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THE SADDLE-POINT METHOD IN CN AND THE GENERALIZED
AIRY FUNCTIONS

BY FRANCESCO PINNA & CARLO VIOLA

ABSTRACT. — We give a new version of the saddle-point method in N complex vari-
ables, for any N > 2. We apply our theorem to the asymptotic analysis of suitable
multiple integrals of Airy’s type.

RESUME (La méthode du col dans CN et les fonctions d’Airy généralisées). — Nous
donnons une nouvelle version de la méthode du col en N variables complexes, pour
tout N > 2. Nous appliquons notre théoréme & l’analyse asymptotique de certaines
intégrales multiples du type d’Airy.

1. Introduction

1.1. The saddle-point method in C, a generalization of Laplace’s method for
real integrals, yields asymptotic formulae for integrals

(1) I(r) = / P g(2) dz,

Y
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222 F. PINNA & C. VIOLA

where z is a complex variable, as the real parameter 7 tends to +oco. In (1),
v is a path contained in an open set A C C and not necessarily bounded, and
g(z) and h(z) are holomorphic functions in A.

The origin of the saddle-point method can be traced back to a posthumous
paper of Riemann [13]. Several authors, since the end of the nineteenth century
(see, e.g., [8], [3], [2], [15]), applied the saddle-point method to integrals of type
(1). The basic principle of the method, in its standard version, consists in
replacing v with a new integration path A, equivalent to « by Cauchy’s theorem
so that

(2) 1(r) = / M g(2) dz,

A
where A contains a ‘nondegenerate’ (or ‘simple’) saddle-point zy of M2 e,
at which
(3) h'(z0) =0, 1"(z0) # 0,
and, along \, |"*)| = exp(Reh(z)) is maximal at zy and at no other point

on A. Under such conditions, and assuming g(zp) # 0 and the integral (2) to
be absolutely convergent, the main term in an asymptotic expansion of I(7),
as T — 400, is determined by the values g(zp), h(z0) and h'”’(z).

One of the earliest applications (in [2]) of the saddle-point method concerns
the asymptotic study of the Airy function

1
=5 / exp (t( — %{3) d¢ (teR,t — +00),
Y1Uv2

(4) Ai(t) -

where the integration path is the union v; U s of two of the three half-lines
defined by

(5) T = {Qe%”/?’ 0<o< +oo} (k=0,1,2).

ami/3 2mi/3

In (4), 711 U~y is oriented from e oo to e 0o. The integral (4) was intro-
duced by Airy [1] in connection with a problem in optics, and is transformed
into an integral (1) by setting

(6) C=78% t=7*3 (r>0).
This substitution yields

(7) Ai(r?/3) = % / exp (T <z — ;2)) dz,

Y1U72

and this integral is of type (1) with g(z) = 1 and h(z) = z— $z°. The solutions

of h'(z) = 0 are z = %1, and the relevant saddle-point for the integral (7) to
apply the saddle-point method is seen to be zg = —1.
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Similarly, let

®) M) =5 exp(t<—§c3) a (k=1,2),

YoU Yk

with 79, 71 and 7, defined in (5), where the path 7y U 7 is oriented from
e?k7i/306 to +00. With the substitution (6) we get

9) Ai(1%3) = ﬁ e z— 123 dz
T T omi AT\ ’
YoUvk
and for the integrals (9) with & = 1,2 the relevant saddle-point is zp = 1.
Applying to the integrals (7) and (9) the asymptotic formula (23) below
with zo = —1 and zp = 1 respectively, with g(z) =1 and f(z) = exp(z — 32°),
and with 7 = t3/2 in place of n, one easily gets, for t — +o0,
1 2
Ai(t) ~ —=t"1/4 — 32
O~ 5zt e 3
and

7 2
Aig(t) ~ ——=t7 /4 ~g3/2 k=1,2).
ult) ~ =t e (367 (=12

We refer to [4], pp. 279-289, or to [12], pp. 40-61, for a detailed treatment
of the saddle-point method in C and its applications to the Airy integrals.

1.2. The problem of extending the saddle-point method to integrals

(10) /eTh(zl’“”ZN)g(zl,...,ZN) dzy---dzy
r

over suitable manifolds I" in CV with N > 2 was studied by Fedoryuk [6]. In [7],
Chapter 1, Section 4.5, Fedoryuk gives a brief account of his method. As is well

known, the complex Morse lemma ([5], Prop. 3.15, p. 142, or [7], p. 125) en-

sures that in a neighbourhood of a nondegenerate saddle-point (z?), ey z](\(,))

of exp h(z1, ..., zn) (see Definition 3.2 below) there exists a local change of vari-
ables transforming h(zy,...,2y)—h (zgo), ce z](\?)) into a sum of squares. Sim-
ilarly to [16], Theorem 1, pp. 480-482, using Morse’s lemma one gets an expan-
sion of the integral (10) into an asymptotic power series of 7=1 as 7 — +o00, pro-
vided the integration manifold I" can be transformed into a manifold A equiv-

alent to I by Cauchy—Poincaré’s theorem, thus preserving the value of (10),

(0) (0)
1

containing the nondegenerate saddle-point (z A ) of exph(z1,...,2N)

as an interior point, and such that

(11) max  Reh(z,...,2n)

(z15--,2N)EA
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224 F. PINNA & C. VIOLA

is attained only at (zf)), ceey ZJ(\(,))). Moreover, the coefficients of such an asymp-

totic series can be computed using Fedoryuk’s method (see [16], Theorem 2,
p. 483 and [7], formula (1.61), p. 125). Thus the main difficulty to get the
asymptotic expansion of (10) through Fedoryuk’s method is to locate the rel-

evant nondegenerate saddle-point (zio), el z](\(,))) and prove the existence of a

manifold A containing (250)7 e z](\(,))) and satisfying the properties above.

In order to find a constructive process to transform I into an equivalent
manifold of ‘steepest descent’ for Re h(z1,. .., 2zx) thus ensuring that, on such

(0) (0)
1

a manifold, (11) is attained only at (z e 2N ), Fedoryuk introduced tech-

niques from algebraic topology based on homology groups, which, beside their
theoretical interest, proved to be difficult to apply in concrete examples. In fact,
in an example of dimension N = 2 arising from catastrophe theory, Ursell [14]
showed the non-uniqueness of steepest descent surfaces (see also the discus-
sion in Kaminski [11]), with the result that in most cases there is no available
method to transform the integration surface I" into an equivalent surface A sat-
isfying the required properties, and not even a criterion to find towards which
nondegenerate saddle-point the surface I" should be deformed.

The main example considered by Ursell [14] is an integral in C? representing
a natural two-dimensional generalization of the Airy integral (4)—(7). Ursell
obtained results on the asymptotic behaviour of such an integral over a surface
with four nearly coincident saddle-points. His final comment is: “For two
complex variables little seems to be known ... More work is needed on a method
of steepest descents for two complex variables, particularly on the deformation
of the two-dimensional surfaces of integration”.

The main purpose of the present paper is to circumvent the difficulties in-
volved in Fedoryuk’s topological deformation process by introducing a more
flexible analytic method to find the relevant nondegenerate saddle-point

(zgo), R z](\(,))) of f(z1,...,2n) for an N-dimensional integral
(12) /f(zl7 cooszN)g(z1, .o 2n)dz - -dey (R €Ny n— 400),

T
for any fixed N > 2. For the treatment of (12) with n € N, we need not
assume f(z1,...,2n5) # 0. In Theorem 4.2 we obtain an asymptotic formula
for the integral (12) under assumptions which permit us to avoid the search
for an equivalent integration manifold of steepest descent for |f(z1,...,2n)|-

In Section 5 we give a self-contained proof of Theorem 4.2. We treat (12) as
an N-times iterated integral, and we apply the one-dimensional steepest de-
scent method to each variable successively. This allows us to dispense with
the global deformation process of the integration manifold. Our method, being
independent of Morse’s lemma, in principle could be extended, under suitable
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THE SADDLE-POINT METHOD IN CV 225

new assumptions, to the asymptotic analysis of the integral (12) in the neigh-
bourhood of a degenerate saddle-point of f(z1,...,2n).

The applications we give in Section 6 show that in several interesting cases
the assigned integration manifold I" can rather easily be transformed into an
equivalent manifold A satisfying the assumptions of Theorem 4.2. Our The-
orem 4.2 generalizes to any dimension the result proved for N = 2 by Hata
in [9], where the author applies his method to prove nonquadraticity measures
for logarithms of suitable rational numbers and concludes the introduction with
the words: “To establish the CV-saddle method may be an interesting problem
itself”.

Our result is based on the notion of ‘admissible’ saddle-point of f, which
we introduce in Definition 3.3 below. In Remark 3.4 we show that such a
notion is not essentially restrictive: up to applying a suitable invertible linear
transformation of the variables z1,...,zy, every nondegenerate saddle-point

(zio)7 e z](\(,))) is transformed into an admissible saddle-point.
If f(z1,...,2n) #0 and
(13) f(z1,..,2n) = exph(z1,..., 2N)

with a given holomorphic function h(z1,. .., zx), there is no ambiguity on the
value of the logarithm of f, and hence on the power

f(z1,...,28)" =exp(Tlog f(z1,...,2N))

for 7 ¢ Z, provided one takes log f(z1,...,2n) = h(z1, ..., 2n), whence

(14) f(z1,.y2n8)" = exp(T h(z1,...,2N))

as in (10). In this case our Theorem 4.2 holds with 7 € R, 7 — 400, in place
of the integer exponent n — +oo in (12).

In Section 6 we apply Theorem 4.2 to prove asymptotic formulae for N-fold
Airy integrals of the type considered by Ursell [14] for N = 2, but without
restrictions concerning the mutual distance of the saddle-points. We give a full
treatment of such integrals for N = 2. For arbitrary N, we prove the required
asymptotic formula for a suitable choice of the N integration paths.

2. The saddle-point method in C

We briefly recall some well known aspects of the classical one-dimensional
saddle-point method which will be used in the following sections. The aim of
the method is to prove an asymptotic formula for an integral

(15) I, = /f(z)”g(z) dz (neN, n— +o00),
A
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226 F. PINNA & C. VIOLA

where A is a piecewise continuously differentiable path contained in an open
set A C C and not necessarily bounded, and f(z) and g(z) are holomorphic
functions in A.

We assume that the path A contains a nondegenerate saddle-point zq of f(z),
i.e., a point satisfying

(16) f(z0) #0, f'(20) =0, f"(20) #0,
at which g(z) # 0. Moreover, we assume
(17) [f(2)] < f(20)l

for all z in the closure of A in CU {o0}, 2z # 2.

By Cauchy’s theorem we may plainly assume that, in a neighbourhood of
29, A coincides with the line tangent at zg to the path 7 of steepest descent
for |f(2)], i.e., of maximal slope for |f(z)| satisfying (17). It is easily seen that
this tangent line (the line of steepest descent for | f(z)] at zg) has the parametric
equation

(18) z=z+re”?, reR,
where
1 f//(zo) >
19 Y =hr—-arg |— , heZ.
1) 2 & < f(z0)

In (19), the parity of the integer h must be chosen so that the orientation of
the line (18) for increasing r agrees with the orientation of the path A in (15).
We prove (19). Since 7 is the path of steepest descent for |f|, the gradient
V|f] is tangent to n. By the Cauchy—Riemann equations, V arg f is orthogonal
to V|f|. Thus arg f is constant along 7, i.e.,
f(z)

arg =0

f(z0)

Therefore, by (17),

f(z) | f(z)
(20) )~ ’f(zo) <1 forall zen, z# 2.
By (16), Taylor’s formula yields
f(z) f"(z0) (2 = 20)°

feo) ) 2

whence, by (20),

—+ O <|Z — Z()|3) s

_["(20)
f(20)

for z € n, z # z9, 2 — 20.

(21) (z—20)>+ O (|z — 20]*) > 0
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THE SADDLE-POINT METHOD IN CV 227

In a neighbourhood of zy we parametrize n with r € R such that |r| = |z—zg].
Hence, for z € n and for any sufficiently small |r|,

z =z + e’

where
) o(r) for r >0
arg(z —z0) = {19(7“) +7 forr <0.
Thus, dividing (21) by |z — z0/?,

iz
7f (20)621'19(7") + O(|T|) > 0.

f(20)
For r — 0 we get
f"(20) 2
22 — e >0,
(22) f(20)
where

¥ = lim 9(r)
r—0
is the argument of the tangent vector to n at zo. By (22),

fl/(zo)
f(20)

29 + arg < > = 2hm, heZ,

and (19) follows.

As is well known (see, e.g., [4], pp. 279-285), under the above assumptions
(16)—(17), and assuming g(zp) # 0 and the integral (15) to be absolutely con-
vergent for every sufficiently large n, the following asymptotic formula holds:

(23) I, = \/ﬂewg(zo) ||J£/(é)0))|| f(z\/%)” (I+0(1)) (n = 400)

with o given by (19).

3. Definitions and preliminary results

Let f be a function of N complex variables z1,...,zy, holomorphic in an
open set A C CV and such that, foreach j =1,..., N, 0f /0z; does not vanish
identically.

DEFINITION 3.1. — A point <z§0), cee z](\(,))) € A is a saddle-point of f if

f (2%0)7...721(\?)) #0

%(Z§O)’7Z§\9)>:O forj:l,...’N.

(24)
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228 F. PINNA & C. VIOLA

Let H(z,...,2n) denote the hessian determinant of f:
2*f *f
027 "7 9z10zN

8% f 8% f
Ozny0z1 © " 8212\]

DEFINITION 3.2. — A saddle-point (z%o), ey zj(\(,))) € A of f is nondegenerate
if
H (z%o), e ,z](\(,))> # 0.

Clearly the notion of nondegenerate saddle-point is independent of the or-

dering z1,...,zy of the variables.
For a given ordering z1, ..., 2y, we also define the minors:

*f % f

az% Tt 0210z
(25) H; =H(z,...,zn) :=det (j=1,...,N).

*f *f

0z;0z1 """ Bz?

DEFINITION 3.3. — A saddle-point (zf)), e ,z](\(,))) € A of f is admissible with
respect to the ordering z1, ..., zx of the variables if

H; (z§0),...,z](\(,))> #0 forj=1,...,N.

REMARK 3.4. — Since Hy(z1,...,2n) = H(z1,...,2n), an admissible saddle-

point with respect to an ordering of the variables is also a nondegenerate saddle-

(0)
1

point. Conversely, if (z ey z](\g) is a nondegenerate saddle-point of f, there

exists a homogeneous linear transformation of the variables:

Z1 =aiwy + -+ aANWN
26) L

ZN = aN1wy + - F aNNWN
with coefficients apy € C, depending on f and on (z§0), e ,25\?)) and satisfying

air ... A1N
det | . #0,

anNy --- OGNN
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THE SADDLE-POINT METHOD IN CV 229

such that the point (wgo), ey wj(\?)), corresponding to (zgo), ceey z](\(,))) through
(26), is an admissible saddle-point of the function

f(wl, - 7U}N) = f(a11w1 + -+ G NWN,...,aN1W] + -+ CLNNU}N)
with respect to the ordering w1, ..., wy.

To prove this, denote

aiy ... Q1IN
A =
anN] .--- ONN
and
o f f
022 " 9z10zyn
(27) H() = . . : )
8% f 8% f
Ozn0z1 " 8z]2V (250)7_“725\?))

whence det Ho = H (250), N zj(\(,))> # 0. We have

9 9

Owy 0z1
S P NN B
9 el

owpn ozN

Here and in the sequel we denote by ‘M the transpose of a matrix M. It
follows that

PF PF
ow? ©tt Qwidwn
Ho = Lo = "AHoA.
_oF 2F
dwnOwr " w3, (wgo) w(O))
W

Since the matrix H is symmetric, by a theorem of Autonne-Takagi (see [10],
p. 153, Corollary 2.6.6 (a)) there exist a unitary matrix & and a diagonal ma-
trix D such that

Ho=UD'U.
Choosing A = *(U~1) = ("), whence det A # 0, we get

D=U"Ho'U™' = AN A = Ho.
Hence ’;[7) is diagonal and nonsingular because
det’}fl\o = (det A)? det Ho # 0.
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230 F. PINNA & C. VIOLA

Therefore

- 27 27
det Hy = (gé 0 f) (wgo),...,wg\?)) # 0,

2
wi  ws,

whence, for j =1,..., N,

9% F
Sk 0 0
9% f 0
) ) duj -
Hj<w1 ,...,wN):det . # 0.
0 0 .21

(4

Let (z%o), ceey z](\(,))) be an admissible saddle-point of f with respect to the

ordering z1, ..., zy. By the implicit function theorem, foreach j =1,... , N—1
the system

0 0
(28) of ... _9f g

821 82’]‘
is locally solvable with respect to z1,..., z;. In other words, in an open neigh-
bourhood v;4; of (Zj('(i)u cee Z%”) in CN =7 there exist j holomorphic functions

le(zj-i-lv .. '7ZN)a cee Z]](Z]+17 . 'aZN)

satisfying the following j identities:

9
Tzfl(le(ZjJrl,...,ZN),...,ij(ZjJrh...,ZN),ZJ‘+1,...,ZN) =0
(29) .o
1%}
a—i(le(zj+1,...,zN),...,ij(szrh...72N),zj+1,...,zN) :0
for all (zj41,...,2Nn) € V41, with
0 0 0 0 0 0
Moreover, for each 1 < k < j < N and for each (2j41,...,2n) € V41, We can

solve the system of the first k equations in (28)-(29) with respect to z; = Z3;,
.., 2 = Zij. Thus, shrinking here and in what follows the neighbourhood
vjy1 if necessary, we get the k identities

Z1j(Zj+1,- -, 2N) =
Z16(Zyg1,5(Zj415 - 2Ny oo 3 Zji(Zj41s oo, EN), 21y - - 5 ZN)
(31)
Zyj(Zj+1,- -5 2N) =
Ziok(Zis1,5 (Zj41s - 32N )5 o o5 L3 (Zj41y oo - 2N )5 215 - -+, ZN)
for all (zj41,...,2N) € Vjy1.
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THE SADDLE-POINT METHOD IN CV 231

LEMMA 3.5. — For all k,j such that 1 <k < j < N we have

07y,
8Zj+1

(Zj+1,...,ZN> =

(_1)k+j+1 6j+17k

H; (Z15 (24150 02N )se- s 25 (Zj 415, ZN ), Zj 4150+ 2N)

where H; is defined in (25), and §;11  is the determinant obtained by removing
the last row and the k-th column from the determinant H;q.

Proof. — Differentiating the identities (29) with respect to zj4+1 we get
O*f 02y ..., _90°f 0Z 2f  _
023 8zj+Jl + + 0210z azj-fl 0210zj41 0
*f 0%y, °f 0Zj; ’f
6z1~6z1 6411 + T + TZJQ 8Zj+1 8zj6zj+1 - 07
and the lemma follows from Cramer’s rule. O
LEMMA 3.6. — Let
fj(zj-‘rla"'aZN) = f(le(Zj-'rly aZN)7"'7ij(zj+1a"'aZN))zj+17'"7ZN)
forj=1,...,N—1. Then
32};‘ _ Hj+1
2 - .
aZj+1 HJ (Z1(Zj41532N )03 25 (Zj4 150 12N )sZj415-- 2N )
Proof. — Owing to the identities (29), for I =j+1,..., N we get
of; _ of
(32) 872'; = %(le(zj+l7 ey ZN), RN ij(zj+1, ey ZN), Zj+1, ceey ZN).
Hence, by Lemma 3.5,
Rf  Pf 9y Pf 02y | Pf
6zj2-+1 827]'_:,_1821 8Zj+1 82’j+182’j 8zj+1 8ZJ2-+1
1 0% f . 0% f . 0% f
= [ ——L—(-1)7*2%; 4o (=) o+ L H
Hj <8zj+18z1( ) ARh 8Zj+162j( ) g+La 8zj2.+1 J
_Hjn
H; ’

where in the last equality we have applied the Laplace expansion of the deter-
O

minant H;,, along the last row.
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4. Further lemmas and statement of the main theorem

4.1. Let N > 2, let f(z1,...,2n) and g(z1,...,2n) be holomorphic functions
in an open set A C CV, let (4@)7 R z&?) € A be an admissible saddle-point

of f(z1,...,2n) with respect to the ordering z1,...,2y (see Definition 3.3),
and let g (Zgo) ceey z](\(,))) = 0. For any integer n > 1, let

(33)

I, = /dZN / dzy—1 --- / dzo / f(z1,0,28)"g(21, -, 2n) A2y
)\N )\N71(ZN) )\2(23,...,21\/) )\1(22,...721\/)

be an N-fold integral, where for each j = 1,..., N — 1 the path A; depends
on zj41 € Ajy1, --., 28 € An. We assume Aq,..., Ay to be (not necessarily
bounded) piecewise continuously differentiable paths such that (z1,...,2n) €
Aforall zy € An, 2v—1 € AN—1(2N), - -+, 21 € M(22,...,2n), and the integral

I,, to be absolutely convergent for every sufficiently large n.
Let

(34) 20 ey

be an interior point of Ay, and let the maximality condition
(35) | Fva(m)| = 1 (Zana(en), s 2w (ow) )]
0 0 0
< ‘f (zi ),...,z](\,)_l,zg\,))‘

hold for all zy € vNNAN, 2N F# z](\(,)), where the functions Z; xy—1,..., Zn-1,N-1
and the neighbourhood vy are defined by the identities (29) with j = N — 1,
and

fN—l(ZN) = f(Zin-1(2n),- s ZNn—1,n-1(2N), 2N)
is defined as in Lemma 3.6. We have fy_1 (zj(\?)) =f (Zgo)’ cee zz(\(,))) by (30).
By Definition 3.3, by (32) with I = N and Lemma 3.6 with j = N — 1, by (16)

and by (35), zj(\(,)) is a nondegenerate saddle-point of the function fy_1(zy).

Thus we may clearly assume, without loss of generality, that in a circular

neighbourhood of centre z](\?) and radius

(36) on >0

the path Ay coincides with the line of steepest descent at zj(\(,)) for

fN—l(ZN)’-

Next we assume conditions similar to (34)—(35), successively for j = N — 1,
N—2,...,1. For each j with 1 < j < N —1 and for any fixed (zj4+1,...,2n) €
Vjt1 such that zy € Ay, znv_1 € )\N_l(ZN), <.y Zj41 € )\j+1(2’j+2, .. .,ZN), let

(37) ij(zj+17--~7ZN) E)\j(Zj+1,...,ZN)
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THE SADDLE-POINT METHOD IN CV 233

be an interior point of A;(2;+1,...,2n), and let

(38) fj—l(zjazj-',-l;---,ZN)‘ < ‘fj(Zj_;,_l,...,ZN)

for all ZNJ S )\j(thl, ey ZN), Zj 7é ij(2j+1, ey ZN), (szZj—i-lz ey ZN) € vy,
where f;_; and f; are defined as in Lemma 3.6, and fy := f. For z; =

Z;i(Zj+1,--.,2N), the two sides of (38) are equal by the identities (31) with
k=j—1.

For any fixed (2j41,...,2n) € Vj41, 25 = Zj;(Zj41,...,2N) is a nondegen-
erate saddle-point of f;_1(2;,2;+1,...,2n). For, by (38),

Fim1 (Zjj(2j51s - 2N)s 241, - 2N) 2 05

by Lemma 3.6 and by the identities (31)

& fia 7 _
922 ( jj(zj+17'-'vZN)aZj+17~--aZN) =
J
Hj £ 0;
H; ’
I=1N(Z15 (25410285 255 (B 15 2N ) 2415 2N)

and by (32), (31) and the last of (29)

0fj-1
#Zj (ij(Zj+1, .. .,ZN),Zj+1, .. .,ZN) =
of
g (le(ZjJrl’ .. .72,’]\7)7 .. .’ij(zj+1,. . aZN)vszrla . -7ZN) = 0
J

Thus we may assume that in a circular neighbourhood of centre Z;;(zj4+1,
...,2n) and radius

(39) Qj(zj+17---7ZN) >0
the path A;(2j11,...,2n) is the line of steepest descent for |f;_1(zj,zj+1,
...,ZN)| at z; = ij(Zj+1,...,ZN).

By applying the maximality assumptions (38) successively for j = 1,2, ...,
N —1 and then (35) at the N-th step, we get the inequality

(40) |f(zl,...,zN)\<‘f (z§°),---,Z§3))‘

for all (z1,...,zn) in a suitable neighbourhood of (zi‘”, .. .,z&?) such that

ZN € AN,.--,21 € AM(22,...,2n) and (21,...,2N) # (zgo),...,zgg)). We
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require that (40) holds also away from (250)7 .. .,zg,))). We assume that for

any neighbourhood o of (zio), .. (0)) there exists a real number p = p(o)
with 0 < p < 1 such that
0) 0

(41) o) < plf (720
for all zy € A, ..., 21 € A1(22,...,2n) satisfying (z1,...,2n) € 0.
REMARK 4.1. — For every (zj41,...,2n) € Vjp1 With 2y € An, ..., Zj41 €
Aj+1(zj+2, -, 2n), the radius 0;(2j41,...,2n) is not uniquely defined. Since
zj = Zjj(Zj41,...,2n) is a nondegenerate saddle-point of f;_1(zj, 2541,

., ZN ), we can plainly choose (39) to be a continuous function of zj41, ..., 2n.
Thus for each j = 1,..., N —1 there exists g; > 0 such that g;(zj4+1,...,2n) >
0j for all zy € Ay, ..., Zj+1 € >\j+1(2’j+2, .. -7ZN) with (Zj+1, .. ~7ZN) in a
neighbourhood of ( JICTRRR (0)) Defining

Q:min{gla"'agN}

with oy in (36), for each j = 1,..., N the path ); is the line of steepest descent
for fj—l(zja N 7ZN)’ at Z5 = ij(2j+1, N .,ZN) (] = 1, N .,N — 1) ZN = zl(\/)7

in the neighbourhood of centre (z](.o), ceey 21(\9)) and radius g > 0.

4.2. We can now state our main theorem.

THEOREM 4.2. — Let N > 2, let f(z1,...,2n) and g(z1,...,2Nn) be holomor-
phic functions in an open set A C CV, let (2(0), .. (0)> € A be an admis-
sible saddle-point of f(z1,...,zn) with respect to the ordermg Z1,...,2N, and

let g (z(o),...,zj(\(,))> #0. Let Hi(z1,...,2nv)(j=1,...,N—1) and Hy(#, ...,
zy) = H(z,...2zn) be the hessian determinants defined in (25), and let
Hy(z1,...,2n) := 1. Under the assumptions in Section 4.1 (in particular (34),
(35), (37), (38) and (41)), for the integral I, defined in (33) the following

asymptotic formula holds as n — +o00:

\f( )
(42) I, = (27T)N/2 i(914-- +19N)g( (0)

) )

(" ZN)> 1+ o(1)),

/2

X

TOME 147 — 2019 — N° 2



THE SADDLE-POINT METHOD IN CV 235

where, for j=1,...,N,

0 0
(43) ¥ = hym — Sarg | — .

f (zgo), .. .721(\(,))> H;_, (zio),...,zg\?))

with hj € 7.

REMARK 4.3. — In formula (43) one can choose any value of the argument
(e.g., the principal argument). Accordingly, as in (18)—(19), the parity of the
integer h; must be taken so that the orientation of the line of steepest de-

scent for |f| at z%o), .. ,z](\(,))> with respect to the variable z; agrees with the

orientation of the path A; in the integral I,,.

REMARK 4.4. — For N = 1, the asymptotic formula (42) becomes (23). For
N =2, (42) was proved by Hata [9]. In the proof of Theorem 4.2, for the o(1)

in (42) we shall obtain O ((log n)%JFE/\/ﬁ) However this form of the error
term is immaterial, since by Fedoryuk’s theorem ([7], formula (1.61), p. 125)

the term o(1) in (42) can be expanded into an asymptotic series of the form
S e, cxnk, and therefore is O(1/n).

REMARK 4.5. — If f(z1,...,2n) is written in the exponential form

f(z1,...,2n) =exph(z1,...,2N)

with a given function h(z1, ..., zy) holomorphic in A, according to our discus-
sion in Section 1 regarding (13)—(14), the proof of Theorem 4.2 can be modified
in an obvious way to yield the asymptotic formula (42) with a real parameter
T — 400 in place of the integer n — +oo.

We postpone the proof of Theorem 4.2 to Section 5. In this section we prove
some lemmas.
First of all, we parametrize the whole integration paths Ay, Any—1(2n),-- -,

A1(z2,...,zN) respectively by parameters ry,ry_1,...,71 varying from —1
to 1, so that 25\?) corresponds to ry = 0, and similarly Z;;(zj41,...,2n) cor-

responds tor; =0 for j=1,...,N — 1.
By notation abuse, for zy € Ay, 7Ny — 2N, We write

ZN:AN(TN), —1§7’N§1
2V = An(0),

and subsequently, for j =N —1,N —2,...,1,

(44)

(45) Zj:/\j(rj;rj—i-l’"'arN) = (Aj(zj—i-la"'va))(rj)? 71§rj§1
Zij(Zir1, - 2N) = A (057540, ).
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Thus, defining

(46) F(ri,...,rn) = fa(r;re, oo rN)s oo s A1 (PN 157N ), AN (TN)),
rn) = glM

G(ry,...,rN) (AM(rizre, .o srN)s o AN (PN—13 TN ), AN(TN)),

for the integral (33) we get

1 1
In: F(Tl,...,’I“N)nG(’I“l,...,TN)
" []

" OA OAn—1diy
87“1 87‘1\[_1 d’I“N

dry---dry.

By Remark 4.1, there exists 7 with 0 < 7 < 1 such that, for

(48) T1,...,TN € [-T7,7],
the paths Ay (rn), ..., A (r1;72,...,7n) are the lines of steepest descent for
1f(Zin—1(2n)s s Zn—in—a(zn), 2n)] at 2y,
|f(21,. .., 2n)] at Zin(22,...,2N)

respectively, whence, by (18),
(49)
An(ry) = z](\(,]) + 7y eN

AN—1(rn=1;7N) = Zn-1,n—1(ANn(TN)) + ryn_peN-1ry)

)\1(7"1;7’2, . ,7“1\/) = le()\g(’l"g;rg, N ,TN), ey )\N(?"N))
_|_Tle7;191(7'2a<-~77'N).

By (19), (30) and Lemma 3.6,

1 1 H
(50) ﬁN:th—farg (— N ) , hy €7,
2 fHN_l (2§0)7_ .,zg\?))

as in (43) for j = N, and, for j=1,...,N — 1,

(51) ﬁj(TjJrlw"er):
H.

1 1
hjm— —arg (—= —2 >
T2 g( fHj

)

(Z1,5-1(Njse s AN D) s s 25— 1,5 —1(Xj s AN ) A o AN )
hj cZ.
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From (30) and (49) we obtain
Av(0) =2,
(52) AN-1(0;0) = Zn_1,n-1 (2’1(\(7))) = 25\(1))_1,
A1(0;0,...,0) = Z1; (zéo), e ,zj(\(,))) = z§0).

Hence, by (51), (52) and (30),

defined in (43).

LEMMA 4.6. — For each k,j=1,...,N,

0, ifl1<j<k<N
—QeY, if j=k
rememrn=0 g0y 02kt (z§°), .. .,253)) L ifl<k<j<N.

J

Proof. — For j <k, (53) is an immediate consequence of (49). If k = j — 1,
from (49) and (52) we get

6)\j_1

87”]' rj_1=--=rn=0
0

= TZj,Lj,l()\j(Tj;'f'jJrl,...77’]\]),...,)\1\](7"]\1))
T rj=--=rn=0
6Zj_1 j—1 8/\j i9 . 8Zj—1 j—1

= (=7 = ——=(X;(0;0,...,0),...,An(0
< I P — ‘ zj ((0:0,..-,0), ., An(0))
o O i

_ iv; Y25-1,5—1 [ (0) (0)

=e 9z, (z] ,...,ZN),

ie., (53) for k=7 —1.
For any k < j we use descending induction. We assume (53) for k = j —
1,7=2,..., 01+ 1 with 1 <1< j—2 and prove (53) for k =1I. By (49) we have

oA 0
= = —— Zu(N1(ri413 425 TN - AN(TN))
or:| _ _ or; e
J Iy rn=0 J rig1==rn=0
_ 07y 8/\l+1 07y 8)\]'
= aZlJrl 8rj sz a’f‘j S )
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whence, by the inductive assumption and by (52),

o

arj ry=---=rny=0

_ Y < OZy 0Z111,j—1 T 0Zy 0Zj-1,j-1 n 3le> .
0zi41 0% 0zj—1 0z 0z (22, 29)

From the last identity (31), with k, j replaced by [, j — 1 respectively, we get
0

aizjzl,j—l(zj, . 2N)
0
— 5le(Zl+1,j—1(zj, ey ZND)s ey Bim1,i=1(Zy o 2N, 2y oo 2N
J
_ 0%y 9% | OZu 0Zjayoa | 0Zu
02141 0z; 9z 1 9z; 2%,
Therefore
oA i0; 92151 (20,....20)
8rj —.= =0 € azj ZJ I 7ZN
T TN

LEMMA 4.7. — Let

a1 - QQnN
Sy = :

&Ny ... ONN
be a symmetric matriz (apr = agn) such that, for each j = 1,... N, the
submatriz

a1y ... 015

S; =
Q51 ... Oy

is nonsingular, i.e., detS; # 0. Let

Bi1 ... Bin
TIn=1| : .
BN1 - BNN

be the upper triangular matriz defined by

0, fl1<j<k<N
(54) Bkj =<1, ifj=k
(—1)k+a‘de?ﬁ, if1<k<j<N,
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where dji is the determinant of the matriz obtained by removing the j-th row
and the k-th column in S;. Then "TySnTn is the diagonal matriz given by

det81 0 0
0 dets2
det S
“Tn Sy T = !
| : " dets
0 0o ... detele\il
Proof. — Let
Y11 --- 71N
TvSw=| o]

YN1 -+« YNN
let det Sp := 1, and d;; := detS;_; for j = 1,...,N. Since apr = agp, from
(54) we get

N 1 J

k= Qg = ——— — D"
Vik };@U kh det S, hzﬂ( ) Th Ok,
If £ < j, the last sum is the Laplace expansion along the last row of the
determinant of the matrix obtained from S; by replacing the j-th row with the
k-th row. Therefore

det Sj
(55) Yii = detS;_;
and
(56) Yik = 0 fork< j,

whence ! Ty Sy is an upper triangular matrix. Thus (*7TySy) 7w is the product
of two upper triangular matrices, and hence is upper triangular. Moreover

T SNTw) = "IN SN TN = "TNSN TN,

because Sy is symmetric. Thus {7y Sy Ty is upper triangular and symmetric,
and hence is diagonal.
The j-th entry on the diagonal of (*Ty Sy)7Tx is

(57) VirBuj + -+ 3B+ UNBNG,
with 6j+1,j == ﬁNj =0 by (54)7 and Vi1 = = Y,5-1 = 0 by (56) AAISO7
by (54), Bj; =1 for j=1,...,N. Thus (57) equals
o _detS;
Vi = detijl
by (55). O
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LEMMA 4.8. — Forr >0, let En(r) and Ry (r) be the functions defined by

(58)  En(r) = // e~ @t dy o day = 72 (1= Ry (r).

o34 +a <r?

Then, as r — 00,

(59) Ra(r) =0 (e_rz/N> .

r

Proof. — We consider the error function
¢
erf ¢t := %/e‘ﬁdx (t>0)
0
and the complementary error function

erfct:=1—erft =

e
eﬁ\
9]
&
©
o,
8

Using L'Hépital’s rule we get

lim — =,
tofoo (¢ et2) 2
whence
et
(60) erfc t ~ — (t = +00).

/Tt
We remark that (60) is the first term in the well known asymptotic expansion
—t

2 L-1
erfct:% (1—1—[:21(—1)[(252;)11)”—1-0(2521]4)) (t = 400)

for any integer L > 1, although (60) suffices for our purposes.
The hypercube defined by the inequalities

<z; <

=
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is plainly contained in the sphere 2% + - - - + 2%, < r2. Therefore

r/VN r/VN
(61) En( / / e~ @it 4R 4y - day
-r/VYN  —r/VN
N
T/m 2 T N T N
= e ¥ dx = merf —— = N/2 (1 — erfc ) .
/ (et %) N
—r/VN

Since (1 — X)¥ >1 - NX for 0 < X < 1, from (58) and (61) we get

7N/2 (1 — Ry(r)) = En(r) > oV/? <1 — Nerfc ;ﬁ) )

whence
R Nerfe — e
- = —
~(r) < Nerfc Wi " (r — +00)
by (60). O
REMARK 4.9. — A standard but tedious calculation yields the exact value of
Ry (r), namely
m—1
e Y = for N =2m
(62) RN(T) = 1=0 _,2 m (2r2)!
erfc r + i/?r > =R for N =2m + 1.

Thus, by (60) and (62), the asymptotic formula (59) can be improved to the
exact order of magnitude:

(63) Ry(r) = 0(e " rN72)  (r — o),
but we need not use (63) for the proof of Theorem 4.2.

5. Proof of Theorem 4.2

By (46),
af oN =
67“] Z@zl or; L...,N),
with
af of o) _ B
(64) 021 |y =m0 321( 7""ZN)_O ¢=1...,N)
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by (24), whence

Also, by (64),

O2F (0 Of\ N
a0 = (gt 5 .

B i AN
B 0zp0z Ory, Orj

h=1 =1

T1:--<:TN:0

Hence, with the notation (27),

0*F
Ori0r;

oM Ok t O\ 8>\j
(B0 0) ' (2 20,.0)

Here and in what follows, we identify a 1 x 1 matrix with its entry.
Let

(65)

0,...,0) =

ri=--=ry=0

D1y ... Din
To=| i
Dpyi ... Dyn
be the upper triangular matrix defined by

0, ifl<j<k<N
(66) Dy; =< L if j =k
C S . .
(—1)k+7 ﬁ o . H1<k<j<N,
(z1 EERERESN )

where H;_; is defined by (25), and, as in Lemma 3.5, §;4 is the determinant ob-
tained by removing the last row and the k-th column from the determinant H.
Let & be the diagonal matrix

evr 0 ... 0

0 e2 ... 0
=1 . . . R

0 0 ... e0n~

with ¥; defined in (43). By Lemmas 4.6 and 3.5, and by (66), the vectors on
the left and on the right of Hy in (65) are, respectively, the transpose of the

TOME 147 — 2019 — N© 2



THE SADDLE-POINT METHOD IN CV 243

k-th column and the j-th column in 7o&y. Therefore, by (65),

8*F 8°F
ar% ttt Ori0rn
. . . t
(67) oo = "(To&o)HoTo&o-
8*F 8*F
drydry " ory == =0

By Lemma 4.7 with Sy = Ho and Ty = T, the matrix *7y Ho 7o is diagonal,
and its entries on the diagonal are

H; (z%o), ... ,z(o)>
G=1,...,
H]‘_l (Z%O),.. ZJ(\?))
Since the diagonal matrices commute and & is diagonal, we get

HToEo)HoToo = Eo(*ToHoTo)Eo = E5 (" ToHoTo),

N).

whence
21 Hu 0 .. 0
0 etz g
(68)  “(To€o)HoToEo = '
6 0 ... 62i19N' Hy
Ay ) (0, 20)
Thus, by (67) and (68), in a neighbourhood of ; = - -+ = ry = 0 we obtain by

Taylor’s formula

F(ri,...,rn) = f(zgo),.. Z](\(,)))
62“91H1/H0 0

.....

0 eQmNHN/HN_l (250) 25\?))

O (|T1|3 + -+ |’I”N‘3)

=flz 2y )+ 3 eV r
2 j=1 Hj,1 <Z§O) ,ZE\?))

—|—O(|r1|3 4.+ |7“N\3).

Therefore
(69)

F(ry,...,rn) = f(z%o),...,zj(\g)) 1—ZA O (ImP+ -+ rn?)
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where
H; (z(o) e z(o)>
1 X ) y AN
A = — =2, (j=1,...,N).
TR ) s (00
y (43),
0 0
(24,) = 20, + o (ZP"”’ J(V)) 2h
arg(24;) = 20; arg | — = ahym,
f(250)7.. zg\?)) H;_, (z§0)7...,z](3))
whence A; is real and positive. It follows that
0 0
(70) A; =5 >0 (j=1,...,N).

2 f (zgo),...,z](\?o H;_, (z§0)7...,z§3))

Let p1 be a constant satisfying
0< < min{Al, . ,AN}.

By (69), there exists a constant hg with 0 < hg < 7, where 7 is the constant in
(48), such that

(T NGy )l < 7 (0 A ) [ = im0+ 7%)

for all (7"17 . ,TN) S [*ho, ho]N
By the assumption (41) there exists a constant pe with 0 < pe < 1 such
that

(72) Frisorn)l < e £ (57,00, 20))|

for all (7"17 o ,’I”N) € [—17 1]N \ [—ho, ho]N
Let K > 0 be a constant to be chosen later, and let n; > €2 be an integer
such that

1 K 1-—
(73) Qogm)® i {ho, p2 } .
NS M1
Let £2,, D 2,41 D 2,42 D ... be the sequence of spheres defined by
1 2K
R e e e

For (r1,...,7n) € [—ho, ko] \ §2,, we get by (71)

(74) \F(ry,...,rn)| < <1 _— UOg”) ‘f( z](\?)>’
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By (73),

(log n1)2K
=i VA

ni
Therefore, by (72), the inequality (74) holds for all (ry,...,7n) € [=1,1]V \
2,(n > ny). Using (74), we show that the contribution given by [—1,1]" \ £2,
to the integral I,, in (47) is negligible. For this purpose we use the asymptotic
formulae

2 <1l—p <l-m

% (n>mnq).

logn)2K\" 2K
(75) <1 _ m(oyz)) —0 (ewl(logn) ) (n — +00),
n
and, for (r1,...,7n) € £2,, n — +o0,
O\ d\ny
G(Tl,...7’l"N)87ﬁ der
(76) = it (0 20) (L4 Ol + -+ + [ ])

Sil014- wN)g( Of zﬁ)) <1+0 <(103§)K)>
n

<1+0(|m|3+-~-+|m|3>>"
1— S A
:1+O<n((lmg\/%)K>3> :1+o(<l°g;?3”>.

For (76) we have used (53).

Let
o\ dA
/ / (11,0007 G(Th...,rN)a—Tll--. Nodry - dry.

dTN
—1L1JN\2,

and

(77)

By the absolute convergence of I, for every sufficiently large n (say, for n > ng),
and by (74) and (75), we get

logn)2E\"™
e (P )

x/|dzm--- / s zn)[™lg(ens 2| [
A A1 (z2,...,2N)

£ )]

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE

n—no

0O (e—m(logn)zK




246 F. PINNA & C. VIOLA

Hence, by (69), (76) and (77),

877"1 dTN

i 0 0 0 0)\" (log n)?*
= i1t J“9N)g (zi ),...,ZEV)> f(z§ ),...,z](\,)) <1+O <\/ﬁ

N n
x// 1—ZAer2» dry---dry
2, J=1

+0 (e_”l(l"g")2K ‘f (Zgo)’ cey z](\?)> n) .

We shall now prove an asymptotic formula ((84) below) for the integral

(78)
In:/.“/F(m,...,rN)"G(?“lw--WN)a)\l "'(D\iNdrl"'drN + Jn
2,

n

N
(79) // 1—2Ajr]2 dry---dry.
20 J=1

Substituting \/A;nr; =u;(j =1,...,N), (79) becomes

N
1 1
(80) N2/~-/ 1—— u? duy -+ -dupy
\/Al...ANn / o anl
with
* ug v 2K
(81) 28 =< (ug,...,un) A——i— -+ — < (logn)
1 N

If (uy,...,un) € £2} then

where A = max{A;,..., Ay}. Hence

1Y ! 1Y R :
2 _ 2 2
L== uy | =exp|—n | =) wi+0|—5|> uf
j=1 j=1 j=1
N
1 4K
(z (1+0(E™))
j=1
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Therefore

:(1—&-0((1(%:)4[())/(.2;/63)(}) _ZU? duy -~ duy.

Let 10 = min{A,,..., Ay}. From (81) and Lemma 4.8 we obtain

N
/ / exp Zu? duq - -

RN\ 2 Jj=1

N
< / / exp —Zu? duy - -duy = 7% Ry (,/uo (logn)K)
j=1

J 1u]>,uo (logn)2K

-0 ((log n)fxefmo/zv)(logn)”) .

Hence

Jj=1

83 N
(83) =7TN/2—/~-~/eXp —Zu? duy - - -dupy

RN\ 2% i=1
— N/2 (1 L0 ((log n)—Ke—(Ho/N)(IOg”)ZK)) .

N
/-~/exp —ZU? duy - - duy
25

From (80), (82) and (83) we get, for n — +o0,

n
N/2

N
/Q / gz:; Y 1 N VA Ay

x (1 +0 (MS)M)) (1 +0 ((1ogn)—Ke—wo/N><1°g">2K)) .
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Since (logn)*® /n = o ((logn)3* /\/n), by (78) and (84) we obtain

N/2 f (2§0)7 . ,z](\(,))>

(91440 (0) (0) i
In_e(l N)g(Zl ) ZN) A "'AN nN/Q
logn (0)
w0 (SR | (40 R

L0 <n—N/2(log 1)~ K ¢~ (wo/N)(log )" ‘f (Z§0)7 N ZJ(@))
+ O (eﬂ“(log”)w ‘f (z%o), e 25\?)> n) .

If K > 1/2, the last two error terms are negligible in comparison with

(logn )Y\ |"
0<n(N+1)/2‘f(1,...,zN) .

Choosing K = % + £ with an arbitrarily small € > 0 we conclude that

f Z(O)a"'vz(O) ! %+€
oo E ) (ot

niN/2 vn

)

where, by (70),

N/2
0= ety (0 o) T
€ g\z ZN A AN

o e 2)

W ey

6. Generalized Airy functions

(27T)N/2 i(914-- +19N)g( )

6.1. In [14] Ursell studies the asymptotic behaviour of certain double integrals
depending on a large parameter. Special cases of the integrals considered by
Ursell can be written in the following form, generalizing to the two-dimensional
case the Airy integrals (7)—(9):

(85)

1/3 2 1 1
(2m> // exp (T(—Bzf - gzg +az + bza + 02122)) dzydzy (7 — 400),
Iy

where each of Iy and I is the union of two of the three half-lines (5). Combin-
ing Ursell’s Theorems 1 and 2 ([14], pp. 254-255) with Lemma 2 ([14], p. 262)

TOME 147 — 2019 — N°© 2



THE SADDLE-POINT METHOD IN CV 249

one obtains an asymptotic expansion for the integrals (85) under the restric-
tion that |a|, |b| and |c| are small enough (this restriction implies that the four
saddle-points in (85) are all close to (0,0)).

In the spirit of [14], we apply our Theorem 4.2 to study in some cases the
asymptotic behaviour of N-dimensional integrals of Airy’s type:

(86) (1/3)/ /exp (Fh(z,. o 2n)) dor - den (7 — +00),

211

where, as in (85), each of I7,..., 'y is the union of two of the three half-lines
(5), and where

N
(87) h(z1,-.-, 2N sz—i— Z ZkZz—Z%Z?

1<k<I<N =1

is a cubic polynomial with no condition about the vicinity of the saddle-points.

6.2. In this section we study the asymptotic behaviour of the integrals (86) for
N =2, i.e.,

/3 g 14
(88) < o] > /dzz /exp ( <z1 + 20 + 2129 — gzl — 322>> dzq,

where each of I} and I is the union of two of the three half-lines 7g, 71, 2 in
(5).

Up to complex conjugation or to the interchange of z; and z3, we have four
distinct cases:

(i) In =TIy =v%Un,

(ii) I =TIy =7 U~e,

(iii) It =v1 Uy, I'h = U,

(IV) Fl :’Y(]U’}/Q, FQ :’Y()U’yl.
In the above cases (i)~ (iv) we denote the function (88) by 2 A1 (72/3), oAy (12/3),
2 Aiz(72/3), 9 Aiy(7%/3), respectively.

Let
1, 1,
(89) h(zlaZQ) =21+22+ 2129 — gzl — §z2
The saddle-points of f(z1,22) = exp h(z1, 22) are the solutions of the system
(90) 671_1+22—21=0
3722 =142z — 2’2 =0.

Eliminating zo we get
z1(z1+1)(21 =)z —97) =0
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with

Thus the saddle-points are
(Zla 22) = (07 _1)7 (_]-a 0)7 (90+7 (er)v (3077 907)'

Moreover
f 2
022 (21, 2) 321
0% f (21,2 8h oh
821622 b 2 82’1822 821 822
f 2
a 3.2 — Zla 22 822
Hence at each saddle-point we get
0? 0%h
Hy(z1, 22) = ! = f(z1,22) = f(z1,22)(—221),

022 022

PP (Y L (0Phe2h [ 92h \?
Henw) = Gh ot~ (aoam) =ev (503~ (o0m)
= f(21,22)* (42120 — 1).

Therefore the admissible saddle-points with respect to the ordering zi,zo of
the variables are

(91) (21,22) = (=1,0), (0", 97), (07, 97).
With notation as in (29), from the first equation (90) we get

(92) le(ZQ) = :l:\/ 1+ z9

in the cut plane zo € C\ (—o0, —1], where /1 + 25 > 0 for z5 > —1. In (92)

we must take the — sign for 25 = 0 or 25 = ¢, and the + sign for z; = ™.
We now apply Theorem 4.2 to obtain asymptotic formulae for (88) in the

above cases (i)—(iv).

(i) o Ai; .

This is the special case, for N = 2, of the function yAi; defined in (98) below.
From the discussion in Section 6.3 we see that the relevant saddle-point for
2Aiy (72/3) is (T, pT). Setting N = 2 in the asymptotic formula (108) below,
we obtain

t—1/2 7+ 55
(93) 2Aiy (1) ~ — exp ( t3/ 2)
2mv/5 + 25 6
for t = +o0.
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(i) 2 Al
In this case we show that, according to (91)—(92), the relevant saddle-point is
(21,22) = (¢~,97), with
(94) zZ1 = 211(22) = —\/1 + Z9.
This function is a one-to-one mapping of
Ay = {22 € C\ (—OO7 —1]}
onto
A= {z16C ‘ R621<0},

with fixed point ¢~. In order to apply Theorem 4.2 we must change the
integration path v U~s for 2o to an equivalent path Ay C Ay passing through ¢~
and such that

Reh(=v1+ 22,23) <Reh(p™,¢7) = hlp™,¢7)
for all z9 € \g, 20 # ¢, where h is the polynomial (89).
It is convenient to seek the image A\; = Z11(A2) C Ay of Az through (94), so
that
Reh(z1,2f —=1) < h(p™,¢7)
for all z; € Ay, 21 # ¢, since 2, = 22 — 1 is the inverse of (94). From (89) we
get
1 2 2
(95) h(z1,25 — 1) :—gz?—i—z%—i—ng—g.
We choose A; to be the path of steepest descent for | exp h(z1, 22 — 1)| con-
taining z; = ¢~. Arguing as in Section 2 we see that A\ is defined by
argexp h (zl,z% —1)=Imh (zl,z% —1) =Imh(p~,¢") =0,
i.e., by (95),
Im(2% — 321 —223) = 0.
Writing z; = x1 4 iy; we easily get the equation
Y1 (33611/‘1l + (1 + 6z — 103:‘;’) y? — 37 — 625 + Sx?) =0.
Hence Xl is the connected component in A; of the quintic in R?

3z1yi + (1 + 6z — 1027) yf — 327 — 621 + 327 =0

containing the point z; = ¢, y; = 0 and having asymptotes y; = +v/3x1,
i.e., v1 and . Thus, writing zo = x5 + iy2, we see that the path A\s contains
the point x5 = ¢, y2 = 0 and has asymptotes yo = +/3 (x5 + 1). Hence A,
is equivalent to 77 U s by Cauchy’s theorem.
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For any fixed zo € A2 we must change the integration path ~v; U~y for z; to
an equivalent path Aj(z2) through Z1;1(z2) = —v/1 + 22 so that

(96) Reh(z1,22) < Reh(—v1+ 22, 22)

for all z; € /\1(2?2)7 21 7’5 —v/ 1+ 29.

If 20 = ¢~ we choose \i(¢~) = Xl. If 29 # ¢, let Vi(z2) and Va(z2) be the
‘valley-sets’ of Re h(z1, 22), i.e., the two connected components of the open set
V(22), with vertex at the saddle-point z; = —+/1 + z2, such that (96) holds for
all z; € V(ZQ)

It is easily seen that Re h(z1, 22) is strictly monotonic for

z1 =1y, —o0o <y < -+oo.

Therefore Wi(z2) := Vi(2z2) N Ay and Wa(ze) := Va(z2) N A; are both un-
bounded. Hence we may choose A\ (z2) C W1 (2z2) UWa(22) U{—+/T1+ 22 }, with
asymptotes v; and ~s.

We recall that 72/% = ¢. We apply Theorem 4.2 with 7 € R in place of n (see
Remark 4.5). From (43) we get ¥ = ¥2 = 7/2. Then the asymptotic formula

(42) yields
oA (t) ~ i exp <7 —5v5 t3/2) .
2mv/5 - 2V/5 6
(iii) 2Al3
In this case the relevant saddle-point is (z1, z2) = (—1,0). Let A2 be the curve

defined in the previous case (ii), let A} be the part of Ay lying in the halfplane
Im z5 > 0, and let A} be the half-line

b={meR| ¢ <z <+o0}.

We replace the integration path vy U~y for zo with
p2 = Ay U NS,
We easily find
h(—=v1+ z2,22) < h(—1,0) = max Re h(—/1 + 29, 22)

Z2 €12

for all zo € Nj, z5 # 0. Similarly to case (ii), for any fixed zo € AJ we replace
the integration path v, U~o for z; with the steepest descent path puq(zs) for
| exp h(z1,22)| through —/T + 23, which clearly has asymptotes ; and ~,. For
any fixed zo € A, we argue as in case (ii).

We now have 1 = 7/2 and 5 = 0. Thus (42) yields

. it—1/2 2
(97) 2A13(t) ~ — o exp (3 t3/2> .
(iv) Ay
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Plainly
2Ai4 (1) = 2A11(t) + 2Ai3(t).
Hence from (93) and (97) we obtain

t=1/2 <7+5\/5 3/2>
exp t .
2mvV/5+ 25 6

6.3. In this section we apply Theorem 4.2 to the N-dimensional Airy integral

+1/3
(98) ~NAL (72/3) = ( 5 ) / /exp Th(z1,...,2N)) dz1 ---dzy

with h(z1,...,2n) given by (87), and with

S Aig(t) ~ —

(99) Inn=---=I'n=v%Um
oriented from e2™/300 to +o0, where vy and 7; are defined in (5).

The saddle-points of f(z1,...,2n) = exph(z1,...,2zn) are the solutions of
the system

6Z1—1+22+z3+ ey —28=0
(100) R

=1+4+z14+20+ - +2zy_1—2% =0

BzN

Using the symmetry of the system (100) we seek solutions satisfying z; = -+ =
zn. We set 21 = -+ = zy = pn, say. Then (100) yields

whence the saddle-points

(N3 PN

where

(101) e N2 (2N71)2+4’
The relevant saddle-point for (98)—(99) turns out to be
(102) (zgo),...,z](\?» = ((p},...,(p}) .
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It is easy to see that (102) is an admissible saddle-point. By (25) and (100) we
have, for j =1,..., N,

205 1 ... 1

+
o o Ly o a 1 =204 ... 1
(e on) =exp (b (eF,-- - on)) -det | L
1 L. —20%

This j x j determinant equals (—2p% —1)771(=2p}% +j — 1), as is easy to prove
by induction on j. Therefore

(103) H; (goj\r[“..,(pﬁ):
(1) 20k + 1) 20k + 1= 5) exp (j b (¢Fy,- ., 08)) (G =1,...,N).

By (101) we get H;(¢X,--.,¢%) # 0. Hence (102) is admissible.
By the system (100) and by (29), for each j =1,..., N — 1 the functions

le(2j+1, .. .7ZN), .. .,ij(2j+1,. . .,ZN)
are defined by
1+(j—l)ij+Zj+1+"'+ZN_Zzzj:07

whence
(104) le(zj+1;-~-7ZN):"':ij<zj+17--~7ZN)
1402 A F 2y o 2
= 5 ;
where the square root is positive for z; 11 > 0,..., 2y > 0. The 4+ sign preceding

the square root is justified by the condition
Zyj (3014\_7’ .. "‘PJJ'\_I) = ‘PJJ'\_I'
With the notation of Theorem 4.2 we choose
(105) AN =IN =7Um.
By (87) and (104) we easily get

MZy n-1(2n), - s ZN—1,N-1(2N), 2N) = W <1 + (N_62)2)
+ <1+(N1)2(N2)) ZN+N17;1((N—2)2+4(1+ZN))3/2— %

By elementary arguments we see that
Reh(Zin-1(2n)s -+ Zn-1,N-1(2N); 2N)
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along g is maximal at zy = gpﬁ, and along 7; is maximal at zy = 0. Hence

the assumptions (34) and (35) are satisfied for 25\?) = p}; and for Ay given by
(105).
Foreach j = 1,..., N —1, the existence of a path \;(zj41,..., 2n) equivalent

to (99) by Cauchy’s theorem, containing the point Z;;(zj41,...,2n) given by
(104), and satisfying (38), can be proved similarly to the case of 5 Aip(72/3), as
follows.

Let © C C be the angular region defined by

6 = {ZE(C ‘ —7r/6§argz§27r/3},
and let
0= (5’ U Y1
be the border of ©, with
8 = {geﬂ”’/G } 0<o< +oo}.
For any fixed zj41,...,2n5 € O, from (104) we get

—m/12 < arg Zy;(zj4+1,...,2n) < 7/3,

and
h(Zl,j,l(zj,...,ZN),...,Zj,Lj,l(zj,...,zN),zj7...,ZN)
1 1
:sl+52+53+§(j—1)(j—2) <31+1+6(j—2)2>
(106) 1 .
+ 50 =D (=22 +4(1+ 2 +51))"
—1)(g—2 1
+ (1+(])2(J)+sl> zj—gzj’.’
with

N 1 N
— — _ 3
S1 = E Zm, S2 = g RkRl, 83 = _g E Zm -

m=j-+1 JH1<k<I<N m=j+1
For z; € § moving from e2™/300 to e /%00, a straightforward computation
shows that
—1)(j—2
Re (((J — 22 +4(1+2 + 51))3/2> and Re <(1 + % + 31> Zj)

are both increasing, whereas —%Re(z]??) increases for z; € 7; and vanishes
identically for z; € ¢’. Thus from (106) we see that

Re h(Zl,jfl(Zj, . .,ZN), . .,Zj,l’jfl(Zj, .. ~7ZN)7zj; .. -72N)
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is increasing. Hence the intersections with © of the valley-sets in the plane of
the variable z; with vertex at the saddle-point z; = Z;;(2j41, ..., 2n) are both
unbounded. Moreover, for z; — 400 we have —25? /3 — —oo whence

exph(Zl’j,l(zj, ey ZN), ey ijlﬁjfl(Zj, e ,ZN), Zjyenny ZN) — 0.
Thus there exists z; > 0 such that the halfline {2} < z; < 400} is contained
in one of the valley-sets above. This proves the existence in © of a path
Aj(Zj41,...,2n) for z; equivalent to (99) by Cauchy’s theorem and satisfying
(37)—(38).
In order to get the asymptotic formula (42) for xAi;(72/?), we compute

flek, . o%) = exph(ef,...,¢k) and the determinants H;(¢%, ..., 0k)
given by (103). From (87) and (101) we obtain

b eeeot) = O (B VIR o
(107) . Y

From (103) we get, for j =0,1,..., N,
) j—1
Hj (k- ok) = (=1 (N+\/(N*1)2+4)
X (N—j+\/(N—1)2+4)exp(jh(ap1+v,...,g0]+\,)).

Therefore
_ 1 Hj(oRs - N)
PR on) Hia(en, - 9%)
Thus, by (43) and Remark 4.3,
Yp=---=9y=0.

From (98), (103) and (42) we obtain

> 0.

—N/6

NAil(T2/3) ~ (= )N T )*(N*l)/2 (290]-*\-] 11— N)i

7( R (2@4]\}4—1

X exp (Th ((px, o ,<pN)) .
Substituting 72/3 = ¢, by (101) and (107) we finally get
(108)
(—N/4

VAL (1) ~ (—z’)N( 7 (N+\/ —1)2 ) 1)/2(N—1)2+4)_1/4

X exp ((N(NZ_ D <1+ (N;l) >
(7)) )
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