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LINEARIZATION OF GERMS:
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by Stefano Marmi & Carlo Carminati

Abstract. — We prove that the linearization of a germ of holomorphic map of the
type Fλ(z) = λ(z+O(z2)) has a C1-holomorphic dependence on the multiplier λ. C1-
holomorphic functions are C1-Whitney smooth functions, defined on compact subsets
and which belong to the kernel of the ∂̄ operator.

The linearization is analytic for |λ| 6= 1 and the unit circle S1 appears as a natu-
ral boundary (because of resonances, i.e. roots of unity). However the linearization
is still defined at most points of S1, namely those points which lie “far enough from
resonances”, i.e. when the multiplier satisfies a suitable arithmetical condition. We
construct an increasing sequence of compacts which avoid resonances and prove that
the linearization belongs to the associated spaces of C1-holomorphic functions. This
is a special case of Borel’s theory of uniform monogenic functions [2], and the cor-
responding function space is arcwise-quasianalytic [11]. Among the consequences of
these results, we can prove that the linearization admits an asymptotic expansion w.r.t.
the multiplier at all points of the unit circle verifying the Brjuno condition: in fact the
asymptotic expansion is of Gevrey type at diophantine points.
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534 S. MARMI & C. CARMINATI

Résumé (Linéarisation des germes : dépendence régulière du multiplicateur)
On montre que la linéarisation d’un germe d’application holomorphe du type

Fλ(z) = λ(z + O(z2)) a une dépendence C1-holomorphe du multiplicateur λ. Les
fonctions C1-holomorphes sont C1 au sens de Whitney, elles sont définies sur des
compacts et elles appartiennent au noyau de l’operateur ∂̄.

La linéarisation est analytique pour |λ| 6= 1 et le circle S1 est sa frontière naturelle
(due aux résonances, c’est-à-dire les racines de l’unité). Neamoins la linéarisation est
encore définie dans la plupart des points de S1, plus précisement aux points qui se
trouvent « assez loin des résonances »’ et qui correspondent à des conditions arithmé-
tiques adéquates imposées au multiplicateur. Nous construisons une suite croissante
d’ensembles compacts qui évitent les résonances et nous démontrons que la linéari-
sation appartient aux espaces associés aux fonctions C1-holomorphes. C’est un cas
particulier de la théorie des fonctions monogènes uniformes de Borel [2], et les es-
paces de fonctions correspondants sont quasi-analytiques par chemins [11]. Comme
conséquence nous montrons que la linéarisation a un développement asymptotique en
(λ− λ0) dans tous les points λ0 ∈ S1 qui verifient la condition de Brjuno. En effet le
developpement est du type Gevrey aux points diophantiens.

1. Introduction

A germ of holomorphic diffeomorphism of (C, 0)

(1) Fλ(z) = λ(z +
+∞∑
k=2

fkz
k), (λ ∈ C∗)

is linearizable if there exists a holomorphic germ tangent to the identityHλ(z) =

z +
∑+∞

2 hk(λ)zk which conjugates Fλ to the rotation Rλ : z 7→ λz namely

(2) Fλ ◦Hλ = Hλ ◦Rλ.

The derivative λ of Fλ at the fixed point z = 0 is called the multiplier of Fλ.
If λ is not a root of unity there exists a unique formal solution to the conju-

gacy equation with coefficients hk, k ≥ 2, determined by the recurrence relation

(3) hk =
1

λk−1 − 1

k∑
j=2

fj
∑

ε∈(Z+)j

|ε|=k

hε1 · · ·hεj ,

where we follow the usual multi-index notation |ε| =
∑j
i=1 εi. Note that

hk ∈ C(λ)[f2, . . . , fk]. When |λ| 6= 1 Fλ is always linearizable (by the clas-
sical Koenigs-Poincaré theorem); nevertheless the classical estimates on radius
of convergence of Hλ deteriorate as |λ| → 1. In the elliptic case, i.e. when
λ = e2πiα and α ∈ R \ Q , the linearization need not be convergent due
to the contribution from small denominators in (3). After the work of Br-
juno [3] and Yoccoz [18] we know that all holomorphic germs with multiplier
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LINEARIZATION OF GERMS: REGULAR DEPENDENCE ON THE MULTIPLIER 535

λ = e2πiα are analytically linearizable if and only if α verifies the Brjuno con-
dition B(α) < +∞, where B is the Brjuno function (see the next Section for
its definition and properties).

Let us normalize Fλ asking that it is defined and univalent on the unit disk
D. Then one can prove directly, using the classical majorant series’ method
and Davie’s Lemma (see [5] [4]), that there are positive constants b0, c0 (that
do not depend on α) such that

(4) |hk| ≤ c0ek(B(α)+b0)

where λ = e2πiα, α ∈ R and B is the Brjuno function (1).
The same estimate (4) (with larger values b0 and c0) holds uniformly with

respect to λ′ in a cone with vertex in e2πiα. Therefore for any ε > 0 we will be
able to define a closed set C such that there exists ρ > 0 such that

(i) meas2(C \ C) ≤ ε and meas1(C ∩ S1) ≥ 2π − ε,
(ii) for each λ ∈ C the linearization Hλ is holomorphic and bounded on

Dρ = {z ∈ C : |z| ≤ ρ}.
(Here measd, d ∈ {1, 2} denotes the d-dimensional Lebesgue measure).

The construction of such a set is performed removing from C the union of
suitably small connected open neighbourhoods around the roots of unity (2)

and its detailed description can be found in Section 3.1; it will be evident from
the construction that the radius ρ tends to 0 as ε tends to 0.

Let us point out that the property (ii) above means that a uniform lower
bound on the radius of convergence of Hλ holds as λ varies in C, even near
the unit circle. The set C is sort of a “bridge” joining the two connected
components of the set of parameter values considered in the Koenigs-Poincaré
theorem, crossing the unit circle at some values λ = e2πiα with α a Brjuno
number.

We address the problem of studying the regularity of this map λ 7→ Hλ: we
will prove global regularity results (see Theorem A below) and local regularity
results (Theorem B).

The global regularity results we prove are inspired by the work of Borel
on uniform monogenic functions [2]. Borel extended the notion of holomor-
phic function so as to include functions defined on closed subsets of C. His
uniform monogenic functions (whose precise definition we recall and recast in
modern terminology in Appendix B) can have, in certain situations, analytic

(1) It is known that there are different objects that are called “Brjuno function”; nevertheless
for this estimate is quite irrelevant which one we choose, since the difference of two Brjuno
functions is bounded by a universal constant, i.e. independent of α (see Section 2).
(2) The property (i) can be realized just asking that the “size” of the neighbourhood of each
root decays sufficently fast when the order of the root increases.
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536 S. MARMI & C. CARMINATI

continuation through what is considered as a natural boundary of analyticity
in Weierstrass’ theory. One of Borel’s goals was to determine, with the help
of Cauchy’s formula, sufficiently general conditions which would have ensured
uniqueness of the monogenic continuation, i.e. a quasianalyticity property (see
[15], [17] for a modern discussion of this part).

The importance of Borel’s monogenic functions in parameter-dependent
small divisor problems was emphasized by Kolmogorov [9]. Arnol’d discussed
in detail this issue in his work [1] on the local linearization problem of ana-
lytic diffeomorphisms of the circle (see [19] for a very nice introduction and
for the most complete results on the subject). Arnol’d complexified the rota-
tion number but he did not prove that the dependence of the conjugacy on
it is monogenic. This point was dealt with by M. Herman [7] who also re-
formulated Borel’s ideas using the modern terminology, Whitney’s theory [16]
on differentiability of functions on closed sets and the theory of uniform alge-
bras of (analytic) functions defined on closed sets in the complex plane. It is
Herman’s point of view which was developed in [10] and which we will sum-
marize in Appendix B, where we recall the formal definition of C1-holomorphic
and C∞-holomorphic functions. Later Risler [13] extended considerably part of
Herman’s work proving various regularity results under less restrictive arith-
metical conditions, namely using the Brjuno conditon as in [19] instead of a
more classical diophantine condition. One should also mention that Whitney
smooth dependence on parameters has been established also in the more gen-
eral framework of KAM theory by Pöschel [12] who did not however consider
neither complex frequencies nor Brjuno numbers.

In this paper we will extend the results of Herman and Riesler to the case of
germs of holomorphic diffeomorphisms of (C, 0). Our proofs will in fact be more
elementary since in this case one can use a direct approach and the majorant
series method applies (see, e.g. [4]).

Let us point out that, although the linearization problem makes no sense for
λ = 0 , nevertheless the recurrence (3) defines a function H : λ 7→ Hλ which
turns out to be well defined and holomorphic at the origin: if we denote with
F0 = z +

∑+∞
k=2 fkz

k, so that Fλ = λF0, then H0 turns out to be simply the
inverse of F0: F0(H0(z)) = z. In fact H can even be extended analitically at
infinity just setting H∞(z) = z. Therefore we may consider H as defined on
C ∪{∞} which is a compact subset of P1C: this has an important consequence
since it is proved in [11] that the space of C1-holomorphic functions to which
H belongs (see Theorem A below) is arcwise quasianalytic (3).

(3) A function space X is said to be arcwise quasianalytic iff the only function that belongs
to X and vanishes on an arbitrarily short arc is the null function.
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Let us state the main results. In what follows we will assume the germ Fλ
to be of the form (1), defined and univalent on the unit disk D. For any ρ > 0,
Dρ := {z ∈ C : |z| ≤ ρ} and H∞(Dρ) will denote the complex Banach space
of functions holomorphic and bounded on Dρ.

Theorem A (Global regularity). — For any ε > 0 there exist ρ > 0 and
two connected closed sets C∗ and C such that

(a) C∗ ⊂ C ⊂ P1C, meas2(C \ C∗) ≤ ε and meas1(C ∩ S1) ≥ 2π − ε
(b) H ∈ C1

hol(C,H∞(Dρ))
(b∗) H ∈ C∞hol(C

∗,H∞(Dρ))

As will be evident in Section 4.1, for any fixed value λ̄ = e2πiᾱ on the unit
circle with B(ᾱ) < +∞ we can manage to build C∗ so that λ̄ ∈ C∗. Therefore
Theorem A proves that, by a suitable chioice of the set C∗, one can extend H
and all its derivatives at any Brjuno point on the circle and this leads to the
existence of asymptotic expansions for the linearization H at Brjuno points.

In fact we can prove that this expansion is quite regular at diophantine
points:

Theorem B (Local regularity). — If α0 is a diophantine point (4) with
exponent τ0 ≥ 2 and λ0 = e2πiα0 , there exists ρ > 0 such that for any pair of
disks ∆− ⊂ D and ∆+ ⊂ C \ D tangent to S1 in λ0 the map

∆+ ∪∆− 3 λ 7→ Hλ ∈ H∞(Dρ)

has a Gevrey-τ0 asymptotic expansion in λ0 (we refer the reader to the beginning
of Section 5 for its precise definition, see especially (30)).

We briefly summarize the content of the paper. In Section 2 we define the
Brjuno series B and we prove several properties of its sublevel sets. Since B
is lower semicontinuous it follows that the complement of any given sublevel
set {x ∈ R, B(x) ≤ t} is the countable disjoint union of open intervals. These
intervals are “centered” at those rational values for which the finite version of
the Brjuno series is bounded by the value t defining the sublevel set considered.
The discussion of Section 2 prepares the ground for the definition of the domain
C where the conjugation H : λ 7→ Hλ is C1-holomorphic. The proof of the C1

hol-
regularity of H is the main result of Section 3 while in Section 4 we shall restrict
the domain of H to a suitably chosen set C∗ ⊂ C to gain C∞hol-regularity of
the conjugation. The proof of Theorem A can be easily obtained gathering
the results of Section 3 (Theorem 1) and Section 4 (Theorem 2). In Section 5

(4) Let us recall that an irrational number α0 is diophantine with exponent τ0 ≥ 2 if and
only if there exists γ > 0 such that for all p/q ∈ Q one has |α0 − p/q| ≥ γq−τ0 .
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538 S. MARMI & C. CARMINATI

we introduce other arithmetically defined real Cantor sets which are useful to
establish the Gevrey regularity of H as claimed in Theorem B.

In the two appendices we recall some elementary properties of the continued
fraction expansion of a real number (Appendix A) and the definition of C1-
holomorphic, C∞-holomorphic and monogenic functions (Appendix B).

2. Geometry of the sublevel sets of the Brjuno function

In the following we shall always denote with α an irrational number; its
continued fraction expansion will be denoted α = [a0, a1, a2, . . . , aN , . . . ]

where a0 ∈ Z and aj ∈ Z+, j ≥ 1, are the partial quotients and
pj/qj = [a0, a1, a2, . . . , aj ] is the j-th convergent of α. If a0 ∈ Z and
(a1, . . . , aN ) ∈ (Z+)N we denote I(a0, . . . aN ) the set of real number whose
continued fraction begins with the string (a0, . . . , aN ). This set is in fact an
interval and it is usually called the cylinder associated to the string of symbols
(a0, . . . , aN ) (for more details and classical results about continued fraction
expansions we refer to appendix A).

To construct the domains on which we will prove the regularity of the con-
jugation we shall use the 1-periodic function B defined by the following Brjuno
series

(5) B(α) :=
+∞∑
k=0

log ak+1

qk
(α ∈ R \Q), B(r) = +∞ if r ∈ Q,

which is closely related to the classical Brjuno series (see [3])

Bcl(α) :=
+∞∑
k=0

log qk+1

qk
.

In fact it is easily seen that

(6) 0 ≤ Bcl(α)− B(α) ≤
+∞∑
k=0

log(2Fk)

Fk
< +∞,

(where Fk are the Fibonacci numbers).
The above inequalities show that the bound (4) on the growth of the coef-

ficents of the linearization, which holds for the classical Brjuno function, must
be valid for the Brjuno function B as well (possibly choosing a larger value for
the universal constant b0). We have chosen B instead of Bcl because it has
various nice properties: its global minimum is 0 and is attained at the golden
mean φ0 :=

√
5−1
2 . Moreover the set Φ of all local minima of B is just the set
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of preimages of the golden mean relative to the Gauss map G(x) = {1/x} (see
also Lemma 2 below):

Φ := {φ ∈ R : G(n)(φ) = φ0 for some n ∈ N}.

Therefore to any element φ ∈ Φ corresponds a continued fraction expansion of
the form

φ = [a0, . . . , aN , 1, 1, 1, . . . ] = [a0, . . . , aN + φ0].

In the sequel we will always use only B. The following lemmata will be useful
to give a neat description of sub/super-level sets of the function B.

Lemma 1. — If x ∈ R \Q and B(x) < +∞ then for all ε > 0 exists α± such
that

(i) α− < x < α+ and α+ − α− < ε,
(ii) |B(α±)− B(x)| < ε.

Proof. — Let x := [a0, . . . , aN−1, aN , aN+1, . . . ]; fix N odd and such that

1

FN
< ε,

+∞∑
k=N

log ak+1

qk
< ε,

and set

α+ := [a0, . . . , aN−1, 2aN + φ0], α− := [a0, . . . , aN−1, aN , 2aN+1 + φ0].

It is clear that α± ∈ I(a0, . . . , aN−1) hence by (35) in Appendix A

|α+ − α−| ≤ |pN−1

qN−1
− pN−1 + pN−2

qN−1 + qN−2
| = 1

qN−1(qN−1 + qN−2)
≤ 1

FNFN−1
.

On the other hand

ε >
log 2

FN
≥ B(α±)− B(x) ≥ −

+∞∑
k=N

log ak+1

qk
> −ε.

Lemma 2. — If x := [a0, . . . , aN−1, aN , aN+1, . . . ] is such that a2n > 1 for
infinitely many n ∈ N, then for all ε > 0 there exists α− such that

(i) x− ε < α− < x,
(ii) B(α−) < B(x).

On the other hand if for infinitely many n ∈ N a2n+1 > 1, then for all ε > 0

there exists α+ such that

(i) x+ ε > α+ > x,
(ii) B(α+) < B(x).
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Proof. — It is enough to choose n big enough and such that a2n > 1 and set

α− := [a0, . . . , a2n−1, a2n − 1 + φ0],

so that B(x)−B(α−) = − log(1−a−1
2n )

q2n−1
+
∑+∞
k=2n

log ak+1

qk
> 0. With a similar trick

one can determine α+.

Lemma 3. — The function B is lower semicontinuous.

Proof. — Let At := {x ∈ R : B(x) > t}, (t ≥ 0), denote the t-superlevel of
the function B. To prove that B is semicontinuous it is enough to show that At
is open for all t ≥ 0. If B(x̄) > t and x̄ = [a0, a1, a2, . . . , aN , . . . ] ∈ R \Q then,
for some N ∈ N,

∑N
k=0

log ak+1

qk
> t. Hence B(x) > t for all x ∈ I(a0, . . . , aN+1).

A simpler argument settles the case x̄ is rational.

It is easy to prove that if V =]ξ−, ξ+[ is an open interval with irrational
endpoints and |ξ+ − ξ−| < 1 then there is a unique rational point p̄/q̄ ∈ V

such that q̄ < q for all p/q ∈ V \ {p̄/q̄}; we will call the rational point p̄/q̄
the pseudocenter of the interval V . Since B is lower semicontinuous we know
that the complement of each sublevel is the countable union of disjoint open
intervals with irrational endpoints. Each of these intervals will be labeled by
its pseudocenter.

In order to characterize the set Qt of pseudocenters of the connected com-
ponents of the complement of the sublevel {B(x) ≤ t} we introduce a finite
Brjuno function (simply denoted by Bf ) which is defined on finite continued
fractions by the formula (5)

Bf ([a0, . . . , an]) :=
n−1∑
k=0

log ak+1

qk
.

The following lemma gives an accurate description of each of the countable
connected components of the t-superlevel sets At of the Brjuno function B and
a precise characterization of the set Qt.

Lemma 4. — Let V =]ξ−, ξ+[ be a connected component of At and let

ξ± := [a0, .., aN−1, a
±
N , a

±
N+1, . . . ], N ≥ 1, a+

N 6= a−N .

Then

(i) B(ξ±) = t;

(5) The choice of defining Bf on finite continued fractions instead of Q avoids the ambiguity
which arises from the fact that each rational number admits two different continued fraction
expansions, see the Remark below the proof of Lemma 4.
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(ii) a+
N ≥ 2, a−N = a+

N − 1, a+
N+2k = 1 ∀k ≥ 1, a−N+2k+1 = 1 ∀k ≥ 0, if N is

even,
a−N ≥ 2, a+

N = a−N − 1, a−N+2k = 1 ∀k ≥ 1, a+
N+2k+1 = 1 ∀k ≥ 0, if N is

odd;
(iii) The pseudocenter p̄/q̄ of V satisfies

p̄/q̄ = [a0, . . . , aN−1, a
+
N ] = [a0, . . . , aN−1, a

−
N , 1], Bf ([a0, . . . , aN−1, a

+
N ]) ≤

t, if N is even,
p̄/q̄ = [a0, . . . , aN−1, a

+
N , 1] = [a0, . . . , aN−1, a

−
N ], Bf ([a0, . . . , aN−1, a

−
N ]) ≤

t, if N is odd.
(iv) If p/q ∈ V is a convergent of either ξ+ or ξ− and p/q 6= p̄/q̄ then

p/q = [a0, . . . , aN−1, a
±
N , . . . , a

±
D, 1],

(where D is odd if p/q is a convergent of ξ+ and even if it is convergent
of ξ−) and Bf ([a0, . . . , aN−1, a

±
N , . . . , a

±
D, 1]) ≤ t but Bf ([a0, . . . , aN−1,

a±N , . . . , a
±
D + 1]) > t.

(v) If p/q ∈]p̄/q̄, ξ+[ and p/q is not a convergent for ξ+ then exists p′/q′

convergent of ξ+ such that p/q < p′/q′ < ξ+ and q′ < q. Moreover, the
value of the finite Brjuno function exceeds t on both the continued fraction
expansions of p/q. A similar statement holds in case p/q ∈]ξ−, p̄/q̄[, the
only difference being that this time p/q > p′/q′ > ξ−.

(vi) If p/q = [b0, . . . , bN ], with bN > 1, is a rational number such that
Bf ([b0, . . . , bN ]) ≤ t, then p/q is the pseudocenter of the connected
component of At which contains it.

Proof. — In what follows we will only consider the case N is even since the
case N odd is symmetric.

(i) ξ± /∈ At implies B(ξ±) ≤ t, on the other hand it cannot happen that
B(ξ±) < t because otherwise, by Lemma 1, one could find points in At on
which the value of B is strictly less than t which is absurd.

(ii) Let pN−1/qN−1 = [a0, . . . , aN−1] be the last rational which is a conver-
gent of both ξ± and stays outside the interval ]ξ−, ξ+[. Then:

a+
N ≥ a

−
N + 1,(7)

p−N
q−N

< ξ− <
p−N+1

q−N+1

≤
p+
N

q+
N

< ξ+ <
pN−1

qN−1
.(8)

Setting φ := [a0, . . . , aN−1 , a
+
N − 1 +φ0], since ξ+ > φ, and B(φ) < B(ξ+) ≤ t,

we get that ξ− ≥ φ. Hence a−N ≥ a
+
N − 1, in fact by (8) equality holds.

If, by contradiction, a+
N+2k ≥ 2 for some k ≥ 1, setting

φ := [a0, . . . , aN−1, a
+
N , . . . , a

+
N+2k − 1 + φ0]
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we would get ξ− < φ < ξ+ while B(φ) < B(ξ+) ≤ t which is impossible. An
analogous argument shows that a−N+2k+1 = 1 for all k ≥ 0.

(iii) Let p̄/q̄ := [a0, . . . , aN−1, a
+
N ]. If p/q ∈ V is a rational number and p/q 6=

p̄/q̄, then either p/q ∈ I(a0, . . . , aN−1, a
+
N ) or p/q ∈ I(a0, . . . , aN−1, a

+
N−1, 1),

and in both cases q > q̄.

(iv) If p/q is a convergent of ξ+, and p/q 6= p̄/q̄, then p/q ∈]p̄/q̄, ξ+[ and

p/q = [a0, . . . , aN−1, a
+
N , . . . , a

+
N+2d−1, 1], (d ≥ 1).

Moreover, Bf ([a0, . . . , aN−1, a
+
N , . . . , a

+
N+2d−1, 1]) ≤ t. On the other hand,

since
[a0, . . . , aN−1, a

+
N , . . . , a

+
N+2d−1 + 1 + φ0] ∈]p̄/q̄, p/q[⊂ At,

it follows that

Bf ([a0, .., aN−1, a
+
N , . . . , a

+
N+2d−1 + 1]) =

B([a0, .., a
+
N−1, a

+
N , . . . , a

+
N+2d−1 + 1 + φ0]) > t.

If p/q is a convergent for ξ− the argument is symmetric.

(v) For p/q ∈]p̄/q̄, ξ+[, and p/q not a convergent for ξ+, let

[a0, . . . , aN−1, a
+
N , . . . , a

+
N+2d]

be the last convergent smaller than p/q, thus

p/q = [a0, . . . , aN−1, a
+
N , . . . , a

+
N+2d, b1, . . . , bH ]

with H ≥ 1. We claim that the rational

p′/q′ = [a0, .., aN−1, a
+
N , . . . , a

+
N+2d, aN+2d+1 + 1] =

[a0, . . . , aN−1, a
+
N , . . . , a

+
N+2d, aN+2d+1, 1]

is the convergent we are looking for. Indeed, by (i) p′/q′ is an even convergent
and by assumption p/q < p′/q′ we deduce that [b1, . . . , bH ] ≥ aN+2d+1 + 1,
hence b1 ≥ aN+2d+1 + 1.

Therefore

Bf ([a0, .., aN−1, a
+
N , .., a

+
N+2d, b1, .., bH ]) ≥

Bf ([a0, .., aN−1, a
+
N , . . . , a

+
N+2d, aN+2d+1 + 1]) > t,

the last inequality being a consequence of (iii). If p/q ∈]ξ−, p̄/q̄[ the proof can
be carried over following the same argument.

(vi) This is a straightforward consequence of the previous statement.

Remark. — B : R/Z→ [0,+∞] is surjective.
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Remark. — From now on, if r ∈ Q, by Bf (r) we will mean the finite Brjuno
function evaluated on the continued fraction expansion of r which does not end
with the figure 1. By (vi) of Lemma 1 the set Qt defined by

(9) Qt := {r ∈ Q : Bf (r) ≤ t}

is precisely the set of all pseudocenters of the connected components of At.
By this characterization it is clear that if t ≥ t0 then Qt ⊃ Qt0 . It is also

interesting and important for the sequel to analyze the process of disintegration
of the connected components of At; more precisely let p/q ∈ Qt0 and ]ξ−t , ξ

+
t [ be

the connected component of At of pseudocenter p/q: the function t 7→ ξ+
t − ξ−t

is decreasing and has jumps exactly at those values of t which are image under
B of local minima in ]ξ−t0 , ξ

+
t0 [.

Proposition 2.1. — If t ≥ 2t0 then all convergents of ξ±t0 belong to Qt.

Proof. — Indeed, if p/q is such a convergent (which is not the pseudocenter of
]ξ−t0 , ξ

+
t0 [), then

p/q = [a0, . . . , aN−1, a
±
N , . . . , a

±
D, 1],

where D ≥ 1 is

{
odd for ξ+,

even for ξ−.

Note that, since max(a+
N , a

−
N ) ≥ 2, we have that

t0 ≥ max(B(ξ+),B(ξ−)) ≥ log 2

qN−1
.

So, assuming for the sake of simplicity that p/q is a convergent of ξ+ and
dropping the superscript +, we can readily check that Bf ([a0, . . . , aN , . . . , aD+

1]) ≤ t, which implies that p/q ∈ Qt :

Bf ([a0, . . . , aD + 1]) =
D−2∑
k=0

log ak+1

qk
+

log(aD + 1)

qD−1

=
D−1∑
k=0

log ak+1

qk
+

log(1 + a−1
D )

qD−1

≤ t0 +
log 2

qN−1
≤ 2t0 ≤ t.

Let M > 0 be fixed. Let V ∗ be a connected component of AM and let V be
a connected component of A3M contained in V ∗. By the previous remarks we
have

V ∗ =]α−, α+[, with B(α±) = M,

V =]ζ−, ζ+[, with B(ζ±) = 3M.
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We now shall establish a lower bound for the quantities |α+ − ζ+| and
|α− − ζ−|. As usual we will carry over the caculations only for the bound on
|α+ − ζ+|, the other case being analogous. Set α+ := [a0, . . . , aN , ...], ζ

+ :=

[c0, . . . , cN−1, cN , cN+1, 1, cN+3, 1, ...] and let p/q = [c0, . . . , cN−1, cN ] be
the pseudocenter of the interval ]ζ−, ζ+[; we will distinguish the following
cases:

Case A: p/q is a convergent of α+ as well.

In this case ak = ck for all 1 ≤ k ≤ N . Setting φ :=

[c0, .., cN−1, cN , 2cN+1, 1, 1, 1, 1, ...] it is immediate to check that
p/q < φ < ζ+ and hence B(φ) > 3M . Since

B(φ) =
N−1∑
k=0

log ck+1

qk
+

log 2cN+1

qN
≤ B(α+) +

log 2cN+1

qN
≤M +

log 2cN+1

qN
,

it follows that 2cN+1 > e2MqN and so

(10) |ζ+ − p/q| ≤ 1

cN+1q2
≤ 2e−2Mq

q2

Since B(α+) ≤ M , we get q−1
N log(aN+1) ≤ M and hence aN+1 ≤

eMqN . So

(11) |α+ − p/q| ≥ 1

2aN+1q2
≥ e−Mq

2q2

Using (10) and (11) we gain

α+ − ζ+ ≥ α+ − p/q − (ζ+ − p/q) ≥ e−Mq

2q2
(1− 4e−Mq),

and

(12) α+ − ζ+ ≥ e−Mq

4q2
holds as soon as q ≥ log 8

M

Case B: p/q is not a convergent of α+.

If p/q is not a convergent of α+ then there is some convergent r/s
of α+ such that

p/q < r/s < α+ and s < q,

hence

α+ − ζ+ ≥ α+ − r/s ≥ e−Ms

2s2
≥ e−Mq

2q2

The same estimates hold also for |α− − ζ−| so, putting together the cases A
and B, we gain the following lemma
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Lemma 5. — There exists a positive constant ν0 such that if V is a connected
component of A3M , p/q is the pseudocenter of V , ζ ∈ ∂V and B(α) ≤ M one
has

(13) |α− ζ| ≥ ν0
e−Mq

q2
.

Proof. — The proof is straightforward: it is sufficient to note that the results
above imply that (13) holds with ν0 = 1/4 for all but finitely many connected
components of A3M . Therefore choosing ν0 sufficiently small we establish that
(13) holds with no exceptions.

3. C1-holomorphic and monogenic regularity of the conjugation

The main result we shall prove in this section is thatH ∈ C1
hol(CM ;H∞(Dρ)),

where CM is a set obtained removing from the complex plane C the union of
tiny neighbourhoods of the roots of unity while ρ > 0 is suitably chosen. Let
us begin describing the “domain of regularity” CM .

3.1. Domain of regularity. — Let κ ∈]0, 1[ be fixed; if V =]ξ+, ξ−[ is an open
interval in R/Z we shall call κ-diamond (6) on V the set

∆ := {z ∈ C/Z : ξ− < <(z) < ξ+ and |=(z)| < κmin(<z − ξ−, ξ+ −<z)}.
Let M > 0 be fixed. Let QM be the set of pseudocenters of connected com-
ponents of the open superlevel AM of the Brjuno function and let ∆(M, r) be
the diamond on the connected component of AM containing r; it is then easy
to check that

ΩM :=
⋃

r∈QM

∆(M, r)

is an open neighbourhood of Q/Z in C/Z. Hence KM := (C/Z)\ΩM is a closed
set which does not contain any rational number. Moreover it is straightforward
to check that any of diophantine sets DC(γ, τ) := {α ∈ R/Z | |α − p/q| ≥
γ/q−τ∀p/q ∈ Q} is contained in some KM for M sufficently large. Since
for any fixed τ > 2 meas1(R/Z \ DC(γ, τ)) → 0 as γ → 0 it follows that
meas2(C/Z \KM ) → 0 as M → +∞. It could also be proved (see [11]) that
meas(KM ) > 0 for all M > 0 and in fact each point x ∈ KM either is isolated
(in the exceptional case when x is a local minimunm for the Brjuno function)
or x is a point of density for KM .

Let exp# : C/Z → C∗ be defined as exp#(ζ) := exp(2πiζ). For d > 0

we define Sd := {ζ ∈ C/Z : |=(ζ)| ≤ d} the strip of height 2d around the
real axis and the annulus exp#(Sd) := Ad. We point out that the restriction

(6) Or, simply, diamond, since we shall not play with different values of κ.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



546 S. MARMI & C. CARMINATI

exp# : Sd → Ad is a covering map and locally a biholomorphism, hence by
compactness there exists η > 1 (depending on d) such that

(14) η−1|ζ − ζ ′| ≤ |exp#(ζ)− exp#(ζ ′)| ≤ η|ζ − ζ ′| ∀ζ, ζ ′ ∈ Sd.

The set CM := exp#(KM )∪{0,∞} is the domain on which the conjugation H
will be “regular”.

Proposition 3.1. — There exists a universal constant b1 such that for all
values of the multiplier λ ∈ CM the power series expansion of the conjugation

(15) Hλ(z) =
+∞∑
k=0

hk(λ)zk

has radius of convergence at least e−(M+b1) > 0. Moreover maxλ∈CM |hk(λ)| ≤
e(M+b1)k.

Proof. — We point out that for any fixed d > 0, if λ /∈ Ad then no small divisor
occours in the recurrence (3) and the thesis is a straightforward consequence of
the classical majorant series method. Nevertheless the estimates we get depend
on d and deteriorate as λ approaches the unit circle. Therefore we only have to
check the statement when λ is in some annulus around the unit circle. For this
reason in the following we fix d > 0 and we consider only those values of the
paramenter λ which can be written as λ = e2πiξ, ξ ∈ KM , |=ξ| ≤ d. We can
associate to any such ξ a point ξ0 ∈ KM ∩R in the following way: ξ0 := <(ξ) if
<(ξ) /∈ AM while, if <(ξ) belongs to the connected component ]ξ−, ξ+[ of AM ,
we shall choose ξ0 to be the nearest point to <(ξ) among the two values ξ+ or
ξ−; we define also λ0 = e2πiξ0 .

In this way we can easily check that

|λk − 1| ≥ δ|λk0 − 1|, ∀λ ∈ CM ,

where δ := min(e−dη−2(1 + κ−2)−
1
2 , 1−e−d

2 ). By the recurrence relation (3) we
get that

(16) |hk(λ)| ≤ δ−k|hk(λ0)|.

By the Brjuno estimate (4) (see also [4] for its proof) we deduce that for
all λ0 ∈ CM ∩ S1 the radius of convergence ρ(λ0) of the series Hλ0

(z) =∑+∞
k=0 hk(λ0)zk satisfies ρ(λ0) ≥ e−(M+b0) > 0. So, by (16), we get that for

all λ ∈ CM ∩ Ad the radius of convergence of series Hλ(z) =
∑+∞
k=0 hk(λ)zk is

greater than δ−1e−(M+b0).

From now on we set d := κ/2, so that ∆(3M,p/q) ⊂ Sd for all p/q ∈ Q and
η will be the constant appearing in (14) relative to Sd.
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Lemma 6. — Let p/q ∈ Q, ∆(3M,p/q) be the diamond on the connected
component of the superlevel A3M containing p/q and let D(3M,p/q) :=

exp#(∆(3M,p/q)). Then, if λ ∈ CM

d(λ, ∂D(3M,p/q)) ≥ ν1
e−Mq

q2
,

where ν1 = ν0
η

κ√
1+κ2

Proof. — Let λ = e2πiα, α ∈ KM , we immediately get

d(λ, ∂D(3M,p/q)) ≥ η−1d(α, ∂∆(3M,p/q)) ≥ ν1
e−Mq

q2
,

where the last inequality follows from Lemma 5 together with an elementary
geometrical argument.

3.2. C1
hol-regularity. — With a slight abuse of notation let us set Hk :=

maxλ∈C3M
|hk(λ)|; we know from Proposition 3.1 that the series

∑
Hkz

k has
a positive radius of convergence bounded from below by ρ0 := e−(3M+b1). The
main result in this section is the following:

Theorem 1. — Let ρ ∈]0, e−2Mρ0[. Then the map h : λ 7→ Hλ belongs to the
space of functions C1

hol(CM ;H∞(Dρ)).

We already know that, by virtue of Proposition 3.1,

(17) Hλ(z) =
+∞∑
k=1

hk(λ)zk

has positive radius of convergence for λ ∈ CM , moreover each of the coefficients
hk, defined by the recurrence relation (3), is a rational function in the variable
λ and is holomorphic away from the roots of unity of order strictly less than k.

In order to prove the theorem we shall show that the series (17) is normally
convergent in C1

hol(CM ;H∞(Dρ)); and this will be a straightforward conse-
quence of point (iii) of the next lemma:

Lemma 7. — There exists a positive constant L > 1 such that

(i) |h′k(λ)| ≤ L(1 + k4)Hke
2Mk ∀λ ∈ CM

(ii)
∣∣∣∣hk(λ1)− hk(λ0)

λ1 − λ0
− h′(λ0)

∣∣∣∣ ≤ 2L(1 + k4)Hke
2Mk ∀λ1, λ0 ∈ CM

(iii) ‖hk(λ)zk‖C1
hol

(CM ;H∞(Dρ)) ≤ 4L(1 + k4)Hk(e2Mρ)k.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



548 S. MARMI & C. CARMINATI

Proof. — From now on r will always denote a rational number and ord(r) :=

min{n ∈ N∗ : nr ∈ Z}; moreover we use the following notation:

(18)
Qk = {r ∈ Q : ord(r) < k}; Dr := exp#(∆(3M, r));

Qt,k := {r ∈ Q : Bf (r) < t} ∩Qk;

Since hk is a rational function with poles located on the roots of unity of
order less than k

Rk := exp#(Qk) ⊂
⋃

r∈Q3M,k

Dr,

for any R > |λ| we get, by Cauchy formula,

(19) hk(λ) =
∑

r∈Q3M,k

1

2πi

∫
∂Dr

hk(ζ)

ζ − λ
dζ +

1

2πi

∫
∂DR

hk(ζ)

ζ − λ
dζ.

In fact, letting R → +∞, we realize that the term
∫
∂DR

hk(ζ)
ζ−λ dζ must vanish;

hence in the following we will always neglect this term. We can wrtite the inte-
gral representation both for the derivative of hk and for the Taylor remainder
R2(hk, λ0, λ1) := hk(λ1)− hk(λ0)− h′k(λ0)(λ1 − λ0):

(20) h′k(λ) =
∑

s∈Q3M,k

1

2πi

∫
∂Ds

hk(ζ)

(ζ − λ)2
dζ,

(21)
∣∣(λ1 − λ0)−1R2(hk, λ0, λ1)

∣∣ =∑
s∈Q3M,k

1

2πi

∫
∂Ds

ï
1

(ζ − λ1)(ζ − λ0)
− 1

(ζ − λ0)2

ò
hk(ζ)dζ.

So we get the estimates

(22) |h′k(λ)| ≤ Hk

2π

∑
s∈Q3M,k

d(λ, ∂Ds)
−2

∫
Ds

|dζ|,

(23)
∣∣(λ1 − λ0)−1R2(hk, λ0, λ1)

∣∣ ≤ Hk

2π

∑
s∈Q3M,k

2d(λ, ∂Ds)
−2

∫
Ds

|dζ|.

Lemma 5 gives an upper bound on the term d(λ, ∂Ds)
−2 while∫

Ds

|dζ| ≤ η
∫

∆s

|dz| ≤ 2η(1 + κ−2)1/2|Vs| for s ∈ Q3M,k.
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Since
∑
s∈Q3M,k

|Vs| < 1 we finally get

|h′k(λ)| ≤ Hk

2π
[2η(1 + κ−2)1/2ν−2

1 k4eMk],∣∣(λ1 − λ0)−1R2(hk, λ0, λ1)
∣∣ ≤ Hk

π
[2η(1 + κ−2)1/2ν−2

1 k4eMk].

The thesis follows choosing L := max{1, ηπ (1 + κ−2)1/2ν−2
1 }.

3.3. Monogenic regularity.— We refer the reader to Appendix B for a more de-
tailed treatment of monogenic functions. Let us choose an increasing sequence
of positive values Mj such that limMj = +∞ and set Cj := CMj

.
Consider the Banach space B` = ∩`j=0C1

hol(Cj ,H∞(Drj )), where rj =

e−(3Mj+b1) with the norm ‖f‖B` = max0≤j≤l ‖f‖C1
hol

(Cj ,H∞(Drj )). Clearly the
injections i` : B` ↪→ B`−1 are bounded linear operators between Banach
spaces with norms ‖i`‖ ≤ 1. The projective limit of the system of Banach
spaces

M((C`),C{z}) = lim←−B`
is a space of monogenic functions with values in the holomorphic germs C{z}.
This is a Fréchet space with the family of seminorms (‖ · ‖B`)`∈N.

Thus Theorem 1 has the following corollary

Corollary 8. — Let (C`) be as above. Then the linearization H belongs to
the spaceM((C`),C{z}) of C{z}-valued monogenic functions.

4. Higher regularity

Using the Cauchy formula (19) we get an integral representation for the
m-th derivative of hk as well:

(24) h
(m)
k (λ) =

∑
s∈Q3M,k

m!

2πi

∫
∂Ds

hk(ζ)

(ζ − λ)m+1
dζ.

It is quite easy to see that, if we just followed the same lines of the previous
section, in order to gain Cmhol regularity we would have to shrink the radius ρ
of the disk Dρ and trying to prove that h is C∞-holomorphic would lead to a
disk of convergence of radius zero.

To avoid this problem we use an idea of [13]: we will prove that h ∈
C∞hol(C

∗,H∞(Dρ)) for some ρ > 0, where this time C∗ will be somewhat smaller
than the set CM considered in the previous section.
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4.1. Construction of the domain C∗. — Let (Mn)n∈N be a decreasing sequence
such that Mn → 0 as n→∞ and define the set

K∗(Mn) := {x ∈ R/Z :
+∞∑
k=n

log ak+1

qk
≤Mn ∀n ∈ N}.

Of course K∗(Mn) ⊂ KM for M = M0 and it is not difficult to check that
K(Mn) is compact in R/Z. It is clear that K(Mn) 6= ∅ and it is possible to
choose Mn → 0 such that meas(K∗(Mn)) > 0: in fact for all τ, γ there exists
Mn → 0 such that K∗(Mn) ⊃ DC(γ, τ) (see also Section 5). As before, we define
A∗ := (R/Z)\K∗(Mn) and we denote with Q∗ the set of all pseudocenters of the
connected components of A∗. We now have a list of technical lemmata that
will be useful later on.

Lemma 9. — There exists a function Q : N → R such that if α :=

[a0, . . . , an, ...] ∈ K∗(Mn), and pn/qn = [a0, . . . , an] is the n-th convergent
then Fn ≤ qn ≤ Qn (where Fn are, as usual, the Fibonacci numbers).

Proof. — The sequence Qn defined by the recurrence{
Q0 = 1,

Qn+1 = eMnQnQn +Qn−1,

does the job.

Next lemma is almost a clone of Lemma 4.

Lemma 10. — Let V ∗ =]α−, α+[ be a connected component of A∗ and let

α± := [a0, .., aN−1, a
±
N , a

±
N+1, ...], N ≥ 1, a+

N 6= a−N .

Then

(i) a+
N ≥ 2, a−N = a+

N − 1, a+
N+2k = 1 ∀k ≥ 1, a−N+2k+1 = 1 ∀k ≥ 0, if N is

even,
a−N ≥ 2, a+

N = a−N − 1, a−N+2k = 1 ∀k ≥ 1, a+
N+2k+1 = 1 ∀k ≥ 0, if N is

odd;
(ii) There is a unique rational number p̄/q̄ which is a convergent of both α±;

p̄/q̄ is the rational number with lowest denominator in V ∗ (it is then the
pseudocenter of V ∗) and
p̄/q̄ = [a0, . . . , aN−1, a

+
N ] = [a0, . . . , aN−1, a

−
N , 1], Bf ([a0, . . . , aN−1, a

+
N ]) ≤

M0, if N is even,
p̄/q̄ = [a0, . . . , aN−1, a

+
N , 1] = [a0, . . . , aN−1, a

−
N ], Bf ([a0, . . . , aN−1, a

−
N ]) ≤

M0, if N is odd;
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(iii) If p/q ∈ V ∗ is a convergent of either α+ or α− and p/q 6= p̄/q̄ then

p/q = [a0, . . . , aN−1, a
±
N , . . . , a

±
D, 1]

(where D is odd if p/q is a convergent of α+ and even if it is convergent
of α−).

(iv) If p/q ∈]p̄/q̄, α+[ and p/q is not a convergent for α+ then exists p′/q′

convergent of α+ such that p/q < p′/q′ < α+ and q′ < q. A similar
statement holds in case p/q ∈]α−, p̄/q̄[, the only difference being that this
time p/q > p′/q′ > α−.

(v) Any convergent of α± is a pseudocenter of some connected component of
A3M0

(hence belongs to Q3M0
).

Proof. — We just sketch some details, since the whole proof of (i)-(iv) is just a
repetition the arguments of Lemma 4 while (v) follows from the same argument
as in Proposition 2.1. Let V ∗ = (α−, α+) be a connected component of A∗

and let r̄ be the pseudocenter of V ∗. Write r̄ = [a0, . . . , aN ] with aN ≥ 2

and assume, just to fix ideas, that N is even. Letting r− := [a0, . . . , aN−1]

and r+ := [a0, . . . , aN − 1], it is readily checked that ord(r±) < ord(r̄) and
r− < r̄ < r+, hence, by the minimality of the order of r̄, V ∗ ⊂ (r−, r+). On
the other hand, for any fixed n ∈ N, the expression

∑+∞
k=n

log ak+1

qk
attains its

minimum value on the interval (r̄, r+) at the point φ+ := [a0, . . . , aN+φ0] while
the minimum value on (r−, r̄) is attained at φ− := [a0, . . . , aN − 1 + φ0]. This
implies that (α−, α+) ⊂ (φ−, φ+) and r̄ = [a0, . . . , aN ] is a common convergent
of both α±.

Let k ∈ N be fixed, r ∈ Q∗ ∩ Qk (recall the definitions (18)) and let V ∗r =

]α−, α+[ be the connected component of A∗ with pseudocenter r. Let us define

s+(k, r) := max{s ∈ Qk∩]α−, α+[}, s−(k, r) := min{s ∈ Qk∩]α−, α+[}.

By virtue of (iv) of the previous lemma s+ is a convergent of α+, while s− is
a convergent of α− therefore, by (v) of the previous lemma, both s± belong to
Q3M0,k. Let

s(k, r) :=

{
s+(k, r) if d(α+, ∂Vs+(k,r)) < d(α−, ∂Vs−(k,r))

s−(k, r) if d(α+, ∂Vs+(k,r)) ≥ d(α−, ∂Vs−(k,r))

and q(k, r) := ord(s(k, r)) < k.
Note that if r ∈ Q∗ ∩Qk then ord(r) ≤ q(k, r) < k

Thus, if s ∈ Q3M0,k ∩ V ∗r and Vs is the connected component of A3M0 of
pseudocenter s = p/q, we have that

d(α, ∂Vs) ≥ d(α, ∂Vs(k,r)).
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The first part of next lemma is just Lemma 5, the second contains the extra
information we shall need to prove that h is C∞hol.

Lemma 11. — 1. Let s ∈ Q3M0
and Vs be the connected component of pseu-

docenter s = p/q, then

d(α, ∂Vs) ≥ ν0
e−M0q

q2
, ∀α ∈ K∗(Mn)

(where ν0 is a constant independent of s).
2. Let n, k ∈ N, V ∗r =]α−, α+[ be the connected component of A∗ with pseu-

docenter r and assume that q(k, r) ≥ max{Qn, log 8
M0
}. If s ∈ Q3M0,k ∩ V ∗r

then

(25) d(α, ∂Vs) ≥
e−Mnk

4k2
∀α ∈ K∗(Mn).

Proof. — We just have to prove the second statement; for sake of simplicity
let us assume that s(k, r) = s+(k, r), the other case being analogous. If s ∈
Q3M0,k ∩ V ∗r then

d(α, ∂Vs) ≥ d(α, ∂Vs(k,r)) ≥ d(α+, ∂Vs+(k,r)).

Setting Vs+(k,r) :=]ζ−, ζ+[, s+(k, r) := p/q (so that q = q(k, r) ≥ Qn) we can
repeat the argument of the end of subsection 3.1:

|α+ − ζ+| ≥ |α+ − p

q
| − |p

q
− ζ+| ≥ e−Mnq

2q2
− 2

e−2M0q

q2

≥ e−Mnq

2q2
[1− 4e−M0q] ≥ e−Mnq

4q2
≥ e−Mnk

4k2
.

If n ∈ N is fixed and k ≥ log 8
M0

, the following decomposition shall be useful
Q∗ = Q∗1(k, n) ∪Q∗0(k, n) where
(26)
Q∗1(k, n) := {r ∈ Q∗ : q(k, r) ≥ Qn}, Q∗0(k, n) := {r ∈ Q∗ : q(k, r) < Qn}

Let κ ∈]0, 1[ be fixed and let us carry over the construction of subsection
3.1: if V ∗r is a connected component A∗ and ∆∗r is the κ-diamond over V ∗r we
call

Ω∗ :=
⋃
r∈Q∗

∆∗r

it is then easy to check that Ω∗ is an open neighbourhood of Q/Z.
The closed set K∗ := (C/Z) \ Ω∗ is connected and does not contain any

rational number.

The set C∗ := exp#(K∗)∪{∞} will be the domain on which the conjugation
will be Whitney smooth.
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4.2. Proof of the regularity. — As before, let Hk := maxλ∈C3M0
|hk(λ)|, and let

ρ0 = e−(3M0+b1) be the radius of convergence of
∑
Hkz

k. We are now able to
show that h ∈ C∞hol(C∗;H∞(Dρ)) for every ρ ∈]0, e−1ρ0[.

Theorem 2. — For all n,m ∈ N there exist constants Lm, Λm,n satisfying

1. max
λ∈C∗

|h(m)
k (λ)| ≤ Lmk2m+2Hke

k, ∀λ ∈ C∗;

2. sup
λ0,λ1∈C∗

|Rn+1(h
(m)
k , λ1, λ0)|

|λ1 − λ0|n
| ≤ Λm,nk

2m+2n+2Hke
k, ∀λ ∈ C∗,

where

Rn+1(f, λ1, λ0) := f(λ1)−
n∑
j=0

f (j)

j!
(λ0)(λ1 − λ0)j ,

is the Taylor remainder of order n+ 1.

Before plunging into the proof let us remark that the theorem implies h ∈
C∞hol(C∗;H∞(Dρ)) as soon as ρ ∈]0, e−1ρ0[; indeed, (1) and (2) imply that the
series

∑+∞
k=0 hk(λ)zk is normally convergent in Cmhol(C∗;H∞(Dρ)) for all m ∈ N.

Proof. — We have already seen that

h
(m)
k (λ) =

∑
s∈Q3M0,k

m!

2πi

∫
∂Ds

hk(ζ)

(ζ − λ)m+1
dζ,

hence

(27) |h(m)
k (λ)| ≤ Hk

m!

2π

∑
s∈Q3M0,k

∫
∂Ds

d(ζ, C∗)−m−1|dζ|.

Moreover we can write down an explicit expression for the Taylor remainder of
φζ(λ) := 1

(ζ−λ)m+1 :

Rn(φζ , λ1, λ0) =
m∑
k=0

Ç
k + n− 1

k

å
(ζ − λ1)k−m−1(ζ − λ0)−n−k(λ1 − λ0)n,

and we shall use the form

Rn+1(φζ , λ1, λ0) = Rn(φζ , λ1, λ0)−
φ

(n)
ζ (λ0)

n!
(λ1 − λ0)n

= (λ1 − λ0)n

[
m∑
k=0

Ç
k + n− 1

k

å
(ζ − λ1)k−m−1(ζ − λ0)−n−k

−
Ç
m+ n

m

å
(ζ − λ0)−m−n−1

ô
.
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On the other hand,

Rn+1(h
(m)
k , λ1, λ0) =

∑
s∈Q3M0,k

m!

2πi

∫
∂Ds

hk(ζ)Rn+1

Å
1

(ζ − λ)m+1
, λ1, λ0

ã
dζ.

Using the bound |ζ−λi| ≥ d(ζ, C∗) (i = 0, 1) and the identity
∑m
k=0

(
k+n−1

k

)
=(

m+n
m

)
we get

(28)
|Rn+1(h

(m)
k , λ1, λ0)|

|λ1 − λ0|n
≤ 2Hk

m!

2π

Ç
m+ n

m

å ∑
s∈Q3M0,k

∫
∂Ds

d(ζ, C∗)−m−n−1|dζ|.

By virtue of (27) and (28) the proof of the theorem boils down to the fol-
lowing lemma

Lemma 12. — We have

S(k, `) :=
∑

s∈Q3M0,k

∫
∂Ds

d(ζ, C∗)−`|dζ| ≤ C(`)(1 + k2`)ek.

Proof of the Lemma. — First we split the sum as follows

(29) S(k, `) =
∑
r∈Q∗

∑
s∈V ∗r ∩Q3M0,k

∫
∂Ds

d(ζ, C∗)−`|dζ|.

Again
d(∂Ds, C

∗) ≥ η−1d(∂∆s,K
∗
d) ≥ η−1

1 d(∂Vs,K
∗).

with η1 := η(1 + k−2)1/2.

On the other hand, if s ∈ V ∗r ∩ Q3M0,k then d(∂Vs,K
∗) ≥ d(∂Vs(r,k),K

∗).
Since∫
∂Ds

d(ζ, C∗)−`|dζ| ≤ η`1d(∂Vs(r,k),K
∗)−`

∫
∂Ds

|dζ| ≤ 2η`+1
1 d(∂Vs(r,k),K

∗)−`|Vs|

and ∑
s∈V ∗r ∩Q3M0,k

|Vs| ≤ |V ∗r |

the following estimate holds∑
s∈V ∗r ∩Q3M0,k

∫
∂Ds

d(ζ, C∗)−`|dζ| ≤ 2η`+1
1 d(∂Vs(r,k),K

∗)−`
∑

s∈V ∗r ∩Q3M0,k

|Vs|

≤ 2η`+1
1 d(∂Vs(r,k),K

∗)−`|V ∗r |.
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Now we fix n big enough so that it satisfies Mn · ` < 1 and Q(n) ≥ log 8
M0

. We
get the following estimates

d(∂Vs(r,k),K
∗) ≥

{
ν0

e−M0Qn

Q2
n

if r ∈ Q∗0(k, n),
e−Mnk

k2 if r ∈ Q∗1(k, n).

Since Q∗ = Q∗0(k, n) ∪ Q∗1(k, n) (see notation in the previous section) we can
split the double sum on the right hand side of (29) and get the estimate

S(k, `) ≤ 2η`+1
1

ν−`0 Q2
ne
M0`Qn

Ñ ∑
r∈Q∗0(k,n)

|Vr|

é
+ 4k2`eMn`k

Ñ ∑
r∈Q∗1(k,n)

|Vr|

é
≤ C0(n, `) + C1(`)k2`ek.

This ends the proof of the lemma.

5. Gevrey regularity on Diophantine points

Let H be a Banach space and let Gτ0(λ0,H) be the vector space of all H-
valued functions h for which there exist two (disjoint) open disks ∆± tangent
to S1 at λ0, a formal series

∑
k≥0 ckΛk ∈ H[[Λ]] and positive numbers b1 and

b2 such that the function h is holomorphic in ∆+ ∪∆− and it has a Gevrey-τ0
asymptotic expansion at λ0, i.e.
(30)

∀N ≥ 0, ∀λ ∈ ∆+ ∪∆−, ‖h(q)−
N−1∑
k=0

ck(λ−λ0)k‖ ≤ b1bN2 Γ(1 +Nτ0)|λ−λ0|N ,

where Γ is Euler’s Gamma function.

In the following we shall slightly change our notation and set H(λ, z) =

Hλ(z). It should be clear that Theorem B is a straightforward consequence of
the following proposition:

Proposition 5.1. — Let α0 ∈ DC(τ0, γ0) be a fixed diophantine number and
let λ0 = e2πiα0 . Let ∆± be a pair of disks which are tangent to λ0, ∆+ ⊂ D,
∆− ⊂ C \ D. Moreover let ρ ∈ (0, e−1ρ0) and H = H∞(Dρ). Then

(a) H ∈ C∞hol(∆+ ∪∆−, H∞(Dρ)) (hence H is holomorphic on ∆+ ∪∆−).
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(b) There are constants b1, b2 such that

(31) ‖H −
N−1∑
j=0

1

j!
∂jλH(λ0, ·)(λ− λ0)j‖H ≤ b1bN2 Γ(1 + τ0N)|λ− λ0|N

for all N ∈ N, λ ∈ ∆±.

5.1. More Cantor sets related with the diophantine condition. — In order to prove
Proposition 5.1 we shall use just a few definitions and results from the pa-
per [10] (7). For τ ≥ 2, γ ∈ (0, 1) let

Kγ,τ := {x ∈ (R \Q)/Z : ∀k ≥ 0 qk+1 ≤ γ−1qτ−1
k };

It is readily seen that Kγ,τ is a compact subset of R/Z and

(32) D(γ, τ) ⊂ Kγ,τ ⊂ D(
γ

2
, τ)

(see also A3.2 in [10]). The proof of the following proposition can be found
in [10] (Proposition 2.2).

Proposition 5.2. — 1. Each connected component ]ξ−, ξ+[ of (R/Z)\Kγ,τ

contains a unique rational number p/q which is a convergent of both end-
points ξ±. Such convergent p/q is the pseudocenter of the component
]ξ−, ξ+[. We shall denote Qγ,τ the set of pseudocenters of all connected
components of (R/Z) \Kγ,τ .

2. γ
2 q
−τ ≤ |ξ± − p

q | ≤ 2γq−τ .

Let us remark that, if α ∈ Kγ,τ then qk+1 = ak+1qk + qk−1 ≤ γ−1qτ−1

and hence ak+1 ≤ γ−1qτ−2. From this information we get not only an a priori
estimates for B(α) but also

+∞∑
k=n

log ak+1

qk
≤ (log γ−1)

+∞∑
k=n

1

qk
+ (τ − 2)

+∞∑
k=n

log qk
qk

.

This is interesting because, since qk ≥ Fk, we get that
+∞∑
k=n

1

qk
≤

+∞∑
k=n

1

Fk
,

+∞∑
k=n

log qk
qk

≤
+∞∑
k=n

logFk
Fk

;

therefore setting

(33) Mn := (log γ−1)
+∞∑
k=n

1

Fk
+ (τ − 2)

+∞∑
k=n

logFk
Fk

(7) Let us point out that we do not stick to the notation used in [10]: in particular we shall
call “Kγ,τ ” the set that in [10] is called Cψγ,τ .
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we see that Kγ,τ ⊂ K∗(Mn) := {x ∈ R/Z :
∑+∞
k=n

log ak+1

qk
≤Mn}. For s ∈ Qγ,τ

let Vs be the corresponding connected component of (R/Z) \Kγ,τ , ∆s be the
diamond over Vs, Ds := exp#(∆s) and Cγ,τ = C \ ∪s∈Qγ,τDs. We then have
that Cγ,τ is contained in the set of C∞-regularity C∗(Mn).

The following geometrical lemma is useful to settle both (a) and (b) of
Proposition 5.1.

Lemma 13. — Let τ0 ≥ 2, α0 ∈ DC(τ0, γ0), λ0 = e2πiα0 . Let Q be a closed
set satisfying

(i) Q ∩ S1 = {λ0};
(ii) there exist µ0 > 0 such that dist(λ,S1) ≥ µ0|λ− λ0|2 ∀λ ∈ Q.

Then for any fixed τ > 2τ0 there exists γ ∈ (0, γ0) such that, defining (Mn) as
in (33) so that Cγ,τ ⊂ C∗(Mn),

(a′) Q ⊂ Cγ,τ ⊂ C∗(Mn);
(b′) there exists µ > 0 such that dist(ζ,Q) ≥ µγ2

0q
−2τ0 ∀ζ ∈ ∂Dp/q, (p/q ∈

Qγ,τ ).

Proof of the Lemma. — Let us consider Q0 := Q ∩ {z : |z − λ0| ≤ 1/2} and
Q1 := Q∩{z : |z−λ0| ≥ 1/2}, we shall prove that (a) and (b) hold on both the
closed sets Q0 and Q1 and hence hold on Q as well. Of course, in the case of
Q1 there is no problem: since Q1 ∩ S1 = ∅ the points of Q1 are bounded away
from S1 and both (a) and (b) hold provided that γ and µ are small enough.
As far as Q0 is concerned, we observe that the logarithm is well defined on
{z : |z − λ0| ≤ 1/2} and it has a bounded distorsion property, therefore wecan
check both (a) and (b) for Q0 just proving the following statement:

If µ′0 > 0 and Q′ := {α : =α ≥ µ′0|z−α0|2, |<α| ≤ π/6} there exist
γ, µ′ > 0 such that dist(ξ,Q′) ≥ µ′γ2

0q
−2τ0 ∀ξ ∈ ∂∆p/q, p/q ∈ Qγ,τ .

This is readily checked because, if ξ ∈ ∂∆p/q is fixed and α(ξ) is the nearest
point in Q′ we have that |α(ξ)− ξ| ≥ |α(ξ)−p/q|− |ξ−p/q|; on the other hand
we have that

|α(ξ)− p/q| ≥ C|=α| ≥ Cµ′0|α− p/q|2 ≥ (Cµ′0γ
2
0)q−2τ0

while
|ξ − p/q| ≤ 2

κ√
1 + κ2

γq−τ = O(q−τ ).

Let us point out that by means of the same argument used in the proof of
the last lemma we also get

|λ0 − ζ| ≥ µγ0q
−τ0 ∀ζ ∈ ∂Dp/q, (p/q ∈ Qγ,τ ).
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5.2. Proof of Gevrey regularity. — By (a′) of Lemma 13 we get that, if τ > 2τ0,
it is possible to choose γ such that ∆+ ∪∆− ⊂ Cγ,τ ⊂ C∗(Mn) hence H is
C∞hol(∆+ ∪∆−,H∞(Dρ)) in particular H admits a Taylor expansion at λ0. We
shall set

RN (H,λ, λ0) := H(λ, ·)−
N−1∑
j=0

1

j!
∂jλH(λ0, ·)(λ− λ0)j

so that RN (H, ·, λ0) : ∆+ ∪∆− → H∞(Dρ). We point out that, setting

RN (hk, λ, λ0) := hk(λ)−
N−1∑
j=0

1

j!
h

(j)
k (λ0)(λ− λ0)j ,

we can write

(34) RN (H,λ, λ0)(z) =
+∞∑
k=1

RN (hk, λ, λ0)zk

Let us recall that, by Cauchy formula,

RN (hk, λ, λ0) =
∑

s∈Qγ,τ,k

1

2πi

∫
∂Ds

hk(ζ)

(ζ − λ0)N (ζ − λ)
(λ− λ0)Ndζ,

where Qγ,τ,k = Qγ,τ ∩ Qk. Moreover, if λ ∈ ∆+ ∪ ∆− and ζ ∈ ∂Ds with
s = p/q ∈ Qγ,τ,k then

|hk(ζ)| ≤ Hk, |ζ − λ0| ≥ µγ0|q|−τ0 and |ζ − λ| ≥ µγ2
0 |q|−2τ0

so we get the bound

|RN (hk, λ, λ0)| ≤ (µγ0)−N−2k(N+2)τ0Hk
1

2π

∑
s∈Q3M0,k

∫
∂Ds

|dζ||λ− λ0|N

The sum on the right hand side of the last formula is bounded by a constant
(independent from k and N) moreover, since we have chosen ρ < ρ0, we can
fix C1 such that k2τ0Hkρ

k ≤ C1e
−k. Thus, summing up on k, we get

‖RN (H,λ, λ0)‖ ≤
+∞∑
k=1

|Rn(hk, λ, λ0)|ρk ≤ C2(µγ0)−N

(
+∞∑
k=0

kNτ0e−k

)
|λ−λ0|N

where C2 is a suitable constant. Since
+∞∑
k=0

kβe−k ≤
∫ +∞

0

tβe−tdt+ (β/e)β ≤ 2Γ(1 + β)

the thesis follows.
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Appendix A

Arithmetical tools and Brjuno series

Let us recall some notation and elementary facts about classical continued
fractions. We refer the reader to [6] and [8] for more details. Continued fractions
are obtained by coding the orbits of real numbers under the iteration of the
Gauss map G : (0, 1) 7→ [0, 1] defined by G(x) = {x−1} = x−1 − [x−1] where
[x] and {x} respectively denote the integer and the fractional part of x. This
map is piecewise analytic with inverse branches Tn(x) = 1

n+x , Tn = G−1 on
the interval

Ä
1

n+1 ,
1
n

ä
. Given x ∈ R \ Q we set x0 = x − [x], a0 = [x], then

one obviously has x = a0 + x0. We now define inductively for all n ≥ 0

xn+1 = G(xn), an+1 = [x−1
n ] ≥ 1, thus xn = Tan+1(xn+1). Therefore we have

x = a0+Ta1
(x1) = · · · = a0+Ta1

◦...◦Tan(xn) = a0+
1

a1 +
1

a2 +
. . . +

1

an + xn

.

We will use the short notation x = [a0, a1, . . . , an, . . . ] for the infinite frac-
tion. The nth-convergent is then the rational number corresponding to the
finite fraction pn

qn
= [a0, a1, . . . , an].

The numerators pn and denominators qn are recursively determined for all
n ≥ 0 by

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2,

with the initial conditions p−1 = q−2 = 1, p−2 = q−1 = 0. Note that qnpn−1 −
pnqn−1 = (−1)n.

For all n ≥ 0 one also has

x =
pn + pn−1xn
qn + qn−1xn

, xn = − qnx− pn
qn−1x− pn−1

,

thus for all k ≥ 0 and for all x ∈ R \Q one has p2k
q2k

< x < p2k+1

q2k+1
.

It is not difficult to show that for all x ∈ R \ Q and for all n ≥ 1 one has
qn ≥ 1

2φ
1−n
0 , with φ0 =

√
5−1
2 . This implies that the series

∑∞
k=0

log qk
qk

and∑∞
k=0

1
qk

are always convergent and that their sum is uniformly bounded.

For all integers k ≥ 1, the iteration of the Gauss map k times leads to the
following partition of (0, 1); ta1,...,akI(0, a1, . . . , ak), where ai ∈ N, i = 1, . . . , k,
and

(35)
I(0, a1, . . . , a2k) =

Å
p2k

q2k
,
p2k + p2k−1

q2k + q2k−1

ã
I(0, a1, . . . , a2k+1) =

Å
p2k+1 + p2k

q2k+1 + q2k
,
p2k+1

q2k+1

ã
.
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These are the intervals corresponding to the branches of Gk: they are deter-
mined by the fact that all points x ∈ I(0, a1, . . . , ak) have the first k+1 partial
quotients exactly equal to {0, a1, . . . , ak}. Thus

I(0, a1, . . . , ak) =

ß
x ∈ (0, 1) | x =

pk + pk−1y

qk + qk−1y
, y ∈ (0, 1)

™
.

Note that dx
dy = (−1)k

(qk+qk−1y)2 is positive (negative) if k is even (odd). It is
immediate to check that any rational number p/q ∈ (0, 1), (p, q) = 1, is the
endpoint of exactly two branches of the iterated Gauss map. Indeed p/q can
be written as p/q = [0, ā1, . . . , āk] with k ≥ 1 and āk ≥ 2 in a unique way and
it is the left (right) endpoint of I(0, ā1, . . . , āk) and the right (left) endpoint of
I(0, ā1, . . . , āk − 1, 1) if k is even (odd).

The cylinders I(a0, . . . , aN ) = a0 + I(0, a1, . . . , aN ) form a partition of the
whole real line as a0 varies in Z and (a1, . . . , an) ∈ Nn.

Appendix B

C1-holomorphic and C∞-holomorphic functions

Let (B, ‖ ‖) be a complex Banach space. In this appendix we recall the
definition of C1-holomorphic and C∞-holomorphic functions as they are given
respectively in [7] and [13]. We follow quite closely Section 2 of [10] to which
we refer for a more detailed discussion.

Let C be a compact subset of C or of P1C. If C ⊂ C, a continuous function
f : C → B is said to be C1-holomorphic if there exists a continuous map
f (1) : C → B such that

∀λ ∈ C, ∀ε > 0, ∃δ > 0 / ∀λ1, λ2 ∈ C,
|λ1 − λ| < δ, |λ2 − λ| < δ

⇒ ‖f(λ2)− f(λ1)− f (1)(λ1)(λ2 − λ1)‖ ≤ ε|λ1 − λ2|.

This definition extends in an obvious way to the case C ⊂ P1C by means of
the standard complex coordinates charts.

The above definition makes use of the generalization of the notion of smooth-
ness of a function to a closed set due to Whitney [16]. Notice however that f (1)

is a complex derivative: ∂̄f = 0, ∂f = f (1) and f is holomorphic in the interior
of C.
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The space C1
hol(C,B) becomes a Banach space by taking as norm

|||f ||| = max
(

supλ∈C ‖f(λ)‖ , supλ∈C ‖f (1)(λ)‖ ,

sup
λ1,λ2∈C, λ1 6=λ2

‖f(λ2)− f(λ1)− f (1)(λ1)(λ2 − λ1)‖
|λ1 − λ2|

)
Let R(C,B) denote the uniform algebra of continuous functions from C to

B which are uniformly approximated by rational functions with all the poles
outside C. A very important property of the space C1

hol(C,B) is that it is a lin-
ear subspace of R(C,B). This fact allows to prove that functions in C1

hol(C,B)

share some of the properties of holomorphic functions. If (U`)`≥1 denote the
connected components of P1C\C, assuming that each ∂U` is a piecewise smooth
Jordan curve and

∑
`≥1 length(∂U`) < +∞, Cauchy’s theorem holds:

∞∑
`=1

∫
∂U`

f(λ) dλ = 0.

This is very easy to see: since f ∈ R(C,B), one can approximate f by a
sequence (rk)k∈N of B-valued rational functions with poles off C. Cauchy’s
theorem applies to these rational functions and one can pass to the limit because
the convergence is uniform. Moreover, at all points λ ∈ C such that

∞∑
`=1

∫
∂U`

|dζ|
|ζ − λ|

< +∞,

Cauchy’s formula also holds:

f(λ) =
1

2πi

∞∑
`=1

∫
∂U`

f(ζ)

ζ − λ
dζ.

One can also define higher order derivatives by means of Cauchy’s for-
mula, but in order to do so one needs further assumptions on λ (namely∑∞
`=1

∫
∂U`

|dζ|
|ζ−λ|n+1 < +∞ to obtain a derivative of order n).

A function f : C → B is said to be C∞-holomorphic if there exist an
infinite sequence of continuous functions (f (n))n∈N : C → B (the “n-th complex
derivative of f ”) such that f (0) = f and, for all n,m ≥ 0, the function R(n,m)

defined by

R(n,m)(λ1, λ2) =
m∑
h=0

f (n+h)(λ1)

h!
(λ2 − λ1)h − f (n)(λ2), λ1, λ2 ∈ C,
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has the following property:

∀λ ∈ C, ∀ε > 0, ∃δ > 0 / ∀λ1, λ2 ∈ C, |λ1 − λ| < δ, |λ2 − λ| < δ ⇒

‖R(n,m)(λ1, λ2)‖ ≤ ε|λ1 − λ2|m.

The space of C∞-holomorphic B-valued functions on a compact set is a
Fréchet space. We stress once more that the derivatives are taken in a complex
sense, thus ∂̄f (n) = 0 for all n ∈ N. The functions f (n) are some generalized
“weak complex derivatives for f ”; clearly f must be analytic in the interior of
C and

∀n,m ∈ N, ∀λ ∈ int(C), f (n+m)(λ) = ∂mf (n)(λ).

Let (Cj)j∈N be a monotonic non-decreasing sequence of compact subsets
of P1C. The associated space of B-valued monogenic functions is defined to be
the projective limit

M((Cj), B) = lim←−C
1
hol(Cj , B).

The restrictions C1
hol(Cj+1, B)→ C1

hol(Cj , B) are continuous linear operators
between Banach spaces, thus M((Cj), B) is a Fréchet space with seminorms
‖ . ‖C1

hol
(Cj ,B).

The above definition is inspired by the work of Borel [2] (see also [7], p.
81). Borel considered the case B = C and wanted to extend the notions of
holomorphic function and analytic continuation. Borel’s idea was to allow
monogenic continuation through natural boundaries of analyticity by selecting
points at which the function is C1

hol-holomorphic. If the function is more-
over C∞hol-holomorphic at such a point, the question of quasianalyticity may
be raised: Is the function determined by its Taylor series? Such a unique-
ness property could depend on the choice of the sequence (Cj) which defines
the monogenic class (and not only on the union of the Cj ’s), and the Cauchy
formula could help to establish it.

Unfortunately this strong form of quasianalyticity is not true in general
spaces of monogenic functions unless some rather restrictive assumptions are
made (see, e.g. , [17]). However it is proved in [11] that it is quite a general
property that the spaces of C1-holomorphic functions (and also of monogenic
functions) which appear in linearization problems have a weaker quasianalyt-
icity property, namely their functions cannot vanish on a set of positive 1-
dimensional Hausdorff measure without being identically equal to zero. This
provides an example of generalized analytic continuation (for a comprehen-
sive discussion of generalized analytic continuations other than Borel’s theory
see [14]).

The notion of B-valued monogenic function is well adapted to linear small
denominator problems, as the cohomological equation considered in [10] but it
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is useless in nonlinear problems since one cannot fix a target Banach space if one
wants the increasing sequence of compact sets to include all points on the unit
circle verifying the Brjuno condition. Indeed the radius of convergence of the
linearization is, in general, also bounded above in terms of the exponential of
minus the Brjuno function as first proved by Yoccoz [18]. For this reason we in-
troduce the notion of monogenic function with values in C{z}: suppose (Cj)j∈N
is a monotonic non-decreasing sequence of compact subsets of P1C and consider
the increasing sequence of Banach spaces H∞(Drj ) associated to a monotonic
non-increasing sequence of radii rj → 0. Consider the Banach space B` =

∩`j=0C1
hol(Cj ,H∞(Drj )) with the norm ‖f‖B` = max0≤j≤` ‖f‖C1

hol
(Cj ,H∞(Drj )).

Clearly the injections i` : B` ↪→ B`−1 are bounded linear operators between
Banach spaces with norms ‖i`‖ ≤ 1. The projective limit of the system of
Banach spaces

M((Cj),C{z}) = lim←−Bj
is the space of monogenic functions with values in the holomorphic germs C{z}.
It is a Fréchet space with the seminorms ‖ · ‖B` . Thus, as a set,M((Cj),C{z})
consists of all the functions which are defined in C =

⋃
j∈N Cj and such that,

for every j ∈ N, the restriction f|Cj belongs to C1
hol(Cj ,H∞(Drj )). This space,

being the projective limit of the Banach spaces B`, may depend on the increas-
ing sequence (Cj) and on the decreasing sequnce rj (rather than on the set C
only).
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