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REGULAR POISSON MANIFOLDS OF COMPACT TYPES

by Marius CRAINIC, Rui LOJA FERNANDES & David MARTÍNEZ TORRES

Abstract. — This is the second manuscript of a series dedicated to the study of Poisson
structures of compact types (PMCTs). In this manuscript, we focus on regular PM-
CTs, exhibiting a rich transverse geometry. We show that their leaf spaces are integral
affine orbifolds. We prove that the cohomology class of the leafwise symplectic form
varies linearly and that there is a distinguished polynomial function describing the
leafwise sympletic volume. The leaf space of a PMCT carries a natural Duistermaat-
Heckman measure and a Weyl type integration formula holds. We introduce the notion
of a symplectic gerbe, and we show that they obstruct realizing PMCTs as the base
of a symplectic complete isotropic fibration (a.k.a. a non-commutative integrable sys-
tem).

Résumé. (Variétés de Poisson régulières de types compacts) — Nous consacrons une
suite d’articles aux variétés de Poisson de types compacts (nous emploierons simple-
ment l’acronyme PMCTs). Ce travail, qui est le second de cette suite, se concentre
sur les PMCTs régulières, et explore leur riche géométrie transverse. Nous montrons
que l’espace de leurs feuilles sont des orbi-variétés affines entières. Nous établissons
une dépendance linéaire de la classe de cohomologie de la structure symplectique
dont héritent les feuilles et exhibons un polynôme qui décrit le volume symplec-
tique des feuilles. Nous équipons l’espace des feuilles d’un PMCT d’une mesure de
Duistermaat-Heckman naturelle et donnons une formule d’intégration de type Weyl.
Nous introduisons enfin la notion de gerbe symplectique et montrons que celles-
ci sont l’obstruction à la construction de la PMCT comme la base d’une fibration
symplectique complète à fibres isotropes (autrement dit, un système intégrable non-
commutatif).

© Astérisque 413, SMF 2019
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CHAPTER 1

INTRODUCTION

This is the second manuscript of a series of works devoted to the study of Poisson
structures of compact types (PMCTs). These are the analogs in Poisson Geometry of
compact Lie groups in Lie theory. In the first paper of this series [13] we have discussed
general properties, described several examples, and outlined our general plan. In this
paper, which is self-contained, we focus on regular PMCTs and we discover a very
rich transverse geometry, where several structures, both classical and new, interact
with each other in a non-trivial way. These include orbifold structures, integral affine
structures, symplectic gerbes, etc. Moreover, we find that celebrated results, like the
Duistermaat-Heckman Theorem on the linear variation of the symplectic class in the
cohomology of reduced spaces, the polynomial behavior of the Duistermaat-Heckman
measure, the Atiyah-Guillemin-Sternberg Convexity Theorem, or the Weyl Integra-
tion Formula, fit perfectly into the world of PMCTs, arising as particular statements
of general results concerning PMCTs.

Given a Poisson manifold (M,π) we will look at s-connected integrations (G ,Ω),
which are symplectic Lie groupoids of compact type. At the level of Lie groupoids,
there are several compact types C characterized by possible conditions on G :

(1.1) C ∈ {proper, s-proper, compact},

that is, Hausdorff Lie groupoids with proper anchor map, proper source map, and
compact manifold of arrows, respectively. For example, when G = G × M comes
from a Lie group acting on a manifold M , the three conditions correspond to the
properness of the action, the compactness of G, and the compactness of both G and
M , respectively. Therefore, one says that the Poisson manifold (M,π) is of:

— C -type if it has an s-connected integration (G ,Ω) with property C ;
— strong C -type if its canonical integration Σ(M,π) has property C .

A Poisson manifold (M,π) comes with a partition into symplectic leaves, gener-
alizing the partition by coadjoint orbits from Lie theory. In this paper, we consider
PMCTs where the dimension of the leaves is constant, leaving the non-regular case
to the next paper in the series [12]. This gives rise to a regular foliation Fπ on M , so,
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2 CHAPTER 1. INTRODUCTION

in some sense, we are looking at symplectic foliations from the perspective of Poisson
Geometry.

For a general regular Poisson manifold, the leaf space

B = M/Fπ

is very pathological. However, for us, the first immediate consequence of any of the
compactness conditions is that B is Hausdorff. Moreover, we will see that it comes
with a very rich geometry, illustrated in the following theorem, which collects several
results spread throughout the paper:

Theorem 1.0.1. — Given a regular Poisson manifold (M,π) of proper type and an
s-connected, proper symplectic integration (G ,Ω):
(a) The space B of symplectic leaves comes with an orbifold structure B = B(G ).
(b) There is an induced integral affine structure Λ on B.
(c) The classical effective orbifold underlying B is good.
(d) There is a symplectic T -gerbe over B, where T is the symplectic torus bundle

induced by Λ. This gerbe is classified by the Lagrangian Dixmier-Douady class:

c2(G ,Ω) ∈ H2(B,TLagr).

(e) The class c2(G ,Ω) vanishes if and only if (M,π) admits a proper isotropic re-
alization q : (X,ΩX) → (M,π) for which G ∼= BX(M,π), a natural symplectic
integration constructed from X and the orbifold structure B.

The presence of an orbifold structure on the leaf space which, in general, is non-
effective, gives rise to several technical difficulties throughout the discussion. When
the symplectic leaves are 1-connected, then B is just a smooth manifold, and no
further complications arise from orbifolds. In this case, all the other main features of
PMCTs are already present, and it includes interesting examples, such as the regular
coadjoint orbits or the principal conjugacy classes of a compact Lie group. For that
reason, in the general discussion we will often consider this case first.

The different geometric structures present on the leaf space of a PMCT, mentioned
in the previous theorem, interact nicely with the leafwise symplectic geometry. One
illustration of this interaction is the linear variation of symplectic forms in coho-
mology, generalizing the classical Duistermaat-Heckman Theorem. For simplicity, we
concentrate on the smooth case, where the leaves are 1-connected. Then to each b ∈ B
corresponds a symplectic leaf (Sb, ωb), and the cohomologies H2(Sb) yield a bundle
H → B. The cohomology class of the leafwise symplectic form defines a section of
this bundle:

B 3 b 7→ [ωb] ∈Hb = H2(Sb).

In the s-proper case, the leaves are compact and H is a smooth flat vector bundle
over B. The flat connection is the so called Gauss-Manin connection and arises from
the underlying integral cohomology. Using parallel transport, one can compare classes
[ωb] at distinct points b ∈ B, once a path has been fixed. On the other hand, the
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CHAPTER 1. INTRODUCTION 3

integral affine structure on B of the previous theorem determines a developing map,
defined on the universal cover of B:

dev : B̃ → Rq (q = dimB).

Denoting the Chern classes of the principal torus bundle t : s−1(x0) → Sb0 , where s
and t are the source/fiber of the s-proper integration, by

c1, . . . , cq ∈ H2(Sb0),

the linear variation theorem can be stated as follows:

Theorem 1.0.2. — If (M,π) is a regular, s-proper Poisson manifold, with 1-connected
symplectic leaves, then for any path γ in B starting at b0 one has

γ∗([ωγ(1)]) = [ωb0 ] + dev1(γ)c1 + · · ·+ devq(γ)cq.

Similar formulas hold for a general Poisson manifold of s-proper type.

One can also look at volume forms instead. Assume as before that we have an
s-proper integration (G ,Ω) of (M,π). Pushing forward the Liouville measure associ-
ated to Ω, one obtains the Duistermaat-Heckman measure on the leaf space:

µDH ∈M (B).

On the other hand, the integral affine structure on B gives rise to another measure,
µAff ∈ M (B). The classical result on the polynomial behavior of the Duistermaat-
Heckman measure is a special case of the following general result for PMCTs:

Theorem 1.0.3. — If (M,π) is a regular Poisson manifold, with s-connected, s-proper
integration (G ,Ω), then:

µΩ
DH = (ι · vol)2µAff ,

where vol : B → R is the leafwise symplectic volume function and ι : B → N counts
the number of connected components of the isotropy group Gx (x ∈ Sb). Moreover,
(ι · vol)2 is a polynomial relative to the orbifold integral affine structure on B.

The previous theorem has an interesting version already on M , where we obtain
two measures, µMDH and µAff

M = µM , both induced by densities ρMDH and ρM , which
are invariant under all Hamiltonian flows. Our study of such invariant densities yields
the following Fubini type theorem:

Theorem 1.0.4. — If (M,π) is a regular Poisson manifold, with proper integration
(G ,Ω), then for any f ∈ C∞c (M):∫

M

f(x) dµM (x) =

∫
B

(
ι(b)

∫
Sb

f(y) dµSb(y)

)
dµAff(b),

where µSb is the Liouville measure of the symplectic leaf Sb, and ι : B → N is the func-
tion that for each b ∈ B counts the number of connected components of the isotropy
group Gx (x ∈ Sb).
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4 CHAPTER 1. INTRODUCTION

We shall see in [12] that a similar theorem is valid for all, including non-regular,
PMCTs. This theorem includes, as a special instance, the classical Weyl Integration
Formula.

The rest of this paper is organized as follows. Chapter 2 is devoted to foliations
and orbifolds, recalling Haefliger’s approach to transversal geometry, fixing the neces-
sary framework, but also illustrating the various compactness properties (1.1) in the
simpler context of foliations. In this chapter, the orbifold structure on the leaf space
of a PMCT, stated in part (a) of Theorem 1.0.1, is shown to exist.

Chapter 3 includes some basics on Integral Affine Geometry and describes its re-
lationship with Poisson Geometry. Besides proving part (b) of Theorem 1.0.1, we
discover new Poisson invariants, the so-called extended monodromy groups which give
rise to obstructions to s-properness, but which are interesting also for general Poisson
manifolds.

Chapters 4 and Chapter 5 concern Theorem 1.0.2, on the linear variation of the
cohomology class of the leafwise symplectic form. We first treat the case of smooth leaf
space and then the orbifold case. Both these chapters start by revisiting the developing
map for integral affine structures from a novel groupoid perspective. That allows for
a global formulation, free of choices, which is more appropriate for our purposes. We
also obtain a decomposition result for Poisson manifolds of s-proper type which, from
the point of view of classification, indicates two types of building blocks: (i) the strong
proper ones with full variation, and (ii) the ones with no variation, corresponding to
symplectic fibrations over integral affine manifolds.

Chapter 6 discusses the Duistermaat-Heckman measures on PMCTs and on their
leaf spaces, its relationship with the measures determined by the integral affine struc-
tures, and the interaction with the Liouville measure on the symplectic leaves, leading
to proofs of Theorem 1.0.3, on the polynomial nature of the Duistermaat-Heckman
measure, and the integration formula of Theorem 1.0.4.

Chapter 7 explains the relationship between PMCTs and proper isotropic realiza-
tions, which appears in part (e) of Theorem 1.0.1. For any proper isotropic realization
q : (X,ΩX)→ (M,π) we introduce a “holonomy groupoid relative to X,” HolX(M,π),
which is usually smaller than the canonical integration Σ(M,π), and hence has better
chances to be proper. The groupoids HolX(M,π) not only arise in many examples,
but are an important concept. Indeed, recall that foliations come with two standard s-
connected integrations: the largest one which is the monodromy groupoid Mon(M,F )

and the smallest one which is the holonomy groupoid Hol(M,F ). In Poisson geom-
etry, the integration Σ(M,π) is the analog of Mon(M,F ) but, in general, there is
no analog of the holonomy groupoid. Our results suggest that, in Poisson Geometry,
instead of looking for the smallest integration, one should look for the smallest one
that acts on a given symplectic realization. This property characterizes HolX(M,π)

uniquely.
Chapters 8 and 9 describe our theory of symplectic gerbes, first in the smooth case

and then in the orbifold case, proving parts (d) and (e) of Theorem 1.0.1. Our de-
parture point is the usual theory of S1-gerbes, which we first extend to T -gerbes,
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CHAPTER 1. INTRODUCTION 5

where T is an arbitrary torus bundle over a manifold B. For the symplectic theory,
we need to look at a symplectic torus bundles (T , ωT ) over an orbifold B or, equiv-
alently, integral affine structures on B. In the more standard theory ones looks at
central extensions of T by Lie groupoids, while in the symplectic theory we look at
central extensions of (T , ωT ) by symplectic groupoids. The main conclusion is that,
while T -gerbes are classified by their Dixmier-Douady classes, living in H2(B,T ),
for symplectic gerbes one obtains a Lagrangian Dixmier-Douady class which gives rise
to a group isomorphism

c2 : GerbB(T , ωT )→ H2(B,T
Lagr

),

where T
Lagr

is the sheaf of Lagrangian sections of (T , ωT ).
Appendix A gives some background on actions of symplectic groupoids, Hamilto-

nian G -spaces, and symplectic Morita equivalence, which are relevant for the paper.
Appendix B is of a very different nature: we show there how one can adapt (part of)
Molino’s approach of Riemannian foliations to the context of integral affine geometry,
to prove that integral affine orbifolds are good, i.e., quotients of a discrete integral
affine group action. While this is relevant for PMCTs and we make good use of it, we
believe it may be of independent interest.

As we develop the theory of PMCTs, we will explain how to adapt it to Dirac
manifolds. The first motivation for this arises from the extension of the results of this
paper from regular to arbitrary PMCTs, since we will introduce in [12] a desingular-
ization procedure which will turn a PMCT into a regular, Dirac manifold (without
changing the leaf space or the compactness type!). The second motivation comes from
Lie theory and the striking similarity between the geometry of (co)adjoint orbits and
the one of conjugacy classes (see e.g., [21]). While coadjoint orbits fit into Poisson
Geometry, conjugacy classes belong to the world of (twisted) Dirac Geometry. Hence
the Dirac framework allows us to (re)cover even more fundamental examples.

However, in order to get a faster grasp of the results and new techniques introduced
here, the reader may choose to skip, in a first reading, all chapters concerning Dirac
Geometry. The same applies to the chapters on orbifolds, since the rich geometry that
comes with PMCTs is present already when the leaf space is smooth.

Acknowledgments. — The work of N.-T. Zung [57] on proper symplectic groupoids
should be considered as a precursor of the theory of PMCTs. However, Zung focuses
his attention on the symplectic groupoid, instead of the underlying Poisson manifold.
A. Weinstein’s work on measures on stacks [53] was a source of inspiration for our
study of measures. Our theory of symplectic gerbes can be viewed as a symplectic
version of I. Moerdijk’s work on regular proper groupoids [39], but with a richer
geometric flavor that includes the connection to the Delzant-Dazord theory of isotropic
fibrations [18]. We would also like to acknowledge the gracious support of IMPA, the
University of Utrecht and the University of Illinois at Urbana-Champagne, at various
stages of these project.
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CHAPTER 2

PMCTS, FOLIATIONS OF COMPACT TYPES AND ORBIFOLDS

Recall that given a foliation F on M the associated distribution can be thought
of as a Lie algebroid with anchor the inclusion and bracket the restriction of the Lie
bracket of vector fields. This Lie algebroid is well-known to be integrable – for example
by the holonomy groupoid (see Section 2.1). Therefore, for any of the compactness
types (1.1), the notion of C -type (respectively, strong C -type) makes sense for any foli-
ated manifold (M,F ): one requires the existence of a source connected (respectively,
source 1-connected) Hausdorff Lie groupoid integrating F having property C .

In this chapter we shall make a detailed study of these compactness types of folia-
tions. On the one hand, foliations of compact types are easier to handle than regular
Poisson manifolds of compact types, but they still exhibit phenomena/properties that
will persist in the Poisson case. Thus the analysis of the former will play a guiding
role in the analysis of the latter. On the other hand, if a regular Poisson manifolds is
of (strong) C -type, then so is the underlying symplectic foliation. Hence, the results
in this chapter have immediate applications to the Poisson case.

As (rough) main goal of this chapter, we mention here:

Theorem 2.0.1. — If (M,π) is a regular Poisson manifold of C -type, then the sym-
plectic foliation Fπ is of C -type. As a consequence, the space of symplectic leaves

B = M/Fπ

is an orbifold. More precisely, any integration G of (M,π) of C -type gives rise to an
integration B(G ) of Fπ of C -type, which induces an orbifold structure on B.

We shall see in the next chapters that symplectic integrations of (M,π) induce
several geometric structures on the orbifold B. For that reason this chapter pays
special attention to geometric structures on leaf spaces of foliations and on orbifolds.

Remark 2.0.2 (Classical compact foliations). — In classical Foliation Theory the notion
of a compact foliation refers to a foliation all whose leaves are compact (see, e.g., [22,
23]). This property does not refer to any of the integrations of F . We will clarify later
how this classical notion is related to our compactness types. In this regard, since the
pioneering work of A. Haefliger, Lie groupoids (in particular, the holonomy groupoid)
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8 CHAPTER 2. PMCTS, FOLIATIONS OF COMPACT TYPES AND ORBIFOLDS

have been extensively used in the study of the transverse geometry of foliations. Our
approach follows the same spirit, defining compactness type of foliations in terms of
groupoids integrating them.

2.1. The monodromy and holonomy groupoids

The Lie groupoids that integrate foliations are called foliation groupoids. They are
easy to characterize, since, in general, the Lie algebra of the isotropy group of a Lie
groupoid is precisely the kernel of the anchor of its Lie algebroid:

Proposition 2.1.1 ([15]). — A Lie groupoid G is a foliation groupoid iff all the isotropy
groups Gx are discrete.

Since any foliation F onM is integrable as a Lie algebroid, it has a unique (smooth)
source 1-connected integration, called the monodromy groupoid of F and denoted by

Mon(M,F ) ⇒M.

The arrows in this groupoid are the leafwise homotopy classes (relative to the end-
points) of leafwise curves in M (see [40]).

Every foliation has yet another s-connected canonical integration: the holonomy
groupoid of F , denoted by

Hol(M,F ) ⇒M.

The arrows are now equivalence classes of leafwise paths where two paths are identified
if they induce the same germ of holonomy transformation. From their definitions, we
have a morphism of Lie groupoids which is a local diffeomorphism:

(2.1) hol : Mon(M,F )→ Hol(M,F ).

The relevance of the holonomy groupoid in studying the transverse geometry of
foliations stems from the fact that any other s-connected Lie groupoid integrating F

lies above it. More precisely:

Theorem 2.1.2 ([15, 45]). — For any s-connected integration E of a foliation F on M ,
there is a natural factorization of (2.1) into a composition of surjective submersions
compatible with the groupoid structure:

Mon(M,F )
hE
// E

holE
//// Hol(M,F ) .

Recall that we are only interested in Hausdorff Lie groupoids, although even very el-
ementary foliations can have non-Hausdorff monodromy and/or holonomy groupoids.
Moreover, one can have one of them being Hausdorff while the other one is not, and
even both not being Hausdorff but there exists a Hausdorff one in between them! The
monodromy groupoid is Hausdorff iff the foliation does not have vanishing cycles [2],
but no geometric criteria characterizing the Hausdorffness of other foliation groupoids
(e.g., the holonomy groupoid) is known.
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Example 2.1.3 (Simple foliations). — If p : M → B is a submersion with connected
fibers, then the fibers of p define a foliation F on M , called a simple foliation. The
holonomy groupoid of F is the submersion groupoid of p, consisting of pairs of points
in M that are in the same fiber of p:

Hol(M,F ) = M ×B M ⇒M,

where (x, y) ∈ M ×B M is thought of as an arrow from y to x. This groupoid is
Hausdorff but the monodromy groupoid of F may fail to be Hausdorff: e.g., the fiber
above 0 of the first projection p : R3 \ {0} → R contains a vanishing cycle.

Example 2.1.4 (One sided holonomy). — On the cylinder M = S1 × R consider the
foliation F given by the orbits of the vector field X = ∂

∂θ + f(t) ∂∂t , where f(t) is a
smooth function with f(t) = 0 for t ≤ 0 and f(t) > 0 for t > 0. F has closed leaves
S1 × {t} for t ≤ 0 and open leaves for t > 0. It follows that there are no vanishing
cycles, so Mon(M,F ) is Hausdorff. The leaf S1 ×{0} has one-sided holonomy, so the
leaves with t < 0 give cycles with trivial holonomy that converge to a cycle at t = 0

with non-trivial holonomy. Hence, Hol(M,F ) is non-Hausdorff.

Recall that the linear holonomy of a foliation F on M along a leafwise path γ ⊂ S
from x to y is, by definition, the linearization of the holonomy parallel transport
along γ. Identifying the tangent spaces of the transversals with the normal spaces
νx(S) = TxM/TxS, the linear holonomy becomes a map:

(2.2) hollinγ := dxholγ : νx(S)→ νy(S).

It can also be described directly as the parallel transport associated to the so-called
Bott connection. The linear holonomy groups are then defined similarly, by identifying
loops that induce the same linear holonomies:

Hollinx (M,F ) := Monx(M,F )/linear holonomy equivalence.

Similarly, one can also define the linear holonomy groupoid Hollin(M,F ). The
resulting quotient map

hollin : Mon(M,F )→ Hollin(M,F )

will factor through the holonomy groupoid, giving rise to a morphism of groupoids
lin : Hol(M,F ) → Hollin(M,F ). However, in general, Hollin(M,F ) will only be a
topological groupoid: it follows from Theorem 2.1.2 that, for Hollin(M,F ) to admit
a Lie groupoid structure such that lin is smooth, the holonomy must coincide with
the linear holonomy, i.e., lin must be 1-1. When this happens, we say that (M,F )

has linear holonomy. As a consequence of Bochner’s linearization theorem, this is the
case whenever the holonomy groups are finite. On the other hand, the foliation in
Example 2.1.4 does not have linear holonomy.

Example 2.1.5 (Linear foliations). — A class of examples that is relevant for us, since
they provide the (linear) local models that appear in local Reeb stability and are
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intimately related to our compactness types, is obtained as follows. One starts with
a connected manifold S and:
(i) Ŝ → S a covering space with group Γ;
(ii) a representation Γ→ GL(V ) on a vector space V of dimension q.

The associated linear local model (Ŝ ×Γ V,Flin) is the foliation of the quotient:

Ŝ ×Γ V := (Ŝ × V )/Γ

obtained from the trivial codimension q product foliation {Ŝ × {v}}v∈V . Note that
S sits canonically inside the linear local model as the leaf corresponding to 0 ∈ V .

This construction has a groupoid version which gives us an integrating foliation
groupoid for Flin. More precisely, Ŝ is replaced by the pair groupoid Ŝ × Ŝ ⇒ Ŝ. The
product of this groupoid with V (viewed as a groupoid with units only) gives rise
to a groupoid Ŝ × Ŝ × V ⇒ Ŝ × V , where Γ acts freely and properly by groupoid
automorphisms (again by the diagonal action). Hence, we have a quotient groupoid:

(2.3) (Ŝ × Ŝ)×Γ V ⇒ Ŝ ×Γ V.

One readily checks that this is a foliation groupoid, and that the induced foliation
on its base is precisely Flin. However, this groupoid may sit strictly between the
monodromy and holonomy groupoids. In fact, the monodromy groupoid is obtain as
a special case of this construction:

(2.4) Mon(M,Flin) = (S̃ × S̃)×π1(S) V ⇒ S̃ ×π1(S) V,

where π1(S) acts on V via the homomorphism π1(S)→ Γ→ GL(V ).
We summarize the previous discussion in the following result (for item (ii) see

Example 2.2.2):

Proposition 2.1.6. — The linear local model Flin is a foliation with linear holonomy
and s-connected integration the Lie groupoid (2.3). Moreover, this groupoid:
(i) coincides with Mon(M,Flin) iff Ŝ is simply connected.
(ii) coincides with Hol(M,Flin) iff the action of Γ on V is effective.

2.2. Foliation versus étale groupoids

Recall that an étale groupoid is a Lie groupoid whose source map is a local diffeo-
morphism. Typical examples of étale groupoids include:
— the identity groupoid M ⇒M of a manifold,
— the action groupoid associated to a discrete group action on a manifold.

The fundamental example coming from foliation theory is the restriction of the holon-
omy groupoid of (M,F ) to a complete transversal T (i.e., a transversal intersecting
all the leaves):

Hol(M,F )|T ⇒ T.

Historically, étale groupoids associated with a foliation were introduced via pseu-
dogroups, as the objects that encode the transverse geometry of the foliation (see
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Remark 2.3.3 below). The main point about étale groupoids is that they can be han-
dled very much as usual manifolds. The resulting theory should be viewed as a study
of “singular spaces,” namely, the orbit spaces of the étale groupoids. The role of the
étale groupoid is to provide a “desingularization” of the singular space.

A foliation groupoid E ⇒M and the étale groupoid

(2.5) ET :=
(

E |T ⇒ T
)

obtained by restricting E to a complete transversal T for F have the same leaf space.
This passage to the étale groupoid depends on the choice of a transversal T but, mod-
ulo the appropriate notion of equivalence, called Morita equivalence (see Section 2.3),
this choice is irrelevant. An entirely similar story holds for any Lie groupoid G , with
the exception that the restriction to a complete transversal is not étale unless G is a
foliation groupoid.

A fundamental property that will be used repeatedly is the following: in an étale
groupoid ET ⇒ T , any arrow g : x→ y induces a germ of diffeomorphisms:

(2.6) σg : (T, x)→ (T, y).

To define it choose a neighborhood U of g in ET where both s and t restrict to local
diffeomorphisms and then take the germ at x of σg := (t|U ) ◦ (s|U )−1.

Given a foliation groupoid E ⇒M , if the restriction ET to some complete transver-
sal T is effective then the same holds for any other transversal. In such case we say
that E is an effective foliation groupoid. One can characterize holonomy groupoids as
follows:

Proposition 2.2.1 ([15]). — A foliation groupoid E ⇒ M is the holonomy groupoid of
the induced foliation on the base iff E is s-connected and effective.

Example 2.2.2. — Consider the linear foliation Flin in Example 2.1.5 associated with a
Γ-cover Ŝ → S and a linear action Γ y V . A complete transversal to Flin is furnished
by V sitting inside the linear local model Ŝ ×Γ V as v 7→ [x, v], where x ∈ Ŝ is fixed.
The restriction of the Lie groupoid (2.3) to this transversal is isomorphic to the action
groupoid Γ n V ⇒ V . Therefore, Proposition 2.2.1 immediately implies part (ii) in
Proposition 2.1.6.

2.3. Morita equivalence

Morita equivalence is relevant to our story for it is the equivalence that reflects
the “transverse geometry” or the “geometry of the leaf space”. Let us recall its precise
definition using bibundles [29]. For more details we refer to [1, 9, 30, 33, 42].
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12 CHAPTER 2. PMCTS, FOLIATIONS OF COMPACT TYPES AND ORBIFOLDS

A Morita equivalence between two Lie groupoids Gi ⇒Mi, i ∈ {1, 2}, also called a
Morita bibundle, denoted by P : G1 ' G2 and illustrated by the diagram

G1

����

!! P

q1
xx

q2
&&

}} G2

����

M1 M2

is given by a smooth manifold P , endowed with:
— surjective submersions q1 : P →M1 and q2 : P →M2;
— commuting groupoid actions on P of G1 from the left, making q2 : P →M2 into

a principal G1-bundle, and of G2 from the right, making q1 : P → M1 into a
principal G2-bundle.

Given a Morita equivalence P : G1 ' G2 one finds that:
(i) there is a homeomorphism of the orbit spaces M1/G1 and M2/G2, where two

orbits Oi ⊂Mi correspond to each other iff q−1
1 (O1) = q−1

2 (O2);
(ii) if x1 ∈ O1 and x2 ∈ O2 are points in orbits in this correspondence, then the

isotropy Lie groups G1,x1
and G2,x2

are isomorphic;
(iii) the groupoid G1 is proper/Hausdorff iff the groupoid G2 is.

Example 2.3.1 (Gauge groupoids). — Given a Morita equivalence P as above, the
groupoid G1 can be recovered from G2 together with P and its structure of principal
G2-bundle over M1: G1 will be isomorphic to the gauge groupoid

P ?
G2
P := (P ×M2

P/G2 ⇒M1) ,

the quotient of the submersion groupoid associated to q2 : P → M2 (Example 2.1.3)
modulo the (diagonal) action of G2. The isomorphism is induced by the division map
P ×M2

P → G1.

For a foliation groupoid E ⇒ M and any complete transversal T , the groupoids
E and ET (see (2.5)) are Morita equivalent: P := t−1(T ) defines a Morita bibundle,
where q1 and q2 are the restrictions of s and t, respectively, and the actions are given
by the multiplication of E . This leads to the following characterization of foliation
groupoids, which is a refinement of Proposition 2.1.1:

Proposition 2.3.2 ([15]). — A Lie groupoid E is a (proper) foliation groupoid iff it is
Morita equivalent to a (proper) étale groupoid.

Remark 2.3.3 (Haefligers’s approach to transverse geometric structures). — Let us call
a Haefliger sheaf on Rq any sheaf on Rq that comes together with an action of local
diffeomorphisms φ : U → V between opens in Rq; that means that any such φ induces
a bijection φ∗ : S (U)→ S (V ) and φ∗ is compatible with the restriction maps. More
formally, S is a Γq-sheaf, where Γq ⇒ Rq is the Haefliger groupoid, whose space of
arrows consists of germs of local diffeomorphisms, with the sheaf topology. A good
example to keep in mind is the sheaf of differential forms.
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Fix such a Haefliger sheaf S . Using local charts, S extends to all q-dimensional
manifolds, giving rise to a functor defined on the category Manq consisting of q-dimen-
sional manifolds and local diffeomorphisms between them. This extension is unique
if we require it to have the same properties as S , but now with respect to diffeomor-
phisms between manifolds; it will be denoted by the same letter S .

Given an étale groupoid E ⇒ T over a q-dimensional manifold, the sheaf property
allows us to define S (E ) as the set of E -invariant structures on the base,

S (E ) := S (T )E .

More precisely, for any arrow g of E we have a germ σg of a local diffeomorphism of T
from s(g) to t(g), see (2.6), and u ∈ S (T )E iff σg takes germs(g)(u) to germt(g)(u), for
any g ∈ E . In other words, S (T ) is a E -sheaf and S (E ) is the space of its invariant
sections. Moreover, any Morita equivalence E1 ' E2 of étale groupoids induces a
bijection S (E1) ∼= S (E2), and this construction is natural with respect to composition
of Morita equivalences.

The last property allows us to further extend S to arbitrary foliation groupoids
E ⇒ M by making use of the restrictions ET (see (2.5)). To make the definition
independent of the choice of T , we define S (E ) as the set of collections

u = {uT }

of elements uT ∈ S (ET ), one for each complete transversal T , with the property that
for any two such transversals T1 and T2, uT1 to uT2 correspond to each other via the
map S (ET1

) ∼= S (ET2
) induced by the natural Morita equivalence between ET1

and
ET2

(i.e., the composition of the Morita equivalences ET1
' E ' ET2

or, more directly,
the Morita equivalence defined by the Morita bibundle E (T1, T2) of arrows starting
in T1 and landing in T2). With this, it is clear that once a complete transversal T is
fixed, the obvious map S (E )→ S (ET ) is 1-1.

Therefore, given a codimension q foliated manifold (M,F ) one can define the set
S (M/F ) of transverse S -structures on (M,F ) as S (Hol(M,F )). For instance, if one
considers differential forms on manifolds, the space of transverse forms for (M,F ) is
the space Ω•(T )Hol(M,F ) of differential forms on a complete transversal T , invariant
under holonomy. Similarly for transverse Riemannian metrics, transverse measures,
transverse symplectic forms, etc.

One can often remove the ambiguity coming from the choice of a complete transver-
sal by representing a transverse S -structure directly at the level of M . For instance,
in the case of S = Ω• one looks at the basic forms

Ω•(M)F−bas := {ω ∈ Ω•(M) : iV ω = 0, £V ω = 0 for all V ∈ Γ(F )}.

Restriction from M to any complete transversal T induces an isomorphism:

Ω•(M)F−bas
∼= Ω•(T )Hol(M,F ), ω 7→ ω|T .

Hence, Ω•(M)F−bas yields a concrete realization of S (M/F ) at the level of M .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



14 CHAPTER 2. PMCTS, FOLIATIONS OF COMPACT TYPES AND ORBIFOLDS

2.4. Foliations of C -types

We turn now to the study of foliations of compact types. Any such foliation has
linear holonomy. In fact, we have:

Lemma 2.4.1. — Let (M,F ) be a foliation of proper (respectively, s-proper) type.
Then its leaves are closed embedded (respectively, compact) submanifolds, the holon-
omy groups are finite, and the orbit space is Hausdorff. If (M,F ) is strong proper,
then the leaves have finite fundamental group.

Proof. — A simple topological argument implies that for a proper (respectively,
s-proper) Lie groupoid all the orbits are closed embedded (respectively, compact)
submanifolds, the isotropy groups are compact, and the orbit space, furnished with
the quotient topology, is Hausdorff (see e.g., [17, 52, 57]). For an s-connected integra-
tion E of F , the isotropy groups of E surject onto the holonomy groups.

While strong C -types were defined using the monodromy groupoids, we claim that
the C -types can be checked using the holonomy groupoids:

Theorem 2.4.2. — A foliation is of C -type iff its holonomy groupoid has property C .

The proof of Theorem 2.4.2 is deferred until the next section, where we discuss
normal forms for foliations. For now, we look at some examples. One should keep in
mind that a foliation (M,F ) is of compact type iff it is s-proper and M is compact.

Example 2.4.3. — A simple foliation (M,F ) as in Example 2.1.3 is always of proper
type, it is of s-proper type iff p is proper and it is of compact type iff M is compact.

Example 2.4.4. — For the linear foliation (Ŝ×Γ V,Flin) the explicit integrations (2.3)
and (2.4) together with Proposition 2.1.6 imply that Flin is:
— proper (respectively, s-proper) iff Γ is finite (respectively, Γ is finite and S is

compact);
— strong proper (respectively, strong s-proper) iff π1(S) is finite (respectively,

π1(S) is finite and S is compact);
— never of compact type.

Note that in the definition of C -type one requires the foliation groupoid to be
s-connected. One should be aware of the following phenomena:
(i) If a foliation groupoid E ⇒ M is proper, then passing to its source connected

component E 0 ⊂ E may destroy properness.
(ii) If a foliation (M,F ) is of proper type and U ⊂ M is open, then (U,F |U ) may

fail to be of proper type.
In fact, notice that for a foliation (M,F ) and an open set U ⊂M , the leaves of F |U are
the connected components of the intersections of the leaves of F with U . Although the
restriction Hol(M,F )|U still integrates F |U , it may fail to be s-connected. Passing
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to the associated s-connected groupoid, one gets precisely the holonomy groupoid
of F |U :

(2.7) Hol(U,F |U ) = (Hol(M,F )|U )0.

Examples illustrating (i) and (ii) can then be constructed even starting from a simple
foliation. For instance, consider M = R2 with the foliation induced by the second
projection and restrict it to U = R2 \ {0}. Then (U,F |U ) is not proper because
its leaf space is not Hausdorff. In particular, Hol(M,F )|U is proper while its source
connected component is not.

Lemma 2.4.1 gives necessary conditions for the properness of a foliation, but they
are not sufficient as illustrated by the next two examples:

Example 2.4.5. — There are foliations where all leaves are embedded, the holonomy
groups are finite, and the leaf space is Hausdorff, but are not of proper type: consider
the linear foliation of the Möbius band M by circles. The middle circle C is the only
leaf with non-trivial holonomy.

Restrict now this foliation to the open U obtained from M by removing one point
in C. In this way, the leaf space remains unchanged, is Hausdorff, and the leaves
clearly have the desired properties. However, the holonomy groupoid is not proper, as
can be seen by considering the holonomy group of the initial foliation, given by (2.3),
and then restricting as in (2.7). From Theorem 2.4.2 we conclude that (U,F |U ) is not
of proper type.

Example 2.4.6. — There are foliations where all leaves are embedded, the homotopy
groups are finite, and the leaf space is Hausdorff, but are not of strong proper type:
consider the first projection p : R5 → R and on the fiber p = 0 remove the complement
of a tubular neighborhood of an embedding P2 ⊂ {0}×R4. The resulting submersion
p : M → R defines a simple foliation whose leaves have the desired properties. Since
a curve in P2 which is non-trivial in homotopy is a vanishing cycle, the monodromy
groupoid cannot be Hausdorff. However, being an instance of a simple foliation, it is
of proper type.

These examples indicate that properness is more difficult to check directly. The
situation is quite different for s-properness and compactness when the local Reeb
stability implies a converse to Lemma 2.4.1. This brings us to normal forms.

2.5. Normal forms

We start with the standard local Reeb stability:

Theorem 2.5.1 (Local Reeb stability). — Let (M,F ) be a codimension q foliation. If
S is a compact leaf with finite holonomy group, then there exists a saturated neigh-
borhood U of S and a foliated isomorphism

(U,F |U )
∼=−→ (Ŝ ×Γ νx(S),Flin),
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where the right hand side is the linear model associated to the linear holonomy action
of the holonomy group Γ = Holx(M,F ) at some point x ∈ S (Example 2.1.5).

As promised, an immediate consequence is:

Theorem 2.5.2. — A foliation is s-proper (respectively, strong s-proper) iff all its leaves
are compact and have finite holonomy (respectively, fundamental group).

Proof. — We are left to prove the converse implication. For that notice that it suffices
to check s-properness on saturated neighborhoods, i.e., by the previous theorem, on
the linear models. But this was already remarked in Example 2.4.4.

Theorem 2.5.2 shows that foliations of s-proper type are the same thing as classical
compact foliations (Remark 2.0.2) all of whose leaves have finite holonomy. While the
leaves of an arbitrary classical compact foliation need not have finite holonomy, one
of the main results in the subject states that for compact foliations the following two
conditions are equivalent ([22, 23]):
(a) All leaves have finite holonomy.
(b) The leaf space is Hausdorff.
Hence, the part of Theorem 2.5.2 concerning s-properness can be restated as:

Corollary 2.5.3. — A foliation is s-proper iff all its leaves are compact and its leaf
space is Hausdorff.

What about the proper case? For that we need a version of local Reeb stability
which holds on saturated neighborhoods of non-compact leaves. To achieve such a
“normal form” one needs to enlarge the class of “local models” allowed.

Example 2.5.4 (Non-linear local models). — The new local models start with the fol-
lowing data (compare with the linear local models in Example 2.1.5):
(i) A finite group Γ acting linearly on a finite dimensional vector space V .
(ii) A connected manifold P endowed with a free and proper action of Γ.
(iii) A Γ-equivariant submersion µ : P → V with connected fibers.
The foliation F (µ) by the fibers of µ descends to the quotient modulo Γ and the new
local model is the resulting foliated manifold

(2.8) (P/Γ,F (µ)/Γ).

The foliations arising in this way are still of proper type. To see this, we exhibit a
proper integrating foliation groupoid. We start with the submersion groupoid asso-
ciated to µ (Example 2.1.3), denoted P ×V P , and we consider the diagonal action
of Γ. The action is free, proper and by groupoid automorphisms. Therefore

(2.9) (P ×V P )/Γ ⇒ P/Γ,

is a Lie groupoid, which is easily seen to be a proper integration of F (µ)/Γ. Of course,
this is just an instance of the gauge construction from Example 2.3.1.
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Notice that if one starts with a Γ-cover Ŝ → S and a representation Γ → GL(V ),
letting P = Ŝ × V and µ : P → V be the second projection, one recovers the local
linear models of Example 2.1.5, together with their integration.

Here is our version of Reeb stability for non-compact leaves of proper foliations:

Theorem 2.5.5. — If (M,F ) is a foliation of proper type and S is a leaf, then there
exists data (i)-(iii) as above, a saturated neighborhood U of S, and a diffeomorphism
of foliated manifolds

(U,F |U ) ∼= (P/Γ,F (µ)/Γ)

sending S to the leaf µ−1(0)/Γ.

This result is in fact the “improved local model” for proper groupoids of [17], applied
to foliation groupoids. For foliation groupoids however, both the local model as well
as the proof, are simpler. We will sketch here an argument which, modulo some small
adaptations, can be applied also in the Poisson context [12].

Proof. — Fix an s-connected, proper integrating groupoid E ⇒ M and let x ∈ S.
One divides the proof into the following steps:

1) Choose a small transversal T to the foliation with T ∩ S = {x}. The restriction
E = E |T is a proper étale groupoid which has x as a fixed point.

2) For any proper étale groupoid E ⇒ T with a fixed point x, there exists a
saturated neighborhood V ⊂ T of x together with an action of the (finite) isotropy
group Ex on V such that

E |V
∼= Ex n V ∼= Ex n TxV.

The first isomorphism follows from the linearization of proper étale groupoids around
fixed points ([40, Proposition 5.30] or [52, Section 6]), while the second one follows
from Bochner’s Linearization Theorem ([21]).

3) In our case, we have Ex = Ex and TxV = νx(S). Hence, if we consider the
saturation U ⊂M of V , then there is a Morita equivalence:

E |U ' Ex n νx(S).

4) For a bibundle P that implements this Morita equivalence,

E |U

����

!! P

q1

xx

q2
''

}} Ex n νx(S)

����

U νx(S)

the right action amounts to a free and proper action of Ex on P for which µ is an
equivariant surjective submersion.
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5) Therefore, using the gauge construction (Example 2.3.1), E |U can be recovered
from the groupoid on the right and the bibundle P . In our case this translates simply
into the desired isomorphism:

(2.10) E |U

����

(P ×νx P )/Γ

����

∼=

U P/Γ

which sends the class of a pair (p, q) ∈ P ×νx P to the unique arrow g ∈ E |U with the
property that p = gp.

One can recover the s-proper case as follows. Letting Γ = Ex, note that Ŝ =

s−1(x) is a Γ-covering of S and that Γ acts on νx(S) via the linear holonomy. One
then checks that P = Ŝ × νx(S) is a bibundle implementing the Morita equivalence
between E |U and Ex n νx(S), giving rise to the isomorphism:

(2.11) E |U

����

(Ŝ × Ŝ)×Γ νx(S)

����

∼=

(U,F |U ) (Ŝ ×Γ νx(S),Flin).

In this way, we recover the linear local model of Example 2.1.5. We conclude that the
Local Reeb Stability Theorem applies to any leaf S of an s-proper foliations and, in
fact, the diffeomorphism (2.11) is nothing but a groupoid version of Theorem 2.5.1
for any s-proper foliation.

Proof of Theorem 2.4.2. — We have to show that if an integration E of (M,F ) is
of C -type, then the same holds for the holonomy groupoid Hol(M,F ). It is clear that
such properties descend to quotients provided the latter are Hausdorff. To check that
Hol(M,F ) is indeed Hausdorff one proceeds, again, by restricting to small enough
saturated opens and checking it for the local model (2.8).

If the action of Γ on V is effective, then so is the action of Γ on P ×V P . Proposi-
tion 2.2.1 then implies that (2.9) must be the holonomy groupoid of (2.8) and we are
done. The general case can be reduced to the effective one as follows: the represen-
tation ρ : Γ → GL(V ) has image and kernel denoted by Γ0 and K, respectively. By
construction, Γ0 acts effectively on V . Consider P0 = P/K. Then the action of Γ on P
descends to an action of Γ0 on P0 (still free and proper) and p descends to p0 : P0 → V .
It is clear that P/Γ = P0/Γ0.

2.6. Orbifolds

Proper foliation groupoids serve as atlases for orbifold structures:
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Definition 2.6.1. — Let B be a topological space. An orbifold atlas on B is a pair
(B, p) consisting of:

— a proper foliation groupoid B ⇒M ;
— a homeomorphism p : M/B→B between the space of orbits of B and B.

An orbifold is a pair (B,B) consisting of a space B and an orbifold atlas B on B.

Two orbifold atlases (Bi, pi), i ∈ {1, 2}, are said to be equivalent if there exists a
Morita equivalence B1 'B2 with the property that the induced homeomorphism on
the orbit spaces is compatible with p1 and p2.

It follows from the previous discussion that, by passing to a transversal T , one can
always use orbifold atlases which are étale. While nowadays one uses general foliation
groupoids [38], the first approaches to orbifolds via groupoids used only étale atlases
(see e.g., [1]). Although étale atlases are often advantageous, restricting to them is
unnatural, not only conceptually, but also from the point of view of concrete examples.
For example, quotients M/G of proper, locally free, actions of Lie groups come with
an obvious choice of orbifold atlas (the action groupoid), but not with a canonical
étale one. PMCTs will provide similar examples.

Remark 2.6.2. — In the existing literature, orbifolds are often defined as “a space with
an equivalence class of orbifold atlases,” while an atlas is interpreted as a “presenta-
tion” of the orbifold [38, 1]. However, note that:

— two equivalent atlases can be equivalent in many, very distinct, ways, and
— two different equivalences give rise to different ways of passing from one atlas

to the other.

Hence, not fixing an atlas gives rise to subtleties. This shows up already when defining,
in an atlas-independent way, a morphism between orbifolds, or a vector bundle over an
orbifold. This kind of problems can be solved by developing a rather heavy categorical
language [33]. In practice, we do not have to deal with such issues and all orbifolds
arise with a canonical orbifold atlas, in the sense of our definition. Given an orbifold
(B,B), it is sometimes advantageous to pass to a more convenient atlas E : however,
such a passing will always be done via a specified Morita equivalence QE : E 'B.

Example 2.6.3 (Manifolds and smooth orbifolds). — Any manifold B can be seen as an
orbifold by using the trivial groupoid B ⇒ B as an atlas. Such an orbifold is called a
smooth orbifold. Note that an orbifold is smooth precisely when a/any defining atlas
has no isotropy. Other equivalent étale atlases are provided by choosing a manifold
atlas {Ui, φi}i∈I for B and considering the associated covering groupoid, i.e., the
étale groupoid with space of objects the disjoint union

∐
i Ui and one arrow from

(x, i) to (x, j) for each x ∈ Ui ∩ Uj .
On the other hand, for any orbifold B one may also talk about the smoothness

of the underlying topological space: one requires the topological space B to admit
a smooth structure such that, for some orbifold atlas B ⇒ M , the quotient map
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p : M → B is a submersion. This condition does not depend on the choice of the atlas
and determines a unique smooth structure on B, if it exists.

Obviously, for a smooth orbifold the underlying topological space is smooth. How-
ever, it is important to keep in mind that the underlying topological space maybe
smooth while the orbifold itself may still fail to be a smooth orbifold, for the orbifold
atlases may have non-trivial isotropy. A simple example is obtained by taking the
action groupoid Γ n B ⇒ B associated with a trivial action of a finite group. Our
study of PMCTs will give rise to much more interesting examples- where the isotropy
information is important and cannot be disregarded.

Example 2.6.4 (Classical orbifolds). — Originally, orbifold structures on a space B
were defined in complete analogy with smooth structures, but using charts that iden-
tify the opens in B with quotients Rn/Γ of finite groups Γ acting effectively on Rn
[47, 49]. With the appropriate compatibility between such charts, one obtains the
notion of a classical orbifold atlas. Similarly to the covering groupoids above for man-
ifolds, such an atlas can be organized into a proper étale groupoid whose space of
orbits is B [1, 40]. Therefore, the classical notion of orbifold can be seen as particular
classes of orbifolds in the sense of Definition 2.6.1. Here, following [1, 38], we will
adopt the following equivalent working definition: a classical orbifold is an orbifold
for which the defining atlas is effective.

Notice that the subtleties related to orbifolds atlases mentioned in Remark 2.6.2
are not present in the case of classical orbifolds:

Lemma 2.6.5. — For a classical orbifold B, an equivalence Q : B1 'B2 between two
orbifold atlases for B is unique up to isomorphism.

Since any (proper) étale groupoid has an associated effective (proper) étale
groupoid, we see that any orbifold has an underlying classical orbifold structure. In
this terminology, the smoothness of the underlying topological space of an orbifold is
equivalent to the condition that its underlying classical orbifold is smooth. A general
orbifold structure can be seen as a classical orbifold together with extra data, which
is codified in the isotropy groups of the orbifold atlases.

Example 2.6.6 (Good orbifolds). — A large class of examples of orbifolds arise as
quotients M/Γ for proper effective actions of discrete groups Γ: the action groupoid
Γ nM gives an orbifold atlas. Orbifolds of this type are called good orbifolds [1, 49].

Example 2.6.7 (Foliations of C -type and orbifolds). — For a foliation (M,F ) of C -type,
any s-connected, proper integration E ⇒ M makes the leaf space B = M/F into an
orbifold (B, E ). Different integrations give different orbifold structures. However, the
holonomy groupoid Hol(M,F ) ⇒M provides a smallest integration (Theorem 2.1.2),
which is proper (Theorem 2.4.2) and effective (Proposition 2.2.1). Hence, the underly-
ing classical orbifold of any orbifold defined by a foliation (M,F ) of C -type has atlas
Hol(M,F ) ⇒M .
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Remark 2.6.8 (Geometric structures on orbifolds). — Haefliger’s approach to trans-
verse structures, discussed in Remark 2.3.3, when applied to the orbifold atlases allows
one to consider various geometric structures on orbifolds, such as vector bundles, dif-
ferential forms, Riemannian structures, etc: if S is a Haefliger sheaf on Rq then S (B)

for a q-dimensional orbifold (B,B) is defined by applying S to the orbifold atlas
B ⇒ M . Given some other atlas QE : E ' B we have an induced isomorphism
S (E ) ∼= S (B), which in general depends on the Morita equivalence QE .

We can now return to regular PMCTs, the conclusion being that their leaf spaces
are orbifolds. More precisely, each s-connected, proper integration gives rise to a orbi-
fold structure on the leaf space, so one has the following more precise version of
Theorem 2.0.1:

Theorem 2.6.9. — If (M,π) is a regular Poisson manifold of C -type and G is an s-
connected integration of (M,π) having property C , then G fits into a short exact se-
quence of Lie groupoids

1 // T (G ) // G // B(G ) // 1,

where:
(i) T (G ) is a smooth bundle of tori consisting of the identity connected components

of the isotropy Lie groups Gx.
(ii) B(G ) is an s-connected foliation groupoid integrating Fπ satisfying property C .

In particular, G induces an orbifold structure on the leaf space B = M/Fπ, with B(G )

as orbifold atlas. The underlying classical orbifold has atlas Hol(M,Fπ) ⇒M .

Proof. — This is basically proven in [39] in the context of regular groupoids. The
main remark is that T (G ) is a closed subgroupoid of G . This implies not only that
B(G ) is a Lie groupoid, but also that it is of C -type, and in particular Hausdorff,
whenever G is. In our case, since the isotropy Lie algebras are abelian and Gx are
compact, T (G ) will be a bundle of tori.

The reader will notice that the integration in Theorem 2.6.9 does not need to be
symplectic. We now turn to the implications of considering symplectic integrations.
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CHAPTER 3

INTEGRAL AFFINE STRUCTURE

Integral affine structures form another type of geometric structure that plays a
crucial role in the study of compactness in Poisson Geometry. We initiate their study
in this chapter. First, we start by recalling some basic definitions and properties
of integral affine structures on manifolds. Then we discuss transverse integral affine
structures on foliated manifolds and their relation to integral affine structures on orbi-
folds. This will set the stage to prove the main result of this chapter, which improves
on the orbifold structure on the leaf spaces of PMCTs constructed in Theorem 2.6.9.
A simplified version can be stated as follows:

Theorem 3.0.1. — For any regular Poisson manifold (M,π) of C -type its leaf space
B = M/Fπ is an integral affine orbifold: any s-connected symplectic integration (G ,Ω)

of (M,π) having property C gives rise to an integral orbifold structure on B. Moreover,
the underlying classical orbifold is good.

For a foliated manifold (M,F ), a transverse integral affine structure is described by
a collection of subgroups of its conormal bundle ν∗(F ), as will be recalled below. On
the other hand, the monodromy groups of a Poisson manifold [11], an invariant which
characterizes its integrability, is another collection of subgroups of ν∗(Fπ). Another
goal of this chapter is to describe the role of the monodromy groups in the integral
affine geometry of PMCTs. In this study, a new invariant of Poisson structures, called
the extended monodromy groups, will emerge.

3.1. Integral affine structures on manifolds

We will denote by AffZ(Rq) = GLZ(Rq)nRq, the group of integral affine transfor-
mations, consisting of transformations of the type:

(3.1) Rq → Rq, x 7→ A(x) + v,

with v ∈ Rq, A ∈ GLZ(Rq). Integral affine structures on manifolds can be described
in several equivalent ways; we start with the most natural one, in terms of atlases.
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Definition 3.1.1. — An integral affine structure on a q-dimensional manifold B is a
choice of a maximal atlas {(Ui, φi) : i ∈ I} with the property that each transition
function

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is (the restriction of) an integral affine transformation. Any chart (Ui, φi) is called an
integral affine coordinate system.

More efficient descriptions are given in terms of latices. By a lattice Λ in a vector
space V we mean a discrete subgroup of (V,+) of maximal rank. We can always choose
a basis {v1, . . . , vq} for V such that:

Λ = Zv1 + · · ·+ Zvq.

The dual lattice Λ∨ ⊂ V ∗ of the lattice Λ is defined by

V ∨ = {ξ ∈ V ∗ : ξ(λ) ∈ Z, ∀ λ ∈ Λ}.

By a lattice on a vector bundle E → B we mean a sub-bundle

EZ =
⋃
b∈B

Λb ⊂ E,

consisting of lattices Λb ⊂ Eb. We say that it is smooth if, locally around each point
b0 ∈ B, one can write

Λb = Zλ1(b) + · · ·+ Zqλq(b)
for some smooth local sections λi of E. An integral vector bundle is a pair (E,EZ)

where EZ is a smooth lattice in E. An integral vector bundle (E,EZ) comes with a
canonical flat linear connection ∇: the one defined by the condition that all the local
sections of EZ are flat.

We can now state some alternative descriptions of integral affine structures, which
will be useful later.

Proposition 3.1.2. — If B is a q-dimensional manifold, then there is a 1-1 correspon-
dence between:
(i) An integral affine atlas {(Ui, φi) : i ∈ I} on B.
(ii) A lattice Λ∨ ⊂ TB satisfying one of the following equivalent conditions:

(a) Λ∨ is smooth and any two local vector fields with values in Λ∨ commute.
(b) Λ∨ is smooth and the induced flat connection on TB is torsion free.

(iii) A lattice Λ ⊂ T ∗B satisfying one of the following equivalent conditions:
(d) Λ is smooth and all its local sections are closed 1-forms.
(e) Λ is a Lagrangian submanifold of (T ∗B,ωcan).

In this 1-1 correspondence, Λ and Λ∨ correspond to the lattices:

Λ∨b := Z
∂

∂x1
|b + · · ·+ Z

∂

∂xq
|b, Λb := Zdx1|b + · · ·+ Zdxq|b,

where (x1, . . . , xq) is any integral affine coordinate system around b ∈ B.
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Example 3.1.3. — Consider an integral affine group, i.e., a subgroup Γ ⊂ AffZ(Rq) of
the group of transformations of type (3.1). For explicit examples, it is useful to write
an element γ ∈ Γ in split form:

γ = (uγ , Aγ) ∈ Rq ×GLZ(Rq).

The subgroup condition is equivalent to the following two conditions:
(i) γ 7→ Aγ defines a linear representation ρlin : Γ→ GLZ(Rq);
(ii) γ 7→ uγ defines a 1-cocycle for Γ, i.e., uγγ′ = uγ +Aγ(uγ′), ∀ γ, γ′ ∈ Γ.

We say that the subgroup Γ is of orbifold type if the affine action on Rq is proper and
of smooth type if the action is proper and free. In the smooth case,

B := Rq/Γ

comes with an integral affine structure induced from the standard integral affine
structure on Rq. Integral affine manifolds which are quotients of Rq by smooth integral
affine groups are called complete.

The space B can be obtained in stages. First, the split short exact sequence

0 // Rq // AffZ(Rq) // GLZ(Rq) // 0

restricts to Γ, yielding a short exact sequence:

0 // Γtr // Γ // Γlin // 0

where:
Γlin = {Aγ : γ ∈ Γ}, Γtr = {vγ : γ ∈ Γ, Aγ = Id}.

The translational part Γtr is a discrete subgroup of (Rq,+). Its rank r is called the
translational rank of the integral affine group Γ and defines a Γlin-covering of B:

Blin := B/Γtr ∼= Tr × Rq−r.

Here are two distinct examples of integral affine structures on the 2-torus. For
the first one, we consider the subgroup Γ ⊂ AffZ(R2) generated by the translations
γ1 : (x, y) 7→ (x+ 1, y) and γ2 : (x, y) 7→ (x, y + 1) or, in the split notations,

γ1 =

(
(1, 0),

[
1 0

0 1

])
, γ2 =

(
(0, 1),

[
1 1

0 1

])
.

These two transformations commute and generate the abelian subgroup

Γ =

{
γn1 γ

m
2 =

(
(n,m),

[
1 0

0 1

])
: n,m ∈ Z

}
.

Of course, this is just Z × Z with its standard action on R2, inducing the standard
integral affine structure on the 2-torus B = R2/Γ = T2. Note that in this case Γ has
translational rank 2 since we have:

Γlin =

{[
1 0

0 1

]}
, Γtr = Z× Z ⊂ R2.
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For the second example, we consider Γ ⊂ AffZ(R2) generated by

γ1 =

(
(1, 0),

[
1 0

0 1

])
, γ2 =

(
(0, 1),

[
1 1

0 1

])
.

Again, these commute, so they generate a subgroup isomorphic to Z× Z,

Γ =

{
γn1 γ

m
2 =

(
(n+

m(m− 1)

2
,m),

[
1 m

0 1

])
: n,m ∈ Z

}
.

The quotient B = R2/Γ is still diffeomorphic to the 2-torus T2, but with a new
integral affine structure. In this case Γ has translational rank 1 since we have:

Γlin =

{[
1 m

0 1

]
: m ∈ Z

}
, Γtr = Z(1, 0).

.

Integral affine structures look, at first, deceivingly simple. However, even some of
the simplest questions are surprisingly hard to answer. For instance, we mention here
an integral affine version of an old conjecture in affine geometry:

Conjecture 3.1.4 (Markus conjecture – integral affine version). — Any compact integral
affine manifold must be complete, i.e., of the form Rq/Γ for some smooth integral
affine subgroup Γ ⊂ AffZ(Rq).

Remark 3.1.5 (Affine structures). — Affine structures on B are defined, via atlases, as
above, except that the changes of coordinates (3.1) are only affine (i.e., v ∈ Rq and
A ∈ GL(Rq)). The analog of the 1-1 correspondence from the previous proposition
states that they correspond to flat torsion free connections on TB. In this context
one can talk about invariant (or parallel) densities and volume forms by requiring
invariance with respect to parallel transport of the connection. The standard Markus
conjecture states that a compact affine structure with an invariant density has a
complete connection.

Integral affine structures always admit invariant positive densities (or volume forms,
in the orientable case): one sets µ := |dx1 ∧ · · · ∧ dxq| for any choice of integral affine
local coordinates (x1, . . . , xn). An interesting question that seems to be still open is
whether, conversely, any affine structure that admits an invariant density comes from
an integral affine structure.

A integral structure EZ on a vector bundle E → B gives rise to a bundle of tori
T := E/EZ. Conversely, given a bundle of tori T → B, the Lie algebras of the fibers
give rise to a vector bundle E → B, while the kernels of the exponential maps give
rise to an integral structure EZ on E such that T ≡ E/EZ.

The very first indication of the close relationship between PMCTs and integral
affine structures arises from the symplectic version of this correspondence, i.e., by
considering proper integrations of the zero Poisson structure π ≡ 0 on B. Such an
integration is the same thing as a symplectic torus bundle over B, i.e., a (smooth)
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bundle of tori p : T → B together with a symplectic form ωT which is multiplicative
in the sense that

(3.2) m∗(ωT ) = pr∗1(ωT ) + pr∗2(ωT ),

where m,pr1,pr2 : T ×M T → T are the bundle multiplication and the two projec-
tions, respectively.

Proposition 3.1.6. — If Λ ⊂ T ∗B defines an integral affine structure on B then

TΛ := T ∗B/Λ

is a torus bundle and the standard symplectic form ωcan on T ∗B descends to a sym-
plectic form on TΛ, making it into a symplectic torus bundle. Moreover, this gives rise
to a bijection: integral affine

structures on B

 1−1←→

 isomorphism classes of
symplectic torus bundles over B

 .

Proof. — Let us start by remarking that given an integral affine structure Λ ⊂ T ∗B
we have a smooth, free, and proper action of the bundle Λ on the bundle of abelian
groups T ∗B → B by translations:

ξb 7→ ξb + α(b), α ∈ Γ(Λ).

Hence, TΛ := T ∗B/Λ is a torus bundle. The canonical symplectic form ωcan on T ∗B
descends to TΛ iff ωcan is invariant under this action. For a fixed α ∈ Γ(Λ), one
checks easily that the translation by α is the time-1 flow of the vector field Xα given
by iXαωcan = p∗α, where p : T ∗B → B is the projection. Denoting by φtα the flow
of Xα and by mt : T ∗B → T ∗B fiberwise multiplication by t, one finds that:

m∗tωcan = tωcan, φtα = mt ◦ φ1
α ◦m1/t.

So ωcan is invariant under φ1 iff it is invariant under φta, which will follow if:

0 = £Xαωcan = diXαωcan = p∗dα, ∀α ∈ Γ(Λ).

But this follows from the fact that all sections of Λ are closed (Proposition 3.1.2).
Since ωcan ∈ Ω2(T ∗B) is multiplicative, the same holds for the induced symplectic
form ωTΛ

∈ Ω2(TΛ). We conclude that (TΛ, ωTΛ
) is a symplectic torus bundle.

Conversely, let (T , ωT ) be a symplectic torus bundle over B. It is a s-connected in-
tegration of the zero Poisson structure on B. Since the Weinstein groupoid of (B, 0) is
(T ∗B,ωcan), it follows that there is a morphism of symplectic groupoids:

q : (T ∗B,ωcan)→ (T , ωT ),

which is a local diffeomorphism. The restriction of q to a fiber gives a Lie group cover-
ing q : T ∗b B → Tb, so its kernel is a lattice Λb ∈ T ∗b B. Since q is a local diffeomorphism,
for each α0 ∈ Λb0 there exists a unique smooth local section α ∈ Γ(T ∗B) such that
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α(b0) = α0 and α(b) ∈ Λb. It follows that Λ ⊂ T ∗B is smooth. We conclude that the
map q factors through an isomorphism:

(T ∗B,ωcan)

��

q
// (T , ωT )

(TΛ, ωTΛ
).

∼=

88

This shows that ωcan descends to T ∗B/Λ, i.e., that is invariant under the action of Λ.
As in the first part of the proof, then every section of Λ is closed, so Λ is an integral
affine structure on B, by Proposition 3.1.2.

To complete the proof it remains to show that if Λ1,Λ2 ⊂ T ∗B are any integral
affine structures and there is an isomorphism of symplectic torus bundle covering the
identity, φ : (TΛ1

, ωTΛ1
)→ (TΛ2

, ωTΛ2
), then Λ1 = Λ2. For that, observe that any such

(possibly, non-symplectic) isomorphism, being continuous and additive on the fibers,
must be induced by a bundle map φ̂ : T ∗B → T ∗B of the form:

φ̂ : (b, α) 7→ (b, Ab(α)), (b ∈ B),

where Ab : T ∗b B → T ∗b B are linear isomorphisms with Ab(Λ1) = Λ2. To see that
Ab =Id, so that Λ1 = Λ2, one now uses that φ preserves the symplectic forms.

Integral affine structures are very closely related to Lagrangian fibrations. Indeed,
any symplectic torus bundle fibers in a Lagrangian way over its base. Conversely, if
q : (X,ΩX)→ B is a Lagrangian fibration with compact, connected fibers, then B has
an induced integral affine structure ΛX given by:

(3.3) ΛX,x := {α ∈ T ∗xB : φ1
αX = id},

where φtαX denotes the flow of the vector field αX on the fiber q−1(x) defined by:

iαXΩX = q∗α.

We now give a Poisson geometric interpretation of this construction, which will
serve as inspiration later on. First, the Lagrangian fibration condition is equivalent to
the fact that

q : (X,ΩX)→ (B, 0).

is a Poisson map into B with the zero Poisson structure π ≡ 0, i.e., that (X,ΩX) is
a symplectic realization of the Poisson manifold (B, 0). By the general properties
of symplectic realizations [11] (see also Section 7.1 below), it follows that the Lie
algebroid and the canonical integration act on the realization. In our case the Lie
algebroid is T ∗B with the zero bracket and anchor (hence just a bundle of abelian
Lie algebras) and the induced action on X is

σ : Ω1(B)→ X(X), α 7→ αX .
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The canonical integration is the symplectic groupoid (T ∗B,ωcan), where T ∗B is
viewed now as a bundle of abelian Lie groups, and the integration of the infinitesimal
action σ is the groupoid action:

(T ∗B,ωcan)

��

!! (X,ΩX),

q
uu

(B, 0)

α · u := φ1
αX (u).

This action is locally free. Moreover, it is symplectic in the sense that (compare with
(3.2) and with Appendix A.1):

m∗(ΩX) = pr∗1(ωcan) + pr∗2(ΩX),

where m : T ∗B ×B X → X is the action and pri are the projections.
Now the lattice (3.3) is precisely the isotropy of this action. Hence the correspond-

ing symplectic torus bundle T = T ∗B/ΛX , a symplectic groupoid integrating (B, 0),
arises as the quotient of T ∗B which acts freely on X:

(T , ωT )

��

!! (X,ΩX)

q
vv

(B, 0).

The action is still symplectic, hence q : X → B is a symplectic principal T -bundle,
or a free Hamiltonian T -space (see Appendix A). Conversely, any such symplectic
principal bundle is a Lagrangian fibration with compact, connected, fibers:

Proposition 3.1.7. — Any Lagrangian fibration q : (X,ΩX) → B with compact and
connected fibers induces an integral affine structure Λ on B, yielding a proper inte-
gration of (B, 0), i.e., a symplectic torus bundle TΛ over B, for which it becomes a
symplectic principal TΛ-bundle.

Conversely, for any symplectic torus bundle TΛ over B, a symplectic principal
TΛ-bundle q : (X,ΩX)→ B is a Lagrangian fibration with compact, connected fibers,
inducing the integral affine structure Λ.

A classical result due to Duistermaat [19] shows that Lagrangian fibrations with
compact, connected fibers, are classified by the integral affine structure Λ and the
Lagrangian Chern class. This will be recalled and generalized in Section 8.1.

3.2. Integral affine structures on orbifolds and foliations

We define integral affine structures on orbifolds following Haefliger’s approach (see
Remark 2.6.8):
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Definition 3.2.1. — An integral affine structure on a orbifold (B,B) is an integral
affine structure on the base of some étale orbifold atlas E ⇒ T which is invariant
under the action (2.6) by elements of E .

This definition only uses the linear part of the action (2.6), so an integral affine
structure on an orbifold is the same things as one on its underlying classical orbi-
fold. For this reason, the Morita equivalence QE : E ' B plays here no role (see
Lemma 2.6.5): any Morita equivalence between two atlases allows us to move an in-
variant integral affine structure from one base to the other (pull-back to the bibundle,
then push forward by the obvious quotient operation), and the result does not depend
on the choice of equivalence.

Example 3.2.2. — If Γ ⊂ AffZ(Rq) is an integral affine group of orbifold type (see the
previous example) then B = Rq/Γ will inherit the structure of integral affine orbifold.
As a baby illustration, consider the subgroup Γ ⊂ AffZ(R) generated by

γ1(x) = −x+ 1, γ2(x) = −x.

As an abstract group, Γ is the free group in two generators γ1 and γ2 subject to the
relations γ2

1 = γ2
2 = 1, so that:

Γ ∼= Z2 ? Z2,

Γtr = {(0, 0)}, Γlin = {Id,−Id}.

The action of Γ on R is proper and the only x ∈ R with non-trivial isotropy group
are x = n

2 with n ∈ Z, in which case we find:

Γn
2

= {1, (γ1γ2)n−1γ1} ∼= Z2.

The quotient B = R/Γ = S1/Z2 is, topologically, just [0, 1]. This gives the interval
[0, 1] the structure of an integral affine orbifold.

To represent the integral affine structure in arbitrary, possibly non-étale, orbifold
atlases, we need the notion of transverse integral affine structure. Recall that for a
foliation (M,F ) of codimension q a foliation atlas {(Ui, φi) : i ∈ I} is an open cover
{Ui : i ∈ I} of M together with submersions φ : Ui → Rq whose fibers are the plaques
of F in Ui.

Definition 3.2.3. — A transverse integral affine structure on a foliation (M,F ) of
codimension q is a choice of a maximal foliation atlas {(Ui, φi) : i ∈ I} with the
property that each transition function

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is (the restriction of) an integral affine transformation in AffZ(Rq) = GLq(Z) n Rq.
A chart (Ui, φi) is called a transverse integral affine coordinate system.
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More efficient descriptions of transverse integral affine structure can be given in
terms of lattices: there is an analog of Proposition 3.1.2 where the lattices now live
in the normal/conormal bundle to the foliation. The most useful characterization for
us will be the one in terms of the conormal bundle ν∗(F ) = (TF )o ⊂ T ∗M , which
we state as follows:

Proposition 3.2.4. — If (M,F ) is a foliation of codimension q, there a 1-1 correspon-
dence between:

(i) A transverse integral affine atlas {(Ui, φi) : i ∈ I} on (M,F ).
(ii) A lattice Λ ⊂ ν∗(F ) which is a Lagrangian submanifold of (T ∗M,ωcan).
(iii) A lattice Λ ⊂ ν∗(F ) locally spanned by q closed, F -basic, 1-forms on M .

In this 1-1 correspondence, Λ is given by:

Λx := Zdx1|x + · · ·+ Zdxq|x,

where (x1, . . . , xq) is any transverse integral affine coordinate system around x ∈M .

Since basic forms are determined by their restriction to complete transversals,
we deduce that a transverse integral affine structure on (M,F ) is the same thing
as the choice of a holonomy invariant integral affine structure on a (any) complete
transversal. This relates Definition 3.2.3 to Haefliger’s approach (Remark 2.3.3).

Example 3.2.5 (Simple foliations). — If (M,F ) is simple, then transverse integral
affine structures on F are in 1-1 correspondence with integral affine structures on
the smooth manifold B = M/F . In terms of lattices, they are related via pullback
by p : M → B.

Example 3.2.6 (Orbifolds). — For foliations (M,F ) of proper type we know that the
leaf space B = M/F is an orbifold (see Example 2.6.7). We now have a bijectiontransverse integral affine structures

on the proper foliation (M,F )

 1−1←→

 integral affine structures
on the orbifold B = M/F

 .

Strictly speaking, one has several orbifold structures on B, one for each proper s-
connected integration E of F . However, as we remarked before, the notion of integral
affine structure only depends on the underlying classical orbifold.

Starting with an arbitrary orbifold B, the previous example is relevant to the way
one can represent integral affine structures on B with respect to arbitrary orbifold at-
lases E ⇒M (not necessarily étale ones). While in this case E may have disconnected
s-fibers, we have to consider transverse integral affine structures Λ for the foliation F

induced by E on M which satisfy the extra-condition that Λ is invariant with respect
to the induced action of E on ν∗(F ) (of course, this condition is superfluous if E is
s-connected). Such Λs will be called E -invariant (transverse) integral affine.
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Example 3.2.7 (Linear foliations). — Let Ŝ → S be a Γ-cover of a manifold S and
let (V, VZ) be an integral vector space. If ρ : Γ→ GLVZ(V ) is an linear representation
that preserves the lattice, then the linear foliation (Ŝ ×Γ V,Flin) (see Example 2.1.5)
has a transverse integral affine structure.

The analog of the relationship between integral affine structures and the zero-
Poisson structure (Proposition 3.1.6) holds for transverse integral affine structures,
provided one allows for Dirac structures into the picture. Let (M,F ) be a foliation
with a transverse integral affine structure Λ ⊂ ν∗(F ). Since Λ ⊂ T ∗M is Lagrangian,
the pullback to ν∗(F ) of the canonical symplectic form ωcan gives rise to a presym-
plectic torus bundle

(TΛ = ν∗(F )/Λ, ωT ).

In general, by a presymplectic torus bundle over a manifold M we mean a bundle
of tori p : T →M together with a closed 2-form ωT ∈ Ω2(T ) which is multiplicative
and satisfies the non-degeneracy condition

Ker(ωT ) ∩Ker(dp) = {0}.

For presymplectic torus bundles one has the following analog of Proposition 3.1.6:

Proposition 3.2.8. — The correspondence (F ,Λ) 7→ (TΛ, ωT ) defines a bijection:{
transverse integral affine
foliations (F ,Λ) on M

}
1−1←→

{
isomorphism classes of presymplectic
torus bundles (T , ωT ) over M

}
.

Proof. — We need to show that a presymplectic torus bundle defines a foliation F

with a transverse integral affine structure Λ. Let us mention the main changes in the
arguments of the proof of Proposition 3.1.6

For a vector bundle E →M , closed multiplicative 2-forms on E, where multiplica-
tivity is with respect to fiberwise addition, are necessarily of type

ωσ = σ∗(ωcan),

for some vector bundle map σ : E → T ∗M . This follows, e.g., from the integrability
result of [8] applied to E, viewed as a presymplectic groupoid. Hence, if (T , ωT ) is a
presymplectic torus bundle, and we apply this result to the bundle t→M consisting
of the Lie algebras of the fibers of T , we find that:

exp∗(ωT ) = ωσ,

for some σ : t→ T ∗M , where exp : t→ T denotes the fiberwise exponential map.
The non degeneracy condition continues to hold for the pull-back ωσ and when

applied at elements 0x ∈ tx implies that σ must be injective. Hence, there is a distri-
bution F ⊂ TM such that

Im(σ) = (TM/F )
∗

= ν∗(F ).

The lattice Λt := ker(exp) ⊂ t will be moved by σ into a lattice Λ ⊂ ν∗(F ). We
have the extra-information that ωσ descends to T = t/Λt; then, as in the proof of
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Proposition 3.1.6, this will imply that all the (local) sections of Λ must be closed. In
turn, this implies also that F is integrable and then that Λ is indeed a transverse
integral affine structure for the foliation F . The rest of the arguments continue as for
Proposition 3.1.6.

Example 3.2.9. — Assume that (M,F ) is a simple foliation, as in Example 3.2.5,
and Λ is a transversely affine structure that comes from an integral affine structure
ΛB on the leaf space B = M/F . Then we have the presymplectic torus bundle
(TΛ, ωTΛ

) → M and the symplectic torus bundle (TΛB , ωTΛB
) → B. The foliation

defined by Ker(ωTΛ
) on TΛ is simple as well, and its leaf space is precisely TΛB . In

other words, we have TΛ = p∗TΛB and ωTΛ
= p∗ωTΛB

, where p : M → B is the
projection onto the leaf space.

For the analog of Proposition 3.1.7 one replaces the Lagrangian fibrations by the
symplectically complete isotropic fibrations of Dazord-Delzant [18]. This will be dis-
cussed in detail in Chapter 7.

The presymplectic torus bundle (TΛ, ωT ) is also relevant for the integration of the
Dirac structure LF associated with a foliation F and understanding its C -type. Recall
that this Dirac structure is defined by

LF := F ⊕ ν∗(F ) ⊂ TM ⊕ T ∗M,

and has presymplectic leaves consisting of the leaves of F equipped with the zero-
presymplectic form. We have an exact sequence of Lie algebroids

0 // ν∗(F ) // LF
// F // 0,

which leads to explicit integrations of LF . One such integration is obtained by ob-
serving that the linear holonomy action of Hol(M,F ) on ν∗(F ) descends to an action
on TΛ, so one obtains a groupoid

TΛ on Hol(M,F ) ⇒M,

where an arrow (λ, γ) consists of γ ∈ Hol(M,F ) and λ ∈ TΛ,γ(0), and

(3.4) s(λ, γ) = s(γ), t(λ, γ) = t(γ), (λ, γ) · (λ′, γ′) = (λ · hollinγ (λ′), γ · γ′).

Together with the pull-back of ωT , this becomes a presymplectic groupoid integrat-
ing LF . It is of C -type if F is of C -type.

3.3. From PMCTs to integral affine structures

We are now ready to describe the transverse integral affine structure associated
with a PMCT, a fundamental geometric structure associated with such a of Poisson
manifold.

If (G ,Ω) is a proper integration of (M,π), then for any x ∈M :
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(i) the isotropy Lie group Gx is a compact Lie group with abelian isotropy Lie
algebra gx, hence the kernel of the exponential defines a lattice

ΛG ,x := Ker(expgx) ⊂ gx;

(ii) the symplectic form Ω induces an identification between the Lie algebroid
A(G ) := Ker ds and T ∗M , which identifies gx with the conormal direction:

gx ∼= ν∗x(Fπ), vx 7→ (ivxΩ)|TxM .

Putting (i) and (ii) together, we obtain lattices ΛG ,x ⊂ ν∗x(Fπ), and we set:

ΛG :=
⋃
x∈M

ΛG ,x ⊂ ν∗(Fπ).

An alternative description can be obtained by considering the torus bundle T (G )

made of the identity components of the isotropy groups (see Theorem 2.6.9), together
with the restriction of Ω. It is a presymplectic torus bundle so one can apply Propo-
sition 3.2.8 to obtain ΛG .

The relationship between these two approaches will be clear in the proof of the
following basic result:

Theorem 3.3.1. — For each proper integration (G ,Ω) of a regular Poisson manifold
(M,π) of proper type, ΛG defines a transverse integral affine structure on the sym-
plectic foliation Fπ.

Proof. — To show that ΛG is smooth we describe the lattices ΛG ,x ⊂ ν∗x(Fπ) as fol-
lows. Each α ∈ ν∗x(Fπ) = (TxFπ)0 = Ker(π]x) corresponds to a right-invariant vector
field Xα tangent to the isotropy group Gx. By restricting Xα to G 0

x , the connected
component of the identity of Gx, we obtain an action of the bundle of abelian Lie alge-
bras ν∗(Fπ) on the bundle of tori T (G ) =

⋃
x∈M G 0

x . The compactness of G 0
x , implies

that this action can be integrated to an action of the bundle of Lie groups (ν∗(Fπ),+)

on T (G ):
α · g := φ1

Xα(g), (α ∈ (TxFπ)0, g ∈ G 0
x),

where φτXα denotes the flow of Xα. Note that expgx(α) = φ1
Xα

(1x), so we can identify
ΛG with the kernel of this action:

ΛG ,x = {α ∈ ν∗x(Fπ) : φ1
Xα = id}.

This action is locally free, since the map α 7→ Xα is injective. This action is transitive
on the fibers, since α 7→ Xα|1x ∈ T1xGx is onto. It follows that the kernel of the action
ΛG is a smooth sub-bundle whose fibers ΛG ,x are lattices in ν∗x(Fπ).

In order to show that ΛG ⊂ T ∗M is a Lagrangian submanifold, note that dim ΛG =

dimM = 1/2 dim(T ∗M) so we only need to check that ωcan|ΛG

= 0. By the funda-
mental property of ωcan, for any 1-form α : M → T ∗M we have:

α∗ωcan = dα.

ASTÉRISQUE 413



3.4. THE EXTENDED MONODROMY GROUPS 35

Hence, it is enough to show that any 1-form α ∈ Γ(ΛG |U ), defined on some open set
U ⊂M , is closed. To see this, observe that the associated vector field Xα satisfies:

iXαΩ = t∗α.

In fact, both sides are right invariant 1-forms and they coincide at the identity section.
Hence, when αx ∈ ΛG ,x we find that:

0 = (φ1
Xα)∗Ω− Ω =

∫ 1

0

d

dτ
(φτXα)∗Ω dτ

=

∫ 1

0

(φτXα)∗£XαΩ dτ

=

∫ 1

0

(φτXα)∗diXαΩ dτ

=

∫ 1

0

(φτXα)∗t∗dα dτ

=

∫ 1

0

t∗dα dτ = t∗dα,

where we use t ◦ φτXα = t. Since t is a submersion we obtain, as claimed, dα = 0.

Using Theorem 2.6.9 and Example 3.2.6 we deduce:

Corollary 3.3.2. — Any s-connected, proper integration (G ,Ω) of a regular Poisson
manifold (M,π) induces an integral affine orbifold structure on the leaf space M/Fπ.

Remark 3.3.3 (Twisted Dirac structures). — The previous discussion extends to the
Dirac case word by word. If (M,L, φ) is a regular φ-twisted Dirac manifold, then a
proper presymplectic integration (G ,Ω, φ) of (M,L, φ) defines a transverse integral
affine structure ΛG ⊂ ν∗(FL). The reason is that the constraints on the kernel of Ω

imply that its restriction to T (G ) still yields a presymplectic torus bundle.
For an s-proper, twisted presymplectic groupoid with smooth leaf space B, Zung

[57] described the integral affine structure on B by very different means. Our approach,
using transverse integral affine structures, allow us to deal with non-smooth leaf spaces
as discussed in Example 3.2.6 and, as we will see in [12], and even with non-regular
Dirac manifolds of compact types.

3.4. The extended monodromy groups

We recall (see [11]) that for any regular Poisson manifold (M,π) there is a mono-
dromy map at x ∈M :

(3.5) ∂mon,x : π2(S, x)→ ν∗x(S)
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where S = Sx is the symplectic leaf through x. The monodromy group at x is defined
as the image of the monodromy map:

Nmon|x := Im(∂mon,x) ⊂ ν∗x(S),

and we set Nmon = ∪x∈MNmon|x.
The origin of these Poisson invariants lies in the variation of symplectic areas, but

they admit several interpretations, all of which will be useful in the sequel:
— At the groupoid level, the Weinstein groupoid Σ(M,π) yields a homotopy long

exact sequence associated to s : s−1(x)→ S with first few terms:

π2(S, x)
∂mon,x

// ν∗x(S)
exp
// Σx(M,π) // 1.

This gives a description of Nmon|x as the kernel of the exponential map exp :

ν∗x(S)→ Σx(M,π).
— At the Lie algebroid level, any splitting τ : TS → T ∗SM of the short exact

sequence of algebroids

(3.6) 0 // ν∗(S) // T ∗SM
π] // TS //

τ

gg
0

yields a curvature 2-form Ωτ ∈ Ω2(S, ν∗(S)) given by

(3.7) Ωτ (X,Y ) := τ([X,Y ])− [τ(X), τ(Y )] (for X,Y ∈ X(S)).

Viewing ν∗(S) as a flat vector bundle for the Bott connection, the 2-form Ωτ is
closed as a form with coefficients ν∗(S). Its cohomology class does not depend
on the choice of τ and defines a class [Ωτ ] ∈ H2(S, ν∗(S)), and:

∂mon,x : π2(S, x)→ ν∗x(S), [σ] 7→
∫
σ

Ωτ .

— The most geometric description of the monodromy arises as the variation of
symplectic areas of leafwise spheres: for any sphere σ : (S2, N)→ (Sx, x) based
at x and a transverse direction v ∈ νx(S), one can find a foliated family of
spheres σt : (S2, N)→ (Sxt , xt), such that σ0 = σ and v = [ẋt]; one has:

(3.8) 〈∂mon,x[σ], v〉 =
d

dt |t=0

∫
σt

ωSxt .

Hence, the quantity 〈∂mon,x[σ], v〉 is the variation of the symplectic area of σ in
the normal direction v.

For integrable Poisson manifolds, each monodromy group Nmon|x is a discrete
subgroup of ν∗x(S). As one could expect, they are closely related to the lattice ΛG of
an s-proper integration. In the s-proper case the rank of Nmon does not depend on x,
but it may fail to be a lattice, unless we are in the strong proper case. More precisely,
we have:

Theorem 3.4.1. — Let (M,π) be a regular Poisson manifold. Then:
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(i) Nmon ⊂ ΛG for any s-connected, proper integration (G ,Ω) of (M,π);
(ii) Nmon = ΛΣ(M,π) if and only if (M,π) is strong proper.

Proof. — We use the same notation of the proof of Theorem 3.3.1. Note that if
α ∈Nmon|x then the corresponding right invariant vector field X̃α in Σ(M,π) satisfies

φ1
X̃α

= id.

Under the covering projection Σ(M,π)→ G this vector field is projected to Xα, which
therefore also satisfies φ1

Xα
= id. It follows that α ∈ ΛG |x, so (i) holds. Now (ii) follows

from the definition of ΛG and the previous discussion on Nmon.

In particular, we have the following characterization of regular Poisson manifolds
of strong C -type:

Corollary 3.4.2. — A regular Poisson manifold (M,π) is of strong C -type if and only if
the foliation Fπ is of strong C -type and Nmon is a transverse integral affine structure
for the symplectic foliation Fπ.

Proof. — The previous theorem, combined with Theorem 2.0.1, proves the direct
implication. For the reverse implication, note first that the lattice condition, together
with the integrability criteria of [10, 11], implies that Σ(M,π) is smooth. Moreover,
we have the short exact sequence of Lie groupoids:

1 // ν∗(Fπ)/Nmon
// Σ(M,π) // Mon(M,Fπ) // 1,

where the second map associates to a cotangent path its base path, while the first
map is induced from the exponential map exp : ν∗x(Fπ)→ Σx(M,π) (see [11]). This is
a sequence of Lie groupoids in which the extreme groupoids are of C -type. It follows
immediately that the middle one is also of C -type, so the result follows.

Conversely, one can look at regular Poisson manifolds (M,π) for which Nmon = 0.
We have the following result, which includes as a particular case Proposition 3.1.6:

Corollary 3.4.3. — Let (M,π) be a regular Poisson manifold such that:
(i) the monodromy groups are trivial: Nmon = 0;
(ii) the symplectic foliation Fπ is of strong C -type.

Then each transversal integral affine structure Λ on (M,π) determines an s-connected,
proper integration (GΛ,Ω) such that ΛGΛ

= Λ. Moreover, if the symplectic leaves are
1-connected, this establishes a bijection:{

transversal integral affine
structures Λ on (M,Fπ)

}
1−1←→

{
s-connected, proper symplectic
integrations of (M,π)

}
.

Proof. — When Nmon = 0, the exponential map exp : ν∗(Fπ)→ Σ(M,π) has no ker-
nel. Therefore, a transverse integral affine structure Λ ⊂ ν∗(Fπ) yields a subgroupoid
exp(Λ) ⊂ Σ(M,π), which is normal, discrete and Lagrangian. Hence,

(GΛ,Ω) := (Σ(M,π),ΩΣ(M,π))/ exp(Λ)
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is a symplectic groupoid integrating (M,π). As in the proof of Corollary 3.4.2, this
symplectic groupoid is of C -type iff Fπ is of C -type. It is also clear that ΛGΛ

= Λ.
In general, the isotropy groups Σx(M,π) will not be connected, so there might be

different symplectic groupoids defining Λ. If the symplectic leaves are 1-connected,
then (GΛ,Ω) is the only integration defining Λ.

Our next aim is a more refined version of Theorem 3.4.1, and this will require a
more refined version of the monodromy groups. These are new invariants, related to
obstructions to s-properness, and they arise when revisiting the above descriptions
of Nmon|x: the basic idea is to replace the spheres (2-homotopy classes) in the leaf S
by more general surfaces (2-homology classes) in S.

Consider an arbitrary regular Poisson manifold (M,π) and fix x ∈ M . We choose
a splitting τ : TS → T ∗SM of the short exact sequence (3.6). In order to integrate
the resulting curvature 2-form Ωτ ∈ Ω2(S, ν∗(S)) over some surface we need first to
pullback the vector bundle ν∗(S) → S along px : Shol

x → S, the Hol(∇)-covering for
the Bott connection based at x. This is the smallest cover over which the pullback
of ν∗(S) becomes a trivial vector bundle ν∗x(S)× Shol

x → Shol
x . We can then set:

Definition 3.4.4. — The hol-monodromy map of the regular Poisson manifold (M,π)

at x is the map:

∂hol,x : H2(Shol
x ,Z)→ ν∗x(S), [σ] 7→

∫
σ

p∗xΩτ .

The hol-monodromy group Nhol|x ⊂ ν
∗
x(S) is the image of this map.

A version of the hol-monodromy map appears in the work of I. Mărcut [43] on
rigidity in Poisson geometry (see also [16]). For its geometric interpretation, we will
consider smooth marked surfaces in the leaf S through x, i.e., smooth maps

σ : (Σ, p)→ (S, x),

with Σ a connected, oriented, compact surface without boundary, and p ∈ Σ. By a
leafwise deformation of σ we mean a family σt : (Σ, p) → (M,xt) of smooth maps
parametrized by t ∈ (−ε, ε), starting at σ0 = σ and such that for each fixed t the
surface σt is inside the symplectic leaf through xt. The transversal variation of σt
at t = 0 is the class of the tangent vector

varν(σt) :=

[
d

dt |t=0
σt(p)

]
∈ νx(S).

Note that given a smooth marked surface σ : (Σ, p) → (S, x) and a normal vector
v ∈ νx(S) there may not exist a leafwise deformation σt with transversal variation
varν(σt) = v. We will say that σ is holonomy-trivial with respect to the foliation Fπ
if the holonomy of Fπ along loops of type σ ◦ γ, with γ a loop in Σ, is trivial.

Lemma 3.4.5. — For any holonomy-trivial marked surface σ : (Σ, p) → (S, x) and
v ∈ νx(F ), one can find a leafwise deformation σt with varν(σt) = v. In this case,
σ admits a lift σ̃ : (Σ, p)→ (Shol

x , x̃), where x̃ denotes the class of the trivial loop.
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Remark 3.4.6. — Note that the notion of a holonomy-trivial surface uses the (non-
linear) holonomy of the foliation Fπ, while the covering Shol

x → S is relative to the Bott
connection, i.e., the linear holonomy. Vanishing holonomy implies vanishing linear
holonomy, but not the converse. Hence, a holonomy-trivial surface admits a lift to the
cover Shol

x , but the converse is not true in general.

Proof. — Fix a complete Riemannian metric onM , split TM = Fπ⊕E and consider:

φ : Eσ := σ∗E →M, φ(x, v) := expσ(x)(v).

Then T0xEσ = TxΣ⊕Eσ(x) and (dφ)0x : T0xEσ → Tσ(x)M becomes (i, (dσ)x), where
i : E ↪→ TM is the inclusion. Hence φ is transversal to Fπ and we can take the pull-
back foliation Fφ := φ∗Fπ as a foliation on Eσ. The codimension remains the same, so
the leaves of Fσ are two-dimensional. Since Σ is compact and tangent to Fφ, it must be
an entire leaf of Fπ. On the other hand, as a general property of pull-back foliations,
the holonomy of Fσ at p ∈ Σ factors through the holonomy of Fπ at σ(p) = x ∈ S.
Therefore, since σ is a holonomy-trivial surface, we deduce that the holonomy of Fφ
along Σ is trivial. By Reeb stability, Fφ is isomorphic, in a neighborhood of Σ, to
the trivial foliation Σ × Rq. Then φ yields a smooth map Σ × Rq → M which takes
leaves to leaves and induces isomorphisms at the level of the normal bundle. This
allows one to construct for any normal vector v ∈ νx(S) a leafwise deformation σt
with transversal variation varν(σt) = v.

We then have the following geometric interpretation of the hol-monodromy in terms
of variations of symplectic areas whenever a class [σ̃] ∈ H2(Shol,Z) is a lift of a
holonomy-trivial σ:

Proposition 3.4.7. — Let (M,π) be a regular Poisson manifold. If σ : (Σ, p)→ (S, x) is
a holonomy-trivial marked surface then:

〈∂hol,x[σ̃], v〉 =
d

dt |t=0

∫
σt

ωFπ ,

where σt is a leafwise deformation of σ with transversal variation varν(σt) = v and
σ̃ : (Σ, p)→ (Shol

x , x̃) is a lift of σ.

Proof. — The proof is the same as for variation of spheres, given in [11] pp 97.

Recall that Shol
x is the smallest cover where the pullback of the flat bundle ν(S)→ S

becomes trivial. Of course, we can consider larger covers of S, i.e., covers Q that factor
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through the holonomy cover:

(S̃x, [x])

��

!!

(Q, q)

�� ((

(Shol
x , x̃) // (S, x),

where S̃x is the universal covering space of S. Observing that H2(S̃x,Z) ∼= π2(S, x),
we obtain a diagram of monodromy maps:

π2(S, x)

�� ∂mon,x

""

H2(Q,Z)

��

∂Q,q

((

H2(Shol
x ,Z)

∂hol,x
// ν∗x(S).

We set NQ,x := Im ∂Q,q, so we have:

Nmon ⊂NQ ⊂Nhol.

Consider now a regular Poisson manifold (M,π) whose symplectic foliation Fπ is
proper. In this case the linear and non-linear holonomy of Fπ coincide, hence:

— the geometric interpretation of the hol-monodromy is valid for every class
in H2(Shol

x ,Z);
— given any s-connected foliation groupoid E integrating the symplectic foliation

Fπ, the s-fiber yields a covering space t : E (x,−) → Sx which lies in between
S̃x and Shol

x . In particular, we have a corresponding monodromy map:

∂E ,x : H2(E (x,−),Z)→ ν∗x(S).

Definition 3.4.8. — The E -monodromy group of (M,π) at x relative to the s-connected
integration E of the symplectic foliation Fπ, denoted NE |x, is the image of ∂E ,x.

We can finally discuss the more refined version of Theorem 3.4.1:

Theorem 3.4.9. — Let (M,π) be a regular Poisson manifold whose symplectic folia-
tion Fπ is proper. For any s-connected integration E of the symplectic foliation:

Nmon ⊂NE ⊂Nhol,
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where the first (respectively, second) inclusion becomes equality for E = Mon(M,Fπ)

(respectively, for E = Hol(M,Fπ)). Moreover, if E = B(G ) is induced by an s-
connected, proper integration G as in Theorem 2.6.9, then

NE ⊂ ΛG .

Remark 3.4.10. — When E = B(G ) is induced by an s-proper integration G , it will
follow from Section 5.2 that NE will be not just a bundle of discrete subgroups
of ν∗(Fπ), but also a smooth, closed sub-bundle (in particular, of constant rank). In
the maximal rank case, i.e., when NE is a lattice, one can show that E is induced
by an s-proper integration G̃ with Λ

G̃
= NE . Such integrations G̃ deserve the name

“normalized”.

Proof. — The first part of the theorem follows from the remarks proceeding it. For
the second part we use the Atiyah sequence (3.6). Recall that similar sequences arise
from principal bundles: if q : P → N is a principal G-bundle, then A(P ) := TP/G is
not only a vector bundle over N but also a Lie algebroid with anchor induced by dq

and with the bracket coming from the identification Γ(A(P )) = X(P )G−inv. The short
exact sequence associated to it is

(3.9) 0 // P ×G g // A(P )
dq
// TN // 0.

Splittings τ of this sequence are the same thing as connections on the principal bundle,
while the associated expression (3.7) is precisely the curvature of the connection.
When G = T is a torus, this closed form will represent the Chern class of the bundle,
c1(P ) ∈ H2(N, t), which is integral: the pairing of c1(P ) with elements in H2(N,Z)

always lands in ΛT, the kernel of the exponential map of t.
Now, if G is an s-connected, proper integration of (M,π), then we obtain a principal

bundle q : G (x,−) → E (x,−) with structure group the torus Tx = Tx(G ) (see Theo-
rem 2.6.9). Moreover, the associated Atiyah sequence coincides with the pull-back of
(3.6) via the covering map pE : E (x,−) → S, which is just a translation of the fact
that G integrates the Lie algebroid T ∗M . We deduce that

p∗E [Ωτ ] ∈ H2(E (x,−), ν∗x)

coincides with the Chern class of the torus bundle q : G (x,−) → E (x,−). The in-
tegrality of this Chern class shows that evaluation on classes in H2(E (x,−)) lands
in ΛG , so we conclude that NE ⊂ ΛG .

Corollary 3.4.11. — If (M,π) is of s-proper type then Nhol is a smooth closed sub-
bundle of discrete subgroups of ν∗(Fπ). Moreover, if E is induced by an s-connected,
s-proper integration, then NE is of finite index in Nhol.

Proof. — Let G be an s-connected, s-proper integration. Using the first part of Re-
mark 3.4.10, it suffices to show that NE |x is of finite index in Nhol|x. This follows
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from a general remark about finite covers applied to E (x,−)→ Shol: if q : Ñ → N is
a finite cover between compact manifolds then

q∗(H2(Ñ ,Z)/torsion) ⊂ H2(N,Z)/torsion

is of finite index. This is equivalent to the fact that, when working over Q,
q∗ : H2(Ñ)→ H2(N) is surjective. In turn, this follows from the standard spec-
tral sequence E2

p,q = Hp(Γ, Hq(Ñ)) =⇒ Hp+q(N) (Γ the group of the cover): since
the homology over Q of finite groups is trivial, we deduce that Hk(N) is isomorphic
to the space of Γ-coinvariants of Hk(Ñ) and q∗ becomes the quotient map.

Remark 3.4.12. — The notions of extended monodromy discussed here extend to
non-regular Poisson manifolds and, in fact, to any Lie algebroid. We postpone this
discussion to [12].

3.5. Examples

Here are some examples to illustrate the behavior of the groups Nmon and Nhol,
their computation and their relevance to the compactness-types.

3.5.1. A non-proper example with Nhol discrete. — The groups Nhol can be seen
as Poisson invariants whose discreteness is a necessary condition for properness- cf.
Corollary 3.4.11. Here is an example which shows that this condition is not sufficient
and that Nhol provides interesting invariants also in the non-proper case. Start with
the Reeb foliation F of S3 and make it into a symplectic foliation by choosing a metric
on S3 and considering the induced area forms on the leaves. The resulting Poisson
structure is not of proper type since the Reeb foliation is not proper: for example, the
linear and non-linear holonomy of the compact leaf are distinct.

These Reeb type Poisson structures are always integrable since for any symplectic
leaf S we have π2(S, x) = {0}, so that Nmon = {0}. On the other hand, for points x
in the open leaves we obviously have Nhol|x = {0}, since the leaves are contractible.
However, we claim that for points in the compact leaf, Nhol is not trivial. In order to
see this, we consider as a model for a neighborhood of the compact leaf T2 the space
M = (R× S1 × R)/Z, and we let R+ × S1 × R, with coordinates (r, θ, z), be foliated
by the level sets of the submersion:

F (r, θ, z) = (r2 − 1)ez,

and let Z act by translations in the z coordinate. The compact leaf T2 corresponds
to r = 1. On R+ × S1 × R we consider the regular Poisson structure:

π =

(
(r2 − 1)

∂

∂r
− 2r

∂

∂z

)
∧ ∂

∂θ
.

The function F is a Casimir and π is invariant under the Z-action, so we obtain a
Poisson structure onM whose symplectic foliation is the Reeb foliation. Choosing the
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splitting τ : TT2 → T ∗T2M of π] : T ∗T2M → TT2 defined by:

∂

∂θ
7→ −1

2
dz,

∂

∂z
7→ −1

2
dθ,

we find that its curvature 2-form is constant:

Ωτ

(
∂

∂θ
,
∂

∂z

)
=

1

4
[dz,dθ]π|r=1

= −1.

The leaf T2 has trivial linear holonomy, so we conclude that

Nhol|r=1
=

{∫
σ

Ωτ : [σ] ∈ H2(T2,Z)

}
= Z ⊂ R

is a discrete subgroup. Notice, by the way, that the (non-linear) holonomy of the
compact leaf is non-trivial and that there are no holonomy-trivial σ : Σ → T2 with
[σ] 6= 0, so one cannot compute ∂hol by transverse variations of symplectic areas.
In any case, the groups Nhol are discrete, but they do not form a smooth closed
sub-bundle of ν∗(Fπ) (compare with Corollary 3.4.11).

3.5.2. An s-proper but not strong proper example. — Consider now

M = T2 × R+, π = t ∂θ2 ∧
∂
∂θ1

.

As above, Nmon = {0} and Nhol is clearly a lattice. In particular (M,π) is not of
strong proper type but, since the symplectic foliation is of proper type (even simple),
one may expect that (M,π) is of proper type. Let us prove all these in an explicit
manner. It is useful to remark that the universal cover of (M,π),

M̃ = R2 × R+, π̃ = t ∂ξ2 ∧
∂
∂ξ1

,

sits as an open Poisson submanifold of the linear h(3)∗, where h(3) is the Lie algebra
of the Heisenberg group H(3) of unipotent upper triangular 3× 3 matrices:

H(3) =
{(

1 x z
0 1 y
0 0 1

)
: x, y, z ∈ R

}
and where we use ξ1, ξ2, t for the coordinates with respect to the canonical basis
of h(3)∗, corresponding to x, y and z, respectively. Hence the canonical integration
of (M̃, π̃) is the action groupoid arising from the coadjoint action,

(3.10) H(3) y R2 × R+, (x, y, z) · (ξ1, ξ2, t) = (ξ1 + ty, ξ2 − tx, t).

The symplectic form on this groupoid comes from the Liouville form on T ∗H(3). After
trivializing T ∗H(3) using left translations, in our coordinates, it becomes

(3.11) Ω = dξ1 ∧ dx+ dξ2 ∧ dy + dt ∧ dz − tdx ∧ dy − xdt ∧ dy.

Of course, one can check directly that (H(3) n M̃,Ω) is a symplectic groupoid inte-
grating (M̃, π̃). The action of π1(M) = Z2 is Poisson hence it lifts to an action on
the groupoid by symplectic groupoid automorphisms. Hence the canonical integration
of (M,π) can be described exactly as above using (3.10) and (3.11) but with R2×R+
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replaced by T2 ×R+ and the coordinates (ξ1, ξ2) replaced by the coordinates (θ1, θ2)

of T2. It is clear that this groupoid is not proper.
Any other s-connected symplectic integration is obtained as a quotient modulo

a discrete normal subgroupoid H of the isotropy bundle, which is Lagrangian as a
submanifold of (Σ(M,π),Ω). Now observe that the isotropy bundle is:

{(x, y, z, θ1, θ2, t) ∈ H3 ×M : yt ∈ Z, xt ∈ Z, z ∈ R} ∼= (Z2 × R)×M,

so any local (bi)section of the isotropy bundle is of the form:

(θ1, θ2, t) 7→
(m
t
,
n

t
, r(θ1, θ2, t), θ1, θ2, t

)
,

where m,n ∈ Z and r(θ1, θ2, t) is smooth on M . The section is Lagrangian iff:

r(θ1, θ2, t) =
1

t2
(mθ1 + nθ2) + r0(t).

In particular, it follows that the co-compact lattices

H(θ1,θ2,t) =

{(
m

t
,
n

t
,
θ1n+ θ2m+ p

t2

)
, n,m, p ∈ Z

}
fit into a subgroupoid so that G := Σ(M,π)/H is s-proper and Ω descends to G . This
gives an explicit s-connected, s-proper integration of (M,π) with ΛG = Nhol.

3.5.3. The free Hamiltonian T -spaces perspective. — A fundamental tool to construct
Poisson structures is by Hamiltonian reduction of symplectic manifolds. This is re-
called in Appendix A, in the general context of symplectic groupoids. Integral affine
manifolds (B,Λ) provide the simplest examples of symplectic groupoids: the symplec-
tic torus bundle TΛ. These give rise to the simpler theory of Hamiltonian TΛ-spaces
(see A.4) where one can take Corollary A.4.1 as definition. For a free Hamiltonian
TΛ-space q : (X,ΩX) → B with connected fibers, the reduced Poisson manifold
Xred = X/TΛ is of proper type, it will have B as (smooth) leaf space and the in-
duced integral structure is precisely Λ (cf. Corollary A.4.2). Looking at the explicit
s-connected integrating groupoid X ?

TΛ

X given by (A.4), we see that:

(a) it is s-proper iff q : X → B is proper;
(b) it is compact iff X is compact;
(c) it is the canonical integration iff the q-fibers are 1-connected.

Already when B is 1-dimensional, with the standard integral affine structure, produces
interesting examples. For instance, the strong compact type example from [35] arises
via this procedure with B = S1. For B = R, using maps q with fibers which are not
1-connected may produce examples which are not strong proper but are proper (or
s-proper if q is proper). The previous example fits into this scheme, but here is a
slightly more general class of examples.

Start with a symplectic manifold (S0, ω0) and consider the regular Poisson manifold
M = S0 × R+, whose symplectic leaves are (S0 × {t}, tω0), Using the geometric
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interpretation of the monodromy, we find that

Nmon = PerS2(ω0) :=

{
[σ] ∈ π2(S0, x0) :

∫
σ

ω0

}
⊂ R,

the group of spherical periods of ω0. Since the holonomy of the foliation is triv-
ial Nhol is computed similarly and gives the full group of periods Per(ω0). Hence,
while the discreteness of PerS2(ω0) is the obstruction to integrability, the discrete-
ness of Per(ω0) arises as an obstruction to properness. This time, this is the only
obstruction. This can be seen by producing explicit proper integrations and that is
done by realizing M via reduction. Let us assume Per(ω0) = Z, so that one can find
a principal S1-bundle p : P → S0 whose Chern class is [ω0]. That means that we find
a connection 1-form θ ∈ Ω1(P ) with dθ = p∗ω0. The symplectization of (P, θ):

X = P × R+, ΩX = d(tθ),

with S1-acting on the first coordinate and q : (X,ΩX) → R the projection, is a
Hamiltonian TZ-space. Its Poisson reduced space is Xred = M so, by the general
discussion, M is of proper type (and of s-proper type iff S0 is compact).

Here are some concrete examples, with various behavior of Nmon and Nhol:
(a) if (S0, ω0) = (S2, a ωS2), then Nmon = Nhol = a · Z;
(b) if (S0, ω0) = (Σg, b ωΣg ), then Nmon = 0 and Nhol = b · Z;
(c) if (S0, ω0) = (S2×Σg, a ωS2 ⊕ b ωΣg ), then Nmon = a ·Z and Nhol = a ·Z+ b ·Z;

where a, b ∈ R \ {0}, and ωS2 , ωΣg , are normalized area forms on the sphere and on
the closed surface of genus g > 0. Cases (b) and (c) come with infinite fundamental
groups, hence they produce examples which are not strong proper. By the previous
discussion, they are s-proper except when a/b /∈ Q. In all the cases one can proceed
as in the previous example (g = 1), and construct explicit s-connected, s-proper
integrations, this time using the Lie theory of SO(3) (if g = 0) or of SL(2) (if g > 1).
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CHAPTER 4

THE LINEAR VARIATION THEOREM I: 1-CONNECTED LEAVES

4.1. The classical Duistermaat-Heckman Theorem

The linear variation in the titles of this chapter and the next one refers to a
fundamental result concerning PMCTs, which is a generalization of the classical
Duistermaat-Heckman Theorem [20] on the variation of the cohomology class of the
symplectic form of symplectic reduced spaces. Let us recall this result in its simplest
form.

Let a torus T act freely on a symplectic manifold (S, ω) in a Hamiltonian fashion
with moment map µ : S → t∗. Then the symplectic reduced spaces Sξ = µ−1(ξ)/T
are all smooth symplectic manifolds with reduced symplectic form ωξ. They are also
diffeomorphic because one has a local model for S around µ−1(ξ0) for any value
ξ0 ∈ t∗ obtained as follows. Choose a connection 1-form α on the principal T-bundle
q : µ−1(ξ0) → Sξ0 , then a local model for S around µ−1(ξ0) is given by the product
µ−1(ξ0)× t∗ furnished with the symplectic form:

pr∗1 q
∗ωξ0 + d〈pr2, α〉,

where ωξ0 is the reduced symplectic form in Sξ0 . The group Tn acts on µ−1(ξ0)× t∗
by acting on the first factor, and the action is Hamiltonian with moment map the
second projection: µ = pr2 : µ−1(ξ0)× t∗ → t∗.

This local normal form leads to an identification of the symplectic reduced spaces
Sξ ' Sξ0 , for ξ close to ξ0. Under this identification, the symplectic forms are linearly
related:

ωξ = ωξ0 + 〈F, ξ − ξ0〉,
where F ∈ Ω2(Sξ0 , t) is the curvature 2-form of the connection α:

q∗F = dα.

This identification of the symplectic reduced spaces depends on choices. However,
any two identifications are related by an isotopy of Sξ0 , so one can compare the
cohomology classes of the symplectic forms, and this leads to:

Theorem 4.1.1 (Duistermaat-Heckman [20]). — If a torus T acts freely on a symplectic
manifold (S, ω) in a Hamiltonian fashion with proper moment map µ : S → t∗ then
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the cohomology class of the reduced symplectic form varies linearly:

[ωξ] = [ωξ0 ] + 〈c, ξ − ξ0〉,

where c ∈ H2(Sξ0)⊗ t is the Chern class of the principal T-bundle q : µ−1(ξ0)→ Sξ0 .

From this result it follows also an important property of the measures or volume
forms associated with the symplectic forms. In order to state it, consider the following
volume forms:

— µω := ωn

n! , the Liouville form on S (2n = dimS);
— µωDH := µ∗(µω), the push-forward measure on t∗;
— µAff , the Lebesgue measure on t∗.

Then, we have the following corollary of the theorem above:

Corollary 4.1.2 ([20]). — For a free Hamiltonian T-space (S, ω, µ) with proper mo-
ment map, the Duistermaat-Heckman measure µωDH and the Lebesgue measure µAff

are related by:

µωDH = vol ·µAff ,

where vol : t∗ → R is the function which associates to ξ ∈ t∗ the symplectic volume
vol(Sξ) of the reduced symplectic space. Moreover, this function is a polynomial of
degree at most 1

2 dimSξ = 1
2 dimS − dimT.

Notice that these results are really about the symplectic (or Poisson) geometry of
the Poisson manifoldM = S/T, which has symplectic leaves the reduced spaces Sξ and
leaf space the open subset µ(S) ⊂ t∗. In the next chapters we will provide remarkable
generalizations of these results, valid for any PMCT. Our formulation of these results
is made in terms of the developing map associated with the integral affine structure
on the leaf space, to be studied in this chapter. Our approach does not rely on a local
normal form and hence gives the classical results above an entirely new perspective.

Throughout this chapter we fix a Poisson manifold (M,π) of s-proper type and an
s-connected, s-proper integration (G ,Ω) ⇒ (M,π). Moreover:

— Standing assumption in this chapter: The symplectic leaves of (M,π) are 1-con-
nected.

This assumption will be dropped in the next chapter, where we will consider the
general case. The advantage of dealing first with 1-connected symplectic leaves is
that there are no subtleties arising from the geometry of the leaf space: in this case
B = M/Fπ is smooth and there is only one groupoid integrating Fπ, namely the
equivalence relation M ×BM ⊂M ×M associated with the submersion p : M → B.
Therefore we do not have to worry about the foliation groupoid B(G ) (cf. Theo-
rem 2.6.9) or, equivalently, with the orbifold structure on B, which may be present
even when B is smooth but the leaves are not 1-connected.
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4.2. The developing map for integral affine structures

The linear variation theorem, in one form or another, involves a basic concept
of integral affine geometry which we have not discussed so far. This is done in this
chapter, where we fix an integral affine manifold (B,Λ) and we discuss its developing
map [26, 49]. This is a local diffeomorphism of integral affine manifolds

dev : (B̃, Λ̃)→ (Rq,Zq)

defined on the universal cover B̃ endowed with the pull-back Λ̃ of Λ. Let us first recall
the standard definition:

Fix a point b0 ∈ B and an integral affine chart (U0, χ0) centered at b0.
For any path γ starting at b0, cover it by a finite number of integral affine
charts χi : Ui → χi(Ui) ⊂ Rq, 0 ≤ i ≤ r. Arrange the coordinates charts
inductively so that each two consecutive ones match on the intersection
(this can be done since the changes or coordinates, being affine, are defined
on the entire Rq). Then dev([γ]) is the image of γ(1) by the last coordinate
chart.

If one restricts to loops γ and considers the entire change of coordinates between
the first and the last chart, one obtains the integral affine holonomy representation
hAff : π1(B)→ AffZ(Rq), where π1(B) = π1(B, b0). Of course,

hAff = (dev(γ), hlin(γ))

where hlin : π1(B) → GLZ(Rq) is the linear holonomy representation of (B,Λ), i.e.,
the linear holonomy of the flat connection on B induced by Λ. These representations
give rise to the affine holonomy group ΓAff := hAff(π1(B)) ⊂ AffZ(Rq) and simi-
larly the linear holonomy group Γlin. Note that ΓAff is an integral affine group as
in Example 3.1.3, whose linear part is Γlin. The factorization of the linear holonomy
representation:

π1(B)
hAff

// ΓAff
pr2 // Γlin

gives rise to a sequence of covering spaces by integral affine manifolds:

B̃ // BAff // Blin // B,

where the middle and the last spaces are called the affine and linear holonomy covers,
respectively. They are the smallest covers with trivial affine and linear holonomy,
respectively. For instance, in the situation of Example 3.1.3, B̃ = BAff = Rq and
Blin = Rq/Γtr.

The standard definitions given above for the developing map and the affine holon-
omy have a drawback: they both depend on a choice of a base point b0 ∈ B and
an integral affine chart around b0. However, it is possible to give a more intrinsic
definition, in the spirit of the present work, using the language of groupoids, as we
now explain. This approach will turn out to be very useful in the sequel. We denote
by GLΛ∨(TB) ⇒ B (respectively, AffΛ∨(TB) ⇒ B) the Lie groupoid whose arrows
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are the integral linear (respectively, integral affine) isomorphisms between the fibers
of TB. Our convention is that an arrow φ : TxB → TyB has source y and target x.
Notice that:
(i) Parallel transport for the canonical flat connection ∇ of (B,Λ) defines the linear

holonomy, which can be seen as morphism of Lie groupoids:

(4.1) hlin : Π1(B)→ GLΛ∨(TB), hlin([γ]) : Tγ(1)B → Tγ(0)B.

(ii) The connection ∇ is torsion free and this can be interpreted as saying that the
identity map

Id : TB → TB

is a 1-cocycle on the Lie algebroid TB with coefficients in the representation
TB. Hence, it integrates to a groupoid 1-cocycle in Π1(B) with values in TB:

dev : Π1(B)→ TB, [γ] 7→ dev([γ]) ∈ Tγ(0)B.

The general formula for integrating algebroid 1-cocycles gives the expression:

dev([γ]) =

∫ 1

0

hlin(γε)(γ̇(ε))dε,

and the cocycle condition means that for any two composable arrows in Π1(B):

dev([γ] ◦ [τ ]) = dev([τ ]) + hlin([τ ])(dev([γ])).

These two pieces of structure can be organized together into an integral affine
action of Π1(B) on (TB,Λ∨): any [γ] ∈ Π1(B) induces an affine transformation

Tγ(1)B → Tγ(0)B, v 7→ v · [γ] = dev([γ]) + hlin([γ])(v).

Hence, one obtains a morphism of Lie groupoids

(4.2) hAff : Π1(B)→ AffΛ∨(TB).

In order to recover the classical/based affine holonomy representation and devel-
oping map, one restricts to the isotropy group of Π1(B) at b0, which is π1(B, b0), and
to the s-fiber above b0, which is the model for the universal cover using paths starting
at b0: B̃ = s−1(b0). One obtains the linear and affine representations at b0,

hlin|b0 : π1(B, b0)→ GLΛ∨b
(Tb0B), hAff |b0 : π1(B, b0)→ AffΛ∨b0

(Tb0B),

and the developing map at b0,

dev |b0 : B̃ → Tb0B.

Finally, a choice of a basis bΛ for Λb0 (which is equivalent to a choice of an integral
affine chart centered at b0) leads to an identification (Tb0B,Λ

∨
b0

) ∼= (Rq,Zq), and we
recover the original notions. Note also that, since Π1(B) is transitive, no information
is lost by restricting at b0.

The description of dev : B̃ → Rq as a 1-cocycle for π1(B, b0) with values in Rq
appears in the work of Matsusima [36], who attributes the idea to Koszul.
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Remark 4.2.1. — The image Ω ⊂ Rq of dev : B̃ → Rq is an open subset which is
invariant under the affine action of ΓAff . When the action is free and proper, the
induced map B → Ω/ΓAff will be a local diffeomorphism between integral affine
manifolds. The conclusion of the Markus conjecture (Conjecture 3.1.4) is equivalent
to saying that Ω = Rq and that the last map is a diffeomorphism. In turn, this is also
equivalent to the condition that the linear connection is geodesically complete.

4.3. The linear variation

We now return to Poisson geometry and define the linear variation of the leafwise
symplectic cohomology class.

Under our standing assumption, the transverse integral affine structure ΛG ⊂
ν∗(Fπ) defined by G (see Theorem 3.3.1) is the pull-back of an integral affine structure
on the manifold B = M/Fπ. In this chapter we will only use the structure on B, for
which we use the same notation ΛG .

On the other hand, we can define a vector bundle H → B whose fibers are the
degree 2 cohomology of the symplectic leaves:

Hb := H2(Sb)

There are two things to notice about the vector bundle H → B:
(i) the integral cohomology yields a structure of an integral vector bundle (H ,HZ);
(ii) the leafwise symplectic form yields a canonical section $ ∈ Γ(B,H ):

(4.3) b 7→ $b := [ωp−1(b)] ∈ H2(Sb).

There is a rich interplay between the integral affine structure ΛG on B and the inte-
gral vector bundle (H ,HZ). To make this precise note that, by (i) above, the bundle
H → B has a canonical flat connection ∇, the so-called Gauss-Manin connection.
Our first formulation of the variation of the symplectic form is:

Definition 4.3.1. — The linear variation of $ is the bundle map:

varlin
$ : TB →H , v 7→ varlin

$ (v) := ∇v$.

Its image is called the linear variation bundle of $, denoted:

V lin
$ := varlin

$ (TB) ⊂H ,

and it has an integral part, denoted:

V lin
$,Z := varlin

$ (Λ∨G ),

where Λ∨G ⊂ TB is the lattice induced by (G ,Ω).

Note that the linear variation $, as well as its image V lin
$ , does not depend on the

specific integration (G ,Ω), while the integral part V lin
$,Z does.

We will see that we have always V lin
$,Z ⊂ HZ. A key ingredient in the proof is the

following: since Fπ is regular, we can choose a splitting for all leaves at the same
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time, i.e., a bundle map τ : Fπ → T ∗M which is a splitting of π] : T ∗M → Fπ. The
curvature Ωτ of this splitting gives a 1-form [Ωτ ] ∈ Ω1(B; H ) by setting:

[Ωτ ] : TB →H , vb 7→ [〈Ωτ , vb〉] ∈ H2(Sb).

Here we use the identification TbB ∼= νx(Fπ), so vb can be thought of as a constant
section of ν(Sb). Note that [Ωτ ] is independent of the choice of splitting τ and:

Proposition 4.3.2. — If (M,π) is regular with compact, 1-connected, leaves, then:

(4.4) ∇$ = [Ωτ ].

In particular, if v ∈ TbB and σ : (S2, pN )→ (Sb, x), then:

(4.5)
∫
σ

varlin
$ (v) = 〈∂mon([σ]), v〉.

Proof. — Clearly, the integral Formula (4.5) follows from (4.4) and the definition of
the monodromy in terms of the curvature.

To prove (4.4), let us a chose a distribution D ⊂ TM complementary to Fπ, so
that D ∼= ν(Fπ). This gives rise to a unique extension ω̃ ∈ Ω2(M) of the leafwise
symplectic form satisfying iV ω̃ = 0, for any V ∈ D. This extension, in turn, gives rise
to a splitting τ : Fπ → T ∗M , X 7→ iX ω̃, with a curvature 2-form Ωτ . We claim that if
V ∈ X(D) is any vector field defined in a neighborhood of Sb whose restriction to Sb
projects to vb ∈ TB, then:
(a) for any section η̄ ∈ Γ(H ) represented by η ∈ Ω2(M) with iV η = 0 one has:

∇v η̄ = [(£V η)|Sb ];

(b) £V ω̃ = Ωτ (V ).
These will imply (4.4).

Item (a) follows from the fact that the Gauss-Manin connection can be defined by
lifting a vector field X on B toM via a distribution D, since the flow of the horizontal
lift gives a 1-parameter group of diffeomorphisms of the fibers, that preserves the
integral cohomology.

In order to prove item (b), we see that, for any X,Y ∈ Fπ, the definition of the
curvature 2-form gives:

Ωτ (X,Y )(V ) = 〈[τ(X), τ(Y )]π − τ([X,Y ]), V 〉
= 〈[iX ω̃, iY ω̃]π, V 〉
= −(£V π)(iX ω̃, iY ω̃) = (£V ω̃)(X,Y ),

which shows that (b) holds. Here, we have used first that

iV [α, β]π = iπ](α)diV β − iπ](β)diV α− (£V π)(α, β), (α, β ∈ Ω2(M))

together with iV ω̃ = 0 and π(iX ω̃, iY ω̃) = −ω̃(X,Y ), which yields:

(£V π)(iX ω̃, iY ω̃) = −(£V ω̃)(X,Y ).
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In what follows we make use of the following terminology related to integral vector
bundles (E,EZ): a weak integral sub-bundle of E is an integral vector bundle (F, FZ)

for which F is a vector sub-bundle and FZ ⊂ EZ; it is called an integral vector sub-
bundle if FZ = F ∩ EZ.

Proposition 4.3.3. — For any Poisson manifold (M,π) with 1-connected leaves and an
s-connected, s-proper integration G , varlin

$ is a Π1(B)-equivariant morphism of integral
vector bundles,

varlin
$ : (TB,Λ∨G )→ (H ,HZ).

Moreover, (V lin
$ ,V

lin
$,Z) is a weak integral affine vector sub-bundle of (H ,HZ). In the

strong s-proper case it is an integral affine sub-bundle.

Proof. — We first show that varlin
$ (Λ∨G ) ⊂ HZ. For this, fix b ∈ B, let v ∈ TbB and

choose x ∈ p−1(b). Using that Nmon ⊂ ΛG and Proposition 4.3.2, we see that:

v ∈ Λ∨G ⊂ Tp(x)B ⇐⇒ λ(v) ∈ Z, ∀ λ ∈ ΛG

=⇒ ∂x(σ)(v) ∈ Z, ∀ σ ∈ π2(S, x)

⇐⇒
∫
σ

varlin
$ (v) ∈ Z, ∀ σ ∈ π2(S, x)

⇐⇒ varlin
$ (v) ∈ H2(S,Z)

where, for the last implication, we used that S is simply connected. This proves that
varlin

$ (Λ∨G ) ⊂HZ. Since the actions of Π1(B) on TB and H are by parallel transport
relative to the flat connections determined by ΛG and HZ, we also obtain that varlin

$ is
Π1(B)-equivariant.

Next we prove that V lin
$,Z is a lattice in V lin

$ . It is discrete since it sits inside HZ,
hence it suffices to remark that V lin

$ /V
lin
$,Z is compact. But this follows from the fact

that Λ∨G is a lattice in TB and we have a surjective map:

varlin
$ : TB/Λ∨G → V lin

$ /V
lin
$,Z.

Finally, in the strong s-proper case, the only implication above becomes an equiv-
alence, and we obtain that V lin

$,Z = HZ ∩ V lin
$ .

The previous proposition allows one to identify certain “building blocks” sitting
inside (M,π). The extreme cases follow easily from the previous two propositions:

Corollary 4.3.4. — For any s-proper Poisson manifold (M,π) with simply connected
leaves one has:
(i) Zero-variation: varlin

$ = 0 iff p : (M,π)→ B is a symplectic fibration.
(ii) Full-variation: varlin

$ is injective iff (M,π) is strong s-proper.

Proof. — By Proposition 4.3.2, varlin
$ = 0 is equivalent to the fact that all the

classes [Ωτ |Sb ] vanish. These classes are the restrictions to the leaves of a global class
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[Ωτ ] ∈ H2(Fπ, ν
∗), which can also be described more directly (see [11]) by choosing

an extension ω̃ ∈ Ω2(M) of the symplectic forms on the leaves, and then taking:

Ωτ (X,Y )(V ) = dν ω̃(X,Y )(V ) = dω̃(X,Y, V ).

A spectral sequence argument and the fact that the leaves are 1-connected, implies
that the vanishing of all the classes [Ωτ |Sb ] is equivalent to the existence of an ex-
tension ω̃ such that dν ω̃ = 0. This last condition is a well-known characterization of
symplectic fibrations (see [27]).

By Proposition 4.3.2, Ker(varlin
$ ) is the annihilator of Nmon and, by Proposi-

tion 4.3.3, Im(varlin
$ ) is a discrete group. Hence the injectivity of varlin

$ is equivalent
to Nmon being a lattice. By Theorem 3.4.1, this is equivalent to (M,π) being of strong
s-proper type.

When an s-proper Poisson manifold (M,π) has full-variation, Proposition 4.3.3
above shows that varlin

$ realizes (TB,Λ∨) as an integral vector sub-bundle of (H ,HZ)

if and only if G is the Weinstein groupoid of (M,π).
For the general case, we look at

K := Ker(varlin
$ ) ⊂ TB

and this leads to a decomposition of (M,π) into a foliation by Poisson submanifolds
of zero-variation:

Theorem 4.3.5. — For any s-proper Poisson manifold (M,π) with simply connected
leaves, K defines an involutive distribution of constant rank. If (G ,Ω) is an s-con-
nected, s-proper integration, then one has:

(i) The subgroup

{ξ ∈ T ∗B : ξ(v) ∈ Z for all v ∈ (varlin
$ )−1(HZ)} ⊂ T ∗B

sits inside ν∗(K ) and defines a transverse integral affine structure for K .
(ii) Each leaf K of K is an integral affine submanifold of B and the resulting Poisson

submanifold
MK := p−1(K) ⊂M

has zero-variation. In particular, p : MK → K is a symplectic fibration over the
integral affine manifold K.

(iii) For any transversal T to K of complementary dimension, the resulting Poisson
submanifold

MT := p−1(T ) ⊂M
is a Poisson manifold of strong s-proper type.

Proof. — First of all, the fact that varlin
$ is Π1(B)-equivariant implies that K has

constant rank. The Gauss-Manin connection being flat, its curvature tensor vanishes,
which obviously implies involutivity of K .
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Next, we turn to the proof of (i). We work at the level of B: under the isomorphism
ν∗x(F ) ∼= T ∗p(x)B, the monodromy group of (M,π) at any x ∈ p−1(b) becomes a
subgroup Nmon|b ⊂ T

∗
b B. Moreover, by Theorem 3.4.1 (i), we have

Nmon ⊂ ΛG ⊂ T ∗B.

Since ΛG is a lattice, the fibers Nmon|b will be discrete, hence also closed in T ∗b B.
For a closed subgroup C ⊂ V in a vector space, we set

C∨ := {ξ ∈ V ∗ : ξ(C) ⊂ Z}.

Notice that (C∨)∨ = C . Also, to any such closed subgroup C we associate two subspaces:
Span(C ) ⊂ V the span over R, and Cospan(C ) ⊂ V the cospan over R, defined as the
largest vector subspace of V contained in C . Note that the span/cospan of C∨ coincides
with the annihilator of the cospan/span of C . Moreover:
(a) if C is discrete, then C is a lattice in Span(C );
(b) if C spans V , then C/Cospan(C ) is a lattice in V/Cospan(C ).
Back to our situation, Proposition 4.3.2 shows that K is the annihilator of Nmon.

Equivalently, Span(Nmon) = K 0 so Nmon is a lattice in ν∗(K ) = (K )0. Since
Nmon ⊂ ΛG , sections of Nmon are necessarily closed forms, hence Nmon defines a
transverse integral affine structure for K . In order to obtain the description of Nmon

directly in terms of varlin
$ , one notes that the sequence of implications in the proof of

Proposition 4.3.3 all become equivalences if we replace Λ∨G by N∨
mon, so that:

(4.6) N∨
mon = (varlin

$ )−1(HZ).

Since Nmon = (N∨
mon)∨ this proves the description in (i).

While (i) is a statement about Nmon, part (ii) of the proposition is about ΛG and
its subtle interaction Nmon. We need to prove that K ∩Λ∨G is a lattice in K . Since it
is clearly discrete, it suffices to prove that the resulting quotient

K/K ∩ Λ∨G
∼= (K + Λ∨G )/Λ∨G

is compact. Under the previous identification, this quotient is the kernel of the map

N∨
mon/Λ

∨
G →N∨

mon/(K + Λ∨G ).

Notice that the image of the last map is discrete, since it is a quotient of N∨
mon/K ,

which is itself discrete by part (i). This implies that the kernel is closed in N∨
mon/Λ

∨
G ,

hence it suffices to remark that this last space is compact. Indeed, (4.6) implies that
N∨

mon/Λ
∨
G is the kernel of the map induced by varlin

$ :

varlin
$ : TB/Λ∨G

// V lin
$ /V

lin
$,Z,

and since TB/Λ∨G is compact, the result follows. To conclude the proof of (ii), no-
tice that MK with the induced Poisson structure will have zero variation, since the
associated normal bundles are precisely the kernel of varlin

$ .
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Finally, to prove (iii), the linear variation map for MT will be just the injective
descent of varlin

$ , defined on TB/K , modulo the obvious identifications:

TbB/Kb
∼= Tb(T ) ∼= T ∗xMT /Fx, with b = p(x).

Example 4.3.6. — For a Lie algebra g of compact type, the dual M = g∗ is a Poisson
manifold of proper type. In this case, we have the decomposition g = z⊕gss into center
and semisimple part, and z = {0} if and only if g∗ is of strong-proper type. The passing
from M to MT in Proposition 4.3.5 should be seen as a Poisson generalization of the
passing from a compact Lie algebra to its semi-simple part. This example will be
further discussed in Section 4.6.1.

4.4. The linear variation theorem

We now move to the study of the actual variation of $:

Definition 4.4.1. — The variation of $ is the bundle map:

var$ : Π1(B)→H , [γ] 7→ γ∗$γ(1),

where γ∗ stands for the parallel transport associated to the Gauss-Manin connection.
The variation bundle of $ is the image of var$:

V $ := Im(var$) ⊂H .

Our aim now is to show that the variation is linear. For this, as it will become
apparent in the sequel, it is more natural to consider an affine point of view. We
define the affine variation of $ to be:

varAff
$ := $ + varlin

$ : TB →H ,

and the affine variation bundle to be its image:

V Aff
$ := varAff

$ (TB) = $ + V lin
$ .

From this point of view, the relevant action of Π1(B) on TB is the one by affine
transformations, as given by (4.2). We will refer to it as the integral affine action
of Π1(B) on TB. On H , we will continue to use the linear action of Π1(B).

Our first version of the statement that the variation is linear or, more precisely,
affine, is the following:

Theorem 4.4.2. — For any s-proper Poisson manifold (M,π) with 1-connected leaves
and an s-connected, s-proper integration (G ,Ω), the developing map dev of the integral
affine structure on B = M/Fπ identifies the variation of $ with its affine variation,
i.e., one has a commutative diagram:

Π1(B)
var$ //

dev
##

H

TB.
varAff

$

==
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In particular, V $ is open in V Aff
$ and they are both Π1(B)-invariant. Moreover,

the variation V $,b ⊂ H2(Sb) at each b ∈ B sits inside the symplectic cone of the
symplectic leaf Sb.

Remark 4.4.3. — The commutativity of the diagram in Theorem 4.4.2 is equivalent
to saying that varAff

$ is equivariant. In this way,

varAff
$ : (TB,Λ∨G )→ (H ,HZ)

becomes a morphism of integral affine representations of Π1(B).

Proof. — The commutativity of the diagram in the statement is equivalent to the
commutativity of

Π1(B)
δ($)

//

dev
##

H

TB,

varlin
$

==

where δ($) : Π1(B)→H is defined by:

δ($)([γ]) := γ∗$γ(1) −$γ(0).

Note that in this diagram:
(a) δ($) : Π1(B) → H is the 1-cocycle on Π1(B) coboundary of the 0-cycle

$ ∈ Γ(H ); it differentiates to the algebroid 1-cocycle v 7→ ∇v$, i.e., varlin
$ ;

(b) dev : Π1(B)→ TB is the 1-cocycle on Π1(B) with values in TB which integrates
the algebroid 1-cocycle Id : TB → TB.

(c) varlin
$ : TB →H is a morphism of representations.

It follows that the corresponding infinitesimal diagram is:

TB
varlin

$ //

Id
""

H

TB,

varlin
$

==

which is trivially commutative (in this diagram varlin
$ appears in two distinct roles: as

a Lie algebroid cocycle on the horizontal arrow and as a morphism of representations
on the diagonal arrow).

In order to obtain a more concrete picture, let us fix
— a base point b0 ∈ B, and
— a Z-basis bΛ = {λ1, . . . , λq} for Λb0 .

The affine holonomy representation becomes (for notations, see Example 3.1.3):

hAff
0 : π1(B, b0)→ AffZ(Rq), γ 7→ (vγ , Aγ).
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Hence the main data consists of the vγ = (v1
γ , . . . , v

q
γ) and Aγ = (Aji (γ)), where our

convention is such that A(γ)ei =
∑
j A

j
i (γ)ej .

If (S, ω0) is the symplectic leaf corresponding to b0, then the maps/actions in the
previous discussion become:
(i) a variation map with respect to paths that start at b0:

var0 : B̃ → H2(S), var0(γ) = γ∗[ωγ(1)];

(ii) a linear action of π1(B, b0) on H2(S), that makes var0 equivariant;
(iii) a π1(B, b0)-invariant weak integral affine subspace V Aff

0 = [ω0] + V lin
0 ⊂ H2(S).

For any x ∈ S, let P := s−1(x) be the s-fiber above x of the s-proper integration
(G ,Ω) ⇒ (M,π). The submersion t : P → S is a principal Gx-bundle and the choice
of basis bΛ gives an identification of the isotropy group with the standard q-torus Tq.
Hence P → S becomes a principal Tq-bundle and we consider its Chern classes:

c1, . . . , cq ∈ H2(S) (integral classes).

Since S is simply connected these classes do not depend on the base point x ∈ S.

Corollary 4.4.4. — The Chern classes c1, . . . , cq ∈ H2(S) generate the space of linear
variations of ω at b0:

V lin
0 = SpanR(c1, . . . , cq), V lin

0,Z = SpanZ(c1, . . . , cq).

The action of π1(B, b) on V Aff
0 ⊂ H2(S) is given by

(4.7) γ∗([ω0]) = [ω0] +
∑
k

vkγck, γ∗(ci) =
∑
k

Aki (γ)ck,

and for any path γ in B starting at b0 one has

γ∗([ωγ(1)]) = [ω0] + dev1
0(γ)c1 + · · ·+ devq0(γ)cq,

where devi0 are the components of dev0 = dev |b0,bΛ
: B̃ → Rq. Hence, we have a

commutative diagram:

B̃
var0 //

dev0
��

V Aff
0 ⊂ H2(S)

Rq,
(vi)7→[ω0]+

∑
i v
ici

==

where the image of var0 is an open, π1(B)-invariant subset of V Aff
0 , sitting inside the

symplectic cone of H2(S).

Note that in the strong s-proper case the Chern classes c1, . . . , cq are linearly inde-
pendent, so var0 is a local diffeomorphism, and if G is the canonical integration then
they form a primitive family, in the sense that:

SpanZ(c1, . . . , cq) = SpanR(c1, . . . , cq) ∩H2(S,Z).

Hence, V Aff
0 is an integral affine subspace of H2(S), not only a weak one.
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Proof. — The corollary follows from Proposition 4.3.3 and Theorem 4.4.2 once we
realize that varlin

0 (λi) = ci. This follows immediately from (4.4).

Remark 4.4.5. — The corollary shows that, for any v ∈ Im(dev0) ⊂ Rq, one can find
a symplectic form ωv on S such that, in cohomology, we have:

[ωv] = [ω0] + v1c1 + · · ·+ vqcq.

This gives an explicit description for the image of the variation map inside the sym-
plectic cone as:

Im(var0) = {[ωv] : v ∈ Im(dev0)} ⊂ H2(S).

Note however that the symplectic forms ωv are not unique. Also, while they can locally
be chosen to depend smoothly on v, it is not clear whether v 7→ ωv can be chosen
smooth on the entire open Im(dev0).

Theorem 4.4.2 and Corollary 4.4.4 should already remind the reader of the classic
Duistermaat-Heckman Theorem (see Theorem 4.1.1). We defer to the next section
the detailed explanation of this connection.

For now we observe that the previous results suggests the following strategy to
construct examples of PMCTs. For simplicity we restrict to integral affine manifolds
which are complete (see Conjecture 3.1.4).

Proposition 4.4.6. — Consider an integral affine manifold of type B = Rq/Γ, with
Γ ⊂ AffZ(Rq), and S a compact 1-connected manifold. Assume that the following
conditions hold:
(i) Γ acts on S and there is a smooth Γ-equivariant map

Rq 3 v 7→ ωv ∈ Ω2
sympl(S).

(ii) There exist linearly independent integral cohomology classes c1, . . . , cq in H2(S)

such that:

(4.8) [ωv] = [ω0] + v1c1 + · · ·+ vqcq, ∀ v ∈ Rq.

Then M := S ×Γ Rq is a regular Poisson manifold of strong s-proper type (hence, if
B is compact, then M is of strong compact type).

More generally, condition (i) can be replaced by a smooth family of symplectic
forms wv on S and a lifting of the integral affine action of Γ on Rq to an action
on (S × Rq, ωv) by Poisson diffeomorphisms (not necessarily a product action).

Note that the equivariance condition and (4.8) imply that the action of Γ on [ω0]

and the cis is given by (4.7). Therefore, in practice, one starts from some smooth
integral affine group Γ ⊂ AffZ(Rq) writing its elements in the split form γ = (vγ , A(γ))

(cf. Example 3.1.3) and as a first step one tries to realize the identities (4.7) inside
the cohomology of a compact manifold S. Observe that this already produces the
cohomology bundle H = H2(S)×Γ Rq, together with the section $. The second and
much harder step is to represent the right hand side of (4.8) by symplectic forms and
to lift the action of Γ on cohomology to an action by Poisson diffeomorphisms.
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Example 4.4.7. — The simplest case to consider is B = S1 with its usual integral affine
structure. The resulting problem turns out to be very closely related to McDuff and
Salamon’s question on the existence of symplectic free circle actions with contractible
orbits. Actually, the example given by Kotschick in that context [31] turns out to be
precisely the answer to our problem for B = S1 (see also [35]). That produces a very
interesting example of Poisson manifold of strong compact type with leaf space S1

and K3 surfaces as symplectic leaves. As we shall explain in future work, one can use
the structure of the moduli space of marked K3 surfaces to apply Proposition 4.4.6
(the key feature is the strong Torelli theorem, which requires the most general version
of condition (i)) and obtain similar PMCTs of strong compact type with base the
standard T2 and symplectic leaf the K3 surface (more generally, the Hilbert scheme
of n points on the K3 surface).

4.5. The twisted Dirac case

We now briefly discuss the changes one needs to make so that the previous chapter
applies also to twisted Dirac structures (for the motivation, please see the Introduc-
tion). Therefore we fix a closed 3-form φ ∈ Ω3(M) and a φ-twisted Dirac structure L
on M which, as before, we assume to be regular, of s-proper type, with 1-connected
leaves, and with leaf space B = M/FL.

To make sense of the linear variation, we interpret the class of fiberwise presym-
plectic forms as a section of a bundle over B, generalizing the section $ ∈ Γ(H ) used
above. This forces us to consider the φ-twisted version of H :

Definition 4.5.1. — The φ-twisted (second) cohomology at b ∈ B is

Hφ
b = H2(Sb, φb) :=

{β ∈ Ω2(Sb) |dβ + φb = 0}
{dΩ1(Sb)}

.

Notice that this definition applies to any proper fibration p : M → B together
with a closed 3-form φ ∈ Ω3(M) whose restriction φb to each fiber is exact (so that
each Hφ

b is non-empty).
The cohomology Hφ

b is not a vector space, but it is an integral affine space with
underlying integral affine vector space (Hb,HZ,b). As φb is exact, Hodge theory implies
that these affine spaces fit into an integral affine bundle (Hφ,HZ) with underlying
integral vector bundle (H ,HZ).

Remark 4.5.2 (Integral affine bundles). — Given an affine bundle E → B we denote
by Elin its underlying vector bundle. An integral affine bundle (E,Elin

Z ) is an affine
bundle E together with a lattice Elin

Z ⊂ Elin. As before, one can talk about (weak)
integral affine sub-bundle and of morphisms between integral affine bundles.

The notion of affine connection makes sense on any affine bundle E → B: the space
of sections Γ(E) is an affine space with underlying vector space Γ(Elin) and an affine
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connection is an affine map

∇ : Γ(E)→ Ω1(B,Elin),

whose linear part is a linear connection on Elin. A (local) flat section s is a section
satisfying ∇s = 0 and a flat affine connection is one for which there exist local
flat sections through every point in E. If the affine connection is flat, then so is it
underlying linear connection on Elin. A flat integral affine bundle is an integral affine
bundle (E,Elin

Z ) endowed with a flat affine connection ∇ whose underlying linear
connection ∇lin coincides with the one induced by the lattice Elin

Z .
The notion of parallel transport and its basic properties extend to the setting of

affine connections. In particular, a flat integral affine bundle is the same thing as an
integral affine bundle (E,Elin

Z ) together with an action of Π1(B) on E by integral
affine transformations of the fibers. Also, a morphism of flat integral affine bundles is
an integral affine morphism f : E → F which is Π1(B)-equivariant.

While any vector space/bundle is canonically affine, any integral vector bundle
is canonically a flat integral affine bundle, with the connection associated with the
integral structure. An affine space/bundle is non-canonically isomorphic as affine
spaces/bundles to its underlying vector space/bundle, and similarly if we add the
adjective “integral,” because an affine bundle always has a global section. However, a
flat integral affine bundle E is not isomorphic as flat integral affine vector bundles to
its underlying integral affine vector bundle, unless E has a global flat section. This
is equivalent to the vanishing of the so-called radiance obstruction of the flat affine
bundle [25].

Example 4.5.3. — Consider the tangent bundle TB of an integral affine manifold
(B,Λ). Obviously, (TB,Λ∨) is an integral vector bundle, hence also a flat integral
affine one: the corresponding action of Π1(B) on TB is precisely the one induced by
the linear holonomy representation (4.1). However, TB admits yet another flat integral
affine structure, namely the one defined by the affine holonomy action of Π1(B) on TB
given by (4.2). For TB together with this flat integral affine structure we will reserve
the notation TAffB, and this is our realization of the affine tangent bundle from [25].
Of course, the only difference between TAffB and TB lies on the Π1(B)-action that
one considers.

In this framework, the identification of the variation with the affine variation from
Theorem 4.4.2 is equivalent to saying that

varAff
$ : (TAffB,Λ∨)→ (H ,HZ)

is a morphism of flat integral affine bundles (see Remark 4.4.3). Moreover, the affine
variation bundle V Aff

$ is a flat integral affine bundle, with underlying integral affine
vector space (V lin

$ ,V
lin
$,Z) and the previous statement about varAff

$ can be split into
two: (i) varAff

$ : TAffB → V Aff
$ is a morphism of flat integral affine bundles and

(ii) V Aff
$ is a weak sub-bundle of (H ,HZ).
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Definition 4.5.4. — For any a proper fibration p : M → B with a closed 3-form
φ ∈ Ω3(M) whose restriction to each fiber is exact, the twisted Gauss-Manin connec-
tion ∇φ : Γ(Hφ)→ Ω1(B,H ) is given by:

(4.9) 〈∇φv (s), [σ0]〉 =
d

dt |t=0

(∫
∂([0,t]×Σ)

σ∗s+

∫
[0,t]×Σ

σ∗φ

)
,

where v ∈ TbB, s ∈ Γ(B,Hφ), [σ0] ∈ H2(Sb) is a homology class represented by a
map σ0 : Σ → Sb, and σ : [0, 1] × Σ → M is a map of fibrations extending σ0 with
base map a curve in B representing v.

The independence of this definition on choices is a consequence of Stokes’ theorem
and the exactness of φ on fibers. One checks directly that ∇φ is a morphism of affine
spaces, and that its linear part is the Gauss-Manin connection on H .

A local flat section through any c ∈ Hφ
b can be constructed as follows: over a

contractible neighborhood of b the twisting form is exact: φ = dχ. Therefore [−χ]φ
defines a local flat section. It can be translated to attain the value c at b by adding
the appropriate local flat section of H . Therefore Hφ is a flat integral affine bundle
with underlying integral vector bundle (H ,HZ).

Now, given a φ-twisted Dirac manifold (M,L) we have the section $ ∈ Γ(Hφ) and
the twisted Gauss-Manin connection, and this allows one to proceed as before. We
can define the linear and affine variations by the same formulas:

varlin
$ := ∇φ$ : TB →H , varAff

$ := $ + varlin
$ : TB →Hφ

and similarly for the linear/affine variation bundles V lin
$ and V Aff

$ . Also, using the
induced action of Π1(B) by parallel transport on Hφ one obtains the variation map

var$ : Π1(B)→Hφ, [γ] 7→ γ∗$.

and its image the variation bundle V $.
The main results from the previous section carry over to this context, with more

or less obvious modifications. For example:

Theorem 4.5.5. — For any s-proper φ-twisted Dirac manifold (M,L) with 1-connected
leaves and an s-connected, s-proper integration (G ,Ω, φ), the developing map dev of
the integral affine structure on B = M/Fπ identifies the variation of $ with its affine
variation, i.e., one has a commutative diagram:

Π1(B)
var$ //

dev &&

Hφ

TB.
varAff

$

99

In particular, V $ is open in V Aff
$ and they are both Π1(B)-invariant.

Proof. — The proof of Theorem 4.4.2 applies word by word, with one exception: one
needs to be careful with the inclusion varlin

$ (Λ∨G ) ⊂HZ of Proposition 4.3.3. For that,
we need to make sure that Proposition 4.3.2 still holds, and that sends us back to a
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description of the monodromy map in terms of variations of presymplectic areas. That
was based on the choice of a splitting τ of (3.6) and the use of its curvature (3.7).
Such a splitting is provided by any extension of the foliated form ω to a 2-form on M
and the curvature Ωτ is computed using the φ-twisted Dirac bracket. The resulting
formula is precisely (4.9), where Σ is a sphere and the variation is determined by the
corresponding vector at the image of its north pole.

4.6. Two examples from Lie theory

4.6.1. Regular coadjoint orbits. — Let G be a compact, connected Lie group with
g its Lie algebra. The symplectic groupoid (T ∗G,ωcan) is an s-proper integration of
the linear Poisson structure on g∗. The regular set M := g∗reg, consisting of those
coadjoint orbits with stabilizer a maximal torus, is a regular Poisson manifold of
s-proper type and G := (T ∗G)|g∗reg

⇒ g∗reg is a proper symplectic integration, inducing

a transversal integral affine structure ΛG . Compact coadjoint orbits are 1-connected,
so our standing assumption holds and the leaf space of g∗reg is a smooth integral affine
manifold (B,ΛB). In this example, we can relate our previous discussion with some
standard facts and constructions from Lie theory (see, e.g., [7, 21]). We will describe
here this relationship, leaving the verifications to the reader.

Fix a maximal torus T ⊂ G and let c ⊂ t∗ be the interior of a Weyl Chamber. We
recall that t is a full slice to the adjoint action of G on g: any regular orbit intersects t
transversely with tangent space [t, g]. Dually, the splitting

g = t⊕ [t, g]

embeds t∗ into g∗ as a full slice to the coadjoint action. Each regular orbit intersects c
exactly once, so we get a canonical diffeomorphism:

(4.10) G/T× c→ g∗reg (gT, ξ) 7→ Ad∗g ξ

Under this diffeomorphism, the symplectic form of the orbit through ξ ∈ c is the
unique left G-invariant form ωξ ∈ Ω2(G/T) satisfying at ξ ∼= eT:

(4.11) ωξ(u, v) = ξ([u, v]), u, v ∈ g/t = Tξ(G/T).

Let us fix a coadjoint orbit S0 ⊂ g∗reg through some point ξ0 ∈ c, so that S0
∼= G/T.

If ΛG = Ker(exp : t→ T) and Λw is the weight lattice, we have isomorphisms:
— The leaf space: (B,ΛB) ∼= (c,Λ∨G).
— The normal space: (νξ0(S0),ΛG |ξ0) ∼= (t∗,Λ∨G).
— The cohomology: (H2(S0), H2(S0,Z)) ∼= (t∗ss,Λw), where g = z ⊕ gss is the

decomposition into center and semisimple part, and t = z⊕ tss.
Explicitly, the last isomorphism associates to an element ξ ∈ t∗ss the cohomology class
of the form ωξ given by (4.11), hence we find that:
(i) The developing map dev0 : B → νξ0(S0) is the inclusion:

dev0 : (c,Λ∨G) ↪→ (t∗,Λ∨G).
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(ii) The linear variation varlin
$ : νξ0(S0)→ H2(S0) is the projection:

varlin
$ : (t∗,Λ∨G)→ (t∗ss,Λw).

(iii) The linear and affine variations match, so that var$ : B → H2(S0) is:

var$ : (c,Λ∨G)→ (t∗ss,Λw).

Notice that the linear variation is injective iff (greg, ω) is of strong s-proper type
(cf. Corollary 4.3.4), and this happens iff g is semisimple. Moreover, in this case,
the linear variation is an isomorphism of integral vector spaces iff G is the simply
connected integration (cf. Proposition 4.3.3).

In general, the linear variation is not injective and its kernel is precisely z∗. If we
consider the leaves through K = ξ + z∗ we obtain a Poisson submanifold MK ⊂ g∗reg

of zero-variation (cf. Theorem 4.3.5 (ii)). On the other hand, the leaves through
T = ξ + t∗ss yield a Poisson submanifold MT ⊂ g∗reg of full-variation (cf. Theo-
rem 4.3.5 (iii)), Poisson diffeomorphic to (g∗ss)reg.

4.6.2. Principal conjugacy classes. — Let G be a compact, connected Lie group with
Lie algebra g, let 〈·, ·〉 be an Ad-invariant inner product, and let LG the corresponding
Cartan-Dirac structure on G with twisting φ the Cartan 3-form [4, 8, 51]. Recall that
its leaves are the conjugacy classes and an s-proper integration is provided by the
conjugacy action groupoid GnG endowed with the multiplicative 2-form:

(4.12) ΩG(g, h) =
1

2

(
〈Adh pr∗1 θ

L,pr∗1 θ
L〉+ 〈pr∗1 θ

L,pr∗2(θL + θR)〉
)
,

where θL and θR are the left and right-invariant Maurer-Cartan forms. We have the
following basic result, relating (G,LG) and (g∗, πlin) (see [3, Theorem 3.13]):

Proposition 4.6.1. — Let exp : g∗ → G be the composition of exp : g → G with
the isomorphism g∗ ∼= g given be the inner product. The pullback Dirac structure
exp∗(LG) is smooth and there is a 2-form χ ∈ Ω2(g∗) giving a gauge transformation:

exp∗(LG) = eχLπlin
.

The 2-form χ in the proposition is an Ad∗-invariant, canonical primitive of the
pullback of the Cartan 3-form: exp∗φ = dχ.

Let us now restrict to the regular set Greg ⊂ G, formed by the conjugacy classes
of maximal dimension. We obtain an s-proper presymplectic φ-twisted integration
(G ,Ω) = (GnGreg,ΩG) ⇒ Greg, inducing a transverse integral affine structure ΛG to
the foliation consisting of conjugacy classes in Greg.

We recall that a regular orbit is called principal if its isotropy is connected. A
good example to keep in mind is G = SO(3), whose non-trivial conjugacy classes
are all regular and among these there is only one which is non-principal, namely the
conjugacy class of a non-trivial diagonal matrix. Principal orbits are 1-connected, and
therefore (Gprinc, LG) is a connected regular twisted Dirac manifold of s-proper type,
satisfying our standing assumption. Hence, the leaf space B = Gprinc/G is a smooth
manifold carrying an integral affine structure ΛB such that ΛG = p∗ΛB . Again, we
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can relate our previous discussion with some standard facts from the Lie theory of
conjugacy classes of compact Lie groups (see.e.g., [21, 7]).

A maximal torus T ⊂ G is a full slice for the conjugation action, so Treg = T∩Greg

and Tprinc = T ∩Gprinc are also slices for the restricted action on Greg and Gprinc. If
K is a connected component of Treg and B is a connected component of Tprinc ∩K,
then we obtain a diffeomorphism:

G/T×B → Gprinc, (gT, k) 7→ gkg−1,

so B is identified with the leaf space Gprinc/G.
In general, B is not 1-connected and one can identify its universal cover using

exp : t → T. A choice of positive roots determines a Weyl alcove of g, which is
a connected component a ⊂ t of exp−1(Treg). A Weyl alcove of G is a connected
component aG ⊂ a of exp−1(Tprinc) and the exponential exp : aG → B gives a covering
map, so that B̃ = aG. It follows that we have a surjective local diffeomorphism:

G/T× aG → Gprinc, (gT, ξ) 7→ g exp(ξ)g−1 = exp(Adg ξ),

identifying the 2-form on the conjugacy class determined by ξ ∈ aG with:

(4.13) χ̃ξ + ωξ ∈ Ω2(G/T).

Here, ωξ is the symplectic form (4.11) and χ̃ξ is the restriction to G/T × {ξ} of the
form χ̃ ∈ Ω2(G/T × aG) obtained by pulling back the form χ in Proposition 4.6.1
along the map (4.10).

Now fix a conjugacy class S0 ⊂ Gprinc through some point g0 ∈ exp(aG), so that
S0
∼= G/T. If ΛG = Ker(exp : t→ T), Λw is the weight lattice, and

Λ∗G := {v ∈ t : 〈v, λ〉 ∈ Z : ∀λ ∈ ΛG},

we find isomorphisms:
— (νg0(S),ΛG |g0

) ∼= (t,Λ∗G);
— (H2(S0), H2(S0,Z)) ∼= (t∗ss,Λw).

We conclude that:
(i) The developing map dev0 : B̃ → νg0

(S0) is the inclusion:

dev0 : (aG,Λ
∗
G) ↪→ (t,Λ∗G).

(ii) The linear variation map varlin
$ : νg0(S0) → H2(S0) is the composition of the

isomorphism t ∼= t∗ given by the inner product, with the projection onto t∗ss:

varlin
$ : (t,Λ∗G)→ (t∗ss,Λw).

(iii) The pullback to B̃ = aG of the bundle Hφ of twisted 2-cohomology groups
trivializes and has the flat section ξ 7→ [χ̃ξ], which allows to identify the linear
and affine variation.

(iv) The variation map var$ : B̃ → H2(S0) becomes the inclusion:

var$ : (aG,Λ
∗
G)→ (t∗,Λ∨w).
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Again, we note that the linear variation is injective iff (Gprinc, LG) is of strong
s-proper type and this happens iff g is semisimple. In this case the linear variation is
an isomorphism of integral vector spaces iff G is the simply connected integration.
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CHAPTER 5

THE LINEAR VARIATION THEOREM II: THE GENERAL CASE

We now extend the results from the previous section to general PMCTs of s-proper
type, removing the assumption that symplectic leaves are 1-connected. The main
difference is that now the leaf space is an orbifold. We will see how to state an
appropriate version of the linear variation theorem, which will be a statement that
holds on an orbifold bundle made of cohomologies of the symplectic leaves.

5.1. The developing map for transverse integral affine foliations

Since we do not have a smooth leaf space anymore, we are now forced to work with
transverse integral affine structures. Let us point out how the discussion in Section 4.2,
on the developing map of integral affine manifolds, can be extended to the setting of
transversally integral affine foliations [26, 41, 49].

Given a foliation (M,F ) with a transverse integral affine structure Λ, in the in-
trinsic approach to the developing map one now has:
(i) An induced flat connection ∇ on ν(F ) for which the local sections of Λ are flat.

The connection gives rise to a linear holonomy action (by parallel transport)
of Π1(M) on ν(F ):

hlin : Π1(M)→ GLΛ(ν(F )).

Its image will be denoted by Πlin
1 (M) ⊂ GLΛ(ν(F )).

(ii) The projection map TM → ν(F ) is an algebroid 1-cocycle and it integrates to
the developing map:

dev : Π1(M)→ ν(F ).

This, together with the linear holonomy action, gives rise to the affine holonomy
action

hAff : Π1(M)→ AffΛ(ν(F )).

Its image will be denoted by ΠAff
1 (M) ⊂ AffΛ(ν(F )).

As in Section 4.2, to be more concrete one fixes
— a base point x ∈M , and
— a Z-basis bΛ = {λ1, . . . , λq} for Λx.
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Upon restriction, we obtain the based/classical linear and affine holonomy represen-
tations (see [26]):

(5.1) hlin
0 : π1(M,x)→ GLZ(Rq), hAff

0 : π1(M,x)→ AffZ(Rq),

and the based developing map:

dev0 : (M̃, Λ̃)→ (Rq,Zq),

which is a π1(M,x)-equivariant integral affine submersion. The images of these rep-
resentations are the linear holonomy group Γlin ⊂ GLZ(Rq) and the affine holonomy
group ΓAff ⊂ AffZ(Rq).

5.2. The linear variation theorem

We assume now that (M,π) is a regular Poisson structure and (G ,Ω) ⇒M is an s-
connected, s-proper integration. We denote by Λ = ΛG the induced integral transverse
integral affine structure and by B = B(G ) the induced integration of Fπ, so we have
a short exact sequence of Lie groupoids:

1 // ν∗(Fπ)/Λ // G // B // 1.

We endow B = M/Fπ with the orbifold structure with atlas B (Theorem 2.0.1).
In order to study the variation of the leafwise symplectic forms, we need a better

understanding of the “vector bundle” H → B with fiber Hb = H2(Sb), where the
leafwise symplectic forms live. The problem is that H is now only a set-theoretical
vector bundle and even the ranks of the fibers may vary from point to point! To solve
this problem we should proceed as follows:
— replace H → B by the representation H B →M of B ⇒M defined by:

H B
x = H2(B(x,−)),

where the action is the one induced from the right action of B on itself;
— replace Γ(H ) by the space Γ(H B)inv consisting of B-invariant sections of the

representation. Note that, while a priori Γ(H ) does not make sense, Γ(H B)inv

sits inside the space of set-theoretical sections of H :

(5.2) Γ(H B)inv ⊂ Γset(H ).

The image of this inclusion could be taken as definition of Γ(H ).
The inclusion (5.2) comes from the canonical isomorphisms

(5.3) (H B
x )Bx−inv ∼= Hb,

valid for all x ∈ M , where b = p(x) and p : M → B is the projection. This holds
because t : B(x,−) → Sb is a Bx-covering projection and the isotropy Bx is finite.
In this way, for any invariant section σ of H B, σ(x) makes sense as an element of Hb.
Moreover, for any other y with p(y) = b, there exists an arrow g : x → y in B and
right action by g becomes, after the identifications (5.3), the identity map on Hb.
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The invariance of σ implies that σ(x) ∈ Bb only depends on b, therefore making
sense of σ as a section of H .

Therefore, while (4.3) defines $ only as a set-theoretical section of H , the previous
discussion shows that the same information is obtained by considering the smooth
section

$ ∈ Γ(H B)inv

which, as a section of H B, is defined by pulling back along the target map of B the
cohomology classes of the leafwise symplectic forms.

Remark 5.2.1 (Orbivector bundles). — The previous discussion belongs to the world
of orbivector bundles (see [1, 38] and Remark 2.6.8): an orbivector bundle over the
orbifold (B,B) is given by a linear representation EB → B of the groupoid B. The
bundle H B is, of course, an example. Another example is provided by the tangent
bundle to the orbifold: it is represented by the normal bundle ν(F ) → M of the
foliation on the base, endowed with the linear holonomy action of B.

For any orbivector bundle EB → M over (B,B) its space of (smooth) sections is
defined as Γ(EB)inv. A morphism of orbivector bundles EB

1 → EB
2 (over the identity)

is just a morphism of the representations and it induces a map between the space of
sections Γ(EB

1 )inv → Γ(EB
2 )inv.

The previous remark suggests that the linear variation map TB → H of Sec-
tion 4.4, should now be replaced by a morphism of orbivector bundles TB → H ,
i.e., a morphism of representations ν∗(Fπ) → H B. Indeed, using the Gauss-Manin
connection on H B induced by H B

Z , we define:

Definition 5.2.2. — The linear variation is the morphism of orbivector bundles:

varlin
$ : ν(Fπ)→H B, v 7→ ∇v$.

This map should now be seen as a morphism of integral representations of B or,
equivalently, of integral orbivector bundles over B. We also consider the resulting
linear variation space:

(V lin
$ ,V

lin
$,Z) = varlin

$ (ν(Fπ),Λ∨G ).

We will see that this is an integral vector bundle sitting weakly inside (H B,H B
Z ).

The integral structures make H B and ν(Fπ) also into representations of the fun-
damental groupoid Π1(M) using the holonomy

h∇ : Π1(M)→ GLZ(H B)
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induced by ∇ (and similarly for ν(Fπ)). It is not difficult to see that the actions of B

and Π1(M) on (H B,H B
Z ) are compatible, since we have the commutative diagram:

Π1(M)
h∇ // GLZ(H B)

Mon(M,Fπ)

i∗

OO

hB
// B,

ρB

OO

where hB is the submersion associated to the foliation groupoid B and ρB is the
action of B on H B (and similarly for ν(Fπ)).

We can now extend Proposition 4.3.3, Corollary 4.3.4 and then Theorem 4.3.5 to
general s-proper Poisson manifolds. We first formulate the analogs of Proposition 4.3.3
and Theorem 4.3.5 together. Similar to the null-variation foliation K introduced there,
we now define KM ⊂ TM by

Ker(varlin
$ ) = KM/Fπ ⊂ ν(Fπ).

One should also recall the B-monodromy groups NB associated with any foliation
groupoid B integrating (M,Fπ), introduced in Section 3.4.

Theorem 5.2.3. — If G is an s-connected, s-proper integration of (M,π) then:
(i) varlin

$ is a Π1(M)-equivariant morphism of integral vector bundles,

varlin
$ : (ν(Fπ),Λ∨G )→ (H B,H B

Z )

with kernel N 0
B

and image (V lin
$ ,V

lin
$,Z);

(ii) KM is an integrable distribution and NB ⊂ ν∗(KM ) defines a transverse inte-
gral affine structure for KM ;

(iii) every leaf K̃ of KM is a Poisson submanifold of (M,π) saturated by symplectic
leaves and (K̃, π|K̃) is of s-proper type with zero-variation;

(iv) for any transversal T to KM of complementary dimension its saturation MT

with respect to the symplectic foliation is a Poisson submanifold of s-proper type
with full-variation. It is of strong s-proper type if Nmon|T is a lattice.

Proof. — The Π1(M)-invariance is a consequence of the integrality varlin
$ (Λ∨G ) ⊂H B

Z
which we now prove. We use the B-variation map ∂B whose image is precisely NB

(see Section 3.4). By exactly the same arguments as in Proposition 4.3.2, one has

(5.4) 〈varlin
$ (v), α〉 = ∂B(α)(v), ∀ v ∈ νx(Fπ), α ∈ H2(B(x,−),Z).

Starting now with v ∈ νx(Fπ), we have:

varlin
$ (v) ∈ H2(B(x,−),Z) ⇐⇒ 〈varlin

$ (v), α〉 ∈ Z, ∀ α ∈ H2(B(x,−),Z)

⇐⇒ ∂B,x(α)(v) ∈ Z, ∀ α ∈ H2(B(x,−),Z)

⇐⇒ λ(v) ∈ Z, ∀ λ ∈NB,x

⇐⇒ v ∈N∨
B.
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In other words one has the analog of (4.6):

(varlin
$ )−1(H B

Z ) = N∨
B.

The inclusion varlin
$ (Λ∨G ) ⊂ H B

Z follows now from the the last inclusion of Theo-
rem 3.4.9. The fact that V lin

$,Z is actually a lattice in V lin
$ follows by the same argu-

ment as in the proof of Proposition 4.3.3: we now know that V lin
$,Z is discrete in V lin

$

and varlin
$ induces a map from the compact space ν(Fπ)/Λ∨G onto V lin

$ /V
lin
$,Z.

Note that (5.4) also implies that the annihilator of NB is

N 0
B = Ker(varlin

$ ).

The remaining statements are proven by exactly the same arguments as for Theo-
rem 4.3.5, but with TB replaced by ν(Fπ) and Nmon replaced by NB.

The analog of Corollary 4.3.4 (i), concerning zero-variation, holds without any fur-
ther complications, once one makes precise sense of the notion of symplectic fibration
over an orbifold- which we leave as an exercise for the reader.

The analog of Corollary 4.3.4 (ii) states that the full-variation condition (i.e., the
injectivity of varlin

$ ) is equivalent to the fact that NB is a lattice in ν∗(Fπ). This holds,
by Theorem 5.2.3 (i). One finds this situation, for example, in the strong s-proper case
when NB = Nmon (but not only then!). Whenever the full-variation condition holds
one obtains that

V lin
$,Z = V lin

$ ∩H B
Z .

This shows that the full-variation condition does not depend on the integrating
groupoid. It can also be seen as an immediate consequence of the fact that for any
finite covering the pull-back map in (real) cohomology is injective.

Finally, we can look at the variation of $ and again prove its linear nature.
First of all, in a similar fashion as in the previous section, we now have a variation

map:
var$ : Π1(M)→H B, [γ] 7→ γ∗$γ(1).

On the other hand, we also have the affine version of varlin
$ :

varAff
$ : ν(Fπ)→H B, v 7→ varAff

$ (v) := $ + varlin
$ (v),

and its image:
V Aff
$ := $ + V lin

$ ⊂H B.

Second. the statement of the linear variation will use ν(Fπ) and its structure of
integral affine representation of Π1(M) (see Section 5.1), or in the terminology of
Remark 4.5.2, the structure of flat integral affine bundle. In order to emphasize this
structure, we will use the notation νAff(Fπ). Moreover, we also use the developing
dev : Π1(M) → ν(Fπ) associated to the transverse integral affine structure (see
Section 5.1):

The statement of the linear variation theorem is now as follows:
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Theorem 5.2.4. — The image of the variation map var$ is contained in V Aff
$ and

varAff
$ : νAff(Fπ) → V Aff

$ is a Π1(M)-equivariant morphism. Equivalently, there is a
commutative diagram:

Π1(M)
var$ //

dev
%%

H B

νAff(Fπ).

varAff
$

::

In particular, V Aff
$ is a Π1(M)-invariant weak integral affine sub-bundle of H B.

The proof follows exactly the same arguments as in Theorem 4.4.2, and so it will
be omitted.

More explicit descriptions, as in Corollary 4.4.4, can be obtained by fixing a base
point x ∈M and a Z-basis bΛ = {λ1, . . . , λq} for Λx. Then bΛ induces an identification
of G 0

x with the standard torus Tq, so the projection G (x,−) → B(x,−) becomes a
principal Tq-bundle. We can then consider its Chern classes

c1, . . . , cq ∈ H2(S̄,Z) = H B
Z,x,

where we set S̄ := B(x,−). As in Corollary 4.4.4, we denote by

V Aff
0 = ω0 + V lin

0 ⊂ H2(S̄) = H B
x

the fiber of V lin
$ at x and by dev0 : M̃ → Rq the resulting developing map. One then

obtains the following extension of Corollary 4.4.4:

Corollary 5.2.5. — The Chern classes c1, . . . , cq ∈ H2(S̄) generate the space of linear
variations of $:

V lin
0 = SpanR(c1, . . . , cq), V lin

0,Z = SpanZ(c1, . . . , cq).

In the strong s-proper case, the classes c1, . . . , cq are linearly independent and they
form a primitive family, i.e., we have

SpanZ(c1, . . . , cq) = SpanR(c1, . . . , cq) ∩H2(S̄,Z).

Moreover, for any path γ in M starting at x one has

γ∗([ωγ(1)]) = [ωx] + dev1
0(γ)c1 + · · ·+ devq0(γ)cq,

where devi0 are the components of dev0, so we have a commutative diagram:

M̃
var0 //

dev0
  

V Aff
0 ⊂ H2(S̄)

Rq.
(vi)7→[ω0]+

∑
i v
ici

<<
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Remark 5.2.6. — One also has analogous results for twisted DMCTs with the ap-
propriate modifications. The interested reader should be able to find the appropriate
statements and its proofs.

5.3. Examples

5.3.1. The classical Duistermaat-Heckman theorem revisited. — The linear variation
of cohomology, given by Theorems 4.4.2 and 5.2.4, or their more explicit versions
Corollaries 4.4.4 and 5.2.5, are the global versions of the classical Duistermaat-
Heckman Theorem (cf. Theorem 4.1.1). More precisely, we can recover the classical
theorem as follows. Given a free Hamiltonian T-action on a connected symplectic
manifold (S, ω) with moment map µ : S → t∗ we consider the Poisson manifold
M = S/T, whose symplectic leaves are the symplectic reduced spaces Sξ = µ−1(ξ)/T.
This kind of Poisson manifolds furnish examples of PMCTs, and were discussed
in detail in [13, Section 5.4]: there it is shown that if µ is proper an s-connected,
s-proper, symplectic integration is given by:

G = (S ×µ S)/T ⇒ S/T,

with symplectic form Ω induced from pr∗1 ω − pr∗2 ω.
Now observe that for this symplectic integration (G ,Ω) ⇒ S/T:

— the induced orbifold structure on the leaf space B = µ(S) ⊂ t∗ is the submersion
groupoid B(G ) = S/T×µ S/T, so it is smooth;

— the induced integral affine structure on t∗ is the canonical integral affine struc-
ture Λ for which T = t∗/Λ;

— the s-fiber of G through a point in Sξ is (isomorphic to) the principal T-bundle
µ−1(ξ)→ Sξ.

Since the orbifold B(G ) is actually smooth, Theorem 5.2.4 (respectively, Corol-
lary 5.2.5), reduces to its smooth version, Theorem 4.4.2 (respectively, Corol-
lary 4.4.4). The conclusion is that the cohomology class [ωξ] of the symplectic form
of the symplectic reduced space Sξ = µ−1(ξ)/T satisfies:

[ωξ] = [ωξ0 ] + 〈c, ξ − ξ0〉,

where c ∈ H2(Sξ0 ,Λ) is the Chern class of the principal T-bundle µ−1(ξ0) → Sξ0 .
This is precisely the classical result as stated in Theorem 4.1.1.

Actually, in their paper [20], Duistermaat and Heckman allow for non-free actions,
which leads to symplectic reduced spaces µ−1(ξ)/T which are orbifolds. It is not hard
to see that our work on PMCTs can be extended to Poisson orbifolds, which allow to
treat the non-free case. Moreover, our approach extends to the non-regular case [12],
showing that s-proper Poisson manifolds provide the right setting for the globalization
of the Duistermaat-Heckman theorem.
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5.3.2. Regular conjugacy classes. — Let us return to the Cartan-Dirac structure on a
compact, connected Lie group G discussed in Section 4.6.2, and look now at all the
regular conjugacy classes. While the principal orbits are 1-connected, the regular non-
principal orbits are not. As before, (Greg, LG) is a regular φ-twisted Dirac structure,
with an s-connected, s-proper integration provided by the φ-twisted presymplectic
groupoid G n Greg. It induces a transverse affine structure ΛG to the foliation FLG
made of the regular conjugacy classes and its leaf space B = Greg/G is now an integral
affine orbifold.

The orbifold structure on B is determined by the foliation groupoid B in the
sequence (see Theorem 2.0.1):

1 // ν∗(FLG)/Λ // GnGreg // B // 1.

We claim that B is the holonomy groupoid of FLG or, equivalently, that the action
of B on Greg is effective. In fact, if (g, x) ∈ GnGreg maps to h ∈B, then the (local)
action of h is the one of the bisection {g} × Greg of G n Greg. This (local) action is
trivial iff g ∈ Z(G). Since the center is the intersection of all maximal tori, the arrow
h ∈B must be a unit.

The universal cover of Greg is given by

(5.5) G/T× a→ Greg, (gT, ξ) 7→ g exp(ξ)g−1 = exp(Adg ξ),

where a is a Weyl alcove for g, with covering group the quotient of the affine Weyl
groups (see [7]):

Γ = π1(Greg) = WAff
G /WAff .

One has π1(Greg) = π1(G), so there is a covering group Glin → G whose regular part
is the holonomy cover of (Greg,FLG). Hence, the linear holonomy group is:

Γlin = π1(Greg)/π1(Glin) = WAff
G /WAff

Glin .

The covering map (5.5) allows us to identify the twisted symplectic 2-forms on the
leaves (conjugacy classes) by the same Formula (4.13). In fact, the analysis of the
regular part of G is essentially the analysis of the principal part of Glin discussed in
Section 4.6.2. If we fix a non-principal conjugacy class S0 ⊂ Greg\Gprinc through some
point g0 ∈ exp(a), we have S̄0 = B(g0,−) ∼= G/T and, again, we find:
— (νg0(S0),ΛG |g0

) ∼= (t,Λ∗G);
— (H2(S̄0), H2(S̄0,Z)) ∼= (t∗ss,Λw).

We conclude:
(i) B is an orbifold quotient of the integral affine manifold Blin = a/Γlin (endowed

with integral affine structure Λ∗G).
(ii) The developing map dev0 : G̃reg → νg0

(S0) is now given by:

dev0 : (G/T× a,Λ∗G)→ (t,Λ∗G),

where one first projects onto a and then takes the inclusion.
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(iii) The linear variation varlin
$ : νg0(S0) → H2(S̄0) is the identification t ∼= t∗ given

by the inner product followed by the projection onto the semisimple factor

varlin
$ : (t,Λ∗G)→ (t∗ss,Λw).

(iv) The pullback to G̃reg = G/T × a of the bundle H B of twisted 2-cohomology
groups trivializes and has the flat section ξ 7→ [χ̃ξ], which allows to identify the
linear and affine variation.

(v) After the previous identification, the variation map var$ : G̃reg → H2(S̄0)

becomes the projection to a, followed by the inclusion in t, the identification
t ∼= t∗, and then the projection onto the semisimple factor:

var$ : (G/T× a,Λ∗G)→ (t∗ss,Λ
∨
w).
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CHAPTER 6

MEASURES AND THE DUISTERMAAT-HECKMAN FORMULA

Another fundamental property of PMCTs is the existence of natural invariant vol-
ume forms/measures. Given a regular Poisson manifold of proper type (M,π) and an
s-connected, proper integration (G ,Ω) ⇒M we will see that the leaf space B = M/Fπ
carries a natural measure. The basic idea is simple: an integral affine structure gives
rise to a density, hence to a measure. However, since B is an orbifold we need a bit
of care with the role of the groupoid in this construction. The outcome will be that
any s-connected, proper integration (G ,Ω) induces a measure on B, called the integral
affine measure induced by (G ,Ω) and denoted µG

Aff (we omit the dependence in Ω in
the notation, but the reader should keep in mind that this construction depends on
having a proper symplectic integration).

In the s-proper case there is yet another natural measure on B: the one obtained by
pushing down the Liouville measure associated to the symplectic form Ω. One obtains
a measure on B, called the Duistermaat-Heckman measure induced by (G ,Ω) and de-
noted by µG

DH. As we shall see, the relationship between µG
Aff and µG

DH can be described
via a Duistermaat-Heckman formula, involving the volumes of the symplectic leaves.

6.1. Measures on leaf spaces

We start by fixing some notations and terminology. First of all, by a measure on a
locally compact Hausdorff space X we mean here a Radon measure in the sense of a
positive linear functional

µ : Cc(X)→ R

defined on the space Cc(X) of compactly supported continuous function on X. Al-
though we will not use set-measures, it is still handy to use the notation

µ(f) =

∫
X

f(x) dµ(x).

When M is a smooth manifold one can use C∞c (M) instead of Cc(M). Moreover,
in this case one can talk about geometric measures: if Dc(M) denotes the space of
compactly supported sections of the density bundle DM = | ∧top T ∗M |, then each
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density ρ ∈D(M) = Γ(M,DM ) induces a linear functional

µρ : C∞c (M)→ R, µρ(f) :=

∫
M

fρ,

which is a measure whenever ρ is positive. WhenM is an oriented manifold, we can use
the orientation to identify DM with ∧topT ∗M , hence to integrate top forms instead
of densities.

An integral affine structure Λ on a manifold M induces a density ρΛ: locally, if
λ1, . . . , λn is a coframe that spans Λ ⊂ T ∗M , then

ρΛ = |λ1 ∧ · · · ∧ λn|.

Of course, if M is oriented, then one case use oriented coframes to obtain a volume
form ηΛ and ρΛ = |ηΛ|.

Notice that forms, densities or measures on manifolds give sheaves

X 7→ Ω•(X), D(X), or M (X),

to which one can apply Haefliger’s transverse geometry approach (see Remarks 2.3.3
and 2.6.8). This leads to well-defined notions of differential forms Ω•(B,B), densities
D(B,B) and measures Morbi(B,B) on any orbifold (B,B): if E ⇒ T is an étale
orbifold atlas then one considers invariant forms Ω•(T )E , invariant densities D(T )E

and invariant measures M (T )E . It is easy to see that, in these cases, the resulting
objects depend only on the underlying classical orbifold.

The following shows that Morbi(B,B) can be identified with M (B)-the space
ordinary of measures on the locally compact Hausdorff space B.

Lemma 6.1.1. — Given a étale orbifold atlas E ⇒ T with quotient map p : T → B,
there is a 1-1 correspondence:

{measures µ on B} 1−1←→ {E − invariant measures µ̃ on T}.

Explicitly, it is uniquely determined by µ̃ = µ ◦ p!, where

p! : C∞c (T )→ C∞c (B), p!(f)(p(x)) =
∑

g∈s−1(x)

f(t(g)).

Remark 6.1.2. — It is instructive to realize that, in the resulting bijection

M (B) ∼= Morbi(B,B),

the left hand side depends only on the topological space B, the right hand side depends
only on the classical orbifold underlying (B,B), but the isomorphism depends on the
full orbifold structure (p! above depends on E !). A simple but already illustrative
example is obtained when B is a smooth manifold but we endow it with a non-
smooth orbifold structure with orbifold atlas B := Γ n B ⇒ B, where Γ is a finite
group acting trivially on B; while Morbi(B,B) = M (B), the previous isomorphism
introduces a factor |Γ|, the cardinality of Γ.
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More generally, this discussion extends to any foliation groupoid E ⇒M , so one can
talk about E -transverse forms, E -transverse densities and E -transverse measures: one
considers invariant forms Ω•(T )ET , invariant densities D(T )ET and invariant measures
M (T )ET , where T ⊂M is any complete transversal to the E -orbit foliation. Of course,
for a proper foliation (M,F ) the structures on the orbifold B = M/F coincide with
the transverse structures on (M,F ).

For any foliation groupoid E ⇒M there is a 1:1 correspondence:{
E -transverse forms
ρT ∈ Ω•(T )ET

}
1−1←→

{
invariant sections
ρν ∈ Γ(∧•ν∗(F )

}
,

where by “invariant” we mean invariant under linear holonomy, i.e., satisfying:

∇Xρν = 0, ∀X ∈ X(F ),

where ∇ is the Bott connection. Similarly, for densities we have:{
E -transverse densities
ρT ∈D(T )ET

}
1−1←→

{
invariant sections
ρν ∈ Γ(Dν)

}
,

where Dν = | ∧top ν∗(F )|. These correspondences are obtained by considering the
Morita equivalence:

(6.1) G

����

!! s−1(T )

t
ww

s
''

}} GT

����

M T.

For each g ∈ s−1(T ), we obtain an isomorphism:

νt(g)(F ) νg(s
−1(s(g)))

dgt
oo

dgs
// Ts(g)T.

The isomorphisms determined by two arrows with the same source and target differ by
the action of an element of E on the normal space to the orbit, i.e., the linear holonomy
action. This gives the desired 1-1 correspondence between elements ρT ∈ Ω•(T )ET and
invariant sections ρν ∈ Γ(∧topν∗(F )).

Using this correspondence, we conclude:

Proposition 6.1.3. — Let E ⇒ M be a proper foliation groupoid integrating F . Each
transverse integral affine structure Λ ⊂ ν∗(F ) determines a measure µAff on the
orbifold M/F which is represented by the invariant density ρνAff ∈ Γ(Dν) given by:

ρνAff |x = |λ1 ∧ · · · ∧ λn|,

where λ1, . . . , λn is any basis of Λx.
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Lemma 6.1.1 tells us how to compute the resulting integrals by working on a
transversal, but it is desirable to work directly at the level of M . For that, observe
that the short exact sequence:

0 // TF // TM // ν(F ) // 0

induces an isomorphism between the associated density bundles:

Dν 'DT∗F ⊗DM .

So we can decompose any invariant density ρν ∈ Γ(Dν) as:

ρν = ρ∗F ⊗ ρM ,

where ρF is a density along the leaves of F and ρM is a density on M .

Proposition 6.1.4. — Let E ⇒M be a proper foliation groupoid integrating F . If µB is
a geometric measure on the orbifold B = M/F represented by an invariant density
ρν ∈ Γ(Dν), then for any f ∈ C∞c (M) one has:∫

M

f(x) dµM (x) =

∫
B

(
ι(b)

∫
Sb

f(y) dµSb(y)

)
dµB(b),

where µSb is the measure on the leaf Sb and µM the measure on M associated with
any decomposition ρν = ρ∗F ⊗ ρM , while ι : B → N is the function that for each b ∈ B
counts the number of elements of the isotropy group Ex (x ∈ Sb).

Proof. — First we claim that it is enough to prove the theorem in the case where
(M,F ) admits a complete transversal T which intersects each orbit a finite number
of times. In fact, recall that proper groupoids admit invariant partitions of unit, so it
is enough to proof the theorem in the case whereM is the saturation of a small enough
transversal T to some orbit. Since the leaves of a proper groupoid are embedded and
the leaf space is Hausdorff, we can choose the small transverse T so that it intersects
each orbit on a finite set. This proves the claim.

Now assume that we have fixed a µB is a geometric measure on the orbifold B =

M/F represented by an invariant density ρν ∈ Γ(Dν), and that we have chosen
some decomposition ρν = ρ∗F ⊗ ρM . We consider the Morita equivalence (6.1). Since
t : s−1(T )→M is a local diffeomorphism, on the space s−1(T ) we have the pullback
density t∗ρM . We pick some f ∈ C∞c (M) and we compute the integral:∫

s−1(T )

1

|E (t(g), T )|
f(t(g)) dt∗µM (g),

in two different ways:
(i) If we apply fiber integration along the proper submersion t : s−1(T ) → M , we

obtain: ∫
s−1(T )

1

|E (t(g), T )|
f(t(g)) dt∗µM (g) =

∫
M

f(x) dµM (x).
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(ii) If we apply fiber integration along the proper submersion s : s−1(T ) → T , we
obtain:∫

s−1(T )

1

|E (t(g), T )|
f(t(g)) dt∗µM (g) =

∫
s−1(T )

1

|E (t(g), T )|
f(t(g)) (t∗ρF ⊗ t∗ρν)(g)

=

∫
T

(
1

|E (x, T )|

∫
s−1(x)

f(t(g)) dµs−1(x)(g)

)
dµT (x)

=

∫
T

(
|Ex|

|E (x, T )|

∫
Sx

f(y) dµSx(y)

)
dµT (x),

where we first used that ρM = ρν ⊗ ρF and then that t restricts to a cover on
each fiber s−1(x) with covering group Ex. Using Lemma 6.1.1, we conclude that:∫
s−1(T )

1

|E (t(g), T )|
f(t(g)) dt∗µM (g) =

∫
B

(
ι(b)

∫
Sb

f(y) dµSx(y)

)
dµB(b),

where ι(b) = |Ex| for any x with p(x) = b.
Putting (i) and (ii) together the proposition follows.

6.2. A Weyl type integration formula

Let (M,π) be a regular Poisson manifold. The leafwise symplectic form gives the
leafwise Liouville volume form:

ωtop
Fπ

top!
∈ Ωtop(Fπ).

This induces a 1:1 correspondence between top degree forms η ∈ Ωtop(M) and sections
ην ∈ Γ(∧topν∗(Fπ)) by setting:

η =
ωtop

Fπ

top!
⊗ ην .

It turns out that under this correspondence the transverse invariant densities/volume
forms correspond to the Hamiltonian invariant densities/volume forms in (M,π), in
the sense of the following definition:

Definition 6.2.1. — A Hamiltonian invariant volume form/density/measure µ on a
Poisson manifold (M,π) is any volume form/density/measure η onM which is invari-
ant under the flow of any Hamiltonian vector field Xh, i.e.,:

£Xhη = 0, ∀h ∈ C∞(M).

In fact, we have:

Proposition 6.2.2. — For a regular Poisson manifold (M,π) the assignment η 7→ ην

gives a 1-1 correspondence between:
(i) Hamiltonian invariant volume forms η ∈ Ωtop(M),
(ii) transverse volume forms ην ∈ Γ(∧topν∗(Fπ)).
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Proof. — It is immediate to check that if η =
ωtop

Fπ

top! ⊗ η
ν , then:

£Xhη =
ωtop

Fπ

top!
⊗∇Xhην ,

so the result follows.

A similar discussion holds for densities where one replaces the foliated volume
form ωtop

Fπ
by the foliated density |ωtop

Fπ
|.

Let now (G ,Ω) be an s-connected, proper integration of a Poisson manifold (M,π).
It gives rise to a transverse integral affine structure Λ ⊂ ν∗(Fπ) and an orbifold
structure B(G ) on B = M/Fπ. Hence, we obtain (see Propositions 6.1.3 and 6.2.2):

— a integral affine measure µAff on the orbifold (B,B(G ));
— a integral affine transverse density ρνAff on (M,Fπ) representing µAff ;
— a Hamiltonian invariant density ρM on (M,π) corresponding to ρνAff .

The integral affine transverse density and the Hamiltonian invariant density are re-
lated by:

(6.2) ρM :=
|ωtop

Fπ
|

top!
⊗ ρνAff .

The resulting measure µM on M is an incarnation of the integral affine measure µAff

on B at the level of M .
As a consequence of Proposition 6.1.4, we obtain:

Theorem 6.2.3. — Given an s-connected, proper integration (G ,Ω) of a regular Poisson
manifold (M,π), one has for any f ∈ C∞c (M),∫

M

f(x) dµM (x) =

∫
B

(
ι(b)

∫
Sb

f(y) dµSb(y)

)
dµAff(b),

where µSb is the Liouville measure of the symplectic leaf Sb, and ι : B → N is the func-
tion that for each b ∈ B counts the number of connected components of the isotropy
group Gx (x ∈ Sb).

Proof. — The result follows immediately by applying Proposition 6.1.4 to the folia-
tion groupoid B(G ) associated with G in the short exact sequence (see Theorem 2.6.9):

1 // T (G ) // G // B(G ) // 1,

where T (G ) is the bundle of Lie groups consisting of the identity connected com-
ponents of the isotropy Lie groups Gx. Notice that |B(G )x| is exactly the number of
connected components of Gx.

In the s-proper case the leaves are compact, hence they have finite symplectic
volume, and we obtain:
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Corollary 6.2.4. — If (G ,Ω) is an s-connected, s-proper integration of a regular Poisson
manifold (M,π), then for any h ∈ C∞c (B):∫

M

h(p(x)) dµM (x) =

∫
B

ι(b) vol(Sb)h(b) dµAff(b),

where vol(Sb) is the symplectic volume of Sb, and ι : B → N is the function that
for each b ∈ B counts the number of connected components of the isotropy group Gx
(x ∈ Sb).

If G is a compact, connected Lie group with Lie algebra g and T is a maximal
torus, Weyl’s integration formula asserts that there is an isomorphism:

C∞(g) ∼= C∞c (G/T× t)W f(x) 7→ F (gT, u) := f(Ad(g)(u))|det(Adu)g/t|,

and for fixed Ad-invariant measures µg and µt:∫
f(x)µg(x) =

1

|W |

∫
t

(∫
G/T

f(Ad(g)(u))µg/t(gT)

)
|det(Adu)g/t|µt(u).

HereW = N(T)/T denotes the Weyl group. In [12] we shall prove that Weyl’s formula
is the result of specializing to (g∗, πlin) (with integration (T ∗G,ωcan)) an integration
formula generalizing Corollary 6.2.4 for arbitrary Poisson manifolds of s-proper type.

6.3. The Duistermaat-Heckman measure

The discussion above was valid for general PMCTs. When the Poisson manifold is
s-proper there is another natural measure associated with the PMCT: if (G ,Ω) is an
s-proper integration of (M,π), then it is natural to consider the measure on B = M/G

obtained as the push-forward of the Liouville measure µΩ:

µDH := (pB)∗(µΩ)

along the proper map pB := p ◦ s = p ◦ t : G → B. We will show that:

Theorem 6.3.1. — If (G ,Ω) is an s-connected, s-proper integration of (M,π) then

(6.3) µΩ
DH = (ι · vol)2µAff ,

where vol : B → R is the leafwise symplectic volume function and ι : B → N counts the
number of connected components of the isotropy group of a symplectic leaf. Moreover,
(ι · vol)2 is a polynomial for the orbifold integral affine structure.

The rest of this section is devoted to the proof of the theorem. First, assuming
(6.3) to hold, we show that (ι · vol)2 is a polynomial in (B,Λ). Note that its pullback
to M is a Casimir. Another Casimir, which we know to be a polynomial on (B,Λ)

by Theorem 5.2.4, is the function p∗ vol2B, associating to a leaf Sx the square of the
symplectic volume of B(x,−). We now have two non-zero Casimirs which on each
leaf differ by an integer multiple; therefore their ratio is a constant.
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Now we turn to the proof of (6.3). First of all, recall that the push-forward of
measures is defined whenever we have a proper map p : P → B between locally
compact Hausdorff spaces: it is the map given by

p∗ : M (P )→D(B), (p∗µ)(f) = µP (f ◦ p).

or in the integral formula notation:∫
B

f(b) d(p∗µ)(b) =

∫
P

f(p(x)) dµ(x).

When p : P → B is a proper submersion this operation transforms geometric measures
into geometric measures, and amounts to fiber integration of densities:

p! =

∫
p−fibers

: Dc(P )→Dc(B).

More precisely, the short exact sequence induced by the dp : TP → TB yields, for
each x ∈ P , a canonical decomposition:

DP,x
∼= Dp

x ⊗DB,p(x),

where Dp is the bundle of densities along the fibers of p. Hence, given ρ ∈D(P ), for
any b ∈ B we can view the restriction ρ|p−1(b)

as an element of D(p−1(b))⊗DB,b and
one can integrate along the fiber to obtain:

p!(ρ)(b) :=

∫
p−1(b)

ρ|p−1(b)
∈DB,b.

By Fubini’s theorem we conclude that p∗(µρ) = µp!(ρ).
We apply this to an s-connected, s-proper integration (G ,Ω) of (M,π). The

Duistermaat-Heckman density µΩ
DH = p∗s∗(µΩ) can be understood in two steps. The

first one is integration along the s-fibers giving rise to a density on M :

ρMDH :=

∫
s−fibers

|Ωn|
n!
∈D(M).

Lemma 6.3.2. — µMDH is an invariant measure.

Proof. — The source map s : (G ,Ω) → (M,π) is Poisson. Hence, if f ∈ C∞(M) the
Hamiltonian vector fields Xf and Xs∗f are s-related and we have:

£Xfµ
M
DH =

∫
s

£Xs∗f

|Ωn|
n!

= 0.

The second step is to push-forward the measure µMDH along the map p : M → B,
resulting in µΩ

DH = p∗µ
M
DH. Since Theorem 6.2.3 shows that p∗(µM ) = ι · vol ·µAff , the

proof of Theorem 6.3.1 is completed by proving the following:

Lemma 6.3.3. — One has ρMDH = ι · vol ·ρM . In other words, at each x ∈M , one has

µMDH(x) = ι(x) · vol(Sx) ·
ωmSx
m!
∧ λ1 ∧ · · · ∧ λq,
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where {λ1, . . . , λq} ⊂ νx(Fπ) is any basis of the transverse integral affine structure
determined by G .

Proof. — We fix a point x ∈M , we denote by S the leaf through x and let

p = dim(S), q = dim(νx(Fπ)), n = p+ q.

For any g ∈ G the short exact sequence:

0 // Tg(s
−1(x)) // TgG

dgs
// TxM // 0

gives a canonical isomorphism

DTgG
∼= DTg(s−1(x)) ⊗DTxM .

This leads to a decomposition of the Liouville density

(6.4)
|Ωng |
n!

= ξg ⊗ ρM,x, with ξg ∈DTgs−1(x).

We conclude that:

ρMDH(x) =

∫
s−fibers

|Ωn|
n!

=

(∫
s−1(x)

ξ

)
ρM (x).

Next, there is a similar short exact sequence

0 // TgG (x, y) // Tgs
−1(x)

dgt
// TyS // 0

which induces a decomposition

DTgs−1(x)
∼= DTgG(x,y) ⊗DTyS .

Hence, we can write

(6.5) ξg = ηg ⊗
|ωtop
S |

top!
, with ηg ∈DTgs−1(x).

Using this decomposition, we see that:∫
s−1(x)

ξ =

∫
S

(
|ωtop
S |

top!
(y)

∫
G(x,y)

η(g)

)
.

Therefore, to prove the lemma, it suffices to show that∫
G(x,y)

η(g) = ι(x),

the number of connected components of Gx = G (x, x). The compact Lie group Gx
comes with its bi-invariant Haar density

Haar(Gx) ∈D(Gx).

Left translation La : Gx → G (x, y) by any a : x → y gives a similar density
Haar(G (x, y)) on G (x, y). Because the total volume with respect to the Haar density
is 1, it suffices to show that η = ι(x) Haar(G (x, y)).
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Notice that Haar(Gx) = 1
ι(x) Haar(G 0

x), where the Haar density on the identity
component (a torus) is induced by lattice given by the kernel of its exponential
map. Denote by {λ1, . . . , λq} a basis of the integral lattice ΛG ,x ⊂ ν∗x(Fπ) and
let {λ̃1, . . . , λ̃q} ⊂ gx the corresponding basis of the kernel of the exponential map.
Using left translations, the last vectors define vector fields on s−1(x) which we denote
by {
←−
λ1, . . . ,

←−
λq}. Then:

Haar(G (x, y)) =
1

ι(x)
|
←−
λ1 ∧ · · · ∧

←−
λq|.

Therefore we are left with proving that:

(6.6) ηg(
←−
λ1 ∧ · · · ∧

←−
λq) = 1,∀g ∈ G (x, y).

For that we have to unravel the construction of ηg, which goes via the decomposi-
tions (6.4) and (6.5). First note that we can choose a basis {X1, . . . , Xn, Y 1, . . . , Y n}
for TgG with the following properties:
(a) X1, . . . , Xn is a basis of Ker(dgs);
(b) Xp+1 =

←−
λ1|g, . . . , X

n =
←−
λq|g is a basis of Ker(dgs) ∩Ker(dgt);

(c) Y 1, . . . , Y p, Xp+1, . . . , Xn is a basis of Ker(dgt);
(d) {dgs(Y p+1), . . . ,dgs(Y

p+1)} is the basis of the dual lattice Λ∨G ,x ⊂ νx(Fπ), dual
to the basis {λ1, . . . , λq}.

Then we see that:
(i) Decomposition (6.4) gives:

|Ωng (X1, . . . , Xn, Y 1, . . . , Y n)|
n!

= ξg(X
1, . . . , Xn) · ρM,x(ds(Y 1), . . . ,ds(Y n)).

(ii) Decomposition (6.5) gives:

ξg(X
1, . . . , Xn) =

|ωtop
S (dt(X1), . . . ,dt(Xp))|

top!
· ηg(Xp+1, . . . , Xn).

(iii) Relation (6.2) and Proposition 6.1.3 together with (d) gives:

ρM (ds(Y 1), . . . ,ds(Y n)) =
|ωtop
S (ds(Y 1), . . . ,ds(Y p))|

top!
· ρAff
ν (ds(Y p+1), . . . ,ds(Y n))

=
|ωtop
S (ds(Y 1), . . . ,ds(Y p))|

top!
.

Putting (i), (ii) and (iii) together, we find that

(6.7)
|Ωng (X1, . . . , Xn, Y 1, . . . , Y n)|

n!
= ηg(X

p+1, . . . , Xn)

·
|ωtop
S (dt(X1), . . . ,dt(Xp))|

top!
·
|ωtop
S (ds(Y 1), . . . ,ds(Y p))|

top!
.
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We now compute the left hand side of (6.7). For that we use that the s and t-fibers
are Ω-orthogonal, so by (b) it follows that:

iXp+1 · · · iXn(Ωn) =
n!

q!p!
iXp+1 · · · iXn(Ωq) · Ωp.

By (a) and (c) we have that for 1 ≤ j ≤ p, the covector Ω(Xj ,−) vanishes on all the
Xi and on all Y 1, . . . , Y p, so this last relation gives:

|Ωng (X1, . . . , Xn, Y 1, . . . , Y n)|
n!

=

=
|Ωq(Xp+1, . . . , Xn, Y p+1, . . . , Y n)|

q!
· |Ω

p(X1, . . . , Xp, Y 1, . . . , Y p)|
p!

,

=
|Ωq(Xp+1, . . . , Xn, Y p+1, . . . , Y n)|

q!
· |Ω

k(X1, . . . , Xp)|
k!

· |Ω
k(Y 1, . . . , Y p)|

k!
,

where we have written 2k = p. Moreover, since the restriction of Ω to the s-fibers
coincides with the pull-back of ωS via t, and similarly for the t-fibers, we find that

Ωp(X1, . . . , Xp, Y 1, . . . , Y q)

p!
=
ωkS(dt(X1), . . . ,dt(Xp))

k!
· ω

k
S(ds(Y 1), . . . ,ds(Y p))

k!
.

It follows that (6.7) can be reduced to:

ηg(X
p+1, . . . , Xn) =

Ωq(Xp+1, . . . , Xn, Y p+1, . . . , Y n)

q!
.

Now we observe that by the multiplicativity of Ω we have:

Ω(Xp+j , Y p+j) = Ωg(
←−
λig, Y

p+j
g ) = Ωx(λj ,ds(Y p+jg )) = δi,j ,

where we used (d). Since Ω(Xp+i, Xp+j) = 0 for all i, j = 1, . . . , q, we find that

ηg(X
p+1, . . . , Xn) =

Ωq(Xp+1, . . . , Xn, Y p+1, . . . , Y n)

q!
= 1,

which shows that (6.6) holds and completes the proof.

As we shall show in [12] Theorem 6.3.1 holds for arbitrary Poisson manifolds of
s-proper type. In fact, the polynomial (ι · vol)2 will play a fundamental role in the
study of global properties of non-regular Poisson manifolds of s-proper type [12].

Example 6.3.4 (The classical case). — Consider a free Hamiltonian T-action on a con-
nected symplectic manifold (S, ω) with a proper moment map µ : S → t∗, so that
M = S/T is a Poisson manifold with leaf space µ(S) ⊂ t∗. As we observed in Sec-
tion 5.3.1, the s-connected, s-proper symplectic integration G = (S ×µ S)/T induces
on t∗ the integral affine structure Λ for which T = t∗/Λ. Hence, the integral affine
measure µAff on the leaf space is the usual Lebesgue measure on t∗.

On the other hand, µΩ
DH does not quite coincide with the classical Duistermaat-

Heckman measure µωDH: the latter is defined as the push-forward under the moment
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map µ : S → t∗ of the Liouville measure µω (see the discussion preceding Corol-
lary 4.1.2). However, as in that discussion, one can show using the local model that
the two measures are related by:

µΩ
DH = vol ·µωDH.

Of course this also follows from the classical result of Duistermaat-Heckman and our
Theorem 6.3.1.

The isotropy groups of G all coincide with T, hence, are connected. Therefore, the
function ι : B → N assumes the constant value 1, and Theorem 6.3.1 gives:

µΩ
DH = (vol)2 · µAff .

We conclude that Theorem 6.3.1 recovers Corollary 4.1.2 and the polynomial nature
of the classical Duistermaat-Heckman measure on t∗. Note that, for a general PMCT,
while the function ι · (vol)2 : B → R is polynomial, the functions vol : B → R and
ι · vol : B → R are not even smooth. This justifies our definition of the Duistermaat-
Heckman measure.

Remark 6.3.5. — This section is related to Weinstein’s work on measures on stacks
[53]. According to his philosophy, the measures to consider in Poisson Geometry should
arise by interpreting the symplectic groupoid as a stack. Our approach here is more
direct approach, using the foliation groupoid instead of the full symplectic one. The
precise relationship between the two is explained in [14].
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CHAPTER 7

PROPER ISOTROPIC REALIZATIONS

Many algebraic or geometric objects can be studied via their representations. This
philosophy also applies to Poisson Geometry, where the representations of a Poisson
manifold take the concrete form of symplectic realizations (see below). For instance,
the integrability of a Poisson manifold is equivalent to the existence of a complete
symplectic realization [11]. In this chapter we show that the properness of a Poisson
manifold is closely related to the existence of proper isotropic realizations.

More precisely, to any proper isotropic realization q : (X,ΩX) → (M,π) we will
associate a symplectic integration of (M,π)-the holonomy symplectic groupoid relative
to X, denoted by HolX(M,π). It is the smallest integration that acts on X symplec-
tically and it will play an import role in the last two chapters of the paper. There we
will introduce the Lagrangian Dixmier-Douady class of a proper integration and the
ones with vanishing class are precisely the holonomy symplectic groupoids relative to
some proper isotropic realization.

Proper isotropic realizations appeared first in the work of Dazord and Delzant [18],
under the name of symplectically complete isotropic fibrations, as special fibrations of
symplectic manifolds that generalize Lagrangian fibrations. From that point of view,
this chapter generalizes the fact that the base of a proper Lagrangian fibration inherits
an integral affine structure: we will show that the base of a proper symplectically
complete isotropic fibration with connected fibers is a Poisson manifold of proper
type.

7.1. Symplectic realizations and Hamiltonian G -spaces

Recall that a symplectic realization of a Poisson manifold (M,π) is a symplectic
manifold (X,ΩX) together with a Poisson submersion

q : (X,ΩX)→ (M,π).

The symplectic realization is called complete if for any complete Hamiltonian vector
field Xh ∈ X(M) the pullback Xh◦q ∈ X(X) is complete. Of course, if q is proper
then it is complete. While every Poisson manifold admits a symplectic realization, for
complete symplectic realizations one has:
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Theorem 7.1.1 ([11]). — A Poisson manifold is integrable if and only if it admits a
complete symplectic realization.

Note however that, as the canonical integration Σ(M,π) may already fail to be
Hausdorff, in the previous theorem one has to allow for non-Hausdorff symplectic
realizations (cf. [11, Remark 1]). However, we will soon impose conditions that ensure
that all the manifolds involved are Hausdorff.

We recall in Appendix A that for a symplectic integration (G ,Ω) ⇒ (M,π) the mo-
ment map of an infinitesimally free Hamiltonian G -space (X,ΩX) yields a symplectic
realization of (M,π). This motivates:

Definition 7.1.2. — Given a symplectic realization q : (X,ΩX)→ (M,π), a symplectic
integration (G ,Ω) ⇒ (M,π) is called X-compatible if there is a symplectic G -action
with moment map q : X →M :

(G ,Ω)

����

!! (X,ΩX)

q
uu

(M,π).

Every complete symplectic realization admits compatible integrations: the proof of
Theorem 7.1.1 given in [11] shows that the Weinstein groupoid acts on every complete
symplectic realization. In fact, we have (see also Appendix A):

Proposition 7.1.3. — For a Poisson manifold (M,π), the complete symplectic real-
izations of (M,π) are the same thing as the moment maps of infinitesimally free
Σ(M,π)-Hamiltonian spaces.

It will be useful to recall the construction from [11], that shows how the infinitesimal
action determined by the realization q : (X,ΩX)→ (M,π):

σ : q∗T ∗M → X(X), iσ(α)(ω) = q∗α,

integrates to a symplectic action:

(Σ(M,π),Ω)

����

!! (X,ΩX)

q
uu

(M,π).

For that, let a : I → T ∗M be a cotangent path with base path γa : I →M and choose
u ∈ X in the fiber over the initial point γ(0). Since q is complete, it follows that there
is a unique path γ̃ua : I → X with q(γ̃ua (t)) = γa(t) and satisfying:{

d
dt γ̃

u
a (t) = σ(a(t)),

γ̃ua (0) = u.

We call γ̃ua the horizontal lift of the cotangent path a with initial point u. It is
easy to check that the horizontal lifts are leafwise paths in the symplectic orthogonal
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foliation (ker dq)⊥. It is proved in [11] that two cotangent paths with the same initial
point are cotangent homotopic if and only if their horizontal lifts are leafwise homo-
topic relative to the endpoints (and if this holds for some initial point u it holds for
any other point in the fiber).

In summary, one can characterize the canonical integration Σ(M,π) ⇒ M from
the realization q : (X,ΩX)→ (M,π) as:

(7.1) Σ(M,π) =
{cotangent paths a : I → T ∗M}

cotangent paths w/ lifts leafwise homotopic in (ker dq)⊥
.

If we denote by [a] the class of a cotangent path, the symplectic action of Σ(M,π)

on q : X →M is then given by:

(7.2) Σ(M,π)s ×q X → X, ([a], u) 7→ γ̃ua (1).

The action gives an isomorphism of Lie groupoids:

(7.3) Σ(M,π) nX ∼= Mon((ker dq)⊥), ([a], u) 7→ [γ̃ua ].

Since Σ(M,π) ⇒ M acts on any symplectic realization and it is the largest, s-
connected, symplectic integration of (M,π), it is natural to wonder:

— Given a symplectic realization q : (X,ΩX) → (M,π), is there is a “smallest”
X-compatible, s-connected, symplectic integration?

The minimality property of the holonomy groupoid of a foliation suggests that, to
construct such a groupoid, one should replace in the description (7.1) of Σ(M,π)

“homotopy” by “holonomy”.
In other words, we define a new equivalence relation between cotangent paths

a1, a2 : I → T ∗M , which we call cotangent holonomy rel X, by:

a1 ∼h a2 iff

{
their horizontal lifts at any point u, γ̃ua1

, γ̃ua2
: I → X,

have the same holonomy in (ker dq)⊥.

Notice that the base paths of cotangent holonomic paths have the same end points.
Also, it is clear that:

(a) If a0 and a1 are cotangent homotopic then they are also cotangent holonomic
rel X;

(b) If a0 and b0 are cotangent holonomic rel X to a1 and b1, respectively, then the
concatenations a0 · b0 and a1 · b1, if defined, are cotangent holonomic rel X.

Therefore, we are led to the following:

Definition 7.1.4. — The holonomy symplectic groupoid relative to q : (X,ΩX)→M is
the groupoid HolX(M,π) ⇒M defined by:

HolX(M,π) :=
{cotangent paths}

cotangent holonomy rel X
,

with the obvious structure maps. Denote by [a]h the class of a cotangent path a.
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There is an obvious groupoid action:

HolX(M,π)

����

!! X

q

vv
M,

which gives a morphism of groupoids:

(7.4) HolX(M,π) nX → Hol((ker dq)⊥), ([a]h, u) 7→ [γ̃ua ]h.

In good cases HolX(M,π) will indeed be the “smallest” X-compatible integration
of (M,π) and the last morphism will be an isomorphism of Lie groupoids.

Example 7.1.5. — For any symplectic groupoid (G ,Ω) ⇒ (M,π), the target map
t : G → M yields a complete symplectic realization of (M,π). We claim that in this
case we have a natural isomorphism:

HolG (M,π) ∼= G .

Indeed, the symplectic orthogonal foliation to the t-fibers is the foliation given by
the s-fibers, which obviously has trivial holonomy. Hence, given a cotangent path
a : I → T ∗M starting at x ∈ M , if one denotes by γ̃a : I → G the unique horizontal
lift through 1x, then one has a well defined map [a]h → γ̃a(1) and this defines the
desired isomorphism from HolG (M,π) onto G .

Example 7.1.6. — A Lagrangian fibration q : (X,ΩX) → B with compact connected
fibers is a complete symplectic realization of the zero Poisson structure π ≡ 0. We
claim that in this case we have a natural isomorphism:

HolX(B, 0) ∼= TΛ,

the symplectic torus bundle associated with the integral affine structure Λ ⊂ T ∗B

(see Proposition 3.1.6). Indeed, in this case the symplectic orthogonal foliation to
the fibers coincides with the fibers, and so has trivial holonomy. A cotangent path
a : I → T ∗B starting at x ∈ M is just an ordinary path a : I → T ∗xB and it is
cotangent homotopic to the constant path α =

∫ 1

0
a(t)dt (see [11]). For a constant

path α ∈ T ∗xB, the horizontal lift through u ∈ X is the path t 7→ φtα(u) (same notation
as in the proof of Proposition 3.1.6) and we conclude that:

a1 ∼h a2 iff
∫ 1

0

a1(t)dt−
∫ 1

0

a2(t)dt ∈ Λ.

Hence, the map [a]h →
∫ 1

0
a(t)dt (mod Λ) gives the desired isomorphism from

HolX(B, 0) onto TΛ.
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7.2. The holonomy groupoid relative to an isotropic realization

In general, for a proper Poisson manifold (M,π) the canonical integration
Σ(M,π) ⇒ M will fail to be proper. For a symplectic realization, the holonomy
groupoid HolX(M,π) constructed in the previous section is a smaller integration with
better chances of being proper. When HolX(M,π) is a proper symplectic groupoid
then, according to Theorem 3.3.1, it will determine a transverse integral affine
structure on (M,Fπ). We focus now on a class of proper symplectic realizations to
which one can always attach a transverse integral affine structure:

Definition 7.2.1. — An isotropic realization of a Poisson manifold (M,π) is a symplec-
tic realization q : (X,ΩX)→ (M,π) whose fibers are connected isotropic submanifolds
of (X,ΩX).

Remark 7.2.2. — Dazord and Delzant have studied in [18] the notion of a symplecti-
cally complete isotropic fibration of a symplectic manifold (X,ΩX). It is defined as a
fibration q : X →M satisfying two properties:

(i) the fibers of q are isotropic;
(ii) the symplectic orthogonal (ker dq)⊥ is an integrable distribution.

If one assumes additionally that the fibers of q are connected it follows thatM carries
a unique Poisson structure such that q : (X,ΩX)→ (M,π) is a Poisson map, therefore
making q into an isotropic realization of (M,π). Conversely, any isotropic realization
of a Poisson manifold satisfies Dazord-Delzant’s conditions.

However, while the two notions are equivalent, they do reflect two different points
of view, depending on whether one emphasizes the Poisson manifold (M,π) or the
symplectic manifold (X,ΩX), respectively. The second point of view makes it clear
that we are dealing with a generalization of the notion of a Lagrangian fibration of a
symplectic manifold (see Section 3.1).

Generalizing from proper Lagrangian fibrations, any proper isotropic realization
also has an associated lattice. The infinitesimal action σ : q∗T ∗M → X(X) associated
with the Poisson map q : X → M (see Appendix A) restricts to an action σ :

ν∗(Fπ)→ X(X), which integrates to a global (bundle of groups) action:

(7.5) ν∗(Fπ)

��

!! X

q

ww
M

α · u = φ1
σ(α)(u).

Of course, this is just a particular case of the previous discussion: the exponential
map exp : ν∗x(Fπ)→ Σ(M,x)0 identifies this action with the restriction of the action
of Σ(M) on X to the connected component of its isotropy.
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Definition 7.2.3. — The lattice associated to the proper isotropic realization
q : (X,ΩX)→ (M,π) is the lattice ΛX ⊂ ν∗(Fπ) given by:

ΛX,x := {α ∈ ν∗x(Fπ) : φ1
σ(α) = id}.

The associated torus bundle is TX := ν∗(Fπ)/ΛX .

Lemma 7.2.4. — If q : (X,ΩX) → (M,π) is a proper isotropic realization, then ΛX
defines a transverse integral affine structure for the symplectic foliation Fπ, containing
the monodromy group Nmon of (M,π) (see Section 3.4).

Moreover, the action (7.5) induces an action of TX on X,

m : TX ×M X → X, (λ, u) 7→ λ · u,

which is free and proper, makes q : X →M into a principal TX-bundle and the action
is presymplectic in the sense that

(7.6) m∗(ΩX) = pr∗1(ωT ) + pr∗2(ΩX),

where ωT the presymplectic form on TX (cf. Proposition 3.2.8).

Proof. — The fact that ΛX is a transverse integral affine structure is proved exactly
as in the case of Lagrangian fibrations (see, e.g., [18], or our proof of Theorem 3.3.1).
The fact that ΛX contains Nmon is clear because we already know that the action
of ν∗(Fπ) on X factors through the action of the identity component of Σ(M), which
is ν∗(Fπ)/Nmon.

The action of TX on X is free since ΛX is precisely the kernel of the ν(Fπ)-ac-
tion and the properness follows from the properness of TX . To check that the action
is presymplectic, it suffices to observe that the action of Σ(M) on X is symplectic,
together with the fact that the presymplectic forms on the conormal bundle coin-
cides with the pull-back of the symplectic form of Σ(M) via the exponential map
exp : ν∗(Fπ)→ Σ(M).

We can now state the main result of this chapter:

Theorem 7.2.5. — For any proper isotropic realization q : (X,ΩX)→ (M,π):
(i) HolX(M,π) is an X-compatible, s-connected symplectic integration of (M,π).
(ii) For any X-compatible, s-connected symplectic integration (G ,Ω) ⇒ (M,π) there

are étale morphisms of symplectic groupoids:

Σ(M,π) // G // HolX(M,π).

(iii) HolX(M,π) is a proper Lie groupoid if and only if Fπ is of proper type.
Moreover, one has a short exact sequence of Lie groupoids:

0 // TX // HolX(M,π) // Hol(M,Fπ) // 0.

For the proof of this theorem we start with an elementary but important property of
isotropic realizations, which serves as starting point for reconstructing the holonomy
groupoid of (ker dq)⊥ (hence, using (7.4, also the groupoid HolX(M,π)).
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Lemma 7.2.6. — For an isotropic fibration q : (X,ΩX) → (M,π), the foliation
(ker dq)⊥ coincides with the pull-back via q of the symplectic foliation Fπ.

Proof. — The definition of the infinitesimal action σ shows that Im(σ) = (ker dq)⊥.
Now, the fact that q is a symplectic realization is equivalent to

π](ξ) = dq(σ(ξ)), ∀ξ ∈ T ∗M.

We deduce that, for a vector v tangent to X, one has:

dq(v) ∈ Fπ ⇐⇒ dq(v) = dq(σ(ξ)), for some ξ ∈ T ∗M

⇐⇒ v ∈ Im(σ) + (ker dq) = (ker dq)⊥ + (ker dq) = (ker dq)⊥,

where for the last equality we used that the fibers are isotropic.

Next, we look at the interaction between TX and the holonomy of the foliation.
Using the general properties of transverse integral affine structures (see Section 5.1)
and the discussion on presymplectic actions from Appendix A.5, one finds:

Lemma 7.2.7. — The linear holonomy action (2.2) preserves ΛX so descends to an
action on TX : for any leafwise path γ : [0, 1]→M from x to y one obtains

holγ : TX,x → TX,y.

If Hol(M,Fπ) is endowed with the zero presymplectic form then the resulting action
m : Hol(M,Fπ)×M TX → TX is presymplectic:

(7.7) m∗(ωT ) = pr∗2(ωT ).

We can now turn to the study of HolX(M,π), with the aim of proving Theo-
rem 7.2.5. Following the general discussion in Section 7.1, our strategy will be to
understand the holonomy groupoid Hol((ker dq)⊥) and then show that the morphism
HolX(M,π) nX → Hol((ker dq)⊥) is actually in isomorphism.

Lemma 7.2.6 and the fact that q has connected fibers, shows that

(7.8) Hol((ker dq)⊥)∼=q∗Hol(Fπ),

where q∗Hol(Fπ) is the pullback groupoid:

(7.9) q∗Hol(Fπ) = (X ×M Hol(M,Fπ)×M X ⇒ X).

This groupoid consists of triples (v, γ, u) with q(v) = t(γ), s(γ) = q(u). The source
and target of the arrow (v, γ, u) are u and v, respectively, and the multiplication is
given by:

(w, γ1, v) · (v, γ2, u) = (w, γ1 · γ2, u).

Here we will momentarily not distinguish between the leafwise path γ and the element
it represents in the holonomy groupoid.

Next, we consider the projection q∗Hol(Fπ)→M , (v, γ, u) 7→ q(u), and we define
an action of the torus bundle TX on q∗Hol(Fπ)→M appealing to Lemma 7.2.7, by
setting for each λ ∈ TX |q(x)

:

(7.10) λ · (v, γ, u) = (holγ(λ) · v, γ, λ · u).
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Since the action of TX on X is free and proper, it follows easily that the resulting
quotient q∗Hol(Fπ)/TX is a Lie groupoid:

Lemma 7.2.8. — If q : (X,ΩX)→ (M,π) is a proper isotropic realization, the quotient

q∗Hol(Fπ)/TX = (X ×M Hol(M,Fπ)×M X) /TX ⇒M

is a smooth groupoid, which is Hausdorff whenever Hol(M,Fπ) is Hausdorff. More-
over, q∗Hol(Fπ)/TX is proper if Fπ is of proper type.

Proof. — It is immediate to check from the definitions that the quotient is a groupoid.
When Hol(M,Fπ) is Hausdorff, then we have a free and proper action of TX on a
Hausdorff manifold, hence the quotient is smooth and Hausdorff. The last part on
properness also follows immediately.

The only remaining question is to show that the quotient is smooth, when
Hol(M,Fπ) is non-Hausdorff. Since the quotient map can be made into a submersion
in at most one way, we only have to prove the local statement, around a neighborhood
of an arrow [v0, γ0, u0] going from x0 to y0. Choosing two local sections of TX , τt and
τs, defined on opens U(y0) containing y0 and U(x0) containing x0, respectively, then

TX |U(y0)
×M Hol(M,Fπ)×M TX |U(x0)

→ X ×M Hol(M,Fπ)×M X

(λ2, γ, λ1) 7→ (λ2 · τt(t(γ)), γ, λ1 · τs(s(γ)))

defines an embedding into an open invariant subspace of X ×M Hol×MX. Finally,
the quotient of the left hand side modulo the action of TX is clearly smooth.

Next, we exhibit the symplectic structure of q∗Hol(Fπ)/TX :

Lemma 7.2.9. — The 2-form Ω̃ := pr∗1 ΩX − pr∗3 ΩX on X ×M Hol(M,Fπ) ×M X,
where pri is the projection on the i-th factor, descends to a 2-form Ω on the quotient
groupoid q∗Hol(Fπ)/TX , making it into a symplectic groupoid integrating (M,π).

Proof. — A more or less tedious computation shows that the kernel of the closed
form Ω̃ = pr∗1 ΩX − pr∗3 ΩX is the image of the infinitesimal action induced by (7.10).
Also, note that pr3 : (q∗Hol(Fπ), Ω̃) → (M,π) is f-Dirac. It follows that Ω̃ descends
to a symplectic form Ω on the quotient q∗Hol(Fπ)/TX and that the target map

t : (q∗Hol(Fπ)/TX ,Ω)→ (M,π)

is Poisson. Since Ω̃ is obviously multiplicative, so is Ω, hence one obtains a symplectic
groupoid (q∗Hol(Fπ)/TX ,Ω) integrating (M,π).

Proof of Theorem 7.2.5. — We claim that HolX(M,π) is a smooth quotient
of Σ(M,π), i.e., that it admits a smooth structure (necessarily unique) such that the
canonical projection is a submersion. As first step we construct an isomorphism of
groupoids

(7.11) Φ : HolX(M,π) ∼= q∗Hol(Fπ)/TX
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as follows: for an element [a]h ∈ HolX(M,π) represented by a cotangent path whose
base path γa starts at x ∈M , we choose any u ∈ q−1(x) and we set

Φ([a]h) := [[a] · u, γa, u] ∈ HolX(M,π),

where we use the action of [a] ∈ Σ(M,π) on X (see (7.2)) and we omit writing [γa]h
for the middle element. This is independent of the choice of u.

The injectivity of Φ is clear: if γa1 and γa2 have the same holonomy with respect
to Fπ, Lemma 7.2.6 shows that any lifts tangent to (ker dq)⊥ and starting at the same
point, such as γ̃ua1

and γ̃ua2
, have the same holonomy with respect to (ker dq)⊥.

For the surjectivity of Φ, given any [v, γ, u], one chooses a cotangent path a with
[γa]h = γ. Since [a] · u and v are in the same fiber of q, we can write

[v] = [α] · ([a] · u)

for some α ∈ ν∗(Fπ), so that:

[v, γ, u] = Φ([α] · [a]).

To check that HolX(M,π) is a smooth quotient of Σ(M,π), we still have to check
that the composition of the map Φ with the projection Σ(M,π) → HolX(M,π) is
a submersion. For that it suffices to prove the same property for its pull-back to X
via q. On the pull-back, one has the identification (7.3) with the monodromy groupoid
of (ker dq)⊥, the interpretation of (7.9) as the holonomy groupoid of the same foliation,
and the map is just the canonical projection between the two.

For the proof of Theorem 7.2.5 (ii), let G be any other X-compatible, s-connected,
symplectic integration of (M,π). The groupoid q∗G is an s-connected integration of
the foliation (ker dq)⊥. Since q∗Hol(M,Fπ) '∼= ((ker dq)⊥), and Mon((ker dq)⊥) ∼=
q∗Σ(M,π), there are morphisms q∗Σ(M,π) → q∗G → q∗Hol(M,Fπ) so that the
following is a commutative diagram of surjective groupoid maps:

q∗Σ(M,π)

��

//
%%

q∗G

��

// q∗Hol(M,Fπ)

��

Σ(M,π) ////
99

G // HolX(M,π).

The existence of the dotted arrow follows by surjectivity, so this proves (ii).
Finally, part (iii) of the theorem follows from the description of HolX(M,π) as a

quotient of q∗Hol(M,Fπ).

We now look at some consequences of Theorem 7.2.5. We concentrate on Poisson
manifolds (M,π) for which the symplectic foliation Fπ is of proper type, a condition
that is necessary for (M,π) to be of proper type. First of all we have:
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Corollary 7.2.10. — Let (M,π) be a Poisson manifold with Fπ of proper type.
If q : (X,ΩX)→ (M,π) is a proper isotropic realization then HolX(M,π) is an
s-connected proper symplectic groupoid. Moreover:
(i) the orbifold structure induced on B = M/Fπ is a classical orbifold structure;
(ii) the transverse integral affine structure associated to the proper isotropic realiza-

tion q coincides with the one induced by the proper integration HolX(M,π).

In particular:

Corollary 7.2.11. — Let (M,π) be a Poisson manifold with Fπ of proper type. If
(M,π) admits a proper symplectic realization, then (M,π) is of proper type.

One should be aware however that the properness of (M,π) does not imply the
existence of proper symplectic realizations. As we shall explain in the final sections
of the paper, there is one more obstruction to the existence of proper symplectic
realizations: the Lagrangian Dixmier-Douady class.

The previous corollary brings us to yet another aspect of the theory of isotropic
realizations. After eventually passing to a cover, proper symplectic realizations can
be made simple in the sense of the following:

Definition 7.2.12. — A simple isotropic realization is an isotropic realization
q : (X,ΩX)→ (M,π) for which there exists an X-compatible symplectic integration
(G ,Ω) ⇒ (M,π) whose action on X is free.

Using Theorem 7.2.5 and the discussion from Appendix A, we deduce the following
equivalent characterizations of simple isotropic realizations of PMCTs:

Proposition 7.2.13. — Let q : (X,ΩX) → (M,π) be a proper isotropic realization
and assume that the symplectic foliation Fπ is of proper type. Then the following
statements are equivalent:
(a) the symplectic foliation Fπ is simple;
(b) q : (X,ΩX)→ (M,π) is a simple isotropic realization;
(c) there exists an X-compatible, s-connected, proper integration (G ,Ω) ⇒ (M,π)

that acts freely on X;
(d) (X,ΩX) is a free Hamiltonian TΛ-space for an integral affine manifold (B,Λ)

with reduced space (M,π) ∼= (Xred, πred) (see Corollary A.4.2).

Of course, under any of the equivalent conditions of the proposition, one has that
B = M/Fπ, Λ the integral affine structure on B induced by ΛX and G is the gauge
groupoid G ∼= X ?

TX

X associated to the principal TX -space X (Appendix A.4).

Proof. — The fact that the holonomy of the symplectic foliation Fπ is an obstruc-
tion to the existence of simple isotropic realizations of (M,π) follows from (7.8), the
minimality property of holonomy groupoids (Theorem 2.1.2) and the fact that for an
X-compatible integration G nX is a foliation groupoid integrating (ker dq)⊥. The rest
of the statement should be clear.
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In order to show that eventually passing to a cover, proper symplectic realizations
can be made simple, we need to appeal to the main result of Appendix B. This result
applied to the proper foliation (M,Fπ), together with the transversal integral affine
structure ΛX , yields the linear holonomy cover (M lin,F lin

π ) with a smooth leaf space
Blin = M lin/F lin

π -an integral affine manifold carrying an action of the linear holonomy
group Γlin by integral affine transformations, with Blin/Γlin = B. The conclusion is
that when Fπ is of proper type, any proper isotropic realization is obtained as quotient
of a simple one:

Corollary 7.2.14. — Let (M,π) be a Poisson manifold with Fπ of proper type. If
q : (X,ΩX)→ (M,π) is a proper isotropic realization then X lin := X ×M M lin yields
a Γlin-equivariant proper isotropic realization

(7.12) qlin : (X lin, Ω̃X)→ (M lin, π̃),

which is simple.

This is summarized in the following diagram:

(X lin, Ω̃X)

��

qlin

// (M lin, π̃)

��

// Blin

��

(X,ΩX)
q

// (M,π) // B,

where (X lin, Ω̃X) → Blin is the moment map of a free Hamiltonian TBlin-space and
(7.12) is the resulting Hamiltonian quotient.

7.3. Isotropic realizations and Morita equivalence

The symplectic groupoids arising from proper isotropic realizations form a rather
special class among all proper symplectic groupoids. A first illustration is the following
result, where we use the presymplectic version of Morita equivalence (see Appendix A):

Proposition 7.3.1. — If q : (X,ΩX) → (M,π) is a proper isotropic realization then
X ×M Hol(M,Fπ), endowed with the pull-back of ΩX by the first projection, defines
a presymplectic Morita equivalence between the symplectic groupoid HolX(M,π) and
the presymplectic groupoid integrating the Dirac structure LFπ :

HolX(M,π)

����

!! X ×
M

Hol(M,Fπ)

q◦pr1
uu

s◦pr2
**

bb TX on Hol(M,Fπ)

����

(M,π) (M,LFπ ).
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Proof. — For the groupoid on the right hand side we use the description given by
(3.4), while for the groupoid HolX(M,π) we use (7.11). The two left and right actions
are defined by

[v, γ0, u] · (u, γ1) = (v, γ0 · γ1), (u, γ1) · (λ, γ2) = (holγ1
(λ)u, γ1 · γ2),

respectively. The actions obviously commute and it is straightforward to check that
they are principal, so they define a Morita equivalence.

We are left with proving that the actions are presymplectic. We will use the abbre-
viated notation Hol = Hol(M,Fπ). For the right action, we have to check an equality
of forms on the fiber product

X ×M Hol×MTX ×M Hol = {((u, γ1), (λ, γ2)) : q(u) = t(γ1), s(γ1) = t(γ2) = p(λ)}.

We denote by Hol(2) the space of pairs of composable arrows in Hol and by letting
η = holγ1

(λ) we reparametrize this fiber product space as

X ×M TX ×M Hol(2) = {(u, η, γ1, γ2) : q(u) = p(η) = t(γ1)}.

The two projections and the multiplication corresponding to the right action on the
bibundle, on this new space become:

— pr1 : X ×M TX ×M Hol(2) → X ×M Hol, (u, η, γ1, γ2) 7→ (u, γ1). We need to
consider the pull-back by this map of the form pr∗X ΩX .

— m : X ×M TX ×M Hol(2) → X ×M Hol, (u, η, γ1, γ2) 7→ (η · u, γ1 · γ2). We need
to consider the pull-back by this map of the form pr∗X ΩX .

— pr2 : X ×M TX ×M Hol(2) → TX on Hol, (u, η, γ1, γ2) 7→ (hol−1
γ1

(η), γ2). We need
to consider the pull-back by this map of the form pr∗

TX
ωT . However, due to

(7.7), the same result is obtained if one pulls-back ωT via (u, η, γ1, γ2) 7→ η.

Combining these three terms, we find that the equation

m∗ pr∗X ΩX = pr∗1 pr∗X ΩX + pr∗2 pr∗TX ωT

reduces to (7.6), so the right action is presymplectic.
For the left action one needs to check that:

m∗ pr∗X ΩX = pr∗1 Ω + pr∗2 pr∗X ΩX .

If one pulls back both sides of this equation along the submersion:

X ×M Hol×MX ×M X → HolX ×M (X ×M Hol)

(v, γ0, u, γ1) 7→ ([v, γ0, u], (u, γ1)),

one obtains an obvious identity, so the left action is presymplectic.

One can pass from presymplectic to symplectic Morita equivalences by restricting
to complete transversals to the symplectic foliation. We obtain:
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Corollary 7.3.2. — If q : (X,ΩX)→ (M,π) is a proper isotropic realization, for each
choice of a complete transversal T ⊂M to Fπ there is a symplectic Morita equivalence:

HolX(M)

����

!! X ×
M

Hol(M,Fπ)(−, T )

tt ++

bb TX |T on Hol(M,Fπ)|T

����

(M,π) (T, π ≡ 0).

The previous two results show that the groupoids associated with proper isotropic
realizations are very special: they are Morita equivalent to torus bundles over the leaf
space. Moreover, their symplectic Morita equivalence class does not depend on X but
only on the transverse integral affine structure it defines on (M,Fπ).

When the foliation Fπ is proper we can do better and pass to torus bundle over
classical orbifolds (see Corollary 7.2.10). Here, as for Corollary 7.2.14, we appeal again
to Appendix B; the Morita point of view leads to an improvement of the corollary.
More precisely, if we consider the linear holonomy cover Blin, together with the action
of the linear holonomy group Γlin, we see that one has not only the symplectic torus
bundle TBlin corresponding to the integral affine structure, but also the semi-direct
groupoid (itself a symplectic groupoid!)

TBlin on Γlin ⇒ Blin.

Corollary 7.3.3. — If Fπ is of proper type then, for any proper isotropic realization
q : (X,ΩX)→ (M,π), the symplectic holonomy groupoid HolX(M,π) is Morita equiv-
alent to the symplectic groupoid TBlin on Γlin ⇒ Blin associated with the linear holon-
omy cover of the classical orbifold B = M/Fπ. In particular, there is a 1-1 correspon-
dence:  Hamiltonian

HolX(M,π)-spaces

 1−1←→

 Γlin-equivariant
Hamiltonian TBlin-spaces

 .

The advantage of passing to Blin instead of restricting to transversals is that the
construction is choice-free and the base Blin remains connected if M is connected.

7.4. Isotropic realizations and E -integrations

If we start from a proper isotropic realization q : (X,ΩX) → (M,π), the corre-
sponding holonomy groupoid fits into a short exact sequence (see Theorem 7.2.5):

0 // TX // HolX(M,π) // Hol(M,Fπ) // 0.

One the other hand, if we consider an s-connected, proper symplectic integration
(G ,Ω) ⇒ (M,π) then we have the short exact sequence:

0 // T (G ) // G // B(G ) // 0,
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where T (G ) = ν∗(Fπ)/Λ and B(G ) ⇒ M is a proper foliation groupoid integrat-
ing Fπ. In general, the groupoid B(G ) will be a larger integration than Hol(M,Fπ).

This shows that it is not possible to obtain every s-connected, proper symplec-
tic integration (G ,Ω) ⇒ (M,π) as the holonomy groupoid relative to an isotropic
realization of (M,π). However, one can extend the construction of HolX(M,π), re-
placing Hol(M,π) by any foliation groupoid integrating Fπ, even non s-connected
integrations, if we adopt the identification (7.9) as definition of HolX(M,π):

Definition 7.4.1. — For any proper isotropic realization q : (X,ΩX) → (M,π) and
any integration E ⇒M of (M,Fπ) the E -integration of (M,π) relative to X is

EX(M,π) := (X ×M E ×M X) /TX ⇒M

with the symplectic structure induced from the 2-form Ω̃ := pr∗1 ΩX − pr∗3 ΩX .

This definition recovers HolX(M,π) when E = Hol(M,Fπ). However, one should be
aware that when E = Mon(M,Fπ) the groupoid EX(M,π) and the Weinstein groupoid
Σ(M,π), in general, do not coincide, since q∗Mon(M,Fπ) may be very different from
Mon(q∗Fπ) = Mon((ker dq)⊥).

Remark 7.4.2. — When the foliation groupoid E is s-connected we can still define
the E -integration of (M,π) relative to X geometrically, as in Definition 7.1.4: the
pullback groupoid q∗E is also an s-connected integration of (ker dq)⊥, and one can
define cotangent E -equivalent paths, in a manner analogous to the way we defined
cotangent holonomic paths, by requiring their horizontal lifts to induce the same
element in the pull-back q∗E . However, this geometric definition fails in general, and
later we do have to deal with non s-connected foliation groupoids.

Exactly the same arguments as before imply the following more general version of
Theorem 7.2.5:

Theorem 7.4.3. — For any proper isotropic realization q : (X,ΩX)→ (M,π) and any
foliation groupoid E integrating (M,Fπ):
(i) EX(M,π) is an X-compatible symplectic integration of (M,π).
(ii) EX(M,π) is an s-connected, proper Lie groupoid iff E is s-connected and proper.

Moreover, one has a short exact sequence of Lie groupoids:

0 // TX // EX(M,π) // E // 0.

When Fπ is proper we still find:
— the transverse integral affine structure defined by EX(M,π) coincides with the

lattice ΛX defined by the proper isotropic realization;
— the associated orbifold structure on B = M/Fπ is the one induced by E .
Also, similar to Proposition 7.3.1, TX on E ⇒ M is a presympectic groupoid

integrating the Dirac structure LFπ associated with the foliation Fπ, and one obtains:
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Proposition 7.4.4. — If q : (X,ΩX)→ (M,π) is a proper isotropic realization and E is
a foliation groupoid integrating (M,Fπ), there is a presymplectic Morita equivalence:

EX(M,π)

����

!! X ×
M

E

uu ))

bb TX on E

����

(M,π) (M,LFπ ).

By restricting to complete transversals T ⊂ M to Fπ, one can obtain symplectic
Morita equivalences, leading to the analog of Corollary 7.3.2.

7.5. The Dazord-Delzant class

Given a regular Poisson manifold (M,π), we have seen that any proper isotropic
realization q : (X,ΩX) → (M,π) defines a transverse integral affine structure ΛX
on (M,Fπ). We now address the converse problem. Namely, given:

— (M,π) a Poisson manifold,
— Λ ⊂ ν∗(Fπ) a transverse integral affine structure,

is there a proper isotropic realization q : (X,ΩX)→ (M,π) defining Λ? This leads to
a cohomology class, which is essentially due to Dazord and Delzant [18], and which
we will call the Dazord-Delzant class associated to the data (M,π,Λ).

In order to describe this class, we will have to deal with sheaf cohomology. For a
bundle E → M we will denote by E the associated sheaf of sections. For example,
T denotes the sheaf of section of the torus bundle T → M and we will also denote
by T

cl
the sheaf of closed sections, so for an open set V ⊂M we have:

T
cl

(U) = {α ∈ T (U) : α∗ωcan = dα = 0}.

Let us denote by (Ω•(M,Fπ),d) the complex of forms whose pullback to the leaves
of Fπ vanish. We have the short exact of sequence of sheaves (Poincaré Lemma):

(7.13) 0 // Ω•cl(M,Fπ) // Ω•(M,Fπ)
d // Ω•+1

cl (M,Fπ) // 0,

where Ω•cl(M,Fπ) denotes the sheaf of closed forms. Notice that:

Ω1(M,Fπ) = ν∗(Fπ)

and we can view Λ ⊂ Ω1
cl(M,Fπ) as a locally constant subsheaf. If T := ν∗(Fπ)/Λ,

this leads to an identification of quotient sheaves:

T = Ω1(M,Fπ)/Λ, T
cl

= Ω1
cl(M,Fπ)/Λ,

and to the short exact sequence of sheaves:

0 // T
cl

// T
d // Ω2

cl(M,Fπ) // 0.
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We are interested in the following piece of the corresponding long exact sequence in
sheaf cohomology:

(7.14) // H1(M,T ) // H1(M,Ω2
cl(M,Fπ))

δ // H2(M,T
cl

) //

Now observe that associated to the leafwise symplectic form ωFπ there is a class
which is the obstruction to extend ωFπ to a closed two 2-form on M : if {Ua}a∈A is a
good cover ofM then we can find closed 2-forms ωa ∈ Ω2(Ua) which locally extend ωFπ

and on Uab = Ua ∩Ub their difference is closed and vanishes on the symplectic leaves,
so defines a 2-cycle ωab := ωa − ωb ∈ Ω2

cl(Uab,Fπ). Hence, we can set

ξ(M,π) := [ωij ] ∈ H1(M,Ω2
cl(M,Fπ)).

Remark 7.5.1. — Since Ω•(M,Fπ) is a fine sheaf, the sequence (7.13) gives:

H1(M,Ω2
cl(M,Fπ)) ' H0(M,Ω3

cl(M,Fπ))

dH0(M,Ω2
cl(M,Fπ))

= H3(M,Fπ).

Under this isomorphism, the class ξ(M,π) corresponds to the class [dω̃] where
ω̃ ∈ Ω2(M) is any 2-form extending the leafwise symplectic form ωFπ .

Definition 7.5.2. — If (M,π) is a regular Poisson structure and Λ ⊂ ν∗(Fπ) is a
transverse integral affine structure, the Dazord-Delzant class c2(M,π,Λ) is the image
of ξ(M,π) under the connecting homomorphism (7.14):

c2(M,π,Λ) := δ(ξ(M,π)) ∈ H2(M,T
cl

),

Notice that an explicit 2-cocycle representing the obstruction class can be obtained
by considering a good cover {Ua} of M and local extensions ωa ∈ Ω2(Ua) of the
leafwise symplectic form ωFπ , so that the difference ωab = ωa − ωb is exact:

ωab = dαab, (αab ∈ Ω1(Uab,Fπ)).

Then αab + αbc + αca is a closed 1-form in Uabc := Ua ∩ Ub ∩ Uc vanishing on the
leaves, and its projection gives a 2-cocycle representing c2(M,π,Λ):

cabc = [αab + αbc + αca] ∈ Ω1
cl(Uabc,Fπ)/Λ.

The following result is essentially due to Dazord and Delzant:

Theorem 7.5.3 ([18]). — The class c2(M,π,Λ) vanishes if and only if Λ is defined by
a proper isotropic realization q : (X,ΩX)→ (M,π).

The proof of this result can be split into two steps:
(i) c2(M,π,Λ) = 0 if and only if there is a class c1 ∈ H1(M,T ) which is mapped

to ξ(M,π) in the long exact sequence (7.14).
(ii) Given any class c1 ∈ H1(M,T ) there is a principal T -bundle q : X → M

whose Chern class is c1. This bundle has a symplectic structure ΩX making q
into a symplectic complete isotropic fibration inducing π on M if and only if
c1 is mapped to ξ(M,π) in the long exact sequence (7.14).
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We refer to [18] for the details.

To our knowledge, it is an open problem to give an example of a Poisson manifold
(M,π) with Dazord-Delzant class c2(M,π,Λ) 6= 0, where Λ is a lattice defined by
some proper integration (G ,Ω) ⇒ (M,π).

Remark 7.5.4 (The Dirac setting). — The results on proper isotropic realizations ex-
tend to twisted Dirac structures with the appropriate modifications. Now, the central
notion is that of a presymplectic realization (see [8]):

q : (X,ΩX)→ (M,L, φ),

where ω is a 2-form such that dΩX + q∗φ = 0, q is a f-Dirac map, and one requires
the non-degeneracy condition:

Ker(ΩX) ∩Ker(dq) = {0}.
One defines HolX(M,L), the holonomy groupoid relative to the presymplectic real-
ization q : (X,ΩX)→ (M,L, φ), as the quotient of cotangent paths modulo cotangent
holonomy rel X as in Definition 7.1.4. Then all fundamental properties of HolX(M,π)

still hold in the presymplectic setting, namely Theorem 7.2.5, Proposition 7.2.13 and
Corollary 7.3.3. In the proofs one must use the (twisted) presymplectic version of
Hamiltonian G -spaces (see Appendix A).

The Dazord-Delzant theory also extends in a more or less straightforward way to
twisted Dirac structures (see [46] for the case of twisted Poisson structures).
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CHAPTER 8

SYMPLECTIC GERBES OVER MANIFOLDS

In the previous chapters we have seen that Poisson manifolds of proper type come
with a rich transverse geometry. In particular, the leaf space is an integral affine
orbifold. We now fix an integral affine orbifold (B,Λ) and we investigate the freedom
one has in building Poisson manifolds of proper type with leaf space (B,Λ). This
problem is really about constructing (symplectic) groupoid extensions with kernel the
torus bundle T associated to Λ, and hence resembles the standard theory of S1-gerbes
([5, 34, 39, 44, 50]).

Recall that an S1-gerbe is a higher version of the notion of principal S1-bundle
over B. While principal S1-bundles are classified by their Chern class c1 ∈ H2(B,Z),
S1-gerbes are classified by a similar class c2 ∈ H3(B,Z), called the Dixmier-Douady
class. We will introduce a symplectic variant of the theory, consisting of symplec-
tic TΛ-gerbes over B and we will show that they are classified by their Lagrangian
Dixmier-Douady class living in H2(B,T

Lagr
).

To achieve this, we will need the following variations of the standard theory
of S1-gerbes:

v1: Replace S1 by general torus bundles T : this is straightforward, but note that,
while S1-gerbes arise as higher versions of principal S1-bundles, in the process of
passing from S1 to torus bundles, principal S1-bundles will be replaced by T -tor-
sors, a special class of principal T -bundles. Therefore, T -gerbes arise as higher
versions of T -torsors;

v2: Asymplectic versionof the theory: this is themainnoveltyof our story.Remarkably,
the lower version of the theory, the symplectic story, i.e., symplectic T -torsors, as
well as its relevance to Lagrangian fibrations, has already appeared in [48];

v3: Gerbes over orbifolds: although a large part of our discussion will be carried
out in the case where B is a smooth manifold, in general our leaf spaces B
are orbifolds. The passage from manifolds to orbifolds will be based again on
Haefliger’s philosophy (Remark 2.3.3). Note that S1-gerbes over orbifolds have
already been considered- see e.g., [34].

Some of the generalizations of S1-gerbes that we will consider could, in principle,
be obtained by making use of the general theory of gerbes with a given “band” over
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general “sites” [6, 24, 32]. However, since all our bands will be abelian, and the most
general sites we need are the ones associated to orbifolds, we do not have to appeal
to the general theory. And, more importantly, our symplectic gerbes can always be
represented by extensions of Lie groupoids (as in, e.g., [44, 34, 5, 50]).

In this chapter we take care of symplectic gerbes over smooth manifolds, leaving
the orbifold case for the next chapter. Regarding PMCTs, the outcome can be stated
in a simplified form as follows:

Theorem 8.0.1. — Assume that (M,π) is a Poisson manifold of proper type whose
foliation Fπ has 1-connected leaves. Then each proper integration (G ,Ω) ⇒ (M,π)

gives rise to a symplectic gerbe over B = (M/Fπ,ΛG ), which is classified by a class

c2(G ,Ω) ∈ H2(B,T
Lagr

).

Moreover, its pull-back via the projection p : M → B is precisely the Dazord-Delzant
class c2(M,π,ΛG ) (Definition 7.5.2). Furthermore, c2(G ,Ω) vanishes iff G is the gauge
groupoid of a free Hamiltonian T -space q : (X,ΩX)→ B (Appendix A.4).

8.1. Symplectic torsors

Since S1-gerbes are higher versions of principal S1-bundles, in order to get ready
to deal with symplectic gerbes, we first discuss how to implement the variations that
we mentioned in the case of principal S1-bundles. Here we concentrate on variations
v1 and v2. The formalism necessary for passing to orbifolds will be discussed in the
next section.

8.1.1. From S1 to general torus bundles. — We would like to replace S1 by a general
torus bundle T → B and principal S1-bundles by “principal T -bundles”. Some care
is needed, since we will not be dealing with general principal T -bundles.

Recall that a (right) principal H -bundle overM , for any Lie groupoid H ⇒ N over
some other manifold N , consists of a bundle P with two maps: the bundle projection
p : P →M , as well as a map q : P → N along which H acts on P :

P

p
~~

q
&&

bb H

����

M N.

When M = N = B and G = T is a torus bundle over B, principal T -bundles over B
still come with two maps, p and q, which need not coincide. We will be interested
in principal T -bundles over B, which in addition satisfy p = q. These will be called
T -torsors. To distinguish them from other types of (groupoid) principal bundles, we
will denote them by the letter X.
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Hence a T -torsor over B is a manifold X endowed with a (right) action of T along
a submersion pX : X → B, along which T acts fiberwise, freely, and transitively:

X

pX

��

ff T

~~

B.

The fusion product of two T -torsors X1 and X2 is the new T -torsor

(8.1) X1 ? X2 := (X1 ×B X2)/T ,

where T acts on the fibered product by (u1, u2) · λ = (u1 · λ, u2 · λ), and where the
action of T on X1 ? X2 is induced by the action on the second factor. Modulo the
obvious notion of isomorphism, one obtains an abelian group TorB(T ).

Remark 8.1.1 (B-fibered objects). — A very useful interpretation to keep in mind
of the condition p = q, distinguishing T -torsors as a particular class of principal
T -bundle, is the following. The base B is fixed from the start and all the objects
that one considers are “fibered” over B or “parametrized” by B, i.e., come with a
submersion onto B. One should refer to them as pairs (N, pN ) with pN : N → B, but
we will simply say that N is B-fibered without further mentioning pN . They form a
category ManB .

The objects that we consider are B-fibered versions of standard objects, which
maybe recovered by letting B be a point. For instance, a torus bundle T → B is just
a compact, connected, abelian group object in ManB . More generally, a Lie groupoid
fibered over B, i.e., a Lie groupoid in ManB , is just a Lie groupoid H ⇒ N together
with a submersion pN : N → B such that pN ◦ s = pN ◦ t. These should be thought of
as families of groupoids parametrized by b ∈ B, namely the restrictions of H to the
fibers p−1

N (b). One also has a B-fibered version of principal H -bundles over a manifold
M : it is a principal H -bundles P as above for which pM ◦ p = pN ◦ q(= pP ):

P

p
~~

q

&&pP

��

bb H

����

M

pM
!!

N

pN
ww

B.

When M = N = B, this precisely means that p = q. Hence, T -torsors are the same
thing as B-fibered principal T -bundles over B.

If H ⇒ N is a Lie groupoid we denote by BunH (M) the set of equivalence classes of
principal H -bundles overM . The description of principal bundles based on transition
functions, yields an isomorphism:

(8.2) BunH (M) ∼= Ȟ1(M,H ),
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where Ȟ1(M,H ) denotes Haefliger’s first Čech cohomology with values in the
groupoid H [29, 28]: the Čech cocycles are families g = {Vi, gij}, where {Vi}i∈I is an
open cover of M and

(8.3) gij : Vij → G , gij(x) · gjk(x) = gik(x), ∀x ∈ Vijk.

Two such cocycles g and h are cohomologous if (after eventually passing to a refine-
ment) there exist λi : Vi →H such that:

hij(x) = λi(x) · gij(x) · λj(x)−1, ∀x ∈ Vij .

One has a completely similar B-fibered version of the previous discussion, ob-
tained by requiring that all the maps involved, including isomorphisms of principal
bundles, Čech cocycles {gij}, etc., commute with the projections into B. One obtains
a B-fibered version of (8.2):

(8.4) BunH ,B(M) ∼= Ȟ1
B(M,H ).

In the case we are interested in, when M = N = B and G = T , notice that

Ȟ1
B(B,T ) = H1(B,T ),

the cohomology with coefficients in the sheaf T of sections of T .
One can use the exponential sequence of T to pass to the associated lattice Λ:

(8.5) 1 // Λ // t
exp
// T // 1.

Then (8.4) becomes the Chern-class isomorphism

(8.6) c1 : TorB(T )
∼ // H1(B,T ) ∼= H2(B,Λ)

associating to a T -torsor its Chern class. Concretely, given a T -torsor p : X → B,
any open cover {Vi} of B with local sections si : Vi → X, yields on overlaps

(8.7) si(x) = sj(x)λij(x), (x ∈ Vij),

where the {λij} is a Čech 1-cocycle representing the Chern class of X. Similarly, the
construction of the real representatives of the Chern class of principal S1-bundles via
connections extends without any problem to the setting of T -torsors.

8.1.2. A symplectic version of the theory:— There is very little left to be to be done
to obtain the symplectic torsors:
— restrict to symplectic torus bundles (T , ωT ) → B (see Section 3.1), which are

determined by integral affine structures Λ on B (cf. Proposition 3.1.6);
— consider T -torsors X endowed with a symplectic form ΩX and require that the

action of T to be symplectic in the sense of Appendix A.
The resulting objects (X,ΩX) are called symplectic (T , ωT )-torsors. Note that for
two such (X1,Ω1) and (X2,Ω2), their composition (8.1) is again symplectic: the form
pr∗1 Ω1 − pr∗2 Ω2 on X1 ×B X2 descends to a symplectic form on X1 ? X2. We denote
by TorB(T , ωT ) the resulting group of symplectic torsors.
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Proposition 3.1.7, in this language, says that Lagrangian fibrations are the same
thing as symplectic torsors:

Proposition 8.1.2. — For any symplectic T -torsor the projection into B is a La-
grangian fibration. Conversely, any Lagrangian fibration over B is a symplectic
TΛ-torsor, where Λ is the integral affine structure induced by the fibration.

The construction of the Chern class has a natural symplectic version, that dates
back to Duistermaat’s work on global action-angle coordinates [19]. This was further
clarified and generalized by Delzant and Dazord [18] and Zung [56], and rephrased in
the language of symplectic torsors by Sjamaar [48]. The relevant sheaf is no longer T ,
but rather the subsheaf T

Lagr
of local Lagrangian sections:

T
Lagr

(U) = {α ∈ T (U) : α∗ωcan = dα = 0}.

The Lagrangian Chern class c1(X,ΩX) ∈ H1(B,T
Lagr

) of a symplectic T -torsor
X is represented by a Čech-cocycle {λij}, constructed as before (see (8.7)), but using
now local Lagrangian sections si : Vi → X.

To realize the Lagrangian Chern class as a degree two cohomology class, one needs
the symplectic analog of the exact sequence (8.5). For that one considers

OΛ ⊂ OAff ⊂ O,

where O is the sheaf of smooth functions on B, OAff is the subsheaf of affine functions
(i.e., of type x 7→ r +

∑
i c
ixi in integral affine charts), and OΛ is the subsheaf of

integral affine functions (obtained by requiring ci ∈ Z in the previous expressions).
The de Rham differential gives the short exact sequence of sheaves:

1 // OΛ
// O

d // T
Lagr

// 1,

and this leads to the Chern class map for symplectic torsors (cf. (8.6)):

c1 : TorB(T , ωT )
∼ // H1(B,T

Lagr
) ∼= H2(B, OΛ).

Finally, the forgetful map from TorB(T , ωT ) to TorB(T ) corresponds to the map

H2(B, OΛ)→ H2(B,Λ)

induced by the de Rham differential d : OΛ → Λ, which interpreted as a sheaf mor-
phism gives rise to the short exact sequence:

(8.8) 1 // R // OΛ
d // Λ // 1.

For the later use we point out the following:

Corollary 8.1.3. — Let T be a torus bundle over a manifold B. If B is contractible,
then any T -torsor is trivial (or, equivalently, admits a global section). The same holds
for symplectic T -torsors (i.e, they admit Lagrangian sections over contractible open
sets).
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Remark 8.1.4. — In the construction of the Chern class of a principal S1-bundle via
connections, one passes from integral to real coefficients. Similarly, in our case, we
have to pass from OΛ to OAff or, equivalently, from TLagr

∼= O/OΛ to O/OAff . In other
words, to find a representative of the Chern classes in terms of differential forms, we
are interested in the image of c1(X,ΩX) under the map:

(8.9) H1(B,T
Lagr

)→ H1(B, O/OΛ) ∼= H2(B, OAff).

To work with these groups, it is useful to use the following fine resolution:

O/OAff
// Ω1
∂(B, T ∗B)

dΛ // Ω2
∂(B, T ∗B)

dΛ // · · ·

where Ωk∂(B, T ∗B) is the kernel of the antisymmetrization map ∂ : Ωk(B, T ∗B) →
Ωk+1(B), and where dΛ is the covariant derivative induced by the flat connection
associated to Λ. Hence, H2(B, OAff) = H2(Ω•∂(B, T ∗B),dΛ). Now, given a symplectic
T -torsor (X,ΩX), one chooses a Lagrangian connection

θ ∈ Ω1(X, t)

(i.e., the horizontal spaces that it defines are Lagrangian) and one observes that its
curvature

kθ ∈ Ω2(X, t)Λ−bas = Ω2(B, T ∗B)

actually lives in Ω2
∂(B, T ∗B). The resulting class [kθ] ∈ H2(B, OAff) is precisely the

class induced by c1(X,ΩX) under (8.9).

8.2. Gerbes and their Dixmier-Douady class

We are now ready to move to gerbes. Our exposition will be self-contained,
overviewing the standard theory of S1-gerbes and explaining at the same time how
to take care of v1, replacing S1 by a general torus bundle. Throughout this section
we fix the base manifold B and all the objects that we will consider will be fibered
over B (see Remark 8.1.1).

8.2.1. Definition of a T -gerbe. — Among the various approaches to gerbes, the most
relevant one for us is via extensions of groupoids [5, 34, 44, 50]: an S1-gerbe over B is,
up to Morita equivalence, an S1-extension of B, where B is interpreted as a the
identitiy groupoid. The groupoids that are Morita equivalent to B are the groupoids
M ×B M associated to submersions pM : M → B, and this leads one to consider
central S1-extension of groupoids over M :

1 // S1
M

// G // M ×B M // 1,

where S1
M = M × S1 is the trivial S1-bundle over M . There is an appropriate notion

of Morita equivalence between two such extensions (see below) and the resulting
equivalence classes are called S1-gerbes over B.
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Next we replace the trivial circle bundle S1
B = B × S1 by a general bundle of tori

T → B. Therefore, we consider central groupoid extensions of type

(8.10) 1 // TM // G // M ×B M // 1,

where TM = p∗MT . Here, by central we mean that:

λ · g = g · λ

for any arrow g : x→ y of G and λ ∈ Tb, with b = pM (x) = pM (y), and where we use
(TM )x = Tb = (TM )y.

Example 8.2.1. — Recall that any (right) principal T bundle over M :

P

p
��

q

&&

bb T

��

M B

gives rise to the gauge groupoid P?
T
P (see Appendix A). When P is B-fibered, i.e

when pM ◦ p = pP = q, it follows that the gauge groupoid defines a central extension
as above. Such gauge extensions will soon be considered “trivial”.

All the groupoids appearing in the extension (8.10) are fibered over B, and this
is relevant for the right notion of equivalence. Two such extensions, associated with
projections pi : Mi → B and groupoids Gi ⇒ Mi, i = 1, 2, are said to be Morita
equivalent extensions if there exists a Morita (G1, G2)-bibundle P , in the sense of
Section 2.3, such that:
(i) P is a B-fibered Morita equivalence;
(ii) P is central, i.e., the actions of TMi on P inherited from the Gi-actions coincide:

λ · u = u · λ for all u ∈ P , λ ∈ Tb, with b = p1(q1(u)) = p2(q2(u)).
The first condition says that the map induced by P between the Gi-orbit spaces, i.e.,
B, is the identity. Or, with the notations from Section 2.3, that p1 ◦ q1 = p2 ◦ q2.
Moreover, this condition is used to make sense of the second condition. With these:

Definition 8.2.2. — Given a torus bundle T over a manifold B, a T -gerbe over B is
a Morita equivalence class of extensions of type (8.10).

8.2.2. The group of gerbes: fusion product. — The set of T -gerbes over B has an
abelian group structure. It is based on the notion of fusion product of two extensions
G1 and G2 of type (8.10), which is the extension associated with the submersion p12 :

M12 = M1 ×B M2 → B:

1 // TM12
// G1 ? G2

// M12 ×B M12
// 1,

where the groupoid G1 ? G2 ⇒M12 has space of arrows:

G1 ? G2 := (G1 ×B G2)/T .
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Here, the action of λ ∈ Tb on a pair (g1, g2) of arrows in the orbits of G1 and G2

corresponding to b ∈ B, is given by (g1, g2) · λ = (g1 · λ, λ · g2).
The trivial T -gerbe is the one represented by the trivial extension of the identity

groupoid B ⇒ B (hence M = B):

(8.11) 1 // T // T // B // 1.

One checks easily that there are canonical isomorphisms of extensions:

G ? T ∼= T ? G ∼= G , G1 ? G2
∼= G2 ? G1,

(G1 ? G2) ? G3
∼= G1 ? (G2 ? G3).

The inverse T -gerbe of the gerbe defined by an extension (8.10) is represented by
the opposite extension:

1 // TM // G opp // M ×B M // 1,

where G opp is G with the opposite multiplication and the source/target interchanged.
This is still a T -gerbe because on T the multiplication is unchanged. Note that the
inversion gives an isomorphism G ∼= G opp of groupoids but not one of extensions since
it does not induce the identity on T ! The fact that G ? G opp represents the trivial
gerbe follows from the straightforward Morita equivalence:

G ? G opp

����

!! G

(s,t)
ww

p

&&

bb T

��

M ×B M B,

where the left action is given by: (g1, g2) ·h = g1 ·h · g−1
2 . We conclude that the fusion

product induces an abelian group structure on the set of T -gerbes over B.

It is useful to be able to recognize more directly when an extension (8.10) represents
the trivial gerbe. That means that there exists a Morita bibundle P implementing a
Morita equivalence with (8.11):

G

����

!! P

q1
xx

q2
&&

bb T

��

M B.

Since P is central, the structure of (right) principal T -bundle on P is determined by
the action of G : u · λ = λ · u. Hence, the only thing that matters is the existence of a
principal G -bundle over B:

Lemma 8.2.3. — An extension (8.10) represents the trivial T -gerbe iff Ȟ1
B(B, G ) 6= ∅,

i.e., iff there exists a B-fibered principal G -bundle P over B.
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Changing the point of view we also see that G is itself determined, via the gauge
construction, by P and its structure of principal T -bundle. Hence:

Corollary 8.2.4. — An extension (8.10) represents the trivial T -gerbe iff it is the
gauge extension associated to a B-fibered principal T -bundle (Example 8.2.1).

8.2.3. The Dixmier-Douady class:— We now recall the construction of the Dixmier-
Douady class of the gerbe represented by the extension (8.10). It is the obstruction
to triviality that arises from the characterization given in Lemma 8.2.3: any principal
bundle P as in the lemma is pushed forward via the map G →M×BM to the principal
M ×B M -bundle over B which is M itself, hence the triviality question amounts to
deciding whether [M ] ∈ Ȟ1

B(B,M ×BM) comes from Ȟ1
B(B, G ). This lifting problem

can be translated to the language of cocycles. One chooses a good cover {Vi}i∈I of B
with local sections si : Vi → M of the projection into B (maps in ManB !). Then the
Čech cocycle describing M as an element in Ȟ1

B(B,M ×B M) is given by

gij = (si, sj) : Vij →M ×B M,

and the issue is wether one can lift this cocycle along the projection G →M ×BM of
the extension, to a cocycle with values in G .

Viewing G as a T -torsor over M ×BM , we denote by Gi,j its pull-back via (si, sj):

Gi,j := {g ∈ G : t(g) = si(x), s(g) = sj(x) for some x ∈ Vij}.

Since the Vij are contractible, this T -torsor is trivializable and we can find a section:

g̃ij : Vij → Gi,j , g̃ij 7→ gij = (si, sj).

The only issue is that {g̃ij} may fail to be a cocycle. The obstruction arises by looking
at triple intersections, on which we define

(8.12) cijk := g̃ij · g̃jk · g̃ki ∈ Γ(Vijk,T ).

This is indeed a section of T since everything fibers over B!

Definition 8.2.5. — The Dixmier-Douady class of the extension is the cohomology
class represented by the Čech 2-cocycle:

c2(G ) := [{cijk}] ∈ Ȟ2
B(B,T ) ∼= H3(B,ΛT ).

When T = S1×B → B with associated lattice ΛT = Z ⊂ R, we recover the usual
Dixmier-Douady class of an S1-gerbe living in H3(B,Z).

It is clear that c2(G ) = 0 if and only if G represents the trivial gerbe. Indeed, the
assumption that the 2-cocycle cijk is exact gives us, eventually after passing to a
refinement, smooth functions λij : Vij → T , fibered over B, such that:

cijk(x) = λij · λjk · λkj .

Then we can use the action of TM on G to correct the g̃ij :

gij := g̃ij · λ−1
ij .
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We still have that gij 7→ gij and that gij · gjk · gki = 0, so that gij : Vij → G is a
1-cocycle representing an element [P ] ∈ Ȟ1

B(B, G ) with i([P ]) = [M ].
The previous constructions can be interpreted as a connecting “homomorphism”

construction, c2(G ) = δ([M ]), where δ arises from the short exact sequence (8.10):

(8.13) Ȟ1
B(B, G )

i // Ȟ1
B(B,M ×B M)

δ // Ȟ2
B(B,T ) = H2(B,T ).

A formal argument shows that this is exact, i.e., Im(i) = δ−1(0). Here and in what
follows we will use the additive notation for the group structure of H2(B,T ), hence
0 for its identity. Lemma 8.2.3 combined with the remark that Ȟ1

B(B,M ×B M)

contains only one element, namely [M ], shows that the statement that “G represents
the trivial gerbe iff c2(G ) = 0” is equivalent to the exactness of (8.13).

The last interpretation of the Dixmier-Douady class, via (8.13), makes it rather
clear that it only depends on the Morita equivalence class of the extension. Indeed,
a Morita (G1, G2)-bibundle Q allows one to transport a principal G1-bundle P → B

along the Morita equivalence yielding a principal G2-bundle P ⊗G1
Q→ B. This leads

to a bijection in Haefliger cohomology:

Q∗ : Ȟ1
B(B, G1) ∼= Ȟ1

B(B, G2).

Because of the naturally of the construction, one obtains a commutative diagram

Ȟ1
B(B, G1) //

∼=
��

Ȟ1
B(B,M1 ×B M1) //

∼=
��

Ȟ2
B(B,T )

∼= // H2(B,T )

Ȟ1
B(B, G2) // Ȟ1

B(B,M2 ×B M2) // Ȟ2
B(B,T )

∼= // H2(B,T ),

which implies that c2(G1) = c2(G2). Of course, this can also be proved using Čech
cocycles. The details for the cocycle argument will be given in the next subsection in
the context of symplectic gerbes.

8.2.4. The Dixmier-Douady class as a group isomorphism.— The additivity of the
Dixmier-Douady class:

c2(G1 ? G2) = c2(G1) + c2(G2),

can be checked using a formal argument based on the interpretation of c2 via the
exact sequence (8.13), starting from the remark that G1×B G2 defines a T ×T -gerbe
over M1×BM2. Alternatively, one can also give a “down to earth” argument in terms
of cocycles. Again, the details of the direct approach will be given in the next section
in the context of symplectic gerbes.

Since c2(G ) = 0 if and only if G represents the trivial gerbe, we conclude that c2 is an
injective group homomorphism. Since the base manifoldM of our extensions is allowed
to be disconnected, c2 is also surjective: any class u ∈ H2(B,T ) is represented by a
Čech cocycle {cijk} with respect to a good cover V = {Vi}i∈I of B, so takingM to be
the disjoint union of the Vi, we see that {cijk} becomes a 2-cocycle on the resulting
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groupoid M ×B M with coefficients in TM , and we let G to be the corresponding
extension.

Putting everything together, one obtains the central result of the theory:

Theorem 8.2.6. — The Dixmier-Douady class induces an isomorphism between the
group of T -gerbes over B and H2(B,T ).

8.3. Symplectic gerbes and their Lagrangian class

We are interested in the extension of gerbes to the symplectic world. Similar to the
passage from torsors to symplectic torsors (Section 8.1), we replace torus bundles by
symplectic torus bundles over B. Hence, our starting point is an integral affine mani-
fold (B,Λ) with its the associated symplectic torus bundle (T , ωT ) = (T ∗B,ωcan)/Λ.

Definition 8.3.1. — Let (B,Λ) be a smooth integral affine manifold with associated
torus bundle (T , ωT ). A symplectic (T , ωT )-gerbe over B is a symplectic Morita
equivalence class of central extensions of the form:

(8.14) 1 // TM
i // (G ,Ω) // M ×B M // 1,

where pM : M → B is a surjective submersion, TM = p∗MT and (G ,Ω) is a symplectic
groupoid with i∗Ω = p∗MωT .

Remark 8.3.2. — Symplectic Morita equivalence of extensions is the symplectic ver-
sion of the notion from the previous section (see Appendix A). We continue to al-
low symplectic groupoids over a disconnected base (and possibly with disconnected
s-fibers). This does not affect the basic property thatM carries a Poisson structure π.
When dealing with extensions (8.14) with connected s-fibers, then G will make (M,π)

into a Poisson manifold of proper type for which the associated leaf space is the
integral affine manifold (B,Λ).

Example 8.3.3. — The symplectic analog of Example 8.2.1 is the (symplectic) gauge
groupoid X?

T
X associated to a free Hamiltonian T -spaces q : (X,ΩX)→ B, described

in Appendix A.4).

The fusion product of extensions has a straightforward symplectic version: in the
product G1 ×B G2 one considers the closed 2-form pr∗1 Ω1 − pr∗2 Ω2 and a simple com-
putation shows that the kernel of this form is precisely the orbits of the diagonal
T -action on G1 ×B G2, so this form induces a multiplicative symplectic form Ω1 ? Ω2

on the quotient G1 ? G2. We define the fusion of symplectic (T , ωT )-gerbes by:

(G1,Ω1) ? (G2,Ω2) := (G1 ? G2,Ω1 ? Ω2).

As in the case of T -gerbes, the trivial symplectic (T , ωT )-gerbe is represented
by (T , ωT ) and the inverse of the symplectic (T , ωT )-gerbe defined by (8.14) is the
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one represented by the G opp with the same symplectic form Ω. Moreover, we have
obvious symplectic isomorphisms:

(G ,Ω) ? (T , ωT ) ∼= (T , ωT ) ? (G ,Ω) ∼= (G ,Ω),

(G1,Ω1) ? (G2,Ω2) ∼= (G2,Ω2) ? (G1,Ω1),

((G1,Ω1) ? (G2,Ω2)) ? (G3,Ω3) ∼= (G1,Ω1) ? ((G2,Ω2) ? (G3,Ω3))

and there is a symplectic Morita equivalence:

(G ? G opp,Ω ? Ω)

����

!! (G ,Ω)

(s,t)
uu

p

((

bb (T , ωT )

��

M ×B M B.

We conclude that the set of symplectic (T , ωT )-gerbes over B is an abelian group
with the operation induced by the fusion product.

For the symplectic version of the Dixmier-Douady class and of Theorem 8.2.6 it is
not surprising, given the discussion from Section 8.1, that we now have to replace T

by the subsheaf T
Lagr

of local Lagrangian sections:

Theorem 8.3.4. — Given a symplectic groupoid (G ,Ω) ⇒ M fitting into an extension
(8.14) there is an associated cohomology class:

(8.15) c2(G ,Ω) ∈ H2(B,T
Lagr

).

Moreover:

(i) this construction induces an isomorphism between the group of symplectic
(T , ωT )-gerbes over B and H2(B,T

Lagr
).

(ii) c2(G ,Ω) = 0 iff G is the gauge extension associated to a free Hamiltonian
T -space (Example 8.3.3).

The class c2(G ,Ω) is called the Lagrangian Dixmier-Douady class of the symplectic
gerbe. The rest of this section is devoted to the proof of this theorem.

8.3.1. Construction of the Lagrangian Dixmier-Douady class.— We proceed like in
the previous section, and using the same notations. We choose the local sections
si : Vi →M giving rise to the 1-cocycle gi,j = (si, sj) and we form the T -torsor Gij
over Vij . This is now a symplectic torsor, with the symplectic form inherited from
(G ,Ω), so the bundle projection Gij → Vij is a Lagrangian fibration with connected
fibers. Since the Vij are contractible, we can choose the lifts g̃ij to be Lagrangian.
Using the multiplicativity of the symplectic form on G , it is straightforward to check
that the resulting 2-cocycle (8.12) is made of Lagrangian sections:

(8.16) cijk = g̃ij · g̃jk · g̃ki ∈ Γ(Vijk,TLagr).
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A tedious but straightforward argument shows that the resulting cohomology class
does not depend on the choices involved; this defines our Lagrangian Dixmier-Douady
class:

c2(G ,Ω) ∈ H2(B,T
Lagr

).

Note that the characterization of the extensions which represent the trivial gerbes
given by Lemma 8.2.3, has a straightforward version in the symplectic case. This
implies part (ii) of Theorem 8.3.4.

Remark 8.3.5. — A symplectic version of the exact sequence (8.13) leads to an in-
terpretation of the Lagrangian Dixmier-Douady class as the image of a connecting
morphism of the class of (M,π), as in the standard case:

c2(G ,Ω) = δ([(M,π)]) ∈ H2(B,T
Lagr

).

8.3.2. Independence of the Morita class. — In order to show invariance under sym-
plectic Morita equivalence, assume we are given two extensions:

1 // p∗aT // Ga // Ma ×B Ma
// 1 (a = 1, 2)

associated with submersions pa : Ma → B, and a symplectic Morita equivalence:

(G1,Ω1)

����

!! (P,ΩP )

q1

vv

q2

((

bb (G2,Ω2)

����

M1 M2.

Start with the construction of c2(Ga,Ωa): a good cover {Vi}i∈I of B, sai : Vi → Ma

of pa : Ma → B, gaij = (sai , s
a
j ) : Vij →Ma ×B Ma and Lagrangian lifts:

g̃aij : Vij → (G1)i,j .

Now, (q1, q2) : P → M1 ×B M2 is a symplectic T -torsor which, when pulled-
back via (s1

i , s
2
j ) : Vi → M1 ×B M2, gives a symplectic T -torsor over Vi. Since Vi is

contractible, it has a Lagrangian section, i.e., we find ui : Vi → P such that u∗iΩP = 0,
q1◦ui = s1

i and q2◦ui = s2
i . For each x ∈ Vij the elements ui(x) and g̃1

ij(x)·uj(x)·g̃2
ji(x)

lie in the same fiber of q1 and of q2. By principality, it follows that there exist unique
λij : Vij → T such that:

ui(x) = λij(x) · g̃1
ij(x) · uj(x) · g̃2

ji(x) (x ∈ Vij).

Because ui, uj and g̃aji are Lagrangian sections, the actions of Ga on P are symplectic,
and ωT is multiplicative, it follows that λij is also Lagrangian.

Looking at triple intersections, and using that the actions of TMa
commute, we

obtain for x ∈ Uijk:

λij(x) · g̃1
ij(x) · λjk(x) · g̃1

jk(x) · λki(x) · g̃1
ki(x) = g̃2

ij(x) · g̃2
jk(x) · g̃2

ki(x),

which can be written as:

c2ijk(x)− c1ijk = λij(x) + λjk(x) + λki(x).
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Hence, passing to cohomology we have c2(G1,Ω1) = c2(G2,Ω2).

8.3.3. The Lagrangian Dixmier-Douady class as a group isomorphism. — We now turn
to the additivity of the Dixmier-Douady class:

c2((G1,Ω1) ? (G2,Ω2)) = c2(G1,Ω1) + c2(G2,Ω2).

To represent the Dixmier-Douady class of (G1?G2,Ω1?Ω2) we start with the data used
to construct c2(Ga,Ωa) for a ∈ {1, 2}: a covering {Vi}i∈I and sections sai : Vi → Ma

of pa : Ma → B, yielding the 1-cocycle gaij = (sai , s
a
j ). The lifts g̃aij : Vij → (Ga)i,j

lead to the 2-cocycles caijk given by (8.16). But now observe that these give similar
data for G1 ? G2: the sections si = (s1

i , s
2
i ) : Vi →M1 ×BM2 with associated 1-cocycle

gij = (g1
ij , g

2
ij) and then the Lagrangian lift

g̃ij : Vij → (G1 ? G2)i,j

obtained by composing (g̃1
ij , g̃

2
ij) : Vij → G1 ×B G2 with the projection into G1 ? G2. We

then find that the associated 2-cocycle is given by:

cijk = g̃ij · g̃jk · g̃ki = c1ijk + c2ijk.

This proves that c2(G1 ? G2,Ω1 ? Ω2) = c2(G1,Ω1) + c2(G2,Ω2).
Finally, note that the argument on the injectivity and the surjectivity of c2 from

the previous subsection straightforwardly adapts to the present context.

8.4. Lagrangian Dixmier-Douday class vs Dazord-Delzant class

Given an extension (8.14) let us observe now that there is an obvious isomorphism
of sheaves:

p−1(T
Lagr

) ∼= TM cl
,

so there is an induced map at the level of cohomology:

(8.17) p∗ : Ȟ2(B,T
Lagr

)→ Ȟ2(M,TM cl
).

This map allows to express the precise relationship between the Lagrangian Dixmier-
Douady class of the extension and the Delzant-Dazord class of the underlying Poisson
manifold (see Chapter 7.5):

Proposition 8.4.1. — Under (8.17) the class c2(G ,Ω) ∈ Ȟ2(B,T
Lagr

) of a symplectic
(T , ωT )-gerbe with representative (G ,Ω) ⇒ (M,π) is mapped to the obstruction class
c2(M,π,ΛG ) ∈ Ȟ2(M,TM cl

).

Proof. — Start with the data (8.16) to construct the cocyle cijk representing c2(G ,Ω):
a cover {Vi}i∈I of B, sections si : Vi → M of p : M → B and the Lagrangian lifts
g̃ij : Vij → G of the 1-cocycle gij = (si, sj). Since p : M → B is open, to prove the
proposition it is enough to show that

cijk ◦ p : p−1(Vijk)→ p∗Tcl,

is a 2-cocycle representing c2(M,π,ΛG ).
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For each i ∈ I, we cover the open sets p−1(Vi) by contractible open sets. The
collection of all such open sets, denoted {Ua}a∈A, is an open cover of M which comes
with a map of the indices A→ I, a 7→ ia, such that:

p−1(Vi) =
⋃
ia=i

Ua.

The sections si give transversals Ti = Im(si) ⊂ M to the symplectic leaves and we
have Morita equivalences:

G |p−1(Vi)

����

!! G (Ti,−)

t

vv

p◦s

''

bb T |Vi

��

p−1(Vi) Vi.

Since the Ua are contractible, we can pick local sections σa : Ua → G (Tia ,−) of the
principal T |Via

-bundle t : G (Tia ,−) → p−1(Via). Now observe that on the intersec-
tion Uab, we have two sections of this principal bundle: the restriction σa|Uab and the
section:

σb(x) · g̃ibia(p(x)), (x ∈ Uab).
It follows that there exist λab : Uab → TVia such that:

σa(x) = σb(x) · g̃ibia(p(x)) · λab(x).

Using this relation successively for σa, σb and σc, we conclude that for x ∈ Uabc:

1 = g̃iaic(p(x)) · λca(x) · g̃icib(p(x)) · λbc(x) · g̃ibia(p(x)) · λab(x).

Using the fact that TM is abelian, we conclude that:

g̃iaib · g̃ibic · g̃ibia = λab + λbc + λca,

where we are now viewing λab : Uab → TM . This says that under the map (8.17) the
class c2(G ,Ω), represented by the 2-cocycle cijk, is mapped to a class represented by
the 2-cocycle λab + λbc + λca : Uabc → TM . But now observe that:
(a) The map t : (G (Tia ,−),Ω) → p−1(Via) is an isotropic realization, so it follows

that σ∗aΩ is a closed 2-form on Ua extending the leafwise symplectic form ωFπ .
(b) Since the principle bundle action is symplectic, we find that:

σ∗aΩ = σ∗bΩ + (g̃iaib ◦ p)∗Ω + λ∗abωT

= σ∗bΩ + p∗g̃∗iaibΩ + dλab

= σ∗bΩ + dλab,

where we used the fundamental property of ωT and that the g̃iaib are La-
grangian.

It follows that the 2-cocycle λab +λbc +λca takes values in (TM )cl and represents the
obstruction class c2(M,π,ΛG ), so the proof is completed.
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Remark 8.4.2. — In general, the map (8.17) fails to be injective. Hence, it is possible
to have a proper symplectic integration (G ,Ω) ⇒ (M,π) such that c2(G ,Ω) 6= 0, but
c2(M,π,ΛG ) = 0. In this case, the Poisson manifold (M,π) admits rather different
proper integrations defining the same lattice: one of them arising from free Hamilto-
nian reduction (Theorem 7.5.3) and the other one not. When the fibers of p : M → B

(the symplectic leaves) are 1-connected, a spectral sequence argument shows that
(8.17) is injective, and we conclude that either all proper integrations of (M,π,Λ)

arise from free Hamiltonian TΛ-reduction, or none of them does.
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CHAPTER 9

SYMPLECTIC GERBES OVER ORBIFOLDS

We now extend the theory of symplectic gerbes over manifolds to the case of orbi-
folds. Of course, our motivation comes from the fact that the leaf spaces of PMCTs
are, in general, orbifolds. As in Chapter 8, we start with a simplified statement of our
results, generalizing Theorem 8.0.1:

Theorem 9.0.1. — Let (G ,Ω) ⇒ M be a proper integration of (M,π), inducing the
orbifold atlas B = B(G ) on the leaf space B = M/Fπ. Then (G ,Ω) gives rise to a
symplectic gerbe over (B,B), which is classified by a cohomology class

c2(G ,Ω) ∈ H2(B,T
Lagr

).

Moreover, c2(G ,Ω) vanishes iff G = BX(M,π), the B-integration of (M,π) relative
to a proper isotropic realization q : (X,ΩX)→ (M,π) (cf. Definition 7.4.1).

The passage from symplectic gerbes over manifolds to symplectic gerbes over orbi-
folds is based on Haefliger’s philosophy explained in Remark 2.6.8. So throughout
this chapter we fix an orbifold (B,B), with atlas B ⇒ N . The reader should keep in
mind, as main examples: the smooth case of the previous chapter where B is B ⇒ B

(hence N = B), and the leaf space of a proper Poisson manifold (M,π) with proper
integration G , where B(G ) ⇒ M will be the foliation groupoid from Theorem 2.6.9
(hence N = M).

To handle various geometric structures on the orbifold (B,B) one may, in principle,
represent them with respect to the atlas B. However, for some purposes this may not
be the most convenient atlas, so we will be looking at other orbifold atlases E ⇒ M

related to B through a specified Morita equivalence

(9.1) QE : E 'B.

The organization of this chapter is similar to that of Chapter 8, so we will describe
first torsors over orbifolds and then gerbes over orbifolds.
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9.1. Symplectic torsors over integral affine orbifolds

9.1.1. Torus orbibundles. — The notion of a torus orbibundle T over (B,B) is very
similar to the notion of vector orbibundle (see Remark 5.2.1): they are represented
by a B-torus bundle T , i.e., a torus bundle over M endowed with an action of B:

B

  
  

!! T

~~

N.

We can represent the torus orbibundle T with respect to any other atlas E ' B by
a E -torus bundle TE over the base of E . Indeed, any Morita equivalence

E1

����

!! Q

q1

xx

q2

&&

bb E2

����

N1 N2

gives rise to a 1-1 correspondence between (isomorphism classes of) E1-torus bun-
dles T1 and E2-torus bundles T2. The correspondence is defined by the condition that
there is a left E1-equivariant and right E2-equivariant isomorphism of torus bundles:

q∗1T1
∼= q∗2T2.

Here, the left action of E1 on q∗1T1 it is the lift of the original action of E1 on T1,
while the left action on q∗2T2 is the tautological one: the action of an arrow g : x→ x′

of E1 takes an element (u, λ) in the fiber of q∗2T2 above x, q1(u) = x, λ ∈ T2,y where
y = q2(x) = q2(x′), to the element (g · u, λ) in the fiber of q∗2T2 above x′. Similarly
for the right actions. Explicitly, starting from T1 we obtain T2 as q∗1T1/E1.

As in 8.1.1, it is useful to look at the more general notion of H -principal bundle
over (B,B), for an arbitrary Lie groupoid H ⇒ M . By that we mean a (right)
H -principal bundle P over M , together with a left action of B,

B

����

!! P

p

xx

q

&&

bb H

����

N M,

such that all the axioms from the notion of Morita equivalence are satisfied, except
for the condition that the action of B is principal. We denote by BunH (B) the set
of isomorphism classes of such bundles.

A description in terms of transition functions/Čech cocycles similar to (8.3) works
well when B is étale. For that we need the embedding category EmbU (B) associated
to a basis U for the topology of N [39]. This is the discrete category whose objects
are all open sets U ∈ U , and whose arrows σ : U → V are bisections σ : U → B
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such that s ◦ σ = idU and t ◦ σ : U → V is an embedding. The composition of σ with
another arrow τ from V to W is given by

(τ ◦ σ)(x) := τ(t(σ(x)) · σ(x).

Given a principal H -bundle P over (B,B), one choses U such that p : P → N has
local sections sU over each U ∈ U . Fixing the {sU}U∈U , one obtains:

— for each U ∈ U , a smooth map fU : U →M , namely fU := q ◦ sU ;
— for each arrow σ : U → V in EmbU (B), a smooth map gσ : U →H so that

gσ(x) : fU (x)→ fV (tσ(x)), σ(x) · sU (x) = sV (t(σ(x))) · gσ(x).

The collection {fU , gσ} will satisfy the cocycle condition

gτ◦σ(x) = gτ (t(σ(x))) · gσ(x).

Conversely, P can be recovered from the family {fU , gσ} and it is clear that the usual
discussion on transition functions/Čech cocycles extends to this setting.

9.1.2. Symplectic torus orbibundles. — For the notion of symplectic torus orbibundles
the discussion is simpler when one works with an étale atlases E : we just require that
TE comes with a symplectic structure which is multiplicative and which is invariant
under the action of E . Passing to a non-étale B ⇒ N , the non-degeneracy of the
2-form is lost and the symplectic torus orbibundle is represented by a presymplectic
torus bundle (T , ωT ) ⇒ N satisfying (see Proposition 3.2.8):

(i) the kernel of ωT coincides with the image of the infinitesimal action of B;
(ii) the action of B on (T , ωT ) is presymplectic (exactly as in Lemma 7.2.7).

The first condition holds if and only if holds at units, i.e., if

(i)′ the foliation induced by (T , ωT ) on M coincides with the orbits of B ⇒M .

Moreover, when B is s-connected then (ii) follows from (i) (see Appendix A).
As in the smooth case, one obtains a 1-1 correspondence: integral affine

structures on (B,B)

 1−1←→

 isomorphism classes of
symplectic torus bundles over (B,B)

 .

Example 9.1.1. — The first part of Lemma 7.2.4, together with Lemma 7.2.7 can be
reformulated as saying that an isotropic realization gives rise to a symplectic torus
orbibundle (T , ωT ) over the classical orbifold M/Fπ .

9.1.3. T -torsors over an orbifold. — Given a torus orbibundle T over an orbifold
(B,B), a T -torsor over (B,B) is a T -torsor X over the base N of B, together with
a (left) action of B on X which is compatible with the action of T in the sense that
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for u ∈ X and λ ∈ T above x ∈ N and b : x→ y in B, one has:

B

��
��

X
''

��

ff T ,

~~

N

b · (u · λ) = (b · u) · b(λ),

where b(λ) refers to the action of B on T .
This notion can be transported along Morita equivalences, hence X can be repre-

sented similarly with respect to any other atlases (9.1). To see this directly is rather
tedious, but the “fibered point of view” allows for a simple formal argument.

Remark 9.1.2 (Fibered point of view). — As in the previous section when (B,B) was
a manifold, it is useful to realize that all our objects are “B-fibered,” i.e., they come
with a “map” into B. For example, while torus bundles over a manifold B can be
looked at as group-like objects in the category ManB of manifolds fibered over B
(see Remark 8.1.1), one should think of a torus bundle T over (B,B) as encoding a
group-like object in the category of groupoids fibered over B, namely T on B ⇒ N

with the obvious projection into B.
Furthermore, it is useful to relax the notion of “map” between groupoids from

smooth functors to Morita maps [29] (also called Hilsum-Skandalis maps [30, 42]).
For these generalized maps, the resulting “generalized isomorphisms” will be precisely
the Morita equivalences. One thinks of a principal G2-bundle over G1 (in the sense
described above) as a graph of a map from G1 to G2. Hence such a principal bundle
will also be called a Morita map from G1 to G2 and we set:

M (G1, G2) = BunG2
(G1).

Given a third groupoid G3 one has a composition operation:

M (G1, G2)×M (G2, G3)→M (G1, G3), (P,Q) 7→ Q ◦ P = P ×M2 Q/G2.

Moreover, any smooth morphism F : G1 → G2 can be thought of as a Morita map

PF := M1 ×M2
G2 ∈M (G1, G2),

where the actions of Gi on PF are the obvious ones. More details on Morita maps can
be found in [1, 30, 33, 40, 42].

Now, while a torus bundle T over (B,B) may be thought of as encoding the
groupoid T on B endowed with the obvious projection into B, a T -torsor X

over (B,B) should be thought of as encoding a left principal bibundle X ×N B:

B

����

!! X ×N B

q1

vv

q2

((

bb T on B

����

N N,
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where q1(u, b) = pX(u), q2(u, b) = s(b) and the left/right actions on an element
(u, b) ∈ X ×N B are:

b0 · (u, b) = (b0 · u, b0b), (u, b) · (λ, b1) = (u · b(λ), bb1).

This bibundle describes a Morita map from B to T on B, which is a right inverse to
the projection T on B → B. Conversely, from a Morita map P ∈ M (B,T on B)

right inverse to the projection prB : T on B→B, one recovers X as X := P/B, with
pX induced by q1, and the obvious left action of B. For the right action of T on X
one remarks that the condition that P be a right inverse makes P into a principal
T -bundle over B, with some projection map pr : P →B. Using this, for u ∈ X and
λ ∈ T in the fiber above pX(u), one defines

u · λ := p · b−1(λ),

where p ∈ P is any representative of u and b = pr(p). All together, one obtains:

Lemma 9.1.3. — The construction X 7→ X×N B describes, up to isomorphism, a 1-1
correspondence between:
(i) T -torsors X over (B,B).
(ii) Morita maps P ∈M (B,T on B) which are sections of prB : T on B→B.

9.1.4. Symplectic T -torsors over an orbifold. — In the case of presymplectic torus
bundles (T , ωT ) one can talk about symplectic (T , ωT )-torsors over (B,B): then X
comes with a closed 2-form ΩX and one requires that both actions X ×N T → X

and B×N X → X are compatible with the 2-forms that are present:

(B, 0)

((
((

!! (X,ΩX)

��

bb (T , ωT )

vv
N.

Again, the situation is simpler when B is étale, when the condition on the left ac-
tion simply says that the form on X is B-invariant. Lemma 9.1.3 has an obvious
“symplectic version,” which uses (pre)symplectic bibundles (Appendix A).

9.2. Symplectic gerbes over integral affine orbifolds

9.2.1. Gerbes over orbifolds. — We now fix a torus bundle T over the orbifold (B,B).
Given an arbitrary atlas QE : E ' B, defined over some other manifold M (so
E ⇒M), we are interested in extensions of type

(9.2) 1 // TE
i // G

pr
// E // 1.

Here TE → M is the E -torus bundle which represents T in the new atlas. Such
an extension induces an action of E on TE obtained by lifting the elements of E to
elements of G and conjugating by the lifts. A central extension is one for which the
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induced action coincides with the original action of E on TE . From now on we consider
only central extensions, with no further notice.

For the notion of Morita equivalence, suppose we are given two such extensions Gi,
relative to two foliated orbifold atlases Ei ⇒ Mi. Notice that the two atlases come
with a specific Morita equivalence Q between them

E1

����

!! Q

q
1

xx
q

2
&&

bb E2

����

M1 M2,

where Q = QE1,E2 is obtained by composing QE1 : E1 'B with the inverse of QE2 : E2 '
B. Via this Morita equivalence, TE1 corresponds to TE2 , i.e., one has an isomorphism
between the pull-back bundles

(9.3) Q∗ : q∗
1
TE1
∼= q∗

2
TE2 .

Hence, for every u ∈ Q, denoting q
1
(u) = x1, q2(u) = x2, one has an isomorphism

(9.4) TE2,x2
∼= TE1,x1

, denoted λ 7→ λu.

Definition 9.2.1. — A Morita equivalence of extensions (9.2) is a Morita equiva-
lence P between the two groupoids,

G1

����

!! P

q1
xx

q2
&&

bb G2

����

M1 M2,

,

together with a submersion pr : P → Q satisfying the following properties:

(i) it is left G1-equivariant and right G2-equivariant, where the actions of Gi on Q

are induced from the actions of Ei via the submersions Gi → Ei;
(ii) it is a (left) principal TE1 -bundle and a (right) principal TE2-bundle;
(iii) the two torus actions on P are compatible: if ũ ∈ P and u = pr(ũ) ∈ Q, then

ũ · λ = λu · ũ, ∀ λ ∈ TE2,q2(u).

Example 9.2.2 (Pullback of extensions). — Central extensions cannot be transported
along general Morita maps or equivalences, so they behave quite differently than the
other types of objects over orbifolds that we looked at so far. However, extensions
can be pulled-back. First of all, an atlas QE : E ' B for the orbifold (B,B), with
E ⇒M , can be pulled-back along any smooth map

q : P →M

that is transverse to the leaves of the orbit foliation on M induced by E . It gives rise
to the new atlas q∗E ⇒ P , where q∗E = P ×M E ×M P is the pull-back groupoid and
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Qq∗E = P ×MQE . Now, given an extension (9.2) over E , one has a pull-back extension
over the orbifold atlas q∗E :

1 // Tq∗E
// q∗G // q∗E // 1,

where q∗G is the pull-back groupoid, while Tq∗E is the pull-back bundle. Notice that
G ×M P gives a Morita bibundle between G and q∗G .

In particular, extensions can be pulled-back via submersions, without affecting the
Morita class. One can also take for q the inclusion of a complete transversal, and
conclude that any extension is Morita equivalent to one over an étale atlas.

The pull-back operation can be used to reinterpret and even redefine the notion of
Morita equivalence of extensions. First, a Morita equivalence Q : E1 ' E2 induces an
isomorphism of Lie groupoids

(9.5) Q∗ : q∗
1
E1
∼= q∗

2
E2.

Explicitly, a point (u, γ1, u
′) ∈ Q ×M1 E1 ×M1 Q = q∗

1
E1 corresponds to the point

(u, γ2, u
′) where γ2 is uniquely determined by the condition γ1 · u′ = u · γ2. In a

general Morita equivalence between extensions, the conditions on P ensure that the
similar isomorphism P∗ : q∗1G1

∼= q∗2G2 is an isomorphism of extensions (i.e., not only
of groupoids) that is compatible with Q. More precisely, one has an isomorphism of
commutative diagrams:

1 // TE1

pr∗Q∗

��

// q∗1G1

P∗

��

// q∗1E1

pr∗Q∗

��

// 1

1 // TE2
// q∗2G2

// q∗2E2
// 1,

where the left and right vertical maps are the pull-backs of (9.5) and (9.3) via pr :

P → X and we use q∗i = pr∗ ◦q∗
i
. From the previous example, we conclude:

Corollary 9.2.3. — Two central extensions Gi overMi (i = 1, 2), are Morita equivalent
if and only if there is a manifold P together with submersions qi : P →Mi such that
the pull-backs q∗i Gi are isomorphic extensions.

Definition 9.2.4. — Given a torus orbibundle T over the orbifold (B,B), a T -gerbe
over (B,B) is a Morita equivalence class of central extensions (9.2). We say that the
extension represents the gerbe over the atlas QE : E 'B.

As we explained above, a general gerbe can be represented only over some orbifold
atlas. Still, Example 9.2.2 shows that if a gerbe is represented by an extension over
the atlas QE : E 'B, with E ⇒M , then we can pullback along any map q : M ′ →M

transverse to the orbits of E . Letting q be the inclusion of a complete transversal, we
see that any gerbe can be represented over an étale atlas.
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9.2.2. Group structure. — We start by observing that any atlas QE : E ' B for the
orbifold (B,B) comes with a trivial central extension

(9.6) 1 // TE
// T on E

pr
// E // 1,

whose Morita class does not depend on the choice of atlas E . These define the trivial
T -gerbe over the orbifold (B,B).

Example 9.2.5. — As in the smooth case, there are non-trivial extensions that may
still represent the trivial gerbe. Actually, one can give a full characterization of such
extensions, generalizing Corollary 8.2.4 to the orbifold context. The starting point is
an orbifold atlas QE : E 'B, with E ⇒M , and a TE -torsor X overM . This gives rise
to the groupoid EX(M) = (X ×M E ×M X)/TE exactly as in Definition 7.4.1 (hence
the quotient is modulo the action (7.10)), which fits into a central extension

1 // TE
// EX(M) // E // 1.

Moreover, exactly as in Proposition 7.4.4, using X×M E as Morita bibundle, it follows
that this extension represents the trivial gerbe. For the converse, one uses an argument
similar to that of Lemma 9.1.3.

The inverse T -gerbe of the gerbe defined by an extension (9.2) is represented by
the opposite extension:

1 // TE
i // G opp pr

// E opp // 1.

Note that inversion gives a groupoid isomorphism E ∼= E opp, so this extension
represents a well defined gerbe over the same orbifold.

Next, for the fusion product of extensions, we start with two extensions Gi as above,
relative to two orbifold atlases Ei ⇒ Mi. We still denote by Q the induced Morita
equivalence between E1 and E2, with projections denoted qi : Q → Mi (i = 1, 2).
While the pull-backs of Ei to Q are isomorphic by (9.5), there is a more symmetric
way to represent the resulting groupoid over Q, namely as the fibered product overM1

(for n) and M2 (for o):
E1,2 := E1 nQo E2.

Indeed, (γ1, u, γ2) 7→ (γ1 · u, γ1) identifies E1,2 with q∗
1
E1 (and similarly for q∗

2
E2). The

groupoid E1,2 ⇒ Q is another atlas for (B,B) and the advantage of this point of view
is that one can define similarly the groupoid

G1,2 = G1 nQo G2 ⇒ X

and the torus bundle:

T1,2 = TE1 nQo TE2 = q∗
1
TE1 ⊗ q

∗
2
TE2 .
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We now act with the smaller torus bundle (9.3) using, e.g., its left hand side q∗
2
TE2 .

The action is along the map G1,2 →M2, (g1, u, g2) 7→ q
2
(u) and it is given by

(g1, u, g2) · λ := (g1 · λu, u, λ · g2),

where we use again the notation (9.4). Finally, we define the fusion product of exten-
sions by considering the groupoid

G1 ? G2 := (G1 nQo G2)/T1,2

and the associated central extension over the orbifold atlas E1,2.
It is tedious but straightforward to extend the discussion from the smooth case to

conclude that the fusion product gives rise to a group structure on the set of T -gerbes
over the orbifold (B,B) with the above identity gerbe and inverse operation on gerbes.

9.2.3. The Dixmier-Douady class. — We proceed as in the smooth case, starting with
a characterization of triviality. This is the following generalization of Lemma 8.2.3 to
the orbifold case, which should now be obvious:

Lemma 9.2.6. — Given a central extension (9.2), the following are equivalent:
(a) it represents the trivial gerbe over (B,B);
(b) there exists a principal G -bundle P over B which lifts the principal E -bundle

over B given by the atlas QE : E ' B. Equivalently: P ∈ M (B, G ) fits into a
commutative diagram of Morita maps

G

pr

��

B
QE

//

P

88

E .

Next, eventually after pulling back to a complete transversal T ↪→ N , we may
assume that the atlas B ⇒ N is already étale. This allows us to use a Čech-type
description of orbifold cohomology, due to Moerdijk [39], which we now recall.

We consider abelian sheaves over (B,B), i.e., sheaves S of abelian groups on N

together with an action of B from the right: hence any arrow x → y of B gives a
group homomorphism between germs Sy → Sx. These form an abelian category with
enough injectives and the sheaf cohomology groups H•(B,S ) are defined as the right
derived functors associated to the functor Γ(·)B of taking invariant sections. Hence:

Hn(B,S ) := Hn(Γ(I•)B),

for some injective resolution 0 // S // I0 // I1 // · · · . This sheaf co-
homology is invariant under Morita equivalences.

For the Čech cohomology description we use the embedding category EmbU (B)

[39, Section 7] (see Section 9.1.1) . Similar to the transition functions for principal
bundles over B, any abelian B-sheaf S gives rise to a preseheaf S̃ on EmbU (B),
i.e., to a contravariant functor A : EmbU (B) → AbGrp. Explicitly, S̃ associates
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to U ∈ U the space S (U) of sections of S over U and to an arrow σ : U → V

of EmbU (B) the map σ∗ : S (V ) → S (U) described as follows: for λ ∈ S (V ) the
section σ∗(λ) ∈ S (U) has germ at x ∈ U :

σ∗(λ)x = λt(σ(x)) · σ(x).

The Čech complex of B relative to U with coefficients in S , denoted (Č•U (B,S ),d),
is defined as the standard complex computing the cohomology of the discrete category
EmbU (B) with coefficients in S̃ . That means:
— a cocycle c ∈ ČnU (B,S ) is a map which associates to each string of n-composable

arrows U0 U1
σ1oo · · ·σ2oo Un

σnoo an element cσ1,...,σn ∈ S (Un);
— the differential d : ČnU (B,S )→ Čn+1

U (B,S ) is given by

(dc)σ1,...,σn+1
= cσ2,...,σn+1

+

n∑
i=1

(−1)ncσ1,...,σiσi+1,...,σn+1
+ (−1)n+1σ∗n+1 (cσ1,...,σn) .

We denote the resulting cohomology by Ȟ•U (B,S ). The Čech complex and the Čech
cohomology are functorial with respect to refinements of covers, so one can pass to
colimits and define the Čech cohomology of the orbifold (B,B) with coefficients in S

as:
Ȟ•(B,S ) = colimH•U (B,S ).

We now have the following result:

Proposition 9.2.7 ([15]). — If Hi(U,S ) = 0 for i > 0 and all U ∈ U , then

H•(B,S ) ∼= Ȟ•U (B,S ),

and these isomorphisms are compatible with taking refinements. In particular,

Ȟ•(B,S ) ∼= H•(B,S ).

And here is a result that is relevant for our discussion on orbifolds and which makes
essential use of properness.

Lemma 9.2.8. — For any proper étale groupoid B and a torus bundle T over B, with
corresponding lattice Λ, one has

H•(B,T ) ∼= H•+1(B,Λ).

Similarly, if (T , ωT ) is a symplectic torus bundle over a proper étale groupoid B:

H•(B,T
Lagr

) ∼= H•+1(B, OΛ).

Proof. — The key remark is that, due to the properness of B ⇒ N , for any B-sheaf S

of R-vector spaces which is fine as a sheaf over the base manifold N , one has

H•(B,S ) = 0, ∀ k ≥ 1.

Use now the exact sequences induced by (8.5) and (8.8) in cohomology.
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With all the cohomology apparatus in place, we can now proceed to define the
Dixmier-Douady class of a gerbe over (B,B). The construction is entirely similar to
the smooth case, the main difference being that we have to start with an extension
(9.2) over an atlas E ⇒ M which may be different from B. We denote by Q = QE

the given Morita equivalence between E and B and we would like to measure the
failure of extending Q, viewed as a principal E -bundle over B, to a principal G -bundle
over B. This can be rephrased in terms of transition functions: we choose the basis U

of N together with local sections sU : U → Q of q2 : Q→ N , so that we can consider
the transition system {fU , gσ}. We may assume that each U ∈ U is contractible. For
each arrow σ : U → V of EmbU (B), the pull-back of pr : G → E via gσ : U → E gives
a T -torsor Gσ → U . Since U is contractible it will admit a section, i.e., we obtain
a lift g̃σ : U → G of gσ. Of course, the cocycle condition may fail: for composable

arrows U0 U1
σ1oo U2

σ2oo in EmbU (B), one has a section of T over U given by

cσ1,σ2 := g̃σ1◦σ2 g̃σ1 g̃σ2

and (σ1, σ2) 7→ cσ1,σ2 defines a cocyle in C2
U (B,T ). This gives rise to a class in

cohomology which, by the usual arguments, is independent of the various choices:

Definition 9.2.9. — The Dixmier-Douady class of the gerbe represented by the exten-
sion (9.2) is

c2(G ) := [cσ1,σ2
] ∈ H2(B,T ) ∼= H3(B,Λ).

To see that c2(G ) only depends on the Morita equivalence class, one first proves
the additivity with respect to the fusion product:

c2(G1 ? G2) = c2(G1) + c2(G2).

This is done exactly like in the smooth case, but using the embedding category. Also,
it is clear that c2(G opp) = −c2(G ). Hence, if G1 and G2 are Morita equivalent then,
since G1 ? G opp

2 is Morita equivalent to the trivial extension, we find:

c2(G1)− c2(G2) = c2(G1 ? G opp
2 ) = 0.

Notice that, by construction, the vanishing of this class is equivalent to the fact that
G represents the trivial gerbe. In this way we have extended the discussion of gerbes
from the smooth to the orbifold case.

Theorem 9.2.10. — Given a torus bundle T over the orbifold (B,B) with lattice Λ,
the Dixmier-Douady class induces an isomorphism:

c2 : Gerb(B,B)(T )→ H2(B,T ) ∼= H3(B,Λ).

9.2.4. Symplectic gerbes. — The symplectic version of gerbes over an orbifold should
now be obvious. One starts with a symplectic torus bundle (T , ωT ) over the orbifold
(B,B) or, equivalently, with an integral affine structure. Then one looks at symplectic
central extensions of the form

(9.7) 1 // TE
i // (G ,Ω)

pr
// E // 1,
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where (G ,Ω) is now a symplectic groupoid and i∗Ω = ωT . Similarly for the notion of
symplectic Morita equivalence, using symplectic Morita bibundles (Appendix A.3).
Therefore a symplectic (T , ωT )-gerbe over (B,B) is a symplectic Morita equivalence
class of such symplectic central extensions.

The group structure on gerbes is, this time, a bit more subtle; e.g., even the trivial
extension (9.6) may fail to be symplectic. The most satisfactory solution is to consider
presymplectic extensions (see Section 9.3). The shortest solution is to pass to an étale
atlas. Indeed, if B is étale, then:
— The trivial central extension (9.6) is now symplectic, yielding the trivial sym-

plectic gerbe. Similarly, the inverse of a symplectic gerbe is symplectic.
— The fusion product of symplectic extensions is a symplectic extension, and is

independent of the symplectic Morita class.
For the construction of the Lagrangian Dixmier-Douady class of a symplectic gerbe,
we assume again that B is étale, and we proceed exactly as in the non-symplectic case,
except that in the construction above one now choses Lagrangian sections sU : U → Q,
making use of Corollary 8.1.3. This leads to:

Theorem 9.2.11. — Given a symplectic groupoid (G ,Ω) ⇒M fitting into an extension
(9.7) there is an associated cohomology class:

c2(G ,Ω) ∈ H2(B,T
Lagr

).

Moreover:
(i) this construction induces an isomorphism between the group of symplectic

T -gerbes over (B,B) and H2(B,T
Lagr

).
(ii) c2(G ,Ω) = 0 if and only if (G ,Ω) is isomorphic to EX(M,π), the E -integration

of (M,π) relative to a proper isotropic realization (X,ΩX)→ (M,π).

Finally, let us look at the relationship between gerbes and symplectic gerbes. At the
level of the Dixmier-Douady classes, the relationship is provided by the cohomology
sequence induced by (8.8), which gives:

(9.8) H3(B,R)
i∗ // H3(B, OΛ)

d∗ // H3(B,Λ) // H4(B,R).

Since d∗ maps c2(G ,Ω) to c2(G ), the preimage d∗−1(c2(G )) is the affine space
c2(G ,Ω) + i∗H

3(B,R). A geometric interpretation will be given in the next section,
using twisted Dirac structures, where the role of H3(B) will be to provide the
background 3-forms. For now, let us recall a more explicit model for H•(B,R): in
the de Rham complex (Ω•(N),d) on the base B ⇒ N we consider the subcomplex
(Ω•(N)B,d) of B-invariant forms. Of course, this makes sense for any étale groupoid
B and defines a cohomology H•bas(B).

Corollary 9.2.12. — For any proper étale groupoid B one has natural isomorphisms

H•bas(B) ∼= H•(B,R).
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The concrete description of H•(B,R) can be extended to non-étale orbifold atlases
QE : E ' B. If E ⇒ M is any proper foliation groupoid one can talk about forms
on M which are E -basic: they are the forms on M whose pull-back via the source
and the target map of E coincide. This defines a sub-complex (Ω•bas(E ),d) of the
de Rham complex of M and gives rise to a (Morita invariant!) cohomology of E ,
denoted H•bas(E ). When E is étale, this agrees with the previous definition.

Corollary 9.2.13. — For any proper étale groupoid B and any orbifold atlas E ' B

one has natural isomorphisms

H•bas(E ) ∼= H•bas(B) ∼= H•(B,R).

In particular, when H3
bas(E ) = H3

bas(B) = 0, if the ordinary gerbe defined by a
symplectic extension is trivial, then so is the induced symplectic gerbe.

9.3. The twisted Dirac setting

We close our discussion on gerbes by explaining briefly how to pass from the Poisson
to the (twisted) Dirac setting. The main outcome will not be a new theory of “twisted
presymplectic gerbes,” but a new way to represent symplectic gerbes by more general
extensions.

Let (G ,Ω, φ) ⇒ M be φ-twisted presymplectic groupoid integrating a Dirac man-
ifold (M,L) with background 3-form φ. As discussed in Remark 3.3.3, in the proper
regular case this still gives rise to a central extension

1 // T (G ) // (G ,Ω) // E (G ) // 1

inducing an integral affine orbifold structure on the space B of orbits, with associated
presymplectic torus bundle T (G ) equipped with the restriction of Ω.

Start now with a sympletic torus bundle (T , ωT ) over the orbifold (B,B) and
look at central extensions defined over some orbifold atlas QE : E 'B, of type

1 // TE
// (G ,Ω, φ) // E // 1,

with i∗Ω = ωTE
, but where (G ,Ω, φ) is now a twisted presymplectic groupoid. Such an

extension will be called a central twisted presymplectic extension on the integral affine
orbifold (B,B). The notion of presymplectic Morita equivalence between such exten-
sion is defined exactly as in the symplectic case, with the only difference that one now
allows twisted presymplectic bibundles and the twisting will vary (see Appendix A).
The construction of the Lagrangian Dixmier-Douady class of such an extension carries
over modulo some obvious modifications, giving

c2(G ,Ω, φ) ∈ H2(B,T
Lagr

) ∼= H3(B, OΛ).

However, one does not obtain a new notion of “twisted presymplectic gerbes”:

Proposition 9.3.1. — For an integral affine orbifold (B,B), one has that:
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(i) any twisted presymplectic extension is presymplectic Morita equivalent to a sym-
plectic extension;

(ii) two symplectic extensions are presymplectic Morita equivalent if and only if they
are symplectic Morita equivalent.

Proof. — Part (i) follows by observing that:
(a) given a (regular) twisted presymplectic groupoid (G ,Ω, φ), after restricting to a

complete transversal to the foliation induced on the base, one obtains a twisted
presymplectic groupoid whose 2-form becomes non-degenerate. Moreover, as
in Example 9.2.2, this operation does not change the (presymplectic) Morita
equivalence class;

(b) given an extension (G ,Ω, φ) over M and any 2-form τ ∈ Ω2(M), the orig-
inal extension is presymplectic Morita equivalent to its τ -gauge transform
(G ,Ω− t∗τ + s∗τ, φ− dτ). In particular, if φ is exact, then by such a gauge
transform one can pass to an untwisted presymplectic extension.

To prove (ii) we invoke again the fact that a presymplectic Morita equivalence between
symplectic groupoids is automatically symplectic.

However, it is still interesting to think about twisted presymplectic representations
of symplectic gerbes. To illustrate that let us assume first that B is smooth, so that
(9.8) gives us the exact sequence:

(9.9) H3(B,R)
i∗ // H3(B, OΛ)

d∗ // H3(B,Λ).

From the construction of the Dixmier-Douady classes we immediately deduce:

Proposition 9.3.2. — Given an integral affine manifold (B,Λ), any closed 3-form
η ∈ Ω3

cl(B) and a twisted presymplectic extension over the submersion pM : M → B

1 // (TΛ)M // (G ,Ω, φ) // M ×B M // 1,

then (G ,Ω, φ+ p∗Mη) defines another twisted presymplectic extension with class:

c2(G ,Ω, φ+ p∗Mη) = c2(G ,Ω, φ) + i∗[η].

In particular, even if we are only interested in symplectic extensions, twisted (sym-
plectic!) ones arise if one wants to understand the difference between symplectic gerbes
and non-symplectic ones:

Corollary 9.3.3. — Given an integral affine manifold (B,Λ), if two TΛ-central sym-
plectic extensions (Gi,Ωi) induce the same (non-symplectic) gerbe, i.e., if there is a
Morita equivalence of extensions:

G1 ' G2,

then there exists a closed 3-form η on B and a twisted symplectic Morita equivalence
of extensions:

(G1,Ω1) ' (G2,Ω2, η).
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This discussion can be generalized from a smooth B to orbifolds (B,B) by using
(9.9) instead of (9.8) and the description of H3(B,R) via basic forms, provided by
Corollary 9.2.13. In other words, one works with presymplectic extensions

1 // TE
// (G ,Ω, φ) // E // 1

defined over orbifold atlases QE : E ' B and one replaces the closed 3-forms η on B
by E -basic closed 3-forms on the base M of E . One concludes that for any E -basic
3-form η on M , the twisted presymplectic groupoid (G ,Ω, φ + η) has class satisfying
the same formula as in the previous proposition.

Remark 9.3.4. — It is not hard to see that all our definitions of (symplectic) gerbes
over orbifolds extend to gerbes over any Lie groupoid (gerbes over stacks) and the
definition of the (Lagrangian) Dixmier-Douady class makes sense at least for gerbes
over any foliation groupoid.
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APPENDIX A

SYMPLECTIC GROUPOIDS AND MOMENT MAPS

In this appendix we recall some basic notions and results associated with symplectic
groupoids and their actions on symplectic manifolds, which are needed throughout
the paper. Much of this material goes back to the work of Mikami and Weinstein [37]
and Xu [54], complemented by the results in [11].

A.1. Hamiltonian G -spaces

Given a Poisson manifold (M,π) and an integrating symplectic groupoid (G ,Ω), a
Hamiltonian G -space is a symplectic manifold (X,ΩX) endowed with a smooth map

q : (X,ΩX)→M,

as well as an action m of G on X along q which symplectic. The condition that the
action is symplectic can be expressed by saying that its graph:

Graph(m) = {(g, x, g · x) : g ∈ G , x ∈ X, s(g) = q(x)} ⊂ G ×X ×X

is a Lagrangian submanifold of (G × X × X,Ω ⊕ ΩX ⊕ −ΩX). Alternatively, this
condition can be rewritten in the multplicative form:

m∗(ΩX) = pr∗1(Ω) + pr∗2(ΩX),

where pri are the two projections.
Recall that a Poisson map q : X → M is called complete if for any complete

Hamiltonian vector field Xh ∈ X(M) the pullback Xh◦q ∈ X(X) is complete. The
very first basic fact about Hamiltonian G -spaces is:

Lemma A.1.1. — Given a symplectic groupoid (G ,Ω) integrating the Poisson manifold
(M,π) and a symplectic action of (G ,Ω) on (X,ΩX), one has:

(i) q : (X,ΩX)→ (M,π) is a complete Poisson map;
(ii) the induced infinitesimal action T ∗M on X,

σ : q∗T ∗M → TX, σ(u, αx) =
d

dt |t=0
exp(tαx) · u
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satisfies the moment map condition

(A.1) iσ(α)(ΩX) = q∗α ∀ α ∈ Ω1(M).

Conversely, if one starts with a Poisson map q : (X,ΩX)→ (M,π), it is immediate
to check that the moment map condition (A.1) defines an infinitesimal Lie algebroid
action σ : q∗T ∗M → TX. Moreover, one has:

Lemma A.1.2. — Let q : (X,ΩX)→ (M,π) be a Poisson map with associate infinites-
imal action σ : q∗T ∗M → TX. Then:
(i) if for some symplectic groupoid (G ,Ω) integrating (M,π) the infinitesimal action

σ integrates to an action of G on X, then the action is symplectic;
(ii) if q : (X,ΩX)→ (M,π) is complete, the infinitesimal action always integrate to

a symplectic action of the Weinstein groupoid (Σ(M,π),Ω) on (X,ΩX).

The standard theory of Hamiltonian G-spaces for a Lie group G is recovered by
letting G = T ∗G = Gng∗ be the cotangent symplectic groupoid integrating the linear
Poisson structure on g∗, and q : (X,ΩX)→ g∗ be the usual moment map.

A.2. Symplectic quotients of Hamiltonian G -spaces

Given a Hamiltonian G -space (X,ΩX), we will say that:
(a) the action is free at u ∈ X if the isotropy group Gu of the action is trivial;
(b) the action is infinitesimally free at u ∈ X if the isotropy group Gu of the action

is discrete. Equivalentely, if the isotropy Lie algebra of the infinitesimal action σ
is trivial, or still if σu is injective. By (A.1) this is also equivalent to q being a
submersion at u.

Symplectic reduction makes sense in the general context of a Hamiltonian G -space
q : (X,ΩX)→ (M,π): the symplectic quotient of (X,ΩX) at a point x ∈M is:

X//x G := q−1(x)/Gx.

This carries a canonical symplectic form uniquely determined by the condition that
its pull-back to q−1(x) is ΩX |q−1(x)

.
As in the classical case, to ensure smoothness one assumes that G is proper and one

restricts to points where the action is free, which form an open dense subspace of M .
The following proposition shows that, in that case, if the fibers of q are connected,
then the symplectic reductions q−1(x)/Gx can be interpreted as the symplectic leaves
of a second Poisson manifold:

Xred := X/G ,

which will still be of proper type, with the same space of symplectic leaves as (M,π).

Proposition A.2.1. — Let (G ,Ω) be a proper symplectic integration of (M,π) and let
q : (X,ΩX)→M be a free Hamiltonian G -space. Then:
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(i) Xred is smooth and carries a unique Poisson structure πred making the canonical
projection

p : (X,ΩX)→ (Xred, πred)

into a Poisson submersion;
(ii) the gauge groupoid of the principal G -space X:

(A.2) X?
G
X := (X ×M X/G ⇒ Xred) ,

with the 2-form induced from pr∗1 ΩX − pr∗2 ΩX ∈ Ω2(X ×M X), is a proper
symplectic groupoid integrating (Mred, πred);

(iii) the connected components of the symplectic quotients q−1(x)/Gx are the sym-
plectic leaves of (Xred, πred).

A.3. Symplectic Morita equivalence

Free Hamiltonian G -spaces are also the main ingredient in symplectic Morita equiv-
alences. Moreover, the previous proposition becomes an immediate consequence of
one of the main properties of such equivalences. We start by recalling the definition
(see [54]):

Definition A.3.1. — A symplectic Morita equivalence between two symplectic
groupoids (Gi,Ωi) ⇒Mi is a Morita equivalence (see Section 2.3):

G1

����

!! X

q1
xx

q2
&&

bb G2

����

M1 M2,

together with a symplectic form ΩX onX such that the actions of G1 and G2 on (X,ΩX)

are symplectic.

Hence, the two legs in a symplectic Morita equivalence are left/right free Hamilto-
nian Gi-spaces. The two actions are proper, but the groupoids need not be proper.

Similar to the non-symplectic case, one can recover one groupoid in a symplectic
Morita equivalence from the other groupoid and the bibundle (X,ΩX) by the gauge
construction:

G2
∼= X?

G1
X, G1

∼= X?
G2
X.

This is precisely the construction of (A.2) in Proposition A.2.1.
A Morita equivalence allows to identify various “transversal objects” associated

to G1, such as leaf spaces, isotropy groups, isotropy Lie algebras, monodromy groups,
etc., with the similar ones of G2. Moreover, in the symplectic case, one obtains an
equivalence between Hamiltonian G1-spaces and Hamiltonian G2-spaces (see [54]). It
is not difficult to see that all these fit nicely together in the proper case, when the
homeomorphism between the two resulting leaf spaces will be a diffeomorphism of
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integral affine orbifolds and the variation of symplectic areas of symplectic reductions
for Hamiltonian G1-spaces will correspond to the ones for G2.

A.4. Hamiltonian TΛ-spaces

The discussion above is interesting even in the case of proper integrations of the zero
Poisson structure. By Proposition 3.1.6, these correspond to integral affine structures
Λ ⊂ T ∗B: the associated torus bundle TΛ = T ∗B/Λ can be viewed as a symplectic
groupoid integrating (B, π ≡ 0). Therefore, for any integral affine manifold (B,Λ) one
can talk about Hamiltonian TΛ-spaces in the sense discussed above, and we have:

Corollary A.4.1. — Let (B,Λ) be an integral affine manifold and let (X,ΩX) be a
symplectic manifold endowed with an action of TΛ along a smooth map q : X → B.
Then the following are equivalent:
(a) (X,ΩX) is a Hamiltonian TΛ-space;
(b) the moment map condition iσ(α)(ΩX) = q∗α holds for all α ∈ Ω1(B), where

σ : q∗T ∗B → TX is the infinitesimal action induced by the action of TΛ on X.

From Proposition A.2.1 and the discussion on Morita equivalences we deduce:

Corollary A.4.2. — Given an integral affine manifold (B,Λ) and a free TΛ-Hamil-
tonian space q : (X,ΩX)→ B, with quotient Xred := X/TΛ, one has:
(i) There a unique Poisson structure πred on Xred carries such that the projection

is a Poisson submersion with connected fibers:

(A.3) p : (X,ΩX)→ (Xred, πred).

Moreover, p makes (X,ΩX) into a proper isotropic realization of (Xred, πred).
(ii) (Xred, πred) admits the following proper integrating symplectic groupoid:

(A.4) X ?
TΛ

X := (X ×B X) /TΛ ⇒ Xred,

with the 2-form induced from the 2-form pr∗1 ΩX − pr∗2 ΩX ∈ Ω2(X ×B X).
(iii) (X,ΩX) defines a symplectic Morita equivalence:

X ?
TΛ

X

����

!! X

vv ((

bb TΛ

��

Xred B.

In particular, there is a 1-1 correspondence between Hamiltonian TΛ-spaces and
Hamiltonian X ?

TΛ

X-spaces.

Note that the s-fibers of the gauge groupoid (A.4) are copies of the q-fibers, so we
we conclude that Xred is of proper type when the fibers of q are connected. There are
examples where the fibers are not connected, the gauge groupoid is proper, but its
source connected component fails to be proper.
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We show in Section 3.1 that Hamiltonian TΛ-spaces are nothing more than La-
grangian fibrations (X,ΩX)→ B inducing the integral affine structure Λ on B. When
B = Tn with its standard integral affine structure, TΛ is the trivial Tn-bundle over Tn
and Hamiltonian TΛ-spaces are the same thing as quasi-Hamiltonian Tn-spaces in the
sense of (Reference [4]).

A.5. The twisted Dirac case

Let us mention briefly how to modify the previous discussion in the case of twisted
Dirac manifolds. For details see [55].

Given a presymplectic groupoid (G ,Ω, φ) integrating a twisted Dirac manifold
(M,L) with background 3-form φ ∈ Ω2(M), a Hamiltonian G -space consists of a
manifold X, endowed with a 2-form ΩX , together with a smooth map

q : (X,ΩX)→M,

as well as an action m of G on X along q, satisfying:
(a) multiplicativity: m∗(ΩX) = pr∗1(Ω) + pr∗2(ΩX);
(b) twisting: dΩX − q∗φ is horizontal relative to the action.

For such a Hamiltonian G -space, the map q : (X,ΩX) → (M,L) is a forward Dirac
map. One also has analogs of Lemmas A.1.1 and A.1.2.

For a free Hamiltonian G -space, the reduced space:

Xred := X/G ,

now carries a unique φred-twisted Dirac structure Lred for which the projection
p : (X,ω)→ (Xred, Lred) is a forward Dirac map and the twisting satisfies:

dΩX = q∗φ− p∗φred.

The gauge groupoid:
X?

G
X := (X ×M X/G ⇒M) ,

with the 2-form induced from pr∗1 ΩX − pr∗2 ΩX , is a φred-twisted presymplectic
groupoid integrating (M,Lred), with leaves the presymplectic quotients q−1(x)/Gx.

A presymplectic Morita equivalence between two φi-twisted presymplectic
groupoids (Gi,Ωi) ⇒Mi is a Morita equivalence:

G1

����

!! X

q1
xx

q2
&&

bb G2

����

M1 M2,

together with a 2-form ΩX on X such that the actions are presymplectic:

m∗i (ΩX) = pr∗1(Ωi) + pr∗2(ΩX) (i = 1, 2),

and the following twisting condition holds:

dΩX = q∗1φ1 − q∗2φ2.
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Hence, the two legs in a presymplectic Morita equivalence are left/right free Hamil-
tonian Gi-spaces and one can recover one groupoid from the other groupoid and the
bibundle (X,ΩX) by the gauge construction:

G2
∼= X?

G1
X, G1

∼= X?
G2
X.

Note that a twisted presymplectic groupoid maybe presymplectic Morita equivalent
to a non-twisted symplectic groupoid. Moreover, it is easy to check that:
(i) Any φ-twisted presymplectic groupoid (G ,Ω, φ) ⇒ (M,L) is presymplectic

Morita equivalent to its restriction to a complete transversal G |T ⇒ T , which
is a twisted symplectic groupoid with twisting the restriction of φ to the
transversal T .

(ii) A presymplectic Morita equivalence between two symplectic groupoids is actu-
ally a symplectic Morita equivalence.

Finally, given a 2-form B ∈ Ω2(M), there is a presymplectic Morita equivalence
between a φ-twisted presymplectic groupoid (G ,Ω) ⇒ (M,L) and its B-transform,
namely the (φ + dB)-twisted presymplectic groupoid (G ,Ω′) ⇒ (M, eBL), where
Ω′ = Ω + t∗B − s∗B.
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APPENDIX B

PROPER TRANSVERSE INTEGRAL AFFINE FOLIATIONS

In this chapter we show that some of the ideas from Molino’s structure theory of
riemannian foliations ([40, 41]) can be adapted to the case of transverse integral affine
foliations proving in particular that the leaf spaces of proper transverse integral affine
foliations are good orbifolds, i.e., global quotients modulo proper actions of discrete
groups. In the terminology of [49, 26], we show that proper integral affine foliations
are complete.

Throughout this chapter we fix a foliated manifold (M,F ) together with a trans-
verse integral affine structure Λ ⊂ ν∗(F ).

B.1. Transverse integral affine structures and the foliation holonomy

We start by investigating the influence of the transverse integral affine structure Λ

on the holonomy of F Note first that the various groupoids associated to the foliation
discussed in Section 2.1 fit into a sequence of groupoid morphisms

Mon(M,F )
hol // Hol(M,F )

lin // Hollin(M,F ) ⊂ GLΛ(ν(F )),

where the Λ in the last factor is justified by the fact that the holonomy of the foli-
ation preserves Λ. As pointed out in Section 2.1, unlike the other groupoids in this
sequence, Hollin(M,F ) does not have a smooth structure making lin smooth unless
the holonomy is linear.

Proposition B.1.1. — If (M,F ) admits a transverse integral affine structure then its
holonomy is linear, i.e., lin is bijective. Moreover, with the induced smooth structure,
Hollin(M,F ) is an immersed Lie subgroupoid of GL(ν(F )).

Proof. — For a leafwise path γ from x to y, choosing small transversals S through x
and T through y, the induced holonomy germ hol(γ) : (S, x) → (T, y) preserves the
integral affine structures on the transversals. Using transverse integral affine charts,
we obtain a a germ of a diffeomorphism Rq → Rq around the origin which preserves
the standard integral affine structure. Such germs are clearly linear.
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Note that Hollin(M,F ) ⊂ GL(ν(F )) may fail to be an embedding: one example is
given by the Kronecker foliation on the torus, with an irrational slope. This problem
will soon disappear, once we assume properness of the foliation.

Next we compare the holonomy of the foliation, which we will refer to as F -holon-
omy, with the ones associated to the transverse integral affine. Recall from Section 5.1
that, associated to Λ, we consider:
— the linear holonomy hlin : Π1(M)→ GLΛ(ν(F )) with image denoted by

Πlin
1 (M,Λ) ⊂ GLΛ(ν(F ));

— the affine holonomy hAff : Π1(M)→ AffΛ(ν(F )) with image denoted by

ΠAff
1 (M,Λ) ⊂ AffΛ(ν(F )).

While the holonomies associated to Λ are defined on Π1(M), the F -holonomy is
defined on Mon(M,F ). Hence, to compare the two, we will use the tautological map
sending the leafwise homotopy class of a leafwise path to its homotopy class as a path
in M :

i∗ : Mon(M,F )→ Π1(M).

Proposition B.1.2. — For a transverse integral affine structure Λ on a foliation
(M,F ), its holonomies are related to the F -holonomy through the following commu-
tative diagrams:

Π1(M)
hlin

// GLΛ(ν(F ))

Mon(M,F ),

i∗

OO

hollin

77
Π1(M)

hAff
// AffΛ(ν(F ))

Mon(M,F ).

i∗

OO

(0,hollin)

77

In particular, the F -holonomy sits inside both the linear and the affine holonomy, and
Hol(M,F ) sits as an immersed subgroupoid:

j : Hol(M,F ) ↪→ Πlin
1 (M,Λ), (0, j) : Hol(M,F ) ↪→ ΠAff

1 (M,Λ).

Proof. — For the commutativity of the first diagram it suffices to check that the flat
connection ∇ on ν(F ), whose parallel transport gives rise to hlin, when computed on
vectors tangent to F , becomes the Bott F -connection, whose parallel transport gives
rise to hollin. In other words, that we have:

∇V (X) = [V,X], ∀ V ∈ Γ(F ), X ∈ Γ(ν(F )).

This is a local statement that follows right away using local vector fields X1, . . . , Xq

spanning the integral lattice and such that [V,Xi] ∈ Γ(F ) whenever V ∈ Γ(F ).
The commutativity of the second diagram follows from the first one and the remark

that the developing map dev : Π1(M)→ ν(F ) vanishes on the image of i∗. To prove
the remark observe that the projection TM → ν(F ), an algebroid 1-cocyle whose
integration is dev, is zero on the sub-algebroid F ⊂ TM ; hence hAff ◦i∗, as a groupoid
cocycle integrating the zero algebroid cocycle, must be trivial.
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B.2. Lifting to the linear holonomy cover

As in Section 5.1, one can be more concrete by fixing
— a base point x ∈M , and
— a Z-basis bΛ = {λ1, . . . , λq} for Λx.

Then one can represent the F -holonomy at x as a map

hollin|x : π1(S, x)→ GLZ(Rq),

and similarly for the holonomies of Λ, hlin|x and hAff |x, defined on π1(M,x) (see
(5.1)). The diagrams in Proposition B.1.2 become the following diagrams:

π1(M,x)
hlin|

x // GLZ(Rq)

π1(L, x),

i∗

OO

hollin|
x

88
, π1(M,x)

hAff |
x // AffZ(Rq)

π1(L, x).

i∗

OO

(0,hollin|
x
)

88

The images of hlin|x and hAff |x will be denoted by

Γlin ⊂ GLZ(Rq), ΓAff ⊂ AffZ(Rq),

respectively. These groups, being quotients of π1(M,x), give rise to a sequence of
covering spaces endowed with pull-back foliations:

(M̃, F̃ ) // (MAff ,F Aff) // (M lin,F lin) // (M,F ).

Each of these foliations has a (pull-back) transverse integral affine structure. Using
the base point x, we can identify each of these spaces with the source fiber at x of
the corresponding groupoids:

M̃ = Π1(M)(x,−), MAff = ΠAff
1 (M,Λ)(x,−), M lin = Πlin

1 (M,Λ)(x,−).

Remark B.2.1. — One can also use the basis bΛ to obtain a more concrete model
for M lin, as the connected component through (x, bΛ) of the Λ-frame bundle:

Fr(ν(F ),Λ) := {(x, v1, . . . , vq) : x ∈M,v1, . . . , vq − basis of Λx} ⊂ Fr(ν(F )).

We will not use this description in what follows, but it provides some geometric insight
into the linear holonomy cover and actions on them. Incidentally, it also shows that
Πlin

1 (M) is the unit connected component of GLΛ(ν(F )).

Next, we state the main properties of the foliation (M lin,F lin). An entirely similar
result holds for (MAff ,F Aff), but we leave the details to the reader.

Lemma B.2.2. — If p : M lin → M is the covering projection, then the foliation
(M lin,F lin) has the following properties:
(i) it has trivial F -holonomy;
(ii) the action of Γlin on M lin takes leaves to leaves;
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(iii) each leaf L′ of F lin is isomorphic to the F -holonomy cover of a leaf L of F ,
with covering projection the restriction of p : M lin →M ;

(iv) there is a free, possibly non-proper, action of Hol(M,F ) ⇒ M on M lin →M

and Hol(M lin,F lin) ⇒ M lin is isomorphic to the resulting action groupoid
Hol(M,F ) nM lin ⇒M lin;

Proof. — Property (i) should be clear since the transverse integral affine structure
p∗Λ on (M lin,F lin) has linear holonomy map the composition of the linear holonomy
map of Λ on (M,F ) with p∗ : π1(M lin) → π1(M). Using Proposition B.1.2, we
conclude that (M lin,F lin) must have trivial holonomy.

Property (ii) follows from general properties of covers and pullback foliations.
For the proof of property (iii), we consider the s-fiber Πlin

1 (x,−) above x, together
with the target map

p : Πlin
1 (x,−)→M,

as a model for the covering p : M lin →M . From the homotopy exact sequence of the
Γlin-cover p : M lin →M , we obtain the following short exact sequence:

0 // π1(M lin) // π1(M)
hlin
// Γlin // 0.

For any embedded sub-manifold L ⊂ M and for any connected component L′

of p−1(L), the restriction p|L′ : L′ → L is a covering projection with group the image
of i∗(π1(L)) by hlin. In particular, π1(L′) is isomorphic to the kernel of the composi-
tion hlin ◦ i∗ which equals the linear holonomy group of (M,F ) by Proposition B.1.2.
This proves (iii) in the case where the leaves are embedded. With some care, the
argument can be adapted to immersed leaves L ⊂ M . An alternative proof of (iii)
follows also from the proof of (iv), to which we now turn.

In the model above, the action of Hol(M,F ) on M lin is induced from the inclusion
j : Hol(M,F ) ↪→ Πlin

1 (see Proposition B.1.2): this clearly gives a free, left, action

Hol(M,F )×Πlin
1 (x,−)→ Πlin

1 (x,−), (a, γ) 7→ j(a)γ.

The orbit of the action through any γ ∈ Πlin
1 (x,−) is the image of the immersion:

Rγ : Hol(M,F )(x′,−)→ Πlin
1 (x,−), Rγ(a) = j(a)γ.

We claim that the tangent space at γ to such an orbit coincides with TγF lin. Since
these orbits are smooth, connected, immersed submanifolds of M lin = Πlin

1 (x,−), it
will follow that they are precisely the leaves of F lin. To prove the claim we compute

(dp)(dRγ(Ta Hol(M,F )(x′,−))) = (dt)γ(Tγ Hol(M,F )(x,−)) = Tt(a)F .

This shows that dRγ(Ta Hol(M,F )(x′,−)) ⊂ Tj(γ)aF lin; by a dimension counting,
this inclusion must be an equality, proving the claim. Therefore Hol(M,F ) nM lin is
a groupoid over M lin integrating F lin, so it comes with a groupoid submersion

Hol(M,F ) nM lin → Hol(M lin,F lin).
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Composing this map with the anchor (s, t) : Hol(M lin,F lin)→M lin ×M lin gives the
anchor (s, t) : Hol(M,F ) nM lin →M lin ×M lin, which is injective by freeness of the
action. Therefore the submersion is actually a diffeomorphism and (iv) follows.

B.3. Proper Foliations: a Molino type Theorem

In the proper case we have:

Lemma B.3.1. — If (M,F ) is a proper foliation with a transverse integral affine
structure then the immersions Hol(M,F ) ↪→ GL(ν(F )), Hol(M,F ) ↪→ Πlin

1 (M) and
Hol(M,F ) ↪→ ΠAff

1 (M) are embeddings of Lie groupoids.

Proof. — By Proposition 2.4.2, the properness of (M,F ) implies that Hol(M,F ) is
a proper groupoid. It then suffices to remark that if H is a proper groupoid and
F : H → G is a morphism of Lie groupoids over M covering the identity on the
base, then F is automatically a proper map: for K ⊂ G compact, F−1(K) is closed
inside the compact H (s(K), t(K))), hence it must be compact. In particular, if F is
an injective immersion, than it is automatically a closed embedding.

As explained in Example 3.2.6, under the present assumptions, B = M/F is an
integral affine orbifold. Our final result shows that B is actually a good orbifold:

Theorem B.3.2. — If (M,F ) is a foliation of proper type with a transverse integral
affine structure, then the linear holonomy cover (M lin,F lin) is simple and carries a
transverse integral affine structure. Hence, its space of leaves

Blin := M lin/F lin

is a smooth integral affine manifold. Moreover, the action of Γlin on M lin descends to
a proper action on Blin by integral affine transformations and M lin yields a Morita
equivalence:

Hol(M,F )

����

!! M lin

p

vv

q
((

}} Blin o Γlin

����

M Blin.

In particular, we have an isomorphism of integral affine orbifolds:

M/F ∼= Blin/Γlin.

Proof. — By Lemma B.2.2 (iv), the holonomy groupoid of (M lin,F lin) is proper
and this foliation has trivial holonomy. Hence, it must be a simple foliation with
smooth orbit space Blin. Equivalently, now the free action of Hol(M,F ) on M lin is
also proper, hence Blin = M lin/Hol(M,F ) is smooth and q : M lin → Blin is a
principal Hol(M,F )-bundle. By Lemma B.2.2 (ii) we have an action of Γlin on Blin

and p : M lin →M is a principal Blin o Γlin-bundle.
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The two actions on M lin clearly commute, hence we obtain a Morita equivalence.
Since properness is a Morita invariant, it follows that the action of Γlin on Blin must be
proper. The properties concerning the integral affine structure are straightforward.

Remark B.3.3. — There is a version of the previous theorem where the linear holon-
omy cover M lin is replaced by the affine holonomy cover MAff , giving rise to a similar
Morita equivalence of Hol(M,F ) ⇒ M with BAff o ΓAff ⇒ BAff . Here BAff is the
affine holonomy cover of the integral affine manifold Blin. This version allows us to
view the developing map dev : MAff → Rq as the composition of the projection
MAff → BAff with the developing map dev : BAff → Rq of the integral affine mani-
fold B. The argument uses the affine version of Lemma B.2.2.

Since a classical integral affine orbifold can always be obtained as the leaf space of
a foliation of proper type with a transverse integral affine structure, we conclude:

Corollary B.3.4. — Any classical integral affine orbifold is a good orbifold.
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This is the second paper of a series dedicated to the study
of Poisson structures of compact types (PMCTs). In this
paper, we focus on regular PMCTs, exhibiting a rich trans-
verse geometry. We show that their leaf spaces are inte-
gral affine orbifolds. We prove that the cohomology class of
the leafwise symplectic form varies linearly and that there
is a distinguished polynomial function describing the leaf-
wise sympletic volume. The leaf space of a PMCT carries a
natural Duistermaat-Heckman measure and a Weyl type
integration formula holds. We introduce the notion of a
symplectic gerbe, and we show that they obstruct realiz-
ing PMCTs as the base of a symplectic complete isotropic
fibration (a.k.a. a non-commutative integrable system).
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