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Abstract. — In his proof of Szemerédi’s Theorem, Gowers introduced certain norms
that are defined on a parallelepiped structure. A natural question is on which sets a
parallelepiped structure (and thus a Gowers norm) can be defined. We focus on di-
mensions 2 and 3 and show when this possible, and describe a correspondence between
the parallelepiped structures and nilpotent groups.

Résumé (Parallélépipèdes, groupes nilpotents et normes de Gowers)
Dans sa preuve du théorème de Szemerédi, Gowers a introduit certaines normes

définies par sommation sur des parallélépipèdes. Il est naturel de se demander sous
quelles hypothèses on peut généraliser sa définition des parallélépipèdes et donc de ses
normes. Nous nous restreignons aux dimensions 2 et 3 et décrivons une correspondance
entre structures de parallélépipèdes et groupes nilpotents.

1. Introduction

In his proof of Szemerédi’s Theorem [17], Gowers [4] introduced certain
norms for functions on Z/NZ. Shortly thereafter, these norms were adapted
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406 HOST (B.) & KRA (B.)

for a variety of other uses, including Green and Tao’s major breakthrough
showing that the primes contain arbitrarily long arithmetic progression [7] and
their use in deriving finer asymptotics on structures in the primes ([5] and [6]).
Similar seminorms were independently introduced by the authors and used
to show convergence of some multiple ergodic averages [10]. Since then, the
seminorms have been used for a variety of related problems in ergodic theory,
including multiple averages along polynomial times ([9] and [15]), averages for
certain commuting transformation [2] and averages along the primes [1].

Our goal here is to introduce and describe the most general context in which
the first two Gowers norms can be defined. We call a ‘parallelogram structure,’
respectively a ‘parallelepiped structure,’ the weakest structure a set must have
so that one can define a Gowers 2-norm, respectively a Gowers 3-norm, on the
set.

The first Gowers norm is the absolute value of the sum of the values of the
function, and in fact is only a seminorm. The second Gowers norm can be
completely described using Fourier analysis (in terms of the `4 norm of the
Fourier transform), and thus is closely linked to the abelian group structure of
the circle. Analogously, in ergodic theory the second seminorm can be char-
acterized completely by the Kronecker factor in a measure preserving system
(see Furstenberg [3]), which is the largest abelian group rotation factor. The
third Gowers norm is less well understood and can not be simply described in
terms of Fourier analysis. In ergodic theory the third seminorm corresponds
to a 2-step nilsystem, and more generally the k-th seminorm corresponds to a
(k − 1)-step nilsystem. (See [10] for the definition and precise statement; in
the current context, the definition is given in Section 3.7.) In combinatorics,
Green and Tao [5] have recently given a weak inverse theorem, but for the third
Gowers norm the correspondence with a 2-step nilpotent group is not yet com-
pletely understood. We give conditions on a set that explain to what extent
the correspondence with nilsystems can be made precise.

We start by defining the Gowers norms for k ≥ 2. Let P denote the subset

{(x00, x01, x10, x11) ∈ (Z/NZ)4 : x00 − x01 − x10 + x11 = 0}

of (Z/NZ)4. For a function f : Z/NZ→ C, the second Gowers norm ‖f‖U2
is

defined (1) by

‖f‖4U2
=

∑
(x00,x01,x10,x11)∈P

f(x00)f(x01) f(x10)f(x11) .

(Although this agrees with Gowers’s original definition, Green and Tao prefer
to normalize the sum and define the norm as an average instead of a sum. In

(1) The notation ‖ · ‖Uk was introduced later in the work of Green and Tao [7].
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our context we prefer to work with the sum.) To define the norms Uk for k ≥ 3,
we need some notation.

Notation. — The elements of {0, 1}k are written without commas and paren-
theses. For ε = ε1 . . . εk ∈ {0, 1}k we write

|ε| = ε1 + · · ·+ εk .

For x = (x1, . . . , xk) ∈ (Z/NZ)k and ε ∈ {0, 1}k, we write

ε · x = ε1x1 + · · ·+ εkxk .

Let C : C → C denote complex conjugation. Therefore, for n ∈ N ∪ {0} and
ξ ∈ C,

Cnξ =

{
ξ if n is even
ξ if n is odd .

Definition of the Gowers norms. — For k ≥ 3, the k-th Gowers norm ‖f‖Uk
for a function f : Z/NZ → C is defined to be the sum over k-dimensional
parallelepipeds:

‖f‖2
k

Uk
=

∑
x∈(Z/NZ)k

∑
n∈Z/NZ

∏
ε∈{0,1}k

C |ε|f(n+ ε · x) .

For k = 3, ‖f‖8U3
can be written as the sum

(1)
∑

x,m,n,p∈Z/NZ

f(x)f(x+m) f(x+ n)f(x+m+ n)

f(x+ p)f(x+m+ p)f(x+ n+ p)f(x+m+ n+ p) .

A natural question is on which sets a parallelepiped structure, and thus
a Gowers norm, can be defined. More interesting is understanding to what
extent the correspondence with a k-step nilpotent group can be made in this
more general setting. We restrict ourselves to the cases k = 2 and k = 3 and
characterize to what extent this correspondence can be made precise. As the
precise definitions of parallelogram and parallelepiped structures are postponed
until we have developed some machinery, we only give a loose overview of the
results. Essentially, the properties included in the definition of a parallelepiped
structure are exactly those needed in order to define a Gowers type norm.

For a two dimensional parallelogram, we completely characterize possible
parallelogram structures by an abelian group (Corollary 1). This means that
a parallelogram structure arises from a 1-step nilpotent group. For the cor-
responding three dimensional case, the situation becomes more complex. In
Theorem 1, Theorem 2 and Corollary 2 we show under some additional hy-
potheses, a parallelepiped structure corresponds to a 2-step nilpotent group.
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However, there are examples (Example 6) for which this hypothesis is not sat-
isfied. On the other hand, we are able to show (Theorem 3) that in all cases,
the parallelepiped structure can be embedded in a 2-step nilsystem.

In Section 7, we outline to what extent these results can be carried out in
higher dimensions.

For all sets on which it is possible to define these structures, one can natu-
rally define the corresponding Gowers norm Uk. We expect that these norms
should have other applications, outside of those already developed by Gowers,
Green and Tao, and the authors. The results of this paper already have an
application in topological dynamics by Host and Maass [11], where they give a
new characterization of 2-step nilsystems and 2-step nilsequences.

More notation. — Parallelogram structures and parallelepiped structures are
defined as subsets of the Cartesian powers X4 and X8 of some sets or groups
and so we introduce some notation.

When X is a set, we write X [2] = X ×X ×X ×X and let X [3] denote the
analogous product with 8 terms.

A point in X [2] is written x = (x0, x1, x2, x3) or x = (x00, x01, x10, x11) and
a point in X [3] is written x = (x0, . . . , x7) or x = (x000, x001, . . . , x111). More
succinctly, we denote x ∈ X [2] by x = (xi : 0 ≤ i ≤ 3) or x = (xε : ε ∈ {0, 1}2),
and use similar notation for points in X [3].

It is convenient to identify {0, 1}2 with the set of vertices of the Euclidean
unit square. Then the second type of notation allows us to view each coordinate
of a point x of X [2] as lying at the corresponding vertex.

Each Euclidean isometry of the square permutes the vertices and thus the
coordinates of x. The permutations of X [2] defined in this way are called the
Euclidean permutations of X [2]. For example, the maps

x 7→ (x10, x11, x00, x01) and x 7→ (x10, x00, x11, x01)

are Euclidean permutations. We use the same vocabulary for X [3], with the
Euclidean 3-dimensional unit cube replacing the square.

If r : X → Y is a map, by r[2] : X [2] → Y [2] we mean

r[2](x) =
(
r(x00), r(x01), r(x10), r(x11)

)
.

Similarly, r[3] is defined as the corresponding map r[3] : X [3] → Y [3].
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2. Parallelograms

2.1. Definition and examples. — We start with a formal definition of a parallel-
ogram structure on an arbitrary set:

Definition 1. — Let X be a nonempty set. A weak parallelogram structure
on X is a subset P of X [2] so that:

i) Equivalence relation: The relation ∼ on X2 defined by (x00, x01) ∼
(x10, x11) if and only if (x00, x01, x10, x11) ∈ P is an equivalence relation.

ii) Symmetry: If (x00, x01, x10, x11) ∈ P, then (x00, x10, x01, x11) ∈ P.
iii) Closing parallelogram property: For all x00, x01, x10 ∈ X, there exists

x11 ∈ X such that (x00, x01, x10, x11) ∈ P.

We say that P is a strong parallelogram structure if the element x11 in iii) is
unique.

Definition 2. — We call the quotient space X2/ ∼ the base of the structure
P and denote it by B. We write the equivalence class of an element (x, y) of
X2 as 〈x, y〉.

The only part of the definition of a parallelogram structure that does not
appear to be completely natural is the transitivity in the equivalence relation
∼. We shall justify this assumption later (Proposition 2).

Lemma 1. — Let P be a weak parallelogram structure on a nonempty set X.

i) For all x0, x1 ∈ X, (x0, x0, x1, x1) ∈ P.
ii) P is invariant under all Euclidean permutations of X [2].
iii) The relation ∼ can be rewritten as: for x00, x01, x10, x11 ∈ X,

(x00, x01, x10, x11) ∈ P if and only if 〈x00, x01〉 = 〈x10, x11〉 if and only if
〈x00, x10〉 = 〈x01, x11〉.

iv) All pairs (x, x) with x ∈ X belong to the same ∼-equivalence class.

Proof. — i) Reflexivity of ∼ implies that for all x0, x1 ∈ X we have
(x0, x1, x0, x1) ∈ P. By property ii) of the definition, (x0, x0, x1, x1) ∈ P.
Part ii) follows from the symmetry of ∼ and property ii) of the defini-
tion. Part iii) follows from the definition of ∼ and ii), and part iv) follows
immediately from i).

Notation. — We denote the equivalence class of all pairs (x, x), x ∈ B by 1B .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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2.2. Seminorm for parallelograms. — Given a weak parallelogram structure on
a set X we can define a seminorm similar to the Gowers norm ‖·‖U2

.

Notation. — If X is a set, F(X) denotes the space of complex valued func-
tions on X with finite support.

Proposition 1. — Let X be a nonempty set and let P be a weak parallelogram
structure on X. For any function f ∈ F(X) on X, we have

(2)
∑
x∈P

f(x00)f(x01) f(x10)f(x11) ≥ 0 .

Letting

(3) ‖f‖P :=
(∑
x∈P

f(x00)f(x01) f(x10)f(x11)
)1/4

,

the map f 7→ ‖f‖P is a seminorm on F(X) and it is a norm if and only if the
structure P is strong.

Proof. — We first note that if F,G are functions on X2 with finite support,
then∑

x∈P

F (x00, x01)G(x10, x11) =
∑
z∈B

( ∑
(x,y)∈X2

〈x,y〉=z

F (x, y)
)( ∑

(x,y)∈X2

〈x,y〉=z

G(x, y)
)
.

In particular, taking G = F ,

(4)
∑
x∈P

F (x00, x01)F (x10, x11) ≥ 0 .

We deduce also that for F,G ∈ F(X2),

(5)
∣∣∣∑
x∈P

F (x00, x01)G(x10, x11)
∣∣∣

≤
(∑
x∈P

F (x00, x01)F (x10, x11)
)1/2(∑

x∈P

G(x00, x01)G(x10, x11)
)1/2

Taking F (x00, x01) = f(x00)f(x01) in (4) we obtain (3).

We now use this to show the Cauchy-Schwarz-Gowers Inequality: for four
functions f00, f01, f10, f11 ∈ F(X),

(6)
∣∣∣∑
x∈P

f00(x00)f01(x01) f10(x10)f11(x11)
∣∣∣ ≤ ‖f00‖P ‖f01‖P ‖f10‖P ‖f11‖P .
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Setting F (x00, x01) = f00(x00)f01(x01) and G(x10, x11) = f10(x10)f11(x11)

in (5), we have that the square of the left hand side of (6) is bounded by∑
x∈P

f00(x00)f01(x01) f00(x01)f01(x11) ·
∑
x∈P

f10(x00)f11(x01) f10(x10)f11(x11) .

By symmetry, the first sum can be rewritten as∑
x∈P

f00(x00)f00(x01) f01(x01)f01(x11) .

After a second use of (5), we obtain that this sum is bounded by ‖f00‖2P ·‖f01‖2P.
Using the same method for the second term we obtain the Cauchy-Schwarz-
Gowers Inequality.

Subadditivity of ‖ · ‖P follows easily and thus ‖·‖P is a seminorm.
Assuming now that P is a strong parallelogram structure we show that ‖·‖P

is actually a norm. Let f ∈ F(X) be a function such that ‖f‖P = 0. Let
a be an arbitrary point of X and g = 1{a}. By the Cauchy-Schwarz-Gowers
Inequality,

0 =
∑
x∈P

g(x00)g(x01)g(x10)f(x11) =
∑

x11∈X, (a,a,a,x11)∈P

f(x11) = f(a)

and so f is identically zero.
Conversely, if the structure is not strong, we claim that ‖·‖P is not a norm.

This can be shown directly, but in the interest of brevity we postpone the proof
until Section 2.5, after we have developed certain properties of parallelogram
structures.

Before further developing the theory of parallelogram structures, we justify
the assumption of transitivity:

Proposition 2. — Let X be a finite set and let P ⊂ X4 satisfy all assump-
tions of the definition of a strong parallelogram structure other than transitivity
of ∼. Assume that the positivity relation (4) is satisfied. Then P is a strong
parallelogram structure.

Proof. — Assume that X has n elements. For (x0, x1) and (x2, x3) in X2, we
define

M(x0,x1),(x2,x3) =

{
1 if (x0, x1, x2, x3) ∈ P

0 otherwise .

This defines a n2 × n2 matrix M .
This matrix has 1’s on the diagonal and thus Trace(M) = n2. It is symmetric

by the symmetry of P and is a positive matrix by hypothesis (4). Thus its
eigenvalues λ1, . . . , λn2 are nonnegative. By the unique closing parallelogram
property, the sum of the entries for each row is n. Therefore λi ≤ n for

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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i = 1, . . . , n2. Furthermore, all the diagonal elements of M2 are equal to n and
Trace(M2) = n3. We have

n3 = Trace(M2) =
n2∑
i=1

λ2
i ≤

n2∑
i=1

nλi = nTrace(M) = n3

and thus all λi are either 0 or n, and M2 = n ·M . Transitivity follows.

2.3. Examples. — We give two examples that illustrate, in a sense to be ex-
plained, the general behavior of weak and strong parallelogram structures:

Example 1. — IfG is an abelian group (written with multiplicative notation),
then

PG :=
{
g = (g00, g01, g10, g11) ∈ G[2] : g00g

−1
01 g

−1
10 g11 = 1

}
=
{

(g, gs, gt, gst) : g, s, t ∈ G
}

is a strong parallelogram structure on G.

Example 2. — Let X be a set, G an abelian group, PG the strong parallelo-
gram structure on G defined in Example 1 and π : X → G a surjection. Let P
be the inverse image of PG under the map π[2] : X [2] → G[2]:

P = {x ∈ X [2] : π[2]x ∈ PG}

=
{
x ∈ X [2] : π(x00)π(x01)−1π(x10)−1π(x11) = 1

}
.

Then P is a weak parallelogram structure on X; it is not strong unless π is a
bijection.

2.4. Description of parallelogram structures. — We give a complete description
of parallelogram structures.

Lemma 2. — The set B can be endowed with a multiplication such that

(7) 〈a, b〉 · 〈b, c〉 = 〈a, c〉 for all a, b, c ∈ X .

With this multiplication, B is an abelian group.

Proof. — Let s, t ∈ B and let a ∈ X. By part iii) of the definition of a
parallelogram, there exists b ∈ X with 〈a, b〉 = s and there exists c ∈ X with
〈b, c〉 = t. We check that 〈a, c〉 does not depend on the choices of a, b, c but
only on s and t. Let a′, b′, c′ ∈ X satisfy 〈a′, b′〉 = s and 〈b′, c′〉 = t. By part iii)
of Lemma 1, 〈a, a′〉 = 〈b, b′〉 = 〈c, c′〉 and thus 〈a, c〉 = 〈a′, c′〉. It follows
immediately that the multiplication in B satisfying (7) is uniquely defined.

By construction, this multiplication is associative and admits the class 1B
as unit element. The inverse of the class 〈a, b〉 is the class 〈b, a〉.
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We are left with showing that the operation is commutative. Given s, t, a, b, c
as above, we can choose d ∈ X such that 〈a, d〉 = t. Then (a, b, d, c) ∈ P and
thus 〈d, c〉 = 〈a, b〉 = s and so t · s = 〈a, d〉 · 〈d, c〉 = 〈a, c〉 = s · t.

Notation. — Henceforth we implicitly chose a point e ∈ X and define a map
π : X → B by

π(x) = 〈e, x〉 for every x ∈ X .

Corollary 1. — Any strong parallelogram structure is isomorphic (in the
obvious sense) to a strong parallelogram structure of the type described in Ex-
ample 1.

Any weak parallelogram structure is isomorphic (in the obvious sense) to a
weak parallelogram structure of the type described in Example 2.

Proof. — Assume that we have a nonempty setX with parallelogram structure
P, quotient space B, a point e ∈ X, and a map π : X → B defined as above.
Let PB denote the parallelogram structure on B. For every x ∈ X [2],

π(x00) · π(x01)−1 · π(x10)−1 · π(x11) = 〈e, x00〉 · 〈e, x01〉−1 · 〈e, x10〉−1 · 〈e, x11〉
= 〈x00, x01〉 · 〈x10, x11〉−1

and this is equal to 1B if and only if x ∈ P. Therefore the structure P is equal
to the inverse image of PB under π[2].

If P is strong, then π is a bijection. Identifying a point of X with its image
under π we get that P is defined as in Example 1.

The following proposition follows easily from the preceding discussion:

Lemma 3. — Let P be a parallelogram structure on a nonempty set X. For
x, y ∈ X, the following are equivalent :

i) (x, x, x, y) ∈ P.
ii) π(x) = π(y).
iii) 〈x, y〉 = 1B.
iv) For all a, b, c ∈ X such that (a, b, c, x) ∈ P, we have (a, b, c, y) ∈ P.
v) There exist a, b, c ∈ X with (a, b, c, x) ∈ P and (a, b, c, y) ∈ P.

Notation. — We denote the equivalence relation on X defined by these con-
ditions by ≡, or ≡

P
when we want to emphasize the underyling parallelogram

structure.

This relation is equality if and only if the structure P is strong. Therefore
the map π : X → B induces a bijection from the quotient space of X/ ≡

P
onto

B. We identify these two sets.
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2.5. End of the proof of Proposition 1. — Assume that the structure P is not
strong. We show that ‖·‖P is not a norm. By Lemma 3, there exist distinct
points a, b ∈ X with the same image under π and furthermore, taking any
quadruple all of whose entries are either a or b is a parallelogram in P. Setting
f = 1{a} − 1{b}, the sum in the definition of the seminorm has 8 terms that
are 1 and 8 that are −1, and so we have a nonzero function with ‖f‖P = 0.

2.6. More examples. — We continue this section with another example that
plays a significant role in the sequel. To do so, we introduce some notation
that may seem a bit strange at the moment, but lends itself easily to the sort
of generalization needed later.

Definition 3. — Let G be a group. We write G[2,2] for the diagonal subgroup
of G[2];

G[2,2] :=
{

(g, g, g, g) : g ∈ G
}
.

We write G[2,1] for the subgroup of G[2] spanned by the elements

(g, g, 1, 1) ; (g, 1, g, 1) ; (g, g, g, g) for g ∈ G .

G[2,1] is called the two dimensional edge group of G.

While the set of generators given for the edge group is a minimal one, it is
not the most natural for understanding the name we give the group. Using the
analogy with the Euclidean square {0, 1}2, the set of generators for the edge
group consists of all elements of G[2] where we place g’s in entries corresponding
to an edge of {0, 1}2 and 1’s elsewhere. This point of view becomes more natural
and useful in the generalization to three dimensions.

Notation. — Let G be a group. We write G2 for its commutator subgroup.
Recall that G2 is the subgroup of G spanned by the elements [g, h], g, h ∈ G,
where [g, h] = ghg−1h−1. G3 denotes the second commutator subgroup of G,
that is, the subgroup of G spanned by the elements [g, u] for g ∈ G and u ∈ G2.

By a short computation, we have:

Lemma 4. — Let G be a group. Then

(8) G[2,1] =
{
g ∈ G[2] : g00g

−1
01 g

−1
10 g11 ∈ G2

}
=
{

(g, gh, gk, ghku) : g, h, k ∈ G, u ∈ G2

}
.

In particular, if G is abelian then G[2,1] is equal to the set PG of Example 1:

(9) G[2,1] :=
{
g ∈ G[2] : g00g

−1
01 g

−1
10 g11 = 1

}
= {(g, gs, gt, gst) : g, s, t ∈ G} .
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Example 3. — Let G be a group and F a subgroup of G containing G2.
Thus F is normal in G and B = G/F is abelian. Let π : G→ B be the natural
homomorphism and let P be the weak parallelogram structure on G defined in
Example 2:

P =
{
g ∈ G[2] : π[2](g) ∈ (G/F )[2,1]

}
= {g ∈ G[2] : g00g

−1
01 g

−1
10 g11 ∈ F} .

It is easy to check that P is a subgroup of G[2] and that P = G[2,1]F [2].

3. Parallelepipeds

3.1. Notation. — Parallelepipeds are the three dimensional generalization of
parallelograms, and so naturally arise as subsets of X [3]. Recall that we iden-
tify {0, 1}3 with the set of vertices of the unit Euclidean cube. Under this
identification, we can naturally associate appropriate subsets of {0, 1}3 with
vertices, edges, or faces of the unit cube.

Thus if x ∈ X [3] and η is an edge of the unit cube, the element xη :=

{xε : ε ∈ η} of X ×X is called an edge of x. Similarly, if σ is a face of the unit
cube, the element xσ := {xε : ε ∈ σ} of X [2] is called a face of x. By mapping
each vertex of σ to a vertex of {0, 1}2 in increasing lexicographic order we can
consider xσ as an element of X [2].

In particular, x′ = (x000, x001, x010, x011) and x′′ = (x100, x101, x110, x111)

are opposite faces of x and we often write x = (x′,x′′), naturally identifying
X [3] with X [2] ×X [2].

3.2. Definition of a parallelepiped. —

Definition 4. — Assume thatX is a nonempty set with a weak parallelogram
structure P. A weak parallelepiped structure Q is a subset of X [3] satisfying:

i) Parallelograms: For every x ∈ Q and every face σ of {0, 1}3, xσ ∈ P.
ii) Symmetries: Q is invariant under all Euclidean permutations of {0, 1}3.
iii) Equivalence relation: The relation ≈ (written ≈

Q
in case of ambiguity) on

P defined by x′ ≈ x′′ if and only if (x′,x′′) ∈ Q is an equivalence relation.
iv) Closing parallelepiped property: If x000, x001, x010, x011, x100, x101, x110 are

seven points of X satisfying

(x000, x001, x010, x011), (x000, x010, x100, x110), and (x000, x001, x100, x101) ∈ P ,

then there exists x111 ∈ X such that

(x000, x001, x010, x011, x100, x101, x110, x111) ∈ Q .
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We say that Q is a strong parallelepiped structure if the element x111 in iv)
is unique.

A parallelepiped structure on X with parallelograms P and parallelepipeds
Q is denoted by (P,Q).

Notation. — We denote the quotient space P/ ≈ by P and denote the equiv-
alence class of a parallelogram x ∈ P by [x] or by [x]Q.

We start with some properties that follow immediately from the definition.
Let x000, . . . , x110 be seven points in X satisfying the hypotheses of condi-
tion iv). Then there exists x111 ∈ X such that (x010, x110, x011, x111) ∈ P and
one can easily check that all faces of x = (x000, x001, x010, x011, x100, x101, x110,

x111) belong to P. Therefore condition iv) can be rewritten as :

v) Let x ∈ X [3] be such that each of its faces belongs to P. Then there exists
x′111 ∈ X such that (x000, x001, x010, x011, x100, x101, x110, x

′
111) ∈ Q.

We also note that some of the conditions in the definition of a parallelepiped
are redundant: if Q is invariant under the permutations given in condition ii)
and if the relation ≈ is transitive, then ≈ is an equivalence relation.

Lemma 5. — Let X be a nonempty set with parallelepiped structure (P,Q).
Then

i) For x, y ∈ X, [x, y, x, y] depends only on 〈x, y〉.
ii) All parallelograms of the form (a, a, a, a) for some a ∈ X belong to the

same ≈ equivalence class.

Proof. — If 〈x, y〉 = 〈x′, y′〉, then x = (x, y, x′, y′) ∈ P. By reflexivity of the
relation ≈, we have (x,x) ∈ Q. By part ii) of the definition of a parallelepiped,
(x, y, x, y, x′, y′, x′, y′) ∈ Q and [x, y, x, y] = [x′, y′, x′, y′]. Part ii) is an imme-
diate corollary.

Notation. — The common equivalence class in part ii) is called the trivial
class and is denoted by 1P .

We note that we did not make use of the closing parallelepiped property,
part iv) of the definition of a parallelepiped property in this lemma.
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3.3. Reduction to strong parallelepiped structures. — For the moment, we assume
that Q satisfies the first three properties of the definition, but do not assume
the closing parallelepiped property, part iv) of the definition.

Proposition 3. — Let X be a nonempty set with parallelogram structure P
and a subset Q of X [3] only satisfying properties i), ii) and iii) of definition 4
of a parallelepiped structure. For x, x′ ∈ X the following are equivalent:

i) (x, x, x, x′) ∈ P and [x, x, x, x′] = 1P .
ii) For all a, b, c ∈ X such that (a, b, c, x) ∈ P, we have (a, b, c, x′) ∈ P and

[a, b, c, x] = [a, b, c, x′].
iii) There exist a, b, c ∈ X with (a, b, c, x) ∈ P, (a, b, c, x′) ∈ P and [a, b, c, x] =

[a, b, c, x′].

Proof. — Each of the three properties implies that 〈x, x′〉 = 1B and thus that
(x, x, x, x′) ∈ P. Assume first that [x, x, x, x′] = 1P . Let a, b, c ∈ X be such that
(a, b, c, x) ∈ P. Since [c, c, c, c] = 1P = [x, x, x, x′], by symmetry we have that
[c, x, c, x] = [c, x, c, x′]. By Lemma 5, part i) we have [a, b, a, b] = [c, x, c, x] =

[c, x, c, x′] and thus [a, b, c, x] = [a, b, c, x′] and x, x′ satisfy the second property.
The second condition trivially implies the third.
Assume now that there exist a, b, c ∈ X with (a, b, c, x) ∈ P and [a, b, c, x] =

[a, b, c, x′]. The same argument implies that [x, x, x, x′] = [x, x, x, x] = 1P , and
our claim is proved.

Notation. — For x, x′ ∈ X, we write x ≡
Q
x′ if x, x′ satisfy any of the three

equivalent properties in Proposition 3.

The second property implies that ≡
Q
is an equivalence relation. Moreover, Q

is saturated for this relation meaning that for x,x′ ∈ X [3] we have if x ∈ Q and
xε ≡

Q
x′ε for every ε ∈ {0, 1}3, then x′ ∈ Q. In particular, the structure (P,Q)

is strong if and only if the relation ≡
Q
is equality.

Let Y be the quotient space X/ ≡
Q

and r : X → Y the quotient map. Let

PY and QY be the images of P and Q under r[2] and r[3], respectively. Then P
and Q are the inverse images of PY and QY under these maps.

If Q satisfies the closing parallelepiped property, then QY also satisfies this
property and (PY ,QY ) is a parallelepiped structure on Y . This structure is
strong because clearly the relation ≡

QY
is the identity.

We have thus shown:

Proposition 4. — Every parallelepiped structure on a nonempty set is the
inverse image of a strong parallelepiped structure.
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Thus the study of parallelepiped structures reduces to the study of strong
ones and so in the sequel, we generally consider strong parallelepiped structures.

3.4. The seminorm associated to a parallelepiped structure. — Given a paral-
lelepiped structure, one can define a third (Gowers) norm, giving us a three
dimensional version of Proposition 1.

Proposition 5. — Let (P,Q) be a parallelepiped structure on the set X. For
every f ∈ F(X),

(10)
∑
x∈Q

∏
ε∈{0,1}3

C |ε|f(xε) ≥ 0

and thus we can define

(11) ‖f‖Q :=
(∑
x∈Q

∏
ε∈{0,1}3

C |ε|f(xε)
)1/8

.

The map f 7→ ‖f‖Q is a seminorm on F(X) and it is a norm if and only if the
structure (P,Q) is strong.

We omit the proof, as it is exactly the same as the proof of the two dimen-
sional version, Proposition 1. For the converse implication to show that if we
have a norm the structure is strong, we use Proposition 3 instead of Lemma 3.
Note that we have included in the definition of a parallelepiped structure all
the properties needed to parallel the steps in Gowers’s original proof. (The
notation is given in the introduction.)

The assumption of transitivity of the relation ≈ in the definition of paral-
lelepipeds is related to positivity, as for parallelograms in Proposition 2:

Proposition 6. — Let X be a finite set, let P be a parallelogram structure
on X and let Q ⊂ X [3] satisfy all the assumptions of the definition of a strong
parallelepiped structure other than transitivity of ≈. Assume that the following
positivity relation holds: for every function F on X4 with finite support,∑

x∈Q

F (x′)F (x′′) ≥ 0 .

Then Q is a strong parallelogram structure.

We omit the proof, as it is more intricate but similar to the proof of Propo-
sition 2.
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3.5. First examples: Abelian parallelepiped structures. — We begin with some
examples of parallelepiped structures on abelian groups. We need some no-
tation and definitions similar to those introduced for Definition 3 in the two-
dimensional case.

Notation. — Let G be a group. For a nonempty subset α of {0, 1}3 and
g ∈ G, we write g[3,α] for the element of G[3] given by(

g[3,α]
)
ε

=

{
g if ε ∈ α
1 otherwise .

For η ∈ {0, 1}3 we write g[3,η] instead of g[3,{η}].

In particular g[3,∅] = 1 := (1, . . . , 1).
Note that the elements g[3,η], g ∈ G and η ∈ {0, 1}3, generate G[3]. If

α = {0, 1}3 then g[3,α] is the diagonal element (g, g, . . . , g).

Definition 5. — Let G be a group.
The diagonal group G[3,3] is the subgroup of G[3] consisting in elements of

the form (g, g, . . . , g) for g ∈ G.
The edge group G[3,1] is the subgroup of G[3] spanned by the elements of the

form g[3,e] where g ∈ G and e is an edge of the cube {0, 1}3.
The face group G[3,2] is the subgroup of G[3] spanned by the elements of the

form g[3,f ] where g ∈ G and f is a face of the cube {0, 1}3.

The following Proposition follows immediately:.

Proposition 7. — If G is an abelian group, then

(12) G[3,1] =
{
g ∈ G[3] :

∏
ε∈{0,1}3

g(−1)|ε|

ε = 1
}

and
G[3,2] =

{
g ∈ G[3] : every face of g belongs to G[2,1]

}
.

Example 4. — Let G be an abelian group, let P = G[2,1] be the strong par-
allelogram structure defined as in Example 1 and let Q = G[3,2]. Then (P,Q)

is a (strong) parallelepiped structure on G.

Example 5. — Let G be an abelian group and F a subgroup of G. Define

P = G[2,1]F [2] and Q = G[3,2]F [3,1] .

Then (P,Q) is a (strong) parallelepiped structure on X.

This assertion is a particular case of a more general statement (Proposition 9)
and so we omit the proof.
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3.6. Some nonabelian examples. — More interesting are parallelepiped struc-
tures on nonabelian groups. It is here that the structures take on nontrivial
properties.

We begin with an elementary remark:

Remark 1. — LetG be a group and let α, β be two subsets of the cube {0, 1}3.
Then, for every g, h ∈ G, the commutator of the two elements g[3,α] and h[3,β]

of G[3] is [
g[3,α], h[3,β]

]
= [g, h][3,α∩β] .

Lemma 6. — Let G be a group. Then:

i) G[3,2] ⊃ G[3,1]
2 ⊃ G[3]

3 .
ii) Let g ∈ G and η ∈ {0, 1}3. Then g[3,η] ∈ G[3,2] if and only if g ∈ G3.
iii) G[2,2]G

[2,1]
2 G

[2]
3 is a normal subgroup of G[2,1].

Moreover, under the identification G[3] = G[2] ×G[2],

(13) G[3,2] =
{
g = (g′,g′′) ∈ G[2,1] ×G[2,1] : g′g′′

−1 ∈ G[2,2]G
[2,1]
2 G

[2]
3 } .

In a more general context, the proof is contained in sections 5 and 11 of [10].
The idea is to find the natural setting in which these cubic structures form
a group, much as Hall [8], Petresco [16], Lazard [12], and later Leibman [13]
& [14], did for arithmetic progressions. These groups also arise in [6], and Green
and Tao refer to G[3,2] as the Hall-Petresco cube group. For completeness, we
summarize the argument.

Proof. — Part i) Each face of {0, 1}3 is the union of two edges. If σ and
τ are two faces of {0, 1}3, then σ ∩ τ is a face, an edge, or the empty set.
Conversely, each edge can be written as the intersection of two faces. By
Remark 1, the commutator subgroup of G[3,2] is therefore equal to G[3,1]

2 . By a
similar argument, the second commutator subgroup of G[3,2] is G[3]

3 , and part i)
follows.
Part iii) We write 1 = (1, 1, 1, 1) ∈ G[2] and K = G[2,2]G

[2,1]
2 G

[2]
3 . One can

check directly that K is a normal subgroup of G[2,1].
It follows immediately from the definition of G[3,2] that for g = (g′,g′′) ∈

G[3,2] we have that g′ and g′′ belong to G[2,1] and that for g ∈ G[2,1] we have
(g,g) ∈ G[3,2]. Therefore

G[3,2] =
{

(g′,g′′) ∈ G[2,1] ×G[2,1] : g′g′′
−1 ∈ L

}
,

where
L =

{
g ∈ G[2,1] : (g,1) ∈ G[3,2]} .

We are left with checking that L = K. The inclusion K ⊂ L follows immedi-
ately from the definition of G[3,2] and part i). Moreover, the subset of G[3] on
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the right hand side of (13) is a subgroup of G[3] containing the generators of
G[3,2] and thus containing this group. This implies that K ⊃ L.
Part ii) If g ∈ G3 and η ∈ {0, 1}3, then g[3,η] ∈ G[3,2] by part i). Conversely, let
g ∈ G and assume that g[3,η] ∈ G[3,2] for some vertex η. We have to show that
g ∈ G3. By the symmetries of G[3,2], we can restrict to the case that η = 111.

By part iii), (1, 1, 1, g) belongs to G[2,2]G
[2,1]
2 G

[2]
3 and we can write

(1, 1, 1, g) = (h, h, h, h).u.v with h ∈ G, u ∈ G[2,1]
2 and v ∈ G[3]

3 .

Looking at the congruences modulo G2 of the first coordinate, we have that
h ∈ G2 and thus (h, h, h, h) ∈ G[2,1]

2 . Substituting (h, h, h, h).u for u, we reduce
to the case that h = 1.

Recall that G3 is a normal subgroup of G2 and that G2/G3 is abelian. Let ū

be the element of (G2/G3)[2] obtained by reducing each coordinate of u modulo
G3. Then ū belongs to (G2/G3)[2,1], its first three coordinates are equal to 1

and by Lemma 4 its last coordinate is also equal to 1. This means that u11 ∈ G3

and it follows that g ∈ G3.

We now turn to several nonabelian generalizations of the previous examples.
The first one generalizes Example 4.

Proposition 8. — Let G be a group, P = G[2,1], and Q = G[3,2]. Then (P,Q)

is a parallelepiped structure on G and this structure is strong if and only if G
is 2-step nilpotent.

We postpone the proof until after a second example of a group parallelepiped
structure, which generalizes Example 5 to the nonabelian setting.

Proposition 9. — Let G be a group and F a subgroup of G with

(14) G2 ⊂ F ⊂ Z(G) .

We define (as in Example 5) P = G[2,1]F [2] and Q = G[3,2]F [3,1]. Then (P,Q)

is a strong parallelepiped structure on G.

Note that condition (14) implies in particular that G is a 2-step nilpotent
group.

Proof. — The symmetries of Q are obvious. Q is clearly a subgroup of G[3]

and it is not difficult to deduce form part iii) of Lemma 6 that G[2,2]F [2,1] is
normal in G[2,1]F [2] and that

(15) Q = {(g′,g′′) ∈ G[2] ×G[2] : g′ ∈ G[2,1]F [2], g′g′′
−1 ∈ G[2,2]F [2,1]} .

It follows that for every element g = (g′,g′′) ∈ Q, the “first” face g′ of g belongs
to P. Thus by symmetry, all faces belong to P. It also follows from (15) that
≈
Q
is an equivalence relation on P.
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Let Q′ be the subgroup of G[3] consisting of elements g such that each face
of g belongs to P. Then Q′ contains F [3] and the quotient group Q′/F [3] is the
abelian parallelepiped structure (G/F )[3,2] on G/F defined in Example 4 and
thus Q′ = G[3,2]F [3].

Let g ∈ Q′. We write g = jh with j ∈ G[3,1] and h of F [3]. Since F is
abelian, by (12) there exists an element h′ ∈ F [3,1] that is equal to h other
than in the last coordinate. Thus g′ := jh′ ∈ Q and coincides with g other
than in the last coordinate. Therefore, condition v) is satisfied.

Finally we show that the structure is strong. Assume not. Since Q is a
group, there exists g ∈ Q of the form (1, 1, . . . , 1, g) for some g ∈ G not equal
to 1. By (15), (1, 1, 1, g) ∈ G[2,2]F [2,1]. Applying formula (9) for F [2,1], we have
that g = 1, a contradiction.

We now return to Proposition 8, and show that (P,Q) as defined in this
example is a parallelepiped structure on G.

Proof of Proposition 8. — First consider the case that G is 2-step nilpotent.
Then the hypotheses of Proposition 9 are satisfied with F = G2. In order
to show that (P,Q) is a strong parallelepiped structure we check that P and
Q are equal to the sets defined in this Proposition. By Lemma 4, we have
G

[2]
2 ⊂ G[2,1] and thus G[2,1]G

[2]
2 = G[2,1] = P; by part i) of Lemma 6 we have

that G[3,2]G
[3,1]
2 = G[3,2] = Q.

We now turn to the general case. Recall that G/G3 is a 2-step nilpotent
group. Since the group P contains G[2]

3 and Q contains G[3]
3 , P is the inverse

image of (G/G3)[2,1] in G[2] and Q is the inverse image of (G/G3)[3,2] in G[3].
The assertion follows immediately.

3.7. Nilparallelepiped structures. — Let G be a group and F a subgroup of G
satisfying G2 ⊂ F ⊂ Z(G) (hypotheses (14) of Proposition 9). Let Γ be a
subgroup, not necessarily normal, of G. We build a structure on the coset
space X = G/Γ. By substituting G/(Γ ∩ F ) for G, F/(Γ ∩ F ) for F , and
Γ/(Γ ∩ F ) for Γ we reduce to the case that Γ ∩ F = {1}.

Proposition 10. — Let G be a group and F a subgroup of G satisfying hy-
pothesis (14) of Proposition 9,

(14) G2 ⊂ F ⊂ Z(G) ,

and let Γ be a subgroup of G with

(16) Γ ∩ F = {1} .
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Set X = G/Γ. Let P = G[2,1]F [2], Q = G[3,2]F [3,1], p : G→ G/Γ be projection,
and let

PX = p[2](P) and QX = p[3](Q) .

Then (PX ,QX) is a strong parallelepiped structure on X.

A parallelepiped structure defined by G,F,Γ, X,PX ,QX as in Proposition 10
is called a nilmanifold parallelepiped structure, and more succinctly we refer to
it as a nilparallelepiped structure.

Before the proof of Proposition 10, we have a lemma.

Lemma 7. — Maintaining notation as in Proposition 10, if g = (g00, g01, g10,

g11) ∈ G[2] is such that p[2](g) ∈ PX , then there exists g′11 ∈ G such that
p(g′11) = p(g11) and (g00, g01, g10, g

′
11) ∈ P.

Proof. — By definition there exists h ∈ P with p[2](h) = p[2](g) and thus there
exists γ ∈ Γ[2] with g = hγ. Since Γ is abelian, it follows from Lemma 4 that
there exists θ ∈ Γ with (γ00, γ01, γ10, γ11θ) ∈ Γ[2,1] and the point g′11 = g11θ

satisfies the announced properties.

Proof of Proposition 10. — PX is clearly the weak parallelogram structure de-
fined as in Example 2 by the natural projection of X on the base group
B = G/FΓ. If x ∈ QX then every face of x belongs to PX by definition.
The symmetries of Q are obvious.

Let x,y, z be three parallelograms in PX , such that (x,y) and (y, z) belong
to QX . This means that there exist two parallelepipeds g = (g′,g′′) and
h = (h′,h′′) in Q such that

p[2](g′) = x , p[2](g′′) = p[2](h′) = y and p[2](h′′) = z .

Let γ = g′′
−1

h′. By (15), we have γ ∈ Γ[2]∩G[2,1]F [2] and thus γ00γ
−1
01 γ

−1
10 γ11 ∈

Γ ∩ F = {1} and so γ ∈ Γ[2,1]. By part iii) of Lemma 6 again, (g′γ,h′) ∈ Q
and thus (g′γ,h′′) ∈ Q by transitivity. The projection of this parallelepiped
on X is (x, z) and thus (x, z) ∈ Q. This shows that the relation ≈QX on PX is
transitive and we deduce that it is an equivalence relation.

Consider now a point x ∈ X [3] such that each of its faces belongs to PX .
By Lemma 7, there exists g ∈ G[3] with p[3](g) = x and such that g

f
∈ P

when f is any of the three faces of {0, 1}3 containing 000 and also for the
face {100, 101, 110, 111}. It follows that the two remaining faces of g also are
parallelograms of G. Since Q is a parallelepiped structure on G, we can modify
(again using Lemma 7) g111 in order to get a parallelepiped in G. Projecting
this parallelepiped on X, we get a parallelepiped in QX coinciding with x other
than in the last coordinate.

Thus we have that QX is a parallelepiped structure on X and we are left
with showing it is strong. If not, there exist two parallelepipeds x,y ∈ QX
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with xε = yε for every ε 6= 111 and x111 6= y111. Let g,h be two parallelepipeds
in G with p[3](g) = x and p[3](h) = y. Writing u = g−1h, we have u ∈ Q with
uε ∈ Γ for every ε 6= 111 and u111 /∈ Γ. By part iii) of Lemma 6, there exists
v ∈ G[2,2]G

[2,1]
2 with vε ∈ Γ for ε 6= 11 and v11 /∈ Γ. By Lemma 4, v can be

written as v = (v, vs, vt, vst) with v ∈ G and s, t ∈ G2 and we get that v, vs, vt
and thus vst belong to Γ, a contradiction.

3.8. Nilpotent groups appear. — All the examples of strong parallelepiped struc-
tures considered thus far have a striking feature in common. There exists a 2

step nilpotent group G acting transitively on X. We explore this further.
In all examples given so far, the group G[2] acts on X [2] in a natural way

and we write (g,x) 7→ g · x for this action. It can be checked that for every
parallelogram x ∈ P and every g ∈ G, we have that g[2] · x is a parallelogram,
equivalent to P under the relation ≈.

This is not merely coincidence; it reflects an underlying structure, so long
as certain algebraic obstructions are avoided. We denote the action of G on X
by (g, x) 7→ g · x. This motivates the following definition and notation.

Let g : x 7→ g · x be a transformation of X. We recall that g[2] and g[3] are
the diagonal transformations of X [2] and X [3], respectively. More generally, if
α is a subset of the cube {0, 1}3, g[3,α] is the transformation of X [3] given by(

g[3,α] · x
)
ε

=

{
g · xε if ε ∈ α
xε otherwise.

This notation is coherent with the notation introduced in Section 3.5.

Definition 6. — Let (P,Q) be a strong parallelepiped structure on a
nonempty set X. The structure group of (P,Q), written G or GQ, is the group
of bijections x 7→ g · x of X such that for every parallelogram x ∈ P, g[2] · x is
a parallelogram and g[2] · x ≈ x.

We can rephrase this condition:

Proposition 11. — If (P,Q) is a strong parallelepiped structure on a
nonempty set X, then the structure group G is the group of bijections x 7→ g ·x
of X such that for every parallelepiped x ∈ Q and every face f of {0, 1}3, we
have g[3,f ] · x ∈ Q.

Proof. — Let φ be the face {ε ∈ {0, 1}3 : ε3 = 1}.
Assume first that g ∈ G and let x ∈ Q. As usual, we write x = (x′,x′′) with

x′,x′′ ∈ P and we have g[3,φ] ·x = (x′, g[2] ·x′′). By hypothesis, g[2] ·x′′ ∈ P and
g[2] · x′′ ≈ x′′, meaning that (x′′, g[2] · x′′) ∈ Q. By transitivity, g[3,φ] · x ∈ Q.
By symmetry, the same result also holds for the other faces of the cube.
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Assume now that x 7→ g · x is a bijection of X such that for every x ∈ Q
and every face f we have g[3,f ] · x ∈ Q. Let x ∈ P. Then x := (x,x) ∈ Q and
so (x, g[2] · x) = g[3,φ] · x ∈ Q. Thus g[2] · x ∈ P and g[2] · x ≈ x.

Proposition 12. — Let (P,Q) be a strong parallelepiped structure on a
nonempty set X. Then the structure group G is 2-step nilpotent.

Proof. — The group G[3] acts on X [3] in the natural way. Let g ∈ G and x ∈ Q.
Write x = (x′,x′′) with x′,x′′ ∈ P. Then g[2] · x′ is a parallelogram equivalent
to x′. Thus (g[2] · x′,x′) ∈ Q and so (g[2] · x′,x′′) ∈ Q. By symmetries of Q,
for every face f of {0, 1}3 we have that g[3,f ] · x ∈ Q. Therefore, Q is invariant
under the group G[3,2].

Let g ∈ G3. By Lemma 6, part iii) (1, . . . , 1, g) ∈ G[3,2]. For every x ∈ X,
we have (x, . . . , x, x) ∈ Q and thus (x, . . . , x, g · x) ∈ Q. Since Q is a strong
structure, g · x = x and g = 1. Thus G is 2-step nilpotent.

Notation. — Let g ∈ G. For arbitrary x, y ∈ X, g[2] maps the parallelogram
(x, x, y, y) to an equivalent one and this implies that

π(g · x)π(x)−1 = π(g · y)π(y)−1 .

Therefore there exists an element p(g) ∈ B such that

π(g · x) = p(g)π(x) for every x ∈ X .

The map p : G→ B defined in this way is clearly a group homomorphism.
In all examples considered thus far, the group G is included in G(X). But

we note that G(X) may be substantially larger than G. Consider the situa-
tion of Example 5. Let φ : B → F be a group homomorphism and define a
transformation h on X by

h · x = φ(π(x)) · x .
Then h belongs to G(X) and is not translation by an element of G.

4. Description of parallelepipeds structures

Henceforth, (P,Q) is a (strong) parallelepiped structure on a set X.
Our goal is to characterize when a parallelepiped structure is a nilparal-

lelepiped structure, and we do so in Theorem 1. Moreover, in Theorem 2 and
Corollary 2, we give sufficient conditions for these conditions to hold. We also
give an example of a parallelepiped structure without this property (Example 6)
and show that in the general case a parallelepiped structure can be imbedded
in a nilstructure (Proposition 16) in a sense explained below.

For parallelograms we use the notation introduced in Section 2.6. B is the
base group of the parallelogram structure P and π : X → B the surjection

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



426 HOST (B.) & KRA (B.)

defined in Section 2.4. We recall that for x, y ∈ X, 〈x, y〉 is the equivalence
class of the pair (x, y) under the relation ∼

P
, that is

〈x, y〉 = π(y)π(x)−1 .

For parallelepipeds we use the notation of Section 3.2. The equivalence class
(under the relation ≈) of a parallelogram x is denoted by [x]. We denote the
quotient space P/ ≈ by P .

4.1. The groups Ps. — For every s ∈ B, we define

Xs :=
{

(x01, x10) ∈ X2 : 〈x01, x10〉 = s} ⊂ X2 .

Ps :=
{
x ∈ P : 〈x00, x01〉 = s

}
⊂ X [2] .

Qs :=
{
y ∈ Q : 〈y000, y001〉 = s

}
⊂ X [3] .

If two parallelograms x,y ∈ P are equivalent under the relation ≈, then
〈x00, x01〉 = 〈y00, y01〉 and thus they belong to the same Ps. Therefore each set
Ps is a union of equivalence classes under the relation ≈. Writing Ps for the set
of equivalence classes of parallelepipeds belonging to Ps, we have a partition of
P :

P =
⋃
s∈B

Ps .

We identify X [2] with (X ×X)2 in the natural way:(
x00, x01, x10, x11

)
=
(
(x00, x01), (x10, x11)

)
and X [3] with (X2)[2]:(

x000, x001, x010, x011, x100, x101, x110, x111

)
=
(
(x000, x001), (x010, x011), (x100, x101), (x110, x111)

)
.

Therefore we view Xs × Xs as a subset of X [2] and X
[2]
s as a subset of X [3].

For s ∈ B, we have:

Ps = P ∩ (Xs ×Xs) and Qs = Q ∩X [2]
s .

We reformulate this for clarity. A pair of elements of Xs represents four points
in X forming a parallelogram of X and this parallelogram belongs to Ps. An
element x ∈ X [2]

s consists in four points of Xs, that is, in eight points of X,
and these eight points form a parallelepiped in X if and only if x ∈ Qs.

Lemma 8. — Maintaining the above notation, Qs is a parallelogram structure
on Xs.
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Proof. — All the properties are immediate other than the closing paral-
lelepiped property. Let (x0, x1), (x2, x3), (x4, x5) be three points in Xs.
Choose x6 ∈ X with 〈x4, x6〉 = 〈x0, x2〉. The seven points x0, . . . , x6 satisfy
the closing parallelepiped property and so there exists x7 ∈ X such that
(x0, . . . , x6, x7) ∈ Q. This parallelepiped actually belongs to Qs and thus so
does

(
(x0, x1), (x2, x3), (x4, x5), (x6, x7)

)
and our claim is proved.

We note that this parallelogram structure is not strong, as there is freedom
in the choice of x6 in the above construction.

Recall that ∼
Ps

denotes the equivalence relation on X2
s associated to the par-

allelogram structure Qs on Xs: two pairs of points in Xs are equivalent under
this relation if they form a parallelogram in Qs. If we consider these two pairs
as parallelograms in X, then these parallelograms belong to Ps and Lemma 8
implies that they are equivalent under the relation ≈. Therefore we can identify
the two quotient spaces

(Xs)
2/∼

Ps
= Ps/≈ = Ps .

By Lemma 2, the quotient space (Xs)
2/ ∼

Ps
= Ps can be endowed with a multi-

plication that gives it the structure of an abelian group. For clarity, we rewrite
this multiplication in the present notation, viewing Ps as Ps/ ≈.

Let u, v be two classes in Ps. Let (x0, x1, x2, x3) be a parallelogram in the
class u. As 〈x2, x3〉 = s, there exist two points x4 and x5 in X such that
(x2, x3, x4, x5) is a parallelogram in the class v. Then uv is the class of the
parallelogram (x0, x1, x4, x5).

4.2. A homomorphism. — Let s ∈ B. If two parallelograms x and y of X
belonging to Ps are equivalent under the relation ≈, then 〈x00, x10〉 = 〈y00, y10〉.
Therefore there exists a map qs : Ps → B such that

qs([x]) = 〈x00, x10〉 for every parallelogram x ∈ Ps .

This map is clearly a group homomorphism from Ps onto B. The kernel of
this homomorphism consists in the set of equivalence classes of parallelograms
x ∈ P with 〈x00, x01〉 = s and π(x10) = π(x00).

5. The fiber group

In this Section, (P,Q) is a strong parallelepiped structure on a nonempty
set X and we maintain the notation of the preceding Section.
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5.1. Vertical parallelograms. — We begin with some simple observations and
some more vocabulary. For b ∈ B, the fiber Fb of b is defined by Fb := π−1({b}).

Lemma 9. —
i) If x ∈ P, then [x00, x00, x01, x01] = [x10, x10, x11, x11] and

[x00, x01, x00, x01] = [x10, x11, x10, x11].
ii) If x and y belong to the same fiber, then [x, x, y, y] = [x, y, x, y] = 1.

Proof. — For part i), since (x,x) ∈ Q, both properties follow from the symme-
tries of Q. By assumption, (x, x, x, y) ∈ P and part ii) follows from part i).

If x00, x01, x10, x11 are four points in the same fiber, then (x00, x01, x10, x11) ∈
P. Thus it makes sense to define:

Definition 7. — A parallelogram with its 4 vertices in the same fiber is called
a vertical parallelogram.

A parallelogram equivalent to a vertical one is also vertical, and thus the
family of vertical parallelograms is a union of equivalence classes.

Lemma 10. — If x00, x01, x10, x11 are four points in the same fiber, then

[x00, x01, x10, x11] = [x00, x10, x01, x11] .

Proof. — There exists a unique y ∈ X such that [x00, x01, x10, x11] =

[x00, x01, x01, y]. Thus (x00, x01, x10, x11, x00, x01, x01, y) ∈ Q. By symme-
try, (x00, x10, x01, x11, x00, x01, x01, y) ∈ Q and thus [x00, x10, x01, x11] =

[x00, x01, x01, y] = [x00, x01, x10, x11].

5.2. The fiber group F and its action on X

Notation. — To avoid cumbersome notation, we henceforth write 1 for the
unit element 1B of B. We let F denote the kernel of the homomorphism
q1 : P1 → B.

In other words, F is the set of equivalence classes (under the relation ≈) of
vertical parallelograms. Recall that the multiplication in F satisfies:

(17) if x0, x1, x2, x3, x4, x5 belong to the same fiber, then

[x0, x1, x2, x3] [x2, x3, x4, x5] = [x0, x1, x4, x5] .

We now define an action of F on X, mapping each fiber to itself and use
this to describe the vertical parallelograms.

Let x ∈ X and u ∈ F . Recall that u is the class of some vertical paral-
lelogram. It thus follows from the closing parallelepiped property that there
exists y ∈ X such that [x, x, x, y] = u. As the structure is strong, this point y
is unique.
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Notation. — For x ∈ X and u ∈ F , we write u · x for the point of X defined
by [x, x, x, y] = u.

Lemma 11. — The map (u, x) 7→ u · x is an action of the group F on the set
X. This action preserves each fiber and acts transitively and freely on each
fiber.

Proof. — Note that 1P · x = x for every x ∈ X. We are left with showing
that for u, v ∈ F and x ∈ X, we have (vu) · x = v · (u · x). Let y = u · x
and z = v · y = v · (u · x). Then v = [u · x, u · x, u · x, v · (u · x)] = [x, u ·
x, x, u · x][x, u · x, x, v · (u · x)] = [x, u · x, x, v · (u · x)] and [x, x, x, v · (u · x)] =

[x, x, x, u · x] [x, u · x, x, v · (u · x)] = uv = vu because F is abelian. Thus we
have an action.

By construction, F preserves each fiber. For every x, y in the same fiber,
there exists a unique u ∈ F such that u · x = y, namely u = [x, x, x, y]. This
means that the action of F on each fiber is free and transitive.

Proposition 13. — i) Let (x, u · x, v · x,w · x) be a vertical parallelogram.
Then the equivalence class in F of this parallelogram is the element
wu−1v−1 of F .

ii) For every parallelogram x ∈ P and u ∈ F , we have (u·x00, u·x01, x10, x11) ∈
P and [u · x00, u · x01, x10, x11] = [x].

iii) Every transformation in F [2,1] maps every parallelogram to an equivalent
one.

Proof. — We have

w =[x, x, x, w · x] = [x, x, x, u · x] [x, u · x, v · x,w · x] [v · x,w · x, x, w · x]

=u [x, u · x, v · x,w · x] [v · x, x, w · x,w · x]

=u [x, u · x, v · x,w · x] [v · x, x, x, x] [x, x, w · x,w · x]

=u [x, u · x, v · x,w · x] [v · x, x, x, x] = u [x, u · x, v · x,w · x] [x, x, x, v · x]

=u [x, u · x, v · x,w · x] v .

This proves part i).
We now prove part ii). Let x ∈ P and let u ∈ F . By Lemma 9, part i)

we have [x00, x01, x00, x01] = [x10, x11, x10, x11]. By part i), [x00, x00, u ·
x00, x00] = u−1 = [x01, x01, u · x01, x01] and thus [x00, x01, u · x00, u · x01] =

[x00, x01, x00, x01] = [x10, x11, x10, x11] by Lemma 9, part i). The claim follows
by symmetry.

The group F [2] acts on X [2] coordinate-wise. By part ii) and the symmetries
of Q, we have the statement in part iii).
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From this lemma, we deduce that Q is invariant under the subgroup F [3,1]

of F [3]. Conversely, we have:

Proposition 14. — Let x ∈ P and u ∈ F [2]. If the parallelograms x and u ·x
are equivalent, then u ∈ F [2,1].

Proof. — There exists u′11 such that (u00, u01, u10, u
′
11) ∈ F [2,1] and [u00 ·

x00, u01 · x01, u10 · x10, u
′
11 · x11] = [x] = [u00 · x00, u01 · x01, u10 · x10, u11 · x11].

Since the structure is strong, u′11 · x11 = u11 · x11. But since F acts freely on
each fiber, u′11 = u11.

Remark 2. — Returning to the parallelogram structure Qs on Xs, we have
already noticed that it is not strong. As in Section 2.4, we have a strong
parallelogram structure by taking a quotient ofXs by some equivalence relation.
Using the preceding proposition, we have that two elements (x, y) and (x′, y′)

of Xs are equivalent under this relation if and only if there exists u ∈ F with
x′ = u · x and y′ = u · y.

Proposition 15. — The group F is included in the center of G.

Proof. — For every u ∈ F , we have u[2] ∈ F [2,1] and so F ⊂ G.
Let g ∈ G and u ∈ F . Let f be a face of the cube and e an edge of the cube

with f ∩ e = {111}. Then the transformations g[3,f ] and u[3,e] map Q to itself,
and thus so does the commutator of these transformations. It is immediate to
check that this commutator is equal to [g;u][3,e]. This means that for x ∈ Q,
we also have (x000, x001, . . . , x110, [g;u] · x111) ∈ Q. As the structure is strong,
[g;u] · x111 =111. Thus [g;u] is the identity transformation.

5.3. Structure Theorem. — We are now ready to characterize parallelepiped
structures that are nilstructures. Recall (see Section 2.4) that e is a point in
X and that the map π : X → B is defined by π(x) = 〈e, x〉 for every x ∈ X.

Theorem 1. — Let G be a subgroup of G containing F and assume that G
acts transitively on X. Let Γ be the stabilizer of some e ∈ X in G and iden-
tify X with G/Γ in the natural way. Then the parallelogram structure (P,Q)

on X coincides with the structure (PX ,QX) associated to G,F and Γ as in
Proposition 10.

Thus the parallelepiped structure (P,Q) is isomorphic to a nilmanifold par-
allelepiped structure as in Proposition 10 if and only if its structure group G
acts transitively on X.
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Proof. — Step 1. We first show that G,F and Γ satisfy the hypotheses of
Proposition 10.

We have already shown that F is included in the center of G. Since F acts
freely on X, Γ ∩ F = {1}. We are left with showing:

Claim 1. — F contains the commutator subgroup G2 of G.

Recall that G[3,2] ⊃ G
[3,1]
2 . Therefore every element of G

[3,1]
2 leave Q invariant

and thus every element of G
[2,1]
2 maps each parallelogram to an equivalent one.

On the other hand, since B is abelian, g belongs to the kernel of p and thus
maps every point of X to a point in the same fiber.

Let g ∈ G2 and x, y ∈ X. There exist u, v ∈ F with g · x = u · x and
g · y = v · y. As (x, y, x, y) ∈ P and (g, g, 1, τ) ∈ G

[2,1]
2 we have that [x, y, x, y] =

[g · x, g · y, x, y] = [u · x, v · y, x, y]. By Proposition 14, we have u = v.

Therefore there exists u ∈ F with g · x = u · x for every x, meaning that
g = u. This proves the claim. Therefore we can define the structure (PX ,QX)

as in Proposition 10.

Step 2. Recall the map p : G → B defined by π(g · x) = p(g)π(x) for every
x ∈ X. We show that

Claim 2. — ker(p) = FΓ.

The kernel of p contains clearly contains F . For γ ∈ Γ we have π(e) =

π(γ · e) = p(γ)π(e) and thus γ ∈ ker(p). We get that ker(p) ⊃ FΓ. Conversely,
let g ∈ ker(p). Then g · e belongs to the same fiber as e and there exists u ∈ F
with g · e = u · e and we have u−1g ∈ Γ. This proves the claim.

As the parallelogram structure P is associated to the projection X → B and
PX is associated to the projection X → G/FΓ we have that P = PX .

Step 3. We are left with showing that Q = QX .

Since(e, e, · · · , e) ∈ Q, for every g ∈ G[3,2] we have (g000 · e, g001 · e, · · · , g111 ·
e) ∈ Q by definition of the group G. Under our identification, this means that
QX ⊂ Q.

Let x ∈ Q. As P = PX , each face of x belongs to PX and by con-
dition v) (applied to the structure (PX ,QX)) there exists x′111 such that
(x000, x001, . . . , x110, x

′
111) ∈ QX . As QX ⊂ Q, these 8 points form a par-

allelepiped in Q. Since this last structure is strong, x′111 = x111 and thus
x ∈ QX .
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5.4. An example. — Let G be a 2-step nilpotent group and let F,P,Q, and Q
be as in Proposition 9. We compute the groups Ps and F in this case. Recall
that B = G/F and that π : G→ B is the natural projection.

Let x = (x0, x1, x2, x3) ∈ P. As P = G[2,1]F [2], x can be written as x =

(g, ga, gb, gabu) with g, a, b ∈ G and u ∈ F . We remark that x ∈ Ps with
s = π(a) and that qs([x]) = π(b).

Let x′ be another parallelogram in Ps. Write it as x′ = (g′, g′a′, g′b′, g′a′b′u′)

with g′, a′, b′ ∈ G and u′ ∈ F . We have that x and x′ are equivalent if and only
if (x,x′) belongs to Q = G[3,2]F [3,1]. By a short computation using Lemma 6,
part iii), we have that this is equivalent to the condition that there exist h ∈ G
and v, w ∈ F with g′ = gh, a′ = av and b′ = aw.

Therefore the equivalence class [x] of x ∈ P is characterized by the elements
s = π(a) and π(b) of B and the element u of F .

For each s ∈ B, this defines a bijection of Ps onto B×F . The homomorphism
qs : Ps → B corresponds to the natural projection B × F → B. Using the
definition of the multiplication in Ps, we can easily check that it corresponds
to multiplication coordinate by coordinate on B × F . Applying this for s = 1,
we have that the fiber group of (P,Q) is F .

Assume furthermore that Γ is a subgroup of G satisfying hypothesis (16)
of Proposition 10 and let PX , QX be as in this Proposition. We now have
that B = G/FΓ and that π : X = G/Γ → B is the natural projection. By
elementary algebraic (but relatively long) computations, it is possible to show
that the fiber group of (PX ,QX) is F and we can determine the groups Ps. In
this case, the group G is a subgroup of GQX , acts transitively on X, and the
general result (Theorem 2) stated in the following section gives that for every
s the group Ps is the direct sum of B and F .

6. Conditions for transitivity

For s ∈ B, let Fs be the kernel of the group homomorphism qs : Ps →
B defined in Section 4.2. Thus Fs is the family of ≈-equivalence classes of
parallelograms x with 〈x00, x01〉 = s and 〈x00, x10〉 = 1. This means that x00

and x10 lie in the same fiber and therefore x01 and x11 also lie the same fiber.
Therefore, if x is a parallelogram its equivalence class [x] belongs to Fs if

and only if x can be written in the form:

(a, b, u · a, v · b) with a, b ∈ X, 〈a, b〉 = s and u, v ∈ F .

Let a′, b′ ∈ X with 〈a′, b′〉 = s and u′, v′ ∈ F . Then [a, b, u · a, v · b] = [a′, b′, u′ ·
a′, v′ · b′] if and only if [a, b, a′, b′] = [u · a, v · b, u′ · a′, v′ · b′]. By Proposition 13,
part iii) this last class is equal to [a, b, a′, uv−1u′

−1
v′ · b′]. This is equivalent to

[a, b, a′, b′] if and only if uv−1u′
−1
v′ = 1.
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Therefore by passing to the quotient, the map

(a, b, u · a, v · b) 7→ vu−1

induces a one to one map js : Fs → F .
The map js is clearly onto. Moreover, it follows immediately from the defi-

nition of the multiplication in F that this map is a group homomorphism. We
conclude that js : Fs → F is a group isomorphism.

For every s ∈ B, we have an exact sequence

(18) 0 −→ F
is−→ Ps

qs−→ B −→ 0 ,

where is : F → Ps is the reciprocal map of the isomorphism js : Fs → F .

Theorem 2. — The group G acts transitively on X if and only if for every
s ∈ B, the exact sequence (18) splits.

Proof. — Since the subgroup F of G acts transitively on each fiber, the group
G acts transitively on X if and only if the map p : G→ B is onto.

First step. Let s ∈ B. First we assume that the exact sequence (18) splits. This
means that there exists a group homomorphism φ : B → Ps with qs ◦φ = IdB .
We build a transformation h of X, belonging to G, with p(g) = s.

We choose a, b ∈ X with 〈a, b〉 = s. Let x ∈ X. Then we define g · x to be
the unique point g · x in X such that (a, b, x, g · x) is a parallelogram in the
class φ(〈a, x〉).

Let x be a parallelogram in X. We have 〈a, x00〉 〈a, x01〉−1
~ax10
−1 〈a, x11〉 =

1. Since φ is a group homomorphism, we have

φ(〈a, x00〉)φ(〈a, x01〉−1
)φ( ~ax10

−1)φ(〈a, x11〉) = 1 ,

This means that

[a, b, x00, g · x00] [a, b, x01, g · x01]−1 [a, b, x10, g · x10]−1 [a, b, x11, g · x11] = 1 .

By definition of the multiplication in Ps, we have that [x00, g ·x00, x01, , g ·x01] =

[x10, g · x10, x11, , g · x11] and thus [x] = [g · x00, g · x01, g · x10, g · x11].
Therefore the transformation g of X maps every parallelogram to an equiv-

alent one and thus it belongs to G. By construction, p(g) = s.

Second step. Conversely, let s ∈ B and assume that there exists g ∈ G with
p(g) = s.

We choose a ∈ X and define b = g · a. For every x ∈ X, define ψ(x) ∈ Ps to
be the ≈-equivalence class of the parallelogram (a, b, x, g · x). Then for every
x ∈ X, we have qs(ψ(x)) = 〈a, x〉. Moreover, ψ(a) = [a, b, a, b] = 1 and for
every x ∈ X we have qs(ψ(x)) = 〈a, x〉.
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By the definition of G and the same computation as in the first step, we
have that:

(19) if x is a parallelogram, ψ(x00)ψ(x01)−1ψ(x10)−1ψ(x11) = 1 .

We deduce that for x ∈ X, ψ(x) depends only in π(x) and thus on 〈a, x〉.
Thus there exists a map φ : B → Ps with ψ(x) = φ(〈a, x〉) for every x ∈ X.

Thus the relation (19) implies that, when b00, b01, b10, b11 are four points in
B with b00b−1

01 b
−1
10 b11 = 1 then φ(b00)φ(b01)−1φ(x10)−1φ(x11) = 1. As φ(1) =

ψ(a) = 1, it follows that φ is a group homomorphism.
We have qs ◦ φ = IdB and so the exact sequence (18) splits.

It follows immediately that:

Corollary 2. — If either the fiber group is injective or if the base group is
projective, then the parallelepiped structure is a nilparallelepiped structure, as
in Proposition 10.

6.1. Imbeddings. — In this Section we first show that there exist parallelepiped
structures such that the structure group does not act transitively on the space,
and so the parallelepiped structure is not a nilstructure. After the example,
we show that every parallelepiped structure can be imbedded in a nilstructure.
We start with a proposition that defines this imbedding.

Proposition 16. — Let (P,Q) be a parallelepiped structure on a set X, as-
sume that B is the base is the base of X, π : X → B the natural projection,
and let Y be a subset of X satisfying the following two conditions:

i) The restriction to Y of π is onto.
ii) If x ∈ Q is a parallelepiped in X such that the seven points x000, . . . , x110

belong to Y , then x111 ∈ Y .

Then (P ∩ Y [2],Q ∩ Y [3]) is a parallelepiped structure on Y .

Definition 8. — If the conditions in the proposition are satisfied, we say that
the parallelepiped structure (Y,P ∩ Y [2],Q ∩ Y [3]) is embedded in (X,P,Q).

The proof of the proposition follows immediately from the definitions.

Example 6 (A parallelepiped structure which is not a nilstructure)
Let p > 2 be a prime number and let B = Z/pZ and F = Z/p2Z.
In this example we use additive notation for B and F . Let (P,Q) the

(abelian) parallelepiped structure on X = B × F defined as in Example 5
(but with additive notation):

P = B[2,1] × F [2] , Q = B[3,2] × F [3,1] .
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The base group is B and π : X → B is projection onto the first coordinate.
In this case the groups Ps, s ∈ B, introduced in Section 4.1 can easily be
defined explicitly and we do so now.

Let s ∈ B. Then Ps = B × F (see Section 5.4). The element(
(b00, f00), ((b01, f01), ((b10, f10), ((b11, f11)

)
of X [2] = B[2] × F [2] is a par-

allelogram belonging to Ps if and only if b01− b00 = b11− b10 = s. In this case,
the class of this parallelogram is the element (b10− b00, f00− f01− f10 + f11) of
Ps. The homomorphism qs : Ps → B is the first coordinate and the imbedding
F → Ps is the map f 7→ (0, f).

Let X ′ be the subset of X given by

X ′ =

ß
(b, f) : f =

b(b− 1)

2
mod pZ/p2Z

™
.

(Here we consider pZ/p2Z as a subgroup of Z/p2Z = F and identify
(Z/p2Z)/(pZ/p2Z) with Z/pZ = B in the obvious way.) It is easy to
check that if x is a parallelepiped of X such that seven of its edges belong to
X ′, then the remaining edge also belongs to X ′. Therefore, P′ := P ∩ X ′[2]

and Q′ := Q ∩ X ′[3] is a parallelepiped structure on X ′, imbedded in the
parallelepiped structure on X.

The fiber group is F ′ = pZ/p2Z ∼= Z/pZ. For s ∈ B, the family of paral-
lelograms of this structure is written P′s, meaning that P′s = Ps ∩ P′. Let P ′s
be the abelian group of classes of parallelograms of this family. An immediate
computation shows that P ′s is the subgroup

P ′s =
{

(b, f) ∈ B × F : f = sb mod pZ/p2Z
}

of Ps. For s 6= 0 this group is isomorphic to Z/p2Z and thus it is not isomorphic
to the direct sum B′ ⊕ F ′ ≈ Z/pZ⊕ Z/pZ. Therefore the exact sequence (18)
does not split and so there is no g ∈ G(X) projecting on s.

Theorem 3. — Every parallelepiped structure can be imbedded in a nilparal-
lelepiped structure.

Proof. — Let (P,Q) be a parallelepiped structure on the set X, let B be the
base group and let F be the fiber group.

The abelian group F can be imbedded as a subgroup of a divisible group
E. We write X ⊗ E for the set X × E, quotiented by the equivalence relation
given by

(x, e) ∼= (x′, e′) if there exist u ∈ F with x′ = u · x and e′ = u−1e .

We write j : X × E → X ⊗ E for the quotient map.
We now define a parallelepiped structure (PE ,QE) on X ⊗ E.
Let (x, e), (x′, e′) ∈ X × E. If (x, e) ∼= (x′, e′), then π(x) = π(x′). Therefore

we can define a map πE : X ⊗E → B by mapping the equivalence class j(x, e)
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to π(x). We define PE to be the parallelogram structure on X ⊗ E associated
with this projection.

Let (PE ,QE) be the parallelepiped structure on the abelian group E defined
as in Example 4 and let QX⊗E be the image of Q × QE under the natural
projection X [3] × E[3] = (X × E)[3] → (X ⊗ E)[3]. We claim that (PE ,QE) is
a parallelepiped structure on X ⊗ E.

For every x ∈ QX⊗E , every face of x obviously belongs to PX⊗E . The
symmetries of QX⊗E are obvious. Transitivity follows from Proposition 13,
part iii) and Proposition 14. The closing parallelepiped property follows in the
same way that it does in Lemma 7.

The base group of PX⊗E is B and the fiber group of QX⊗E is F . Since F is
a divisible group, the structure (PX⊗E ,QX⊗E) on X ⊗ E is a nilstructure.

On the other hand, the mapX → X⊗E associating x ∈ X to the equivalence
class of j(x, 1) is one to one, and we can consider X as a subset of X⊗E. Thus
P = PX⊗E ∩X [2] and Q = QX⊗E ∩X [3].

7. Higher levels?

Gowers norms (for all k ≥ 2) have already been used in several contexts and
it is natural to ask to what extent the results here can be generalized for k ≥ 4.

In the setting of ergodic theory, the authors define seminorms for all k ≥ 1

and measures on Cartesian products of the space playing the same role played
by the structures of this paper. The “strong” structures of this paper correspond
to the “systems of order k” of [10]. These systems are completely characterized
in terms of nilmanifolds. But the descriptions we give in the context of the
present paper are substantially weaker.

Our definitions of parallelogram and parallelepiped structures extend imme-
diately to structures of any dimension k, for which basic models are given by
(k − 1)-step nilmanifolds.

The main constructions and results of Section 3 extend directly, for example
the reduction to strong structures (Proposition 4), the definition of the semi-
norm (Proposition 5), and the definition of the structure group (Definition 6).
In particular, this structure group is always (k − 1)-step nilpotent.

The results of Sections 4-6 are more difficult to extend. The main difficulty
is that a good description of a structure of dimension k is only possible when
the underlying structure of dimension k − 1 arises from a nilmanifold.
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