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THE FUNDAMENTAL LEMMA AND THE HITCHIN FIBRATION
[after Ngô Bao Châu]

by Thomas C. HALES

The study of orbital integrals on p-adic groups has turned
out to be singularly difficult.

(R. P. Langlands, 1992)

This report describes some remarkable identities of integrals that have been
established by Ngô Bao Châu. My task will be to describe why these identities—
collectively called the fundamental lemma (FL)—took nearly thirty years to prove,
and why they have particular importance in the theory of automorphic representa-
tions.

1. BASIC CONCEPTS

1.1. Origins of the fundamental lemma (FL)

To orient ourselves, we give special examples of behavior that the theory is designed
to explain.

Example 1. — We recall the definition of the holomorphic discrete series represen-
tations of SL2(R). For each natural number n ≥ 2, let Vn,+ be the vector space of all
holomorphic functions f on the upper half plane h such that∫

h

|f |2yn−2dx dy <∞.

SL2(R) acts on Vn,+:(
a b

c d

)
· f(z) = (−bz + d)−nf

( az − c
−bz + d

)
.

Similarly, for each n ≥ 2, there is an anti-holomorphic discrete series representation
Vn,−. These infinite dimensional representations have characters that exist as locally
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integrable functions Θn,±. The characters are equal: Θn,+(g) = Θn,−(g), except when
g is conjugate to a rotation

γ =

(
cos θ sin θ

− sin θ cos θ

)
.

When g is conjugate to γ, a remarkable character identity holds:

(2) Θn,−(γ)−Θn,+(γ) =
ei(n−1)θ + e−i(n−1)θ

eiθ − e−iθ
.

It is striking that numerator of the difference of two characters of infinite dimen-
sional representations collapses to the character of a two dimensional representation
γ 7→ γn−1 of the group H of rotations. Shelstad gives general characters identities of
this sort [49].

We find another early glimpse of the theory in a letter to Singer from Langlands in
1974 [33]. Singer had expressed interest in a particular alternating sum of dimensions
of spaces of cusp forms of G = SL2 over a totally real number field F . Langlands’s
reply to Singer describes then unpublished joint work with Labesse [32]. Without
going into details, we remark that in the calculation of this alternating sum, there is
again a collapse in complexity from the three dimensional group SL2 to a sum indexed
by one-dimensional groups H (of norm 1 elements of totally imaginary quadratic
extensions of F ).

These two examples fit into a general framework that have now led to major results
in the theory of automorphic representations and number theory, as described in
Section 7. Langlands holds that methods should be developed that are adequate for
the theory of automorphic representations in its full natural generality. This means
going from SL2 (or even a torus) to all reductive groups, from one local field to all
local fields, from local fields to global fields and back again, from the geometric side
of the trace formula to the spectral side and back again. Moreover, interconnections
between different reductive groups and Galois groups should be included, as predicted
by his general principle of functoriality.

Thus, from these early calculations of Labesse and Langlands, the general idea
developed that one should account for alternating sums (or κ-sums as we shall call
them because they occasionally involve roots of unity other than ±1) that appear in
the harmonic analysis on a reductive group G in terms of the harmonic analysis on
groups H of smaller dimension. The FL is a concrete expression of this idea.
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1.2. Orbital integrals

This section provides brief motivation about why researchers care about integrals
over conjugacy classes in a reductive group. Further motivation is provided in Sec-
tion 7.

It is a basic fact about the representation theory of a finite group that the set of
irreducible characters is a basis of the vector space of class functions on the group. A
second basis of that vector space is given by the set of characteristic functions of the
conjugacy classes in the group. We will loosely speak of any linear relation among the
set of characteristic functions of conjugacy classes and the set of irreducible characters
as a trace formula.

More generally, we consider a reductive group G over a local field. Each admissible
representation π of G defines a distribution character:

f 7→ trace

∫
G

f(g)π(g) dg, f ∈ C∞c (G),

with dg a Haar measure on G. A trace formula in this context should be a linear rela-
tion among characteristic functions of conjugacy classes and distribution characters.
To put all terms of a trace formula on equal footing, the characteristic function of a
conjugacy class must also be treated as a distribution, called an orbital integral:

f 7→ O(γ, f) =

∫
Iγ\G

f(g−1γg) dg, f ∈ C∞c (G),

where Iγ is the centralizer of γ ∈ G.
The FL is a collection of identities among orbital integrals that may be used in a

trace formula to obtain identities among representations π.

1.3. Stable conjugacy

At the root of these κ-sum formulas is the distinction between ordinary conjugacy
and stable conjugacy.

Example 3. — A clockwise rotation and counterclockwise rotation(
cos θ − sin θ

sin θ cos θ

)
and

(
cos θ sin θ

− sin θ cos θ

)
in SL2(R) are conjugate by the complex matrix

(
i 0
0 −i

)
, but they are not conjugate

in the group SL2(R) when θ 6∈ Zπ. Indeed, a matrix calculation shows that every
element of GL2(R) that conjugates the rotation to counter-rotation has odd determi-
nant, thereby falling outside SL2(R). Alternatively, they are not conjugate in SL2(R)

because the character identity (2) separates them.

Let G be a reductive group defined over a field F with algebraic closure F̄ .
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Definition 4. — An element γ′ ∈ G(F ) is said to be stably conjugate to a given
regular semisimple element γ ∈ G(F ) if γ′ is conjugate to γ in the group G(F̄ ).

There is a Galois cohomology group that can be used to study the conjugacy classes
within a given stable conjugacy class. Let Iγ be the centralizer of an element γ ∈
G(F ). The centralizer is a Cartan subgroup when γ is a (strongly) regular semisimple
element. Write γ′ = g−1γg, for g ∈ G(F̄ ). For every element σ of the Galois group
Gal(F̄ /F ), we have g σ(g)−1 ∈ Iγ(F̄ ). These elements define in the Galois cohomology
group H1(F, Iγ) a class, which does not depend on the choice of g. It is the trivial
class when γ′ is conjugate to γ.

Example 5. — The centralizer Iγ of a regular rotation γ is the subgroup of all rota-
tions in SL2(R). The group Iγ(C) is isomorphic to C×. Each cocycle is determined
by the value r ∈ Iγ(C) = C× of the cocycle on the generator of Gal(C/R). A given
r ∈ C× satisfies the cocycle condition when r ∈ R× and represents the trivial class in
cohomology when r is positive. This identifies the cohomology group:

H1(R, Iγ) = R×/R×+ = Z/2Z.

This cyclic group of order two classifies the two conjugacy classes within the stable
conjugacy class of a rotation.

When F is a local field, A = H1(F, Iγ) is a finite abelian group. Every function
A → C has a Fourier expansion as a linear combination of characters κ of A. The
theory of endoscopy is the subject that studies stable conjugacy through the separate
characters κ of A. Allowing ourselves to be deliberately vague for a moment, the idea
of endoscopy is that the Fourier mode of κ (for given Iγ and G) produces oscillations
that cause some of the roots of G to cancel away. The remaining roots are reinforced
by the oscillations and become more pronounced. The root system consisting of the
pronounced roots defines a group H of smaller dimension than G. With respect to
the harmonic analysis on the two groups, the mode of κ on the group G should be
related to the dominant mode on H.

1.4. Endoscopy

The smaller group H, formed from the “pronounced” subset of the roots of G, is
called an endoscopic group. Hints about how to define H precisely come from various
sources.

– It should be constructed from the data (G, Iγ , κ), with γ regular semisimple.
– Its roots should be a subset of the roots ofG (althoughH need not be a subgroup

of G).
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– H should have a Cartan subgroup IH ⊂ H isomorphic over F to the Cartan
subgroup Iγ of G, compatible with the Weyl groups of the two groups H and
G.

– Over a nonarchimedean local field, the spherical Hecke algebra on G should be
related to the spherical algebra on H.

– It should generalize the example of Labesse and Langlands.

Every reductive group G has a dual group Ĝ that is defined over C. The character
group of a Cartan subgroup in the dual group is the cocharacter group of a Cartan
subgroup in G, and the roots of the Ĝ are the coroots of G. The dual of a semisimple
simply connected semisimple group is an adjoint group, and vice versa. For example,
we have dualities ĜL(n) = PGL(n) and Ŝp(2n) = SO(2n+ 1). The duality between
the root systems of Sp(2n) and SO(2n + 1) interchanges short and long roots. The
groups G and Ĝ have isomorphic Weyl groups. We write T̂ ⊂ Ĝ for a Cartan subgroup
of Ĝ. There is a somewhat larger dual group LG that is defined as a semidirect product
of Ĝ with the Galois group of the splitting field of G.

There are indications that the groups H should be defined through the dual Ĝ (or
more precisely, LG) of G:

– Langlands’s principle of functoriality is a collection of conjectures, relating the
representation theory of groups when their dual groups are related. Since the
examples about SL2 in Section 1.1 are representation theoretic, we should look
to the dual.

– The Satake transform identifies the spherical Hecke algebra with a dual object.
– The Kottwitz-Tate-Nakayama isomorphism identifies the group of characters on
H1(F, Iγ) with a subquotient π0(T̂Γ) of the dual torus T̂ . (This subquotient is
the group of components of the set of fixed points of T̂ under an action of the
Galois group of the splitting field of Iγ .)

Definition 6 (Endoscopic group). — Let F be a local field. The endoscopic group
H associated with (G, Iγ , κ) is defined as follows. By the Kottwitz-Tate-Nakayama
isomorphism just mentioned, κ is represented by an element of the dual torus, T̂ . By
an abuse of notation, we will also write κ ∈ T̂ for this element. The identity component
of the centralizer of κ is the dual Ĥ of a quasi-split reductive group H over F . The
choice of a particular quasi-split form H among its outer forms is determined by
the condition that there should be an isomorphism over F of a Cartan subgroup IH
of H with Iγ in G, compatible with their respective Weyl group actions and outer
automorphisms.

We write ρ for the choice of quasi-split form H among its outer forms and refer to
the pair (κ, ρ) as endoscopic data for H. More generally, if G is defined over any field,
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we can use a pair (κ, ρ), with κ ∈ T̂ , to define an endoscopic group H over that same
field.

One of the challenging aspects of the FL is that it is an assertion of direct relation
between groups that are defined by a dual relation. Very limited information (such
as Cartan subgroups, root systems, and Weyl groups) can be transmitted from the
endoscopic group H to G through the dual group.

2. A BIT OF LIE THEORY

2.1. Characteristic polynomials

Let G be a split reductive group over a field k and let g be its Lie algebra, with
split Cartan subalgebra t and Weyl group W . We assume throughout this report that
the characteristic of k is sufficiently large (more than twice the Coxeter number of
G, to be precise). The group G acts on g by the adjoint action. By Chevalley, the
restriction of regular functions from g to t induces an isomorphism

k[g]G = k[t]W .

We let c = Spec (k[t]W ), and let χ : g→ c be the morphism deduced from Chevalley’s
isomorphism. The following example shows that χ : g → c is a generalization of the
characteristic polynomial of a matrix.

Example 7. — If G = GL(n), then k[g]G is a polynomial ring, generated by the
coefficients ci of the characteristic polynomial

(8) p(t) = tn + cn−1t
n−1 + · · ·+ c0

of a matrix γ ∈ g = gl(n). The morphism χ : g → c can be identified with the
“characteristic map” that sends γ to (cn−1, . . . , c0).

2.2. Kostant section

Kostant constructs a section ε : c→ g of χ : g→ c whose image lies in the set greg

of regular elements of g. In simplified terms, this constructs a matrix with a given
characteristic polynomial.

Example 9. — When g = sl(2), the Lie algebra consists of matrices of trace zero,
and the characteristic polynomial has the form t2 + c. The determinant c generates
k[g]G. The Kostant section maps c to

(10)

(
0 −c
1 0

)
.
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Example 11. — If g = gl(n), we can construct the companion matrix of a given
characteristic polynomial p ∈ k[t], by taking the endomorphism t of R = k[t]/(p),
expressed as a matrix with respect to the standard basis 1, t, t2, . . . , tn−1 of R. The
companion matrix is a section c → g that is somewhat different from the Kostant
section. Nevertheless, the Kostant section can be viewed as a generalization of this
that works uniformly for all Lie algebras g.

2.3. Centralizers

Each element γ ∈ g has a centralizer Iγ in G. If two elements of greg have the same
image a in c, then their centralizers are canonically isomorphic. By descent, there is
a regular centralizer Ja, for all a in c, that is canonically isomorphic to Iγ for every
regular element γ such that χ(γ) = a.

Example 12. — Suppose G = SL(2). We may identify Ja with the centralizer of (10)
to obtain the group of matrices with determinant 1 of the form(

x −y c
y x

)
.

Example 13. — If g = gl(n), then the centralizer of the companion matrix with
characteristic polynomial p can be identified with the centralizer of t in GL(R), where
R = k[t]/(p). An element of gl(R) centralizes the regular element t if and only if it is
a polynomial in t. Thus, the centralizer in gl(R) is R and the centralizer in GL(R) is
Ja = R×.

2.4. Discriminant and resultant

Let Φ be the root system of a split group G. The differentials dα of roots define a
polynomial called the discriminant:

(14)
∏
α∈Φ

dα

on t. The polynomial is invariant under the action of the Weyl group W and equals a
function on c. The divisor DG of this polynomial c is called the discriminant divisor.

Example 15. — Let G = GL(n). The Lie algebra t can be identified with the diagonal
matrix algebra with coordinates t1, . . . , tn along the diagonal. The discriminant is∏

i 6=j

(ti − tj).

This is invariant under the action of the symmetric group on n letters and can be
expressed as a polynomial in the coefficients ci of the characteristic polynomial. In
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particular, the discriminant of the characteristic polynomial t2 + bt + c is the usual
discriminant b2 − 4c.

If H is a split endoscopic group of G, there is a morphism

(16) ν : cH → c

that comes from an isomorphism of Cartan subalgebras tH → t and an inclusion of
Weyl groups WH ⊂ W : cH = t/WH → t/W = c. There exists a resultant divisor R
such that

(17) ν∗DG = DH + 2 R.

Example 18. — Let H = GL(2) × GL(2), embedded as a block diagonal subgroup
of GL(4). Identify roots of H with roots of G under this embedding. The morphism
ν : cH → c, viewed in terms of characteristic polynomials, maps the pair (p1, p2) of
quadratic polynomials to the quartic p1p2. Let t1i , t2i be the roots of pi, for i = 1, 2.
The resultant is ∏

j 6=k

(tj1 − tk2).

The resultant is symmetric in the roots of p1 and in the roots of p2 and thus can be
expressed as a polynomial in the coefficients of p1 and p2. It vanishes exactly when p1

and p2 have a common root.

3. THE STATEMENT OF THE FL

Let G be a reductive group scheme over the ring of integers Ov of a nonarchimedean
local field Fv in positive characteristic. Let q be the cardinality of the residue field
k. The map χ : g → c is compatible with stable conjugacy in the sense that two
regular semisimple elements in g(Fv) are stably conjugate exactly when they have
the same image in c(Fv). The results of Section 1.3 (transported to the Lie algebra)
show that each element γ stably conjugate to ε(a) carries a cohomological invariant
in H1(Fv, Ja), which is trivial for elements conjugate to ε(a).

For each regular semisimple element a ∈ c(Fv) and character

κ : H1(Fv, Ja)→ C×,

we write 〈κ, γ〉 for the pairing of κ with the cohomological invariant of γ. A κ-orbital
integral is defined to be

(19) Oκ(a) =
∑

{γ:χγ=a}/∼

∫
Iγ\G(Fv)

〈κ, γ〉1g(Ov)(Ad g−1(γ))dg,
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where Iγ centralizes γ, and the sum runs over representatives of the conjugacy classes
in g(Fv) with image a. Here 1g(Ov) is the characteristic function of g(Ov). A Haar
measure on G has been fixed that gives G(Ov) volume 1.

The character κ determines a reductive group scheme H over Ov, according to
the construction of (1.4). In general, we add a subscript H to indicate quantities
constructed for H, analogous to those already constructed for G. In particular, let cH
be the Chevalley quotient of the Lie algebra of H. There is a morphism ν : cH → c.
When κ is trivial, we write SO for Oκ.

Here is the main theorem of Ngô [46].

Theorem 20 (Fundamental lemma (FL)). — Assume that the characteristic of Fv
is greater than twice the Coxeter number of G. For all regular semisimple elements
a ∈ cH(Ov) whose image ν(a) in c is also regular semisimple, the κ orbital integral
of ν(a) in G is equal to the stable orbital integral of a in H, up to a power of q:

(21) Oκ(ν(a)) = qrv(a)SOH(a), where rv(a) = degv(a
∗R).

A sketch of Ngô’s proof of the FL appears in Section 6.5.
The FL has been obtained from the character identity (2) for SL2:

Θn,−(γ)−Θn,+(γ) =
ei(n−1)θ + e−i(n−1)θ

eiθ − e−iθ
,

by multiple levels of generalization. A general reductive group G replaces SL2 and a
nonarchimedean local field replaces R. Orbital integrals are used rather than charac-
ters, roots of unity 〈κ, γ〉 rather than signs ±1, an endoscopic group H rather than
the rotation group, and a transfer factor qrv(a) rather than a denominator eiθ − e−iθ.

Over the years from the time that Langlands first conjectured the FL until the
time that Ngô gave its proof, the FL has been transformed into simpler form [36].
The statement of the FL appears here in its simple form. Section 8 makes a series of
comments about the original form of the FL and its reduction to this simple form.
Except for that section, our discussion is based on this simple form of the FL. In par-
ticular, we assume that the field Fv has positive characteristic and that the conjugacy
classes live in the Lie algebra rather than the group.

Analogous identities (transfer of Schwartz functions) on real reductive groups have
been established by Shelstad [49]. Her work gives a precise form to the idea that the
oscillations of a character κ cause certain roots to cancel away and others to become
more pronounced: normalized κ-orbital integrals extend smoothly across the singular
hyperplanes of some purely imaginary roots α, but jump across others. At a philo-
sophical distance, Ngô’s use of perverse sheaves can be viewed as p-adic substitute for
differential operators, introduced by Harish-Chandra to study invariant distributions
near a singular element in the group and adopted by Shelstad as a primary tool.
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4. AFFINE SPRINGER FIBERS

4.1. Spectral curves

Calculations in special cases show why the FL is essentially geometric in nature,
rather than purely analytic or combinatorial. We recall a favorite old calculation
of mine of the orbital integrals for so(5) and sp(4), the rank two odd orthogonal
and symplectic Lie algebras [21]. Let Fv be a nonarchimedean local field of residual
characteristic greater than 2. Let k be the residue field with q elements. Choose
a ∈ c(Fv) and let 0,±t1,±t2 be the eigenvalues of the Kostant section γ = ε(a) in
so(5) ⊂ gl(5). Assume that there is an odd natural number r such

|α(γ)| = q−r/2,

for every root α of so(5). We use the eigenvalues to construct an elliptic curve Ea
over k, given by y2 = (1−x2τ1)(1−x2τ2), where τi is the image of t2i /$r in the residue
field, for a uniformizer $. By direct calculation we find that the stable orbital integral
SO(a, f) of a test function f equals the number of points on the elliptic curve:

(22) A(q) +B(q) card(Ea(k)),

up to some rational functions A and B, depending on f .
Similarly, in the group sp(4) ⊂ gl(4), there is an element a′ with related eigenvalues

±t1,±t2. According to the general framework of (twisted) endoscopy, there should be
a corresponding function f ′ on sp(4) such that the stable orbital integral SO(a′, f ′) in
sp(4) is equal to (22). A calculation of the orbital integral of f ′ gives a similar formula,
with a different elliptic curve E′a′ , but otherwise identical to (22). The elliptic curves
Ea and E′a′ have different j-invariants (which vary with a and a′). The proof of the
desired identities of orbital integrals in this case is obtained by producing an isogeny
between Ea and E′a′ . (The identities of orbital integrals are quite nontrivial, even
though the Lie algebras so(5) and sp(4) are abstractly isomorphic.)

In a similar way, hyperelliptic curves appear in calculations of certain orbital inte-
grals in groups of higher rank. When orbital integrals are computed by brute force,
these curves appear as freaks of nature. As it turns out, they are not freaks at all,
merely perverse. One of the major challenges of the proof of the FL and one of the
major triumphs of Ngô has been to find the natural geometrical setting that combines
orbital integrals and spectral curves.

4.2. Orbital integrals as affine Springer fibers

An orbital integral can be computed by solving a coset counting problem. The
value of the integrand (19) is unchanged if g is replaced with any element of the
coset g G(Ov). The integral is thus expressed as a discrete sum over cosets of G(Ov)
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in G modulo the group action by Iγ . Each coset g G(Ov) contributes a root of unity
〈κ, γ〉 or 0 to the value of the integral depending on whether Ad g−1γ ∈ g(Ov) (again
modulo symmetries Iγ). This interpretation as a coset counting problem makes the
FL appear to be a matter of simple combinatorics. However, purely combinatorial
attempts to prove the FL have failed (for good reason).

Let Mv(a, k̄) be the set of cosets that fulfill the support condition (19) of the
integral over k̄:

Mv(a, k̄) = {g ∈ G(F̄v)/G(Ōv) | Ad g−1γ0 ∈ g(Ōv)}, γ0 = ε(a).

Kazhdan and Lusztig showed that the coset space G(F̄v)/G(Ōv) is the set of
k̄-points of an inductive limit of schemes called the affine Grassmannian. Moreover,
Mv(a, k̄) itself is the set of points of an ind-schemeMv(a), called the affine Springer
fiber [28].

Each irreducible component of Mv(a) has the same dimension. This dimension,
δv(a), is given by a formula of Bezrukavnikov [8]. From that formula, it follows that
the dimension of the affine Springer fiber of ν(a) in G exceeds the dimension of the
affine Springer fiber of a in H by precisely rv(a). The factor qrv(a) that appears in
the FL is forced to be what it is because of this simple dimensional analysis.

Goresky, Kottwitz, and MacPherson made an extensive investigation of affine
Springer fibers and conjectured that their cohomology groups are pure. Assuming
this conjecture, they prove the FL for elements whose centralizer is an unramified
Cartan subgroup [19]. They prove the purity result in particular cases by construct-
ing pavings of the affine Springer fibers [20].

Laumon has made a systematic investigation of the affine Springer fibers for unitary
groups. Ngô joined the effort, and together they succeeded in giving a complete proof
of the FL for unitary groups [41].

Ngô encountered two major obstacles in trying to generalize this earlier work to
an arbitrary reductive group. These approaches calculate the equivariant cohomology
by passing to a fixed point set inMv(a) under a torus action. (In the case of unitary
groups, over a quadratic extension each endoscopic group becomes isomorphic to
a Levi subgroup of GL(n). The torus action comes from the center of this Levi.)
However, in general, a nontrivial torus action on the affine Springer fiber simply does
not exist.

The second serious obstacle comes from the purity conjecture itself. In accordance
with Deligne’s work, Ngô believed that the task of proving purity results should
become easier when the affine Springer fibers are combined into families rather than
treated in isolation. With this in mind, he started to investigate families varying over
a base curve X. This moves us from local geometry of a p-adic field Fv to the global
geometry of the function field of X. He found that the Hitchin fibration is the global
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analogue of affine Springer fibers. The Hitchin fibers will be described in the next
section. Deligne’s purity theorem applies in this setting [18].

5. HITCHIN FIBRATION

The Hitchin fibration was introduced in 1987 in the context of completely inte-
grable systems [27]. Roughly, the Hitchin fibration is the stack obtained when the
characteristic map g → c varies over a curve X. Ngô carries out all geometry in
the language of stacks without compromise, as developed in [40]. For this reason,
groupoids (a category in which every morphism is invertible) appear with increasing
frequency throughout this report.

Fix a smooth projective curve X of genus g over a finite field k. We now shift per-
spective and notation, allowing the constructions in Lie theory from previous sections
to vary over the base curve X. In particular, we now let G be a quasi-split reductive
group over X that is locally trivial in the etale topology on X. Let g be its Lie algebra
G and c the space of characteristic polynomials, both now schemes over X.

Let D be a line bundle on X. For technical reasons (stemming from the 2 in the
structure constants of sl2), we assume that D is the square of another line bundle. At
one point in Ngô’s proof of the FL, it is necessary to allow the degree of D to become
arbitrarily large (6.5). We place a subscript D to indicate the tensor product with D:
gD = g⊗OXD, etc.

We let A be the space of global sections on X with values in cD = c ⊗OXD. The
group G acts on g by the adjoint action. Twisting g by any G-torsor E gives a vector
bundle Ad(E) over X.

Definition 23. — The Hitchin fibration M is the stack given as follows. For any
k-scheme S, M(S) = [gD/G](X × S) is the groupoid whose objects are pairs (E, φ),
where E is a G-torsor over X × S and φ is a section of Ad(E)D.

There exists a morphism f : M→ A, obtained as a “stacky” enhancement of the
characteristic map χ : g→ c over X. In greater detail, χ : g→ c gives successively

[gD/G]→ cD, [gD/G](X×S)→ cD(X×S), M(S)→ A(S), f :M→A.

In words, the characteristic polynomial of φ is a section of X × S with values in cD;
that is, an element of A(S). We writeMa for the fiber ofM over a ∈ A. This is the
Hitchin fiber.

The centralizers Ja, as we vary a ∈ c, define a smooth group scheme J over c. Now
select on A an S-point: a : S → A. There is a groupoid Pa(S) whose objects are
Ja-torsors on X × S. Moreover, Pa(S) acts onMa(S) by twisting a pair (E, φ) by a
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Ja-torsor. As the S-point a varies, we obtain a Picard stack P acting fiberwise on the
Hitchin fibrationM.

Example 24. — We give an extended example with G = GL(V ), the general linear
group of a vector space V . In its simplest form, a pair (E, φ) is what we obtain when we
allow an element γ of the Lie algebra end(V ) to vary continuously along the curve X.
As we vary along the curve, the vector space V sweeps out a vector bundle E on X,
and the element γ ∈ end(V ) sweeps out a section φ of the bundle end(E)D.

For each pair (E, φ), we evaluate the characteristic map v 7→ χ(φv) of the endo-
morphism φ at each point v ∈ X. This function belongs to the set A of a global section
of the bundle cD over X. This is the morphism f :M→A.

Abelian varieties occur naturally in the Hitchin fibration. For each section
a = (cn−1, . . . , c0) ∈ A, the characteristic polynomial

(25) tn + cn−1(v)tn−1 + · · ·+ c0(v) = 0, v ∈ X,

defines an n-fold cover Ya of X (called the spectral curve). By construction, each point
of the spectral curve is a root of the characteristic polynomial at some v ∈ X. We con-
sider the simple setting when Ya is smooth and the discriminant of the characteristic
polynomial is sufficiently generic. A pair (E, φ) over the section a ∈ A determines
a line (a one-dimensional eigenspace of φ with eigenvalue that root) at each point
of the spectral curve, and hence a line bundle on Ya. This establishes a map from
points of the Hitchin fiber over a to Pic(Ya), the group of line bundles on the spectral
curve Ya. Conversely, just as linear maps can be constructed from eigenvalues and
eigenspaces, Hitchin pairs can be constructed from line bundles on the spectral curve
Ya. The identity component Pic0(Ya) is an abelian variety.

5.1. Proof strategies

At this point in the development, it would be most appropriate to insert a book-
length discussion of the geometry of the Hitchin fibration, with a full development and
many examples. As Langlands speculates in his review of Ngô’s proof, “an exposition
genuinely accessible not alone to someone of my generation, but to mathematicians of
all ages eager to contribute to the arithmetic theory of automorphic representations,
would be, perhaps, . . . close to 700 pages” [37].

To cut 700 pages short, what are the essential ideas?
First, as mentioned above, the Hitchin fibration is the correct global analogue of

the (local) affine Springer fiber. This analogy can be made precise; an orbital integral
over a local field is computed by counting points on an affine Springer fiber, but an
orbital integral over the ring of adeles is computed by counting points on a fiber of the
Hitchin fibration. Moreover, the description of the affine Springer fiber as a functor
(an S-point is a G-torsor on Xv×̂S plus a bit more, where Xv is a formal disk)
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imitates the description of the Hitchin fibration as a stack (an S-point is G-torsor on
X × S plus a similar bit more). The relationship between the Hitchin fiberMa and
the affine Springer fiberMv(a) can be expressed as a factorization of categories (43):
Ma modulo symmetries as a product of Mv(a) modulo their symmetries as v runs
over closed points of X. Through this relationship, the Hitchin fibration can be used
to study orbital integrals and the FL.

Second, the Hitchin fibration should be understood insofar as possible through its
Picard symmetries P. The obvious reason for this is that it is generally a good idea
to study symmetry groups. The deeper reason for this has to do with endoscopy. The
objects of the Picard stack are torsors of the centralizer Ja. Although the relation-
ship between G and H is mediated through dual groups, the relationship between
centralizers is direct: over cH , there is a canonical homomorphism from the regular
centralizer J of G to the regular centralizer JH of H:

(26) ν∗J → JH .

Thus, their respective Picard stacks are also directly related and information passes
fluently between them. We should try to prove the FL largely at the level of Picard
stacks.

Third, by working directly with the Hitchin fibration, the difficult purity conjecture
of Kottwitz, Goresky, and MacPherson can be bypassed. Finally, continuity arguments
may be used, as explained in (5.4).

5.2. Perverse cohomology sheaves

We give a brief summary without proofs of some of the main results proved by Ngô
about the perverse cohomology sheaves of the Hitchin fibration.

There is an etale open subset Ã of A⊗k k̄ that has the technical advantage of killing
unwanted monodromy. The tilde will be used consistently to mark quantities over Ã.
For example, if we write fani :Mani → Aani for the Hitchin fibration, restricted to the
open set of anisotropic elements of A, then f̃ani : M̃ani → Ãani is the corresponding
Hitchin fibration over the anisotropic part of Ã.

The conditions of Deligne’s purity theorem are satisfied [18], so that f̃ani
∗ Q̄` is

isomorphic to a direct sum of perverse cohomology sheaves:

pHn(f̃ani
∗ Q̄`)[−n].

The action of P̃ani on M̃ani gives an action on the perverse cohomology sheaves,
which factors through the sheaf of components π0 = π0(P̃ani). The sheaf π0 is an
explicit quotient of the constant sheaf X∗ of cocharacters, and hence X∗ acts on the
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perverse cohomology sheaves through π0. As a result, the perverse cohomology sheaves
break into a direct sum of κ-isotypic pieces

(27) Lκ = pHn(f̃ani
∗ Q̄`)κ,

as κ runs over elements in the dual torus T̂ . (By duality, the cocharacter group X∗ is
the group of characters of the dual torus, which gives the pairing between T̂ and X∗.)

We use the same curve X and same line bundle D both for G and for its endoscopic
groups H. The morphism ν : cH → c from (16) extends to give ν : cH,D → cD and
then by taking sections of these bundles, we obtain a morphism between their spaces
of global sections:

(28) ν : AH → A.

We hope that no confusion arises by using the same symbol ν for all of these mor-
phisms.

For each κ ∈ T̂ , there is a closed subspace Ãκ of Ã consisting of elements a
whose “geometric monodromy” lies in the centralizer of κ in the dual group LG. Each
subspace Ãκ is in fact the disjoint union of the images of closed immersions

(29) ν : ÃH → Ã

coming from endoscopic groups H with endoscopic data (κ, . . .). The support of Lκ
lies in Ãani

κ . The geometric content of the FL is to be found in the comparison of ν∗Lκ
with

(30) LH,st = pHn+2r(f̃ani
H,∗Q̄`)st(−r), where r = dim(A)− dim(AH).

The subscript st indicates the isotypic piece with trivial character κ = 1.
The anisotropic locus Ãani admits a stratification by a numerical invariant

δ : Ã → N:
Ãani =

∐
δ∈N
Ãani
δ .

There is an open set Ãgood of Ãani, given as a union of some strata Ãani
δ that satisfy:

(31) codim(Ãani
δ ) ≥ δ.

5.3. Support theorem

The proof of the following theorem about the support of the perverse cohomology
sheaves of the Hitchin fibration constitutes the deepest part of the proof of the FL.

Theorem 32 (Support theorem). — Let Z be the support of a geometrically simple
factor of Lκ. If Z meets ν(Ãgood

H ) for some endoscopic group H with data (κ, . . .),
then Z = ν(Ãani

H ). In fact, there is a unique such H.
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A major chapter of the book-length proof of the FL is devoted to the proof of
the support theorem. The strategy of the proof is to show that every support Z also
appears as the support of some factor in the ordinary cohomology of highest degree
of the Hitchin fibration. To move cohomology classes from one degree to another, Ngô
uses Poincaré duality and Pontryagin product operations on cohomology coming from
the action of the connected component of the identity P̃0,ani on M̃ani. This action
factors through the action of an abelian variety, a quotient of the Picard stack P̃0,ani.
To show that the support Z can be pushed all the way to the top degree cohomology,
it is enough to show that the dimension of this abelian variety is sufficiently large
and that the cohomology of the abelian variety acts freely on the cohomology of the
Hitchin fiber. The required estimate on the dimension of the abelian variety comes
from the inequality (31). Freeness relies on a polarization of the abelian variety.

Once the support Z is known to appear as a support in the top degree, he shows
that the action of P̃ani on the Hitchin fibration leads to an explicit description of the
top degree ordinary cohomology as the sheaf associated with the presheaf

U 7→ Q̄π0(P̃ani)(U)
` .

The supports of π0 can be described explicitly in terms of data in the dual group, in
the style of the duality theorems of Kottwitz, Tate, and Nakayama. By checking that
the conclusion of the support theorem holds for the particular sheaf π0, the general
support theorem follows.

We apply the support theorem with H as the primary reductive group and κ as
the trivial character. In this context, the only endoscopic group of H with stable data
is H itself. Moreover, ν is the identity map on ÃH . The support theorem takes the
following form in this case.

Corollary 33. — Let Z be the support of a geometrically simple factor of LH,st. If
Z meets Ãgood

H , then Z = Ãani
H .

5.4. Continuity and the decomposition theorem

The strategy that lies at the heart of the proof of the FL is a continuity argument:
arbitrarily complicated identities of orbital integrals can be obtained as limits of
relatively simple identities.

The complexity of an orbital integral is measured by the dimension of its affine
Springer fiber. Growing linearly with degv(a

∗D), this dimension is unbounded as a
function of a. Fortunately, globally, we can view an element a for which this degree
at v is large as a limit of elements a′ with small degrees: degw(a′

∗
D) ≤ 1 for all

w ∈ X. This follows the principle that a polynomial with repeated roots is a limit of
polynomials with simple roots. When the degrees are at most 1, the affine Springer
fibers have manageable complexity.
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The Beilinson-Bernstein-Deligne-Gabber decomposition theorem for perverse
sheaves provides the infrastructure for the continuity arguments [7]. Let S be a
scheme of finite type over k̄. The support Z of a simple perverse sheaf on S is a
closed irreducible subscheme of S. There is a smooth open subscheme U of Z and a
local system L on U such that the simple perverse sheaf can be reconstructed as the
middle extension of the local system on U :

i∗j!∗L[dimZ], i : Z → S, j : U → Z.

We express this as a continuity principle: if two simple perverse sheaves with the same
support Z are equal to the same local system on a dense open U , then they are in
fact equal on all of S.

More generally, for any irreducible scheme Z of finite type over k, in order to show
that two pure complexes on Z are equal in the Grothendieck group, it is enough to
check two conditions:

1. Every geometrically simple perverse sheaf in either complex has support all of Z.
2. Equality holds in the Grothendieck group on some dense open subset U of Z.

The purpose of the support theorem (32) and its corollary is to give the first con-
dition for the two pure complexes ν∗Lκ and LH,st. The idea is that second condition
should be a consequence of identities of orbital integrals of manageable complexity,
which can be proved by direct calculation. The resulting identity of pure complexes
on all of Z should then imply identities of orbital integrals of arbitrarily complexity.
This is Ngô’s strategy to prove the FL.

6. MASS FORMULAS

6.1. Groupoid cardinality (or mass)

Let C be a groupoid that has finitely many objects up to isomorphism and in
which every object has a finite automorphism group. Define the mass (or groupoid
cardinality) of C to be the rational number

µ(C) =
∑

x∈obj(C)/iso

1

card(Aut(x))
.

Example 34. — Let C be the category whose objects are the elements of a given finite
group G and arrows are given by x 7→ g−1xg, for g ∈ G. Then the set of objects up to
isomorphism is in bijection with the set of conjugacy classes, the automorphism group
of x is the centralizer of x, and the mass is

µ(C) =
∑
x/iso

1

card(Aut(x))
=
∑
x/iso

card(orbit(x))

cardG
= 1.
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Example 35. — Let P be a group that acts simply transitively on a set M . Let C be
the category whose set of objects is M , and let the set of morphisms be given by the
group action of P on M . There is one object up to isomorphism and its automorphism
group is trivial. The mass of C is 1.

Example 36. — The following less trivial example appears in Ngô. Let P be the
group Gm×Z defined over a finite field k of cardinality q. Let M = (P1×Z)/ ∼, where
the equivalence relation (∼) identifies the point (∞, j) with (0, j+1) for all j. Thus,M
is an infinite string of projective lines, with the point at infinity of each line joined to
the zero point of the next line. The group P acts onM by (p0, i)·(m0, j) = (p0m0, i+j),
where p0m0 is given by the standard action of Gm on P1, fixing 0 and ∞. Let σ be
the Frobenius automorphism of k̄/k, and define a twisted automorphism of P (k̄) and
M(k̄) by σ(x0, i) = (σx−1

0 ,−i). Define a category C with objects given by pairs

(37) (m, p) ∈M(k̄)× P (k̄) such that σ(m) = pm.

Define arrows by h ∈ P (k̄), where

(38) h(m, p) = (m′, p′), provided hm = m′ and hp = p′σ(h).

Then it can be checked by a direct calculation that there are two isomorphism classes
of objects in this category, represented by the objects

((0, 1), (1, 1)) and ((1, 0), (1, 0)) ∈M(k̄)× P (k̄) = (P1(k̄)× Z)× (Gm(k̄)× Z).

The group P (k̄)σ of order q + 1 acts as automorphisms of the first object, and the
group of automorphisms of the second object is trivial. The mass of this category is
therefore

µ(C) =
1

q + 1
+ 1.

More generally, suppose there exists a function Obj(C)→ A from the objects of a
groupoid into a finite abelian group A and that the image in A of each object depends
only on its isomorphism class. Then for every character κ of A, we can define a κ-mass:

µκ(C) =
∑

x∈obj(C)/iso

〈κ, x〉
card(Aut(x))

.

Example 39. — In Example 36, if (m, p) is an object and p = (p0, j) ∈ Gm × Z,
then the image of j in A = Z/2Z depends only on the isomorphism class of the object
(m, p). If κ is the nontrivial character of A, then the κ-mass of this groupoid is

µκ(C) = − 1

q + 1
+ 1.
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6.2. Mass formula for orbital integrals

LetMv(a) be the affine Springer fiber for the element a and let Ja be its centralizer.
We write Pv(Ja) for the group of symmetries of the affine Springer fiber. Let C be the
groupoid of k-points of the quotient stack [Mv(a)/Pv(Ja)] with objects (m, p) and
morphisms and h defined by the earlier formulas (37) and (38) (substitutingMv(a)

for the space M and Pv(Ja) for the symmetries P ).
For each character of H1(k,Pv(Ja)) we can naturally define a character κ of

H1(Fv, Ja) as well as a character (also called κ) on a finite abelian group A as above.
The description of orbital integrals in terms of affine Springer fibers takes the

following form. It is a variant of the coset arguments of (4.2).

Theorem 40. — For each regular semisimple element a ∈ c(Ov), the κ-mass of the
category C is equal to the κ-orbital integral of a:

µκ(C) = c Oκ(a),

up to a constant c = vol(J0
a(Ov), dtv) used to normalize measures.

6.3. Product formula for masses

Recall from (28) that there is a morphism ν : AH → A. We choose a commutative
group scheme J ′a for which there are homomorphisms

(41) J ′a → Jν(a) → JH,a

extending the homomorphism (26) and that become isomorphisms over a nonempty
open set U of X. The group scheme J ′a can be chosen to satisfy other simplifying as-
sumptions that we will not list here. The homomorphisms (41) functorially determine
an action of P(J ′a) on both Hitchin fibrations Mν(a) and MH,a. Changing notation
slightly, we will assume that henceforth all masses for both G and H are computed
with respect to the same Picard stack P(J ′a) in global calculations and with respect
to Pv(J ′a) in local calculations. This simplifies the comparisons of masses that follow.

For each element a ∈ Aani
H (k), we have a mass µH(a) of the groupoid of k-points of

the Hitchin fiberMH,a modulo symmetry on H. Its image ν(a) ∈ Aani has a κ-mass
of the groupoid of k-points of the Hitchin fiberMa modulo symmetry.

For each regular semisimple element a ∈ cH(Ov), we have a mass of the affine
Springer fiber modulo symmetry on H. We write µH,v(a) for this mass. Moreover, if
the image ν(a) under the map ν : cH → c is also regular semisimple, there is a κ-mass
µκ,v(ν(a)) of the affine Springer fiber modulo symmetry of ν(a) in G.
AH is the set of global sections of cH,D over X. For each v ∈ X, we can fix a

local trivialization of cH,D at v and evaluate a section a ∈ AH at v to get an element
av ∈ cH . We writeMH,v(a) =MH,v(av) for its affine Springer fiber, and µH,v(a) for
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the local mass µH,v(av). Similarly, we write µκ,v(ν(a)) for µκ,v(ν(av)). With all of
these conventions in place, we can state the product formula:

Theorem 42. — Let a ∈ Aani
H (k). The mass of a Hitchin fiber modulo symmetry

satisfies a product formula over all closed points of X in terms of the masses of the
individual affine Springer fibers modulo symmetries:

µκ(ν(a)) =
∏
v∈X

µκ,v(ν(a)), µH(a) =
∏
v∈X

µH,v(a).

The local factors are 1 for almost all v so that the products are in fact finite.

This theorem is a geometric version of the factorization of κ-orbital integrals over
the adele group into a product of local κ-orbital integrals in [36]. It confirms the claim
that the Hitchin fibration is the correct global analogue of the affine Springer fiber.

Proof sketch. — The proof choses an open set of X over which J ′a is isomorphic to
Ja. For a given a, on a possibly smaller open set U of X, the action of P(Ja) onMa

induces an isomorphism of P(Ja) with Ma. It follows that the local masses equal 1

for all v ∈ U . The product in the lemma can be taken as extending over the finite
set of points X \ U . The lemma is a consequence of a wonderful product formula for
stacks, relating the Hitchin fibration to affine Springer fibers:

(43) [Ma/P(J ′a)] =
∏

v∈X\U

[Mv(ν(a))/Pv(J ′a)].

A similar formula holds on H.

6.4. Global mass formula

The following is the key global ingredient of the proof of the FL. In fact, it can be
viewed as a precise global analogue of the FL.

Theorem 44 (Global mass formula). — Assume deg(D) > 2g, where g is the genus
of X. Then for all ã ∈ Ãgood

H (k) with images a ∈ Aani
H (k) and ν(a) in A(k), the

following mass formula holds:

µκ(ν(a)) = qrµH(a), where r = dimA− dimAH .

Proof sketch. — The proof first defines a particularly nice open set Ũ of Ãgood
H ⊂ Ãani

H .
The idea is to place conditions on Ũ to make it as nice as possible, without imposing
so many conditions that it fails to be open. There exists an open set Ũ of Ãgood

H on
which both of the following conditions hold:

– Each ã ∈ Ũ(k̄) cuts the divisor DH,D +RD transversally.
– For each n, the restriction to Ũ of the perverse cohomology sheaves ν∗Lκ and
LH,st from (27) and (30) are pure local systems of weight n.
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The support theorem (32) and decomposition and continuity strategies (5.4) are used
to find the pure local systems.

After choosing Ũ , the proof of the lemma establishes the global mass formula on
Ũ , then extends it to all of Ãgood

H .
By imposing such nice conditions on Ũ , Ngô is able to prove the mass formula

on this subset by explicit local calculations. By the transversality condition on ã, at
any given point v, the local degree (dH,v(ν(a)), rv(a)) must be (0, 0), (1, 0), or (0, 1).
From Bezrukavnikov’s dimension formula (4.2), the dimension of the endoscopic affine
Springer fiber MH,v(a) is 0. In fact, Pv(J ′a) acts simply transitively on the affine
Springer fiber, and the mass is 1.

It is therefore enough to compute the κ-mass of ν(a) and compare. The transversal-
ity condition determines the possibilities for the dimension δv(ν(a)) in G. The affine
Springer fiber in this case is at most one and the κ-masses of the groupoids can be
computed directly. In fact, (36) is a typical example of the computations involved.

The result of these local calculations is that for every point ã in Ũ , with images
a ∈ AH and ν(a) ∈ A, a local mass formula holds for all closed points v of X:

(45) µκ,v(ν(a)) = qdeg(v)rv(a)µH,v(a).

The exponents satisfy

(46) r =
∑
v

deg(v)rv(a).

These two identities, together with the product formula for the global mass, give the
lemma for elements a of Ũ .

The extension from Ũ to all of Ãgood
H is a global argument. Through the

Grothendieck-Lefschetz trace formula (adapted to stacks), this identity of global
masses over Ũ can be expressed as an identity of alternating sums of trace of Frobe-
nius on local systems. These calculations can be repeated for all finite extensions k′/k.
By Chebotarev density as we vary k′, the semisimplifications of the local systems are
isomorphic on G and H.

Following the decomposition and continuity strategy (5.4), this isomorphism of
local systems on Ũ extends to an isomorphism between (the semisimplifications of)
ν∗Lκ and LH,st. This isomorphism, again by Grothendieck-Lefschetz, translates back
into a mass formula for the Hitchin fibration modulo symmetries, and hence the
result.

6.5. Local mass formula and the FL

We recall some notation from Section 3. Let Gv be a reductive group scheme over
the ring of integers Ov of a nonarchimedean local field Fv in positive characteristic.
Let q be the cardinality of the residue field k. Let (κ, ρ) be endoscopic data defining
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an endoscopic group Hv. Let a ∈ cH(Ov) and ν(a) be its image in c(F ). Assume that
ν(a) is regular semisimple. Let rv(a) ∈ N be the local invariant.

Assume that the characteristic of k is large. By standard descent arguments (8.1),
we also assume without loss of generality that the center of Hv does not contain a
split torus.

Theorem 47 (Local mass formula). — The following local mass formula holds for
general anisotropic affine Springer fibers (both masses being computed with respect to
the same symmetry group Pv(J ′a) acting on the fibers):

µκ,v(ν(a)) = qrv(a)µH,v(a).

Corollary 48 (Fundamental lemma (FL)). —

Oκ(ν(a)) = qrv(a)SOH(a).

The corollary follows from the theorem by the mass formula (40) for orbital inte-
grals.

Proof sketch. — The proof of the FL is based on the global mass formula on Ãgood
H .

We can use standard strategies to embed the local setting into a global context. We
pick a smooth projective curve X over k, such that a completion of the function field
at some place v is isomorphic to Fv and deg(v) = 1. We choose a global endoscopic
group H of a reductive group G, a divisor D on X, a global element(1) a′ in the
Hitchin base AH of H. These global choices are to specialize to the given data Gv
and Hv at v. If the degree of D is sufficiently large, then we can assume that a′ is
the image of ã′ ∈ Agood

H (k). The element a′ and its image ν(a′) in A are chosen to
approximate the given local elements a and ν(a) so closely that their affine Springer
fibers together with their respective symmetries are unaffected at v.

The global mass formula (44) for ã′ asserts:

µκ(ν(a′)) = qrµH(a′).

By the product formula (42) and (46), each global mass is a product of local masses:

(49)
∏
w

µκ,w(ν(a′)) = µκ(ν(a′)) = qrµH(a′) =
∏
w

qdeg(w)rw(a′)µH,w(a′).

The global data is chosen in such a way that at every closed point w 6= v, the
transversality conditions hold, so that the calculation (45) of the previous section
gives the local mass formula at w:

µκ,w(ν(a′)) = qdeg(w)rw(a′)µH,w(a′), w 6= v.

(1) More accurately, Ngô shows that a suitable element a′ exists over every sufficiently large finite
field extension k′/k. He makes the global arguments over the extensions k′ and uses a Frobenius
eigenvalue argument at the end to go back to k.
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These masses are nonzero and can be canceled from the products in (49). What
remains is a single uncanceled term on each side:

µκ,v(ν(a′)) = qdeg(v)rv(a′)µv(a
′), with deg(v) = 1.

Since a′ was chosen as a close approximation of a at v, we also have

µκ,v(ν(a)) = qrv(a)µv(a).

This is the desired local mass formula at v.

7. USES OF THE FL

“Lemma” is a misleading name for the Fundamental Lemma because it went decades
without a proof, and its depth goes far beyond what would ordinarily be called a
lemma. Yet the name FL is apt both because it is fundamental and because it is
expected to be used widely as an intermediate result in many proofs. This section
mentions some major theorems that have been proved recently that contain the FL as
an intermediate result. In each case, the FL appears to be an unavoidable ingredient.

The FL appears as a specific collection of identities that are needed to stabilize the
Arthur-Selberg trace formula. If G is a reductive group defined over a number field
F , the trace formula for G is an identity of the general form∑

γ∈G(F )/∼

cγO(γ, f) + · · · =
∑
π

m(π) traceπ(f) + · · ·

for compactly supported smooth functions f on the adele group G(AF ). On the left-
hand side appears a sum of orbital integrals and on the right-hand side the sum runs
over discrete automorphic representations π of G. The trace formula contains more
complicated terms that have been suppressed.

By stabilization of the trace formula, we mean that the terms on the left-hand side
of the trace formula that are associated with a given stable conjugacy class have been
gathered together, rearranged into κ-orbital integrals, and then replaced with stable
orbital integrals on the endoscopic groups. These manipulations are justified by the
FL and by a product formula that relates the adelic orbital integrals O(γ, f) to orbital
integrals on local fields. Another Bourbaki seminar gives further details about the role
of the FL in the stable trace formula [16]. All applications of the FL come through
the stable trace formula.

Before going into recent uses of the FL, we might also mention various special cases
of the FL that have been known for years. These classical cases of the FL already give
abundant evidence of the usefulness of the lemma. For example, Langlands proves
the FL for cyclic base change for GL(2) in his book [35, Lemma 5.10]. From there, it
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enters into the proof of the tetrahedral and octahedral cases of the Artin conjecture
(the Langlands-Tunnell theorem), which in turn is used by Wiles in the proof of
Fermat’s Last Theorem. Waldspurger’s proof of the FL for SL(n) is taken up by
Henniart and Herb in their proof of local automorphic induction for GL(n), which
becomes part of the proof of the local Langlands correspondence for GL(n) in Harris
and Taylor [53],[26],[25].

Shimura varieties provided much of the early motivation for endoscopy and the
FL [34]. When expressing the Hasse-Weil zeta function of Shimura varieties as a
product of automorphic L-functions, the formula involves the L-functions associated
with endoscopic groups H as well as those of G. This can be most clearly seen through
a comparison of the stable trace formula with the Grothendieck-Lefschetz trace for-
mula of the Hasse-Weil zeta function. An early application of the FL carries this out
for Picard modular varieties [1]. From there, the FL becomes relevant to the theory of
Galois representations through the representations associated with Shimura varieties.

We turn to more recent uses of the FL. For most applications to date, the FL for
unitary groups is used as well as the twisted FL between GL(n) and unitary groups.
Applications of the trace formula to Shimura varieties often rely on a base change
FL, which arises because of the description of that Kottwitz gives of points on certain
Shimura varieties in terms of twisted orbital integrals [30].

The original proof by Clozel, Harris, Shepherd-Barron and Taylor of the Sato-Tate
conjecture for elliptic curves over Q was restricted to elliptic curves with non-integral
j-invariants [10]. With the advent of the general FL, it has become possible to remove
the non-integrality assumption and to greatly extend the theorem, in particular to
elliptic curves over a totally real number field [6].

Shin and Morel use the FL in recent work on the cohomology of Shimura varieties
and associated Galois representations [50][43]. Other advances rely on their work. In
particular, Skinner and Urban have proved the Iwasawa-Greenberg main conjecture
for many modular forms and in particular for the newforms associated with many
elliptic curves over Q [52],[51]. Their work ultimately relies on the work of Shin and
Morel and on the FL to prove the existence of certain Galois representations.

Last year, Bhargava and Shankar proved that when elliptic curves E over Q are
ordered by height, a positive fraction of them satisfy the Birch and Swinnerton-Dyer
conjecture [9]. Specifically, a positive fraction of them have rank 0 and analytic rank 0.
First they construct a set (of positive density) of elliptic curves with rank 0. Second,
they construct a subset (again of positive density) of the rank 0 set, consisting of
elliptic curves with analytic rank 0. This second step relies on conditions in Skinner
and Urban for the analytic rank to be zero, and hence indirectly on the FL.

Moeglin classifies the discrete series representations of unitary groups over a nonar-
chimedean local field [42]. Again, this relies on the FL for unitary groups and related
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variants. Finally, we mention that Arthur’s forthcoming book uses the twisted FL
between GL(n) and the classical groups [5]. His work uses the trace formula to give a
classification of the discrete automorphic representations of classical groups in terms
of cuspidal automorphic representations of GL(n). It also gives a classification locally,
for p-adic fields.

I will leave a further discussion of the uses of the FL to those whose research in
this area is fresher than my own.

8. REDUCTIONS

Langlands first expressed the FL in these words: “Mais même après avoir vérifié
que les facteurs de transfert existent, il reste à vérifier ce que j’appelle le lemme
fondamental, qui affirme que pour des G, H et φH non-ramifiés, on a f 7→ c φ∗H(f)...
pour toute fonction f ∈ HG”. [36, p. 49].

In this notation, φ∗H is the homomorphism given by the Satake transform, from
the spherical Hecke algebra HG with respect to a hyperspecial maximal compact
subgroup of an unramified reductive group G to the spherical Hecke algebra on H.
The arrow f 7→ c φ∗H(f) is his assertion that for every strongly G-regular element γ in
H, the transfer (specified by transfer factors) of each κ-orbital integral of a spherical
function f on G (over a stable conjugacy class in G matching γ) is equal to the stable
orbital integral of φ∗H(f) on the stable conjugacy class of γ in H.

This final section describes some theorems related to the FL that simplify it from
the form in which it was initially conjectured, to the final form in which it was proved
by Ngô. Waldspurger’s work has been particularly significant in transforming the
conjecture into a friendlier form. In the initial conjecture, the existence of transfer
factors was part of the conjecture. Langlands and Shelstad later defined the transfer
factors explicitly [38]. We also mention some extensions of the FL.

8.1. Descent to the Lie algebra

A lemma of Harish-Chandra’s asserts the transfer of an orbital integral on G near
a singular semisimple element zγ0, with z central, to an orbital integral on the cen-
tralizer Iγ0 . This is called the descent of orbital integrals. Langlands and Shelstad
made hard calculations in Galois cohomology to prove that their transfer factors are
compatible with Harish-Chandra’s descent of orbital integrals [39]. The point of their
calculations was to reduce identities of orbital integrals involving transfer factors to
a neighborhood of γ0 = 1, arguing by induction on the dimension of the centralizer.
In a neighborhood of γ0 = 1, identities can be pushed to the Lie algebra, using the
exponential map.
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The original FL has been supplemented by a twisted FL, conjectured by Kottwitz
and Shelstad, where the data is twisted by a nontrivial outer automorphism θ of the
group G [31]. In the untwisted case, the centralizer of an element fails to give a group
of smaller dimension precisely when the element is central. By contrast, a twisted
centralizer (with respect to a nontrivial outer automorphism) always has dimension
less than G. As a consequence, descent always untwists the twisted FL into identities
of ordinary orbital integrals. If the (standard) FL is then applied, each κ-orbital
integral can be replaced with a stable orbital integral. By combining both descent
and stabilization, the twisted FL of Kottwitz and Shelstad takes the form of identities
of stable orbital integrals on the Lie algebra (from which the automorphism and the
character κ have entirely vanished). The corresponding long calculations in Galois
cohomology that establish descent properties of the transfer factors for the twisted
FL have been carried out by Waldspurger [56]. Ngô proves the general twisted FL in
its untwisted stable form on the Lie algebra.

8.2. Hecke algebras

A global argument based on the trace formula shows that the FL holds for the
full Hecke algebra for an arbitrary nonarchimedean local field of characteristic zero,
provided it holds for the unit element of the Hecke algebra for local fields of sufficiently
large residual characteristic (and for groups of smaller dimension) [22]. The idea of
the proof is to choose suitable global functions for which the comparison of stable
trace formulas yields an obstruction to the FL. This obstruction, which comes from
the spectral side of the trace formula, takes the form of a set of linear functionals

L : HG → C, L(f) =
∑
π

a(π)traceπ(f)

on the local spherical Hecke algebra HG of the reductive group G, each given by a
finite sum over irreducible admissible representations with an Iwahori fixed vector.
By purely local arguments, it can be shown that no nonzero linear map L exists of
the form prescribed by the global theory. Because these obstructions L are zero, the
FL can be shown to hold on the full spherical Hecke algebra.

8.3. Smooth transfer

Langlands’s book on the stabilization of the trace formula contains two separate
conjectures: the transfer of smooth functions and the FL [36]. An important result of
Waldspurger links the two conjectures, by proving that the FL implies the transfer of
smooth functions. His key local lemma shows how to obtain simultaneous control over
the orbital integrals of test functions f on the Lie algebra g and the orbital integrals
of their Fourier transform f̂ [54, Prop. 8.2]. In view of the uncertainty principle, it is
a remarkable feat to control both f and f̂ as he does. His proof is a global argument,
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based on a stable Poisson summation trace formula on the Lie algebra over the ring of
adeles. The key local lemma allows Waldspurger to pick global test functions for which
the comparison of trace formulas asserts a local identity: the Fourier transform of a
semisimple κ-orbit on G equals the Fourier transform of the corresponding stable orbit
on H. By a purely local argument, this stabilization identity of Fourier transforms
implies smooth transfer.

8.4. Weighted orbital integrals

Langlands’s book is a début: he stabilizes the terms in the trace formula that come
from regular elliptic conjugacy classes, but this is insufficient for general applications
of the trace formula. Kottwitz extended the analysis to singular elliptic conjugacy
classes [29]. Arthur has completed the full stabilization without restrictions on the
conjugacy classes. The non-elliptic conjugacy classes lead to significant complications.
Arthur truncates the trace formula to obtain the convergence of the non-elliptic terms.
Because of truncation, the non-elliptic terms bear “weights,” non-invariant factors that
appear in the integrand of orbital integrals. Arthur conjectured a weighted FL needed
for stabilization of the non-elliptic terms [3]. Chaudouard and Laumon have used the
Hitchin fibration to prove Arthur’s weighted FL [13][14].

8.5. Transfer to characteristic zero

The FL for nonarchimedean local fields in characteristic zero can be deduced from
the FL in positive characteristic [55][15]. Cluckers and Loeser have developed a gen-
eral abstract theory of integration as a combination of primitive operations such as
taking the volume of a ball of given radius, enumerating points on a variety over the
residue field, summing an infinite q-series, and making a change of variables. Since
each of the primitive operations manifestly depends only on the residue field rather
than the field itself, their theory allows many identities of integrals to be transfered
from one field to another with the same residue field. The FL lemma and its weighted
and twisted variants are identities that fall within the scope of this theory. Wald-
spurger’s approach is also an abstraction of p-adic integration, but it requires more
detailed properties of the specific integrals appearing in the FL.

8.6. Etc.

These separate variations on the FL can be considered in concert: a weighted
twisted FL, the twisted FL on the full Hecke algebra, transfer of the weighted FL to
characteristic zero, and so forth. Most combinations have now been proved.
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9. LITERATURE

I recommend Ben-Zvi’s video lecture for a presentation of the big ideas of Ngô’s
proof. Drinfeld’s lecture notes contain many worked examples and exercises that are
helpful in learning the geometric concepts. I also recommend Nadler’s survey [44],
Casselman for an in-depth treatment of SL2 with history going back to Hecke [11],
my summer school lecture for the detailed statement of the FL [23], Arthur’s Fields
medal laudation [4], and [12]. Several articles in the book project deal with the FL [2],
particularly [17].

Ngô’s book is superb, both as mathematics and as exposition [46]. It is helpful to
read it with his earlier paper [45]. He has several supplementary accounts, especially
the expository account [47], his article in the book project [48], and ICM lectures.

While there have been numerous applications that quote the FL as a finished
product, Yun, Chaudouard, and Laumon are noteworthy in following Ngô in their
direct use of the Hitchin fibration to prove new results in the field [57].

I wish to thank Bhargava, Harris, Ngô, and Skinner for comments that helped me
to prepare this and my earlier report [24].
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