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2 MATTHEY (M.), OYONO-OYONO (H.) & PITSCH (W.)

Résumé (Invariance homotopique des signatures supérieures et groupes fondamentaux
des variétés de dimension 3)

Nous démontrons que pour des variétés fermées et orientées les signatures qui
proviennent des groupes fondamentaux d’une large classe de variétés orientables de
dimension 3 sont des invariants homotopiques. Cette classe, que nous décrivons soi-
gneusement, contient en particulier les variétés géométriques par morceaux au sens
de Thurston. Si la conjecture de géométrisation de Thurston s’avère vraie cette classe
coïncide alors avec celle des groupes fondamentaux de variétés de dimension 3 orien-
tables. Plus précisément nous démontrons que tous les groupes dans cette classe satis-
font la conjecture de Baum-Connes avec coefficients. Nous discutons également le cas
non-orientable.

1. Introduction and statement of the main results

We assume all manifolds to be non-empty, pointed (i.e. we fix a base-point),
second countable, Hausdorff and smooth. Given a closed connected oriented
manifold Mm of dimension m, let [M ] denote either orientation classes in
Hm(M ; Q) and in Hm(M ; Z), and let LM ∈ H4∗(M ; Q) be the Hirzebruch
L-class of M , which is defined as a suitable rational polynomial in the Pontr-
jagin classes of M (see [23, pp. 11–12] or [37, Ex. III.11.15]). Denote the usual
Kronecker pairing for M , with rational coefficients, by

〈 . , . 〉 : H∗(M ; Q)×H∗(M ; Q) −→ Q.

If M is of dimension m = 4k, then the Hirzebruch Signature Theorem (see [23,
Thm. 8.2.2] or [37, p. 233]) says that the rational number 〈LM , [M ]〉 is the
signature of the cup product quadratic form

H2k(M ; Z)⊗H2k(M ; Z) −→ H4k(M ; Z) = Z·[M ] ∼= Z, (x, y) 7−→ x ∪ y.

As a consequence, 〈LM , [M ]〉 is an integer and an oriented homotopy invari-
ant of M (among closed connected oriented manifolds, hence of the same
dimension 4k). In 1965, S.P. Novikov proposed the following conjecture, now
known as the Novikov Conjecture or as the Novikov Higher Signature Con-
jecture: Let G be a discrete group, let BG be its classifying space, and let
α ∈ H∗(BG; Q) ∼= H∗(G; Q) be a prescribed rational cohomology class of BG.
Now, for a closed connected oriented manifold Mm (with m arbitrary) and
for a continuous map f : M −→ BG, consider the α-higher signature (coming
from G)

signG

α(M,f) :=
〈
f∗(α) ∪ LM , [M ]

〉
∈ Q,
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HOMOTOPY INVARIANCE OF HIGHER SIGNATURES AND 3-MANIFOLD GROUPS 3

where f∗ : H∗(BG; Q) −→ H∗(M ; Q) is induced by f . Then, the conjecture
predicts that the rational number signG

α(M,f) is an oriented homotopy invari-
ant of the pair (M,f), in the precise sense that signG

α(N, g) = signG

α(M,f) when-
ever Nn is a second closed connected oriented manifold equipped with a con-
tinuous map g : N −→ BG, and such that there exists a homotopy equivalence
h : M

'−→ N preserving the orientation, that is, h∗[M ] = [N ] in Hm(N ; Q)

(automatically, m = n), and with g ◦ h ' f , i.e. the diagram

commutes up to homotopy, as indicated. If, for a given group G, this holds for
every rational cohomology class α ∈ H∗(BG; Q), then one says that G verifies
the Novikov Conjecture. Of particular interest are the “self higher signatures”
of a closed connected oriented manifold M , namely those corresponding to the
case G := π1(M), for some chosen cohomology class α ∈ H∗(BG; Q), with, as
map f : M −→ BG, ‘the’ classifying map of the universal covering space M̃
ofM (up to homotopy). Special attention is deserved by the situation whereM
is aspherical, in which case one can take M as a model for BG, and f := idM .

Now, fix a discrete group G (countable, say) and let CG be the complex
group algebra of G. Then CG is equipped with an involution

λg1g1 + · · ·+ λgk
gk 7−→ λ̄g1g

−1
1 + · · ·+ λ̄gk

g−1
k

and any unitary representation U of G on a Hilbert space HU gives rise to
an involutive representation πU of CG on HU . The maximal C∗-algebra of G,
denoted by C∗G is then the completion of CG with respect to the norm

‖•‖max := sup
U

∥∥πU (•)
∥∥
HU
,

where U runs through all unitary representations of G. On the other hand,
the reduced C∗-algebra of G, denoted by C∗rG, is by definition the completion
of CG with respect to the norm

‖•‖r :=
∥∥πλ(•)

∥∥
`2(G)

,

where λ is the left regular representation, i.e the representation of G on `2(G)

given by left translations. Notice that we have an obvious surjective map

λG : C∗G−−� C∗rG.

Let K∗(−) and Ktop
∗ (−) denote respectively complex topological K-

homology with compact supports for spaces and analytical K-theory for
complex Banach algebras. In [42], Miščenko defines a group homomorphism

ν̃G∗ : K∗(BG) −→ Ktop
∗ (C∗G)
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4 MATTHEY (M.), OYONO-OYONO (H.) & PITSCH (W.)

and shows that if ν̃G∗ is rationally injective, i.e. injective after tensoring with Q,
then the Novikov Conjecture holds for G. The composite

νG∗ : K∗(BG)
ν̃G
∗
−−→ Ktop

∗ (C∗G)
λG
∗

−−→ Ktop
∗ (C∗rG)

is called the Novikov assembly map and the so-called Strong Novikov Conjecture
for G is the statement that νG∗ is rationally injective, and this, again, implies
the usual Novikov Conjecture. Next, we explain the connection with the Baum-
Connes Conjecture. Let EG denote the universal example for proper actions
of G (in other words, up to G-homotopy, the classifying space for the family of
finite subgroups of G); by definition, this is a locally compact Hausdorff proper
(left, say) G-space such that for any locally compact Hausdorff G-space X,
there exists a G-map from X to EG, and any two G-maps from X to EG are
G-homotopic. For instance, the universal covering space EG := B̃G of BG is
a model for EG when G is torsion-free; the point pt is a model for EG when G
is finite; if G is a discrete subgroup of an almost connected Lie group Γ with
maximal compact subgroup K, then Γ/K is a model for EG. Suppose further
given a separable G-C∗-algebra A. Then, there is a suitable G-equivariant K-
homology group KG

∗ (EG;A) and a specific group homomorphism, called the
Baum-Connes assembly map with coefficients in A,

µG,A∗ : KG
∗ (EG;A) −→ Ktop

∗ (Aor G),

where A or G is the reduced C∗-crossed product of A by G. The group G is
said to satisfy the Baum-Connes Conjecture With Coefficients if the assembly
map µG,A∗ is an isomorphism for any separable G-C∗-algebra A. If this is at
least known to be fulfilled for the C∗-algebra C with trivial G-action, then
one says that G verifies the Baum-Connes Conjecture (i.e. without mentioning
coefficients). In this special case where A = C with trivial G-action, one has
A or G = C∗rG and KG

∗ (EG;A) = KG
∗ (EG), the G-equivariant K-homology

group with G-compact supports of EG, and the corresponding assembly map
boils down to a map

µG∗ := µG,C∗ : KG
∗ (EG) −→ Ktop

∗ (C∗rG).

This is linked with the Novikov Conjecture as follows. First, since G acts
properly and freely on EG, and since BG ' G\EG, there is a canonical iso-
morphism

K∗(BG) ∼= KG
∗ (EG).

Secondly, since tautologically any proper and free G-action is proper, there is
a G-map EG −→ EG, unique up to G-homotopy, and the induced map

KG
∗ (EG) −→ KG

∗ (EG)
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is known to be rationally injective. Thirdly, the Novikov assembly map νG∗
coincides with the composite map

K∗(BG) ∼= KG
∗ (EG) −→ KG

∗ (EG)
µG
∗

−−→ Ktop
∗ (C∗rG).

It follows that if the group G satisfies the Baum-Connes Conjecture (in par-
ticular, if G verifies the Baum-Connes Conjecture With Coefficients), then the
Strong Novikov Conjecture holds for G, and hence also the original Novikov
Conjecture on higher signatures. If the group G is torsion free, then as we
mentionned before, we can choose EG as a model for the universal example for
proper action and thus, up to the identification betweenK∗(BG) andKG

∗ (EG),
the Baum-Connes and the Novikov assembly maps coincides. At this point, we
shall take the opportunity to explain why these assembly maps have to be val-
ued in the reduced C∗-algebra of G rather than in the maximal one if we expect
surjectivity for the assembly map.

The trivial representation of G induces a morphism π : C∗G→ C and if we
denote by e the neutral element of G, the map

CG 3 λg1g1 + · · ·+ λgk
gk 7−→ λe

extends to a trace tr : C∗G → C factorizing through C∗rG. According to
Atiyah’s Index Theorem for coverings [3] on one side and to the natural-
ity of the assembly map [41] on the other side, the morphisms induced on
K-theory by π and tr should coincide on the range of Miščenko morphism
ν̃G∗ : K∗(BG) −→ Ktop

∗ (C∗G). In consequence, if G is torsion free and has
Kazhdan property (T ), then the class inK-theory of the projector p of C∗G cor-
responding to the projection on invariants can not be in the range of Miščenko
morphism, since π(p) = 1 and tr(p) = 0. In contrast, we shall see in Section 3.1
that, up to Thurston hyperbolization conjecture, the natural map

Ktop
∗ (C∗G)

λG
∗

−−→ Ktop
∗ (C∗rG)

is an isomorphism when G is the fundamental group of a compact orientable
3-manifold. As general references for the Baum-Connes Conjecture and related
topics, let us mention [5], [6], [41], [52].

In this paper, we observe that so much is known about the structure of 3-
manifolds and that the Baum-Connes Conjecture With Coefficients has been
proved for such a large class of groups, that this enables to establish the Baum-
Connes Conjecture With Coefficients for the fundamental group of any compact
orientable 3-manifold “with a piecewise geometric structure”, more precisely to
which the famous Thurston Geometrization Conjecture applies, namely:

Theorem 1.1. — Suppose that the Thurston Hyperbolization Conjecture is
true, as for example if the Thurston Geometrization Conjecture holds. Let G
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6 MATTHEY (M.), OYONO-OYONO (H.) & PITSCH (W.)

be the fundamental group of an orientable 3-manifold, compact or not, with
or without boundary. Then, the Baum-Connes Conjecture With Coefficients
holds for G. In particular, the group G satisfies the Novikov Conjecture, i.e.
higher signatures coming from G are oriented homotopy invariants for closed
connected oriented manifolds of arbitrary dimension.

Remark 1.2. — In Section 2, more details will be given about the Thurston
Geometrization Conjecture and the Thurston Hyperbolization Conjecture (see
Remark 2.1 below).

Remark 1.3. — By recent outstanding results of Perelman, one might expect
to have, in a near future, a complete proof of the Thurston Geometrization
Conjecture, and hence of the Thurston Hyperbolization Conjecture.

In fact, in the compact case, we have a more precise result, independently
of the Thurston Hyperbolization Conjecture:

Theorem 1.4. — Let G be the fundamental group of a compact orientable 3-
manifold M (possibly with boundary), and consider a two-stage decomposition
of the capped-off manifold M̂ of M , firstly, into Kneser’s prime decomposition,
secondly, for each occurring closed irreducible piece with infinite fundamen-
tal group, a Jaco-Shalen-Johannson torus decomposition. Now, consider only
those pieces obtained after the second stage and which are closed, non-Haken,
non-Seifert, non-hyperbolizable and whose fundamental group is infinite. Sup-
pose that the fundamental groups of these very pieces satisfy the Baum-Connes
Conjecture with Coefficients. Then, G verifies the Baum-Connes Conjecture
with Coefficients and the Novikov Conjecture.

Remark 1.5. — Let M be a compact 3-manifold. The capped-off manifold
M̂ of M is obtained from M by capping off with a compact 3-ball each bound-
ary component of M that is diffeomorphic to a 2-sphere, getting this way a
compact 3-manifold M̂ , see [19, p. 25]. Note that M̂ is orientable whenever
M is orientable, and that the inclusion M ↪→ M̂ induces an isomorphism on
fundamental groups.

Remark 1.6. — In Section 2, we will explain Kneser’s and Jaco-Shalen-
Johannson’s decompositions. We will also recall the notions of prime, of
irreducible, of Haken, of Seifert, and of hyperbolizable 3-manifolds. In partic-
ular we will see that the "exotic pieces" in Theorem 1.4 only appear when no
further decomposition is possible after Kneser’s.
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Remark 1.7. — In particular, all “self higher signatures” are oriented homo-
topy invariants for closed connected oriented 3-manifolds to which Theorems 1.1
and 1.4 apply. At this point, it is worth mentioning that all irreducible compact
connected orientable 3-manifolds with infinite fundamental group are aspheri-
cal, as follows from the Sphere Theorem, see [48, p. 483] and [19, Thm. 4.3].

In the non-orientable compact case, we have the following result.

Theorem 1.8. — Let M be a compact non-orientable 3-manifold, and let G
be its fundamental group. Let M1, . . . ,Mp be the irreducible pieces in Kneser’s
(normal) prime decomposition. Suppose, for each i = 1, . . . , p, that one of
the following properties is fulfilled: either Mi is orientable and satisfies the
hypotheses of Theorem 1.4 (as for example if the Thurston Hyperbolization
Conjecture is true); or π1(Mi) is infinite cyclic; or Mi is non-orientable and
without 2-torsion in its fundamental group. Then, the group G satisfies the
Baum-Connes Conjecture With Coefficients and the Novikov Conjecture.

Remark 1.9. — In Section 2, we will explain when a Kneser prime decompo-
sition is called normal (a property guaranteeing its uniqueness).

Remark 1.10. — The Baum-Connes Conjecture With Coefficients, hence the
Novikov Conjecture, is known for the fundamental group of any manifold of
dimension ≤ 2. So, what is done here, is extending this result up to dimen-
sion 3 in the orientable case, modulo the Thurston Hyperbolization Conjecture.
Since, for each n ≥ 4, every finitely presentable group is isomorphic to the fun-
damental group of some closed connected orientable (smooth) n-manifold (see
for instance [13], [38] or [28]), a further extension one dimension up should
certainly be incomparably more difficult and seems to be, by far, out of scope
at the time of writing. At this point, we mention that by an unpublished re-
sult of Connes, Gromov and Moscovici (see however [18]), for closed connected
oriented manifolds of arbitrary dimension, all higher signatures coming from a
discrete group G and corresponding to a cohomology class lying in the subring
of H∗(BG; Q) generated by the classes of degree ≤ 2 are oriented homotopy
invariants; a complete proof is now available in [39, Cor. 0.3].

Remark 1.11. — In Theorems 1.1, 1.4 and 1.8, one does not need to suppose
that the considered 3-manifolds are smooth manifolds, but merely topological
manifolds. Indeed, as is well-known, any (second countable Hausdorff) topolog-
ical manifold of dimension ≤ 3 admits a smooth structure, which is furthermore
unique.
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Remark 1.12. — If it would be known that any countable discrete group G
sitting in a short exact sequence of groups

1→ H −→ G −→ Z/2→ 1,

with H satisfying the Baum-Connes Conjecture With Coefficients, verifies it-
self the Baum-Connes Conjecture With Coefficients, then one could drop the
condition “orientable” in Theorems 1.1 and 1.4 (one could also drop the first oc-
curring assumption of orientability in Theorem 1.13 below). Indeed, there is no
restriction in assuming connectedness of the considered 3-manifold M (which
is compact for 1.4), and in case M is non-orientable, Theorems 1.1 or 1.4 hold
for the orientation covering M of M , which is a regular double covering of M
(and is itself compact for 1.4). One has the fibre sequence S0 →M →M and
therefore a short exact sequence of groups

1→ π1(M) −→ π1(M) −→ Z/2→ 1.

Recall that for a torsion-free discrete group G, the Kaplansky/Idempotent
Conjecture (resp. the Kadison-Kaplansky Conjecture) states that the alge-
bra CG (resp. C∗rG) contains no non-trivial idempotent, i.e. any element ε
satisfying ε = ε2 is equal to 0 or 1.

Theorem 1.13. — Suppose that the Thurston Hyperbolization Conjecture is
true. Then, Kaplansky’s Idempotent Conjecture and the Kadison-Kaplansky
Conjecture hold for any torsion-free fundamental group of an orientable 3-
manifold, as for example for the fundamental group of any compact orientable
3-manifold whose prime factors in Kneser’s prime decomposition all have an
infinite fundamental group.

Remark 1.14. — Of course, there is a analogous statement to Theorem 1.13
for all fundamental groups to which Theorem 1.4 applies, provided they are
torsion-free.

Notice to the reader. — Section 2 reflects the origin of this paper: K-theorists
meeting low-dimensional topologists and learning the ones from the others their
subjects. therefore we shall enter in some detail of the proofs in the hope that
readers from one area will find it usefull as an introdution to the other area.
In contrast Section 3 is much more K-theoretical in nature and uses more
powerfull techniques proper to this area.

During the final stage of writing of the present paper our good friend and
collegue Michel Matthey tragically died. We dedicate this paper to his memory,
to his enthousiasm for sharing his ideas and his love for mathematics.
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2. The proofs

We give here the proofs of Theorems 1.1, 1.4, 1.8 and 1.13. But first we
present a recollection of standard results from the topology and geometry of
3-manifolds. As general references on the subject, let us cite [19], [48], and also
[2], [10], [31], [50].

A 3-manifold M is called prime if it admits no non-trivial connected sum
decomposition, i.e. if M ≈M ′#M ′′, then at least one of M ′ and M ′′ is diffeo-
morphic to S3. The manifold M is said to be irreducible (in the sense of
Hempel [19, p. 28]) if every embedded 2-sphere in M bounds an embedded
compact 3-ball. By [19, Lem. 3.13] a prime 3-manifold is either an S2-bundle
over S1 or irreducible. In the later case, the homotopy exact sequence of the
fiber sequence S2 → M → S1 yields that π1(M) is infinite cyclic; if M is
orientable, then it is diffeomorphic to S1 × S2.

To begin our discussion of the two-stage decomposition, we let M be a com-
pact connected 3-manifold (but not necessarily closed, i.e. the boundary ∂M
may be non-empty). By the Kneser Prime Decomposition Theorem (see [35],
[40], or [19, Thm. 3.15] where the closedness and the orientability of M are
avoided, see pp. 24&32 therein), one can decompose M as a finite connected
sum of compact connected 3-manifolds, say

M ≈M1#M2# · · ·#Mq,

with each Mi prime; we can (and will) further suppose that the decomposition
is normal in the sense of [19, p. 34], i.e. some Mi is diffeomorphic to S1 × S2

if and only if M is orientable. In this case, the decomposition is unique (up
to reordering and diffeomorphism), and, under the extra assumption that M is
orientable, each Mi is orientable as well, see [19, Thm. 3.21] (see also [40] for
the orientable case). Of course, by the van Kampen Theorem, the fundamental
group of M decomposes as a finite free product

π1(M) ∼= π1(M1) ∗ π1(M2) ∗ · · · ∗ π1(Mq).

Recall that each Mi is either an S2-bundle over S1, or irreducible.

Now, we let M be a compact connected 3-manifold. In the sequel, by a sur-
face Σ, we mean a compact connected 2-dimensional manifold (with possibly
non-empty boundary ∂Σ). Consider a surface Σ that is either properly embed-
ded in M , i.e. ∂Σ = Σ ∩ ∂M (transverse intersection), or embedded in ∂M ; in
case Σ ⊆ ∂M (so that Σ is closed), note that ‘sliding’ Σ along a small collar
neighbourhood inside M , which is a trivial half-line bundle, we get an isotopic
properly embedded surface in M . The surface Σ is called 2-sided if it is em-
bedded in ∂M , or if it admits a tubular neighbourhood in M which is a trivial
line bundle. The surface Σ is said to be incompressible insideM if it is 2-sided,
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not diffeomorphic to the 2-sphere nor to a disk, and if it is π1-injective, in the
sense that the inclusion Σ ↪→ M induces a monomorphism π1(Σ) ↪→ π1(M).
A 3-manifold M is called P 2-irreducible if it is irreducible and if it contains no
embedded 2-sided real projective plane.

A compact connected 3-manifoldM is called Haken if it is P 2-irreducible and
contains a properly embedded 2-sided incompressible surface (M is supposed
to be orientable, this amounts to require M to be irreducible and to contain
a properly embedded incompressible orientable surface). By [19, Lem. 6.7 (i)],
if the compact connected 3-manifold M is orientable and if ∂M is non-empty
and does not only consist of a collection of 2-spheres, then the group H1(M ; Z)

is infinite, and in this case, [19, Lem. 6.6] shows that M is Haken provided
it is irreducible (the surface F constructed in the proof therein is orientable).
A compact connected 3-manifold M is called torus-irreducible (or geometri-
cally atoroidal) if every incompressible 2-torus in M is isotopic to a boundary
component of M .

For the general definition, that we will not need, of a Seifert 3-manifold, we
refer to [48, pp. 428–429]; what we will however need is the following charac-
terization due to Epstein [16] in the compact case: a compact 3-manifold M

is Seifert if it admits a foliation by circles. By [26, Thm. 9.2] (see also [31,
Thm. 1.38]), a deep result, a prime compact 3-manifold M with infinite funda-
mental group π1(M) is Seifert if and only if π1(M) contains an infinite cyclic
normal subgroup, in which case, there exists a short exact sequence of groups

1→ Z −→ π1(M)
p−→ Γ→ 1,

with Γ standing for a discrete subgroup of the isometry group of either S2 (the
‘round’ 2-sphere), of R2 (the flat Euclidean plane), or of H2 (the hyperbolic
plane). This means that Γ is a discrete subgroup of one of the following three
Lie groups (each having exactly two connected components):

O(3), R2 o O(2) and SO(2, 1).

It will be important for us to note that for any finite subgroup H of Γ, its
pre-image p−1(H) in π1(M) sits in a short exact sequence

1→ Z −→ p−1(H) −→ H → 1,

and is therefore virtually cyclic, in the sense that it contains a cyclic subgroup
(here, infinite) of finite index.

Next, we include a short algebraic incursion. A graph of groups G is a
non-empty graph GG = (EG , VG) (possibly with loops, i.e. with edges inci-
dent to only one vertex, and simple, i.e. with at most one loop per vertex and
at most one edge joining two distinct vertices) equipped with two families of
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groups {G′e}e∈EG and {Gv}v∈VG parameterized by the edge set EG and the ver-
tex set VG , respectively, and a family {ιe,v : G′e ↪→ Gv | v ∈ e}e∈EG of injective
group homomorphisms, one for each pair (e, v) ∈ EG×VG consisting of an edge
and an adjacent vertex; the groups in {G′e}e∈EG and in {Gv}v∈VG are called the
edge-groups and the vertex-groups of G, respectively. If the graph of groups G
is finite and connected (i.e. if GG is a finite connected graph), its fundamental
group π1(G) is a group defined, up to isomorphism, by a finite induction pro-
cess mixing the groups Gv and G′e, using the incidence relation of GG and the
maps ιe,v, via amalgamated free products and HNN-extensions (see [49, Sec-
tion 5] for details). The group π1(G) acts simplicially on the graph GG , with,
up to isomorphism, vertex-stabilizers {Gv}v∈VG and edge-stabilizers {G′e}e∈EG .

After Kneser’s decomposition (or “sphere decomposition”), there is a second
decomposition that we will need, namely the so-called JSJ-decomposition (or
“torus decomposition”), named after Jaco-Shalen [25] and Johannson [27]. So,
we let M be an irreducible closed connected orientable 3-manifold. Then,
there is a minimal finite family {Tj}j∈J (possibly empty) of embedded disjoint
incompressible 2-sided closed 2-tori that separatesM into a finite set {Mk}k∈K
of irreducible compact connected orientable 3-manifolds, each of which is either
Seifert or torus-irreducible, possibly both. (Such a family is, up to isotopy
inside M , unique; the finite index-sets J and K verify |K| = |J | + 1.) Let us
now describe the fundamental group ofM using a graph of groups. It turns out
that there is a graph of groups G = GM with EG = J and VG = K, and, for j ∈ J
and k ∈ K, G′j = π1(Tj) ∼= Z2, Gk = π1(Mk) and ιj,k = π1

(
incl : Tj ↪→ Mk

)
,

and with the incidence relation dictated by the combinatorial configuration of
the separating family of tori; moreover (and most importantly), there is an
isomorphism π1(M) ∼= π1(G). Indeed, this last property follows inductively
from the van Kampen Theorem.

We also recall that an n-manifold M , possibly with non-empty boundary,
is called hyperbolizable if its geometric interior M r ∂M admits a complete
Riemannian metric for which the sectional curvature is constant with value −1.
In this case, π1(M) ∼= π1(Mr∂M) is isomorphic to a discrete subgroup of the
Lie group SO(n, 1) (and not necessarily of its identity component SO(n, 1)◦).

Remark 2.1. — Suppose given a closed connected orientable 3-manifold M ,
and apply to it the following two-stage decomposition (without necessity of
first capping M off). First perform Kneser’s prime decomposition; this pro-
duces finitely many pieces which are either S1 × S2 or closed irreducible man-
ifolds. To each of the latter ones apply the JSJ-decomposition. The Thurston
Geometrization Conjecture is the statement that the final pieces all have a
(necessary unique) geometric structure among a list of eight possible ones (in
a precise and specific sense, see [48], [50]). It might well happen that one has
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no decomposition to perform, for instance if one starts with S3. The Thurston
Geometrization Conjecture is known in all but two cases:
(a) for closed irreducible manifolds with finite fundamental group; this spe-

cial case is known as the Thurston Elliptization Conjecture (which is
equivalent to the combination of the Poincaré Conjecture and of the
Spherical Space Form Conjecture);

(b) for closed, irreducible, non-Haken and non-Seifert manifolds with infinite
fundamental group; in this case the manifold should be hyperbolizable:
this is the content of the Thurston Hyperbolization Conjecture.

There is also a more general version of the Thurston Geometrization Conjecture
(that we will not need and which is more technical to state), namely for con-
nected orientable 3-manifolds that are compact (indeed, not necessarily closed).
It is now known to hold in all cases, except for the very same two ‘closed cases’
(a) and (b).

Notice that in these cases no non-trivial decomposition is possible along a
sub-manifold of codimension 1. In case (a) because the fundamental group is
too small for the manifold to contain an incompressible sub-surface of positive
genus, in case (b) because of the “non-Haken" assumption.

For the proof of Theorem 1.1, we will also need the following result.

Proposition 2.2. — Let M be a 3-manifold. Then, there exists a family
{Mn}n∈N of compact connected 3-manifolds and a family {fn : Mn → M}n∈N
of smooth immersions, such that each immersion fn induces an injective group
homomorphism π1(Mn) ↪→ π1(M), and such that the fundamental group of M
is the union of (the images of ) the fundamental groups of the members of the
family, i.e.

π1(M) =
⋃
n∈N

π1(Mn).

Moreover, if M is orientable, then one can further require the Mn’s to be ori-
entable.

Proof. — First, the group π1(M) being countable, we choose a sequence
(gn)n∈N of elements of π1(M) (possibly with repetitions) such that the
set {gn}n∈N generates π1(M). For each n ∈ N, let Gn := 〈g1, . . . , gn〉
be the subgroup of π1(M) generated by g1, . . . , gn. Since Gn is finitely
generated, by [19, Thm. 8.2], it is even finitely presented. Therefore,
applying [19, Thm. 8.1] (a result due to Jaco [24]), we can find a com-
pact connected 3-manifold Mn and an immersion fn : Mn → M such
that (fn)∗ : π1(Mn) ↪→ π1(M) is injective, as indicated, with image Gn
(note that one can indeed suppose each Mn connected). The equality
π1(M) =

⋃
n∈N π1(Mn) is now obvious. Finally, for each n, Mn being of the
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same dimension as M , and an immersion being a local homeomorphism, [14,
Ex. 3 of VIII.2.22] applies to fn to show orientability of Mn in case M itself
is orientable (note that [14, Prop. VIII.2.19] allows to incorporate successfully
the case where Mn and/or M have a boundary).

Finally, we are in position to pass to the proofs of our theorems (in disorder).

Proof. — OfTheorem 1.4 Clearly, for the proofs, we can suppose that the com-
pact orientable 3-manifold M we consider is connected, and that M is capped-
off, i.e. that M = M̂ . Let G be the fundamental group of M . From the
Kneser Prime Decomposition Theorem, we have deduced a finite free product
decomposition

G ∼= π1(M1) ∗ π1(M2) ∗ · · · ∗ π1(Mq).

Since the Baum-Connes Conjecture With Coefficients is stable under forming
finite free products (see [43], [45]), if each π1(Mi) verifies this conjecture, then
the same holds for G. Since π1(S1×S2) is infinite cyclic, and since the Baum-
Connes Conjecture With Coefficients holds for the group Z (in fact, for any
countable amenable group, including all abelian groups, see [21], [22]), we can
now suppose further that M is irreducible. As we have explained, if M = M̂ is
not closed, i.e. if ∂M 6= ∅, thenM is Haken. In this case, by [45], or [8], or [51],
its fundamental group satisfies the Baum-Connes Conjecture With Coefficients
(the proof is based on the fact that a Haken manifold admits a so-called hi-
erarchy in the sense of [19, p. 140] and on the results on graphs of groups we
have recalled earlier). So, we are reduced to the case where M is an irreducible
closed connected orientable 3-manifold.

Now, we apply to M a JSJ-decomposition. Earlier, in such a situation,
π1(M) has been expressed using a certain graph of groups. By [45] again, the
Baum-Connes Conjecture With Coefficients (and also the plain Baum-Connes
Conjecture, see [41, Thm. 5.13 in Part I]) is stable under taking finite connected
graphs of groups, i.e. if a finite connected graph of groups G has all its edge-
groups {G′e}e∈EG and vertex-groups {Gv}v∈VG satisfying the Baum-Connes
Conjecture (resp. With Coefficients), then so does its fundamental group π1(G).
As, in our case, the edge-groups are isomorphic to the abelian group Z2, the
Baum-Connes Conjecture With Coefficients holds for them. So, it remains to
deal with the vertex-groups. These are fundamental groups of compact con-
nected 3-manifolds, each of which is either Seifert or torus-irreducible, possibly
both. We distinguish three cases for each of these pieces, that we call, say, N .

1) If N is Seifert, then, as we have seen, π1(N) sits in a short exact sequence

1→ Z −→ π1(N)
p−→ Γ→ 1,
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with Γ a discrete subgroup of one of the Lie groups O(3), R2 o O(2) and
SO(2, 1), which are almost connected, i.e. they have finitely many connected
components (here, exactly 2). Now, consider the following facts concerning Γ:

(i) If Γ is a discrete subgroup of the compact group O(3), then Γ is finite and
thus satisfies the Baum-Connes Conjecture With Coefficients (see [29]).

(ii) The so-called Kasparov γ-element is equal to one for both Lie groups
SO(2, 1) and R2 o O(2). Since any discrete subgroup of an almost con-
nected Lie group with γ = 1 satisfies the Baum-Connes Conjecture With
Coefficients, so does Γ. Given n ≥ 2, for SO(n, 1), the equality γ = 1

is established in [32], and for Rn o O(n), the γ-element, being invari-
ant under group retractions (see [32]), is the image of the γ-element of
O(n), which, by a computation carried out in [4], is equal to one as well.
It could also be said that if Γ is a discrete subgroup of SO(2, 1) or of
R2 o O(2), then Γ has the Haagerup property (see [11, Thm. 4.0.1 &
Prop. 6.1.5] for Γ ⊂ SO(2, 1), and [9] for Γ ⊂ R2 o O(2), in which case Γ

is amenable) and then conclude by [21], [22].
We have also seen that for any finite subgroup H of Γ, the pre-image p−1(H)

inside π1(N) is virtually cyclic and therefore amenable (since the class of dis-
crete amenable groups contains abelian groups and finite groups, and is stable
under taking group extensions). By [21], [22] again, each p−1(H) satisfies the
Baum-Connes Conjecture With Coefficients; by [44], this is enough to guaran-
tee that π1(N) itself satisfies this conjecture. This is it for case 1).

2) If N has finite fundamental group (hence N is non-Seifert and, in fact,
torus-irreducible), then the Baum-Connes Conjecture With Coefficients is
known for the finite group π1(N), as we have already said (see [29]).

3) If N is non-Seifert with infinite fundamental group (and N is then torus-
irreducible), then, we distinguish four non mutually excluding sub-cases.

(i) If N is Haken, then, by [45], or [8], or [51], its fundamental group satisfies
the Baum-Connes Conjecture With Coefficients.

(ii) If N is hyperbolizable, then, as recalled earlier, π1(N) is a discrete sub-
group of SO(3, 1). As seen in 1) (ii) above, such a discrete subgroup
satisfies the Baum-Connes Conjecture With Coefficients.

(iii) If N (which is non-Seifert and has infinite fundamental group) is neither
Haken, nor hyperbolizable, then our technical hypothesis in the state-
ment of the theorem precisely guarantees that π1(N) also satisfies this
conjecture.

This completes our discussion of case 3).
We conclude, for each considered piece N obtained after the JSJ-

decomposition, that, in any of these three events 1)–3), the group π1(N)
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satisfies the Baum-Connes Conjecture With Coefficients, and consequently
that so does π1(M).

Proof of Theorem 1.1. — By [7, Thm. 1.1], if a countable discrete group G is
the union G =

⋃
n∈N Gn of a collection of subgroups all satisfying the Baum-

Connes Conjecture With Coefficients, then so does G. Since the fundamen-
tal group of a compact manifold is countable (at most), combining this with
Proposition 2.2, the result follows directly from Theorem 1.4; indeed, as we
have recalled, the Thurston Geometrization Conjecture implies the Thurston
Hyperbolization Conjecture, which precisely predicts that each piece obtained
exactly after the second stage of the two-stage decomposition of the statement
and which is non-Seifert, non-Haken and has infinite fundamental group is
hyperbolizable.

Proof of Theorem 1.8. — We may suppose that M is connected and capped-
off, so that M = M̂ . Using Kneser’s (normal) prime decomposition, we can
write M as

M ≈M1# · · ·#Mp#Mp+1# · · ·#Mq

withM1, . . . ,Mq denoting prime compact connected 3-manifolds (possibly non-
orientable), whereM1, . . . ,Mp are irreducible andMp+1, . . . ,Mq are prime but
not irreducible. Therefore,Mp+1, . . . ,Mq are S2-bundles over S1 and have con-
sequently an infinite cyclic fundamental group, and hence verifying the Baum-
Connes Conjecture With Coefficients. Now, fix i ∈ {1, . . . , p}. By assumption,
eitherMi is orientable and Theorem 1.4 applies to it to show that it satisfies the
Baum-Connes Conjecture With Coefficients, or N := Mi is an irreducible, non-
orientable, compact, connected and capped-off 3-manifold having either infinite
cyclic fundamental group, or having no 2-torsion in its fundamental group and
with each component of ∂M incompressible in M (possibly with ∂M = ∅).
Let us now deal with N . If π1(N) ∼= Z then, once again, N satisfies the
Baum-Connes Conjecture. So, we suppose that π1(N) is 2-torsion-free, but
not infinite cyclic. By Kneser’s Conjecture on free products, proved for in-
stance in [19, Thm. 7.1], since N is irreducible, its fundamental group π1(N) is
indecomposable with respect to free products. This property, together with the
fact that π1(N) is not infinite cyclic and does not contain 2-torsion, implies that
[19, Lem. 10.1] applies to N , which is capped-off. The conclusion of this result
is that N is P 2-irreducible (in the notation of [19, Lem. 10.1], since N is irre-
ducible and non-orientable, we can takeN as P(N) and the occurring homotopy
sphere is diffeomorphic to S3). Combining [19, Lem. 6.7 (ii)&Lem. 6.6] for the
P 2-irreducible manifold N , we obtain, inside N , a properly embedded, 2-sided
incompressible surface Σ, which is non-separating. (In particular, N is Haken.)
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Therefore, cutting N along Σ, we get a compact connected P 2-irreducible man-
ifold N ′ with non-empty boundary. Invoking [19, Thm. 13.3], we obtain a hi-
erarchy for N ′ (see details in [19, p. 140]). Consequently, the argument given
in [45] proves that the group π1(N ′) satisfies the Baum-Connes Conjecture With
Coefficients. Now, there is an isomorphism π1(N) ∼= π1(N ′)∗π1(Σ), i.e. π1(N)

is an HNN-extension with base π1(N ′) and over the surface group π1(Σ). Fun-
damental groups of closed surfaces (orientable or not) are one-relator groups,
so that, by [45], they verify the Baum-Connes Conjecture With Coefficients.
By [45] once again, this conjecture is stable under forming HNN-extensions, so
that the conjecture holds for π1(N) too. In total, we see that each “free factor”
in the initial decomposition

π1(M) ∼= π1(M1) ∗ · · · ∗ π1(Mp) ∗ π1(Mp+1) ∗ · · · ∗ π1(Mq)

satisfies the conjecture, hence also their finite free product π1(M), still by [45].

Proof of Theorem 1.13. — It is standard that surjectivity of the Baum-Connes
assembly map (in degree 0) for a torsion-free discrete group G implies the
Kadison-Kaplansky Conjecture for G, and hence Kaplansky’s Idempotent Con-
jecture for G since CG is a sub-algebra of C∗rG (see for instance [41, Lem. 7.2 in
Part I] or [47, Section 5] for a proof). So, the first part of Theorem 1.13 follows
directly from Theorem 1.1. For the second part, suppose that G = π1(M),
where M is a connected orientable 3-manifold decomposed as

M ≈M1#M2# · · ·#Mq,

with each Mi a compact connected orientable prime 3-manifold with, by
assumption, infinite fundamental group. By [19, Thm. 9.8] (see also p. 170
therein), each fundamental group π1(Mi) is torsion-free, hence also the finite
free product G ∼= π1(M1) ∗ π1(M2) ∗ · · · ∗ π1(Mq). Consequently, the first part
of the theorem applies to G.

3. The class C3

As we have seen in the proof of Theorem 1.4, the JSJ decomposition of a
manifold presents its fundamental group naturally as a (finite) graph of groups.
The key point of the proof was then to show that the Baum-Connes conjecture
for the fundamental group is inherited from the vertex and edge groups. This
leads naturally to consider a class of groups that is “hereditary with respect
to actions on oriented trees with finite fundamental domain", i.e. whenever a
group, say G, has such an action and moreover the stabilizers of the vertices
and of the edges belong to the class then so does the group G.
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Definition 3.1. — The class C3 is the smallest class of groups that is

i) stable by isomorphism;
ii) contains all finite groups;
iii) contains all fundamental groups of compact Seifert manifolds;
iv) contains all cocompact torsion free subgroups of isometries of the hyper-

bolic 3-space H3;
v) is hereditary with respect to actions on oriented trees with finite funda-

mental domain.

According to the results of the previous section, if the Thurston hyper-
bolization conjecture holds, then the class C3 contains all fundamental groups
of compact oriented 3-manifolds. Moreover by the proof of Theorem 1.1, the
elements of C3 satisfy the Baum-Connes conjecture. We prove in this section
some further properties for groups in this class, namely property (BC′) and
exactness.

In Section 1, when we defined the Baum-Connes assembly map, we pointed
out the fact that this morphism should be valued in theK-theory of the reduced
C∗-algebra (or more generally in the reduced crossed product algebra), and that
Kazhdan property (T) is an obstruction for surjectivity of Miščenko morphism.
We shall see that this obstruction do not occure for a group in the class C3 since
these groups are K-amenable [12], i.e the morphism λG : C∗(G) → C∗r (G)

induced an equivalence in KK(C∗(G), C∗r (G)). This K-amenability property
in particular implies for a discrete group G that

λG∗ : Ktop
∗
(
C∗r (G)

)
−→ Ktop

∗
(
C∗(G)

)
is an isomorphism and more generally that the K-theory of reduced and max-
imal crossed products algebras should be isomorphic. In consequence, since
the only K-amenable groups having Kazhdan property (T) are finite group, we
recover in this way the following result of [17]: if the Thurston hyperboliza-
tion conjecture holds, then the fundamental groups of a compact oriented 3-
manifolds has Kazhdan property (T) if and only if it is finite.

3.1. Property (BC′). — Let G be a discrete group and let X be a locally com-
pact space equipped with a proper G-action. Recall that a G n X-algebra is
a C∗-algebra equipped with an action of G by automorphisms and with an
G-equivariant morphism Φ : C0(X) −→ Z(M(A)) (Z(M(A)) being the center
of the multipliers algebra of A) such that Φ(C0(X)) · A is dense in A. A G-
C∗-algebra is call proper if there exists a G-proper action on a locally compact
space X such that A is a GnX-algebra.
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Definition 3.2 (see [51]). — A group G verifies property (BC′) if it is
contained in a discrete group G′ such that there exists a proper G′-
compact space X, a G′ n X-algebra A and elements α ∈ KKG′(C ,A)

and β ∈ KKG′(A ,C) such that α⊗A β = 1 in KKG′(C ,C).

Theorem 3.3 (see [51]). — If a group G satifies property (BC′), then

1) G satisfies the Baum-Connes conjecture;
2) G is K-amenable.
3) G satisfies the Künneth formula and the Universal Coefficients Theorem.

Theorem 3.4 (see [51]). — Property (BC′) is hereditary under finite funda-
mental domain action on trees.

Since the isometry group of H3 has a γ-element in the sense of Kasparov
equal to 1 [32], every torsion free cocompact discrete subgroup of isometries of
H3 satisfies property (BC). Moreover, as we shall see later in subsection 3.3,
fundamental groups of prime compact Seifert manifolds have property (BC′).
Thus we obtain:

Theorem 3.5. — Every group in the class C3 satisfies the property (BC′) and
in particular, if the Thurston hyperbolization conjecture holds, then fundamen-
tal groups of compact oriented manifolds have property (BC′).

It is a well known that property (BC′) for discrete groups implies the so-
called Bost Conjecture: Let G be a discrete group, then the inclusion

i : `1(G) ↪−→ C∗rG

induces an isomorphism

i∗ : Ktop
∗
(
`1(G)

) ∼=−→ Ktop
∗ (C∗rG).

We give for the benefit of the reader a proof of this fact. If A is a G-C∗-algebra,
we define

`1(G,A) :=
{
f : G→ A ;

∑
g∈G

∥∥f(g)
∥∥ < +∞

}
,

equipped with the convolution product

f ∗ h(g) =
∑
g′∈G

f(g′)g′
(
h(g′−1g)

)
and the norm ‖f‖ =

∑
g∈G ‖f(g)‖. Then `1(G,A) is a dense subalgebra of

the reduced crossed product A ored G. The following lemma is proved in [36,
Section 1. 7]

tome 136 – 2008 – no 1



HOMOTOPY INVARIANCE OF HIGHER SIGNATURES AND 3-MANIFOLD GROUPS 19

Lemma 3.6. — If A is a proper G- C∗-algebra, the inclusion

i : `1(G,A)↪−→Aored G

induces an isomorphism

i∗ : Ktop
∗ (`1(G,A))

∼=−→ Ktop
∗ (Aored G).

The proof of the Bost conjecture for groups with property (BC′) is now a
standard argument using the γ-element trick. Let X be a proper G-space, let A
be a GnX-algebra and let α ∈ KKG(C,A) and β ∈ KKG(A,C) be elements
such that α⊗Aβ = 1 inKKG(C,C). By [36, Section 1.7], the following diagram
is commutative

Ktop
∗
(
`1(G)

)
−−−→ Ktop

∗
(
`1(G,A)

)
−−−→ Ktop

∗
(
`1(G)

)y y y
Ktop
∗ (C∗rG) −−−→ Ktop

∗ (Aored G) −−−→ Ktop
∗ (C∗rG),

where

• the vertical arrows are induced by the inclusions

`1(G) ↪−→ C∗rG and `1(G,A) ↪−→ Aored G;

• the bottom arrows are the right Kasparov products by elements induced
by α and β [33];

• the top arrows are induced by elements of Lafforgue bivariant K-theory
for Banach algebras coresponding to α and β [36].

Since α ⊗A β = 1, the horizontal compositions are the identity [33], [36]
and therefore the morphism Ktop

∗ (`1(G))−→Ktop
∗ (C∗rG) is a direct factor of

the morphism Ktop
∗ (`1(G,A))−→Ktop

∗ (A ored G) which is an isomorphism by
Lemma 3.6. This guarantees that Ktop

∗ (`1(G))−→Ktop
∗ (C∗rG) is an isomor-

phism.

3.2. Exactness. — In this subsection, all C∗-algebras are assumed to be sepa-
rable.

Definition 3.7. — A discrete group G is called exact if every short exact
sequence

0→ J −→ A −→ A/J → 0

of G-C∗-algebras induces a short exact sequence for reduced crossed-products

0→ J or G −→ Aor G −→ (A/J ) or G→ 0.

Let us check that C3-class groups are exact. Exactness enjoys the following
stability properties:
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Theorem 3.8 (see [15]). — Exactness is stable by amalgamated product for
discrete groups.

HNN extensions are made out of amalgamated products and semi-direct
products by Z. Since exactness is stable under extensions [34], HNN extensions
of exact groups are exact. Hence we obtain :

Corollary 3.9. — Exactness is hereditary under finite fundamental domain
action on trees.

All discrete subgroups of Lie groups with finitely many components are
exact (see [34]), thus discrete subgroups of H3 are exact. We shall see in
Subsection 3.3 that fundamental group of prime compact Seifert manifolds are
exact. Hence we have

Theorem 3.10. — Every element in the class C3 is exact and in particular, if
the Thurston hyperbolization conjecture holds, then the fundamental group of a
compact oriented manifold is exact.

We end this section by quoting the characterization of exactness in terms of
amenability at infinity [1], [46].

Definition 3.11. — Let G be a discrete group and let us denote by Prob(G)

the set of Borel probility on G, equipped with the weak*-topology. The group G
is said to be amenable at infinity if there is a second countable compact
G-space X and a sequence (µn)n∈N of continuous functions

µn : X −→ Prob(G)

such that lim
n→∞

gµn − µn = 0 for every g ∈ G.

Theorem 3.12. — A discret group G is exact if and only if it is amenable at
infinity

Finally, let us recall that the Baum-Connes assembly map for a group that
is amenable at infinity is split injective [20].
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3.3. Fundamental groups of prime compact Seifert manifolds. — As we have seen
before, ifM is a prime compact Seifert manifold, then there exists a short exact
sequence of groups

1→ Z −→ π1(M)
p−→ Γ→ 1,

with Γ standing for a discrete subgroup of one of the following three Lie groups:

O(3), R2 o O(2) and SO(2, 1).

Since discrete subgroups of Lie groups with finitely many connected compo-
nents are exact and exactness is stable under extensions [34], we get that π1(M)

is exact. Let us check now that fundamental groups of irreducible Seifert man-
ifolds satisfies property (BC′).

Assume first thatM has no boundary. Then the universal covering space M̃
of M admits one of these three possible geometries

1) R3 ;
2) H2 × R, where H2 is the hyperbolic half-space ;
3) S̃L2(R) the universal covering space of SL2(R).

Lemma 3.13. — If M is a prime compact Seifert manifold without boundary,
then π1(M) has the property (BC′).

Proof. — The isometry group of any of this three geometries as γ-element
in the sense of Kasparov equal to 1 (see [32]); notice that S̃L2(R) is locally
isomorphic to SO(3, 1). Since π1(M) is cocompact in the suitable isometry
group, it satisfies property (BC′).

If M has boundary, then Γ is a (finite) free product of a finitely generated
free group and of some cyclic finite groups. Let T be the tree associated to
this free product. The action of Γ on T has finite fundamental domain and
the vertices stabilizer are either free groups or finite cyclic groups. So the
group π1(M) acts through Γ on the tree associated to this free product T with
finite fundamental domain and the vertices stabilizers are extensions of Z either
by a finitely generated free group or by a finite cyclic group. Since property
(BC′) is heriditary under finite fundamental domain action on trees, the two
following lemmas show that π1(M) satisfies property (BC′).

Lemma 3.14. — Let Γ be a discrete group fitting in a short exact sequence

1→ Z −→ Γ −→ Fn → 1,

where Fn denotes the free group on n generators. Then Γ satisfies prop-
erty (BC′).
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Proof. — The group Γ acts via Fn on its associated tree (its Cayley diagram).
The stabilizer of vertices are isomorphic to Z which satisfies property (BC′)

and thus Γ satisfies also property (BC′).

Lemma 3.15. — Let Γ be a discrete group fitting in a short exact sequence

1→ Z −→ Γ −→ Zn → 1,

where Zn is the cyclic group of order n. Then Γ satisfies property (BC′).

Proof. — The Z-valued cocycle associated to the short exact sequence

1→ Z −→ Γ −→ Zn → 1

extends to an R-valued cocycle and thefore the short exact sequence lies in a
short sequence

1→ R −→ G −→ Zn → 1.

The group G is an amenable Lie group with finitely many connected compo-
nents and thus, its γ-element in the sense of Kasparov is equal to 1 (see [33]).
The group Γ being cocompact in G, it satisfies property (BC′).
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