di
Magistero femminile in Rome. He was seriously sick since 1900 and he died
while he established in Rome [Amaldi 1911].

We quote Amaldi’s description of Bonola’s character:

“[Bonola’s activity] was cut off in the most pleasant and promising period,
an activity nobly prepared to produce works in the meditation of a tireless work,
in the fervent cult of the purest ideals. Roberto Bonola did not experience the
impatience of quick success, he did not sacrifice to any kind of calculation, even
the noblest, the free expression of his intellectual aspirations; but he picked up
all the energies of his mind in an intense internal life, pursuing tirelessly his
assiduous tendency to widen and raise the sphere of his thought” 54 [Amaldi
1911, p. 145].

52 Enriques did not quote either Bonola’s result on Saccheri’s theorem in the
French translation [Enriques 1911].
53 Enriques quoted Bonola in the paragraph regarding the Parallel axiom [Enriques
1907, pp. 39-40]
54 “Si troncava così, nell’ora più lieta e più promettente, una attività nobilmente preparata
alle opere feconde nel raccoglimento di un lavoro indefesso, nel culto fervido di purissimi ideali.
Roberto Bonola non conobbe le impazienze dei rapidi successi, non sacrificò ad alcuna specie di
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Bonola was among the very few Italians who were deeply interested
in Dehn’s work. At the time, he was working under the supervision of
Enriques on non-Euclidean geometry from an historical point of view
[Bonola 1906], which can be considered his main work:

“The high level that he has been able to reach is proved by the interest that
his historical and critical studies raised among the mathematicians of all the
world, so that his main work has been translated into German, into English and
also into Russian” 55 [Enriques in Viti 1911, p. 80].

Bonola was thus deeply interested in understanding the role of
Archimedes’ axiom in the proof of Saccheri’s and Legendre’s theorems.
In this work [Bonola 1905], he demonstrated, in a direct way without the
use of Archimedes’ axiom, Saccheri’s theorem on the sum of the inner
angles of a triangle: 56

“This note aims at giving a direct and elementary proof of the result by Dehn,
that is of the proof of Saccheri’s theorem, without the use of Archimedes’ ax-
iom” 57 [Bonola 1905, p. 652].

Bonola shares his master’s vision of geometry as a deeply intuitive disci-
pline. Thus, only a direct proof could really satisfy our intuitive vision:

“The way followed by Dehn to prove, without Archimedes’ axiom, Saccheri’s
theorem is very elegant and logically complete. Geometrical intuition, however,
needed a direct proof, that is a proof without those formal systems constructed
on abstract concepts, that only formally satisfy the geometrical properties” 58

[Bonola 1905, p. 652].

His starting point was the research of Father Saccheri [Saccheri 1733]
on Euclid’s fifth axiom. He considered the birectangular isosceles quadri-
lateral ABCD (B̂ = D̂ = 1 right angle and AB = CD), that is now called the

calcolo, fosse pure elevato, il libero estrinsecarsi delle sue aspirazioni intellettuali; ma tutte rac-
colse le energie dello spirito in una intensa vita interiore, perseguendo infaticatamente l’assidua
sua tendenza ad allargare e ad innalzare la sfera del suo pensiero.”
55 “L’altezza che Egli ha saputo raggiungere è provata dall’interesse che I suoi studi storico-
critici destarono presso i matematici di tutto il mondo, onde il suo trattato principale è tradotto
in tedesco, in inglese e fin anco in Russo.”
56 Bonola called Saccheri’s theorem the second theorem of Legendre.
57 “La presente nota ha per iscopo una dimostrazione diretta ed elementare del risultato di
Dehn, cioè del teorema di Saccheri, indipendentemente dall’ipotesi archimedea.”
58 “Il metodo seguito da Dehn, per dimostrare indipendentemente dal Postulato di Archimede
il teorema di Saccheri, è molto elegante e soddisfa pienamente dal punto di vista logico. Il senso
geometrico (intuitivo) per essere soddisfatto, richiede però una dimostrazione diretta, una di-
mostrazione cioè che bandisca l’uso di quei sistemi convenzionali, edificati su concetti astratti,
che solo formalmente soddisfano alle proprietà geometriche destinate a surrogare.”
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Saccheri quadrilateral and distinguished the following three cases [Bonola
1905, p. 650]:

(1) Hypothesis of the right angle, such that: Â = Ĉ = 1 right angle.
(2) Hypothesis of the acute angle, such that: Â = Ĉ = 1 acute angle.
(3) Hypothesis of the obtuse angle, such that: Â = Ĉ = 1 obtuse angle.

He then demonstrated Saccheri’s theorem: “If one of the three previ-
ous hypotheses is valid in a Saccheri quadrilateral, this hypothesis is valid in
every Saccheri quadrilateral” without using Archimedes’ axiom, and since
Saccheri’s theorem on the sum of the inner angles of a triangle is a conse-
quence of this theorem, the aim is achieved [Bonola 1905].

To prove Saccheri’s theorem, Bonola considered a plane in which the
axioms of connection, order, and congruence are satisfied, distinguishing
two cases: “the closed line” and “the open line”. We will briefly outline
Bonola’s argument.

6.1. The closed line

Bonola first noticed that the hypothesis of “the closed line” is equiva-
lent to that of “every two lines intersecting in one point“ and that follow-
ing the method of the Grundlagen it is possible to prove that every two right
angles are equal and thus to prove the congruence theorems of triangles.
Since in this plane the theorem “all lines perpendicular to a given line are
concurrent” is valid, the polarity between points and lines is defined (ev-
ery given line corresponds to the point of intersection of the perpendicu-
lar lines to the given line and vice versa), he called two corresponding el-
ements “pole and polar line”. Two lines perpendicular to a line are called
“conjugate lines”, and two points that divide the line in two equal parts are
called “conjugate points”. He then defined two segments as supplementary
if their sum is equal to the whole line, and he named “half-line” each of the
two equal parts in which a line is divided by the “conjugate points”. In this
plane, a triangle such that every vertex is a pole of the opposite side has
every angle equal to a right angle and every side equal to a half-line. Such
a triangle was named PQR. [Bonola 1905, pp. 652–653].

In this geometry, Bonola showed the following theorems:

“If in a triangle ABC the side AB is smaller than the half-line and the two ad-
jacent angles to this side are both obtuse or one right and the other one obtuse,
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then the two sides AC and BC are both greater than the half-line” 59 [Bonola
1905, p. 654].

“A triangle the sides of which are smaller than the half-line has two acute
angles” 60 [Bonola 1905, p. 654].

“A triangle ABC the sides of which are smaller than the half-line, belongs to
a triangular zone PQR” 61 [Bonola 1905, p. 654].

Bonola called a triangle the sides of which are smaller than the half-line
a normal triangle. Moreover, he noticed that in the normal triangle Euclid’s
prop. XVI 62 is valid: “Every external angle of a normal triangle is greater
than every opposite inner angle”, since Euclid’s proof is valid in the case
of the normal triangle. Therefore, as Bonola noticed, the following conse-
quences are valid:

“In every normal triangle the sum of two angles is smaller than two right an-
gles” [Euclide d’Alexandrie 1994, XVII].

“In every normal triangle, the greatest angle is opposite to the greatest side
[Euclide d’Alexandrie 1994, XVIII] and vice versa” [Euclide d’Alexandrie 1994,
XIX].

“In every normal triangle one side is smaller than the sum of the other sides”
[Euclide d’Alexandrie 1994, XX].

“If two normal triangles have two equal sides, respectively, and the included
angles are not equal, then the greatest angle is opposite to the greatest side
[Euclide d’Alexandrie 1994, XXIV] and vice versa” [Euclide d’Alexandrie
1994, XXV].

After these considerations Bonola showed that Saccheri’s theorem (in
the case of the hypothesis of the obtuse angle) is valid for a normal triangle
and, since every non-normal triangle can be decomposed in a finite num-
ber of normal triangles, Saccheri’s theorem is valid [Bonola 1905, pp. 655-
656].

He first demonstrated the following theorem:

“Saccheri’s hypothesis of the obtuse angle is valid in every Saccheri quadri-
lateral” 63 [Bonola 1905, p. 655].

59 “Se in un triangolo ABC il lato AB è minore della semiretta e i due angoli adiacenti a questo
lato sono entrambi ottusi ovvero uno retto e l’altro ottuso, i due lati AC , BC sono entrambi mag-
giori della semiretta.”
60 “Un triangolo coi lati minori della semiretta ha due angoli acuti.”
61 “Un triangolo ABC , coi lati minori di mezza retta, appartiene ad una regione triangolare
PQR.”
62 Here and in the following pages, we refer to propositions of the first book of Eu-
clid’s Elements.
63 “In ogni quadrilatero birettangolo isoscele (convesso) vale l’ipotesi dell’angolo ottuso di Sac-
cheri.”
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He fixed a point S inside the triangle PQR and projected this point from
the vertex P and Q on the opposite sides, obtaining points H and K . The
quadrilateral RKSH has three right angles; the fourth angle, with vertex in
S , is obtuse, since it is outside the right normal triangle PSK (see Fig. 4).
Moreover, PS > PK and QS > QH and since the segments PH; PR;QK ,
and QR are respectively equal to the half-line, SH < KR and SK < HR. He
also considered the quadrilateral SHRK as half of a birectangular isosceles
quadrilateral with vertex H; S and the symmetric points H 0S0 with respect
to the line PR. The quadrilateral SHH 0S0 has the angles Ŝ and Ŝ0 obtuse,
and the hypothesis of the obtuse angle is therefore valid [Bonola 1905, p.
655].

Moreover, since SK < HR, SS0 < HH 0 , then: “In every Saccheri quadri-
lateral the side adjacent to the two right angles is greater than the opposite
side [Saccheri 1733, III]” 64 [Bonola 1905, p. 655].

After this consideration, Bonola supposed that the basis HH’ of the
quadrilateral is less than the half-line (see Fig. 5). Thus, the quadrilateral
is contained in the triangle PQR and the diagonal HS0 is less than the
half-line; comparing the normal triangle HSS0 and S0HH 0 , HS = H 0S0 ,
HS0 = HS0 , and SS0 < HH 0 .

64 “In ogni quadrilatero birettangolo isoscele il lato comune ai due angoli retti è maggiore del
lato opposto [Saccheri 1733, III]”.
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Therefore, [SHS0 < [HS0H 0 and summing on the other side the angle
[S0HH 0 we obtain

[SHS0 + [S0HH 0 < [HS0H 0 + [S0HH 0

Since the sum of the first side is a right angle, Bonola showed that:

“The sum of the two acute angles of every normal right triangle is greater
than a right angle and then the sum of the three angles is greater than two right
angles” 65 [Bonola 1905, p. 656].

Since every normal triangle is sum of two right normal triangles, the the-
orem is proved.

6.2. The open line

Bonola proceeded by demonstrating Saccheri’s theorem on the Sac-
cheri quadrilateral and concluded by remarking that Saccheri’s theorem
on the sum of the inner angles of a triangle is a consequence of the
following Saccheri theorems, since Saccheri’s proofs do not depend on
Archimedes’ axiom:

“The sum of the acute angles of every right triangle is equal to, less than, or
greater than one right angle if the hypothesis of the right angle, the acute angle,
and the obtuse angle respectively is valid” [Saccheri 1733, Prop. IX].

“If there exists a triangle in which the sum of the inner angles is equal to,
less than, or greater than two right angles, then the hypothesis of the right angle,
the acute angle, and the obtuse angle respectively is valid” [Saccheri 1733, Prop.
XV].

65 “In ogni triangolo rettangolo normale, la somma dei due angoli acuti è maggiore di un
angolo retto, e conseguentemente la somma dei tre angoli maggiore di due angoli retti”.
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In this case all the theorems before the 29th proposition of Euclid’s Ele-
ments are valid and following Hilbert’s method in the Grundlagen it is possi-
ble to prove that two right angles are always equal. Bonola considered the
figure constituted by a line BD = s, by two segments AB and CD equal
and perpendicular to s, and by the line AC = r . Since AB and CD are in
the same side respect to s, the lines s and r do not intersect. Moreover, the
two angles dBAC and dDCA are equal. He considered on r the points E (be-
tween A and C) and E0 (not between A and C) and called F and F 0 the
intersection points between s and the perpendicular through E and E0 to
s, respectively (see Fig. 6 and Fig. 7). He then showed:

“1o) If

8
<

:

EF = AB
or

E0F 0 = AB
then the angles dBAC , dDCA are right angles.

2o) If

8
<

:

EF < AB
or

E0F 0 > AB
then the angles dBAC , dDCA are acute angles.
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3o) If

8
<

:

EF > AB
or

E0F 0 < AB
then the angles dBAC , dDCA are obtuse angles” [Bonola 1905,

p. 657].

In particular, in case 1o), from the hypothesis EF = AB it follows that
dBAE = dFEA and dFEC = dDCE . Therefore, dFEA = dFEC and since they are
adjacent they will be right angles. Therefore, the angles dBAC , dDCA are be-
tween right angles. The same holds for the hypothesis E0F 0 = AB [Bonola
1905, p. 657].

In case 2o), let EF < AB . Bonola extended the segment EF until FI =
AB and joined A and C to I . The following relations are valid: dBAI =dFIA,
dFIC = dDCI . Moreover, from the theorem about the outside angle of a tri-
angle, dFIA +dFIC < dFEA + dFEC = two right angles. Bonola now noticed
that from the figure (See Fig. 6) it follows that dBAC + dDCA < dBAI + dDCI
and from this relation and the previous one it follows that dBAC + dDCA <
dFIA + dFIC < two right angles. Therefore, dBAC < one right angle. Simi-
lar considerations are valid for the hypothesis E0F 0 > AB [Bonola 1905, p.
658].

In case 3o), let EF > AB . He took FI = AB on the segment EF and
joined A and C to I . The following relations are valid: dBAI =dFIA, dFIC =
dDCI . Moreover, from the theorem about the outside angle of a triangle,
dFIA+dFIC > dFEA+dFEC = two right angles. Bonola now noticed that from
the figure (See Fig. 7) it follows that dBAC+dDCA > dBAI+dDCI and from this
relation and the previous one it follows that dBAC+dDCA > dFIA+dFIC > two
right angles. Therefore, dBAC > one right angle. Similar considerations are
valid for the hypothesis E0F 0 > AB . [Bonola 1905, p. 659].

Bonola used a reductio ad absurdum in order to show that the inverse of
the previous theorem is valid, i.e.:

“1o) If dBAC = dDCA = one right angle, then E0F 0 = AB = EF .
2o) If dBAC = dDCA < one right angle, then E0F 0 > AB > EF .
3o) If dBAC = dDCA > one right angle, then E0F 0 < AB < EF ” [Bonola 1905,

p. 660].

He also considered the middle points M and N of the segments AC and
BD and thus obtained the following proposition, as an immediate conse-
quence of the previous result:

“1o) If dBAC = dDCA = one right angle, then MN = AB .
2o) If dBAC = dDCA < one right angle, then MN < AB .
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3o) If dBAC = dDCA > one right angle, then MN > AB” [Bonola 1905, p. 660].

Finally, by reductio ad absurdum, bonola demonstrated the following
proposition:

“1o) If dBAC = dDCA = one right angle, then
[FEM
[F 0E0M

)
= one right angle.

2o) If dBAC = dDCA < one right angle, then
[FEM
[F 0E0M

)
< one right angle.

3o) If dBAC = dDCA > one right angle, then
[FEM
[F 0E0M

)
> one right angle”

[Bonola 1905, pp. 660-661].

Bonola then considered a point P on the line MN , not between M and
N (these considerations are valid also if P is between M and N ), the line
RP perpendicular to the line MN , the line RK perpendicular to the line
s in K , and the point H of intersection between RK and r (see Fig. 8).

s

r
A C

B D

M

N

PR

H

K

Figure 8.

“1o) If [BAM = one right angle, then
[KHM
[KRP

)
= one right angle.

2o) If [BAM < one right angle, then
[KHM
[KRP

)
< one right angle.

3o) If [BAM > one right angle, then
[KHM
[KRP

)
> one right angle” [Bonola 1905,

p. 661].

This is Saccheri’s theorem on the Saccheri quadrilateral.
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7. CONCLUSIONS

In this paper we have shown that the point of view of Hilbert’s Grundla-
gen has been completed by Max Dehn with regard to Archimedes’ axiom.
Dehn was not primarily interested in finding minimal sets of axioms or in
separating the postulates of a given discipline into sets of weaker ones and
then proving their independence and completeness. He was interested in
finding solid and simple foundations for a theory, in particular for projec-
tive geometry:

“The aim of the foundations of projective geometry corresponds to that of
metric geometry: to transform the projective relations (collineations) into alge-
braic relations” 66 [Dehn & Pasch 1926, pp. 213-214].

Dehn was thus interested precisely in the mutual interrelations between
algebraic structures and geometric relations. This kind of approach was
to become a real “research program”, for Dehn inspired many students.
In particular, two students, Ruth Moufang and Walter Wagner, worked on
the foundations of geometry in following Dehn’s approach. Moufang con-
structed non-Desarguesian planes by studying the geometric properties
through algebraic properties, and conversely [Moufang 1933]; Wagner
answered the question, posed by Dehn [Dehn 1922], if there exist in-
cidence theorems which do not imply the validity of Pappus’ theorem
but do imply the theorem of Desargues without being derivable from it
[Wagner 1937].

The study of the logical relationships/interdependence between the
axioms in the Grundlagen was the starting point of new research in geom-
etry. Showing the independence of one axiom from the others proceeds
by exhibiting a geometric model that satisfies all the axioms except the
“independent” one. The “non-geometries” were thus born. For example,
the “non-Desarguesian” geometries derived from the study of the inde-
pendence of Desargues’ theorem from the plane axioms, and the “non-
Archimedean” geometries from that of the independence of Archimedes’
axiom from the other ones. The study of these new geometries also led to
a “modern” method of classification of algebraic and geometric structures.

In that context the study of non-Archimedean geometries, which was
pursued by Veronese in Italy and by Hilbert and Dehn in Germany, was

66 „Das Ziel bei der Begründung der projectiven Geometrie ist ganz entsprechend wie bei der
metrischen Geometrie das, die projectiven Beziehungen (die Kollineationen) in algebraische
Beziehungen zu verwandeln.“
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tightly linked with the study of algebraic structures (like p-adic numbers),
also much used in number theory, algebraic geometry, and physics. 67

A comparison between Veronese’s approach and of Dehn’s is far beyond
the scope of this paper. We may note that Veronese’s pioneering work did
not give rise to a real mathematical school, but to a lasting debate on the
subject of non-Archimedean geometry, also involving Italian geometers 68.
The controversy between Veronese and Peano about the geometry of n-
dimensional space and about non-Archimedean geometry is well known 69.

Concerning the use of intuition in geometry, we cannot say that the
point of view of Enriques and Veronese are the same: Enriques admits
completely the scientific validity of Hilbert’s method [Enriques 1907] and
adds to it (essentially for didactical reasons) a search for the psychological
and physiological origin of the axioms. For Veronese instead, the use of
intuition is strongly connected to an empiricist conception for which:

“Geometry is the most exact experimental science, because the objects out-
side thought, that we need for the formulation of axioms, are replaced in our
mind by abstract forms, and therefore the truths of the objects can be demon-
strated by combining forms independently obtained from what happens out-
side” 70 [Veronese 1891, p. 8].

Consequently, the abstraction can be used only to extend the empiri-
cally determined axioms.

Bonola’s work was more strongly influenced by Dehn’s and Hilbert’s ap-
proaches than by that of Veronese. In fact, since in his research he was prin-
cipally concerned with non-Euclidean geometries, he was above all inter-
ested in studying the relationships between Archimedes’ axiom and Sac-
cheri’s theorem. Besides, it was important for him to obtain Dehn’s result
in a more elementary fashion, much in the Enriquesian sense of using ax-
ioms and methods for didactic purposes: “in order to establish in a simple
and luminous way the observation of Dehn, concerning the independence
of Saccheri’s theorem from Archimedes’ axiom” 71 [Amaldi 1911, p. 149].

67 In fact, there exists a new approach to quantum gravity which is based on non-
Archimedean geometry, in particular on a geometry on the p-adic. See for example
[Vladimirov et al. 1994].
68 See Introduction.
69 See [Galuzzi 1980], [Freguglia 1998], [Manara 1986].
70 “La scienza sperimentale più esatta è la geometria, perché gli oggetti fuori del pensiero, che
servono alla determinazione degli assiomi, vengono sostituiti nella nostra mente da forme as-
tratte, e quindi le verità degli oggetti si dimostrano colla combinazione delle forme già ottenute
indipendentemente da ciò che succede fuori.”
71 “A stabilire per via semplice e luminosa la osservazione del Dehn, relativa all’indipendenza
dal postulato di Archimede del teorema fondamentale del Saccheri.”
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In this sense, Bonola followed Enriques’ point of view:

“Remaining in the field of Geometry, it must not be forgotten that such sci-
ence is science about physical or intuitive facts that we wish to consider. Logical
formalism must be conceived not as an aim per se but as an apt means to develop
and to advance intuitive faculties. The same results, logically established, must
not be considered a mature achievement until they can be intuitively under-
stood. But in the principles, intuitive evidence must shine luminously [.. .]” 72

[Enriques 1900, p. 12].

It follows from the previous considerations that Enriques (and his stu-
dent Bonola) considered the foundations of geometry as a part of elemen-
tary mathematics, while the approach of Hilbert and Dehn is founded on
the study of the interrelations between algebraic properties and geometric
properties. For the latter, the question of the foundations is a fundamental
part of research in modern mathematics. 73 In this sense Italian Mathemati-
cians 74, in the subsequent years, were not able to make a place for them-
selves in the international developments on foundations of mathematics
which mainly followed the way indicated by Hilbert and Dehn.
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esposti in forma elementare. Lezioni per la Scuola di magistero in Matematica,
Padova: Tipografia del Seminario, 1891.

[1892] Osservazioni sopra una dimostrazione contro il segmento infinites-
imo attuale, Rendiconti del Circolo Matematico di Palermo, 6 (1892),
pp. 73–76.

[1896] Intorno ad alcune osservazioni sui segmenti infiniti o infinitesimi at-
tuali, Math. Ann., 47(2–3) (1896), pp. 423–432.
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[1992] The Apprenticeship of a Mathematician, Basel: Birkhäuser, 1992.
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