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Abstract. — In one of his papers, C. Viterbo defined a distance on the set of
Hamiltonian diffeomorphisms of R2n endowed with the standard symplectic form ω0 =

dp∧ dq. We study the completions of this space for the topology induced by Viterbo’s
distance and some others derived from it, we study their different inclusions and give
some of their properties.

In particular, we give a convergence criterion for these distances that allows us to
prove that the completions contain non-ordinary elements, as for example, discontinu-
ous Hamiltonians. We also prove that some dynamical aspects of Hamiltonian systems
are preserved in the completions.

Résumé (Sur certains complétés de l’espace des applications hamiltoniennes)
Dans un de ses articles, C. Viterbo définit une distance sur l’ensemble des difféomor-

phismes hamiltoniens de R2n, muni de sa forme symplectique standard ω0 = dp ∧ dq.
Nous étudions les complétés de cet espace pour la topologie induite par la distance
de Viterbo, ainsi que d’autres qui en sont dérivées. Nous explicitons leurs différentes
inclusions et donnons certaines de leur propriétés.

En particulier, nous donnons un critère de convergence pour ces distances qui nous
permet de montrer que les complétés contiennent des éléments intéressants, comme,
par exemple, des hamiltoniens discontinus. Nous prouvons aussi que certains aspects
de la dynamique hamiltonienne sont préservés dans les complétés.

Texte reçu le 12 janvier 2007, révisé le 8 juin 2007, accepté le 11 janvier 2008

Vincent Humilière, Centre de Mathématiques Laurent Schwartz, UMR 7640
du CNRS, École polytechnique, 91128 Palaiseau, France • E-mail : vin-

cent.humiliere@math.polytechnique.fr

2000 Mathematics Subject Classification. — 53D12, 37J05, 70H20.
Key words and phrases. — Symplectic topology, Hamiltonian dynamics, Viterbo distance,
symplectic capacity, Hamilton-Jacobi equation.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2008/373/$ 5.00
© Société Mathématique de France



374 HUMILIÈRE (V.)

1. Introduction

Given an open subset U in R2n, we denote by Ham(U) the set of all 1-
periodic time dependent Hamiltonian functions R × R2n → R whose support
for fixed time is compact and contained in U . We will write Ham for Ham(R2n).

Given a Hamiltonian function H ∈ Ham, its symplectic gradient (i.e the
unique vector field XH satisfying dH = ιXHω0) generates a Hamiltonian iso-
topy {φtH}. The set of Hamiltonian diffeomorphisms generated by an element
H in Ham(U) will be denoted by H(U) = {φH = φ1

H |H ∈ Ham(U)}, and
we will write H for H(R2n). Finally, we call L = {φ(0n) |φ ∈ H}, the set of
Lagrangian submanifolds obtained from the zero section 0n ⊂ T ∗Rn = R2n, by
a Hamiltonian isotopy with compact support.

As usual, we denote Viterbo’s distance on L or H by γ (see [15]). Conver-
gence with respect to γ is called c-convergence.

Our main goals in this paper is to understand the completion Hγ of the met-
ric space (H, γ), to give some convergence criterion (section 3) and to compare
it with the convergence for Hofer’s distance dH (see [5], chapter 5 section 1).

The notion of C0 symplectic topology has been studied by many authors,
starting from the work of Eliashberg and Gromov on the C0-closure of the
group of symplectic diffeomorphisms, to the later results of Viterbo ([15]) and
Hofer ([4]).

More recently Oh ([9]) gave a deep study of several versions of C0 Hamiltoni-
ans. However, our definition seems to differ from his, since in all his definitions,
he needs the Hamiltonians to be continuous, while our study starts as we drop
this assumption.

Let us now state our main results. For convenience, they will be restated
throughout the paper. In section 3, we introduce a symplectic invariant ξ∞
associated to any subset of R2n, and prove that

Theorem 1.1. — Let (Hk) be a sequence of Hamiltonians in Ham, whose
supports are contained in a fixed compact set. Suppose there exist a Hamiltonian
H ∈ Ham and a compact set K ∈ R2n with ξ∞(K) = 0, such that (Hk)

converges uniformly to H on every compact set of R× (R2n−K). Then (φHk)

converges to φH for γ.

Examples of sets K with ξ∞(K) = 0 are given by compact submanifolds of
dimension d 6 n− 2.

Viterbo’s distance γ is defined on H, but we can define for any H,K ∈ Ham

γu(H,K) = sup{γ(φtH , φ
t
K) | t ∈ [0, 1]},
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ON SOME COMPLETIONS OF THE SPACE OF HAMILTONIAN MAPS 375

to get a new distance on Ham (we give several variants of this definition). Then
the following proposition allows to extend the notion of Hamiltonian flow.

Proposition 1.2. — If we consider the respective completions Hγ and Ham
γu

of the metric spaces (H, γ) and (Ham, γu), then the map (H, t) 7→ φtH , Ham×
R→ H induces a map Ham

γu × R→ Hγ .
The induced map associates to any element H in Ham

γu a path in Hγ that
we will call the generalized Hamiltonian flow generated by H.

We then show that some aspects of Hamiltonian dynamics can be extended
to the completions (section 4): We can define a natural action of a generalized
flow on a Lagrangian submanifold. We can also associate to it a support and
extend the notion of first integral.

To some of them, it is also possible, as we prove in section 6, to associate a
solution to the Hamilton-Jacobi equation:

∂u

∂t
+H

Å
t, x,

∂u

∂x

ã
= 0.

Indeed, a γ2-Cauchy sequence of Hamiltonians gives a C0-Cauchy sequence of
solutions (where γ2 denotes one variant of the distance γu we mentioned above).

In section 5 we give examples of elements in both completionsHγ and Ham
γu

that can be described in a much more concrete way than their abstract defini-
tion (as equivalence classes of Cauchy sequences). More precisely, we prove

Proposition 1.3. — There is a one-one map

F∞ → Ham
γu
,

where F∞ denotes the set of all functions H : R×R2n → R∪{+∞} such that:

(i) H is continuous on R× R2n,
(ii) H vanishes at infinity: ∀ε > 0,∃r, (|x| > r ⇒ (∀t, |H(t, x)| < ε)),
(iii) there exists a zero capacity set (e.g. an infinitesimally displaceable set),

that contains all the points x where H(t, x) is +∞ for all time t,
(iv) H is smooth on R× R2n −H−1({+∞}).

Finally, let us mention that although we developed our theory on R2n, we
can reasonably expect similar results (except those of sections 4.2 and 6) on
any compact symplectic manifold satisfying

ω|π2(M) = 0 and c1|π2(M) = 0.

Indeed, on these manifolds, Schwarz defined in [11] a distance which is entirely
analogous to Viterbo’s.
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376 HUMILIÈRE (V.)

Organization of the paper. — In Section 2 we give the definitions of the objects
used in the paper. For the reader’s convenience, we first recall the construction
of Viterbo’s distance γ (2.2) which is based on the theory of generating functions
for Lagrangian submanifolds (2.1). We also remind the reader of the different
symplectic capacities constructed from γ (2.3). Finally we introduce our new
distances derived from γ (2.4).

Section 3 is fully devoted to the proof of our convergence criterion. Examples
of cases where it holds is then given in 3.3.

In Section 4 we define the completions of Ham and H and show that some
aspects of Hamiltonian dynamics that can be extended to the completions.

In Section 5 we discuss some interesting examples of elements of the com-
pletions.

Our results on the Hamilton-Jacobi equation are given in Section 6.
Finally, we prove in Appendix a “reduction inequality” usefull to prove then

all the inequalities between the distances considered in the paper.

Acknowledgments. — I am grateful to my supervisor C. Viterbo for his ad-
vices. I also want to thank my friends M. Affre and N. Roy for spending hours
correcting my awful English.

2. Symplectic invariants

In this section we give the definitions of all the objects we will use in the
sequel. We first recall the definition of Viterbo’s distance, defined first for
Lagrangian submanifolds with the help of generating functions, and then for
Hamiltonian diffeomorphisms (see [15]).

2.1. Generating functions quadratic at infinity. — Let L be a Lagrangian sub-
manifold of the cotangent bundle T ∗M of a smooth manifold M . We say that
L admits a generating function if there exists an integer q > 0 and a smooth
function S : M × Rq → R such that L can be written

L =

ß
(x, p) ∈ T ∗M | ∃ξ ∈ Rq,

∂S

∂ξ
(x, ξ) = 0 and

∂S

∂x
(x, ξ) = p

™
.

Such function S is called a generating function quadratic at infinity (or just
“g.f.q.i”) if there exists a non degenerate quadratic form Q on Rq and a compact
K ⊂M × Rq such that, ∀(x, ξ) /∈ K,S(x, ξ) = Q(ξ).

For instance, any quadratic form on Rq viewed as a function on M × Rq is
a g.f.q.i of the zero section 0M ⊂ T ∗M . J.C. Sikorav proved in [12] that the
property of having a g.f.q.i is invariant by Hamiltonian isotopy with compact
support. For this reason we will be interested in the set L of Lagrangian
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submanifolds, images of the zero section by a Hamiltonian isotopy with compact
support.

Furthermore, C. Viterbo and D. Théret proved that the g.f.q.i’s of a given
Lagrangian submanifold are essentially unique. Before stating this result, let
us introduce the following definitions: For a given function S : M × Rq → R,
we call a stabilisation of S any function S′ : M × Rq × Rq′ → R of the form
S′(x, ξ, ξ′) = S(x, ξ) + q(ξ′), where q is a non-degenerate quadratic form on
Rq′ . In addition, two functions S, S′ : M ×Rq → R are said equivalent if there
exists a diffeomorphism φ of M ×Rq that preserves all the fibers M ×{ξ}, and
a real C such that S′ = S ◦ φ+ C.

Theorem 2.1 ([15, 13]). — Suppose S, S′ are two g.f.q.i’s of the same La-
grangian submanifold in L. Then, up to stabilisation, S and S′ are equivalent.

This result allows to associate symplectic invariants to any element of L.

2.2. Invariants defined by minimax and a distance on the group of Hamiltonian dif-
feomorphisms. — The invariants defined in this section have been introduced
by C. Viterbo in [15]. We recall their construction. We first define invariants
for Lagrangian submanifolds.

Let L be an element of L and S : M × Rq → R be one of its g.f.q.i’s. Let
us denote Sλ = {x ∈ M × Rq |S(x) 6 λ}. Since S is quadratic at infinity,
the homotopy types of the pairs (Sλ, Sµ) and (Sµ, S−λ) do not depend on λ,
provided that λ is sufficiently large . Therefore, we will denote S∞ and S−∞,
instead of Sλ and S−λ for λ large enough.

Let us introduce E−∞ the negative (trivial) bundle of the quadratic form
which coincides with S at infinity. We denote B(E−∞), S(E−∞) the ball bun-
dle and the sphere bundle associated to E−∞. The Thom isomorphism is
given by H∗(M) → H∗(B(E−∞), S(E−∞)), and we also have the isomorphism
H∗(B(E−∞), S(E−∞)) ' H∗(S∞, S−∞). We will denote by T their composition.
For further informations on those isomorphisms, see [6] for example. The inclu-
sion jλ : Sλ → S∞ induces a morphism in cohomology j∗λ : H∗(S∞, S−∞) →
H∗(Sλ, S−∞), for all real number λ. We are now ready for the following

Definition 2.2. — Let (u, L) ∈ H∗(M)×L, with u 6= 0. Using a g.f.q.i S of
L, we define a real number c(u, L) as follows:

(1) c(u, L) = inf{λ | j∗λ ◦ T (u) ∈ H∗(Sλ, S−∞) is non zero}.

Observe that c(u, L) is well defined, and is independent of the choice of S’s
choice, up to additive constant. Indeed, if we replace S with an equivalent
or stabilized generating function, the value of c(u, L) does not change, up to
additive constant and we conclude using theorem 2.1. Even if it doesn’t depend
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378 HUMILIÈRE (V.)

on the generating function, we sometimes use the notation c(u, S) instead of
c(u, L).

Since the cohomology of the sets Sλ changes when we cross the level c(u, L),
it has to be a critical value of S.

Finally, observe that the definition can be extended to classes with compact
support u ∈ H∗c (M).

Then, we can use those invariants associated to Lagrangian submanifold to
define other invariants associated to Hamiltonian diffeomorphisms.

Consider a Hamiltonian diffeomorphism ψ ∈ H(R2n). Its graph Γψ is a
Lagrangian submanifold of R2n × R2n (= (R2n × R2n,−ω0 ⊕ ω0), where ω0

is the standard symplectic structure on R2n). It coincides with the diagonal
∆ = {(x, x) |x ∈ R2n}, outside the product B2n(r)× B2n(r), for r sufficiently
large. When we identify R2n × R2n with T ∗∆ using the map,

(q, p,Q, P ) 7→
Å
q +Q

2
,
p+ P

2
, P − p,Q− q

ã
,

we see that the image›Γψ of Γψ is identified with the zero section of T ∗∆ outside
a compact set.

Then, we can associate the previous invariant to ›Γψ (We normalize gener-
ating functions by asking their critical value at infinity to equal 0). Let 1 be a
generator of H0(R2n) and µ a generator of H2n

c (R2n).

Definition 2.3 (Viterbo, [15]). — We define,

c−(ψ) = −c(µ,›Γψ),

c+(ψ) = −c(1,›Γψ),

γ(ψ) = c+(ψ)− c−(ψ),

γ(φ, ψ) = γ(ψ−1φ).

Let us describe now the properties of the numbers γ, c+ and c− that we will
use in the paper.

Proposition 2.4 (Viterbo, [15]). — a) (Sign and Separation) For all ψ in H,
we have

c−(ψ) 6 0 6 c+(ψ).

Moreover, c−(ψ) = c+(ψ) = 0 if and only if ψ = Id.

b) (Triangle inequality) If φ is another diffeomorphism in H, then

c+(φ ◦ ψ) 6 c+(φ) + c+(ψ),

c−(φ ◦ ψ) > c−(φ) + c−(ψ),

γ(φ ◦ ψ) 6 γ(φ) + γ(ψ).
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In particular, the separation property and the triangle inequality imply that
(φ, ψ)→ γ(φ, ψ) is a distance on H.

c) (Monotony) Let ψ1 and ψ2 be two Hamiltonians generated by H1 and
H2. Suppose that for all (t, x) ∈ R× R2n, we have H1(t, x) 6 H2(t, x). Then,
c+(ψ1) 6 c+(ψ2) and c−(ψ1) 6 c−(ψ2).

As a consequence, if H is a non-negative Hamiltonian, then c−(φH) = 0. If
H is in addition non zero, we deduce c+(φH) > 0.

d) (Continuity) Let H1 and H2 be two compactly supported hamiltonians,
generating ψ1 and ψ2. Let ‖ · ‖ be the usual norm on C0(R2n × [0, 1],R). If
‖H1 −H2‖ 6 ε, then |γ(ψ1)− γ(ψ2)| 6 ε.

2.3. Two symplectic capacities on R2n. — We start this section by reminding
the reader of the definition of a symplectic capacity. This is a “symplectic” way
of measuring sets that plays an important role in symplectic topology. We will
use it in particular for our convergence criterion in section 3.

Definition 2.5 (Ekeland-Hofer). — A symplectic capacity on (R2n, ω0) is a
map associating to each subset U ⊂ R2n a number c(U) ∈ [0,+∞] satisfying

1. U ⊂ V ⇒ c(U) 6 c(V ) (monotony),
2. c(φ(U)) = c(U) for all Hamiltonian diffeomorphism φ ∈ H (symplectic

invariance),
3. c(λU) = λ2c(U) for all real λ > 0 (homogeneity),
4. c(B2n(1)) = c(B2 × R2(n−1)) = π, where B2n(1) is the unit ball of R2n

(normalisation).

The invariants defined in the previous section allow to define two symplectic
capacities as follows ([15]).

Definition 2.6. — 1. For any compact subset K ⊂ R2n, we denote by γ(K)

the number defined by

γ(K) = inf{γ(φ) |φ(K) ∩K = ∅}.

If V is not compact, we set

γ(V ) = sup{γ(K) |K ⊂ V }.

2. For any open subset U ⊂ R2n, we denote by c(U) the number defined by

c(U) = sup{c+(φH) |Supp(H) ⊂ U}.

If V is not an open set, we set

c(V ) = inf{c(U) |V ⊂ U}.
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The maps c and γ are symplectic capacities and moreover c 6 γ. We remind
the reader of the definition of the displacement energy

d(U) = inf{dH(φ, Id) |φ(U) ∩ U = ∅},

where dH is Hofer’s distance defined by

dH(φ, ψ) = inf{‖H −K‖ |H generates φ and K generates ψ},

with ‖H‖ =
∫ 1

0
(maxxH(t, x)−minxH(t, x))dt.

We are going to define a new symplectic capacity derived from c, but before
we need the following lemma.

Lemma 2.7. — We consider a subset V ⊂ R2n and R2 × V ⊂ R2+2n. Then,

c(R2 × V ) > c(V ).

That lemma follows from the reduction inequality of Proposition A.1. We
postpone its proof to Appendix. The reverse inequality might be true but we
are unable to prove it. That leads us to introduce the following object.

Definition 2.8. — For any open subset U ⊂ R2n, we set

c∞(U) = lim
N→∞

c(U × R2N ),

and if V is not an open subset,

c∞(V ) = inf{c∞(U) |V ⊂ U}.

We obtain a symplectic capacity that satisfies c∞(V ) = c∞(V × R2) for all
subset V (this property will be useful), and c 6 c∞. Moreover, since d(U) =

d(U × R2k) and c 6 d, we have c∞ 6 d. To summarize the known inequalities
between capacities we have,

Proposition 2.9. — c 6 γ 6 d and c 6 c∞ 6 d.

2.4. Other distances derived from γ. — In this section we introduce several other
distances for many reason. One is that we want to consider distances not only
on H but also on Ham. Another motivation is our result on the Hamilton-
Jacobi equation (section 6) that needs almost all of them. Finally, a stupid but
important reason is that we still don’t know which is the best one to develop
our theory!

Let us start with the following distance defined on H already introduced by
Cardin and Viterbo in [1].
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Definition 2.10. — For all Hamiltonian diffeomorphisms φ, ψ ∈ H, we define

γ̃(φ, ψ) = sup{γ(ψ−1φ(L)− L) |L ∈ L},

where γ(L) = c(µ,L) − c(1, L), ∀L ∈ L and L1−L2 = {(q, p1 − p2) | (q, p1) ∈
L1, (q, p2) ∈ L2}, for L1, L2 ∈ L.

Then, we define distances not anymore on H, but on Ham.

Definition 2.11. — For any H,K ∈ Ham, we set

γu(H,K) = sup{γ(φtH , φ
t
K) | t ∈ [0, 1]}

and
γ̃u(H,K) = sup{γ̃(φtH , φ

t
K) | t ∈ [0, 1]}.

Here, the subscript “u” means “uniform”. Clearly, γu and γ̃u are distances
on Ham.

For the next two distances, the principle is to add two dimensions by asso-
ciating to an Hamiltonian H two suspensions defined on R× R2+2n:

Ĥ(s; t, τ, x) = τ +H(t, x),

Ȟ(s; t, τ, x) = tH(st, x).

Here, the new time variable is s, while the former time variable t becomes a
space variable (as a consequence Ĥ is an autonomous Hamiltonian). We would
like to define our distances by γ̂(H,K) = γ(Ĥ, K̂) and γ̌(H,K) = γ(Ȟ, Ǩ).
But since Ĥ and Ȟ are not compactly supported we have to be slightly more
subtle.

Definition 2.12. — Let ρ be a fixed real function defined on [0,+∞), sup-
posed to be non-negative, smooth, decreasing, with support in [0,1], flat at 0

and such that ρ(0) = 1. For every natural integer α and every real number t,
we set ρα(t) = 1 if −α 6 t 6 α, and ρα(t) = ρ(|t| − α) otherwise.

We denote by Ĥα and Ȟα the Hamiltonian functions defined on R×R2+2n,
by

Ĥα(s; t, τ, x) = ρα(τ)τ + ρα(t)H(t, x),

and
Ȟα(s; t, τ, x) = ρα(t)tH(st, x).

Then, for H,K ∈ Ham, we set

γ̂(H,K) = lim sup
α→+∞

γu(Ĥα, K̂α),

and
γ̌(H,K) = lim sup

α→+∞
γ(φȞα , φǨα).
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Remark that γ̂(H,K) and γ̌(H,K) are finite. Indeed, if we denote by B a
ball containing both supports of H and K, then Ĥα, K̂α, Ȟα and Ǩα have sup-
port in R2×B, for any integer α. Hence γ(φȞα , φǨα) 6 2c(R2×B) 6 2c∞(B)

(See section 2.3 for notations). It shows that the lim sup in the definition of γ̌
is finite. The same proof shows that γ̂(H,K) is also finite.

The triangle inequality for γ̂ and γ̌ is a direct consequence of the triangle
inequality for γ. The separation property is obtained from the separation
property for γ and Proposition 2.13.

For convenience, we will not write the subscript α anymore. In the following,
we will denote Ĥ for Ĥα, and Ȟ for Ȟα.

Remarks. — By repeating these constructions several times (i.e., by taking
suspensions of suspensions), we can construct new distances. For example, we
will use in section 6 the distance γ2 = lim supα→+∞ γ̌(Ĥα, K̂α).

Using the invariance of γ, it is easy to verify that the suspended distances γ̂,
γ̌ and γ2 are invariant under the action of H. Namely, for H, K Hamiltonians
and ϕ Hamiltonian diffeomorphism, we have:

γ̂(H ◦ ϕ,K ◦ ϕ) = γ̂(H,K),

γ̌(H ◦ ϕ,K ◦ ϕ) = γ̌(H,K),

γ2(H ◦ ϕ,K ◦ ϕ) = γ2(H,K).

The following proposition gives inequalities between the distances. It will be
proved in Appendix. It is based on the reduction inequality (Proposition A.1).

Proposition 2.13. — We have γ̃ 6 γ and γ̃u 6 γu 6 min(γ̂, γ̌).

3. The convergence criterion

This is the central section of our paper. We give there the proof of our main
result, Theorem 1.1.
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3.1. A sufficient condition for a Hamiltonian diffeomorphism to be γ-close to Id

We start this section with some formulas concerning Hamiltonian flows.
They can be obtained by direct computation (see [5], page 144).

Lemma 3.1. — For all Hamiltonians H and K, with compact support, we
have:

φt
H

= (φtH)−1, where H(t, x) = −H(t, φt(x))

φtH#K = φtH ◦ φtK , where (H #K)(t, x) = H(t, x) +K(t, (φt)−1(x))

φt
H#K

= (φtH)−1 ◦ φtK .

Remark. — (H #K)(t, x) = (K −H)(t, φt(x)).

The following proposition shows that if a sequence of Hamiltonians (Hn)

converges to zero uniformly on every compact set contained in the complement
of a set whose capacity is zero, then (φHn) converges to Id for γ.

Proposition 3.2. — Let H be a Hamiltonian on R2n with compact support.
If U is an open subset of R2n, such that c(U) 6 ε and |H(t, x)| 6 ε for all
t ∈ [0, 1] and all x ∈ R2n − U , then γ(φH) 6 4ε.

Proof. — Let K1, K2 be Hamiltonians with compact support, such that 0 6
Ki 6 1, i = 1, 2, K1 equals 1 on the support of H and K2 equals 1 on the
support of K1 (hence K1 6 K2). Denote ψ1,ε the diffeomorphism generated
by H − εK1, and ψ2,ε the diffeomorphism generated by εK2. Then we have
H 6 εK2 + (H − εK1). As (ψ2,ε)

−1 coincides with Id on the support of
H − εK1, the lemma 3.1 implies that εK2 +H − εK1 is the Hamiltonian that
generates ψ2,ε ◦ψ1,ε. The monotony, the triangle inequality and the continuity
(Proposition 2.4) then give

c+(φ) 6 c+(ψ2,ε ◦ ψ1,ε) 6 c+(ψ2,ε) + c+(ψ1,ε) 6 ε+ c+(ψ1,ε).

Denote by fiψ1,ε the diffeomorphism generated by a non-negative Hamiltonian,
with support in U , and greater than H−εK1. Then by the monotony property,
c+(ψ1,ε) 6 c+(fiψ1,ε). Finally, since Supp(fiψ1,ε) ⊂ U , we get c+(fiψ1,ε) 6 c(U) 6
ε.

Using the inequality H > −εK2 + (H + εK1), we obtain the same type of
inequality for c−.

For example, if K is a compact submanifold of dimension lower or equal
than n− 1, then d(K) = 0 (and hence c(K) = 0).
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3.2. What about non-identity elements that are close for γ?

Unfortunately, the previous result cannot be straightforwardly generalised
to obtain a general convergence criterions when the limit is not zero. Indeed,
we can find two Hamiltonians that are C0-close out of a null-capacity set, but
not γ-close.

Example. — It is well known that the capacities c and γ of the unit sphere
S = {x ∈ R2n | ‖x‖ = 1} are π. It is also true for c∞. Then, for all ε > 0, there
exists a Hamiltonian H with support in a small neighbourhood U of S, and
such that c+(φH) > π− ε. Because of the monotony property (proposition ??),
H can be chosen non-negative. We set U+ a neighbourhood of {x ∈ S |x1 > 0}
and U− a neighbourhood of {x ∈ S |x1 < 0}, such that U = U+ ∪ U−. If U ,
U+ and U− are choosen small enough, we have d(U±) < ε and by proposition
2.9 c∞(U±) < ε. Using some partition of unity associated to the decomposition
U = U+ ∪ U−, we get two functions H±, with support in U± and such that
H = H+ +H−.

Now, we see that H+ coincides with H outside U−, whose capacity verifies
c∞(U±) < ε, but on the other hand,

‖γ(φH)− γ(φH+)‖ > γ(φH , φH+) > π − ε− γ(φH−) > π − 2ε.

It shows that the previous statement is false when the limit is not zero.

Nevertheless, we can introduce a new invariant, in order to extend the result
of proposition 3.2.

Definition 3.3. — For any subset U and any Hamiltonian H ∈ Ham, we
define

ξH(U) = c∞

Ñ ⋃
t∈[0,1]

φtH(U)

é
.

We may then set

ξλ(U) = sup ξH(U), for 0 < λ 6∞,

where the supremum is over all Hamiltonian functions H with γu(H) 6 λ.

Theorem 3.4. — Let H1 and H2 be Hamiltonians on R2n with compact sup-
port. Let U be a subset of R2n, satisfying one of the two following conditions:

1. ξ∞(U) 6 ε.
2. ∃λ > 0, ξλ(U) = 0

If |H1(t, x) − H2(t, x)| 6 ε for all t ∈ [0, 1] and all x /∈ U , then we have
γ(φH1 , φH2) 6 4ε.
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Proof. — Consider the Hamiltonian H(t, x) = H1(t, φt2(x))−H2(t, φt2(x)). By
assumption, |H(t, x)| 6 ε, for all (t, x) with x /∈ φ−t2 (U) and hence for all t and
all x /∈

⋃
t∈[0,1] (φ−1

2 )t(U). Each condition on U implies

c

Ñ ⋃
t∈[0,1]

(φ−1
2 )t(U)

é
6 c∞

Ñ ⋃
t∈[0,1]

(φ−1
2 )t(U)

é
6 ε.

By proposition 3.2 and lemma 3.1, we get γ(φH1
, φH2

) = γ(φH) 6 4ε.

Important remark. — In the proof of theorem 3.4, we see that the important
condition is in fact ξH2(U) 6 ε, which is of course implied by both conditions
ξ∞(U) 6 ε and ξλ(U) = 0.

Corollary 3.5. — The conclusion of theorem 3.4 still holds if we replace γ
with γ̃. For the distances on Ham, we get under the same assumptions

d(H1, H2) 6 4‖H1 −H2‖C0 ,

where d is either γ̃u, γu, γ̂ or γ̌.

Proof. — By proposition 2.13 (inequality between distances), we just have to
prove it for γ̂ and γ̌. Then remark that under the hypothesis of theorem 3.4,
we have |Ĥ1(s; t, τ, x)− Ĥ2(s; t, τ, x)| 6 ε and |Ȟ1(s; t, τ, x)− Ȟ2(s; t, τ, x)| 6 ε

for all integer α, all s ∈ [0, 1], and all (t, τ, x) /∈ R2 × U .

Unfortunately, even if U satisfies one of the conditions of proposition 3.4,
it is not in general the case for R2 × U . However, by the above remark, it is
sufficient to show that for all real number δ > 0 and all integer α large enough,
ξȞ2(R2 × U) 6 ε+ δ and ξĤ2(R2 × U) 6 ε+ δ. By letting δ tend to zero and
taking limsup with respect to α, we obtain γ̂(H,K) 6 4ε and γ̌(H,K) 6 4ε as
required.

Let us denote F for Ȟ2 or Ĥ2. The inequalities on ξF come directly from
the expression of φȞ2

and φĤ2
(see computations in Appendix A.2). Indeed,

in both cases, ⋃
s∈[0,1]

(φ−1
F )s([−α, α]2 × U) ⊂ R2 ×

⋃
s∈[0,1]

(ψ−1)s(U),

where ψs is a Hamiltonian isotopy that appears in last coordinate when we
compute φF . Therefore, since ξF (R2 × U) = limα→+∞ ξF ([−α, α]2 × U), we
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get for any δ > 0 and any α large enough:

ξF (R2 × U) 6 δ + c∞

Ñ
R2×

⋃
s∈[0,1]

(ψ−1)s(U)

é
= δ + c∞

Ñ ⋃
s∈[0,1]

(ψ−1)s(U)

é
6 δ + ε.

That concludes the proof.

Corollary 3.6. — Let (Hk) be a sequence of Hamiltonians in Ham, whose
supports are contained in a fixed compact set. Suppose there exist a Hamiltonian
H ∈ Ham and a compact set K ∈ R2n with ξ∞(K) = 0, such that (Hk)

converges uniformly to H on every compact set of R× (R2n−K). Then (φHk)

converges to φH for γ̃, γ, and (Hk) converges to H for γ̃u, γu, γ̂, γ̌.

Proof. — For γ̃, γ, it is a direct consequence of the remark that follows theorem
3.4. We just have to verify that for all ε > 0, there exists a small neighbourhood
U of K such that ξH(U) 6 ε. This is true because for every neighbourhood V
of

⋃
t∈[0,1] φH(K), we can choose a neighbourhood U of K such that⋃

t∈[0,1]

φH(U) ⊂ V.

Since c∞(
⋃
t∈[0,1] φH(K)) = 0 and

⋃
t∈[0,1] φH(K) is compact, we can choose

V such that c∞(V ) 6 ε, and obtain c∞(
⋃
t∈[0,1] φH(U)) 6 ε as required.

For γ̂ and γ̌, we have to verify that for all ε > 0 and all δ > 0, there exists
a small neighbourhood U of K such that for all α large enough ξφ(U) 6 ε+ δ,
where F is either Ĥ or Ȟ. The proof made above for φH shows that we can
find U such that ξf (U) 6 ε, where f generates the isotopy ψs defined as in
the proof of corollary 3.5. Therefore we have for all δ and all α large enough,
ξF (R2 × U) 6 ξF ([−α, α]2 × U) + δ 6 ξf (U) + δ 6 ε+ δ.

By proposition 2.13, corollary 3.6 is also true for γ̃u and γu.

Remark. — Similar proofs give that theorem 3.4 and corollary 3.6 still hold
for γ2.

3.3. Example of a non trivial ξ-small set

Proposition 3.7. — Let U be a closed submanifold of R2n whose dimension
d verifies d 6 n− 2. Then ξ∞(U) = 0.
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Proof. — Let H ∈ Ham. The problem is that
⋃
t∈[0,1] φ

t
H(U) is not in general a

manifold. To avoid that problem, we are going to add two dimensions and make
a suspension in this way. We denote by Φ the Hamiltonian diffeomorphism on
R2+2n = {(t, τ, x)} generated by the Hamiltonian

[0, 1]× R2+2n → R, (s; t, τ, x) 7→ tH(ts, x).

We also set V = Φ([0, 1]× [−1, 1]× U). The computation of Φ gives

Φ(t, τ, x) = (t, τ −H(t, x), φt(x)).

We see that
⋃
t∈[0,1] φ

t
H(U) can be obtained from V by symplectic reduction by

the coisotropic manifold {τ = 0}. So we are going to look for a Hamiltonian
diffeomorphism φK that displaces V and preserves {τ = 0} at the same time.
If the Hamiltonian does not depend on t, the second condition is verified. Since
V is compact, it is sufficient for K to verify

∀v ∈ V, RXK(v) ∩ TvV = {0},

which is equivalent to

∀v ∈ V, ker dK(v)⊕ TvV ⊥ = R2+2n

and to
∀v ∈ V, TvV ⊥ 6⊂ ker dK(v).

That makes us consider the 1-jet bundle J1(R×R1+2n,R) and its submanifold

W = {(s, q;σ, p; z) | (s, q) ∈ V, z ∈ R, T(s,q)V
⊥ ⊂ ker(σ, p)}.

The dimension of W is exactly 2n + 1. Indeed, the vector space {(σ, p) ∈
R2n+2∗ |T(s,q)V

⊥ ⊂ ker(σ, p)} has dimension 2n+ 2− dim(T(s,q)V
⊥) = n.

By Thom transversality theorem (see [3] for example), there exists a function
L whose 1-jet verifies j1L t W . But j1L can be seen as a function R×R1+2n →
J1(R×R1+2n,R), and by lemma 4.6 page 53 in [3], we have for a generic choice
of s ∈ R, j1L(s, ·) t W . We fix s as previously and we denote K : R2+2n → R,
K(t, ·) = L(s, ·)

Then, notice that for every s, q, p, z, the set of all σ such that (s, q;σ, p; z) ∈
W is either ∅ or R. It can be shown by direct computation of TV ⊥, whose first
component appears to be always {0}. As a consequence, we get j1K t W (j1K

differs from j1L(s, ·) just by its σ-component which is {0} instead of ∂L
∂s (s, ·)

for j1L(s, ·)).
Now, since (2n+2)+(2n+1) = dim(j1K(R2+2n))+dim(W ) < dim(J1(R×

R1+2n,R)) = 4n+ 5, we get j1K(R2+2n) ∩W = ∅. It follows that K satisfies
the two conditions: it preserves {τ = 0} and it satisfies

∀v ∈ V, RXK(v) ∩ TvV = {0}.
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As V is compact, for ε small enough, since φεK = φεK , we have φεK(V )∩V = ∅.
In addition εK can be made as C0-small as we want.

We are now ready for the reduction by {τ = 0}. Since it preserves {τ = 0},
εK induces a Hamiltonian on the reduction R2n. This Hamiltonian is C0-small
and generates a diffeomorphism ψ whose Hofer’s distance to identity dH(ψ, id)

is small, and that satisfies

ψ

Ñ ⋃
t∈[0,1]

φtH(U)

é
∩

⋃
t∈[0,1]

φtH(U) = ∅.

This Hamiltonian is not compactly supported, but any Hamiltonian with com-
pact support which coincides with it on a sufficiently large ball, would have the
same properties. That proves d

Ä⋃
t∈[0,1] φ

t
H(U)

ä
= 0, and since c∞ 6 d, we

get ξH(U) = 0.

4. Completions and extension of Hamiltonian dynamics

In this section, we introduce the completions and give the first properties of
their elements: the existence of a flow that acts on Lagrangian submanifolds,
the notion of first integral and the existence of a support. The full section 6
will be devoted to another property related to the Hamilton-Jacobi equation.

4.1. Notations, inclusions and definitions. — Let us denote respectively Hγ ,
Ham

γu , Hγ̃ , Ham
γ̃u , Ham

γ̂
, Ham

γ̌
and Ham

γ2 the completions of (H, γ),
(Ham, γu), (H, γ̃), (Ham, γ̃u), (Ham, γ̂), (Ham, γ̌) and (Ham, γ2).

The sets Hγ and Hγ̃ have a natural structure of group with bi-invariant
metric induced by the natural structures on (H, γ) and (H, γ̃). Moreover we
have the following fact:

Proposition 4.1. — The map H 7→ φ1
H induces Lipschitz maps Ham

γu →
Hγ and Ham

γ̃u → Hγ̃ .

Proof. — Indeed, by construction of the distances, H 7→ φ1
H is Lipschitz both

as a map (Ham, γu)→ (H, γ) and as a map (Ham, γ̃u)→ (H, γ̃).

The inequalities between the different distances, proved in Proposition 2.13,
induce inclusions between the completions which may be summarized by the
following diagram. Here, HdH denotes the completion of H for Hofer’s distance
dH (which satisfies dH 6 γ) and Cc the set of continuous (not necessarily
smooth) Hamiltonians with compact support.
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Cc
� � //
� _

��

Ham
γ̌
� r

%%JJ
JJJ

JJJ
JJ

Ham
γ2 �
�

//
Ham

γ̂ �
�

// Ham
γu �
�

//

��

Ham
γ̃u

��

HdH
� � // Hγ

� � // Hγ̃

As in Proposition 4.1, the map (H, t) 7→ φtH , Ham × R → H induces maps
Ham

γu × R → Hγ and Ham
γ̃u × R → Hγ̃ . Therefore, any element H in one

of the completions Ham
γu , Ham

γ̃u , Ham
γ̂
, Ham

γ̌
or Ham

γ2 can be associated
a path in either Hγ , or Hγ̃ . This path of course has the semi-group property.
That leads us to the following definition.

Definition 4.2. — Such a path will be called the generalized Hamiltonian
flow generated by H.

4.2. Action on Lagrangian submanifolds. — Recall that the set L of Lagrangian
submanifolds isotopic to the zero section by compactly supported Hamilto-
nian isotopy, can be endowed with Viterbo’s distance, also denoted γ (set
γ(L1, L2) = γ(L1 − L2), see definition 2.10). Let us denote L the comple-
tion of L with respect to this distance.

Proposition 4.3. — The groups Hγ and Hγ̃ naturally act on the set L. This
action extends the natural action of H on L.

Proof. — It is a simple consequence of the inequality γ̃ 6 γ (Proposition 2.13
proved in Appendix).

Let L ∈ L represented by a sequence (Lk) and φ in Hγ (the proof is the same
for Hγ̃), represented by a sequence (φk). We are going to show that (φk(Lk))

defines an element of L that we will denote φ(L).

This follows easily from the fact that for φ, ψ ∈ H and L,M ∈ L,

γ(φ(L)− ψ(M)) 6 γ(φ(L)− ψ(L)) + γ(ψ(L)− ψ(K))

6 γ(ψ−1φ(L)− L) + γ(L−K)

6 γ̃(φ, ψ) + γ(L−K).
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Remark. — A consequence of Proposition 4.3 is that we can define what is a
Lagrangian submanifold invariant under a generalized flow.

That leads us to another question which is: Can we define what is an in-
variant hypersurface of a generalized flow?

A (partial) answer to this question is that we can define what is a first
integral of a generalized Hamiltonian flow.

4.3. Notion of first integral. — This property has been first mentioned in [1], in
the definition (3.3) of the so-called c-commuting Hamiltonians. Let us restate
it with our notations.

An element in one of the completions Ham
γu , Ham

γ̃u , Ham
γ̂
, Ham

γ̌
and

Ham
γ2 will be said autonomous if it can be represented by a Cauchy sequence

of time-independent Hamiltonian functions.

Definition 4.4. — LetH,K be two elements in one of the above completions,
generating two respective generalized flows φtH and φtK . Then we will say that
H and K commute, or that K is a first integral of H if φsKφ

t
Hφ
−s
K φ−tH = Id.

In other words, K is a first integral of H if there exists two Cauchy sequences
(Hn) and (Kn) representingH andK, such that for all s and t, φsKnφ

t
Hn
φ−sKnφ

−t
Hn

c-converges to Id.

It is proved in [1] that this definition extends the usual definition of com-
muting Hamiltonian functions.

4.4. Existence of a support. — In this section, we state a lemma which makes
it possible to define a support for the elements of the different completions.

Lemma 4.5. — a. Let (φn) be a sequence in H converging to a Hamiltonian
diffeomorphism φ, with respect to γ or γ̃. Assume that there exists a set
U ∈ R2n such that supp(φn) ⊂ U . Then supp(φ) ⊂ U .

b. Let (Hn) be a sequence in Ham converging to a smooth Hamiltonian func-
tion H, with respect to γu, γ̃u, γ̂, γ̌, etc. Assume that there exists a set
U ∈ R2n such that supp(Hn) ⊂ U . Then supp(H) ⊂ U .

Proof. — a. Thanks to Proposition 2.13, we just have to prove the assertion
in the case of γ̃. Suppose supp(φ) 6⊂ U . Then there exists an x in
R2n − U such that φ(x) 6= x. Let ψ be a Hamiltonian diffeomorphism
whose support is included in R2n − U and which does not contain φ(x).
Suppose in addition that ψ(x) 6= x. Then, since the supports of φn and
ψ are disjoint, we have ψ ◦ φ−1

n ◦ ψ−1 ◦ φn = Id, for all integer n. Taking
limit, we get on one hand ψ ◦ φ−1 ◦ ψ−1 ◦ φ = Id. But on the other
hand, we have by construction, ψ ◦ φ−1 ◦ ψ−1 ◦ φ(x) = ψ(x) 6= x, which
is contradictory.
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b. We use the first part of the lemma to conclude that for all time t,
supp(φt) ⊂ U . This implies that supp(H) ⊂ U .

Remark. — A similar argument shows that the property of letting globally
invariant any sphere centered at 0, is invariant by taking γ or γ̃ limits. Similarly,
a γu, γ̃u, γ̂ or γ̌ limit of radial Hamiltonians is radial.

Definition 4.6. — a. Let ψ be an element of Hγ or Hγ̃ . Then we define
support(ψ) as⋂

{U |U open set, such that there exists (ψn) representing ψ such that

∀n, supp(ψn) ⊂ U},
where “supp” denotes the usual notions of support for Hamiltonian diffeomor-
phisms.

b. Let K be an element of Ham
γu , Ham

γ̃u , Ham
γ̂
, Ham

γ̌
or Ham

γ2 . Then we
define support(K) as⋂

{U |U open set, such that there exists (Kn) representing K such that

∀n, supp(Kn) ⊂ U},
where “supp” denotes the usual notions of support for smooth Hamiltonians.

These new notions of support coincide with the usual notions for smooth
Hamiltonians and Hamiltonian diffeomorphisms. Indeed, let η be either a
Hamiltonian diffeomorphism viewed as an element of Hγ or Hγ̃ , or a smooth
Hamiltonian seen as an element of Ham

γu , Ham
γ̃u , Ham

γ̂
, Ham

γ̌
or Ham

γ2 .
Let (ηn) be a sequence representing η, and U an open set with supp(ηn) ⊂ U

for all n. Then lemma 4.5 gives supp(η) ⊂ U . Hence supp(η) ⊂ support(η).
Conversely, for any neighbourhood U of supp(η) the constant sequence (η) con-
verges to η and has support in U . Therefore support(η) ⊂

⋂
V U , where the

intersection is over the set V of all open neighbourhoods of supp(η). Then, it
is easy to see that

⋂
V U =

⋂
V U = supp(η).

5. Description of some elements of the completions

The elements of the different completions are by definition equivalence
classes of Cauchy sequences. So they are defined in a very abstract way. In
this section, we show that many elements of the completions can be seen in a
more concrete way.
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5.1. Examples in the completion of Ham. — The inequalities between Hofer’s
distance and our four distances γu, γ̃u, γ̂ and γ̌ on Ham imply inclusions of the
completions. In particular any continuous time-dependent Hamiltonian can be
seen as an element of Ham

γu , Ham
γ̃u , Ham

γ̂
and Ham

γ̌
.

In view of Theorem 3.4 and Corollary 3.6, we can conjecture that if K ∈ R2n

satisfies ξ∞(K) = 0 a sequence (Hk) converges uniformly on compact sets of
R × (R2n − K) to a function H continuous on R × (R2n − K), then (Hk) is
Cauchy for either γu, γ̃u, γ̂ or γ̌ (compare with Corollary 3.6). We are still
unable to prove it, but if we restrict to a family of Hamiltonians which converge
to +∞ at their discontinuity points, this result can be established.

Definition 5.1. — We denote by F the set of all functions H : R × R2n →
R ∪ {+∞} such that:
(i) There existsK ∈ R2n with c∞(K) = 0 such thatH(t, x) = +∞⇒ x ∈ K,
(ii) H vanishes at infinity: ∀ε > 0,∃r, (|x| > r ⇒ (∀t, |H(t, x)| < ε)),
(iii) H is continuous on R× R2n.
We also set F∞ = {H ∈ F |H is smooth on R× R2n −H−1({+∞})}, and A,
A∞ the subsets of time-independent elements of F and F∞.

For the elements of F∞, the set of discontinuity is somehow “stable” under
the Hamiltonian flow. This property allows to consider functions with a larger
discontinuity set than what could be expected in the general case (c∞(K) = 0

instead of ξ∞(K) = 0).

Lemma 5.2. — Suppose H is an element of A and K = H−1({+∞}). Then
there exists a sequence of smooth autonomous Hamiltonians (Hk) ∈ Ham with
the following properties:

a. (Hk) converges to H uniformly on every compact subset of R2n −K.
b. (Hk) is Cauchy for γu, γ̃u, γ̂ and γ̌.

Moreover, if H ∈ A∞, then any sequence (Hk) that converges to H uniformly
on the compact subsets of R2n−K, does not converge in Ham, for none of the
distances γu, γ̃u, γ̂ and γ̌.

Proof. — Fix k > 0. Properties (ii) and (iii) in Definition 5.1 imply that K is
compact. Since c∞(K) = 0, there exists an open neighborhood U of K such
that c∞(U) 6 1

k . Then, if we denote H>A = {x |H(x) > A}, we have for A
large enough, K ⊂ H>A ⊂ U . Indeed, if it was not true, then for all integer
for all integer l > 0, there would exists a point al in H>l, but not in U . Then,
the sequence (al) would take values in H>1 ∩ (R2n − U) which is compact,
and hence it would have a subsequence that would converge to an element of
K ∩ (R2n−U), which contradicts our assumption. Let us fix a real number Ak
such that H>Ak ⊂ U .
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Now, let Hk be a smooth function with compact support such that |Hk −
H| < 1

k on R2n − H>Ak+ 2
k , and such that |Hk − Ak − 2

k | <
1
k on H>Ak+ 2

k .
The sequence (Hk) clearly converges to H uniformly on every compact subset
of R2n −K. Let us see why it is Cauchy.

By Proposition 2.13, we just have to prove it for γ̂ and γ̌. We write Fk
for either Ȟk or Ĥk. We also denote, as in the proof of Corollary 3.5, ψk for
the third coordinate of φFk . Since Hk is an autonomous Hamiltonian, its flow
φtHk preserves its level sets. Hence, the isotopy ψsk preserves the level sets of
Fk (see the computations in Appendix A.2). Therefore, since by construction
H>Ak+ 2

k ⊂ H>Ak+ 1
k

k , we have⋃
t∈[0,1]

ψtk(H>Ak+ 2
k ) ⊂ H>Ak+ 1

k

k .

Let δ > 0 and suppose α is sufficiently large. Then, as in the proof of Corollary
3.5,

ξFk(R2 ×H>Ak+ 2
k ) 6 δ + c∞

Ñ
R2×

⋃
s∈[0,1]

(ψ−1
k )s(H>Ak+ 2

k )

é
6 δ + c∞

Ñ ⋃
s∈[0,1]

(ψ−1
k )s(H>Ak+ 2

k )

é
6 δ + c∞(H

>Ak+ 1
k

k ).

SinceH>Ak+ 1
k

k ⊂ H>Ak ⊂ U and c∞(U) 6 1
k , we obtain ξ

Fk(H>Ak+ 2
k ) 6 1

k+δ.
Now, pick an integer l > k. If l and k are large enough, then we have

|Ĥk − Ĥl| 6 1
k and |Ȟk − Ȟl| 6 1

k on R2+2n − (R2 ×H>Ak+ 2
k ). Therefore, by

the remark that follows Theorem 3.4, we get γ̂(Hl, Hk) 6 4
k and γ̌(Hl, Hk) 6 4

k ,
after taking limsup with respect to α. It proves that (Hk) is a Cauchy sequence
for γ̃u, γu, γ̂, and γ̌.

Suppose now that H is smooth on R2n −K. Then we can choose Hk such
that it coincides with H on Bk − H>Ak+ 2

k , where Bk is the ball of radius k,
centered at 0. Suppose that (Hk) converges to a Hamiltonian L ∈ Ham for γ̃u,
γu, γ̂, and γ̌. Then for any integer k, Hk # Hl converges to Hk # L while l
tends to infinity for γ̃u (see Lemma 3.1 for notations). According to Lemma 4.5,
since HK #Hl has support in the complementary of Bk−H>Ak+ 2

k , Hk#L has
support in its closure and hence L coincides with H on Bk −H>Ak+ 2

k . Since
it is true for any k, L has to coincide with H on R2n −K. Therefore L cannot
belong to Ham, which contradicts our assumptions.

Finally, if (Lk) is another sequence of Hamiltonians that converges to H

uniformly on the compact subsets of R2n −K, then, similarly as in the above
proof that (Hk) is Cauchy, we obtain that γ̂(Lk, Hk) and γ̌(Lk, Hk) converge
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to 0, where Hk is the particular sequence defined in the previous paragraph.
Since (Hk) does not converge, (Lk) does not converge either.

Remark. — As usual, the results of Lemma 5.2 still hold for γ2.

Proposition 5.3. — The set F∞ can be embedded into each completion
Ham

γu , Ham
γ̃u , Ham

γ̂
and Ham

γ̌
.

Proof. — Let us first consider the autonomous case (elements of A∞).

Since Ham
γ̂ ⊂ Ham

γu ⊂ Ham
γ̃u and Ham

γ̌ ⊂ Ham
γu ⊂ Ham

γ̃u , it is enough
to prove it for γ̂ and γ̌. We will make the proof for γ̂ and the proof for γ̌ will
be exactly the same. Let J be the function that associates to any H ∈ A∞ the
element of Ham

γ̂
represented by any sequence (Hk) that converges uniformly

to H on the compact sets of R2n − H−1({+∞}). As we noticed at the end
of the proof of Lemma 5.2, two such sequences are equivalent and hence J is
well-defined.

Let us now prove that J is one-one. Let H,G ∈ A∞ and let (Hk), (Gk) be
two sequences respectively associated to them, precisely constructed as in the
last but one paragraph of the previous proof. Suppose that G 6= H, we are
going to show that γ(Hk, Gk) does not converge to zero, that will imply that
γ̂(Hk, Gk) does not converge to zero.

We can define almost everywhere the flows φtG, φ
t
H and ψt = φ−tG ◦ φtH . Let

ψk = φ−1
Gk
◦ φHk . Since G 6= H, there exists a point x such that ψ(x) 6= x.

Hence, there exists a small ball B around x such that ψ(B) ∩ B = ∅. Let
K be a compact neighborhood of

⋃
t ψ

t(B). For k large enough, Hk and Gk
coincide respectively with H and G on K, and thus ψk(B)∩B = ∅ too. Since
γ(Hk, Gk) = γ(ψk) > γ(B) > 0, γ(Hk, Gk) cannot converge to zero.

To achieve the proof, we just have to notice that the map H 7→ Ĥ is a one-
one map F∞2n → A∞2n+2 (the subscript denotes the dimension of the ambient
symplectic space). Thus, according to the autonomous case, if H is in F∞2n then
Ĥ is in Ham

γu
(R2n+2). Moreover, according to Lemma 5.2, we may construct

a Cauchy sequence Hk of the form F̂k for some Hamiltonians Fk. That means
that H is actually an element of Ham

γ̂
(R2n). Inclusions between completions

give that it is an element of Ham
γ
(R2n) and Ham

γ̃
(R2n) too. finally, a similar

reasoning using γ2 instead of γ̂ allows to seeH as an element of Ham
γ̌
(R2n).
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Now, if we denote by C0 the set of continuous Hamiltonians that vanish at
infinity, we can improve the diagram of section 4.1:

F

��

((

F∞ ∪ C0
� � //

kK

yyrrr
rrr
rrr
rr

Ham
γ̌
� _

��

Ham
γ2 �
�

//
Ham

γ̂ �
�

// Ham
γu �
�

//

��

Ham
γ̃u

��

HdH
� � // Hγ

� � // Hγ̃

5.2. Examples in the completions of H. — In the completions of Ham easy ex-
amples was given by continuous Hamiltonian functions. In the completions of
H there are no similar result. Indeed, there are no known relation between
C0-distance and γ.

However, we can give concrete examples of elements of the completion of H
by Proposition 5.3. Indeed, it implies that the (generalized) flows generated by
elements of F∞ are in both Hγ and Hγ̃ . Let us give some examples (in their
construction, γ can be replaced by γ̃ without any problem).

Example of a non smooth homeomorphism in Hγ . — We consider a decreasing
function h : [0,+∞) → [0,+∞), with support in [0, 1], and equal to 1 on
[0, 3/4]. Then we define Hk(x) =

∑k
i=1 h(2i|x|2), for x ∈ R2 and H(x) =∑∞

i=1 h(2i|x|2) (the “sky-scrapper” Hamiltonian). Let us see why φH can be
seen as a non-smooth homeomorphism.

Lemma 4.5 implies that φH coincides with φHk out of B2−k . So, we can
compute the explicit form of φ. In polar coordinates, we obtain:

φH(r, θ) = (θ − r2f ′(r2), r),

for r > 0 where f(s) =
∑
i>0 h(2is) (for any s, all the terms in this sum are

0 except maybe one). We see that φH is a homeomorphism. It is moreover
a fibered rotation whose rotation number has no limit at 0. Thus φH is not
smooth.

Example of a discontinuous element in Hγ . — In the previous example, the se-
quence of diffeomorphisms (φHk) was converging almost everywhere to a home-
omorphism (which was not a diffeomorphism). Therefore, one could think that
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the class of (φHk) in the completion Hγ can be represented by a homeomor-
phism. However, with the help of Proposition 5.2, we can show that it is not
true in general, at least in dimension 2n > 4.

Indeed, consider H : R2 × R2n → R,

(x1, x2) 7→ 1

|‖x1‖2 − 1|+ ‖x2‖2
χ(‖(x1, x2)‖),

where χ is smooth with compact support and equals 1 on the ball of radius
2 centered at zero. Clearly, H ∈ F∞ (because K = H−1({+∞}) = S1 × {0}
satisfies c∞(K) = 0 as required). Consider the sequence (Hk) constructed in
the proof of Lemma 5.2. Since (Hk) is Cauchy for γu, (φHk) is Cauchy for
γ. Suppose it converges to an element φ. Then, Lemma 4.5 implies that for
any neighbourhood U of K and for k large enough, φ coincides with φHk on
R2+2n − U . Therefore, we can compute the explicit form of φ on R2+2n −K.

In polar coordinates (s1, θ1, s2, θ2) with s1 = ‖x1‖2 and s2 = ‖x2‖2, we get
for s1 < 1:

φ(s1, 0, 0, 0) =

Å
s1,

s1

(1− s1)2
, 0, 0

ã
.

If we let s1 converge to 1, we see that φ is not continuous.

Questions. — The previous examples lead us to natural questions: Are all the
elements of Hγ(R2) homeomorphisms? Conversely, can we see any symplectic
homeomorphism (element of the C0-closure of symplectic diffeomorphisms in
the homeomorphisms in general dimension, area-preserving homeomorphisms
in dimension 2) as an element of Hγ?

This last question is related to Oh’s still open question whether his group
of “Hamiltonian homeomorphisms”, called Hameo, equals or not the group of
symplectic homeomorphisms [9].

6. Application to the Hamilton-Jacobi equation

Let H be a smooth Hamiltonian function on R × R2n. We consider the
evolution Hamilton-Jacobi equation (HJ):

∂u

∂t
+H

Å
t, x,

∂u

∂x

ã
= 0,

where u : R × Rn → R, (t, x) 7→ u(t, x) satisfies an initial condition u(0, x) =

u0(x). First, we remind the reader of the construction of a variational solution
of (HJ) (see for example [14] or [10]).
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6.1. Recall on variational solutions of (HJ). — Let us denote by Λ0 the graph
of du0 and call it the initial submanifold. In fact, the following construction
can be made for any Lagrangian submanifold Λ0 ⊂ R2n. We consider Σ =

Ĥ−1({0}) ⊂ R2+2n. A geometric solution of (HJ) is a Lagrangian submanifold
L that satisfies Λ0 6 L 6 Σ. For example, the graph of the differential of a
smooth function u is a geometric solution if and only if u itself is a solution of
(HJ).

With the help of the flow φt
Ĥ
, we can construct a geometrical solution LH =⋃

t∈I φ
t
Ĥ

(Λ0), where I is an open interval containing [0, 1] and such that ρα = 1

on I. The Lagrangian submanifold LH obtained is an element of L(R2+2n).
For any element L ∈ L(R2k), we can associate a function uL on R2k by the

following method.
Let S : Rk × Rq → R be a g.f.q.i of L. Denote by 1z the fundamental class

in H0(z). Then, we define uL by

uL(z) = c(1z, S|z×Rq ),

with notations of section 2. The function uL is everywhere C0, and it is proved
in [10], that uL is Ck on a dense open set, for k > 1. Moreover, when it is
defined, we have (x, duL(x)) ∈ L. Therefore, the function uLH is a solution of
(HJ) on any open set on which it is smooth.

We are now going to prove an interesting property of the elements of Ham
γ2 ,

which is the fact that we can extend to them the construction of a variational
solution of (HJ).

6.2. Extension to the completion

Proposition 6.1. — Let H and K be two Hamiltonian functions, and uLH ,
uLK the solution obtained by the above method with the same initial submanifold
Λ0. Then,

‖uLH − uLK‖C0 6 γ2(H,K).

That leads us to the following definition.

Definition 6.2. — Let H ∈ Ham
γ2 . A continuous function u will be called

generalized variational solution of (HJ) forH, if there exists a Cauchy sequence
(Hk) in Ham representing H and such that the sequence of solutions (uLHk )

C0-converges to u.

Therefore, proposition 6.1 implies the following statement:

Theorem 6.3. — For each initial condition u0, any element H in the com-
pletion Ham

γ2 admits a unique generalized variational solution uH . Moreover,
the so constructed map Ham

γ2 → C0 is continuous.
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In particular, any Hamiltonian function in F∞ (see definition 5.1) admits a
unique generalized variational solution.

Proof. — Let (Hk) ∈ Ham be a Cauchy sequence for γ2 representing an element
H ∈ Ham

γ2 . Then, proposition 6.1 implies that (uLHk ) is a Cauchy sequence in
C0 and hence converges to a continuous function u. Moreover, if (Hk) and (Fk)

are two equivalent Cauchy sequences for γ2, then proposition 6.1 also implies
that (uLHk ) and (uLFk ) are equivalent, and hence converge to the same limit.
It gives the existence and the unicity.

The continuity of the map Ham
γ2 → C0 is also an immediate consequence

of Proposition 6.1.

To prove proposition 6.1, we first prove the following lemma:

Lemma 6.4. — For any L ∈ L, we have

‖uL‖C0 6 γ(L).

Proof. — Since L coincides with the zero section out of a compact set, uL has
a compact support. It follows that ‖uL‖C0 6 max(uL) − min(uL). We will
prove that min(uL) > c(1, L). It will also imply that max(uL) 6 c(µ,L) by
Poincaré duality. Indeed, using the fact that c(µ,L) = −c(1, L) and that for
all z, µz = 1z, we have uL = −uL.

Let z ∈ Rk, and S : Rk ×Rq → R be a g.f.q.i of L ⊂ R2k. Then, S|{z}×Rq is
a g.f.q.i. of the reduction of L by the coisotropic submanifold {z}×Rk ⊂ R2k.
Therefore, by lemma A.2, we get c(1z, S|{z}×Rq ) > c(1, S), for all z and hence
min(uL) > c(1, L) as required.

Proof of proposition 6.1. — The proposition comes from a sequence of inequal-
ities:

‖uLH − uLK‖C0 6 γ(LH , LK) 6 γ̃(φ ˇ̂
H
, φ ˇ̂
K

) 6 γ2(H,K).

The third inequality comes from the first inequality in proposition 2.13. The
second one is proved in [1]. Finally, the first one comes from the lemma 6.4
above and proposition 3.3 in [15], which states that for all u, v ∈ H∗(Rn),
c(u∪ v, L1 +L2) 6 c(u, L1) + c(v, L2), where L1 +L2 = {(q, p1 + p2) | (q, p1) ∈
L1, (q, p2) ∈ L2}.

Indeed, for u = v = 1(t,x), L1 = (LH − LK)|(t,x) and L2 = LK |(t,x), we
get c(1(t,x), LH |(t,x)) − c(1(t,x), LK |(t,x)) 6 −c(1(t,x), (LH − LK)|(t,x)). Then,
lemma 6.4 gives −c(1(t,x), (LH − LK)|(t,x)) 6 γ(LH − LK) = γ(LH , LK). By
exchanging H and K and taking the supremum over (t, x), we obtain ‖uLH −
uLK‖C0 6 γ(LH , LK) as required.
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Remark and Question. — Joukovskaia proved in [7] that for Hamiltonian
functions that are convex in p, variational solutions of (HJ) coincide with vis-
cosity solutions (These are a notion of weak solution introduced by Crandall
and Lions in [2] that has shown its efficiency in a lot of domains of applications
including optimal control and differential games, front propagation problems,
finance, image theory....). We are tempted to use it together with some con-
vergence result on viscosity solutions, to prove that our generalized variational
solution is a viscosity solution. This would give another interpretation of our
notion of solution, and since our solution is continuous, it would also give a
continuity result on viscosity solutions.

However, since we developed our theory in the context of compactly sup-
ported Hamiltonians, we cannot reason on Hamiltonian functions convex in
p. That leads us to our question : Can one define a completion with similar
properties for a class of Hamiltonian functions convex in p?

Appendix A
Proof of inequalities

In this appendix we prove proposition 2.13 and lemma 2.7. All those in-
equalities are based on the reduction inequality stated in proposition A.1.

A.1. Inequality between γ̃ and γ. — We first prove the inequality γ > γ̃.
Let ϕ be a Hamiltonian diffeomorphism, and L ∈ L. We wish to show that

γ(ϕ(L) − L) 6 γ(ϕ). If we denote by N the zero section of R2n = T ∗Rn,
there exists a Hamiltonian isotopy ψt such that L = ψ1(N). Therefore, we
just need to prove γ(ϕ(N)) 6 γ(ϕ). Indeed, if we assume this inequality, then
γ(ϕ(L)−L) = γ(ϕ ◦ψ1(N)−ψ1(N)) = γ(ψ−1 ◦ϕ ◦ψ1(N)−N), using formula
(2.1) in [1]. Then, by assumption we get γ(ϕ(L)−L) 6 γ(ψ−1 ◦ϕ◦ψ1) = γ(ϕ).

Let us prove now that γ(ϕ(N)) 6 γ(ϕ). We denote by ∆p the diagonal in
Rp × Rp, and by Φ the symplectic identification R2n × R2n → T ∗∆2n. Recall
that Γ̃ϕ is by definition the image of the graph Γϕ of ϕ. Clearly, ϕ(N) is
identified to the symplectic reduction of N × Γϕ ⊂ R6n by the coisotropic
linear subspace ∆2n×R2n. It is therefore identified to the reduction of N × Γ̃ϕ
by W = (IdR2n × Φ)(∆2n × R2n). One can easily show that for all L ∈ L,
γ(N × L) = γ(L). In particular, γ(ϕ) = γ(N × Γ̃ϕ), and the proof will be
achieved if we prove the following proposition.

Proposition A.1 (Reduction Inequality). — For every Lagrangian subman-
ifold L in R2n and every linear coisotropic subspace W of R2n, we have γ(L) >
γ(LW ), where LW denotes the image of L by reduction by W .

We first prove the following lemma.
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Lemma A.2. — Let L be a Lagrangian submanifold in a cotangent bundle of
the form T ∗M = T ∗B × R2k. Consider the two coisotropic submanifolds X =

T ∗B × {x0} × Rn and Y = T ∗B × Rn × {0}. Denote by LX and LY the
reductions of L by respectively X and Y . Then

c(1, LX) > c(1, L) = c(1, LY ),

c(µB , LX) 6 c(µM , L) = c(µB , LY ).

Proof. — We start the proof by showing that c(1, LX) > c(1, L). Let us fix
λ ∈ R and consider the inclusion i : B ' {0} × B → M . Let S be a g.f.q.i. of
L defined on a bundle π : E →M . Then the function SX = S|π−1(B×{x0}) is a
generating function for LX . Since SX is a restriction of S, we have an inclusion
of the sublevels SλX ⊂ Sλ, which induces a morphism iλ : H∗(Sλ, S−∞) →
H∗(SλX , S

−∞
X ). The naturality of Thom isomorphism and the fact that all

different inclusions commute make the following diagram commutative.

H∗(B)
T // H∗(S∞X , S

−∞
X )

j∗X,λ
// H∗(SλX , S

−∞
X )

H∗(M)

i∗
OO

T // H∗(S∞, S−∞)

i∞

OO

j∗λ // H∗(Sλ, S−∞)

iλ

OO

Suppose now that j∗X,λ ◦ T (1) 6= 0. Then iλ ◦ j∗λ ◦ T (1) = j∗X,λ ◦ T ◦ i∗(1) =

j∗X,λ ◦ T (1) 6= 0 hence j∗λ ◦ T (1) 6= 0. That proves c(1, LX) > c(1, L).

In the case of LY , we also have an explicit generating function, constructed
as follows. Since Rk is contractible we can suppose that the fibers of π do
not depend on the second coordinate of M . Denote by i : B ' B × {0} →
E the inclusion and by τ : B × Rk → B the trivial bundle of rank k over
B. Consider the vector bundle over B, ρ = τ ⊕ i∗π whose total space is
F = π−1(B × {0}) × Rn. Then, the function SY , defined for all v ∈ B and
(x, ξ) ∈ ρ−1(v) by SY (v;x, ξ) = S(v, x; ξ) is a g.f.q.i for LY . The map f : E →
F, (v, x; ξ) 7→ (v;x, ξ) is a diffeomorphism and satisfies SY ◦ f = S. Therefore,
we have SλY = f(Sλ), an isomorphism H∗(Sλ, S−∞) ' H∗(SλY , S

−∞
Y ) and a

commutative diagram

H∗(B)
T // H∗(S∞Y , S

−∞
Y )

j∗Y,λ
// H∗(SλY , S

−∞
Y )

H∗(M)

i∗
OO

T // H∗(S∞, S−∞)

'
OO

j∗λ // H∗(Sλ, S−∞)

'
OO
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The previous argument gives c(1, LY ) > c(1, L). The reverse inequality is
obtained from the same diagram with the inclusion i replaced by the projection
p : M → B (which reverses vertical arrows).

Finally, c(µB , LN ) 6 c(µM , L) = c(µB , LY ) is obtained from c(1, LX) >
c(1, L) = c(1, LY ) by Poincaré duality, by noticing that LX = LX and LY =

LY .

Lemma A.3. — Let W be a coisotropic linear subspace of R2n. Denote by
N the zero section of R2n = T ∗Rn. Then there exists a decomposition in
linear isotropic subspaces R2n = N1 ⊕ V1 ⊕ N2 ⊕ V2 ⊕ N3 ⊕ V3, where N =

N1 ⊕N2 ⊕N3 and each Ni ⊕ Vi, i = 1, 2, 3 is a symplectic subspace, such that
W = N1 ⊕ V1 ⊕N2 ⊕ V3.

Proof. — Let us first recall that ifW is coisotropic with symplectic orthogonal
Wω ⊂W , any subspace F such that F ⊕Wω = W is symplectic. Indeed, since
F ⊂W , F ∩ Fω = F ∩ Fω ∩W = F ∩ (F ⊕Wω)ω = F ∩Wω = {0}.

If there exists a decomposition as in the lemma, thenWω = N2⊕V3. There-
fore we set N2 = Wω ∩ N . Then, we define N1 as one complementary of N2

in W ∩ N , and F1 as one complementary of Wω in W , containing N1. By
the above remark, F1 is symplectic, and we can choose V1 as one Lagrangian
complementary of N1 in F1.

Then, we define V3 as a complementary ofN2 inWω. SinceW∩N = N1⊕N2,
V3 ∩N = 0, and we can define N3 as a complementary of N1⊕N2 in N . Then,
F3 = N3 ⊕ V3 is symplectic since it is a complementary of (N1 ⊕N2 ⊕ F3)ω in
N1 ⊕N2 ⊕ F3.

Finally, we define F2 as a complementary of F1 ⊕ F3 in R2n. Then, F2 is
symplectic for a similar reason as F3, and we can define V2 as a Lagrangian
complementary of N2 in F2. The decomposition R2n = N1 ⊕ V1 ⊕ N2 ⊕ V2 ⊕
N3 ⊕ V3 satisfies all the requirements of lemma A.3.

Proof of proposition A.1. — Since the linear symplectic group acts transitively
on the set of all pairs of complementary Lagrangian subspaces (see proposition
7.4 in Chapter 1 of [8]), and since the space of Lagrangian subspaces which
are complementary to the zero section N is path connected, there exists a
symplectic isotopy Ψt of R2n such that Ψ0 = Id and that Ψ1 lets all the
elements of N invariant and maps V on V1 ⊕ V2 ⊕ V3. Since R2n is simply
connected, that isotopy is Hamiltonian.

The reduction of L byW is identified with the reduction of Ψ1(L) by Ψ1(W ).
Therefore, applying twice the lemma A.3, we get γ(LW ) 6 γ(Ψ1(L)). But, by
proposition 2.6 in [15], we have γ(L) = γ(Ψ1(L)). That concludes the proof of
proposition A.1.
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Remark. — Note that in the end of the previous proof, lemma A.3 also implies
c(1, LW ) > c(1, L). That will be useful in the proof of lemma 2.7.

A.2. Inequalities involving the “suspended distances”

Proof of Proposition 2.13. — We now prove the inequality γu(H,K) 6
γ̂(H,K), for any H,K Hamiltonian functions. It is sufficient to prove that
for all Hamiltonian functions H,K, all s in [0, 1], and all α large enough,
γ(φ−sK φsH) 6 γ(φ−s

K̂
φs
Ĥ

). We will prove that the graph of φ−sK φsH can be
obtained by reduction of the graph of φ−s

K̂
φs
Ĥ
, and then use proposition A.1.

We denote by Φ̂s the flow at time s of the Hamiltonian Ĥ : (s; t, τ, x) 7→
ρα(τ)τ + ρα(t)H(t;x). By direct computation, we get

Φ̂s(t, τ, x) = (t(s), τ(s), x(s)),

with

t(s) = t+

∫ s

0

(ρ′α(τ(σ))τ(σ) + ρα(τ(σ))dσ

τ(s) = τ −
∫ s

0

(ρ′α(t(σ))H(t(σ), x(σ) + ρα(t(σ))
∂H

∂t
(t(σ), x(σ)))dσ

and x(s) solution of ẋ(s) = ρα(t(s))XH(t(s), x(s)). If we denote M =

max(‖ρα‖C1 , ‖H‖C1), we see that τ(s) ∈ [τ − |s|M2, τ + |s|M2]. Suppose
τ ∈ [−M2 − 2M,M2 + 2M ] and α is large enough, then ρα(τ(s)) = 1 and
t(s) = t+ s. Hence x(s) = (φH)t+st (x). We set

IH(s, t, x) = −
∫ s

0

(ρ′α(t(σ))H(t(σ), x(σ) + ρα(t(σ))
∂H

∂t
(t(σ), x(σ)))dσ

= H(t, x)−H(t+ s, φt+st (x)),

and J(s, t, x) = IH(s, t, x) + IK(−s, t+ s, (φH)t+st (x)). Then, we can write the
expression of the composition:

φ−s
K̂
φs
Ĥ

(t, τ, x) = (t, τ + J(s, t, x), (φK)t−st (φH)t+st (x)).

We can now compute the intersection of the graph Γφ−s
K̂
φs
Ĥ

with the set

U = [−1, 1] × R × [−M2,M2] × R × R2n × R2n, and its image by the natural
identification Ψ : R4+4n → T ∗∆2+2n. We get

Γ̃φ−s
K̂
φs
Ĥ

∩Ψ(U) = {(t, J(s, t, x), τ +
1

2
J(s, t, x), 0, z(x)) |

(t, τ, x) ∈ [0, 1]× [−M2,M2]× R2n, z(x) ∈ Γ̃(φK)t−st (φH)t+st
}.

Consider the coisotropic submanifold W = {0} × R× {0} × R× R4n. Since
τ+ 1

2J(s, t, x) = 0 implies τ ∈ [−M2−2M,M2 +2M ], and sinceW ⊂ Ψ(U), we
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see that Γ̃φ−s
K
φs
H

is obtained from Γ̃φ−s
K̂
φs
Ĥ

by reduction by W . By proposition

A.1, we get γ(Γ̃φ−s
K
φs
H

) 6 γ(Γ̃φ−s
K̂
φs
Ĥ

) and hence γ(φ−sK φsH) 6 γ(φ−s
K̂
φs
Ĥ

).

We are now going to prove γu(H,K) 6 γ̌(H,K). The idea of the proof is the
same as the previous one: we show that for any s ∈ [0, 1], Γ̃φ−s

K
φs
H

is obtained

by reduction of Γ̃φǨ−1φȞ
, for α large enough.

Recall that by definition, Ȟ(s; t, τ, x) = ρα(t)tH(st;x). As above, we com-
pute the flow : φs

Ȟ
(t, τ, x) = (t(s), τ(s), x(s)), and we obtain

t(s) = t

τ(s) = τ + IH(s, t, x)

where IH(s, t, x) = ρα(t)sH(st, x(s))− ρ′α(t)t
∫ s

0
H(σt, x(σ))dσ and x(s) is so-

lution of ẋ(s) = ρα(t)tXH(st, x(s)). For t ∈ [−1, 1] and α > 1, it gives
x(s) = φts(x).

Similarly as above, we set J(s, t, x) = IH(s, t, x) + IK(−s, t+ s, (φH)ts(x)),
the set U = [−1, 1]× R× R2 × R2n × R2n and the identification Ψ : R4+4n →
T ∗∆2+2n. The graph can be written this way:

Γ̃φ−s
Ǩ
φs
Ȟ

∩Ψ(U) = {(t, J(s, t, x), τ +
1

2
J(s, t, x), 0, z(x)) |

(t, τ, x) ∈ [0, 1]× R× R2n, z(x) ∈ Γ̃φ−st
K

φst
H
}.

Now, we see that Γ̃φ−t
K
φt
H

is the reduction of Γ̃φǨ−1φȞ
by the coisotropic man-

ifold W = {t} ×R× {0} ×R×R4n. Using lemma A.2 twice, we conclude that
for all t ∈ [0, 1], γ(φ−tK φtH) 6 γ(φ−1

Ǩ
φȞ).

Proof of lemma 2.7. — It is sufficient to show that c(V ) 6 c(R2 × V ) for all
open subset V ∈ R2n. Let H be a Hamiltonian function with support in V . We
just have to find a Hamiltonian function K with support in V × R2 satisfying
the inequality c+(H) 6 c+(K). If we set K = Ȟα for α large enough, K has
support in R2 × V , and we saw in particular in the previous proof that Γ̃φ1

H
is

the reduction of Γ̃φȞ . Therefore, by the remark that ends section A.1, we have
c+(H) 6 c+(K) as required.
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