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A PLURALITY OF (NON)VISUALIZATIONS: BRANCH POINTS

AND BRANCH CURVES AT THE TURN OF THE 19TH CENTURY

Michael Friedman

Abstract. — This article deals with the different ways branch points and
branch curves were visualized at the turn of the 19th century. On the one
hand, for branch points of complex curves one finds an abundance of visu-
alization techniques employed. German mathematicians such as Felix Klein
or Walther von Dyck were the main promoters of these numerous forms
of visualization, which appeared either as two-dimensional illustrations or
three-dimensional material models. This plurality of visualization techniques,
however, also resulted in inadequate images that aimed to show the varied ways
branch points could possibly be represented. For branch (and ramification)
curves of complex surfaces, on the other hand, there were hardly any represen-
tations. When the Italian school of algebraic geometry studied branch curves
systematically only partial illustrations can be seen, and branch curves were
generally made “invisible”. The plurality of visualizations shifted into various
forms of non-visualization. This can be seen in the different ways visualization
techniques disappeared.
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Résumé (Une diversité de visualisations et non-visualisations : points de
branchement et courbes de ramification autour de 1900.)

L’article traite des différentes façons de visualiser les points et les courbes
de branchement autour de 1900. De nombreuses techniques de visualisation
ont été employées pour les points de branchement de courbes complexes.
Des mathématiciens allemands comme Felix Klein ou Walther von Dyck ont
été les principaux promoteurs de cette multitude de visualisations, que ce
soit sous la forme d’illustrations ou de modèles matériels tridimensionnels.
Cependant, cette pluralité de techniques a également été à l’origine d’images
inadéquates visant à montrer les diverses manières possibles de représenter des
points de branchement. Pour les courbes de branchement (et de ramification)
de surfaces complexes, il est difficile de trouver une visualisation. Lorsque
les courbes de branchement ont été systématiquement étudiées par l’école
italienne de géométrie algébrique, seules des illustrations partielles ont pu
être trouvées, et les courbes de branchement ont été généralement rendues
« invisibles ». La pluralité des visualisations s’est transformée en une pluralité
de non-visualisations, dont témoignent différents modes de disparition des
techniques de visualisation.

INTRODUCTION

Ever since Bernhard Riemann (1826–1866) introduced the now well
known Riemann surfaces in his 1851 doctoral dissertation on complex
function theory, as the covering of the complex line (or of the projective
complex line) for multi-valued analytic functions in a complex region,
attempts have been made to visualize these coverings—and especially their
branch points. The question concerning how to visualize these functions
was also dealt with before Riemann’s introduction of curves as covering:
a complex valued curve y = f (x) is embedded in a four dimensional
space C

2 ; every point (x0; y0), when x0; y0 2 C such that y0 = f (x0) can
be represented then in a four-dimensional real space R

4 via a quadru-
ple (Re(x0); Im(x0);Re(y0); Im(y0)). Hence visualizing these complex
points (x0; y0) as a drawing on paper (by drawing for example only the real

points in R
2 , i.e., the points for which Im(x0) = Im(y0) = 0) or as model

in a three-dimensional space (by constructing models of surfaces whose
points are either (Re(x0); Im(x0); Im(y0)) or (Re(x0); Im(x0);Re(y0))
would always risk being insufficient from a mathematical as well as from
a visual point of view. 1 Notwithstanding this insufficiency, Riemann’s con-

1 To recall: for a given complex number c = a + bi, (where i =
p
�1), Re(c) = a,

Im(c) = b.
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cept of the complex curve as a covering, as I will show, prompted a variety
of visualizations.

The present article deals with the various visualizations of a special phe-
nomenon arising when considering these curves as covering of the com-
plex line. To give an example, consider the function y2 = x � 1 and its
projection to the x-axis:

p : f(x; y) 2 C
2 : y2 = x� 1g ! C; (x; y) 7! x:

Generically, every point x0 2 C has two different preimages
�

x0; y1
Ð

,
�

x0; y2
Ð

2 C
2 such that (y1)

2 = x0 � 1 and (y2)
2 = x0 � 1. However,

for x0 = 1, the number of the preimages is less than two (explicitly, there
is only one preimage: (1; 0)). One might say that when considering the
points x00 2 C which are close to x0 = 1, the two preimages of x00 “come
together,” or “coincide” into one point when x00 approaches x0 . Consid-
ering only smooth functions, these points, whose number of preimages is
lower than the expected one, are called branch points; 2 while the points on
the curve, for which few of the preimages “come together,” are called—in
current terminology—ramification points. However, as the terminology
regarding these points was not standardized in the 19th century, they
were also usually referred to as branch points (“Verzweigungspunkte” or
“Windungspunkte” in German), a usage I will follow. It should also be
noted that when n preimages “come together,” one says that the branch
point is of order n� 1.

The same phenomenon may also happen when considering complex
surfaces as a cover of the complex plane C

2 , when in this situation, the
collection of branch points is in fact a complex curve in C

2 , called the
branch curve of the complex surface (when considered as a covering). 3

The question that this paper would like to answer concerns the nature
of the various visualizations of branch points and branch curves during
the 19th and the 20th century. More precisely, the paper, concentrat-

2 In fact, the map p can be any surjective holomorphic map between a Riemann sur-
face and the projective complex line (using current terminology).
3 And the corresponding curve on the surface is called in current terminol-
ogy ramification curve (see Section II). The explicit computation of branch curves
(and also of branch points) can be easily done—from a computational point of
view—, at least when one deals with projections. For example, given a cubic surface:
f (z) = z3 � 3az + b, where a and b are homogeneous forms in (x; y; w) of degrees 2
and 3 respectively, and the projection is given by (x; y; w; z)! (x; y; w). In these coordi-
nates, the ramification curve is given by the intersection of the surface and its deriva-
tive with respect to z , i.e., of f = 0 and df=dz = 0 = z2 � a = 0 and the branch curve
B is therefore given by b2 � 4a3 = 0, being a curve of degree 6.
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ing on the years between 1874 and 1929, aims to show in Section I that
while for branch points (of finite order)—either on the complex line or
on the curve—there was an abundance of visualizations or a plurality of
visual interpretations, for branch curves, the situation, as I will examine in
Section II, was actually quite the opposite: while for branch points the dif-
ferent three-dimensional models and two-dimensional illustrations were at
times epistemological and stimulated further research, for branch curves,
similar illustrations—in the cases when they even existed—were mostly
considered technically; 4 visualization techniques were ignored or consid-
ered unnecessary. It is here where one notices a shift in the mathematical
practice of visualization: from a plurality of such techniques to either a
rejection of them or partial visualization of an “auxiliary machinery,” not,
however, of the object itself. In some cases, this “auxiliary machinery”
eventually became the object of research itself. In most cases, however,
as will be elaborated in the concluding Section III, one can see that the
plurality of visualizations was replaced by a plurality of non-visualizations,
prompted by different modes of disappearance.

1. BRANCH POINTS: EPISTEMOLOGICAL VISUALIZATIONS

In this first section, I will deal with what may be thought of as a counter
position to the situation concerning the visualization of branch curves, a
topic that will be dealt with in the second section. This section will aim
to show how branch points of complex curves were usually thought of
during the second half of the 19th century as what could (and should) be
visualized. This does not mean that all of the attempts at visualizing them

4 With these distinctions I follow throughout this article Hans-Jörg Rheinberger’s
differentiation between epistemic and technical objects. According to Rheinberger
“epistemic objects [...] present themselves in a characteristic, irreducible vagueness.
This vagueness is inevitable because, paradoxically, epistemic things embody what
one does not yet know.” [Rheinberger 1997, p. 28] These objects, their purpose, or
the field of research that they open and the questions that they may propose are not
yet defined or not yet canonically categorized. This is exactly what makes them into an
epistemological object, as they are in the process of becoming “well-defined” or “sta-
ble.” But “in contrast to epistemic objects, [...] experimental conditions”—and tech-
nical objects, as Rheinberger later adds—“tend to be characteristically determined
within the given standards of purity and precision. [...] they restrict and constrain”
the scientific objects [Rheinberger 1997, p. 29]. But while it seems that there is a clear
distinction between the not yet defined epistemological object and the clearly defined
technical one, Rheinberger immediately adds “The difference between experimen-
tal conditions and epistemic things, therefore, is functional rather than structural.”
[Rheinberger 1997, p. 30]
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were considered successful, satisfactory or even accepted by the entire
mathematical community. What I aim to show, by contrast, is how these
attempts were directed at illustrating and showing what branch points
looked like. Given that the research on the history of Riemann surfaces is
vast, a full-blown examination of how branch points were visualized during
this period and afterwards is beyond the scope of this paper. 5 Thus, for
example, I will not deal with Hermann Weyl’s influential book Die Idee der

Riemannschen Fläche [Weyl 1913]. Rather I will examine a few different
examples, especially from the last quarter of the 19th century and the first
quarter of the 20th century, which indicate that the research of branch
points of Riemann surfaces was coupled not only with analytical investiga-
tion within the domain of function theory, or with algebraic calculations,
but also with visual practices.

1.1. 1850–1865: Puiseux, Riemann and Neumann

A year before Riemann’s presentation of his dissertation, Victor Puiseux
(1820–1883) in 1850 published his manuscript Recherches sur les fonc-

tions algébriques, dealing with complex functions defined by an equation
f (u; z) = 0. Puiseux, one might say, viewed complex curves as a covering
of the complex line C, which would be defined, as noted above, using
contemporary notation, as follows:

pr : f(u; z) 2 C
2 : f (u; z) = 0g ! C; (u; z) 7! z:

Assuming that for the function f(u; z) the degree of z is p, given a
complex point z0 on the z -axis, Puiseux asks what would happen to the
p solutions of the equation f(u; z0) = 0, that is, to the points in the set
pr�1(z0) = u1(z0); : : : ; up(z0), when the point z0 moves along a closed
path, which avoids passing through points z0 for which two or more values
ui(z

0) coincide (recall that the z axis is the complex line C, which is topo-

5 On the development of the concept of the n-dimensional manifold beginning
from the 1850s with Riemann and his concept of covering, see e.g., [Scholz 1980;
1999] The topic concerning the various visualizations of Riemann surfaces (and not
necessarily their branch points), starting from the second half of the 19th century,
also deserves a more elaborate discussion than that presented here, one which would
also take into account their digital visualization.

For an extensive survey of Riemann’s work and the responses to it, see [Gray 2015,
p. 153–194]; see also [Bottazzini & Gray 2013, p. 259–341] for a similar discussion,
also containing other figures of branch points, similar to what is shown in this paper;
Bottazzini and Gray show that Gustav Holzmüller in his 1882 book Einführung in die

Theorie der isogonalen Verwandtschaften und der conformen Abbildungen [Holzmüller 1882,
p. 271] and Felice Casorati with his sketches of Riemann surfaces in 1864 also drew
figures of different visualizations of branch points [Neuenschwander 1998, p. 23].
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logically a two-dimensional real space). Puiseux is explicitly interested
in the following situation: “Let A be a point for which the p roots of the
equation f(u; z) = 0 become equal.” 6 [Puiseux 1850, p. 385] He initially
looks at what happens on the z -axis: first denotes by a the z -value of the
point A, that is pr(A) = a. Taking C , a point on the z -axis being close to a,
he “draws” an infinitesimal loop called “CLMC ” (see fig. 1.(I)), encircling
the point a, beginning and ending at a point C . 7 Finally he examines,
moving the z coordinate along this loop (beginning and ending at C),
what happens to the solutions u1; : : : ; up of the equation f(u; z) = 0.
As Puiseux describes, after one time encircling along this loop, the val-
ues u1; u2; : : : ; up are permuted cyclically to u2; : : : ; up; u1 [Puiseux 1850,
p. 387–388].

For Puiseux the way to understand this phenomenon was mainly by way
of analytical reasoning, though he did refer to drawings. While Puiseux
calculates algebraically what happens to the values u1; u2; : : : ; up when the
point z moves along the “contour fermé,” the figures of this loop and of
other loops that Puiseux refers to support his reasoning, although they
are not essential to the argument. While one may suggest that for Puiseux,
the way to understand the transformation and permutations of the points
u1; u2; : : : ; up was also enabled by means of a visualization of the system
of loops, the drawing of the loops is extremely technical. This is to be
seen with two other articles: the first, in another paper of Puiseux from
1851 “Nouvelles recherches sur les fonctions algébriques,” which contains
only a single drawing [Puiseux 1851, p. 230]. Although the paper is a
continuation of the 1850 paper and often refers to it, the almost total lack
of figures shows that for the simple case of cyclic permutation, a depic-
tion of what a loop is actually unnecessary. The second indication of the
marginality of these illustrations is to be noticed with the 1861 German
translation of Puiseux’s 1850 paper: “Untersuchungen über die algebrais-
chen Functionen,” which Hermann Fischer made [Puiseux 1861]. In
contrast to Puiseux where the figures in the 1850 paper are to be found
on a separate sheet, Fischer combines the figures adjacent to the text. Not
underestimating this relocation of the figures, which certainly helped the
reader to see what is meant directly, Figure 9 of the 1850 Puiseux’s paper

6 “Soit maintenant A un point pour lequel p racines de l’équation f(u; z) = 0 de-
viennent égales.” Later Puiseux [1850, p. 385–386] notes that this condition is equiv-
alent to the vanishing of derivatives dif=dui , for i = 1; : : : ; p � 1 at the point A, when
dpf=dup(A) is not equal to 0.
7 “Décrivons autour de ce point [a] un contour fermé de dimensions infiniment
petites CLMC, fig 9.” [Puiseux 1850, p. 385]
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was omitted. This was the figure that showed the basic loop encircling the
branch point on the (complex) line. 8

That said, during the investigation of the behavior of the preimages
Puiseux neither distanced himself from any form of illustration nor did
he attempt to dissuade the reader from visualizing certain aspects of this
behavior. While investigating this behavior for curves with double point or
with triple point, Puiseux analyzed loops, which—when deformed—either
go around the image of the singular point or encircle it. Here the refer-
ence to the figures is essential, in order to understand the deformation
of the loop and correspondingly, how the preimages of the curve change
(see Fig. 1.(II), (III)) and how the preimages behave while encircling
a singular point. Indeed, when investigating the case of a double point,
where locally the degree of the curve is 2, as Puiseux explicitly notes, “Fig-
ures 18, 19 and 20 show us how [...] the points U1 and U2 [the preimages]
are changed, while the loop CLMC, while being deformed, has to cross
the point A [the image of the singular point].” 9 [Puiseux 1850, p. 423] In
this case, Puiseux points the reader to the immediacy of the transmitted
knowledge enabled by the figures.

Although he may seem to follow a similar reasoning, when turning to
Riemann we can see how the role of visualization (and also of the senses)
was given greater emphasis. This is apparent in his writings and in his
lectures notes. In his 1851 dissertation, Riemann starts with the following
definition of a surface as a covering: “For the following treatment we
permit x; y to vary only over a finite region. The position of the point 0 is
no longer considered as being in the plane A [i.e., on the complex line],
but in a surface T spread out over the plane. We choose this wording since
it is inoffensive to speak of one surface lying on another, to leave open the
possibility that the position of 0 can extend more than once [mehrfach
erstrecke] over a given part of the plane [...].” 10 [Riemann 1851, p. 7]

8 Although it is clear from the numeration of the figures in the 1861 translation that
Figure 9 should have been added.
9 “Les Fig. 18, 19 et 20 montrent comment se modifient [...] les points U1 et U2 ,
lorsque le contour CLMC , en se déformant, vient à franchir le point A.” The German
translation is as follows: “Aus den Figuren 18, 19 und 20 ist sofort ersichtlich, welche
Modificationen die von den Punkten U1 , U2 beschriebenen Curven erleiden, wenn
die Curve CLMC bei der Verschiebung den Punkt A überschreitet.”[Puiseux 1861,
p. 65–66] The key expression is “sofort ersichtlich”—“immediately apparent”.
10 “Für die folgenden Betrachtungen beschranken wir die Veränderlichkeit der
Grössen x; y auf ein endliches Gebiet, indem wir als Ort des Punktes 0 nicht mehr die
Ebene A selbst, sondern eine über dieselbe ausgebreitete Fläche T betrachten. Wir
wählen diese Einkleidung, bei der es unanstössig sein wird, von auf einander liegen-
den Flächen zu reden, um die Möglichkeit offen zu lassen, dass der Ort des Punktes 0
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Riemann implicitly suggests the imagining of the surface through the use
of visual metaphor: “a surface T spread out over the plane [...] more than
once.” The question that then logically arises is how this surface behaves

(I) (II) (III)

Figure 1. (I): Depiction of Puiseux’s CLMC loop, encircling the
branch point A [Puiseux 1850, Planche I, fig. 9]. 11 (II), (III):
Puiseux’s depiction of a deformation of a loop which originally
went through A, being the image of the double (singular) point B
[Puiseux 1861, p. 65, 66]. 12

at a neighborhood of a branch point. In his 1851 dissertation Riemann
calls these points “turning points [Windungspunkte]” [Riemann 1851,
p. 8], and his description is similar to Puiseux’s: when a point on a plane A

(i.e., on the complex line C) 13 moves around (“umkreisen”) the branch
point, a permutation (“Anordnung”) of the values of the surface occurs.
Riemann asks the reader to fix a distinctive image in his mind by drawing

über denselben Theil der Ebene sich mehrfach erstrecke [...].” Translation taken
from: [Baker et al. 2004, p. 4].
11 Drawing by M.F.
12 The figures are taken from [Puiseux 1861], as one can hardly recognize the de-
formation of the curve in the figures found in [Puiseux 1850, Planche I].
13 Or on the projective complex line CP

1 .
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certain figures: when he describes the permutation of the values, he first
indicates that in order to “fix ideas [Zur Fixierung der Vorstellung], draw a

circle of radius R around the point 0 in the plane A and draw a diameter
parallel to the x-axis [.. .].” [Riemann 1851, p. 26] 14 In 1857 he calls
this point a branch point: “Verzweigungspunkte,” using explicitly visual
metaphors, indicating that the different parts of the function in the neigh-
borhood of a branch point are called “branches [Zweige]”. 15 He then
defines a simple branch point and a branch point of multiplicity �+ 1:

A point of the surface T at which only two branches are connected, so that
one branch continues into the other and vice versa around this point, is called
a simple branch point [einfacher Verzweigungspunkt].

A point of the surface around which it winds �+1 times can then be regarded
as the equivalent of � coincident (or infinitely near) simple branch points. 16

[Riemann 1857, p. 110]

Although Riemann drew neither a single sketch nor a single drawing
of branch points in his published papers (either on the complex line or on
the surface itself), one can discover a few drawings of the local behavior
of the sheets of a Riemann surface in a neighborhood of a branch point
in the lecture series “Theorie der Functionen complexer Variabeln”. At
the end of the summer semester of 1861 when these lectures were coming
to a close, Riemann dealt with “multivalued functions” [“Mehrwerthige
Functionen”] [Neuenschwander 1996]. Riemann considers these as a
surface T covering the z -plane, and first defines the branch point on
the complex line z as “a point around which one sheet continues into

14 “Zur Fixirung der Vorstellungen denke man sich um den Punkt 0 in der Ebene
A mit dem Halbmesser R einen Kreis beschrieben und parallel mit der x-Axe einen
Durchmesser gezogen [...].” Translation taken from: [Baker et al. 2004, p. 23] (Cur-
sive by M.F.).
15 [Baker et al. 2004, p. 80–81]: “[...] the different prolongations of a given func-
tion in a given region of the z-plane will be called branches of the original function and
a point around which one branch continues into another a branch-point of the func-
tion.” ([Riemann 1857, p. 90]: “ [...] sollen die verschiedenen Fortsetzungen einer

Function für denselben Theil der z-Ebene Zweige dieser Function genannt werden
und ein Punkt, um welchen sich ein Zweig einer Function in einen andern fortsetzt,
eine Verzweigungsstelle dieser Function.”)
16 “Ein Punkt der Fläche T , in welchem nur zwei Zweige einer Function zusammen-
hängen, so dass sich um diesen Punkt der erste in den zweiten und dieser in jenen fort-
setzt, heisse ein einfacher Verzweigungspunkt. Ein Punkt der Fläche, um welchen sie sich
(�+1) mal windet, kann dann angesehen werden als � zusammengefallene (oder un-
endlich nahe) einfache Verzweigungspunkte.” Translation taken from: [Baker et al.
2004, p. 101].
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another is called a branch value of the function” 17 [Neuenschwander
1996, p. 74]. He then goes on to describe the neighborhood of a branch
point on the surface using a visual metaphor: “In the neighborhood of
such a point, the surface T can be regarded as a screw surface of infinitely
small height of the screw thread, the axis of which is perpendicular to the
z-plane at that point.” 18 [Neuenschwander 1996, p. 74] Riemann then
considers a surface (covering) of degree n, and looks at the n preim-
ages w1; : : : ; wn of the variable z when this variable runs through a closed
curve, which encircle several branch points in the z -plane (but which does
not go through them). [Neuenschwander 1996, p. 75] Indicating that the
permutation can be decomposed into a composition of cyclic permutation,
Riemann’s aim is to describe the permutation of these preimages—each
of which corresponds to a specific branch point. He accompanies this
explanation with two drawings: “Let for example the initial sequence of
the roots w1; w2; w3; w4; w5; w6; w7 , which changes, as a result of returning
to the starting point of a closed path on the z -plane, to the following
sequence: w3; w4; w6; w2; w7; w1; w5 . Thereupon one has, following the
diagram [Schema],

the permutation cycle:

w1 w3 w6
w3 w6 w1

þ

þ

þ

þ

w2 w4
w4 w2

þ

þ

þ

þ

w5 w7
w7 w5

Each cycle is distinct from the others and indicates a special branch point.”
[Neuenschwander 1996, p. 75–76] To explicate what is meant, Riemann
draws the following figure (see Figure 2) in his lecture: 19 As can be seen
here Riemann associated diagrammatic visualization (of the interchanging
of the sheets, see Figure 2) with a symbolic illustration of the permutation

17 “Ein Punkt, um welchen sich ein Blatt in ein anderes fortsetzt heißt ein Verzwei-
gungswert der Function.”
18 “In der Umgebung eines solchen Punktes kann die Fläche T als eine Schrauben-
fläche von unendlich kleiner Höhe des Schraubenganges betrachtet werden, deren
Axe in jenem Punkte senkrecht zur z-Ebene steht.”
19 As can be seen from Neuenschwander’s transcription [Neuenschwander 1996,
p. 76], not all students in Riemann’s course found it necessary to draw this image in
their notebooks. However, Neuenschwander notes that “such representations [of Rie-
mann surfaces] later became very widespread” [Neuenschwander 1998, p. 23].



A PLURALITY OF (NON)VISUALIZATIONS 119

Figure 2. Riemann’s drawing of seven strings, depicting, “geo-
metrically speaking,” “the order of the indices [.. .] how the lay-
ers [Blätter] of the surface T are intertwined with each other [in-
einander übergehen].” [Neuenschwander 1996, p. 76]

cycle; contrary to Puiseux, diagrams have the same status as symbolic nota-
tion.

It is worth emphasizing that apart from Riemann’s lecture notes and
those of his students, he also drew figures to illustrate certain concepts
in numerous of his papers. Riemann drew, for example, the double- and
triply-connected surfaces—illustrations, according to which three dimen-
sional models were prepared [see Figure 3.(I); Riemann 1857, p. 96].

(I) (II)

Figure 3. (I) Riemann’s depiction of triply connected Riemann
surface. The aim of these drawings is, according to Riemann,
to make n-connected Riemann surfaces more “anschaulich”
[Riemann 1857, p. 95]. (II) Material model of a triply connected
Riemann surface. © 2019 Model collection of the Mathematical
Institute, Göttingen University. The model was constructed in ca.
1888, and was mentioned in the 4th edition of Brill’s catalogue
Catalog mathematischer Modelle [Brill 1888, p. 36], where the
author refers explicitly to Riemann’s 1857 drawing. In addition,
it is noted that “these models with thin walls are made of more
durable material than plaster, in order to prevent accidental
breakage.” 20 [Brill 1888, p. 36]

20 “Diese Modelle mit dünnen Wandungen sind aus dauerhafterem Material als Gips
hergestellt, um ein Zerbrechen bei zufälligem Auffallen zu verhüten.”
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What role did visualization play for Riemann? It is first useful to remem-
ber that in his 1854 talk Über die Hypothesen, welche der Geometrie zu Grunde

liegen Riemann used the term Mannigfaltigkeit [manifold] in connection
with ‘magnitude’. He did this when he stated that he set himself “the task
of constructing the notion of a multiply extended magnitude” [Riemann
1854, p. 273]—invoking various motivations when first using the term.
When talking about continuous manifolds, the intuitions Riemann pro-
vides for choosing the term “Mannigfaltigkeit” are related to the positions
of sensuous objects and colors:

[.. .] occasions which give rise to notions whose measurement involves the
consideration of continuous manifolds are so rarely encountered in everyday
life that the location of material objects perceived through the senses, and
colors [die Orte der Sinnengegenstände und die Farben], are perhaps the only
simple examples of concepts whose modes of determination [Bestimmungs-
weisen] constitute a multi-dimensional manifold [Baker et al. 2004, p. 274,
Riemann 1854, p. 258].

What Riemann meant by manifolds of color is clearly influenced by the
philosopher Johann Friedrich Herbart. 21 Taking the concept of color,
each particular color is a mode of determination [Bestimmungsweisen] of
the general concept of color [Ferreirós 2007, p. 63], the totality of which
forms a manifold. Therefore, as a colored point changes in the manifold
of color, it does so continuously and “different colored points are thereby
determined.” [Banks 2013, p. 23] These references to colors as well as to
objects of the senses already show a favorable attitude toward the role of
visualization, as what is perceived through the sense of sight.

Secondly, it is in this context that Riemann sees his new conception of
the concept “function” as what may also be regarded as “geometric investi-
ture” [“geometrische Einkleidung”]—a means of “visualization” [“Zur
Veranschaulichung”] [Riemann 1851, p. 40]. Needless to say, Puiseux in
no way attempted to use such metaphors. 22 Riemann also mentions the
“anschauliche meaning” of the principal curvatures of a surface [Riemann
1854, p. 281] or the “spatial Anschauung,” respectively the “geometric in-

21 “Herbart proposes a more or less psychological explanation of continuity, which
emerges from the ‘graded fusion’ [abgestufte Verschmelzung] of some of our mental
images [...]. His preferred examples were those of the [...] colors, which produce a
triangle with blue, red and yellow at the vertices, and mixed colors in between.” [Fer-
reirós 2007, p. 46]; See also: [Scholz 1982].
22 Note that Riemann did refer to Puiseux in his early lectures of functions of several
variables [Neuenschwander 1996, p. 12]. Hence there was certainly a shift towards a
more visual thinking, when comparing Riemann to Puiseux.
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terpretation” of the Gaußian complex plane [Neuenschwander 1996, p. 5,
Riemann 1851, p. 22]. Detlef Laugwitz notes that Riemann’s treatment
of branch points and branch cuts was done by means of a “visualization
[of] the two leaves [Blätter], [which] penetrate along the branch cut”.
[Laugwitz 1996, p. 99] This is obviously noticeable when considering how
Riemann visualized several branch points of the surface together (see
Figure 2), pointing towards the way symbolic thinking (with the permu-
tation group) and visual thinking are intertwined. The fact that Riemann
had a favorable view regarding visualization and employing visual means
and metaphors (such as “leaves” or “branches”) to transfer his ideas was
also noticed later, at the end of the 19th as well at the beginning of the 20th
century. In 1886, Weierstraß criticizes Riemann’s image of an n-layered
Riemann surface as a “means of sensualisation” [“Versinnlichungsmittel”],
which cannot be transferred to the case of functions with several variables
[Weierstraß 1988, p. 144]. In 1925, Hermann Weyl indicates that Riemann
used multi-layered Riemann surfaces for the “illustration of the multiple
values of analytical functions” [“Veranschaulichung der Vieldeutigkeit
analytischer Funktionen”] [Weyl 1988, p. 18].

However, it is also essential to emphasize that Riemann was also
interested in the numerical relations between the different invariants
of the curve. In his 1857 paper “Theorie der Abel’schen Functionen,” Rie-
mann notes that 2 (p� 1) = w � 2n, where n is the degree of a covering
S ! CP

1 , w the number of simple branch points, and p is the genus of the
surface S [Riemann 1857, p. 114]. Zeuthen, Hurwitz, Chasles, Cayley, Brill
and others gave proofs and generalizations of this numerical approach.
The most well known generalization is the Riemann-Hurwitz formula for
any covering of a Riemann surface f : S ! T ,

2g � 2 = n � (2g0 � 2) +
X

p

(ep � 1);

where g is the genus of S , g0 is the genus of T , n the degree of f , and ep
the multiplicity of the branch point p. As we will see later at Section I.4, for
Hurwitz these numerical relations were connected with algebraic reason-
ing, and not necessarily with visual reasoning.

� � �

It must be noted, however, that drawings of the real part of complex
curves f(x; y) = 0 existed long before Riemann considered these curves
as (branched) covering the complex line C or the projective line CP

1 -–
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such drawings were prompted by the introduction of analytic geometry. 23

These drawings also included drawings of singular curves in the real plane,
and hence also of their singularities (nodes, cusps etc.). The problem was
that once these curves were considered as Riemann surfaces, although
the behavior of complex functions in the neighborhood of branch points
(and hence also of singular points) became well understood from an ana-
lytical point of view, the two-dimensional drawings and three-dimensional
material models that were made during the second half of the 19th cen-
tury indicated that what was missing was a visualization of branch points
as points of the Riemann surfaces, in addition to a clear depiction of a
neighborhood of them.

It was Carl Gottfried Neumann (1832–1925), a German mathemati-
cian, known for his work on integral and differential equations and for
his contributions to electromagnetism, who introduced, in his 1865 book
Vorlesungen über Riemann’s Theorie der Abel’schen Integrale a plurality of two-
dimensional illustrations of branch points of Riemann surfaces, as well as
of their neighborhood. As I will show in the later sections below, these fig-
ures were subsequently redrawn in different textbooks and manuscripts,
and in addition, few three-dimensional models followed Neumann’s
two-dimensional figures while being constructed.

Neumann begins his book by indicating that the new theory of abelian
and elliptical integrals is in somewhat of a poor state; however, this
“grievance” can be resolved once “the new ways of Anschauung [neue
Anschauungsweise]” of Riemann surfaces are taken into account. As we
will see momentarily, these new “ways of Anschauung” are done with new
methods of visualization. 24 Nevertheless, it also must be noted that this
approach was not restricted to Riemann surfaces. Neumann explicitly
notes that: “There are other parts of the mathematical science on which
this way of Anschauung [jene Anschauungsweise] will probably have no
less powerful effect.” [Neumann 1865, p. iv] Thus, for example, Neumann
mentions the Gauss plane of the complex numbers as what may enable
not only the “obtaining [of] an anschauliche idea [Vorstellung]” of a pair
of complex number, but also “to sensualize [versinnlichen] all pairs of
values through it.” [Neumann 1865, p. 45]. A similar expression appears
later. When discussing an integral between two points, Neumann notes

23 Although these drawings were not necessarily thought of in terms of drawing a
real part of a complex curve.
24 Indeed, Neumann calls for developing exactly these “new methods” [Neumann
1865, p. iv].
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that one can “obtain an anschauliches image [Bild], when one is assisted
with certain geometric ideas” [Neumann 1865, p. 63]. 25

If one considers how branch points were visualized, Neumann points
not only towards new visualization techniques, but also towards the ma-
terial construction of mathematical objects. Explicitly, chapter five of
Neumann’s book deals exactly with the new ways of visualizing branch
points, among other objects. Neumann presents in this chapter several il-
lustrations, which depict branch points. One of them, being an illustration
of a simple branch point, points towards the construction of a material
model. Still using Riemann’s old coinage for the branch point, i.e., “Win-
dungspunct” (and not “Verzweigungspunkt”), Neumann notes: 26

We shall [.. .] be able to obtain a restricted branched surface [Windungs-
fläche] by superimposing two flat circular surfaces (Fig. 34) [see Figure 4.(I)],
slitting them along two superimposed radii, and then stitching together the op-
posite edges of the upper and lower slits namely the edge � with �0 and � with
�0 [Neumann 1865, p. 165–166].

The point C , obtained via this cut and stitch process (see Figure 4.(I)),
is the branch point. Here one cannot say that the “cut and stitch process”
is simply a metaphor, since it clearly directs the reader to perform these
material actions in order to “sensualize” the researched mathematical ob-
ject. That said, the process of stitching does not have to be exact: Neumann
then notes that the curve connecting the two edges should not be neces-
sarily a straight line—it is in fact “inessential” that it would be straight—but
rather the connecting curve can have an “arbitrary form [Gestalt]” [Neu-
mann 1865, p. 166]. The illustration in Figure 4.(I) is therefore not exact
and does not aim to be so; this is also clear from the fact that the Riemann
surface does not intersect itself (although it might be so implied, when
constructing the model materially; compare Section I.3, Figure 6).

Immediately after this section, Neumann suggests another way to visu-
alize the behavior of the different sheets in the neighborhood of a branch
point: this is done by sketching a circular loop on the Riemann surface,
encircling the branch point on it [Neumann 1865, p. 167–168]. The loop
obtained illustrates a path on the different sheets, describing their relation

25 “[Man kann] ein anschauliches Bild verschaffen, wenn man gewisse geometrische
Vorstellungen zu Hülfe nimmt.“
26 “Wir würden [...] eine solche begrenzte Windungsfläche auch dadurch erhal-
ten können, dass wir zwei ebene Kreisflächen (Fig. 34) übereinanderlegen, diesel-
ben längs zweier über einanderliegenden Radien aufschlitzen, und sodann die ent-
gegengesetzt liegenden Ränder des oberen und des unteren Schlitzes mit einander
zusammenheften, nämlich den Rand � mit �0 und � mit �0 ”.
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(I) (II)

(III) (IV)

Figure 4. Three of Neumann’s suggestions for visualizing branch
points and their neighborhoods: (I): stitching together two circles
to depict a simple branch point [Neumann 1865, p. 166]. (II),
(III): Sketch a loop on the Riemann surface, encircling a simple
branch point and two branch points of order 3 [Neumann 1865,
p. 167, 168]. (IV): A section of a Riemann surface in the neighbor-
hood of two branch points [Neumann 1865, p. 199].

to the branch point. While Figure 4.(II) describes this loop encircling a
simple branch point, corresponding to Figure 4.(I), Figure 4.(III) depicts
the behavior of the sheets in the neighborhood of two different branch
points of order 3; producing a material model of these two types would
be more problematic from a material point of view, and Neumann indeed
does not even suggest it.

An even more simplified representation is later suggested by Neumann—
indeed, he notes explicitly that the surfaces are “represented [dargestellt]”
by these new figures [Neumann 1865, p. 198]. These figures represent
the behavior of the sheets in a neighborhood of branch points, as can be
seen in Figure 4.(IV) (compare Riemann’s drawing in Figure 2). In this
Figure Neumann draws a (plane) section of the Riemann surface of the

function 3

q

z�A
z�B

in the neighborhood of the two branch points A and B

[Neumann 1865, p. 199]. One could say that Neumann draws a braid here.
This method of presenting a section of a neighborhood of a branch point
as a braid we already saw in Riemann’s lectures and will be seen again
in the works of Francesco Severi and Federigo Enriques, among other
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mathematicians, in the 20th century (see Section I.5). However, already
here it is important to note that Neumann emphasizes that this depiction
is not exact: the fact, that “the lines [in Figure 4.(IV)] are straight and lie
one over the other is non essential.” 27 [Neumann 1865]

1.2. Klein and the new type of Riemann surfaces

Despite the many new ways Neumann visualized branch points, these
also indicated a need for more exact visual aids. What is clear, however,
is that Neumann’s approach towards visualization was more explicit than
Riemann’s and more sympathetic than Puiseux’s. Neumann’s attitude
is clearly expressed in his attempts to “sensualize” the new anschauliche

methods. This is done either by means of diagrams or materially, through
cutting and gluing pieces of paper. Yet Neumann also emphasized that
these new methods may be inaccurate—or to be more exact, that their
accuracy of representation is not essential. This resulted in the above ne-
cessity, which is especially apparent in a series of papers Felix Klein wrote
on Riemann surfaces, their singularities and their dual curves written
between 1874 and 1876. 28 Klein notes at the beginning of his 1874 paper
“Über eine neue Art der Riemannschen Flächen”: 29

In the investigation of the algebraic functions y of a variable x, two different
illustrative aids [anschauungsmäßiger Hilfsmittel] are employed. One represents ei-
ther y and x uniformly as the coordinates of a point of the plane, where the real
values of the plane alone are represented, and the image [das Bild] of the alge-
braic function becomes the algebraic curve; or that one spreads the complex
values of the variable x over a plane [i.e., C] and denotes the functional rela-
tions between y and x by the Riemann surface constructed over the plane. It
must be desirable in many respects to have a transition between these two illus-
trative images [Anschauungsbildern] [Klein 1874, p. 558].

Presenting the two methods of visualizing algebraic functions: either
considering only the real part of the complex curve in R

2 , or considering

27 “Dass diese Linien gerade über einander liegen, ist unwesentlich.”
28 See: [Parshall & Rowe 1994, pp. 168–169].
29 “Bei der Untersuchung der algebraischen Funktionen y einer Veränderlichen x
pflegt man sich zweier verschiedener anschauungsmäßiger Hilfsmittel zu bedienen. Man
repräsentiert nämlich entweder y und x gleichmäßig als Koordinaten eines Punktes
der Ebene, wo dann die reellen Werte derselben allein in Evidenz treten und das Bild
der algebraischen Funktion die algebraische Kurve wird—oder man breitet die kom-
plexen Werte der einen Variabeln x über eine Ebene aus und bezeichnet das Funk-
tionsverhältnis zwischen y und x durch die über der Ebene konstruierte Riemannsche
Fläche. Es muß in vielen Beziehungen wünschenswert sein, zwischen den beiden An-

schauungsbildern einen Übergang zu besitzen.“ (Cursive by M.F.)
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the surface embedded in a three-dimensional space obtained from consid-
ering x as a complex variable in the C (having two coordinates) and the
real values of y -–Klein finds both unsatisfying. The first is only an image
(“Bild”) of the real part of the function—hence incomplete; the second,
though being a complete image (“ein vollständiges Bild” [Klein 1874,
p. 559]), does not represent singularities (such as nodes) well, likewise
neither inflection points nor branch points. The problem was therefore
to give a satisfying “Anschauungsbild,” that would account for the unique
structure of the curve, and hence, for its branch points.

Klein’s solution was to investigate, together with the given curve,
another curve: the dual curve in the projective complex plane. The dual
curve, whose points correspond to the set of lines tangent to the origi-
nal curve C , is obtained by sending each point to the point dual to its
tangent line. 30 Most of Klein’s drawings did not consider the visualization
of branch points and singular points as points on a Riemann surface,
but rather followed Plücker’s investigation of the connections between
the invariants of algebraic curves to the corresponding invariants of their
dual curves; specifically, Klein aimed also towards “visualizing [Veran-
schaulichung]” these relations [Klein 1876, p. 404]. However, at the end
of his 1874 paper a sketch is given of how a branch point of a singular
curve of the third degree looks like: “one awards to the [Riemann] surface
an [...] outgoing branching [...], as illustrated [in Figure 5], for example,
in a symmetrical manner, by the drawing.” 31 [Klein 1874, p. 566]

However, from the sketch alone it is not clear how the different
branches “interact” with each other or how one may pass from one branch
to the other. Although the different directions of the drawn diagonal lines
on each layer refer to different visual perceptions (or even to different
haptic sensations, as if touching a similar engraved surface would transmit
the difference between the layers), Klein in no way elaborates on this. This
problematic, of how actually the different branches “behave,” is only dealt
with visually in the 1880s.

1.3. Material models and the coloring of branch points

Several years later, Klein’s ideas were taken a step further. It is essential
to note that the drawings in Klein’s series of papers from 1874–1876 were
not the only suggestion that he made for visualizing Riemann surfaces. At

30 Note that the dual curve C_ is a curve in the dual projective space (CP2)_ .
31 “[...] man [erteilt] der Fläche eine [...] ausgehende Verzweigung [...], wie sie
etwa, in symmetrischer Weise, durch die beigesetzte Zeichnung veranschaulicht ist.”
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Figure 5. Klein’s visualization of an order 2 branch point [Klein
1874, p. 566]. Compare Figure 6.

the end of this section and also in Section I.4, I will discuss Klein’s other
visualizations. One should also note that Klein’s paper “Über die Transfor-
mation siebenter Ordnung der elliptischen Funktionen,” appearing four
years after his 1874 paper, points to a three-dimensional model made by the
mathematician Walther von Dyck (1856–1934) in order to visualize a Rie-
mann surface; this was done while investigating the simple group of 168
elements [Klein 1879, p. 132, footnote 29]. 32 In this article Klein also de-
clares that his goal is to “design the most anschauliches image [Bild] of the
branching of the Riemann surface” [Klein 1879, p. 91]. 33 To emphasize: in
Neumann’s figures (see Figure 4 in this present article) as well as in Klein’s
figure (see Figure 5), the neighborhood of the branch point (of the dis-
cussed Riemann surface) is visualized via two-dimensional images [“Bild”]
of (the real part of) a Riemann surface, which is embedded in a three-
dimensional space. One may ask, and it is something I will address later
(see Section I.6), what Klein precisely means by “the most anschauliches im-
age,” when several models are given. Dyck’s three-dimensional model in-
dicates that it is with the popularization and spread of the material mod-
els of mathematical objects in Germany during the last quarter of the 19th

32 For a drawing of this model, see: [Gray 1982, p. 65]. The Riemann surface is now
known as the Klein’s quartic (having the equation x3y+ y3z+ z3x = 0), and the group
is the automorphism group of this curve.
33 “[...] ein möglichst anschauliches Bild von der Verzweigung der Riemannschen
Fläche zu entwerfen.”
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century that new methods of visualizing branch points were promoted, as
already noted above.

The tradition of manufacturing models of mathematical objects (from
plaster, wood, cardboard, strings etc.), which began in France from the
second quarter of the 19th century, became abundant in Germany starting
from the 1860s. 34 Several leading mathematicians—such as Klein, Alexan-
der Brill and Dyck—supported and advocated the dissemination of such
models, even if the entirety of the mathematical community in Germany
did not support this anschauliche geometry. The aim of these models, as
was the vision of Klein and Brill, was the transmission of mathematical
knowledge visually as well as materially (and certainly not only symbol-
ically). In that sense, the material models were epistemological, as they
prompted the emergence of new knowledge. 35 This transmission—not
via formulas, or via the proof of theorems—was considered not only as a
legitimate activity, but also as what offers a complementary view concern-
ing the mathematical object. 36 The influence on the research was clear,
at least for Brill and Klein. Thus, for example, Klein remarked in 1872
that: “For geometry a model—be it realized and observed or only vividly
imagined—is not a means to an end but the thing itself” 37 [Klein 1872,

34 A famous example is the various models from plaster of the cubic surface with the
27 real lines on it, made by, among others, Christian Wiener and Adolf Weiler. See:
[Rowe 2013; Tobies 2017]. For recent studies on material mathematical models dur-
ing the end of the 19th century, see e.g.,: [Mehrtens 2004; Rowe 2017; Sattelmacher
2013; Schubring 2017].
35 See: [Mehrtens 2004, p. 289–291] regarding models as “epistemic things“. See
also: [Sattelmacher 2013].
36 The clearest indication to that is the relatively high number of mathematical ex-
hibitions, aimed either to scientists or also to the general public. These exhibitions
took place during 1876 and 1925 in London, Munich, Chicago, Heidelberg and Edin-
burgh, among other places. In the German exhibitions especially, there was a greater
emphasis on the situation of the then contemporary mathematics and making such
mathematics visual and haptic. This occurred precisely during the period when math-
ematical objects were beginning to be considered in a more non-visual way. A key mo-
ment was the 1893 exhibition in Munich, as well as the later exhibition in Chicago in
the same year. See: [Hashagen 2015; 2003, p. 425–436].
37 “Ein Modell—mag es nun ausgeführt und angeschaut oder nur lebhaft vorgestellt
sein—ist für diese Geometrie nicht ein Mittel zum Zwecke sondern die Sache selbst.”
Translation taken from [Mehrtens 2004, p. 289]. Mehrtens notes that with this re-
mark, Klein distances himself from the strict abstract nature of his program. More-
over, Klein also emphasizes the pedagogical role of material models, as they serve the
visualization of mathematical objects (“Die Anschauung hat für ihn [den mathematis-
chen Inhalt] nur den Werth der Veranschaulichung, der allerdings in pädagogischer
Beziehung sehr hoch anzuschlagen ist. Ein geometrisches Modell z. B. ist auf diesem
Standpuncte sehr lehrreich und interessant. ” [Klein 1872, p. 42])
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p. 42]. At the end of the 1880s Brill notes the success of this tradition,
essentially contributing to research on mathematical objects. Indeed, he
claimed in 1887: “Often the model prompted conversely subsequent,
retroactive investigations regarding the peculiarities of the presented
form” 38 [Brill 1887, p. 77]. Klein was one of the supporters of the material
model tradition in particular and of visualization in general. In a lecture
given in Chicago in 1893, he notes that “mathematical models and courses
in drawing are calculated to disarm [...] the hostility directed against the
excessive abstractness of university instruction [in mathematics]” [Klein
1911, p. 109]. Two years later, in the lecture “Über Arithmetisierung der
Mathematik” given on the 2 November 1895, Klein notes that for him,
while—as noted above—one should look for the most “anschauliches Bild,”
namely models as well as two-dimensional drawings, this Anschauung is
twofold: both cultivated (with the help and influence “of logical deduc-
tion”) and “naive Anschauung, largely a natural gift, which is unconsciously
increased by minute study of one branch or other of the science.” More-
over, Klein maintains “that mathematical Anschauung—so understood—is
always far in advance of logical reasoning and covers a wider field” [Klein
1896, p. 246]. Hinting towards the connection between the mathematical
Anschauung and models and drawing, Klein adds: “Modern psychologists
distinguish between visual, motor and auditory characteristics; mathe-
matical Anschauung [.. .] appears to belong more closely to the first two
classes [.. .]” [Klein 1896, p. 247]. It is no coincidence that Klein relates the
visual and the haptic (i.e., the “motor”) to the mathematical Anschauung.
Indeed, in 1892, Walther von Dyck asked the physicist Ludwig Boltzmann,
the editor of the catalogue of the exhibition mathematisch-physikalischer

Apparate, Modelle und Instrumente, to write a contribution entitled “Über
die Methoden der theoretischen Physik”. Klein was heavily involved in
the preparation of this exhibition, and wrote the opening article in the
catalog, called “Geometrisches zur Abzählung der reellen Wurzeln alge-
braischer Gleichungen” [Klein 1892]. In the same part of the catalogue,
where Klein’s paper appears, Boltzmann describes in his contribution
that material mathematical models served “to make the results of our
calculation perceptible [anschaulich zu machen] and that not merely by
the imagination [Phantasie], but visible to the eye and at the same time
palpable to the touch by means of gypsum and cardboard” [Boltzmann

38 “Öfter veranlasste umgekehrt das Modell nachträgliche Untersuchungen über
Besonderheiten des dargestellten Gebildes.”
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1892, p. 90; translation taken from: Boltzmann 1915, pp. 201–202]. 39

What is evident in Boltzmann’s 1892 conception—which, as I claim, Klein
follows—is his differentiation between the senses: the seeing eye versus
the touching hand. When a merger supposedly occurs, or at least an
agreement, this happens between two senses with the help of the material
model and the drawing.

Given this background, it is not at all surprising to find also material,
three-dimensional models of branch points of Riemann surfaces; and in-
deed, two types of material models appeared starting from the middle of
1880s, 40 and both were presented during the 1893 exhibition in Munich
and later in the catalogue of the exhibition. The exhibition took place
during the third annual meeting of the German Mathematical Society
(Deutsche Mathematiker-Vereinigung) organized by Dyck, which consisted
mostly of mathematical models.

The first model (see Figure 6) might be considered as a three-
dimensional realization of a Riemann surface in the neighborhood of
a branch point of order 2, as Neumann depicted in Figure 4.(I) (for a
simple branch point) and as Klein depicted in Figure 5. The model, de-
scribed in the fourth edition of Brill’s Catalog of mathematical models [Brill
1888, p. 48] and in Dyck’s catalogue as one of three models of different
Riemann surfaces, is described simply as a model of a “three-leaves simply

connected Riemann surface, which has at its center a branch point of the sec-
ond order.” 41 [Dyck 1892, p. 176] Comparing it to the two-dimensional
image that Klein drew, this three-dimensional model is a better visualiza-
tion of what the Riemann surface looks like. The arrows drawn on this
model also help to understand visually what happens on the surface, in
terms of monodromy, when the Riemann surface is considered as a cover-
ing of the complex line; the arrows show the movement of the different
points on the surface, while—when taking into account Puiseux’s ideas—
considering the preimages moving along a small loop (on the complex
line) encircling the point 0 being the branch point. This model, though
it is not known exactly when it was made, shows visually what Puiseux
described algebraically.

39 “[...] die Resultate des Calcüls anschaulich zu machen und zwar nicht blos für
die Phantasie, sondern auch sichtbar für das Auge, greifbar für die Hand, mit Gips
und Pappe.”
40 It is essential to emphasize that the earliest catalog of mathematical models,
which lists the models discussed in this section, is Brill’s 1888 catalog. Brill’s catalog
of mathematical models from 1885 [Brill 1885] does not present these models.
41 “Modell einer dreiblättrigen einfach zusammenhängenden Riemann’schen Fläche,
welche in ihren Innern einen Windungspunkt zweiter Ordnung enthält.”
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Figure 6. A model of a branch point of second order on a Rie-
mann surface, preserved in the Göttingen Collection of Mathe-
matical Models and Instruments (compare with Figure 2). A sim-
ilar model of a branch point of first order on a Riemann surface
was also produced. © 2019 Model collection of the Mathematical
Institute, Göttingen University.

Nevertheless, this model might have been as problematic: an untrained
student might have thought, seeing the model, that the Riemann surface
intersects itself, which is not at all the case. The problem with this visu-
alization stems, as noted above, from the attempt to visualize a complex
curve in C

2 as an object in a three-dimensional space R
3 . Whereas it

might be thought that the curve intersects itself when only looking at the
model, this confusion actually stems from ignoring the different colors
drawn on the model. The “self intersection” is only due to the fact that for
a complex curve, given by the equation f(x; y) = 0 (when x; y 2 C) only
a three-dimensional section is (and can be) presented, i.e., of the points
(Re(x); Im(x);Re(y)). This mode of presentation causes points, which
only differ in their Im(y)-values, to coincide in the three-dimensional
model. The way to show that these points are actually different was to
color the model: in the neighborhood of the “intersection line” there are
different colorings, i.e., black lines are drawn on one layer, in order to
differentiate it from the second “intersecting” layer, which is white. This
is done in order to make it visually clear that these layers do not really
intersect, and the method shows that coloring the model had a unique
function of its own: to designate the fourth coordinate.

The second model presented at Dyck’s 1893 exhibition, which was
already produced in 1886 under the guidance of Dyck in Munich at the
Technische Hochschule, is somewhat more surprising. Under the heading
“16 models for presenting of functions of complex variables,” the de-
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scription in Dyck’s catalog begins with addressing the above-mentioned
difficulty: 42

The present series of models was developed following an introductory
lecture on function theory. The difficulty of a visual description [anschaulichen
Schilderung] of the behavior of a function in the neighborhood of singular
points led to the desire, to have also in this field, and at least for the most
important singular points, the means of spatial intuition [räumlicher Anschau-
ung], which has proven itself during teaching so appropriate and favorable in
a number of other fields.

In order to visualize by a spatial representation [um ... durch eine räumliche
Darstellung zu veranschaulichen] the behavior of a function of a complex variable
in the neighborhood of certain singular points, and also the whole behavior of
certain types of functions of a complex variable, both the real and the imag-
inary part of the value of the function are considered as being a coordinate
above the plane of the complex argument. Thus, every function of a complex
argument is represented by two surfaces, which are denoted by R and I , the
simultaneous consideration of which gives an image [Bild] of the behavior of
the function [Dyck 1892, p. 176].

The goal of the models was to present visually and materially—in a
more precise way than the depiction in Figures 1 or 2—the way com-
plex functions behave in the neighborhood of branch points. Indeed,
while Dyck notes explicitly that he is interested in the visualization of the
neighborhood of “singular points,” several of the functions, which are
investigated, are not singular (e.g., the function w2 = z2 � 1) but rather

42 “Die vorliegende Serie von Modellen ist entstanden im Anschluss an eine ein-
leitend Vorlesung über Functionentheorie. Die Schwierigkeit einer möglichst an-
schaulichen Schilderung des Verhaltens einer Function in der Umgebung singulärer
Stellen liess den Wunsch aufkommen, auch auf diesem Gebiete und wenigstens für
die wichtigsten singulären Vorkommnisse das Hilfsmittel räumlicher Anschauung zu
besitzen, das schon auf einer Reihe anderer Gebiete so zweckmässig und fördernd im
Unterricht sich erwiesen hat.

Um den Verlauf einer Function einer complexen Veränderlichen in der Umge-
bung gewisser singulärer Stellen und ebenso den Gesamtverlauf gewisser Typen von
Functionen einer complexen Veränderlichen durch eine räumliche Darstellung zu ver-

anschaulichen, sind in der bekannten Weise sowohl der reelle als auch der imaginäre
Teil der Functionswerte über der Ebene des complexen Argumentes als Ordinaten
aufgetragen. So wird jede Function eines complexen Argumentes durch zwei mit R
und I bezeichnete Flächen versinnlicht, deren gleichzeitige Betrachtung ein Bild des
Functionsverlaufes liefert.” (cursive by M.F.) An almost identical text appears in Brill’s
1888 Catalog mathematischer Modelle, when describing these models [Brill 1888, pp. 48–
49]: models 173–182 are described as “16 Models for the representation of func-
tions of a complex variable. Executed under the direction of Prof. Dr. Walther Dyck.”
(“16 Modelle zur Darstellung von Functionen einer complexen Veränderlichen. Aus-
geführt unter Leitung von Prof. Dr. Walther Dyck.”). The passage that follows is iden-
tical to the second passage in the above citation.
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have branch points when considered as a covering. Comparing this to
Klein remarks in 1874, that the three-dimensional surface is a complete
image (“ein vollständiges Bild”), it seems that Dyck rather urged that the
consideration of two complementary images, or models, were needed. Given
a complex function f(w; z) = 0, Dyck guided his students to construct two
models, while considering w as a complex variable on the plane: the first,
by considering the values (Re(w); Im(w);Re(z)) as a three-dimensional
surface (denoted by R in the above citation); the second, considering
the values (Re(w); Im(w); Im(z)) as a second three-dimensional surface
(denoted by I in the above citation). Thus, two three-dimensional models
are presented for several functions. For example, the two models for the
function w2 = z2 � 1 are presented in Figure 7.(1), where the branch
points are located above z = 1 and z = �1.

(1)

(2)

Figure 7. (1) The two models, produced by A. Wildbrett under

the guidance of Dyck [Brill 1888, p. 49], of the surface w2 = z2�1,
as preserved in Göttingen. Left: the real (R) part of the surface

w2 = z2 � 1; right: the imaginary (I ) part of the surface w2 =

z2 � 1. © 2019 Model collection of the Mathematical Institute,
Göttingen University. (2) The “orthogonal system” of the surface

w2 = z2 � 1, apparently belongs to the real part, which was used
to construct the two models [Dyck 1886, p. plate 1, Figure 1].
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Indeed, these models are more surprising. Not only are they an alterna-
tive to Klein’s proposals regarding the visualizations of Riemann surfaces
(with the dual curve), but they also show the limits of the visualization of
Riemann surfaces. Klein already noted the two common methods to visu-
alize complex curves (drawing only their real part or producing the ma-
terial model, i.e., the surface R in the above modeling) are insufficient.
The above method attempts to fix this insufficiency, but it does so only
by highlighting the fact that the complex curve defined by the equation
f (w; z) = 0 in fact naturally “lives in” C

2 , that is, in a four-dimensional
real space. Every one of the two models R and I are hence only partial
models of the curve. The question thus rises—what in fact the visual rela-
tions between the two models and the curve itself are? What are the rela-
tions between these models and the (drawing of the) real part of this curve
(i.e., when one considers the hyperbola w2 = z2 � 1 as a curve on the real
plane)? And what is the role of the solid, plaster model, when it is clear that
only the points lying on the surface are points that satisfy the equation of
the (real or imaginary part of the) surface? While the analytical relations
are clear, the models themselves need an elaborate explanation to enable
a “transition” between them as Klein suggested, in order that they will ac-
tually serve the goals that the anschauliche geometry posited.

Indeed, while Dyck (or one of his students) writes in a manuscript that
documents these models, that they should “sensualize [versinnlichen] the
behavior in the multi-valued function in the neighborhood of a branching
point” 43 [Dyck 1886, p. 4] the explanation that follows concentrates on
the analytical description of the surfaces. As Dyck describes, for the surface
w2 = z2 � 1, substituting w = u + iv , z = x + iy in the equation and
separating the real and the imaginary part of w , one obtains the surfaces
R and I as two real surfaces (in a three-dimensional real space) of the 4th
degree: 44

(R:) u4 � (x2 � y2 � 1)u2 � x2y2 = 0

(I:) v4 + (x2 � y2 � 1)v2 � x2y2 = 0

As the manuals concisely describe, in order to construct these models an
“orthogonal system” had to be drawn as a two-dimensional figure, taking

43 “[...] das Verhalten in der mehrwertigen Function in der Umgebung eines
Verzweigungspunkts versinnlichen.”
44 Moreover, as Gerd Fischer notes, the individual sheets of the real and the imagi-
nary part of the models were indicated by coloring. However, these colorations have
not survived into the 21st century, as can be seen in Figure 4. See [Fischer 1986b,
p. 78]. See also: [Fischer 1986a, photos 123, 124, p. 120–121].
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u = constant and v = constant, and obtaining a series of curves which may
be considered as level curves [Fischer 1986a]. An example for this system is
presented in Figure 7.(2), where the branch points are the points, which in
their neighborhood the squares of the orthogonal system become increas-
ingly smaller.

To sum up this section, it is worth noting that in 1897 Klein himself pre-
sented another drawing of branch points, this time referring implicitly, via
a two-dimensional drawing, to the three-dimensional model of the branch
point (see Figure 6). In the first volume of the book Vorlesungen über die The-

orie der automorphen Functionen, written by Klein and Robert Fricke, the au-
thors sketch “inner branch points [innere Verzweigungspunkte]” [Fricke
& Klein 1897, p. 372] (see Fig. 8). As can be seen from the drawing, from
the inner point a line exits, one side of it is darkened, the other side is
bright. This not only depicts another way of visualizing branch points, but
also that the gradual darkening used differentiates between the different
values around the branch point, and that the supposed self-intersection
does not take place in the four-dimensional space.

Figure 8. Different coloring in the neighborhood of a branch
point (to be seen at the center of the image); Cf. the colored
model in Figure 6.

These various illustrations and models 45 already indicate a plurality of
two- and three-dimensional practices of visualization. I will discuss the epis-
temological implications of this plurality later (see Section I.6), but one
may already ask what the implications of such plurality were. I claim that
one possible implication might be a turn towards an approach being less

45 The same models and almost identical descriptions also appear in subsequent cat-
alogs, see: [Schilling 1903, p. 119–120]; [Schilling 1911, p. 159].
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visually polymorphic, i.e., an algebraic-symbolical approach, as can be seen
with Adolf Hurwitz.

1.4. Hurwitz and the shift to the algebraic approach

Not every German mathematician during the 1890s who investigated
branch points thought their visualization necessary, either materially or
with a drawing. This is seen with Adolf Hurwitz’s 1891 paper “Ueber Rie-
mann’sche Flächen mit gegebenen Verzweigungspunkten”. The goal of
the paper was “to investigate the totality of the n leafed Riemann surfaces,
which are branched in a prescribed manner at w points,” 46 [Hurwitz
1891, p. 2] and one of the questions Hurwitz would like to answer is what
is the number N of “n-leafed” Riemann surfaces (that is, of degree n),
which are branched along the given w branch points.

It is already clear from the references Hurwitz mentions that he was well
aware of the traditions mentioned above regarding the visualization of
Riemann surfaces in general, and of branch points in particular. For exam-
ple, Hurwitz refers at the beginning of his paper to Klein’s article “Ueber
Riemann’s Theorie der algebraischen Functionen und ihrer Integrale”
[?]. In this article Klein used a new approach “to illustrate the intimate
connection between the genus p of a surface and the number of crossing
points that arise from the flows on it.” [Parshall & Rowe 1994, p. 179]
Inspired from potential theory, current flows on surfaces and Maxwell’s
Treatise on Electricity and Magnetism, 47 Klein presented new visualizations
related to Riemann surfaces by means of numerous figures and sketches of

46 “Die Gesammtheit der n blättrigen Riemann’schen Flächen zu untersuchen,
welche an w gegebenen Stellen in vorgeschriebener Weise verzweigt sind”. I follow
here also the analysis given in [Epple 1999, p. 186–192].
47 It is worth noting that Maxwell’s concept of “analogy” between the physical phe-
nomena he researched points to and echoes the plurality of visualization techniques
and their epistemological role—not only in pure mathematics but also in mathemat-
ical physics—as treated thoroughly by Karin Krauthausen. Following Krauthausen
[2014], while developing his theories on electricity and magnetism, extending
Michael Faraday’s work, Maxwell aimed in 1855 at finding a “geometrical model of the
physical phenomena” [Maxwell 1856, p. 158] (cursive by M.F.), using analogies as a
“method of investigation which allows the mind at every step to lay hold of a clear
physical conception, without being committed to any theory founded on the physical
science.” [Maxwell 1856, p. 156] One might argue that Maxwell’s conception of the
model reflects the plurality of visualization techniques taking place in mathematical
research (recall Maxwell’s 1874 clay model of the thermodynamic surface [Maxwell
2002, p. 148]), as described in this paper for the case of branch points; however, the in-
fluences between mathematical physics and pure mathematics regarding these tech-
niques of modeling and visualization is beyond the scope of the present paper. See
however [Epple 2016, p. 15–18].
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flows on various Riemann surfaces (see Figure 9) in his article. 48 Hurwitz
also refers to a paper by Dyck from 1880, in which the latter offers a visual
model of Riemann surfaces: “in so far as our subsequent investigations
are essentially guided by Riemann’s surface itself, it is first and foremost a
question of their visual [anschauliche] presentation.” 49 [Dyck 1880, p. 477]

Figure 9. Two of Klein’s drawings of currents on Riemann sur-
faces [?, p. 536].

Returning to Hurwitz’s paper, how does he approach the problem
of counting the number N of Riemann surfaces of degree n branched
over w points a1; : : : aw lying at a plane E? As Moritz Epple notes [Ep-
ple 1999, p. 187], the beginning of Hurwitz’s discussion is very similar
to Puiseux’s treatment. Hurwitz first chooses a point O on the two-
dimensional real plane E and then draws non intersecting paths l1; : : : ; lw
from O to a1; : : : ; aw . It is essential to note here that in his paper Hurwitz
mentions two other articles that dealt with the question of the construc-
tion and representation of Riemann surfaces. The first is Lüroth’s “Note
über Verzweigungsschnitte und Querschnitte in einer Riemann’schen
Fläche” [Lüroth 1871], which constructs a set of loops in a certain order

on the complex line (here the plane E), encircling the branch points.
The permutations induced from the loops indicate how the Riemann
surface is to be constructed. The second is Clebsch’s “Zur Theorie der
Riemann’schen Flächen” [Clebsch 1872], continuing Lüroth’s work by
proving that in fact any set of loops can be taken when considering effects
on the induced permutations while changing the set of loops. In contrast

48 See: [Parshall & Rowe 1994, p. 177–182] regarding Klein’s conception of Rie-
mann surfaces in the above context.
49 “[...] insofern unsere folgenden Untersuchungen wesentlich an der Rie-
mann’schen Flache selbst geführt werden, handelt es sich zuvörderst um deren
anschauliche Darstellung.” Dyck then offers to think a Riemann surface not as a cover-
ing of the plane, when the layers are one over the other, but rather that the different
layers are side by side.
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to Lüroth, Clebsch draws a figure, which illustrates the change of the loops
in this set (see Figure 10).

Figure 10. Given two branch points wi and wi+1 on the com-
plex line C and two loops (presented in dashed curves) encircling
them, Clebsch [Clebsch 1872, p. 219] draws a new set of loops (k0i ),
encircling wi .

This visualization indicates that Clebsch maintained the position that
Riemann surfaces and their construction according to the branch points
should be visualized. Hurwitz transformed this point of view into an alge-
braic investigation.

Following Clebsch’s and Lüroth’s works, Hurwitz constructed the sur-
face itself: “The Riemann surface is now formed by connecting the n leaves
along the cuts l1; : : : ; lw in the following manner.” 50 [Hurwitz 1891, p. 4]
Hurwitz does draw several drawings of this system of paths [Hurwitz 1891,
p. 34, 36], but as becomes clear, his intention in this research is not following
the tradition of anschauliche geometry, 51 which might have led him to visu-
alize the surface itself, but rather follows a more algebraic-combinatorial
practice. Indeed, instead of continuing by describing the construction
of the Riemann surface visually, Hurwitz expresses the problem using
algebraic terms and conditions. For each of the paths l1; : : : ; lw Hurwitz

assigns a permutation: Si , where 1 6 i 6 w . If Si =

�

1; 2; : : : ; n

�1 �2; : : : ; �n

�

is

the permutation sending 1 to �1 , 2 to �2 etc., then along the path li the
leaves numbered 1; : : : ; n of the Riemann surface are connected to the

50 “Die Riemann’sche Fläche entsteht jetzt, indem man die n Blätter längs der
Schnitte l1; : : : ; lw in folgender Weise mit einander verbindet.”
51 In other mathematical investigations, Hurwitz did visualize his geometrical con-
structions, for example, by folding a paper. See [Oswald 2015].
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leaves �1; : : : ; �n . Here Hurwitz expresses the necessary and sufficient
conditions for the existence and construction of a Riemann surface in
algebraic terms:

The substitutions S1; S2; : : : ; Sw , which are chosen for the construction of the
surface, should only satisfy the following two conditions: (I) The transition from
any element to any other is to be possible by substitutions. (II) The composition
of all substitutions is to give the identity, i.e., S1S2 � � � Sw = 1. 52 [Hurwitz 1891,
p. 4]

The first condition forces the group to be transitive, which is equivalent
to saying that the surface constructed would be connected. The second
condition ensures that while circling the point O (which is not a branch
point), the order of the leaves will not be permuted. What is essential to
note is that via this algebraic formulation, it becomes irrelevant where the
branch points a1; : : : ; aw are located on the complex line C, and the initial
question was “reduced to a purely group theoretic question” [Epple 1999,
p. 187]. Therefore Hurwitz has proved that while one can construct the
Riemann surface topologically when giving a number of sheets, the posi-
tion of its branch points, and the permutations describing the number of
sheets, can thus only give the algebraic data equivalently.

This is clearly to be seen in the way Hurwitz considers a Riemann
surface, as an w -tuple of permutations: (S1; S2; : : : ; Sw), where “obviously,
the substitution Si immediately gives the ‘type’ of the branching at the
point ai .”

53 [Hurwitz 1891, p. 6] How this branch point may be visualized
is completely irrelevant, as this aspect is replaced with an algebraic ele-
ment: a permutation. And to emphasize this point of view, the question
whether two Riemann surfaces, symbolized by two w -tuples (S1; S2; : : : ; Sw)
and (S01; S

0
2; : : : ; S

0
w), are topologically the same, is equivalent to answer-

ing the question whether there is a permutation T such that for every i,
1 6 i 6 n, Si = TS0iT

�1 . Moreover, the question concerning the num-
ber N is answered via combinatorial arguments, 54 and the treatments of

52 “Die Substitutionen S1; S2; : : : ; Sw , welche man zur Herstellung der Flache wählt,
sollen nur folgenden beiden Bedingungen genügen: I) Vermöge der Substitutio-
nen soll ein Uebergang von jedem Element zu jedem andern möglich sein. II)
Die Zusammensetzung aller Substitutionen soll die Identität ergeben, es soll also
S1S2 � � � Sw = 1 sein.”
53 “Offenbar ergiebt die Substitution Si sofort die ‘Art’ der Verzweigung in dem
Punkte ai .”
54 See for example: [Hurwitz 1891, p. 7–22]. According to [Epple 1999, p. 188–192],
the other sections of the paper deal with what may be termed the first mathematical
appearance of the braid group and the pure braid group, when considering the move-
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Clebsch and Lüroth are re-presented in an algebraic way [Hurwitz 1891,
p. 31–34]. Hence a shift clearly occurred: from a visual approach to the
branch points towards an algebraic approach, which marginalized the
different techniques of visualization. That said, as can be seen from Hur-
witz methods, the existing techniques of visualization were unable to offer
any solution to the questions he posed.

1.5. Severi draws a “braid”

Jumping ahead to the beginning of the 20th century, other visualiza-
tion techniques appeared. Referencing Neumann’s work, these attempted
to be simpler than the then current three-dimensional models. In 1908
Francesco Severi’s book Lezioni de geometria algebrica appeared, which was
translated in 1921 to German as Vorlesungen über Algebraische Geometrie (see
[Guerraggio & Nastasi 2006, p. 104–107]). Severi (1879–1961), one of the
leading Italian mathematicians during the first half of the 20th century,
specialized in algebraic geometry and the theory of complex functions.
Chapter 7 of his book deals with the theme of algebraic functions as
analytic functions and Riemann surfaces.

Concerning the behavior of functions in the vicinity of branch points,
the first section of this chapter summarizes the research of Puiseux,
Riemann, and Hurwitz, among others, and combines the more visual
approaches of Puiseux and Riemann and the more algebraic approaches
of Hurwitz. On the one hand, Severi draws loops on the complex line
C [Severi 1921, p. 246, 256–257, Severi 1908, p. 198, 205]; on the other,
he discusses the ways in which these loops can be presented as additions
to other loops, implying their group-theoretical structure. Severi investi-
gates how the permutations that encircle a loop around a branch point
on C are induced, as well as the algebraic consequences (regarding the
construction of Riemann surfaces) when choosing another set of loops
encircling the branch points, 55 following Clebsch’s treatment [Severi
1921, p. 256–258, Severi 1908, p. 205–208]. Severi combines visual and
algebraic approaches, but he mainly summarizes the results described
above.

Indications of a return to a simpler approach of representing curves and
their branch points can be discovered, however, by means of a drawing
Severi adds, when he describes—both in the 1908 Italian original and in

ment of the branch points a1; : : : ; aw themselves. A discussion on this topic is outside
the scope of this section; see however Section II.3.1.(I) below.
55 Severi also draws a sketch of the old and the new set of loops.
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the 1921 translation—the construction of Riemann surfaces with the pro-
cess of gluing two branches, called u1 and u2 , along their “branch cut”
[“taglio,” “Verzweigungsschnitt”], i.e., a path on the surface that connects
two (simple) branch points called 1 and 2 [Severi 1921, p. 261, Severi 1908,
p. 211]. Very similar to Neumann’s approach, starting from a loop on the
complex line C encircling the branch point 1, Severi describes that when
approaching the point z1 (resp. z2) on this loop (see Figure 11.(I)), the
two leaves interchange. After depicting what happened on the complex
plane, Severi draws a similar illustration to Neumann’s. If we consider the
loop encircling branch point number 1, the illustration displays how the
leaves of the curve itself interchange while going along the loop. Severi
notes the following: “[.. .] the figure [see Figure 11.(II))] [.. .] refers us to
[.. .] the cut of two leaves with a plane perpendicular to the cut 1–2 [taglio
1–2]. The fact that the values taken by u on the first sheet can be transfered
by continuous variation to the values taken by the function on the second
sheet is thus represented in a concrete way [.. .].” 56

(I) (II) (III)

Figure 11. (I) A loop around the branch point 1, dissected into
two parts; (II) The interchanging of the leaves, presented through
a section along the path. [Severi 1921, p. 261, Severi 1908, p. 211]
(III) The correct depiction of the interchanging of the two

leaves. 57

56 [Severi 1908, p. 261–262]: “[...] come indica lo schema [...], che riferiscesi [...]
dei due tagli con un piano perpendicolare al taglio 1–2. Il fatto che I valori assunti da
u sul 1 foglio possono ricommettersi per variazione continua cui valori assunti dalla
funzione stessa sul secondo foglio, viene cosi rappresentato in modo concreto [...].” (cur-
sive by M.F.). The German translation is the following: “[...] sie [Die Skizze (in Fig-
ure 7.(II))] stellt einen Durchschnitt der beiden Blätter mit einer zum Verzweigungs-
schnitt 1–2 senkrechten Ebene dar. Die Tatsache, daß die Werte welche die Funktion u
auf dem ersten Blatt annimmt, durch stetige Veränderung in die Werte übergeführt
werden können, welche dieselbe Funktion auf dem zweiten Blatt annimmt, ist somit
in konkreter Weise veranschaulicht.” [Severi 1921, p. 211] That is, the German transla-
tion shifts the role of the diagram from the Italian “representation” to “visualization”
(“veranschaulicht”).
57 Figure changed by M.F.
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The changing of values is illustrated with Figure 11.(II). Its presentation
indicates the approach already presented in Riemann’s lecture notes and
in Neumann’s 1865 book (see Figures 2 and 4.(IV)): this illustration—the
representation “in a concrete way”—simplifies how the values change in
the neighborhood of the point 1 on the surface, in the sense that the
branches are presented as straight lines, creased at a certain point. 58 Also,
it is obvious that the two branches do not intersect each other—otherwise
the surface would be singular and the two branches would intersect at a
node on the surface. However, as Severi describes, this is certainly not the
case (see Figure 11.(III) for how Severi—and Neumann—should have
drawn the two branches).

It is important to note that Severi hardly drew any diagrams or drawings
in his book. Most of the drawings appear in the seventh chapter. Indeed,
only in this chapter does he note that one can obtain a more concrete and
more intuitive [“intuitivo,” “anschaulich”] “model” of a Riemann surface
of genus p, by thinking of it as a sphere with p handles attached to it [Severi
1921, p. 262, Severi 1908, p. 212]. That is, while Riemann surfaces could
have been thought of as having a spatial, anschaulich model, other objects
of algebraic geometry were considered more abstract, in the sense that a
concrete model for them was unnecessary and hence a drawing was unneces-
sary as well. However, Severi’s visualization of the behavior of curves at the
neighborhood of branch points also appeared in other textbooks, extend-
ing his visualization that only applied to simple branch points. For exam-
ple, Federigo Enriques, in the first volume of his book Teoria Geometria delle

Equazioni e delle funzioni algebriche, published in 1915, presented Figure 12,
indicating that it presents the case for a Riemann surface of degree 5 with a
branch point of three leaves. Also here, the simplification may have caused
a certain confusion just as in Severi’s figure, implying (wrongly) that the
various branches cut each other at the neighborhood of a branch point.
Looking however at Figure 4.(IV), it is clear that Neumann was aware of
this problematic representation since the width of the lines in this figure,
connecting the different sheets of the Riemann surface, is narrower. This
problematic visualization, seen already with the three-dimensional model
of the branch point presented at Figure 6, was solved, among others, by
Chisini’s novel techniques of visualizing these points in the 1930s, as I will
shortly survey in Section III. 59

58 Compare Figure 4.(II) and also Figure 6, where a circular section of the three-
dimensional model would not be composed of straight lines.
59 See also Figure 21 in this paper.
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Figure 12. Enriques’ illustration [1915, p. 361] of a cyclical inter-
changing of three leaves of a degree 5 Riemann surface.

What Severi’s method and Enriques’ generalization of it may have
pointed to is a future investigation of curves using the techniques of
braid theory. However, braid theory was only developed with Emil Artin
in his paper “Theorie der Zöpfe” [Artin 1925]. 60 Although Hurwitz
already implicitly discussed braids (though from another point of view,
see [Epple 1999, p. 189–192]), Severi and Enriques, with their explicit
sketch—though without any algebraic theories resulting from it—did in-
deed indicate a possible way for future presentations of algebraic curves
and their branch points.

1.6. Visualization of branch points: between abundance and excess

As was seen above, a plurality of visualization techniques existed for
illustrating and rendering haptic and tangible branch points—either on
the surface itself or on the complex line, when these surfaces are consid-
ered as covering and the complex line is considered as a two-dimensional
(real) plane. This plurality of two-dimensional drawings as well as three-
dimensional models existed side by side with other mathematical practices,
which treated branched covering: the analytical and the algebraic.

That said, the plurality of visual and haptic approaches to the abstract
mathematical object encountered resistance. Firstly, as I noted above,
Weierstraß doubted the usefulness of Riemann’s visualization. And while
for Klein the models were considered epistemic things, Herbert Mehrtens
remarks that Klein later “interpreted them [the models] as applied math-
ematics. But by the end of the century mathematicians took the models
as imperfect representations of geometrical entities that could be used
as an aid in communication about mathematics. The models were not
‘evidence’ in any sense of the term.” [Mehrtens 2004, p. 301] Needless to
say, other mathematicians in Germany rejected the appeal to the senses

60 See also [Epple 1999, p. 314–322].
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or to the Anschauung as what might assist in mathematical understanding
or research. Frege, for example, in 1884 claimed “[.. .] sensations are of
absolutely no concern to arithmetic. No more are mental pictures, formed
from the amalgamated traces of earlier sense-impressions.” [Frege 1884,
p. vi] Pasch also rejected the grounding of geometrical knowledge on the
senses. As he noted, “after [the axioms of geometry] are established it is
no longer necessary to resort to sense perceptions” [Pasch 1882, p. 17].
One may also claim that these objections come on the background of the
crisis of the Anschauung [Volkert 1986]. Against this retroactive projection
of the grand narrative of this crisis, however, it is essential to remember
that most of the actors I have surveyed were affirmative and sympathetic
towards the “anschauliche images” of branch points. It is unnecessary to
add that branch points of Riemann surfaces were never thought of as
one of the objects prompting this above-mentioned crisis. Hence when
looking at the plurality of images as what can be classified under this crisis
(either as an implicit initiator or as an outcome) would be an inadequate
forcing of this narrative.

It is therefore instructive to examine the views of the individual actors
themselves. As we have seen, various mathematicians presented various
images of the branch point: various three-dimensional models (von Dyck),
colored sketches (Klein), braids (Riemann, Neumann, Severi) or even
knotted curves (Neumann). I would like to suggest that these different im-
ages of the same mathematical object caused its relativization. This plurality
and the relativization it prompted stood in direct contrast to Klein’s 1879 re-
quest to find “the most anschauliches image” of a branch point. Indeed, the
problem with the different images of the branch points was that they pre-
sented different aspects of these points. For example, what did the different
sheets look like around a section near the branch point (e.g., Figure 2) in
contrast to how they appear at the neighborhood of this point, including
this point itself (see Figure 6). These images did not only present different
aspects of the branch point, they also had different functions with respect to
how they visualized this point: they either aimed to be exact—i.e., represent
exactly what the mathematical object was (as with the R and I models of
Dyck) and, at the same time, attempt to aid the mathematical inference—,
or they were co-exact, i.e., allowing manipulation, as with the diagrams of
Neumann, Severi and Enriques. In this instance I follow Kenneth Manders’
insight regarding exact and co-exact diagrams: while exact diagrams are
unstable when subject to change (e.g., lengths of line segments, which can-
not be varied without affecting the argument), co-exact ones are “insensitive
to the effects of a range of variation in diagram entries” [Manders 2008,
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p. 69] (e.g., inside-outside relations). While Manders treated the case of
the Euclidean diagram, it is clear from the discussion above that this treat-
ment can also be applied to other visualizations within other mathematical
domains (see also [Larvor 2017]). The point is that several authors stated
explicitly that their diagrams were not only capable of manipulation, but
also “arbitrary” (e.g., Neumann), or simply did not represent the surfaces
(as the straight lines in Severi’s and Enriques’ diagrams, which ignore the
metrical properties). In that sense, this arbitrariness may have prompted a
preference for a more algebraic or analytical approach.

This plurality of images—these visualizations—raises the question of
epistemological relevance. Apart from the fact that Klein and Brill saw
for a certain period of time the three-dimensional models as epistemic
things (hence placing the images of branch points under a narrative in
which mathematical Anschauung advances with the visual and motoric
perceptions), the various visualizations of the branch points did not gen-
erally speaking result in new discoveries or novel research questions. By
contrast they were regarded more as a means of illustrating and transmit-
ting four-dimensional objects to the senses. That being said, there are two
exceptions to this general claim: Firstly, Riemann, Neumann, Severi and
Enriques presentation of the neighborhood of the branch point as a braid
(although never using such terminology) led and prompted Chisini to look
at algebraic plane curves (and at branch curves in particular) in terms of a
factorization of braids; this resulted in several conjectures and a prospering
field of research in Italy between 1930 and 1950 (see Section III). Secondly,
one can also note that the inadequate plurality of visualization techniques
possible caused a turn towards a more algebraic, non-visual approach (e.g.,
Hurwitz). To emphasize—Hurwitz was well aware of several of the different
visualizations, but his line of investigation, which distances itself from this
tradition, prompted new research questions and methods, which were not
raised by these visualization techniques. Hence such distancing acted as an
epistemic operation.

� � �

Considering a few of the problematic aspects that several of the math-
ematicians surveyed above encountered, while trying to visualize branch
points of complex algebraic curves, it is not surprising that one hardly
finds any visualization or drawing of branch curves of complex algebraic
surfaces, when these surfaces were considered as a covering of the complex
plane. The investigations of complex algebraic surfaces, done at the end of
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the 19th century, 61 showed that the algebraic-topological nature of these
surface is much more complicated when compared to the corresponding
situation with complex curves. Algebraic complex surfaces are four (real)
dimensional objects, embedded in C

3 or CP
3 , that is, in a six (real) di-

mensional space. The set of branch points of these surfaces, as mentioned
in the introduction, is therefore not a set of isolated points, but rather an
algebraic curve, called the branch curve, which is usually singular.

Without undermining this difficulty, as I will claim in Section II, visu-
alization was not entirely abandoned or conceived of as useless. Although
the branch curve itself (or the ramification curve on the surface) was never
depicted, sketched or drawn at the turn of the century, visualization tech-
niques were employed in order to make visible other, different mathemati-
cal machinery that was used to investigate the branch curve.

2. BRANCH CURVES: VISUALIZATION

BETWEEN DISAPPEARANCE AND ABSENCE

Turning now to the mathematical research on the branch curve of a
complex surface, 62 it is important to emphasize that three-dimensional
models of such surfaces did exist, but mostly consisted of a model of the
real part of the surface. 63 When considering only the branch curve, how-
ever, one notices an absence, resulting from obstacles in the visualization
of these objects. One however should mention that the mathematical
consideration of branch and ramification curves was initiated long before
Riemann’s investigation of branch points. Gaspard Monge, who looked
at projections of three-dimensional bodies to the plane and considered
under the context of tracing shadows of a body. Monge notes in 1785:
“The projection of a body’s shadow on any surface is therefore the figure

61 For a survey of the work of Castelnuovo and Enriques of algebraic surfaces, see
[Gray 1999].
62 Note that I do not deal in this article with real branch curves that arise from the
consideration of three-dimensional real manifolds as real covering of the 3-sphere
(branched over a link or a knot), although these branched coverings and their branch
curves were certainly visualized. This research also took place at the beginning of the
20th century, with Poul Heegaard, James W. Alexander, G. B. Briggs and Heinrich Tie-
tze among others (see: [Epple 2004, p. 332–336; Stillwell 2012, Epple 1999]). To con-
centrate on this theme, however, would take us beyond the scope of this section that
strictly concerns visualization techniques of complex branch curves.
63 That is, if the surface is given by z = p(x; y), then three-dimensional models were
representing the surfaces such that the points x; y , and z = p(x; y) were real. A famous
example is the model of the cubic surface with the 27 real lines on it; complex points
of this surface could not have been visualized.
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that the extensions of the rays of light tangent to the body’s surface end
on that surface.” 64 He then notes: “In the following operations we will
geometrically determine only the projections of the contours of the pure
shadows, they are the only ones that it is necessary to have exactly in the
drawings.” 65 (see also Figure 13). The projection of the contour of the
pure shadow is—in modern terminology—the branch curve, and Monge
adds a figure—the first figure of a branch curve in a mathematical context,
and almost surely the last one to explicitly appear during the 19th and the
20th centuries. Étienne Bobillier [1827–1828] found out during the late
1820s that ramification curves are on the intersection of the surface and
its polar (see the following subsection), 66 though he did not investigate
branch curves, and was not aware of Monge’s research on them. It is only
with George Salmon that one can find a systematic study of ramification
curves, and as a result, of branch curves.

Figure 13. From Monge’s Des Ombres: Figure 1 and 2 describe the
illumination of a sphere from a point outside of it. © Collections
École polytechnique-Palaiseau.

Since Monge, and later Bobillier, hardly or never considered explic-
itly branch curves as an object of mathematical investigation (and thus
signaled the absence of more complex drawings or sketches of branch
curves during the first quarter of the 19th century), I will begin with

64 “La projection de l’ombre d’un corps sur une surface quelconque est donc la fi-
gure que terminent sur cette surface les prolongements des rayons de lumière tan-
gents à la surface du corps.” [Monge 1847 [1785], p. 27].
65 “Dans les opérations suivantes nous ne déterminerons géométriquement que les
projections des contours des ombres pures, ce sont les seules qu’il soit nécessaire d’avoir
exactement dans les dessins [...]” [Monge 1847 [1785], p. 29].
66 On the work of Bobillier, see: [Haubrichs dos Santos 2015]. Bobillier however did
coin the term “polar surface” [Bobillier 1827–1828, p. 181], which Salmon later used.
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Salmon and his systematic investigation. This section will therefore survey
the oscillation in visualization techniques between illustrating only the
local behavior of the curve, 67 sketching other mathematical instruments
or ignoring completely the possibility of visualizing any of the two options
above. This ignorance may be termed “making invisible,” an expression
I will discuss more thoroughly later (see Section III). I begin with the
third option, where the ignorance can be seen in one of the influen-
tial manuscripts written on surfaces in three-dimensional space: George
Salmon’s 1862 book A treatise on the analytic geometry of three dimensions.

2.1. Salmon: The (almost) complete absence of illustrations

George Salmon (1819–1904) was an Irish mathematician and theolo-
gian. He worked in the field of algebraic geometry for two decades, and
then devoted the rest of his life to theology. Known especially today for his
joint research, together with Cayley, on the 27 lines of the cubic surface, 68

his name and research, as Row Gow mentions, “would scarcely attract any
attention among mathematicians so many years after his death if his rep-
utation was based only on his research papers. [.. .] Salmon’s lasting fame
lies in the influence exerted by four textbooks he wrote. These were: A Trea-

tise on Conic Sections; A Treatise on the Higher Plane Curves; Lessons Introductory

to the Modern Higher Algebra; A Treatise on the Analytic Geometry of Three Dimen-

sions.” [Gow 1997, p. 38] 69

How did these influential books treat surfaces and their branch curves?
In order to understand Salmon’s approach, it is instructive to take a step
back and look at his approach to complex curves and their branch points.
Salmon treats these subjects in his 1852 book A Treatise on the Higher Plane

Curves, but from an entirely different point of view when compared to Rie-
mann and Puiseux.

For Salmon, a plane curve, denoted by U , is represented by an algebraic
equation as follows: “The general equation of the n-th degree between two
variables may be written: A + Bx + Cy + Dx2 + Exy + Fy2 + � � � + Pxn +
Qxn�1y+ � � �+Rxyn�1+Syn = 0”. [Salmon 1852, p. 18] Salmon does supply
several drawings of what singular points look like; see Figure 14.(I) for illus-

67 At the neighborhood of its singular points, for example.
68 Salmon however was not involved in the preparation of the various models of the
cubic surface and its lines.
69 See also [Gow 1997] for a summary of Salmon’s mathematical work. See also:
[Flood 2006, p. 208–209].
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tration of a node and of a cusp. 70 However, illustrations of branch points
are lacking. When reading how Salmon treats curves, it is also clear why.
Salmon treated branch points on the curve only when considering a pro-
jection, similar to Puiseux and Riemann. But while the latter authors ex-
plicitly considered the curve (as covering) by taking into account the pro-
jection on the (complex) x-axis and drawing loops on it, investigating then
the resulting permutations, Salmon’s point of view was different. Salmon
was interested in two types of projections: a projection from a point O on a
curve, and a projection from a point O not on a curve (see Figure 14.(II)).
However, Salmon uses neither the term “covering” nor the term “projec-
tion”. Taking the context of Salmon’s investigation into account, branch
points on the curve would be, when considering the methods of Puiseux and
Riemann, the points for which the lines exiting from O are tangent to the
curve (see Figure 14.(II), when the point O is not located on the curve).
While Puiseux and Riemann considered this point of view only implicitly,
starting from an investigation of a neighborhood of the branch point on
the complex line, Salmon concentrated on the branch points on the curve,
seen as tangency points, starting with an investigation of a curve and the
lines exiting from a point O and not on it. Since Salmon did not even con-
sider the concept of the branches of a curve in the Riemannian sense or
according to the theory of complex functions (Puiseux), the branch point
for him was only a tangency point of a line exiting from a point O to the
curve C . Hence, there was, one might say, nothing to visualize.

O	

(I) (II)

Figure 14. (I) Salmon’s drawings of singular points: cusps (left)
and a node (right). [Salmon 1852, p. 30] (II) a possible visualiza-
tion of Salmon’s conception of branch points on the curve. 71

70 A node is locally as the point (0,0) of the curve (y � x)(y + x) = 0; a cusp is locally
as the point (0,0) of the curve y2 � x3 = 0.
71 Drawing by M.F.
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For Salmon, these branch points are given as the intersection points
of the original curve with another curve, called the (first) polar curve.
Salmon states that the equation of this polar curve, 72

�U = 0; or x

�

dU

dx

�

1
+ y

�

dU

dy

�

1
+ z

�

dU

dz

�

1
= 0

would enable us to find the point of contact of tangents drawn through a given
point. Were we given the point x2 y2 z2 , then the point of contact x1 y1 z1 must
satisfy the equation

x2
dU

dx
+ y2

dU

dy
+ z2

dU

dz
= 0:

Hence the points of contact of tangents which can be drawn from a given point
to a curve of the n-th degree lie on a curve of the (n� 1)-th degree: viz., on the
first polar of x2y2z2 , with regard to the given curve [.. .] [Salmon 1852, p. 62].

Hence, according to Bezout’s theorem, 73 “from a given point [not on the
curve] there can be drawn n(n � 1) tangents to a curve of the n-th de-
gree.” 74 [Salmon 1852]

Salmon does not mention the term “branch point” for obvious
reasons—the term itself did not yet exist and was coined in German
only by Riemann in 1857. However, even without the terminology, the
point of view is completely different. And this point of view is carried out
in the case of complex surfaces. Salmon already started in 1847 dealing
with this subject. In a paper written in this year he gives a numerical anal-
ysis of the properties of the ramification curve (number of “cuspidal” and
“ordinary double lines”), and notes, after discussing the formula for the
number of tangent lines to a curve exiting from a given point: “[a]s I am
not aware that the corresponding question as to reciprocal surfaces has
been before investigated, I purpose in the present paper to enquire [this]
[.. .].” [Salmon 1847, p. 65] A more detailed analysis appears in 1862—
after Riemann’s coinage already appeared—when Salmon publishes his
book A Treatise on the Analytic Geometry of Three Dimensions, he now considers
complex projective surfaces in the complex projective three-dimensional
space CP

3 . His treatment follows a similar line of interpretation as his

72 Recall that the projective (complex) plane has three coordinates x; y; z and hence
a projective plane curve is expressed with three variables.
73 Bezout’s theorem (for curves) was published in 1779. Étienne Bézout proves that
given two complex projective curves of degree n and m, without a common compo-
nent, these curves then intersect at mn points (counted with their multiplicities).
74 The theorem was already stated in 1818 by Poncelet [Poncelet 1817–1818,
p. 215], whose writings Salmon knew well [Gow 1997, p. 53, 45–46].
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treatment of complex curves: given a smooth surface U in CP
3 , choosing

a point O = (x0 : y0 : z0 : w0) not lying on the surface, and examining the
tangent lines to U passing through O. Salmon calls this collection of all
lines tangent to the surface the “tangent cone” [Salmon 1862, p. 190],
and notes:

[.. .] consider the case of tangents drawn through a point not on the sur-
face. [.. .] we see that the points of contact of all tangent lines (or of all tangent
planes) which can be drawn through x0y0z0w0 , lie on the first polar [denoted
by �U ], which is of the degree (n� 1) : viz.

x0
dU

dx
+ y0

dU

dy
+ z0

dU

dz
+ w0

dU

dw
= 0:

And since the points of contact lie also on the given surface, their locus is the
curve of the degree n(n � 1), which is the intersection of the surface with the
polar. [Salmon 1862, p. 62]

Here Salmon implicitly considers projections of the surface from a point,
though he does not say where the surface is projected. The “curve of the
degree n(n � 1), which is the intersection of the surface with the polar”
in contemporary terminology is called the ramification curve, although this
term obviously does not stem from Salmon as such. Though being current
terminology, I will use this term from now on, to distinguish between this
curve (which is on the surface) and the branch curve (which is on the com-
plex plane C

2 , being the image of the ramification curve, when one indeed
considers a projection U ! C

2 or CP
2).

Salmon, as was indicated above, did not draw a single sketch to illustrate
how this curve might look like on a surface. 75 Notwithstanding, and con-
sidering the fact that he did make drawings of curves in general, one might
wonder why he did not draw any branch curves, being the projection of
the ramification curve on a complex plane. This question is justified given
that Salmon did take into account in his investigations the branch curve,
as I will now show.

After defining the ramification curve, Salmon continues to investigate
two types of special tangents to it (see an illustration in Figure 15). The first
are tangent lines called “inflexional tangents,” which are not only tangent
to the surface, but in addition are also tangent to the ramification curve

75 Salmon did not draw a single sketch of any complex surface in the 1862 book,
but rather only partial images of concrete situations (e.g., tangent planes or tangent
lines, for example; see [Salmon 1862, p. 274 or p. 296]). This might be also due to
constraints on printing techniques during this period, but also in accordance to how
Monge and his followers were using concrete images.



152 M. FRIEDMAN

itself. Salmon proves that these points lie on the intersection of the rami-
fication curve and the second polar of the surface, i.e., the surface � (�U)
or �2U: Salmon indicates: “Through a point not on the surface can in gen-
eral be drawn n (n� 1) (n� 2) inflexional tangents. [.. .] consider the xyzw

of any point on the tangent as known; its point of contact is determined as
one of the intersections of the given surface U , which is of the n-th degree,
with its first polar �U , which is of the (n�1)-th, and with the second polar
�2U , which is of the (n� 2)-th. There are therefore n(n� 1)(n� 2) such
intersections.” [Salmon 1862, p. 191] The second type of special tangents
to the surface are lines which are tangent to the surface at two different
points. Salmon indicates the following: “Through a point not on the sur-

face can in general be drawn 1
2n(n� 1)(n� 2)(n� 3) double tangents to

it.” 76 [Salmon 1862]

Figure 15. How special tangents to the surface S (not drawn)
from a point O result in either a node (left: two points on the ram-
ification curve R are projected to the same point) or a cusp of the
branch curve B (right: the tangent to the surface is also tangent
to the ramification curve R). (Figure drawn by M.F.)

It is after discussing these two special tangents that Salmon notes the
special properties of the branch curve, i.e., the image of the ramification
curve on a generic plane (which does not pass through O): “We have
proved then that the tangent cone which is of the degree n(n � 1) has

n(n � 1)(n � 2) cuspidal edges, and 1
2n(n � 1)(n � 2)(n � 3) double

edges; that is to say, any plane meets the cone in a section having such a
number of cusps and such a number of double points.” [Salmon 1862,
p. 192] The branch curve here, although, again, not termed as such, is the
curve obtained by a “plane [that] meets the cone in a section”. This curve,
which hardly stands at the center of Salmon’s investigation, therefore has

76 Identical calculations appear already in [Salmon 1874].
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n (n� 1) (n� 2) cusps and 1
2n (n� 1) (n� 2) (n� 3) nodes. 77 However,

one may wonder why Salmon did not take notice of the special properties
of the branch curve of a cubic surface, a surface that was one of his spe-
cialties. As Salmon briefly indicates: “The general theory of surfaces [.. .]
gives the following results, when applied to cubical surfaces. The tangent
cone whose vertex is any point, and which envelops such a surface is, in
general, of the sixth degree, having six cuspidal edges and no ordinary
double edge.” [Salmon 1862, p. 376] However, as we will see later (see
Section II.3.2), when considering the branch curve of the (smooth) cubic
surface, i.e., the intersection of “any plane” with the tangent cone (follow-
ing Salmon’s formulation), its six cusps lie on a conic; and Salmon indeed
had the tools to discover it. 78

Whereas Salmon was not interested in visualizing curves on surfaces,
let alone ramification curves or their projection, attempts, however, were
made to employ visual tools to study the branch curve. As we will see, Wil-
helm Wirtinger was the first to visually consider a neighborhood of a sin-
gular point of the branch curve.

2.2. Wirtinger draws a knot

Wilhelm Wirtinger (1865–1945), an Austrian mathematician, was
known for his work in complex analysis and knot theory, and especially
for his presentation of the fundamental group of the complement of a
knot in R

3 . At the end of the 19th century, as well as at the beginning of
the 20th century, Wirtinger began research on branch curves of complex
surfaces. While this research did not mature into a full-blown theory, it
nevertheless prompted a re-contextualization of the research of singu-
lar complex plane curves by means of knots associated to their singular
points.

When researching complex surfaces in the 1890s, Wirtinger considered
projections of them. While Salmon only considered these projections im-
plicitly, he was nevertheless aware that this projection could be done from
any point—whether this point would lie on the surface or not. Viewing

77 As we will see later these nodes and cusps will play a special role in Beniamino
Segre’s work.
78 The German translation of Salmon’s book, called Analytische Geometrie des Raumes.

II. Theil. Analytische Geometrie der Curven im Raume und der algebraischen Flächen, done by
Wilhelm Fiedler does mention material models of several surfaces in the appendix,
mostly made in Germany, [Salmon 1874, p. 622–623, 663, 667], but does not add in
the book any figure or change the point of view regarding the treatment of branch
curves.
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these surfaces in the complex three-dimensional space C
3 = (x; y; z),

Wirtinger solely thought about a very specific projection to complex plane
C
2 = (x; y). That is, following Puiseux and Riemann and given a complex

surface defined by an equation f(x; y; z) = 0, the projection was done
from a point “in infinity,” i.e.,:

p : f(x; y; z) 2 C
3 : f (x; y; z) = 0g ! C

2; (x; y; z) 7! (x; y) :
How did Wirtinger think about branch curves? Wirtinger dealt with these
curves in a letter written to Felix Klein on 22 December 1895 and in a
1905 lecture. I will first examine the letter, 79 and then analyze the shift
Wirtinger made in his lecture ten years after.

As he explicates in the letter, Wirtinger’s aim “is to show that an arbitrary
system of n�1 dimensional algebraic varieties [Gebilde] with an associated
branching scheme can always be understood as a system of branch mani-
folds of a function of n variables.” 80 [Epple 1995, p. 398] As we will see with
the investigations of Federigo Enriques and Beniamino Segre, the question
that arose in the early 20th century was whether Wirtinger’s statement here
was correct. Wirtinger himself, as we will see, also indicates the possibility
that not every (n� 1)-dimensional manifold can be a branch manifold of
an n-dimensional function. Explaining his motivation, he notes: “With one
variable, the question is simple because in the neighborhood of a branch
point the cyclic functions of the values are unique, that is, the n-th root of
the variable itself is unique. The germ of generalization lies in this setting.” 81

[Epple 1995, p. 398]
However, as Wirtinger immediately notes, the case of Riemann sur-

faces—i.e., when n = 1—does not entirely contain the germ of general-
ization, and one has to distinguish between two cases: when the branch
manifold is smooth and when the branch manifold [“Verzweigungsman-
nigfaltigkeit”] is singular. 82 The distinction between the two cases does

79 The letter is to be found in Klein’s Nachlass in Göttingen (Cod. Ms. Klein XII,
391). A transcription of it can be found in [Epple 1995, p. 397–399].
80 “Mein Ziel ist dabei zu erweisen, dass man ein beliebiges System algebraischer
Gebilde von n� 1 Dimensionen mit zugehörigem Verzweigungsschema immer als Sys-
tem von Verzweigungsmannigfaltigkeiten einer Function von n Variablen auffassen
kann.”
81 “Bei einer Variablen liegt die Frage deshalb so einfach, weil in der Nähe eines
Verzweigungspunktes die cyclischen Functionen der Werte eindeutig werden, also die
n-te Wurzel der Variablen selbst eindeutig ist. In dieser Fassung liegt der Keim der Verall-

gemeinerung.”
82 Note that Wirtinger usually uses the word “Verzweigungsmannigfaltigkeit” when
talking about the branch variety, i.e., a singular one. The term “Gebilde” (variety) is
used for more general descriptions, usually for smooth covering.
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not arise in the case of Riemann surfaces—since there the branching
manifold is a collection of points, and hence is always smooth.

As Wirtinger notes the analogy with Riemann and Puiseux’s treat-
ments is still valid for smooth branch manifolds: “The cyclic behavior
remains true for arbitrary branching manifolds [.. .].” 83 [Epple 1995,
p. 398] This means, as we saw with Puiseux, and in order to give an ex-
ample, that the only permutations that can be induced by encircling a
branch point are those that permute the branches cyclically, i.e., the val-
ues u1; u2; : : : ; up are permuted to u2; : : : ; up; u1 , or, in Wirtinger’s words,
the Galois group is cyclic (i.e., generated by one element, in this case,
the above permutation). However, the situation is completely different
when the branch manifold is singular. Wirtinger first determines, with-
out giving any justification, that in this case, “then every Galois group
is possible.” [Epple 1995, p. 398] The example that Wirtinger gives is a
cubic surface in C

3 : f(x; y; z) 2 C
3 : z3 + 3zx+ 2y = 0g. The branch curve

fx3 + y2 = 0g, which has a cusp at (0,0), is not specified by Wirtinger.
However, he does note that the Galois group is not cyclic, but rather it is
the whole symmetric group on three letters. Perhaps this is what led him
to the above conclusion, that every Galois group is indeed possible.

Several passages later, however, Wirtinger formulates his statement
as a question: “The kernel of the whole thing lies now for me in the
investigation of the group of a branch point, that is to say [.. .] in the
question: Can this group be arbitrarily pre-determined, or is it bound to
conditions, so that associated functions exist?” 84 [Epple 1995, p. 398]
Assuming that Wirtinger deals only with the projection of n-dimensional
smooth manifolds, what he asks is what the possible singular points are
that the (n� 1)-dimensional branch manifold might have under a generic
projection of an n-dimensional manifold. Or might the branch manifold
have any type of singularity appear? Looking at branch curves of complex
surfaces, Salmon already showed that the branch has (at least) two types
of singular points: cusps and nodes. 85 Wirtinger ignores, however, the
fact that a branch curve might also have nodes, and hardly deals with the
investigation of branch curves in his letter to Felix Klein.

83 “Das cyclische Verhalten bleibt aufrecht für beliebige Verzweigungsmannig-
faltigkeiten [...].”
84 “Der Kern der ganzen Sache liegt jetzt für mich in der Eruirung der Gruppe eines
Verzweigungspunktes, also eigentlich [...] in der Frage: Kann man diese Gruppe
willkürlich vorgeben, oder ist sie an Bedingungen gebunden, damit zugehörige Func-
tionen existieren?”
85 Note that Salmon did not prove that these are the only types of singular points a
branch curve of a smooth surface may have.
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During the following years Wirtinger did not work on this problem.
In 1901 in his article on algebraic functions and their integrals for the
Enzyklopädie der mathematischen Wissenschaften, Wirtinger reformulated
the question that he posed to Klein. For functions of several variables,
as Wirtinger notes, “one has not yet succeeded in determining a given
algebraic variety [algebraische Gebilde] by a finite number of data in a
similar way as is possible with the different forms of a Riemann surface.” 86

Referring directly to Hurwitz and the determination of a Riemann sur-
face via a “finite number of data” (i.e., branch points, the number of
sheets, and the permutations), Wirtinger asks whether this determina-
tion is possible for general branched covering (of dimension n). Taking
Wirtinger’s letter to Felix Klein into consideration, one might assume that
what Wirtinger meant also involved considering the singularities of the
(n� 1)-dimensional branch manifold.

In a 1905 lecture entitled “Über die Verzweigungen bei Funktionen
von zwei Veränderlichen” a shift of context occurs in the way Wirtinger ex-
amines branch curves. Although the lecture itself is not available, Moritz
Epple [1995] has reconstructed it and shown that Wirtinger, inspired
by Poul Heegaard’s 1898 dissertation, decided to consider only the local
neighborhood of singular points of branch curves. Not only does Wirtinger
ignore his former questions, such as those regarding the possible singular
points of the branch curve or what is the necessary “finite number of
data,” but he also re-contextualizes the problem in his lecture. As Epple
shows, Wirtinger now no longer considers the branch curve as a whole,
but rather only the intersection of a neighborhood of a singular point of
the branch curve with the 3-sphere. 87 For the case of the branch curve
of the cubic surface presented by Wirtinger, one obtains the following:
fx3 + y2 = 0g \ fjxj2 + jyj2 = cg; for c small and positive number, and
when x; y 2 C. Wirtinger recognized this intersection as the trefoil knot,
and he most likely drew a figure (see Figure 16) during his lecture. With
the help of this figure he then calculated the fundamental group of the
complement of this knot (thought as embedded now in R

3), as the Galois

86 Translation taken from: [Epple 1995, p. 383].
87 “Heegaard’s idea was to study singular points of algebraic surfaces by looking at
the restriction of the branched covering of defined by the equation of the surface to
a 3-sphere bounding a small neighborhood of the singular point in question” [Epple
1995, p. 384]: For an analysis of Heegaard’s thesis, see: [Epple 1999, p. 246–251]. It is
essential to note that Heegaard called in his thesis explicitly for visualization of com-
plex surfaces [Epple 1999, p. 247].
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group of the cusp, proving that it is isomorphic to the symmetric group
on three letters. 88

Figure 16. The drawing of Emil Artin of the trefoil knot, inspired
from Wirtinger’s lecture. Artin remarks: “One finds easily the gen-
erators of the fundamental group and the defining relations with
the help of a method developed by Herr Wirtinger in his lectures
[.. .].” 89 [Artin 1925, p. 58]

Wirtinger had “shown how to form a very intuitive picture of the topo-
logical situation around the branch point” [Epple 1995, p. 386]—hence
following Klein’s anschauliche geometry, and certainly supportive of the
way visualization was used in mathematics. Indeed, Wirtinger, in a letter to
Klein in 1896, “imagined the mathematician of the 20th century [.. .] like
a painter who looks at the world with a painter’s eyes, thinking about the
way in which he would like to paint it. Correspondingly, the mathemati-
cian should try to ‘see the mathematical problem’ in whatever form she

88 The figure appeared several times in different contexts during the early 20th cen-
tury. See: [Epple 1995, p. 384]: “There is a picture in Artin’s article, which illustrates
these techniques. The same picture had been described in words by Tietze, and it
reappeared in Brauner’s article. Finally, it was reprinted in Reidemeister’s Knotentheo-

rie. In all of these cases, the use of this picture in order to derive a presentation of the
knot group is ascribed to Wirtinger.”
89 “Die Erzeugenden der Fundamentalgruppe und die definierenden Relationen
findet man nun wohl am einfachsten mit Hilfe einer Methode, die Herr Wirtinger in
seinen Vorlesungen entwickelt hat [...].”
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or he encounters it.” [Epple 1995, p. 387] 90 Following Epple, Wiritinger
calls not only for a concrete investigation, but also for a “productive imag-
ination” [Epple 1999, p. 256] done with the help of a drawing, being not
merely a “passive” visualization, but one, like the painter, which produces
its own reality. This conception of visualization as epistemic and produc-
tive certainly aligns with Klein’s ideas. That said, Wirtinger’s novel method
and the illustration that followed it have certainly led to a problematic
approach in the research on branch curves. While Wirtinger tried to
visualize how the singular points of the branch curve look like locally, he
ignored the global question that he himself had indicated several years
previously: can every curve with this local behavior be a branch curve?
Although being one of the first attempts to actually illustrate a branch
curve, the problematic issue lay in what Wirtinger did not consider and
could not have considered with his illustration: that the singular points
of the branch curve are to be found in a special position with respect to
each other—i.e., if one would have liked to visualize the branch curve,
then a global image would have been necessary. One may claim that the
image of the local behavior in fact hindered this understanding and that
Wirtinger’s visualization may have led also to a dead lock in his research
on branch curves. The importance of this point of view is hinted at unre-
servedly by Enriques and clearly expressed by Zariski and Segre at the end
of the 1920s, as I will now show.

2.3. Branch curves in Italy: Enriques, Zariski, Segre

While discussing the attempts so far to visualize branch points and
branch curves, most of the mathematicians I have dealt with were Ger-
man as we saw in Section I.6. Whereas not all of the mathematicians in
Germany had a favorable view towards what might be called anschauliche

geometry, Riemann, Klein, Brill, Dyck and many more mathematicians in-

90 Epple cites the following sentences from a letter from Wirtinger to Klein sent on
22 May 1896: “I imagine the mathematician of the 20th century in such a way that,
like the painter, as often as he wants, he sees the world painterly and thinks how he
would paint it (and not just of classical gallery paintings), also as often as he wants to
see the mathematical problem, wherever and in whatever form it appears. As a result
of general mathematical education, I now think of the ability of this seeing, at least in
principle.” [“Ich stelle mir den Mathematiker des 20 Jahrhunderts so vor, dass er, wie
der Maler, so oft er will, die Welt malerisch sieht u. denkt wie er sie malen würde (u.
nicht blos an classische Galeriebilder), auch so oft er will das mathematische Problem
sieht, wo u. in welcher Gestalt immer es entgegentritt. Als Resultat der allgemeinen
mathematischen Bildung, denke ich mir nun die Fähigkeit dieses Sehens, wenigstens
im Princip.”] [Epple 1995, p. 387]
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fluenced by them, certainly had supported a concrete visualization of the
geometrical objects in general and of branch points of Riemann surfaces
in particular. When the discipline of algebraic geometry was developed
in Italy, however, the approach towards visualization techniques began to
change: these techniques, I claim, were increasingly marginalized, and
when they were employed, they were mainly considered merely technical.

The reasons for this change in approach are diverse. While mate-
rial models flourished in Germany for usage in research and even were
mass-produced, the production of mathematical-physical models for the
purpose of research had not taken root in Italy (see: [Giacardi 2015a;b;
Palladino & Palladino 2009]). Models were indeed bought by Italian
mathematicians for mainly pedagogical reasons, but there was hardly an
equivalent tradition in Italy, which could be compared with the German
one. The attempt of Giuseppe Veronese (1854–1917) to establish a na-
tional laboratory for the production of models failed. Nevertheless, a
workshop for constructing models was founded (for teaching projective
geometry) at the university of Naples. During the first decades of the 20th
century, Guido Castelnuovo and his students also constructed models of
surfaces. That said, these were by and large exceptions with respect to the
situation in Italy as a whole. When models were needed they were acquired
mainly from Germany. Livia Giacardi explains that this rejection is due
to the mathematical tradition of geometry in Italy of the 19th and the
20th centuries, which consisted of several rather abstract mathematical
approaches: the theoretical, analytical approach, the logical approach of
the foundations of geometry, and the Italian school of algebraic geometry.
One would expect that the usage of models would have been preferred
by the algebraic geometry school, however, as Giacardi [Giacardi 2015a,
p. 12] notes: “In spite of this, they [the members of this school] did not
use physical models in their research work, but preferred to employ the
Gedankenexperiment.” 91

However, as already seen above with Severi and Enriques, illustrations
were used in published articles and books. As noted, Castelnuovo and En-
riques did appreciate this mathematical tradition and also considered it

91 Giacardi notes that the models that Beltrami himself manufactured for the hyper-
bolic plane were an exception (see: [Capelo & Ferrari 1982]). Note moreover that al-
though the political and scientific relations between the Berlin-Rome mathematical
axes were more intensive starting from the 1920s onwards (see: [Remmert 2017]), at
this time the tradition of model production in Germany was in decline.
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even in an explorative way. The following 1928 citation from Castelnuovo
serves as evidence of this Italian tradition: 92

We had constructed [...] a large number of surface models [.. .] [placed]
in two showcases. One contained the regular surfaces for which everything pro-
ceeded as in the best of all possible worlds [.. .]. But when we tried to verify these
properties on the surface of the other window, the irregular ones, trouble began
and there were exceptions of every kind. In the end, the assiduous study of our
models had led us to divine some properties that had to exist, with appropriate
modifications, for the surfaces of both showcases; we then put these properties
into practice with the construction of new models. If they resisted the test, we
were looking for the logical justification for the last phase. With this procedure,
which resembles the one carried in the experimental sciences, we have succeeded
in establishing some distinctive traits for families of surfaces [Castelnuovo 1928,
p. 194].

As the objects of algebraic geometry become more and more complex,
however, fewer and fewer attempts at visualization were to be found;
Norbert Schappacher indicates:

“substantial basic knowledge required of any researcher preparing to work in
Algebraic Geometry was invested with an essential illustrative component. More
generally, there can be no doubt that basic objects of algebraic geometry [.. .]
were naturally pictured (with or without actually drawing them) by all those
working with them. [.. .] [However,] Italian geometers were led to analyzing
constellations of objects which are increasingly difficult to visualize adequately
[.. .].” [Schappacher 2015, p. 2806]

What Schappacher emphasizes is that several algebraic objects and
methods could not be drawn at all and that algebraic arguments, though
leading to results regarding curves and surfaces, were not followed by cor-
responding illustrations. In partially following Schappacher’s view, when
looking on the research on branch curves done in the Italian school of
algebraic geometry, the role visualization played oscillated between three

92 “Avevamo costruito [...] un gran numero di modelli di superficie [...] e questi
modelli avevamo distribuito [...] in due vetrine. Una conteneva le superficie regolari
per le quali tutto procedeva come nel migliore dei mondi possibili [...]. Ma quando
cercavamo di verificare queste proprietà sulle superficie dell’altra vetrina, le irrego-
lari, cominciavano i guai e si presentavano eccezioni di ogni specie. Alla fine lo stu-
dio assiduo dei nostri modelli ci aveva condotto a divinare alcune proprietà che dove-
vano sussistere, con modificazioni opportune, per le superficie di ambedue le vetrine;
mettevamo poi a cimento queste proprietà con la costruzione di nuovi modelli. Se
resistevano alla prova, ne cercavamo, ultima fase, la giustificazione logica. Col detto
procedimento, che assomiglia a quello tenuto nelle scienze sperimentali, siamo riusciti
a stabilire alcuni caratteri distintivi tra le famiglie di superficie.”
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positions: an epistemological procedure, a technical tool and a complete
absence.

2.4. Enriques and the two visualizations

Federigo Enriques (1871–1946) was one of the driving forces behind
advancements in the school of algebraic geometry in Italy, especially in
the field of birational geometry (See: [Brigaglia & Ciliberto 1995, esp.
p. 97–124]). He was one of the first mathematicians to deal seriously with
questions concerning branch curves, and especially on how constructions,
which were done for branch points and Riemann surfaces (i.e., complex
curves), can be generalized for the case of branch curves and complex
surfaces.

Concerning branch curves, in 1923 Enriques is considered as the
initiator of research on these questions. As Anatoly Libgober indicates,
“[d]escribing the origins of the studies of the complements one should
probably start with the work of Enriques [.. .] on multi-valued algebraic
functions of several variables [.. .] since, it seems, they contain the earliest
results on their fundamental groups of the complements.” [Libgober
2011, p. 3] Libgober refers to Enriques’ 1923 article entitled “Sulla
costruzione delle funzioni algebriche di due variabili possedenti una
data curve diramazione”. Yet it should be noted that Enriques in fact had
similar questions in mind already at the close of the 19th century, and
attempted to answer them in various ways.

2.4.1. Enriques draws a rotating line

Already in 1897, Enriques writes to Guido Castelnuovo (1865–1952),
concerning an 1881 article by Leopold Kronecker, that “you yourself asked
the question whether ‘two multiple planes with the same branch curve can
be represented [mapped] one to the other.’ ” 93 The question comes on
the background of Enriques’ investigation of complex surfaces that began
in 1893 and also involved arguments regarding their branch curves, as can
be seen in the correspondence with Castelnuovo [Bottazzini et al. 1996,
e.g., p. 42, 56, 62, 70, 100]. These letters do not contain any visualization
of the branch curve. Moreover, questions in some of them concern spe-
cific types of surfaces. The general question posed in 1897, which remains
merely suggested, is whether two complex surfaces (called here “multiple

93 Letter of 5th June, 1897, in: [Bottazzini et al. 1996, p. 340]: “Tu stesso anzi ponevi
la questione se ‘due piani multipli colla stessa curva di diramazione sieno rappre-
sentabili uno sull’ altro’.”
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planes”), 94 having the same branch curves, are in fact equivalent (up to
a certain transformation). Within a space of two years Enriques explicitly
formulates this question, as we will see.

Kronecker’s paper that Enriques refers to deals with the discriminant of
an algebraic function with one variable. 95 Although the question Enriques
and Castelnuovo are interested in concerns the branch curve of an alge-
braic function with two variables, the former claims that the question may
be resolved by methods similar to Kronecker’s. Enriques, however, indi-
cates that it is easy to find the numerical invariants of the surface (among
them, as he indicates, are the linear genus, the arithmetical genus and the
geometrical genus) only by knowing the numerical invariants of a branch
curve. Nevertheless, he remarks that he does not have time to deal with
this question. In 1905 a similar approach is indicated. In a letter written to
Castelnuovo on 1 February 1905, Enriques notes that once a branch curve,
together with its degree and its number of nodes and cusps, are given one
can then determine the degree of the branched surface from the relations
between the various numerical invariants [Bottazzini et al. 1996, p. 603].
However, once again, Enriques does not develop his general remarks into
a more comprehensive theory. 96

As should be noted, the numerical approach to branch curves did not
take into account any form of visual reasoning, and Enriques did not even
treat the question of what the branch curve looked like or how it could be
visualized. In 1899, however, he approached the research on the branch
curve from another direction, employing a more visual form of reasoning.
In another letter Enriques wrote to Castelnuovo on 26 February 1899 two
questions are presented. The first: Can a branch curve be arbitrary? I.e.,
can any curve be a branch curve? The second: Given a branch curve, is
there a unique complex surface of degree n branched along it? The argu-
ments presented in the letter are concise but unclear, and Enriques indeed
improved them in subsequent papers. I will cite the whole relevant section
from this letter, however, as in it Enriques draws a sketch, which supports
his argument.

94 The term “multiple plane” [piano multiplo] was used to denote surfaces covering
the complex plane .
95 Indeed, the paper is called “Ueber die Discriminante algebraischer Functionen
einer Variabeln” [1881].
96 This is only done in [Enriques 1912b], which deals only with numerical invari-
ants of the branch curve and the constraints they impose on the surface. As the paper
does not even hint towards visualization of branch curve, it is beyond the scope of the
paper.
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Answering an old question proposed by you, it seems to me that the branch
curve of a multiple plane cannot be arbitrary, and that if a plane curve C is the
branch curve of a multiple plane of degree n, it will define in general a unique
n-multiple plane. This is why.

Take on the plane a pencil of lines passing through O and consider a (n degree)
line a through O. It defines a certain number � of objective curves K1; : : : ; K� ;
chose one curve K1 . Rotating the line a around O, we continually follow what
happens to the curve K1 . After a whole turn, the curve K1 generally permutes
with K2 : : : or K� . However, this must be ruled out if C is a branch curve of a
degree n multiple plane. But if we impose the condition that K1 , for example,
separates rationally between the �K ’s represented above the n-degree line, gen-
erally it will not happen the same for K2 . . . or K� [Bottazzini et al. 1996, p. 400–
401]. 97

Enriques’ settings are as follows: a plane curve C is given (when C is not
necessarily a branch curve), together with a point O, not on C , and a pencil
of lines passing through O, which can be thought of as a rotating line: i.e.,
as the family of lines fy = tx : t 2 Rg [ fx = 0g, when O = (0,0). Choosing
one line a from this family, it intersects the curve C in several points. En-
riques considers the � Riemann surfaces of degree n which are ramified
over these points, denoting these surfaces by K1; : : : ; K� . Enriques’ claim is
that once we rotate the line a (inside the pencil of lines) to do a full round,
the movement of the intersection points with C will induce a permutation
of the Riemann surfaces, i.e., a permutation of the set K1; : : : ; K� . However,
Enriques claims that if C is a branch curve, then the induced permutation
might be in fact the identity permutation—for example, choosing a Rie-
mann surface K1 it will not be permuted with any other of the Riemann
surfaces K2; : : : ; K� .

97 “Ripensando ad una vecchia questione che tu proponevi, mi par di vedere che la
curva di diramazione di un piano multiplo non possa darsi ad arbitrio, e che se una
curva p[ia]na C è curva di diramazione d’un p[ia]no n-plo, essa definirà in generate

un unico p[ia]no n-plo. Ed ecco perché. Prendi nel p[ia]no un fascia O e considera
una retta (n-pla) per a [Lapsus per: una retta [...] a per O]. Essa definisce un certo
numero � di curve obiettive K1; : : : ; K� ; scegliamone una K1 . Facciamo ruotare a at-
torno ad O, e seguiamo per continuità ciò che diventa K1 . Dopo un giro completo,
in generale K1 si permuterà con K2 : : : o K� . Ciò invece deve escludersi se la C e
curva di diramazione di un p[ia]no n-plo. Ma se imponiamo Ia condizione che K1 ,
ad es[empio], si separi raz[ionalmen]te fra le �K rappresentate sulla retta n-pla a, in
generale non accadrà lo stesso per K2 : : : o K� .”
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Enriques’ arguments are at once both vague and condensed. It is clear
that he relies on several arguments from Hurwitz’s 1891 paper, 98 who
also considered a similar situation. Given a set of points a1; : : : ; aw in C,
Hurwitz sought to investigate what would happen to the set F1; F2; : : :

of the Riemann surfaces of degree n, which are branched over these
points, when the points a1; : : : ; aw simultaneously start to move. Hurwitz
found the following case—when the points eventually return to the initial
position, though not necessarily in the same order—most interesting.
For Hurwitz, “[e]ach closed path [geschlossenen Bahn] of the system of
points (a1; a2; : : : ; aw) corresponds to a certain permutation

�

F1 F2 : : :

F 0
1 F

0
2 : : :

�

of the Riemannian surfaces” [Hurwitz 1891, p. 23].
Enriques took a specific case of this “closed path,” and visualized it,

when the points (a1; a2; : : : ; aw) are actually intersection points of a line a

with a given curve C . The “closed path” is formed when the line a performs
a full rotation. It is clear that if C is a branch curve, then (at least) one of
the Riemann surfaces K1; : : : ; K� (branched along a\C) is a plane section
of the complex surface, whose branch curve under a covering map is the
given branch curve. However, it seems that what Enriques assumes is that
there is only one complex surface of degree n branched along C -–since
in this case Enriques hints that the corresponding Riemann surface will
not permute with any of the other of the Riemann surfaces, which is not
a plane section a section of a complex surface.

Indeed, the visualization that Enriques proposed does not help to clarify
his two claims that he sets up to explain: (1) why any plane complex curve
cannot be a branch curve, and (2) why does a branch curve uniquely
determine the surface. 99 There it is reasonable to pose the question,
whether the sketch was indeed needed. Both Enriques and Castelnuovo
knew that this sketch cannot represent in any way a branch curve, since a
branch curve is always singular when the degree of the surface is higher

98 Enriques mentions Hurwitz’s research on Riemann surfaces in a letter to Castel-
nuovo on 7 June 1897 in: [Bottazzini et al. 1996, p. 341].
99 The claim that the branch curve determines the surface uniquely—i.e., that there
are no two different surfaces branched over the same curve—was first conjectured by
Oscar Chisini in 1944 for surfaces of degree greater than 4 [Chisini 1944], and only
proved during the 21st century by Viktor S. Kulikov, with a single exception [Kulikov
1999a, 2008]. How Chisini investigated branch curves is beyond the scope of this pa-
per; however, see the conclusion to Section III. Hence, it is not clear how Enriques
thought about proving the uniqueness of a surface branched along a given curve.
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than two. It seems, however, that it was essential for Enriques to present
the new component—the rotating line—in his construction, as a new
ingredient of an “experimental” visualization, anticipating Castelnuovo’s
reference to material models as “experimental sciences”. Indeed, both
Enriques and Castelnuovo were exposed to material models in Turin,
since “in Turin the first acquisitions [of material mathematical models]
thanks to Enrico D’Ovidio date from 1880–1881” [Giacardi 2015a, p. 20].
For Enriques, as someone who appreciated this tradition, (and for Castel-
nuovo, who obtained the sketch) the drawing was a way to prompt visual
reasoning and connect the investigation of the branch curves with Hur-
witz’ more algebraic reasoning. It is important to note that Corrado Segre,
who in 1907 was in charge of the Library in Turin instead of D’Ovidio,
already commented in 1891—eight years before the letter from Enriques
to Castelnuovo was sent—that “sometimes we [in Turin] even resorted
to drawings or models of geometric figures to see certain properties [.. .]
that could not be obtained with deductive reasoning.” 100 [Segre 1963
(1891), p. 400] This approach, that there are types of reasoning beyond
the merely deductive, certainly influenced Enriques, as we will also see in
the following section when dealing with other attempts at drawing objects
related to the branch curve.

Indeed, abandoning the second question (why does a branch curve
uniquely determine the surface) and concentrating on the first, in two
papers, written in 1912 and 1923, Enriques explains in more detail why
branch curves cannot be just any curve. He does this by combining two
types of reasoning: an algebraic one and a visual one, making his approach
from the letter of 26 February 1899 more precise.

2.4.2. Enriques and the loops encircling a branch curve

In 1912 Enriques published his first paper on the subject of the branch
curve, entitled “Sur le théorème d’existence pour les fonctions algébriques
de deux variables indépendantes”. 101 As Enriques later (in 1923) notes,
the 1912 paper was not precise enough. I will review the 1923 paper in
more detail later, but for the moment it is worth briefly examining the 1912
paper as a turn towards a more algebraic approach is taken.

100 [...] “talvolta si è persino avuto ricorso a disegni o modelli di figure geometriche
per vedere certe proprietà [...] che col solo ragionamento deduttivo non si sapevano
ottenere.”
101 Recall that a second paper on the numerical invariants of the branch curve and
their connection to the numerical invariants of surfaces was also published in 1912 by
Enriques [1912b].
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At the beginning of this paper, Enriques describes the state of the
research regarding branch points of his period and the construction of
Riemann surface branched above them: given 2m simple branch points,
n the degree of the to be constructed Riemann surface, and the 2m trans-
positions 102 corresponding to the branch points, forming a transitive
group inside the symmetric group of n elements, a Riemann surface exists
branched over these 2m points [Enriques 1912a, p. 419]. Like Hurwitz,
Enriques algebraically formulates the conditions for the construction of
the Riemann surface, where the only essential condition is that the set
of transpositions corresponding to the branch points would be transitive
and that their product would be the identity permutation. The question
that Enriques poses is whether the same situation can be generalized to
branch curves and the construction of complex surfaces.

Enriques immediately notes that the branch curve can be considered
in two different ways: either as a complex curve in the (x; y) plane, “in
the sense of algebraic geometry,” or as a surface in a (real) 4-dimensional
space, which “supplies the representation of complex points on the
plane (x; y)” [Enriques 1912a, p. 419]. Indeed, Enriques hints at the
two different approaches of representing complex curves, but does not
elaborate on them. Instead, the main question is whether from a given
(complex) curve, as discussed above, one can construct an n-degree com-
plex surface branched along this curve. Enriques repeats his claim that
the curve cannot be arbitrary, now explaining more clearly why: “given the
invariants (pa; p

(1)) of the [surface 103 given by the] equation F (xyz) = 0
one finds that in general the [branch] curve f(xy) = 0 has a certain
number of nodes which are > 0 for n > 3 and a certain number of cusps
which are > 0 for n > 2, when these numbers can be calculated with the
help of the known formulas” [Enriques 1912a, pp. 419–420]. Enriques
then states two claims, which are given offhand, without any proof. The
first, that branch curves do not have higher singularities; 104 the second,
that given two plane curves of the same degree, with the same number of
nodes and cusps, it may be that one would be a branch curve, while the
other not [Enriques 1912a, p. 420]. This is an important statement, as it

102 A transposition is a permutation, which permutes only two elements. A simple
branch point may be defined as a branch point whose corresponding permutation is
transposition.
103 Here, pa is the arithmetic genus of the surface, and p(1) is the linear genus of
the surface. See: [Hazewinkel 1995, pp. 111–112]
104 Ibid.: “on exclura qu’il y ait des singularités plus élevées.” This was only proved
in 2011, in: [Enriques 1912a, pp. 419–420].



A PLURALITY OF (NON)VISUALIZATIONS 167

indicates that the variety Vn;�;� , 105 which parameterizes all plane curves
with degree n with � nodes and � cusps, with no other singularities (as a

subvariety in the projective complex space CP
n(n+3)
2 ), may be, for given n; �,

and �, reducible: i.e., having several non-intersecting components. Such
a claim is given—surprisingly—in a very casual way, without any proof or
example. The first example of this reducibility involving branch curves is
Zariski’s from 1929, proving that V6;0;6 has two disjoint components (see
Section II.3.2).

It seems that what led Enriques to make the second claim are the nec-
essary and sufficient conditions that he proposed for a curve as a branch
curve. These conditions are stated in a completely algebraic way, and,
as Enriques claims, due to their complexity, do not hold for every curve.
Specifically, when Enriques denoted the degree of the branch curve as 2m,
the question is how to assign transpositions for each of the 2m branches
(of the branch curve), transpositions that would describe the way the
complex surface is branched. In order to find the sufficient and necessary
conditions, Enriques considers two types of critical points of the branch
curve: simple ones (“which correspond to parallel lines to the y axis, tan-
gent to f = 0 at a simple point” [Ciliberto & Flamini 2011]) and cusps.
Enriques then poses three purely algebraic conditions for the associated
transpositions, 106 indicating that if they are satisfied then the curve is a
branch curve and one can construct a complex surface branched along
it. The claim, however, is made without proving that those conditions

105 I am using modern notation here.
106 Enriques calls the set of simple branch points set (1), and the set of cusps set (2).
He then states the following: “If there exists an irreducible algebraic function z(xy)
of n > 2 branches z1; : : : ; zn corresponding to the branch curve f(xy) = 0, we have
2m = 2n+2p� 2, p � 0 [where p is the genus of the branch curve, 2m the degree of it]
and the following conditions are satisfied:

1. The transpositions between the 2m branches, corresponding to the points in
set (1), form an intransitive group. More precisely, the 2m branches y1; : : : ; y2m would
be divided in relation to this group in a certain number �, � � n � 1, of intransitive
systems, comprised respectively of t1; t2; : : : ; t� elements, when t1 + t2 + � � �+ t� = 2m.

2. To these � intransitive systems, one can associate � pairs of [different] num-
ber (i s), when i; s belong to the set 1; 2; : : : ; n, in the following manner: every trans-
position between y1; : : : ; y2m , corresponding to a point in set (2), will take a branch y
corresponding to a system (i s) into a branch corresponding to a system (r h), where
the two couples (i s) and (r h) have a joint element (either h = i or h = s).

3. The transposition (i s) corresponding to the 2m points y1; : : : ; y2m generate a tran-
sitive group regarding [the permutation group of] 1; 2; : : : ; n and the product of all the
2m transpositions, taken in a suitable order, is reduced to the identity.

Conversely, if conditions 1, 2, 3 are satisfied, there will always be an algebraic function

z(xy) with n branches, of which f(xy) = 0 is the branch curve.” [Enriques 1912a, pp. 420–
421].
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are necessary and sufficient. Surprisingly, the nodes of the branch curve
and the conditions they might have implied regarding their associated
transpositions go unmentioned.

However, this pure algebraic consideration is re-formulated in a 1923
paper where it shifts into a more topological context that increasingly re-
lies on visualization. I claim that this 1923 paper is a combination of the
1912 paper and Enriques insights from the 1899 letter.

� � �
In the 1923 paper entitled “Sulla costruzione delle funzioni algebriche di
due variabili possedenti una data curva di diramazione,” Enriques declares
at the outset that while submitting the 1912 paper, he already encountered
several difficulties. As he states, it was precisely due to such difficulties that
he now wished to resubmit the paper [Enriques 1923, p. 185].

As Enriques notes in the 1923 paper, not just any plane curve can be
a branch curve [Enriques 1923, p. 185]—but once more he fails to give
even a single example. As in the 1912 paper, Enriques’ aim is to provide a
proof for the necessary and sufficient conditions for a curve being a branch
curve, formulating more precisely and more extensively the algebraic con-
ditions of eleven years ago. The paper begins with the same setting of the
1899 letter: a plane curve C is given, assuming it is a branch curve of a sur-
face F ; a point O not on C is also given, and a pencil of lines y = tx on this
plane, passing through O. The parameter t is a complex one, whose val-
ues vary in the (complex) plane denoted by �. Taking t = 0, the line y = 0
cuts the curve C in m points: A1; : : : ; Am . When considering the section of
the surface F above this line, 107 The above-mentioned section is the in-
tersection of P and F . one obtains a (smooth) Riemann surface, denoted
by K0 , which is considered as a branched cover of the line y = 0, branched
over A1; : : : ; Am , which are simple branch points.

Enriques’ key move that enables him to later visualize his arguments is
to note that the line y = 0 is a complex line, homeomorphic to a two-
dimensional real plane. Hence, following the common method of investi-
gation of a Riemann surface, one can look at a “system of loops” [Enriques
1923, p. 187] which are denoted by li , in the two-dimensional real plane
y = 0, going out from O and encircling the points A1; : : : ; Am . Every loop
then corresponds to a permutation Si = (ri si),

108 which describes the

107 Denoting by O0 the point from which one projects F to the complex plane, one
considers a plane P passing through O0 and y = 0.
108 The notation (r s) stands for a permutation, which permutes between r and s
and leaves all the other numbers as they are.
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permutation of the sheets ri and si of the Riemann surface: while mov-
ing along li (inside the real plane y = 0), the n preimages of the start-
ing point of li : p1; : : : ; pri ; : : : ; psi ; : : : pn permute between themselves such
that after one circling (when returning to the initial point of li) the values
permuted equal to p1; : : : ; psi ; : : : ; pri ; : : : pn . Following the arguments from
1899, Enriques then moves the line y = 0 (as a member in the family of
lines y = tx), claiming that after moving t along a loop on the plane �,
the resulting permutations should be identical. This results in conditions
of invariance that should hold concerning these permutations, which En-
riques claims are true for every branch curve. Enriques’ task is to explicitly
formulate these conditions.

This is done in the main section (Section III) of Enriques’ paper. En-
riques starts by noting that while rotating the line y = 0 in the pencil of
lines, the rotated line might intersect three types of critical points of the
curve C : simple tangent point (denoted by T1; : : : ; T� on the lines in the
family y = tx with C), nodes of C (denoted by D1; : : : ; D�) and cusps of C
(denoted by Q1; : : : ; Q�). Before analyzing what happens to the above-
mentioned permutations Si while approaching one of these critical points,
Enriques makes an observation regarding the loops li . This observation,
and the argument that follows it, is mainly visual in orientation.

The question Enriques poses is the following: when moving t along a
loop on the plane �, what happens to the loops li when approaching one
of these critical points? Assuming that y = tcx is a line which intersects C

at a critical point, then there are two intersection points Ari and Asi which
are merged (see Figure 17). 109 Remunerating the points of intersection,
one can assume that the points A1 and A2 are merged. But if one takes a
value t0 very close to tc , what would be the relative position of the loops l1
and l2?

Denoting by L0 the complex line y = t0x, the question that Enriques
poses concerns, in current terminology, the finding of a well-ordered basis
for the fundamental group of the complement of the intersection points
A1; A2; : : : of L0 with C : �1 (L0 � fL0 \ Cg) ' �1 (C� fA1; A2; : : :g). En-
riques then asks if one can always rearrange the loops in this group such
that l1 and l2 would be “fairly close” [“onestamente vicini”], meaning that
they “tend to merge without including any other point A or crossing other

109 The fact that there are two points that coincide is due to the nature of the critical
points (tangent point, node or cusp). Were there other types of singular points, this
might not have been the situation. However, Enriques does not prove—also in this
paper—that the only singular points of a branch curve are nodes and cusps.
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Figure 17. The complex (dashed) line y = t0x intersects the
curve C near a singular point (here: the node N ), and the points
of intersection Ari and Asi will be merged at this point. The com-
plex line y = t0x is homeomorphic to a two-dimensional real
plane, and the loops `ri and `si , which surround the intersection
points, are drawn in this plane (figure drawn by M.F.).

loops.” 110 [Enriques 1923, p. 189] Enriques suggests two cases: either the
loops are already in this situation, i.e., already “fairly close” or, although
being close to each other, other loops interrupt them to be merged while
approaching the critical points. He then gives two drawings as examples
for the second situation (see Figure 18):

What Enriques immediately notes is that “for simplicity, in this elemen-
tary case, we can demonstrate that one can transform the loops, permit-
ting us to reduce it to the case when l1 and l2 would be fairly close” 111

[Enriques 1923, p. 190]. The transformation is shown in Figure 19.
Immediately afterwards Enriques proves that this transformation does

not change the corresponding permutations S1 and S2 . The above trans-
formation, however, relies completely on a visual argument. Taking only
these two cases into account, in Figure 19 Enriques solely draws the trans-
formations of the loops. The argument of how to transform the basis of the
above fundamental group is completely visual, relying eventually on the

110 “[...] può accadere che l1 e l2 , per t = tc , diventino o possan farsi diventare
onestamente vicini, cioè tendenti a confondersi senza includere alcun altro punto A o
attraversare altri cappi.”
111 “Ma, riferendoci per semplicità a questo case elementare, possiamo dimostrare
ehe, in ogni case, una conveniente trasformazione dei cappi, permette di ridursi al
ease in cui l1 e l2 , diventino onestamente vicini.”
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Figure 18. Enriques’ depiction of two cases of a loop “interrupt-
ing” the loops encircling the points A1 and A2 to come together
[Enriques 1923, p. 190].

Figure 19. Enriques’ depiction of the transformation of the loops
from Figure 18 [Enriques 1923, p. 190].

ability of the reader to imagine more complex cases when another, more
complicated loop li would be between l1 and l2 .

With these assumptions, denoting as above the loops in the vicinity of
a critical point as l1 and l2 , Enriques deals with the three types of criti-
cal points, investigating what the relations between the induced permuta-
tion S1 and S2 are. He starts by investigating what happens in the neigh-
borhood of a tangent point T . Enriques then asks what happens to the
loops on the (complex) line L0 (given by y = tx)and their corresponding
permutations when the line encircles the point T (recall that the loops l1
and l2 encircle the points A1 and A2). When encircling the point T , En-
riques subsequently indicates that it is clear from the analytical power se-
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ries around this point 112 that what happens is a 180° turn of the points A1
and A2 [Enriques 1923, p. 191], 113 which results in a deformation of the
loops. Enriques then adds a figure in order to depict this deformation (see
Figure 20).

Figure 20. Enriques’ three drawings of the change of the loops,
which encircle the points A1 and A2 , while the complex line y = tx
encircles the branch point T [Enriques 1923, p. 191].

While the passage from the first part of the figure (see Figure 20, part
I) to the second (part II) describes the changing basis of the loops (from
l1 and l2 to l01 and l02) and can be derived from the analytical power se-
ries, the third part of the figure indicates the algebraic relation between
the permutations S1 and S2 corresponding to l1 and l2and the permuta-
tions S01 and S02 corresponding to l01 and l02 . “[.. .] [L]ooking at fig. 3 [Fig-
ure 20.III here],” Enriques subsequently notes, “where the three drawings
I, II, III, which represent the sucessive states of the transformation, where
the transition from II to III consists in transporting l2 from the right to
the left of l1 : we see that the permutations S1 and S2 change respectively
in S01 = S1S2S

�1
1 ; S02 = S1:”

114 [Enriques 1923, p. 192].
While the argument here is also visual, there is no explicit alge-

braic proof. Enriques implies that any automorphism of the group
�1 (L0 � fL0 \ Cg) ' �1 (C� fA1; A2; : : :g), being in this case the au-
tomorphism sending l1 to l01 = l1l2l

�1
1 and l2 to l02 = l1 , also occurs at the

112 Being “x� xc = �(t� tc)
1=2 + � � � ” [Enriques 1923, p. 190].

113 “È chiaro che tale effetto si riduce a quello di un cerchio infinitesimo che cir-
condi T, a cui risponde un cerchietto descritto dai punti A1 e A2 , ognuno dei quali
percorre uno dei due archi A1 A2 , indicati nella fig. 3.I [here Figure 18.I].”
114 “Ebbene, osserviamo nella fig. 3 i tre disegni I, II, III, che rappresentano gli
stati successivi della trasformazione, dove il passaggio dalla II alla III consiste nel
trasportare l2 dalla destra alia sinistra di l1 : vediamo cosi che le sostituzioni S1 e S2 ,
si cambiano rispettivamente in S01 = S1S2S

�1
1 , S02 = S1 .”
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level of the corresponding permutations to the li ’s. This claim, however,
deserves either an algebraic proof or at least a reference to where it is
proved. Yet Enriques provides neither of these, giving a visual justification
instead. This might suggest that the visualization here plays a double role:
both functioning as an indispensible inference method, and at the same
time concealing the fact that an algebraic-symbolical proof may also be
given. What this implicitly indicates is that an algebraic proof is unneces-
sary even though, as we will see later, Zariski followed this algebraic line of
thought. This perspective, however, misses the bigger framework within
which Enriques worked. Taking into account his familiarity with Hurwitz’s
algebraic formulation of the same procedure, Enriques rather decided to
give more weight to the visualization of the loops themselves encircling
the branch curve. Indeed, Hurwitz already provided the algebraic proof
in 1891 [Hurwitz 1891, p. 28–31].

After using this visual argument, Enriques then employs algebraic infer-
ence methods, proving that in this case of the tangency point, S01 = S1; S

0
2 =

S2: Using the same argumentation, though without drawing any figures,
he subsequently investigates what happens in the neighborhood of a node
and a cusp. In the case of a node, Enriques proves that locally the corre-
sponding permutations should be disjoint (e.g., S1 = (12) ; S2 = (34))
while in the case of a cusp, the corresponding permutations should have
only one index in common (e.g., S1 = (12) ; S2 = (23)).

The recapitulation of the theorem, appearing at Section IV of Enriques’
paper, summarizes the necessary conditions for a curve to be a branch
curve, i.e., what results when it is known that C is a branch curve. The
theorem might be thought of as algebraic, presenting the map sending
the loops (in the complex line y = tx, encircling the points A1; : : : ; Am)
to their corresponding permutations. While the language that Enriques
employs is partially algebraic (describing the relations between the permu-
tations), it is also to a certain degree visual-topological: the algebraic map
determined while one follows “any path [cammino] of t that approaches
a critical point t = tc” [Enriques 1923, p. 196]. In other words, at every

neighborhood of a critical point there is a (possible) visualization of the
path (of t) approaching it as well as of the corresponding loops (though
a loop of the t path is never drawn). Eventually, as Enriques described in
Section III of his paper, one considers a loop of t at the complex line �

(thought as a two dimensional real plane). While the algebraic conditions
are presented as local ones (what happens at the neighborhood of each
critical point), the visual argumentation hints at a global consideration:
one should consider the branch curve in its entirety, as the line y = tx
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performs a complete rotation while moving t along a loop on the plane �.
Proving afterwards that the conditions presented above are not only nec-
essary but also sufficient, Enriques formulates his theorem in terms of
“elementary loops” [“giri elementari” or “sistema primitive di cappi”] [En-
riques 1923, p. 198]. This already indicates a more algebraic formulation,
using the tools of group theory. Nevertheless, Enriques fails to develop
this any further.

2.5. Zariski and the group-theoretic approach

Such a development takes place only several years later, by Oscar Zariski
(1899–1986), in two papers written in 1928 and 1929 respectively. 115 As
we will see, his approach is almost purely algebraic: i.e., when Zariski does
draw a figure, it is purely technical.

In the 1928 paper “Sopra il teorema d’esistenza per le funzioni alge-
briche di due variabili” Zariski already notes that while Enriques was the
first to pose the problem of the necessary and sufficient conditions of a
curve to be a branch curve, the answer he gave did not explicitly introduce
“the concept of the fundamental group” [Zariski 1928, p. 134]. 116 By the
“concept of the fundamental group,” denoted in Zariski’s paper by G, he
means the group of loops in the “residual space S4 � D ,” [Zariski 1929,
p. 306] when S4 is a real 4-dimensional space (i.e., R

4), and D is the
branch curve. The same formulation appears in the 1929 paper “On the
Problem of Existence of Algebraic Functions of Two Variables Possessing
a Given Branch Curve,” a translation of the 1928 paper with new results
also added. Zariski in fact shifts the mathematical domain in which the
problem was normally situated. “The complete solution of the existence
problem depends upon the solution of the following purely topological
problem: Given an algebraic curve, to find its fundamental group. In this paper
we attempt to throw some light upon the structure of the fundamental
group.” [Zariski 1929, p. 305] Zariski therefore points out that the inves-
tigation of branch curves should be focused on finding “the structure of
the fundamental group” and not on visualizing the curve or this group.

115 For a detailed biography of Zariski and his work, see [Parikh 1991; Slembek
2002].
116 See also: [Libgober 2011, p. 4]: “Today we recognize Enriques relations among
the permutations as the same as the relations satisfied by the generators of the funda-
mental group”.
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His investigation is therefore completely algebraic, and more specifically,
group theoretic. 117

Indeed, Zariski reformulates Enriques’ results in an algebraic way.
According to Zariski, “[a] finite set of generators of G [the fundamental
group] can easily be constructed,” using Solomon Lefschetz’s method of
finding a more convenient basis to work with, 118 when “the generators gi
[of the group G] satisfy several relations, called generating relations.” [Lef-
schetz 1924, p. 307] These generators are what Enriques called a “primitive
system of loops” (“sistema primitivo di cappi” [Enriques 1923, p. 198]),
but Zariski takes this vague formulation and makes it precise using group
theory. By looking at the relations between the generators, relations which
are induced from the critical points of the branch curve, Zariski turns
Enriques’ visual investigation into an algebraic one: the relations of the
corresponding permutations, induced from Enriques’ analytical-visual
argument, turn into algebraic relations between the different generators
gi . [Zariski 1929, p. 310–311] The only figure that appears in this context
is a merger of Enriques’ three figures (see Figure 20) into one figure
(see Figure 21), while the argument is completely independent of any
visual demonstration: Zariski notes that for a tangent critical point, “g1 is
transformed into g2 and g2 is transformed into g�12 g1g2 [.. .] (see Fig. 1).
This leads to the generating relation: g1 = g2 .” [Zariski 1929, p. 310]
Stating also the relations induced from a node and a cusp of the branch
curve, Zariski reformulates Enriques’ results in an algebraic way:

The following theorem is an implicit consequence of the existence theorem,
as it is stated by Enriques: THEOREM 4. The elementary generating relations
together with the relation g1g2 � � � gn = 1, form a complete set of generating
relations, i.e., every relation between the generators is a consequence of them.
[Zariski 1929, p. 312]

117 This group theoretical approach highlights Zariski’s growing interest in the al-
gebraization of geometry, which culminates in the latter half of the 1930s. As Carol
Parikh notes, “[Zariski] began [during the early 1930s] with the books of two alge-
braists who had been deeply influenced by Emmy Noether in Göttingen, B. L. van
der Waerden’s Modern Algebra and Wolfgang Krull’s The Theory of Ideals.” [Parikh 1991,
p. 52]. See also [Parikh 1991, pp. 51–57]. Zariski’s connection with Emmy Noether
and the German algebraic school mark an important turning point in his conception
of algebraic geometry.
118 [Zariski 1929, p. 307]: “It can be shown,* that any circuit g is equivalent to a
circuit g0 belonging to a generic ‘line’ l [...] through O (a two-dimensional man-
ifold, homeomorphic to a sphere).” In the footnote * Zariski refers to: [Lefschetz
1924, p. 33]. Lefschetz’s analysis at Chapter III “the topology of algebraic surfaces”
(to which Zariski refers) does not contain a single illustration.
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Figure 21. Zariski’s depiction of the change of the loops while en-
circling a branch point. [Zariski 1929, p. 310]

Another additional development can be seen in Zariski’s papers when com-
pared to Enriques’ work. While Enriques only hinted at the fact that there
are curves that are not branch curves but have the same numeric invari-
ants as branch curves, Zariski clearly formulates this claim. In 1928, Zariski
asks “is the number of the cusps enough for determining the fundamental
group of a given curve, or does this group depend also on the position of
the cusps?” [Zariski 1928, p. 137] Zariski gives as an example two curves of
order 6 with 6 cusps: the first, a branch curve of a complex surface of de-
gree 3: 119 the branch curve is of degree 6, has 6 cusps lying on a conic, 120

and the fundamental group of the complement of this curve is isomorphic
to a group generated by two elements g1 and g2 such that (g1)

3 = 1 and
(g2)

2 = 1. 121 The second curve is also of degree 6, when the 6 cusps are
in general position. Nevertheless, Zariski asks whether the two curves have
the same fundamental group [Zariski 1928, p. 138]. Initially there is a neg-
ative answer to this question [Zariski 1929, p. 320], but only in few years
later Zariski proves that “the fundamental group of a sextic with six cusps
not on a conic is cyclic” [Zariski 1937, p. 357], that is, this group is gener-
ated by one element g , with only one relation g6= 1. The computations
that Zariski performs in both cases are completely algebraic, and he does

119 Under a generic projection from a point not on a surface.
120 This result was in no way obvious since a unique conic passes through 5 points
in a generic position, i.e., there is no conic that passes through 6 points in a generic

position.
121 See: [Zariski 1929, p. 325]: “The fundamental group of a sextic curve f possess-
ing 6 cusps on a conic (branch curve of the general cubic surface) is generated by
two elements of orders 2 and 3 respectively.” In: [Zariski 1928, p. 137] a different
yet equivalent description for the relations is given: the relations presented there are
g2g1g2 = g1g2g1 and (g1g2)

3 = 1.



A PLURALITY OF (NON)VISUALIZATIONS 177

not visualize the corresponding curves or the loops involved. Moreover, as
we will see in the next subsection, in 1930 by using completely different
methods Segre proved the fact that the second curve is not a branch curve.

If the global position of the cusps played such a crucial role for Zariski,
why did he not offer a visualization of the global position of these cusps to
the reader? 122 The answer is already hinted at above: for Zariski the draw-
ings related to the branch curve were technical, and their investigation was
found in another—algebraic—mathematical context. Heisuke Hironaka, a
student of Zariski, notes that for his teacher, “you don’t get algebraic intu-
ition from the geometric intuition” [Parikh 1991, p. 81]. In so doing Hiron-
aka indicates Zariski’s preference for not relying on figures and drawings.
While it might seem that at least in the case of the branch curve of the cu-
bic surface, visualization was perhaps possible, it is essential to recall that
in order to compute the fundamental group of a sextic with six cusps not
on a conic, Zariski used a deformation argument by “remov[ing] a certain
number of cusps” [Zariski 1937, p. 356] from a generic sextic with 9 cusps.
These deformation processes were only visualized in exceptional cases.

With Zariski’s emphasis on the group-theoretical investigation, as well
as on transforming the visualization into a technical or even an obsolete
method, one can note a shift in the way visualizations were considered.
When Zariski posed his questions on the positional aspect of the singular
points of the branch curve, he did so without even implying their possible
visualization. Segre further advanced this approach, as we will see in the
next section.

2.6. Segre and special position of the singular points

A year after the publication of Zariski’s 1929 paper, which presented the
example of the branch curve of a surface of degree 3, Beniamino Segre
(1903–1977) published his paper “Sulla Caratterizzazione delle curve di
diramazione dei piani multipli generali”. Segre was an extremely produc-
tive algebraic geometer. Though Segre published only one paper in 1930
dealing with the branch curve, this paper pointed towards a different direc-
tion for research and generalized Zariski’s results in two ways. Firstly, while
Zariski showed that the cusps of the branch curve of a (smooth) complex

122 Interestingly, in his 1928 paper Zariski does mention Wirtinger’s construction—
which was accompanied by a drawing—concerning the intersection of a three-
dimensional sphere with a neighborhood of a cusp, resulting in a “Dreiblattschlinge”
[Zariski 1928, p. 137] (though the usual term was and is “Kleeblattschlinge”). How-
ever, Zariski was not interested in the local investigation of the cusps, but rather in
their global behavior.
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surface of degree 3 are in a special position (i.e., all of them lie on a conic),
Segre shows the singular points of any branch curve of a (smooth) complex
surface of degree n-–for any n, n � 3-–are in a special position. This means
that the position of these singular points is not generic. Secondly, Segre pur-
sues the questions posed by Enriques and Zariski: what are the necessary and
sufficient conditions for a nodal cuspidal plane curve to be a branch curve
of a smooth complex surface embedded in the (projective complex) three-
dimensional space CP

3 . Segre, however, does not follow their methods. 123

The way to this generalization for Segre involved a shift in the methods
of inference used as well as of the mathematical domain, in which the prob-
lem was located. Segre notes at the beginning of his paper that with the
approaches of Zariski and Enriques “group-theoretic and topological con-
siderations are essentially involved—while leading to remarkable results,
these do not exhaust the argument. The difficulties encountered in the
above approaches depend on the fact that not every algebraic plane curve
is a branch curve of a (non cyclic) multiple plane: it is a matter of charac-

terizing branch curves of such [multiple] planes.” 124 [Segre 1930, p. 97]
How does Segre characterize branch curves? The method Segre

presents is completely novel, when compared to the methods of Enriques
and Zariski. Concentrating only on complex smooth surfaces embedded
in the CP

3 , Salmon already knew the numerical invariants of a branch
curve of a surface of degree n (see Section II.1), and Segre references his
work: [Segre 1930, p. 99] The degree of the branch curve is n(n� 1), the

number of nodes is 12n(n � 1)(n � 2)(n � 3) and the number of cusps is
n(n � 1)(n � 2). Segre then uses the machinery of adjoint curves: Given
a plane curve C , a second curve A is said to be adjoint to C if it contains
each singular point of C of multiplicity r with multiplicity at least r� 1. In

123 While Segre refers explicitly to Enriques’ and Zariski’s papers, his motivation (as
well as Enriques’ and Zariski’s) also lied in the investigation of the variety Vn;�;� (of
curves of degree n with � nodes and � cusps). Zariski proved that V6;0;6 has two disjoint
components, and Segre was inspired by this discovery to see whether one can obtain—
via an investigation of branch curves—decompositions of other varieties Vn;�;� (i.e., for
different n; � and �). Regarding the investigation of this variety, Aldo Brigaglia and Ciro
Ciliberto note, that due to remarks also made by Zariski regarding the difficulties inves-
tigating this variety, “the research on moduli [i.e., the variety Vn;�;�] suffered the same
fate as that concerned with the fundamental theorem of irregular surfaces, that is, it was
left incomplete and inconclusive.” [Brigaglia & Ciliberto 1995, p. 102]
124 “ [...] nelle quali entrano in gioco in modo essenziale considerazioni grup-
pali e topologiche—pur conducendo a risultati notevolissimi, non esauriscono
l’argomento. Le difficoltà che s’incontrano nella suddetta estensione, dipendon dal
fatto che non ogni curva piana algebrica è curva di diramazione d’un piano multiplo
(non ciclico): si tratta dunque di caratterizzare le curve di diramazione di tali piani.”
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particular, A is adjoint to a nodal-cuspidal curve C if it passes through all
nodes and all cusps of C . For example, for the branch curve of a surface of
degree 3, the six cusps lie on a conic; hence the conic is an adjoint curve
to this branch curve. Already in the first section of the paper, one sees that
Segre considers neither the visualization of curves nor their fundamental
group. His main results in this section involve proving—using non-visual,
algebraic-geometric methods, such as the existence and properties of lin-
ear series, equivalence of divisors and Noether’s AF + BG theorem—that,
for example, the following adjoint curves to the branch curve exist:

(1) Two adjoint curves of degrees (n�1)(n�2) and (n�1)(n�2)+1
passing smoothly through the nodes and the cusps of the branch curve.
[Segre 1930, p. 100, 102]

(2) An adjoint curve of degree n(n�1)�2, having nodes at the cusps of
the branch curve and passing smoothly through the nodes of the branch
curve. [Segre 1930, p. 101]

Nevertheless, Segre’s main result runs in the opposite direction: that is,
he proves the following theorem:

A nodal-cuspidal plane curve B of degree n(n�1) with 1
2
n(n�1)(n�2)(n�3)

nodes and n(n� 1)(n� 2) cusps is the branch curve of a generic projection of

a smooth surface of degree n in CP
3 if and only if there are two adjoint curves

of degrees (n�1)(n�2) and (n�1)(n�2)+1 passing through the nodes and
the cusps of the curve [Segre 1930, p. 111].

Just as before the proof uses tools and methods from algebraic geome-
try, which Segre failed to visualize generally. He also ignored the possibility
of drawing the special relations between the singular points of the branch
curve. This is no surprise: taking a look at the three volumes of Segre’s
Opere scelte [Segre 1987a;b; 2000] there is not a single sketch or figure in
his papers. Beniamino Segre’s preference for the symbolical algebraic-
geometrical method over the more visual-topological one is clear. This
stands in sharp contrast to his uncle, Corrado Segre, “the leader of the
Italian School of algebraic geometry,” who, as Giacardi notes, “increased
the collection of models [in Turin]. In fact he believed that the models
could sometimes pave the way to discovery” [Giacardi 2015b, p. 2785].
Beyond this personal preference, however, one should note two funda-
mental differences when comparing to the visualizations of Enriques and
Zariski. Firstly, all of Enriques’ sketches and most of Zariski’s sketches
and figures related to branch curves, were of local nature: that is, what
was drawn was a depiction of what occurs (to certain loops) in a local
neighborhood of the singular points of the branch curve. An attempt
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to construct a three-dimensional model or to sketch a two-dimensional
figure of the branch curve entirely, as was done in the case of Riemann
surfaces and their branch points, was not even attempted.

If one compares the German to the Italian tradition of constructing ma-
terial models, a second difference can be seen. The construction of a three-
dimensional model of the branch curve (as, for example, the real part of
a singular Riemann surface) required practical specialty and expertise in
handcraft that the Italian school of algebraic geometric did not have. As
mentioned above, while models of surfaces were mostly bought from Ger-
many, they were hardly produced in Italy. However, this only adds up to
an imperfect explanation as to why the lack of visualization methods of
branch curves is linked to the almost non-existent expertise of the Italians
in making models. Certainly, a more elaborate explanation is required.

Indeed, it should also be remembered that the thesis advisor of B. Segre
in Turin was his uncle, Corrado Segre, who, as noted above, supported the
construction of material mathematical models and even considered them
epistemic things, carrying their own reasoning. As already mentioned,
these models were also constructed in Turin. Even if he did not include
a single sketch or reference to models in his writings, B. Segre must have
been at least aware of this tradition and also of the ideas of his uncle
regarding such models. However, to emphasize—the production of the
models of branch curves had to take into account the special position of
the nodes and the cusps. As remarked above, it is unclear whether in Turin
the necessary expertise for constructing such models existed. This is to
be contrasted with the situation in Germany. As David Rowe notes [Rowe
2018], models of surfaces were produced in Germany that visualized the
special position of singular points of surfaces. To be more precise, such
models visualized how six nodes of a quartic surface lie on a conic [Rowe
2018, p. 63]—a situation which was almost identical to the special position
of the six cusps of the branch curve of a surface of the third degree. Hence,
one may claim that either the Italian mathematicians, who in practice did
construct or buy models, were unaware of these German models, or that
they did not have sufficient expertise in model construction to visualize
the special position of the singular points of the branch curve.

3. CONCLUSION: THE MANY FACES

OF BRANCH POINTS AND BRANCH CURVES

After his 1930 paper, Segre did not investigate branch curves any fur-
ther. As Edoardo Vesentini remarks [Vesentini 2005, p. 188], the “memoir
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by B. Segre on the characterization of the branch curve of a multiple
plane, that appeared in 1930 and was inspired by a paper of Enriques,
followed shortly by a paper by O. Zariski on the same topic. But a critical
remark made by O. Zariski on an infinitesimal method used by Enriques in
earlier papers on the moduli of an algebraic surface, set some doubts on
the validity of Enriques’ argument and, consequently on the papers that
Segre devoted to this topics.” 125 In addition, as Edoardo Sernesi notes,
other mistakes in some of Segre’s related research were discovered. 126

These mistakes may explain why Segre failed to develop his research on
branch curves further.

Research on branch curves did not stop, however, and with it new hori-
zons of visualization appeared after Segre’s work. Nevertheless, such de-
velopments coincided with new forms of inexperience and the eventual
disappearance of visualization. Before concluding, I would like to survey
briefly the historical development that took place in the years following—
the 1930s.

On the one hand, Egbert van Kampen (1908–1942) in 1933 presented
a precise algebraic computation of the fundamental group of the com-
plement of a complex plane curve; 127 his treatment, however, does not
contain a single drawing. Zariski’s 1935 treatment of branch curves in his
book Algebraic Surfaces followed van Kampen’s formulation. 128 Addition-
ally, Zariski emphasized the topological nature of Enriques’ discoveries
and less their algebraic context. 129

125 Zariski’s critical remark concerns an implicit assumption Enriques made regard-
ing the completeness of the “characteristic system of a complete continuous system
of surfaces,” a proof of which, according to Zariski, “is not likely to be an easy under-
taking”. [Zariski 1935, p. 99] This assumption was eventually disproved by Wahl, by
finding a counterexample, in 1974. See [Wahl 1974, p. 573].
126 As Edoardo Sernesi notes, another paper by Segre [Segre 1929] deals with the
construction of “new components” [of Vn;�;�] starting from those given and aiming to
establish for which values of n; �; �, the variety Vn;�;� is not empty [Sernesi 2012, p. 446].
However, Sernesi adds that while “Segre’s procedure seems to be correct,” “his con-
clusions, as they stand, are incorrect.” [Sernesi 2012, p. 447].
127 Van Kampen remarks, while discussing Enriques’ results, that “as the resulting
proof [of Enriques for finding the relations of the fundamental group of , when is a
complex plane curve] seemed too algebraic for this simple and nearly purely topolog-
ical question, Dr. Zariski asked me to publish a topological proof which is contained
in this paper” [van Kampen 1933, p. 255].
128 See: [Parikh 1991, p. 49]: “Most valuable to Zariski was the hiring of E. R. van
Kampen, a gifted topologist from Holland. Warm and charming, part Indonesian, he
shared with Zariski a lively interest in fundamental groups.”
129 [Zariski 1935, p. 162]: “The following comment on the theorem of Enriques may
be of interest. From a purely topological point of view the theorem of Enriques says
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The works of Oscar Chisini (1889–1967), one of Enriques’ students,
should also be taken into account, on the other hand. Already in 1920–
1921, probably following Enriques, he initiated a research on branch
curves, which dealt with the question of the birational equivalence of two
complex surfaces having the same branch curve; nevertheless, this paper
did not contain a single drawing or a sketch [Chisini 1921]. In the 1930s,
1940s and the 1950s, however, while returning to research complex surfaces
as coverings of the complex projective plane and their branch curves, he
arrived at the idea of “realizing a visible model of the fundamental group
of the complement of an algebraic curve in the complex projective plane
[...] being particularly relevant in the theory of multiple planes. The model
in question is that by Chisini called the characteristic braid of the algebraic
curve, and allowed him to place in evidence the topological-combinatorial
aspects of the theory of curve singularities and multiple planes.” [Brigaglia
& Ciliberto 1995, p. 113–114] In 1933 Chisini first integrated braids (in
Italian “treccia” [Chisini 1933, p. 1151]) as a visual aid into the research of
complex curves and their branch points. Given a complex curve as a cover
of the complex line, Chisini investigated the preimages of a loop (on the
complex line) surrounding the image of singular and branch points of the
curve (see for example Figure 22). 130 However, how Chisini continued to
research braid theory and branch curves—leading him in 1944 to conjec-
ture that the branch curve uniquely determines the associated branched
covering once the degree of the cover is larger than 4—is beyond the scope
of the current paper. 131

that the relations [Enriques found] give a complete set of conditions for the existence
of k -fold covering manifolds with f as branch curve (4-dimensional Riemannian vari-
eties consisting of k samples of the projective plane P connected in a proper manner
along the curve f ). However, from this does not follow immediately the completeness
of the set of generating relations [...] for the fundamental group G, proved by van
Kampen.”
130 Chisini, it is essential to note, did not use in 1933 the machinery of algebraic
braid theory, as developed by Artin in 1925.
131 Chisini conjecture [Chisini 1944] is as follows: Let B be the branch curve of a
generic ramified covering of degree at least 5. Then the branched covering is uniquely
determined by the branch curve. This stands in contrast to the situation of Riemann
surfaces and Hurwitz’s formulation. Recall that Hurwitz noted that by specifying the
number of sheets, the position of its branch points, and the local monodromy behavior
at these branch points, one can determine the Riemann surface. Chisini conjectured
almost the contrary: that, in fact, for complex algebraic surfaces, once the degree of the
branch curve is big enough, one does not need to specify the number of sheets (i.e.,
the degree of the surface) or the permutations of the sheets (i.e., the epimorphism
to the symmetric group)—and only the “position” of the branch curve is enough to
determine uniquely the surface.
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Figure 22. Chisini’s “model” [Chisini 1933, p. 1141] for depict-
ing the preimages of a loop encircling a branch point (figure taken
from: [Chisini 1933, p. 1153]).

� � �
For branch points, as was seen in the first section, there was an abundance
or rather plurality of visualizations both two- and three-dimensional. To em-
phasize the obvious: two-dimensional sketches were more easily produced,
usually not requiring any special training and being a part of the writing
process—as can be seen with Enriques’ sketch; this stands in opposition
to the production of three-dimensional models, which did require special
craftmanship. Nevertheless, the various illustrations and three-dimensional
models, which at times were inadequate to each other, prompted indirectly,
as I suggested, along with the various inherent (dimensional) restrictions
(i.e., visualizing the ramification curve as a curve on a four-dimensional ob-
ject (the surface) in a six-dimensional space), an “invisibility” of the branch
curve, when mathematicians came to deal with them. 132 Only a partial vi-
sualization of the entire branch curve was undertaken (or it was considered
in its entirety to be non-visualizable). And this happened in several modes:
Wirtinger, to give a first example, made only the local behavior of the singu-
lar points of the branch curve visible, prompting incomprehension of the
global behavior of these points. Although the real part of the branch curve
could have been drawn, all of the actors surveyed in Section II decided not
to do so. Even if we consider Enriques’ 1899 sketch as an exception, he was
not even attempting to illustrate the unique characteristics of this curve.
Besides the fact that they considered visualization unnecessary or technical,
the reason why Segre and Zariski did not make a single drawing might be
due to the special position of nodes and cusps. If one wanted to draw the
(real part of the) branch curve, one had to find an equation for this curve
where all of the singular points were real (in order to show their special po-
sition), a task that would result in tedious calculations. When Zariski finally

132 Regarding making invisible scientific objects and procedures, see: [Nasim 2018].
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posed the question regarding the position of the cusps with respect to each
other, to give a second example, he did not draw a single illustration of the
global position of these points. Zariski also shifted the research from one
on branch curves to an algebraic research on the fundamental group of a
complement of a curve as such. Visualization as a mean of mathematical
reasoning or as an inference step, as was seen with Enriques’ loops, led to
another kind of invisibility. Not only one can consider certain loops as those,
which should have been drawn (recall Enriques’ loop of the parameter t

on the complex plane �) but were not; but this invisibility occurred in two
additional ways: firstly, it concealed the necessity of an algebraic argument;
secondly, and precisely due to this lack of consideration when it came to
algebraic arguments, it may have resulted in a more algebraic approach,
which can be seen in Zariski’s work. And eventually, with Segre and Zariski,
a process involving the differentiation of research traditions and mathemat-
ical practices took place, leading to a diminishment in the epistemological
advantages that visualization techniques may have provided, and favoring
instead group-theoretic or algebraic-geometrical methods.

Becoming technical—as with Zariski’s usage of diagrams—points
towards another mode of becoming invisible, one in which the episte-
mological aspect of the visualized object disappears. This can be seen
with Zariski’s illustration in particular, and with the Italian usage of
three-dimensional material models in general, located in an essentially
different culture of visualization than that which occurred in Germany.
As was noted, in Germany there were models that showed singular points
in a special position, but those models were probably not a part of the
German-Italian exchange

To conclude, I would like to return shortly to the differentiation I men-
tioned at the conclusion of Section I.6. There I discussed how visualiza-
tion techniques oscillated between being exact and co-exact. That is, they
fluctuated between being the exact material or illustrated representation of
the mathematical object (for example, the three-dimensional models of a
branch point of Riemann surfaces) and between being a co-exact visualiza-
tion of partial, non-metrical (i.e., non-sensitive to quantitative parameters)
(for example, the loops of Enriques or the braids drawn by Sevei, Enriques
and Chisini). The oscillation of these techniques, between being exact and
co-exact, between being epistemological and technical, created not only
new mathematical approaches to the visualization of branch curves and
branch points, but also engendered new approaches—algebraic or analyt-
ical, for example—which rendered the mathematical object—in this case,
the branch curve—invisible.
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Naturwissenschaften seit dem 19. Jahrhundert, Forum Interdisziplinäre
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pures et appliquées, 15 (1850), pp. 365–480.

[1851] Nouvelles recherches sur les fonctions algébriques, Journal de mathé-
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Gruppentheorie, Berlin: Springer, 1988.

Zariski (Oscar)
[1928] Sopra il teorema d’esistenza per le funzioni algebriche di due vari-

abili, in Atti del Congresso Internazionale dei Matematici, Bologna 3–10 Set-
tembre 1928, vol. 4, Bologna: Zanichelli, 1928, pp. 133–138.

[1929] On the Problem of Existence of Algebraic Functions of Two Variables
Possessing a Given Branch Curve, American Journal of Mathematics, 51
(1929), pp. 305–328.

[1935] Algebraic Surfaces, Berlin: Springer, 1935.
[1937] On the topological discriminant group of a Riemann surface of

genus p, American Journal of Mathematics, 59 (1937), pp. 335–358.




