Bulletin

 de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE
UNIT FIELDS ON PUNCTURED SPHERES

Fabiano G.B. Brito \& Pablo M. Chacón \& David L. Johnson

Tome 136
 Fascicule 1

2008

UNIT VECTOR FIELDS ON ANTIPODALLY PUNCTURED SPHERES: BIG INDEX, BIG VOLUME

by Fabiano G.B. Brito, Pablo M. Chacón \& David L. Johnson

Abstract

We establish in this paper a lower bound for the volume of a unit vector field \vec{v} defined on $\mathbf{S}^{n} \backslash\{ \pm x\}, n=2,3$. This lower bound is related to the sum of the absolute values of the indices of \vec{v} at x and $-x$.

Résumé (Champs unitaires dans les sphères antipodalement trouées : grand indice entraîne grand volume)

Nous établissons une borne inférieure pour le volume d'un champ de vecteurs \vec{v} défini dans $\mathbf{S}^{n} \backslash\{ \pm x\}, n=2,3$. Cette borne inférieure dépend de la somme des valeurs absolues des indices de \vec{v} en x et en $-x$.

Texte reçu le 29 septembre 2006, révisé le 2 avril 2007
Fabiano G.B. Brito, Dpto. de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo-SP, 05508-090 (Brazil) • E-mail : fabiano@ime.usp.br
Pablo M. Chacón, Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca (Spain) - E-mail : pmchacon@usal.es
David L. Johnson, Department of Mathematics, Lehigh University, 14 E. Packer Avenue, Bethlehem, PA, 18015 (USA) • E-mail : david.johnson@lehigh.edu 2000 Mathematics Subject Classification. - 53C20, 57R25, 53C12.
Key words and phrases. - Unit vector fields, volume, singularities, index.
During the preparation of this paper the first author was supported by CNPq, Brazil. The second author is partially supported by MEC/FEDER project MTM2004-04934-C04-02, Spain. The third author was supported during this research by grants from the Universidade de São Paulo, FAPESP Proc. 1999/02684-5, and Lehigh University, and thanks those institutions for enabling the collaboration involved in this work.

1. Introduction

The volume of a unit vector field \vec{v} on a closed Riemannian manifold M is defined [10] as the volume of the section $\vec{v}: M \rightarrow T^{1} M$, where the Sasakian metric is considered in $T^{1} M$. The volume of \vec{v} can be computed from the Levi-Civita connection ∇ of M. If we denote by ν the volume form, for an orthonormal local frame $\left\{e_{a}\right\}_{a=1}^{n}$, we have

$$
\begin{align*}
& \operatorname{vol}(\vec{v})=\int_{M}\left(1+\sum_{a=1}^{n}\left\|\nabla_{e_{a}} \vec{v}\right\|^{2}+\sum_{a_{1}<a_{2}}\left\|\nabla_{e_{a_{1}}} \vec{v} \wedge \nabla_{e_{a_{2}}} \vec{v}\right\|^{2}\right. \tag{1}\\
&\left.+\cdots+\sum_{a_{1}<\cdots<a_{n-1}}\left\|\nabla_{e_{a_{1}}} \vec{v} \wedge \cdots \wedge \nabla_{e_{a_{n-1}}} \vec{v}\right\|^{2}\right)^{\frac{1}{2}} \nu
\end{align*}
$$

Note that $\operatorname{vol}(\vec{v}) \geq \operatorname{vol}(M)$ and also that only parallel fields attain the trivial minimum.

For odd-dimensional spheres, vector fields homologous to the Hopf fibration \vec{v}_{H} have been studied, see [10], [3], [9] and [2]. In [5], a non-trivial lower bound of the volume of unit vector fields on spaces of constant curvature was obtained. In $\mathbb{S}^{2 k+1}$, only the vector field \vec{n} tangent to the geodesics from a fixed point (with two singularities) attains the volume of that bound. We call this field \vec{n} north-south or radial vector field. We notice that unit vector fields with singularities show up in a natural way, see also [12].

For manifolds of dimension 5, a theorem showing how the topology of a vector field influences its volume appears in [4]. More precisely, the result in [4] is an inequality relating the volume of \vec{v} and the Euler form of the orthogonal distribution to \vec{v}.

The purpose of this paper is to establish a relationship between the volume of unit vector fields and the indices of those fields around isolated singularities.

We consider these notes to be a preliminary effort to understand this phenomenon. For this reason, we have chosen a simple model where such a relationship is found. We hope this could serve as inspiration for more complex situations to be treated in a near future.

Precisely, we prove here:
Theorem 1.1. - Let $W=\mathbb{S}^{n} \backslash\{N, S\}$, $n=2$ or 3 , be the standard Euclidean sphere where two antipodal points N and S are removed. Let \vec{v} be a unit smooth vector field defined on W. Then,

$$
\begin{aligned}
& \text { for } n=2, \quad \operatorname{vol}(\vec{v}) \geq \frac{1}{2}\left(\pi+\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|-2\right) \operatorname{vol}\left(\mathbb{S}^{2}\right) \\
& \text { for } n=3, \quad \operatorname{vol}(\vec{v}) \geq\left(\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|\right) \operatorname{vol}\left(\mathbb{S}^{3}\right)
\end{aligned}
$$

where $I_{\vec{v}}(P)$ stands the Poincaré index of \vec{v} around P.

It is easy to verify that the north-south field \vec{n} achieves the equalities in the theorem. In fact, the volume of \vec{n} in \mathbb{S}^{2} is equal to $\frac{1}{2} \pi \operatorname{vol}\left(\mathbb{S}^{2}\right)$, and in \mathbb{S}^{3} is $2 \operatorname{vol}\left(\mathbb{S}^{3}\right)$. We have to point out that $\operatorname{vol}(\vec{n})=\operatorname{vol}\left(\vec{v}_{H}\right)$ in \mathbb{S}^{3}.

The lower bound in \mathbb{S}^{3} when the singularities are trivial (i.e. $I_{\vec{v}}(N)=$ $I_{\vec{v}}(S)=0$) has no special meaning.

We will comment briefly some possible extensions for this result in Section 3 of this paper.

2. Proof of the theorem

A key ingredient in the proof of the theorem is the application of the following result of Chern [7]. The second part of this statement is a special case of the result of Section 3 of that article.

Proposition 2.1 (see Chern [7]). - Let M^{n} be an orientable Riemannian manifold of dimension n, with Riemannian connection 1-form ω and curvature form Ω. Then, there is an $(n-1)$-form Π on the unit tangent bundle $T^{1} M$ with $\pi: T^{1} M \rightarrow M$ the bundle projection, so that:

$$
\mathrm{d} \Pi= \begin{cases}e(\Omega) & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

In addition, $\int_{\pi^{-1}(x)} \Pi=1$ for any $x \in M$, that is, $\Pi_{\pi^{-1}(x)}$ is the induced volume form of the fiber $\pi^{-1}(x)$, normalized to have volume 1 .

The form Π as described by Chern is somewhat complicated. First, define forms ϕ_{k} for $k \in\left\{0, \ldots,\left[\frac{1}{2} n\right]-1\right\}$, by choosing a frame $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T M$, so that $\left\{e_{1}, \ldots, e_{n-1}\right\}$ frame $\pi^{-1}(x)$ at $e_{n} \in \pi^{-1}(x)$. Then, at $e_{n} \in T^{1} M$,

$$
\phi_{k}=\sum_{1 \leq \alpha_{1}, \ldots, \alpha_{n-1} \leq n-1} \epsilon_{\alpha_{1} \ldots \alpha_{n-1}} \Omega_{\alpha_{1} \alpha_{2}} \wedge \cdots \wedge \Omega_{\alpha_{2 k-1} \alpha_{2 k}} \wedge \omega_{\alpha_{2 k+1} n} \wedge \cdots \wedge \omega_{\alpha_{n-1} n}
$$

where $\epsilon_{\alpha_{1} \ldots \alpha_{n-1}}$ is the sign of the permutation, and from this

$$
\Pi= \begin{cases}\frac{1}{\pi^{\frac{1}{2} n}} \sum_{k=0}^{\frac{1}{2} n-1} \frac{(-1)^{k}}{1 \cdot 3 \cdots(n-2 k-1) \cdot 2^{k+\frac{1}{2} n} k!} \phi_{k} & \text { if } n \text { is even } \\ \frac{1}{2^{n} \pi^{\frac{1}{2}(n-1)}\left(\frac{1}{2}(n-1)\right)!} \sum_{k=0}^{\frac{1}{2}(n-1)}(-1)^{k}\binom{\frac{1}{2}(n-1)}{k} \phi_{k} & \text { if } n \text { is odd. }\end{cases}
$$

Subsequent treatments of this general theory [8], [11] use more elegant formulations of forms similar to this, but usually only for the bundle of frames, and avoid the case where M is odd-dimensional.

The cases relevant to this research are for $n=2$ and $n=3$, where these formulas simplify to

$$
\Pi= \begin{cases}\frac{1}{2 \pi} \omega_{12} & \text { if } n=2 \\ \frac{1}{4 \pi}\left(\omega_{13} \wedge \omega_{23}-\Omega_{12}\right) & \text { if } n=3\end{cases}
$$

Even though there is a common line of reasoning in the proof of both parts of the theorem, each dimension has its special features. For that reason, we provide separate proofs for dimensions 2 and 3 .
2.1. Case $n=2$. - Denote by g the usual metric on \mathbb{S}^{2} induced from \mathbb{R}^{3}. Without loss of generality we take $N=(0,0,1)$ and $S=(0,0,-1)$. On W we consider an oriented orthonormal local frame $\left\{e_{1}, e_{2}=\vec{v}\right\}$. Its dual basis is denoted by $\left\{\theta_{1}, \theta_{2}\right\}$ and the connection 1-forms of ∇ are $\omega_{i j}(X)=g\left(\nabla_{X} e_{j}, e_{i}\right)$ for $i, j=1,2$ where X is a vector in the corresponding tangent space. In dimension 2 , the volume (1) reduces to:

$$
\operatorname{vol}(\vec{v})=\int_{\mathbb{S}^{2}} \sqrt{1+k^{2}+\tau^{2}} \nu
$$

where $k=g\left(\nabla_{\vec{v}} \vec{v}, e_{1}\right)$ is the geodesic curvature of the integral curves of \vec{v} and $\tau=g\left(\nabla_{e_{1}} \vec{v}, e_{1}\right)$ is the geodesic curvature of the curves orthogonal to \vec{v}. Also,

$$
\omega_{12}=\tau \theta_{1}+k \theta_{2}
$$

The first goal is to relate the integrand of the volume with the connection form ω_{12}. If S_{φ}^{1} is the parallel of \mathbb{S}^{2} at latitude $\varphi \in\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$ consider the unit field \vec{u} on S_{φ}^{1} such that $\{\vec{u}, \vec{n}\}$ is positively oriented where \vec{n} is the field pointing toward N. Let $\alpha \in[0,2 \pi]$ be the oriented angle from \vec{u} to \vec{v}. Then $\vec{u}=\sin \alpha e_{1}+\cos \alpha \vec{v}$. If $i: S_{\varphi}^{1} \rightarrow \mathbb{S}^{2}$ is the inclusion map, we have

$$
\begin{equation*}
i^{*} \omega_{12}(\vec{u})=\tau \theta_{1}(\vec{u})+k \theta_{2}(\vec{u})=\tau \sin \alpha+k \cos \alpha . \tag{2}
\end{equation*}
$$

We split the domain of the integral in northern and southern hemisphere, H^{+}and H^{-}respectively. First we consider the northern hemisphere H^{+}. From the general inequality $\sqrt{a^{2}+b^{2}} \geq|a \cos \beta+b \sin \beta| \geq a \cos \beta+b \sin \beta$, for any $a, b, \beta \in \mathbb{R}$, we have:

$$
\begin{align*}
\sqrt{1+k^{2}+\tau^{2}} & \geq \cos \varphi+\sqrt{k^{2}+\tau^{2}} \sin \varphi \tag{3}\\
& \geq \cos \varphi+|k \cos \alpha+\tau \sin \alpha| \sin \varphi=\cos \varphi+\left|i^{*} \omega_{12}(\vec{u})\right| \sin \varphi
\end{align*}
$$

TOME $136-2008-\mathrm{N}^{\circ} 1$

Denote by ν^{\prime} the induced volume form to S_{φ}^{1}. From (2) and (3) we get

$$
\begin{align*}
\operatorname{vol}(\vec{v})_{\mid H^{+}} & \geq \int_{H^{+}}\left(\cos \varphi+\left|i^{*} \omega_{12}(\vec{u})\right| \sin \varphi\right) \nu \tag{4}\\
& =\int_{0}^{\frac{1}{2} \pi} \int_{S_{\varphi}^{1}} \cos \varphi \nu^{\prime} \mathrm{d} \varphi+\int_{0}^{\frac{1}{2} \pi} \int_{S_{\varphi}^{1}}\left|i^{*} \omega_{12}(\vec{u})\right| \sin \varphi \nu^{\prime} \mathrm{d} \varphi \\
& \geq \int_{0}^{\frac{1}{2} \pi} 2 \pi \cos ^{2} \varphi \mathrm{~d} \varphi+\int_{0}^{\frac{1}{2} \pi} \sin \varphi\left|\int_{S_{\varphi}^{1}} i^{*} \omega_{12}\right| \mathrm{d} \varphi
\end{align*}
$$

The connection form ω_{12} satisfies $\mathrm{d} \omega_{12}=\theta_{1} \wedge \theta_{2}$. Therefore, the area of the annulus region

$$
A\left(\varphi, \frac{1}{2} \pi-\epsilon\right)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{S}^{2} \left\lvert\, \sin \varphi \leq x_{3} \leq \sin \left(\frac{1}{2} \pi-\epsilon\right)\right.\right\}
$$

provides the equality
(5) $\quad \int_{A\left(\varphi, \frac{1}{2} \pi-\epsilon\right)} \mathrm{d} \omega_{12}=$ area of $A=\int_{\varphi}^{\frac{1}{2} \pi-\epsilon} 2 \pi \cos t \mathrm{~d} t=2 \pi\left(\sin \left(\frac{1}{2} \pi-\epsilon\right)-\sin \varphi\right)$.

The boundary of $A\left(\varphi, \frac{1}{2} \pi-\epsilon\right)$ is $\partial A=S_{\varphi}^{1} \cup S_{\frac{1}{2} \pi-\epsilon}^{1}$ (with the appropriate orientation), so by (5) and Stokes' Theorem

$$
\begin{align*}
\int_{S_{\varphi}^{1}} i^{*} \omega_{12} & =\int_{A\left(\varphi, \frac{1}{2} \pi-\epsilon\right)} \mathrm{d} \omega_{12}+\int_{S_{\frac{1}{2} \pi-\epsilon}^{1}} i^{*} \omega_{12} \tag{6}\\
& =2 \pi\left(\sin \left(\frac{1}{2} \pi-\epsilon\right)-\sin \varphi\right)+\int_{S_{\frac{1}{2} \pi-\epsilon}^{1}} i^{*} \omega_{12} .
\end{align*}
$$

If ω is the Riemannian connection form of the standard metric on \mathbb{S}^{2}, since the limit as ϵ goes to 0 of $\vec{v}_{\left\lvert\, S_{\frac{1}{2} \pi-\epsilon}^{1}\right.}$ maps $S_{\frac{1}{2} \pi-\epsilon}^{1}$ onto the fiber $I_{\vec{v}}(N)$ times, from Proposition 2.1 we have

$$
\lim _{\epsilon \rightarrow 0} \int_{S_{\frac{1}{2} \pi-\epsilon}^{1}} i^{*} \omega_{12}=2 \pi \lim _{\epsilon \rightarrow 0} \int_{S_{\frac{1}{2} \pi-\epsilon}^{1}} i^{*} \vec{v}^{*} \Pi=2 \pi I_{\vec{v}}(N) \int_{\pi^{-1}(N)} \Pi=2 \pi I_{\vec{v}}(N) .
$$

Thus, from (6)

$$
\begin{equation*}
\int_{S_{\varphi}^{1}} i^{*} \omega_{12}=2 \pi(1-\sin \varphi)+2 \pi I_{\vec{v}}(N) . \tag{7}
\end{equation*}
$$

Following from (4) with (7) we have:
(8) $\operatorname{vol}(\vec{v})_{\mid H^{+}} \geq \frac{\pi^{2}}{2}+\int_{0}^{\frac{1}{2} \pi} \sin \varphi \cdot\left|2 \pi(1-\sin \varphi)+2 \pi I_{\vec{v}}(N)\right| \mathrm{d} \varphi$

$$
\begin{aligned}
& =\frac{\pi^{2}}{2}+\int_{0}^{\frac{1}{2} \pi}\left|2 \pi \sin \varphi I_{\vec{v}}(N)-2 \pi \sin \varphi(\sin \varphi-1)\right| \mathrm{d} \varphi \\
& \geq \frac{\pi^{2}}{2}+\int_{0}^{\frac{1}{2} \pi}| | 2 \pi \sin \varphi I_{\vec{v}}(N)|-|2 \pi \sin \varphi(\sin \varphi-1)|| \mathrm{d} \varphi \\
& \geq \frac{\pi^{2}}{2}+\left|\int_{0}^{\frac{1}{2} \pi}\left(\left|2 \pi \sin \varphi I_{\vec{v}}(N)\right|-|2 \pi \sin \varphi(\sin \varphi-1)|\right) \mathrm{d} \varphi\right| \\
& =\frac{\pi^{2}}{2}+|2 \pi| I_{\vec{v}}(N)\left|\int_{0}^{\frac{1}{2} \pi} \sin \varphi \mathrm{~d} \varphi-2 \pi \int_{0}^{\frac{1}{2} \pi}\left(\sin \varphi-\sin ^{2} \varphi\right) \mathrm{d} \varphi\right| \\
& =\frac{\pi^{2}}{2}+|2 \pi| I_{\vec{v}}(N)\left|-2 \pi+\frac{\pi^{2}}{2}\right|
\end{aligned}
$$

For the southern hemisphere, the index of \vec{v} at S is obtained by

$$
\lim _{\epsilon \rightarrow 0} \int_{S_{-\frac{1}{2} \pi+\epsilon}^{1}} i^{*} \omega_{12}=\operatorname{vol}\left(\mathbb{S}^{1}\right) I_{\vec{v}}(S)
$$

Therefore, if $-\frac{1}{2} \pi<\varphi \leq 0$ we have

$$
\begin{equation*}
\int_{S_{\varphi}^{1}} i^{*} \omega_{12}=2 \pi I_{\vec{v}}(S)-2 \pi(\sin \varphi+1) \tag{9}
\end{equation*}
$$

In order to obtain a similar equation to (3) we take $\beta=-\varphi$, and together with (2) we have

$$
\begin{align*}
\operatorname{vol}(\vec{v})_{\mid H^{-}} & \geq \int_{H^{-}}\left(\cos \varphi-\left|i^{*} \omega_{12}(\vec{u})\right| \sin \varphi\right) \nu \tag{10}\\
& \geq \int_{-\frac{1}{2} \pi}^{0} 2 \pi \cos ^{2} \varphi \mathrm{~d} \varphi-\int_{-\frac{1}{2} \pi}^{0}\left|\int_{S_{\varphi}^{1}} i^{*} \omega_{12}\right| \sin \varphi \mathrm{d} \varphi
\end{align*}
$$

From (9) and (10):
(11) $\left.\operatorname{vol}(\vec{v})\right|_{H^{-}} \geq \frac{\pi^{2}}{2}-\int_{-\frac{1}{2} \pi}^{0}\left|2 \pi I_{\vec{v}}(S)-2 \pi(\sin \varphi+1)\right| \sin \varphi \mathrm{d} \varphi$

$$
\begin{aligned}
& \geq \frac{\pi^{2}}{2}+|2 \pi| I_{\vec{v}}(S)\left|\int_{-\frac{1}{2} \pi}^{0}\right| \sin \varphi\left|\mathrm{d} \varphi-2 \pi \int_{-\frac{1}{2} \pi}^{0}\right| \sin ^{2} \varphi+\sin \varphi|\mathrm{d} \varphi| \\
= & \frac{\pi^{2}}{2}+|2 \pi| I_{\vec{v}}(S)\left|-2 \pi+\frac{\pi^{2}}{2}\right| .
\end{aligned}
$$

tome $136-2008-\mathrm{N}^{\mathrm{o}} 1$

Finally, recall that the sum of the indices of a field in \mathbb{S}^{2} must be 2 , therefore the sum of the absolute values of the indices must be greater or equal than 2 . So, from (8) and (11), the volume of \vec{v} is bounded by

$$
\begin{aligned}
& \operatorname{vol}(\vec{v}) \geq \pi^{2}+|2 \pi| I_{\vec{v}}(N)\left|-2 \pi+\frac{\pi^{2}}{2}\right|+|2 \pi| I_{\vec{v}}(S)\left|-2 \pi+\frac{\pi^{2}}{2}\right| \\
& \quad \geq \pi^{2}+|2 \pi| I_{\vec{v}}(N)|+2 \pi| I_{\vec{v}}(S)\left|-4 \pi+\pi^{2}\right| \\
& =\pi^{2}+\left|2 \pi\left(\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|-2\right)+\pi^{2}\right| \\
& =2 \pi^{2}+2 \pi\left(\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|-2\right)=\left(\pi+\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|-2\right) \frac{\operatorname{vol}\left(\mathbb{S}^{2}\right)}{2} .
\end{aligned}
$$

2.2. Case $n=3$. - As before, denote by g the metric in \mathbb{S}^{3} and consider a general situation where $N=(0,0,0,1), S=(0,0,0,-1)$ and $I_{\vec{v}}(N) \geq 0$ (and therefore $I_{\vec{v}}(S) \leq 0$).

If \vec{v} is a unit vector field on W, consider on W an oriented orthonormal local frame such that $\left\{e_{1}, e_{2}, e_{3}=\vec{v}\right\}$. The dual basis will be denoted by $\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$. The coefficients of the second fundamental form of the orthogonal distribution to \vec{v}, possibly non-integrable, are $h_{i j}=\omega_{i 3}\left(e_{j}\right)=g\left(\nabla_{e_{j}} \vec{v}, e_{i}\right)$. The coefficients of the acceleration of \vec{v} are given by $\nabla_{\vec{v}} \vec{v}=a_{1} e_{1}+a_{2} e_{2}$. Finishing the notation, we will use J for the integrand of the volume (1) and

$$
\sigma_{2}=\left|\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right|, \quad \sigma_{2,1}=\left|\begin{array}{ll}
h_{11} & a_{1} \\
h_{21} & a_{2}
\end{array}\right|, \quad \sigma_{2,2}=\left|\begin{array}{ll}
a_{1} & h_{12} \\
a_{2} & h_{22}
\end{array}\right| .
$$

It is easy to see that

$$
J=\left(1+\sum_{i, j=1}^{2} h_{i j}^{2}+a_{1}^{2}+a_{2}^{2}+\sigma_{2}^{2}+\left(\sigma_{2,1}\right)^{2}+\left(\sigma_{2,2}\right)^{2}\right)^{\frac{1}{2}}
$$

Note that $\left(1+\left|\sigma_{2}\right|\right)^{2}=1+2\left|\sigma_{2}\right|+\sigma_{2}^{2} \leq 1+\sum_{i, j=1}^{2} h_{i j}^{2}+\sigma_{2}^{2}$. Therefore

$$
\begin{equation*}
J \geq \sqrt{\left(1+\left|\sigma_{2}\right|\right)^{2}+\left|\sigma_{2,1}\right|^{2}} \tag{12}
\end{equation*}
$$

where equality holds if and only if $a_{1}=a_{2}=0$ and we have either $h_{11}=h_{22}$ and $h_{12}=-h_{21}$, or $h_{11}=-h_{22}$ and $h_{12}=h_{21}$.

Now we want to identify the last term in (12) with the evaluation of certain forms.

In the frame $\left\{e_{1}, e_{2}, \vec{v}\right\}$ we can demand that e_{1} will be tangent to S_{φ}^{2}, the parallel of \mathbb{S}^{3} with latitude $\varphi \in\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$. We complete a frame in S_{φ}^{2} with \vec{u} in such a way $\left\{e_{1}, \vec{u}\right\}$ is an oriented local frame compatible with the normal field \vec{n} that points toward the North Pole. That is, in such a way that $\left\{e_{1}, \vec{u}, \vec{n}\right\}$
is a positively oriented local frame of \mathbb{S}^{3}. Let $\alpha \in[0,2 \pi]$ be the oriented angle from $T S_{\varphi}^{2}$ to \vec{v} and $i: S_{\varphi}^{2} \rightarrow \mathbb{S}^{3}$ the inclusion map. In this way, $\vec{u}=$ $\cos \alpha \vec{v}+\sin \alpha e_{2}$ and

$$
\begin{aligned}
& i^{*}\left(\theta_{1} \wedge \theta_{2}\right)\left(e_{1}, \vec{u}\right)=\sin \alpha \\
& i^{*}\left(\theta_{1} \wedge \theta_{3}\right)\left(e_{1}, \vec{u}\right)=\cos \alpha \\
& i^{*}\left(\theta_{2} \wedge \theta_{3}\right)\left(e_{1}, \vec{u}\right)=0
\end{aligned}
$$

In order to evaluate $i^{*}\left(\omega_{13} \wedge \omega_{23}\right)$, first we note that

$$
\omega_{13} \wedge \omega_{23}=\sigma_{2} \theta_{1} \wedge \theta_{2}+\sigma_{2,1} \theta_{1} \wedge \theta_{3}-\sigma_{2,2} \theta_{2} \wedge \theta_{3}
$$

So, $i^{*}\left(\omega_{13} \wedge \omega_{23}\right)\left(e_{1}, \vec{u}\right)=\sin \alpha \sigma_{2}+\cos \alpha \sigma_{2,1}$.
As in (3) with $\beta \in\left[0, \frac{1}{2} \pi\right]$ such that $\sin \beta=|\sin \alpha|$ and $\cos \beta=|\cos \alpha|$, from (12) we get

$$
\begin{align*}
J & \geq \sin \beta\left(1+\left|\sigma_{2}\right|\right)+\cos \beta\left|\sigma_{2,1}\right| \tag{13}\\
& =|\sin \alpha|+|\sin \alpha| \cdot\left|\sigma_{2}\right|+|\cos \alpha| \cdot\left|\sigma_{2,1}\right| \\
& \geq|\sin \alpha|+\left|\sin \alpha \sigma_{2}+\cos \alpha \sigma_{2,1}\right| \\
& =\left|i^{*}\left(\theta_{1} \wedge \theta_{2}\right)\left(e_{1}, \vec{u}\right)\right|+\left|i^{*}\left(\omega_{13} \wedge \omega_{23}\right)\left(e_{1}, \vec{u}\right)\right| \\
& \geq\left|\left(i^{*}\left(\theta_{1} \wedge \theta_{2}\right)+i^{*}\left(\omega_{13} \wedge \omega_{23}\right)\right)\left(e_{1}, \vec{u}\right)\right| .
\end{align*}
$$

We split W in northern and southern hemisphere, H^{+}and H^{-}respectively. Then, from (13)

$$
\begin{align*}
\left.\operatorname{vol}(\vec{v})\right|_{H^{+}} & \geq \int_{H^{+}}\left|\left(i^{*}\left(\theta_{1} \wedge \theta_{2}\right)+i^{*}\left(\omega_{13} \wedge \omega_{23}\right)\right)\left(e_{1}, \vec{u}\right)\right| \nu \tag{14}\\
& \geq \int_{0}^{\frac{1}{2} \pi}\left|\int_{S_{\varphi}^{2}}\left(i^{*}\left(\theta_{1} \wedge \theta_{2}\right)+i^{*}\left(\omega_{13} \wedge \omega_{23}\right)\right)\right| \mathrm{d} \varphi
\end{align*}
$$

We know that $\mathrm{d} \omega_{12}=\omega_{13} \wedge \omega_{23}+\theta_{1} \wedge \theta_{2}$. If $A\left(\varphi, \frac{1}{2} \pi-\epsilon\right)$ is the annulus region between the parallels S_{φ}^{2} and $S_{\frac{1}{2} \pi-\epsilon}^{2}, 0 \leq \varphi<\frac{1}{2} \pi-\epsilon<\frac{1}{2} \pi$, we have by Stokes' Theorem

$$
\begin{equation*}
\int_{S_{\varphi}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+i^{*}\left(\theta_{1} \wedge \theta_{2}\right)=\int_{S_{\frac{1}{2} \pi-\epsilon}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+\int_{S_{\frac{1}{2} \pi-\epsilon}^{2}} i^{*}\left(\theta_{1} \wedge \theta_{2}\right) \tag{15}
\end{equation*}
$$

We bound $i^{*}\left(\theta_{1} \wedge \theta_{2}\right)\left(e_{1}, \vec{u}\right)=\sin \alpha \geq-1$ on $S_{\frac{1}{2} \pi-\epsilon}^{2}$ and consequently

$$
\int_{S_{\varphi}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+i^{*}\left(\theta_{1} \wedge \theta_{2}\right) \geq \int_{S_{\frac{1}{2} \pi-\epsilon}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)-4 \pi \cos ^{2}\left(\frac{1}{2} \pi-\epsilon\right)
$$

tome $136-2008-\mathrm{n}^{\circ} 1$

Applying Proposition 2.1, since as before, the limit as ϵ goes to 0 of $\vec{v}_{\left\lvert\, S_{\frac{1}{2} \pi-\epsilon}^{1}\right.}$ maps $S_{\frac{1}{2} \pi-\epsilon}^{2}$ onto the fiber $I_{\vec{v}}(N)$ times and noting that the curvature term is horizontal so goes to 0 in the limit,

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \int_{S_{\frac{1}{2} \pi-\epsilon}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right) & =\lim _{\epsilon \rightarrow 0} \int_{S_{\frac{1}{2} \pi-\epsilon}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}-\Omega_{12}\right) \\
& =4 \pi \lim _{\epsilon \rightarrow 0} \int_{S_{\frac{1}{2} \pi-\epsilon}^{2}} i^{*} \vec{v}^{*} \Pi=4 \pi I_{\vec{v}}(N) \int_{\pi^{-1}(N)} \Pi=4 \pi I_{\vec{v}}(N)
\end{aligned}
$$

So,

$$
\begin{equation*}
\int_{S_{\varphi}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+i^{*}\left(\theta_{1} \wedge \theta_{2}\right) \geq 4 \pi I_{\vec{v}}(N) \geq 0 \tag{16}
\end{equation*}
$$

From (14) and (16) we get

$$
\begin{equation*}
\operatorname{vol}(\vec{v})_{\mid H^{+}} \geq \int_{0}^{\frac{1}{2} \pi} 4 \pi\left|I_{\vec{v}}(N)\right| \mathrm{d} \varphi=2 \pi^{2}\left|I_{\vec{v}}(N)\right| \tag{17}
\end{equation*}
$$

In a similar way for the southern hemisphere, the integral of $d \omega_{12}$ over the annulus region $A\left(-\frac{1}{2} \pi+\epsilon, \varphi\right),-\frac{1}{2} \pi<-\frac{1}{2} \pi+\epsilon<\varphi \leq 0$ provides exactly (15) but now we bound $\sin \alpha \leq 1$ to obtain

$$
\int_{S_{\varphi}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+i^{*}\left(\theta_{1} \wedge \theta_{2}\right) \leq \int_{S_{-\frac{1}{2} \pi+\epsilon}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+4 \pi \cos ^{2}\left(-\frac{1}{2} \pi+\epsilon\right)
$$

The index of \vec{v} at S can be calculated as

$$
\lim _{\epsilon \rightarrow 0} \int_{S_{-\frac{1}{2} \pi+\epsilon}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)=\operatorname{vol}\left(\mathbb{S}^{2}\right) I_{\vec{v}}(S)
$$

So,

$$
\int_{S_{\varphi}^{2}} i^{*}\left(\omega_{13} \wedge \omega_{23}\right)+i^{*}\left(\theta_{1} \wedge \theta_{2}\right) \leq 4 \pi I_{\vec{v}}(S) \leq 0
$$

Therefore,

$$
\begin{align*}
\left.\operatorname{vol}(\vec{v})\right|_{H^{-}} & \geq \int_{-\frac{1}{2} \pi}^{0}\left|\int_{S_{\varphi}^{2}} i^{*}\left(\theta_{1} \wedge \theta_{2}\right)+i^{*}\left(\omega_{13} \wedge \omega_{23}\right)\right| \mathrm{d} \varphi \tag{18}\\
& \geq \int_{-\frac{1}{2} \pi}^{0} 4 \pi\left|I_{\vec{v}}(S)\right| \mathrm{d} \varphi=2 \pi^{2}\left|I_{\vec{v}}(S)\right| .
\end{align*}
$$

Thus, from (17) and (18) we have

$$
\operatorname{vol}(\vec{v}) \geq 2 \pi^{2}\left(\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|\right)=\left(\left|I_{\vec{v}}(N)\right|+\left|I_{\vec{v}}(S)\right|\right) \operatorname{vol}\left(\mathbb{S}^{3}\right)
$$

3. Concluding remarks

These results should extend to higher dimensions if one makes use of some rather complicated inequalities involving the volume integrand in (1) of a unit vector field and some symmetric functions coming from the second fundamental form of the orthogonal distribution (which is generally non integrable). Some of these inequalities can be found in [6] or [5].

Index results should exist also for the case when the spheres are punctured differently. In other words, if we have two singularities which are not antipodal points of \mathbb{S}^{2} or \mathbb{S}^{3} or if we have more than two singularities, what could be said? We believe that some results relating indices and positions of the singularities to the volume of a unit vector field may be found.

For singular vector fields on \mathbb{S}^{2} another natural situation is the one of unit vector fields defined on $\mathbb{S}^{2} \backslash\{x\}$. In a recent paper [1], see also [12], a unit vector field \vec{p} is defined on $\mathbb{S}^{2} \backslash\{x\}$ by parallel translation of a given tangent vector at $-x$ along the minimizing geodesics to x. It has been proved in [1] that \vec{p} minimizes the volume of unit vector fields defined on $\mathbb{S}^{2} \backslash\{x\}$. By a direct calculation, we obtain the inequality $\operatorname{vol}(\vec{p})>\operatorname{vol}(\vec{n})$, where \vec{n} is the north-south vector field tangent to the longitudes of W.

Now, new questions arise about minimality on specific topological-geometrical configurations on the punctured spheres.

BIBLIOGRAPHY

[1] V. Borrelli \& O. Gil-Medrano - "Area minimizing vector fields on round 2-spheres", 2006, preprint.
[2] , "A critical radius for unit Hopf vector fields on spheres", Math. Ann. 334 (2006), p. 731-751.
[3] F. G. B. Brito - "Total bending of flows with mean curvature correction", Differential Geom. Appl. 12 (2000), p. 157-163.
[4] F. G. B. Brito \& P. M. Chacón - "A topological minorization for the volume of vector fields on 5-manifolds", Arch. Math. (Basel) 85 (2005), p. 283-292.
[5] F. G. B. Brito, P. M. Chacón \& A. M. Naveira - "On the volume of unit vector fields on spaces of constant sectional curvature", Comment. Math. Helv. 79 (2004), p. 300-316.
[6] P. M. Chacón - "Sobre a energia e energia corrigida de campos unitários e distribuições. Volume de campos unitários", Ph.D. Thesis, Universidade de São Paulo, Brazil, 2000, and Universidad de Valencia, Spain, 2001.
tOME $136-2008-\mathrm{N}^{\mathrm{O}} 1$
[7] S. S. Chern - "On the curvatura integra in a Riemannian manifold", Ann. of Math. (2) 46 (1945), p. 674-684.
[8] S. S. Chern \& J. Simons - "Characteristic forms and geometric invariants", Ann. of Math. (2) 99 (1974), p. 48-69.
[9] O. Gil-Medrano \& E. Llinares-Fuster - "Second variation of volume and energy of vector fields. Stability of Hopf vector fields", Math. Ann. 320 (2001), p. 531-545.
[10] H. Gluck \& W. Ziller - "On the volume of a unit vector field on the three-sphere", Comment. Math. Helv. 61 (1986), p. 177-192.
[11] D. L. Johnson - "Chern-Simons forms on associated bundles, and boundary terms", Geometria Dedicata 120 (2007), p. 23-24.
[12] S. L. Pedersen - "Volumes of vector fields on spheres", Trans. Amer. Math. Soc. 336 (1993), p. 69-78.

