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ON SETS WITH SMALL SUMSET
AND m-SUM-FREE SETS IN Z/pZ

by Pablo Candela, Diego González-Sánchez & David J.
Grynkiewicz

Abstract. — The 3k − 4 conjecture in groups Z/pZ for p prime states that if
A is a nonempty subset of Z/pZ satisfying 2A 6= Z/pZ and |2A| = 2|A| + r ≤
min{3|A| − 4, p − r − 4}, then A is covered by an arithmetic progression of size
at most |A| + r + 1. Previously, the best result toward this conjecture, without any
additional constraint on |A|, was a theorem of Serra and Zémor proving the conjecture
provided r ≤ 0.0001|A|. Subject to the mild additional constraint |2A| ≤ 3p/4, which
is optimal in the sense explained in the paper, our first main result improves the bound
on r, allowing r ≤ 0.1368|A|. We also prove a variant that further improves this bound
on r provided that A is sufficiently dense. We then give several applications. First,
we apply the above variant to give a new upper bound for the maximal density of
m-sum-free sets in Z/pZ, i.e., sets A having no solution (x, y, z) ∈ A3 to the equation
x + y = mz, where m ≥ 3 is a fixed integer. The previous best upper bound for this
maximal density was 1/3.0001 (using the Serra-Zémor theorem). We improve this to
1/3.1955. We also present a construction following an idea of Schoen, which yields a
lower bound for this maximal density of the form 1/8+o(1)p→∞. Another application
of our main results concerns sets of the form A+A

A
in Fp, and we also improve the

structural description of large sum-free sets in Z/pZ.
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Résumé (Sur les ensembles de petite somme et les ensembles sans m-somme dans
Z/pZ). — La conjecture 3k − 4 dans les groupes Z/pZ, pour p premier, affirme que
si A est un sous-ensemble non vide de Z/pZ vérifiant 2A 6= Z/pZ et |2A| = 2|A| +
r ≤ min{3|A| − 4, p − r − 4}, alors A est inclus dans une suite arithmétique de
cardinalité au plus |A|+r+1. Le meilleur résultat précédent vers cette conjecture, sans
contraintes supplémentaires sur |A|, est un théorème de Serra et Zémor qui confirme la
conjecture pour r ≤ 0.0001|A|. Sous la faible contrainte additionnelle |2A| ≤ 3p/4, qui
est optimale en un sens détaillé dans l’article, notre premier résultat principal améliore
la borne supérieure sur r, permettant de prendre r ≤ 0.1368|A|. Nous démontrons aussi
une variante qui améliore davantage la borne sur r pour tout ensemble A suffisamment
dense. Nous présentons ensuite plusieurs applications. Premièrement, la variante en
question est employée pour obtenir une nouvelle borne supérieure pour la densité
maximale des ensembles sans m-somme dans Z/pZ, i.e., les ensembles A tels qu’il
n’existe aucune solution (x, y, z) ∈ A3 de l’équation x + y = mz, où m ≥ 3 est un
entier fixé. Précédemment, la meilleure borne supérieure pour cette densité maximale
était 1/3.0001 (comme conséquence du théorème de Serra–Zémor). Nous obtenons ici
la borne améliorée 1/3.1955. Nous présentons aussi une construction suivant une idée
de Schoen, qui fournit une borne inférieure 1/8 + o(1)p→∞ pour la densité maximale
en question. Une autre application de nos résultats concerne les ensembles de la forme
A+A

A
dans Fp. Nous donnons aussi une description améliorée de la structure des grands

ensembles sans somme dans Z/pZ.

1. Introduction

Given a subset A of an abelian group G, we often denote the sumset A+A =
{x+ y : x, y ∈ A} by 2A and we denote the complement G \A by A.

One of the central topics in additive number theory is the study of the
structure of a finite subset A of an abelian group under the assumption that
the sumset 2A is small. In this paper, we focus on groups Z/pZ of integers
modulo a prime p and on the regime in which the doubling constant |2A|/|A|
is within a small additive constant of the minimum possible value.

To put this into context, let us recall the basic fact that a finite set A of
integers always satisfies |2A| ≥ 2|A|−1 and that this minimum is attained only
if A is an arithmetic progression (see [12, Theorem 3.1]). This description of
extremal sets is extended by a result of Freiman, known as the 3k− 4 theorem,
which tells us that A is still efficiently covered by an arithmetic progression
even when |2A| is as large as 3|A| − 4.

Theorem 1.1 (Freiman’s 3k − 4 theorem). — Let A ⊆ Z be a finite set sat-
isfying |2A| ≤ 3|A| − 4. Then there is an arithmetic progression P ⊆ Z, such
that A ⊆ P and |P | ≤ |2A| − |A|+ 1.

For sets A in Z/pZ with 2A 6= Z/pZ, the Cauchy–Davenport theorem [12,
Theorem 6.2] gives the lower bound analogous to the one for Zmentioned above,
namely |2A| ≥ 2|A| − 1, and the description of extremal sets as arithmetic
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progressions (when |2A| < p − 1) is given by Vosper’s theorem [12, Theorem
8.1].

It is widely believed that an analogue of Freiman’s 3k − 4 theorem holds
for subsets of Z/pZ under some mild additional upper bound on |2A| (or on
|A|). More precisely, the following conjecture is believed to be true (see [12,
Conjecture 19.2]), describing efficiently not just A but also 2A, in terms of
progressions.

Conjecture 1.2. — Let p be a prime and let A ⊂ Z/pZ be a nonempty subset
satisfying 2A 6= Z/pZ and |2A| = 2|A| + r ≤ min{3|A| − 4, p − r − 4}. Then
there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same difference,
such that A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

Progress toward this conjecture was initiated by Freiman himself, who proved
in [10] that the conclusion concerning PA holds provided that |2A| ≤ 2.4|A|−3
and |A| < p/35. Since then, there has been much work improving Freiman’s
result in various ways. For instance, Rødseth showed in [17] that the constraint
|A| < p/35 can be weakened to |A| < p/10.7 while maintaining the doubling
constant 2.4. In [11], Green and Ruzsa pushed the doubling constant up to 3,
at the cost of a stronger constraint |A| < p/10215. In [20], Serra and Zémor
obtained a result with no constraint on |A| other than the bounds on |2A| in
the conjecture, with the same conclusion concerning PA but at the cost of re-
ducing the doubling constant, namely, assuming that |2A| ≤ (2 + α)|A| with
α < 0.0001. See also [5, 14] for recent improvements on the doubling constant
2.4 in Freiman’s result. The book [12] presents various other results towards
Conjecture 1.2, in a treatment covering many of the methods from the works
mentioned above.

In this paper, we establish the following new result regarding Conjecture
1.2, which noticeably improves the doubling constant obtained by Serra and
Zémor in [20] at the cost of only adding the constraint |2A| ≤ 3

4p.

Theorem 1.3. — Let p be prime, let A ⊆ Z/pZ be a nonempty subset with
|2A| = 2|A| + r, and let α ≈ 0.136861 be the unique real root of the cubic
4x3 + 9x2 + 6x− 1. Suppose

|2A| ≤ (2 + α)|A| − 3 and |2A| ≤ 3
4p.

Then there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same differ-
ence, such that A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

Unlike in [20], here we do have a constraint on |A| in the form of the upper
bound |2A| ≤ 3

4p. However, this upper bound is still optimal in the following
weak sense. The conjectured upper bound on |2A| (given by Conjecture 1.2) is
p− r− 4. However, in the extremal case where r = |A|− 4 (the largest value of
r allowed in Conjecture 1.2), the conjectured bound implies 3|A| − 4 = |2A| ≤
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p − |A|, whence |A| ≤ p+4
4 and |2A| = 3|A| − 4 ≤ 3p

4 − 1. Thus, the bound
p− r− 4 becomes as small as 3p

4 − 1, as we range over all allowed values for α
and |A|, making 3

4p the optimal bound independent of α and r.
Let us emphasize that our improvement upon the Serra–Zémor result (i.e.,

our weakening of the constraint on α) is valid for |A| ≤ 0.75p+3
2+α , whereas the

natural upper bound on |A| given by Conjecture 1.2 is larger, namely |A| ≤
p+2

2+2α . Therefore, in the regime 0.75p+3
2+α < |A| ≤ p+2

2+2α , our result does not
improve on that of Serra and Zémor.

We also prove the following variant of Theorem 1.3, which is optimized for
sets A whose density is large but at most 1/3. This optimization is designed
for an application concerning m-sum-free sets, which we discuss below.

Theorem 1.4. — Let p be prime, let η ∈ (0, 1), let A ⊆ Z/pZ be a set with
|A| ≥ η p > 0 and |2A| = 2|A|+ r < p, and let

α = −5
4 + 1

4
√

9 + 8 η p sin(π/p)/ sin(πη/3).

Suppose

|2A| ≤ (2 + α)|A| − 3 and |A| ≤ p− r
3 .

Then there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same differ-
ence such that A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

We apply this result to obtain new upper bounds for the size of m-sum-free
sets in Z/pZ. For a positive integer m, a subset A of an abelian group is said
to be m-sum-free if there is no triple (x, y, z) ∈ A3 satisfying x + y = mz.
These sets have been studied in numerous works on arithmetic combinatorics,
including various types of abelian group settings [1, 8, 7, 16, 15] (see also [4,
Section 3] for an overview of this topic). In Z/pZ, a central goal concerning
these sets is to estimate the quantity

dm(Z/pZ) = max
{ |A|
p : A ⊆ Z/pZ m-sum-free

}
.(1)

This goal splits naturally into two problems of different nature. On the one
hand, we have the case m = 2, which is the only one in which the solutions of
the linear equation in question (i.e., three-term arithmetic progressions) form
a translation invariant set. Roth’s theorem [18] tells us that d2(Z/pZ)→ 0 as
p→∞, and the problem in this case is then the well-known one of determining
the optimal bounds for Roth’s theorem, i.e., how fast d2(Z/pZ) vanishes as
p increases (recent developments in this direction include [3, 19]). On the
other hand, we have the cases m ≥ 3. For each of these, the above-mentioned
translation invariance fails, and it is known that dm(Z/pZ) converges, as p →
∞ through primes, to a positive constant dm that can be modeled on the
circle group (see [6]), the problem then being to determine this constant. Our
application of Theorem 1.4 makes progress on the latter problem.
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Note that, if A is m-sum-free, then the dilate m ·A = {mx : x ∈ A} ⊆ Z/pZ
satisfies 2A∩m·A = ∅, whence, ifm and p are coprime, we have |2A|+|m·A| =
|2A| + |A| ≤ p. Combining this with the bound |2A| ≥ 2|A| − 1 given by the
Cauchy–Davenport Theorem, we deduce the simple bound |A| ≤ p+1

3 , which
implies in particular that dm ≤ 1/3. It was noted in [4] that partial versions
of Conjecture 1.2 can be used to improve on this bound, provided that these
versions are applicable to sets of density up to 1/3. The best version available
for that purpose in [4] was given by the theorem of Serra and Zémor mentioned
above, and this resulted in the first upper bound for dm below 1/3, namely
1/3.0001 (see [4, Theorem 3.1]). In this paper, using Theorem 1.4 we obtain
the following improvement.

Theorem 1.5. — Let p ≥ 80 be a prime, let m be an integer in [2, p−2], and let
c = c(p) be the solution to the equation

(
7+
√

8 c p sin(π/p)/ sin(πc/3) + 9
)
c =

4 + 12
p . Then dm(Z/pZ) < c. In particular, dm ≤ 1

3.1955 .

The following observation, relating this theorem to the study of sum-products
in the field Fp, was made by the anonymous referee: if (A+A)∩m ·A contains
a nonzero element and 0 /∈ A, then m is in the set A+A

A := {(a1 + a2)a−1
3 :

a1, a2, a3 ∈ A} ⊂ Fp, and, therefore, Theorem 1.5 has the following conse-
quence.

Corollary 1.6. — If A ⊂ Fp \ {0} satisfies |A| ≥ 0.313 p, then for p suffi-
ciently large we have Fp \ {−1, 0, 1} ⊆ A+A

A .

This result is an analogue, for sets A+A
A , of Theorem 1.1 in [2], which says

that if A ⊂ Fp has |A| ≥ 0.3051 p, then for p sufficiently large, we have Fp\{0} ⊆
(A+A)A := {(a1 + a2)a3 : ai ∈ A}.

Regarding lower bounds for dm(Z/pZ), note that, identifying Z/pZ with
the integers [0, p− 1], the interval ( 2

m2−4p,
m

m2−4p) is an m-sum-free set. This
set has asymptotic density 1

m+2 and is still the greatest known example for
m ≤ 6. However, for larger values of m, a construction of Tomasz Schoen (per-
sonal communication), presented in this paper in Lemma 3.1 in an optimized
form thanks to indications of the anonymous referee, yields the improved lower
bound dm ≥ 1

8 . The following theorem summarizes these results.

Theorem 1.7. — For m ≤ 6, we have dm ≥ 1
m+2 . For m ≥ 7, we have

dm ≥ 1
8 .

Our final application concerns the study of large sum-free sets in Z/pZ (i.e.
the case m = 1 of m-sum-free sets as defined above). It is well-known, by
the argument using the Cauchy–Davenport theorem mentioned above, that
a sum-free set in Z/pZ has size at most b(p + 1)/3c and that this bound is
attained by the interval I = (p/3, 2p/3) ⊂ Z/pZ and by any nonzero dilate
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of I. Several works have studied the question of the robustness of this structural
description, namely, whether every sum-free set in Z/pZ of density close to 1/3
must resemble a dilate of I. In this direction, the following theorem was proved
by Deshouillers and Lev in [9].

Theorem 1.8. — Let p be a sufficiently large prime and suppose that A ⊂
Z/pZ is sum-free. If |A| > 0.318 p, then there exists d ∈ Z, such that A ⊂
d · [ |A|, p− |A| ].

Applying Theorem 1.4, we improve the constant 0.318 to 0.313.
The paper is laid out as follows. In Section 2, we prove Theorems 1.3 and

1.4. Our results on m-sum-free sets are proved in Section 3. In Section 3.1,
we present the above construction and deduce Theorem 1.7. In Section 3.2, we
apply Theorem 1.4 to obtain Theorem 1.5. Finally, in Section 3.3, we obtain
the above-mentioned improvement of Theorem 1.8.

2. New bounds toward the 3k − 4 conjecture in Z/pZ

Our first task in this section is to prove Theorem 1.3. We shall obtain this
result as the special case ε = 3/4 of the following theorem.

Theorem 2.1. — Let p be prime, let 0 < ε ≤ 3
4 be a real number, let α be the

unique positive root of the cubic 4x3 + (12− 4ε)x2 + (9− 4ε)x+ (8ε− 7), and
let A ⊆ Z/pZ be a nonempty subset with |2A| = 2|A|+ r. Suppose

|2A| ≤ (2 + α)|A| − 3 and |2A| ≤ ε p.

Then there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same differ-
ence, such that A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

The proof is a modification of the argument used to prove [12, Theorem 19.3],
itself based on the original work of Freiman [10] and incorporating improve-
ments to the calculations noted by Rødseth [17]. The main new contribution
is an argument to allow the restriction |2A| ≤ 1

2 (p+3) from [12, Theorem 19.3]
to be replaced by the above condition |2A| ≤ εp. For ε = 3/4, this is optimal
in the sense explained in the Introduction.

In the proof of Theorem 2.1, we use the following version of the 3k−4 theorem
for Z. Here, for X ⊆ Z, we denote the greatest common divisor gcd(X−X) by
gcd∗(X). Note, for |X| ≥ 2, that d = gcd∗(X) is the minimal d ≥ 1, such that
X is contained in an arithmetic progression with difference d. We remark that,
when B = −A, we have PA−A ⊆ A−A and −PA−A ⊆ −(A−A) = A−A. Since
2|PA−A| ≥ 4|A| − 2 > |A − A|, the progressions PA−A and −PA−A intersect,
ensuring that P = PA−A∪−PA−A ⊆ A−A is a progression contained in A−A
with |P | ≥ 2|A| − 1 and −P = P . Thus, the progression PA−A in Theorem 2.2
can be assumed to be symmetric (i.e., centered at the origin) when B = −A.
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Theorem 2.2. — Let A, B ⊆ Z be finite, nonempty subsets with gcd∗(A+B) =
1 and

|A+B| = |A|+ |B|+ r ≤ |A|+ |B|+ min{|A|, |B|} − 3− δ,

where δ = 1 if x + A = B for some x ∈ Z, and otherwise δ = 0. Then there
are arithmetic progressions PA, PB , PA+B ⊆ Z with common difference 1, such
that A ⊆ PA, B ⊆ PB, PA+B ⊆ A+B, |PA| ≤ |A|+ r + 1, |PB | ≤ |B|+ r + 1
and |PA+B | ≥ |A|+ |B| − 1.

Let G and G′ be abelian groups and let A, B ⊆ G. A Freiman isomorphism
is a well-defined map ψ : A + B → G′ defined by two coordinate maps ψA :
A → G′ and ψB : B → G′, such that ψ(x + y) = ψA(x) + ψB(y) for all
x ∈ A and y ∈ B. That ψ is well-defined is equivalent to the statement
that ψA(x1) + ψB(y1) = ψA(x2) + ψB(y2) whenever x1 + y1 = x2 + y2, for
x1, x2 ∈ A and y1, y2 ∈ B, and ψA(A)+ψB(B) is then the homomorphic image
of A+ B. It is an isomorphism if ψ is injective on A+ B, which is equivalent
to ψA(x1)+ψB(y1) = ψA(x2)+ψB(y2) holding if and only if x1 +y1 = x2 +y2,
for x1, x2 ∈ A and y1, y2 ∈ B. We denote this by A + B ∼= ψA(A) + ψB(B).
A Freiman homomorphism ψ : A + B → G′ on the sumset defines a Freiman
homomorphism ψ′ : A − B → G′ on the difference set given by ψ′(x − y) =
ψA(x) − ψB(y), for x ∈ A and y ∈ B, which is an isomorphism when ψ is. In
the special case when A = B, we find that ψA(x) + ψB(y) = ψA(y) + ψB(x)
for all x, y ∈ A = B, implying ψB(x) = ψA(x) + (ψB(y) − ψA(y)) for any
x, y ∈ A = B. Fixing y ∈ A and letting x range over all possible x ∈ A
shows that the map ψB is simply a translate of the map ψA. This means it can
(and generally will) be assumed that ψA = ψB for a Freiman homomorphism
ψ when A = B. See [12, Chapter 20] for a fuller discussion regarding Freiman
homomorphisms.

For a prime p, nonzero g ∈ Z/pZ (which is then a generator of Z/pZ), and
integers m ≤ n, let

[m,n]g = {mg, (m+ 1)g, . . . , ng}

denote the corresponding interval in Z/pZ. If m > n, then [m,n]g = ∅. We
define (for each g ∈ Z/pZ\{0}) a function `g from the set of subsets X ⊂ Z/pZ
to Z≥0, by

`g(X) := min{|P | : P is an arithmetic progression of difference g with X ⊂P}.

We let X = (Z/pZ) \ X denote the complement of X in Z/pZ. We say that
a sumset A + B ⊆ Z/pZ is rectifiable, if `g(A) + `g(B) ≤ p + 1 for some
nonzero g ∈ Z/pZ. In such a case, A ⊆ a0 + [0,m]g and B ⊆ b0 + [0, n]g with
m + n = `g(A) + `g(B) − 2 ≤ p − 1, for some a0, b0 ∈ Z/pZ, in which case
the maps a0 + sg 7→ s and b0 + tg 7→ t, for s, t ∈ Z, when restricted to A
and B, respectively, show that the sumset A + B is Freiman isomorphic (see
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[12, Section 2.8]) to an integer sumset. This allows us to canonically apply
results from Z to the sumset A+B.

If G is an abelian group and A, B ⊆ G are subsets, then we say that A
is saturated with respect to B, if (A ∪ {x}) + B 6= A + B for all x ∈ A. In
the proof of Theorem 2.1, we shall also use the following basic result regarding
saturation [12, Lemma 7.2], whose earlier form dates back to Vosper [21]. We
include the short proof for completeness.

Lemma 2.3. — Let G be an abelian group and let A, B ⊆ G be subsets. Then

−B +A+B ⊆ A

with equality holding if and only if A is saturated with respect to B.

Proof. — First observe that −B + A+B ⊆ A, for if b ∈ B, z ∈ A+B,
and by contradiction −b + z = a for some a ∈ A, then z = a + b ∈ A + B,
contrary to its definition. If A is saturated with respect to B, then given
any x ∈ A, there exists some b ∈ B and z ∈ A+B with x + b = z, whence
x = −b+z ∈ −B+A+B. This shows that A ⊆ −B+A+B, and as the reverse
inclusion always holds (as was just shown), it follows that A = −B + A+B.
Conversely, if A = −B+A+B, then given any x ∈ A, there exists some b ∈ B
and z ∈ A+B with x = −b + z, implying x + b = z /∈ A + B. Since x ∈ A is
arbitrary, this shows that A is saturated with respect to B. �

Proof of Theorem 2.1. — Let f(x) = 4x3 + (12− 4ε)x2 + (9− 4ε)x+ (8ε− 7),
so that f ′(x) = 12x2 + (24 − 8ε)x + (9 − 4ε). Then f ′(x) > 0 for x ≥ 0 (in
view of ε ≤ 3/4), meaning that f(x) is an increasing function for x ≥ 0 with
f(0) = 8ε − 7 < 0 and f(1/2) = 1 + 5ε > 0. Consequently, f(x) has a unique
positive root 0 < α < 1

2 .
Since |2A| ≤ εp < p, the Cauchy–Davenport theorem implies r ≥ −1. Let

β = r + 3
|A|

> 0,(2)

so that

r = β|A| − 3, |2A| = 2|A|+ r = (2 + β)|A| − 3 and β ≤ α < 1
2 .(3)

Since 2|A| + r = |2A| ≤ εp ≤ 3
4p, it follows that |A| ≤ 3

8p −
1
2r, and since

r ≥ −1, we deduce that

|A| ≤ 3p+ 4
8 .(4)

The proof naturally breaks into two parts: a first case where there is a large
rectifiable subsumset and a second case where there is not. The latter case will
lead to a contradiction.
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Case 1. — Suppose there exist subsets A′ ⊆ A and B′ ⊆ A with |B′| ≤ |A′|
and

|A′|+ 2|B′| − 4 ≥ |2A|(5)

such that A′ + B′ is rectifiable. Furthermore, choose a pair of subsets A′ ⊆ A
and B′ ⊆ A with these properties, such that |A′|+|B′| is maximal, and for these
subsets A′ and B′, let g ∈ Z/pZ be a nonzero difference with `g(A′) + `g(B′) ≤
p + 1 minimal. Note that |A′| ≥ |B′| ≥ 2; indeed, if |B′| ≤ 1, then combining
this with the hypotheses |B′| ≤ |A′| ≤ |A| and (5) yields the contradiction
|A| − 2 ≥ |2A| ≥ |A|. Since A′ + B′ is rectifiable, the Cauchy–Davenport
theorem for Z [12, Theorem 3.1] ensures

|A′ +B′| = |A′|+ |B′|+ r′ with r′ ≥ −1.

Moreover, we have

A′ ⊆ PA := a0 + [0,m]g, B′ ⊆ PB := b0 + [0, n]g, and
A′ +B′ ⊆ a0 + b0 + [0,m+ n]g,

(6)

with a0, a0 + mg ∈ A′, b0, b0 + ng ∈ B′ and m + n ≤ p − 1, for some
a0, b0 ∈ Z/pZ. Then, since A′ + B′ is rectifiable, it follows that the map
ψ : Z/pZ→ [0, p−1] ⊆ Z defined by ψ(sg) = s for s ∈ [0, p−1] gives a Freiman
isomorphism of A′+B′ with the integer sumset ψ(−a0 +A′)+ψ(−b0 +B′) ⊆ Z.
Observe that

gcd∗(ψ(−a0 +A′) + ψ(−b0 +B′)) = 1,

since if ψ(−a0 +A′) +ψ(−b0 +B′) were contained in an arithmetic progression
with difference d ≥ 2, then this would also be the case for ψ(−a0 + A′) and
ψ(−b0 +B′), and then `dg(A′)+ `dg(B′) < `g(A′)+ `g(B′) would follow in view
of |A′| ≥ |B′| ≥ 2, contradicting the minimality of `g(A′) + `g(B′) for g.

In view of (5) and |B′| ≤ |A′|, we have |A′ + B′| ≤ |2A| ≤ |A′| + |B′| +
min{|A′|, |B′|} − 4. Thus, since gcd∗(ψ(−a0 +A′) +ψ(−b0 +B′)) = 1, we can
apply the 3k − 4 theorem (Theorem 2.2) to the isomorphic sumset ψ(−a0 +
A′) + ψ(−b0 + B′). Then, letting PA = a0 + [0,m]g, PB = b0 + [0, n]g and
letting PA+B ⊆ A′ +B′ be the resulting arithmetic progressions with common
difference g, we conclude that

|PA \A′| ≤ r′ + 1 und |PB \B′| ≤ r′ + 1.(7)

If A′ = A and B′ = A, then the original sumset 2A is rectifiable, we have
r′ = r, and the theorem follows with PA = PB and P2A = PA+B as just
defined. Therefore, we can assume otherwise, which in view of |B′| ≤ |A′|
means

A \B′ 6= ∅.(8)
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Let ∆ = |2A| − |A′ +B′| ≥ 0. Then

r′ = |A \A′|+ |A \B′|+ r −∆.(9)

Since |A′|+ |B′|+ r′ = |A′+B′| = |2A| −∆, it follows from (5) and |B′| ≤ |A′|
that

r′ ≤ |B′| − 4−∆ and r′ ≤ |A′| − 4−∆.(10)

Averaging both bounds in (10), using (9), and recalling that |2A| = 2|A| + r,
we obtain

r′ ≤ 1
3 |2A| −

8
3 −∆.(11)

Step A. — | −A′ +A′ +A| ≤ |A′ +A|+ 2|A′| − 4.

Proof. — If Step A fails, then combining its failure with p − |2A| = |2A| ≤
|A′ +A| and Lemma 2.3 yields

p− |2A|+ 2|A′| − 3 ≤ |A′ +A|+ 2|A′| − 3 ≤ | −A′ +A′ +A| ≤ |A| = p− |A|,

which implies that |A| + 2|A′| − 3 ≤ |2A|. This together with (5) and |B′| ≤
|A′| ≤ |A| implies |A|+ 2|A′| − 3 ≤ |A′|+ 2|B′| − 4 ≤ |A|+ 2|A′| − 4, which is
not possible. �

Step B. — | −A′ +A′ +A| ≤ |A′|+ 2|A′ +A| − 3.

Proof. — If Step B fails, then combining its failure with 2p − 4|A| − 2r =
2|2A| ≤ 2|A′ +A| and Lemma 2.3 yields

|A′|+ 2p− 4|A| − 2r − 2 ≤ |A′|+ 2|A′ +A| − 2
≤ | −A′ +A′ +A| ≤ |A| = p− |A|.

Collecting terms in the above inequality, multiplying by 2, and applying the
estimates |B′| ≤ |A′| and (11) yields

2p ≤ 6|A|+ 4r − 2|A′|+ 4 ≤ 3|2A|+ r − |A′| − |B′|+ 4
= 3|2A| − |A′ +B′|+ r + r′ + 4 = 2|2A|+ ∆ + r + r′ + 4

≤ 7
3 |2A|+ r + 4

3 .

Hence, |2A| ≥ 6
7p−

3
7r −

4
7 . Combined with (3) and (4), we conclude that

6
7p−

3
7α
(3p+ 5

8

)
+ 5

7 <
6
7p−

3
7β|A|+

5
7 = 6

7p−
3
7r −

4
7 ≤ |2A| ≤ εp ≤

3
4p,

which yields the contradiction 0 < ( 6
7 −

3
4 −

9
56α)p < 15

56α −
5
7 < 0 (in view of

α < 1
2 ), completing Step B. �
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By our application of the 3k − 4 theorem (Theorem 2.2) to ψ(−a0 + A′) +
ψ(−b0 + B′), we know that A′ + B′ contains an arithmetic progression PA+B
with difference g and length |PA+B | ≥ |A′|+ |B′| − 1, which implies

`g(A′ +B′) ≤ p− |A′| − |B′|+ 1.

By (7) and (10), we obtain

`g(−A′) = `g(A′) ≤ |A′|+ r′ + 1 ≤ |A′|+ |B′| − 3,(12)

whence `g(−A′)+`g(A′ +B′) ≤ p−2, ensuring that −A′+A′ +B′ is rectifiable
via the difference g. Since A′ +A ⊆ A′ +B′, it follows that −A′ + A′ +A is
also rectifiable via the difference g.

By our application of the 3k − 4 theorem (Theorem 2.2) to ψ(−a0 + A′) +
ψ(−b0+B′) we know that ψ(−a0+A′) is contained in the arithmetic progression
ψ(−a0 + PA) = [0,m] with difference 1 and length |PA| ≤ |A′| + r′ + 1, with
the latter inequality by (7). Moreover, r′ + 1 ≤ |B′| − 3 ≤ |A′| − 3 (by (10)),
so that |A′| > d 1

2 |PA|e, meaning that ψ(−a0 + A′) must contain at least two
consecutive elements. Hence,

gcd∗(ψ(−a0 +A′)) = 1.(13)

Since −A′+A′ +A is rectifiable via the difference g, it is then isomorphic to the
integer sumset ψ(a0 +mg−A′) +ψ(x+A′ +A) for an appropriate x ∈ Z/pZ.
Hence, in view of (13), Step A, and Step B, we can apply the 3k − 4 theorem
(Theorem 2.2) to the isomorphic sumset ψ(a0 +mg−A′) +ψ(x+A′ +A) and
thereby conclude that there is an arithmetic progression P ⊆ −A′+A′ +A with
difference g and length |P | ≥ |A′|+ |A′ +A| − 1 ≥ |A′|+ |2A| − 1 = p− |2A|+
|A′| − 1. Consequently, since Lemma 2.3 ensures that P ⊆ −A′ +A′ +A ⊆ A,
it follows that `g(A) ≤ |2A| − |A′|+ 1. Combined with (12), we find that

`g(A′) + `g(A) ≤ |2A|+ r′ + 2.(14)

If A′ + A is not rectifiable, then `g(A′) + `g(A) ≥ p + 2, and, hence, by (11)
and (14) we have p ≤ |2A| + r′ ≤ 4

3 |2A| −
8
3 , whence |2A| ≥

3
4p + 2 > εp,

contrary to the hypothesis. Therefore, A′ + A is rectifiable. This contradicts
the maximality of |A′|+ |B′|, since by (8) we have |A| > |B′|, which completes
Case 1.
Case 2. — Every pair of subsets A′ ⊆ A and B′ ⊆ A with |B′| ≤ |A′|, whose
sumset A′ +B′ is rectifiable, has

|A′|+ 2|B′| ≤ |2A|+ 3.(15)

Let ` := |2A| = 2|A| + r. For the rest of this proof, let us identify Z/pZ with
the set of integers [0, p − 1] with addition mod p. Then, for every X ⊆ Z/pZ
and d ∈ Z/pZ, we define the exponential sum SX(d) =

∑
x∈X e

2πi
p dx ∈ C.
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The idea is to use Freiman’s estimate [13, Theorem 1] for such sums to show
that the assumption (15) implies

|SA(d)| ≤ 1
3 |A|+

2
3r + 2 for all nonzero d ∈ Z/pZ.(16)

For any u ∈ [0, 2π), consider the open arc Cu = {eix : x ∈ (u, u+π)} of length
π in the unit circle in C. Let A′ = {x ∈ A : e

2πi
p dx ∈ Cu}. Since the set of

p-th roots of unity contained in Cu correspond to an arithmetic progression
of difference 1 in Z/pZ, it is clear that for d∗, the multiplicative inverse of d
modulo p, we have `d∗(A′) ≤ p+1

2 . Hence, the sumset A′ + A′ is rectifiable.
Then the assumption (15) implies that 3|A′| ≤ |2A|+ 3. This shows that every
open half-arc of the unit circle contains at most n = 1

3 |2A|+ 1 of the |A| terms
involved in the sum SA(d). By [13, Theorem 1] applied with this n, N = |A|,
and ϕ = π, we obtain |SA(d)| ≤ 2n−N = 2

3 |2A|+ 2− |A|, and (16) follows.
To complete the proof, we now exploit (16) to obtain a contradiction, using

in particular the following manipulations, which are standard in the additive
combinatorial use of Fourier analysis (e.g. [12, pp. 290–291])

By Fourier inversion and the fact that SA(0) = |A| and S2A(0) = `, we have

|A|2p =
∑

x∈Z/pZ

SA(x)SA(x)S2A(x)

= SA(0)SA(0)S2A(0) +
∑

x∈(Z/pZ)\{0}

SA(x)SA(x)S2A(x)

= |A|2`+
∑

x∈(Z/pZ)\{0}

SA(x)SA(x)S2A(x)

≤ |A|2`+
∑

x∈(Z/pZ)\{0}

|SA(x)||SA(x)||S2A(x)|

≤ |A|2`+ ( 1
3 |A|+

2
3r + 2)

∑
x∈(Z/pZ)\{0}

|SA(x)||S2A(x)|.

This last sum is at most
(∑

x∈Z/pZ\{0} |SA(x)|2
)1/2(∑

x∈Z/pZ\{0} |S2A(x)|2
)1/2

by the Cauchy–Schwarz inequality. We thus conclude that

|A|2p ≤ |A|2`+ |A|+ 2r + 6
3 (|A|p− |A|2)1/2(`p− `2)1/2.

Rearranging this inequality, we obtain

|A|+ 2r + 6
3|A| ≥ |A|(p− `)

|A|1/2(p− |A|)1/2`1/2(p− `)1/2 =
(

p
` − 1
p
|A| − 1

)1/2

.(17)

tome 149 – 2021 – no 1



ON SETS WITH SMALL SUMSET AND m-SUM-FREE SETS IN Z/pZ 167

By hypothesis r = β|A|−3 and ` = |2A| = (2 +β)|A|−3, so |A| = `+3
2+β >

`
2+β .

Using these estimates in (17) yields
1 + 2β

3 = |A|+ 2(β|A| − 3) + 6
3|A| = |A|+ 2r + 6

3|A|

≥

(
p
` − 1
p
|A| − 1

)1/2

>

( p
` − 1

(2 + β)p` − 1

)1/2

.

Rearranging the above inequality yields (in view of 0 < β ≤ α < 1)

εp ≥ ` >
1− ( 1+2β

3 )2(2 + β)
1− ( 1+2β

3 )2
p.(18)

Since β ≤ α < 1, rearranging the above inequality yields

4β3 + (12− 4ε)β2 + (9− 4ε)β + 8ε− 7 > 0.(19)

Thus, f(β) > 0, with f(x) = 4x3 +(12−4ε)x2 +(9−4ε)x+8ε−7. As noted at
the start of the proof, f(x) is increasing for x ≥ 0 with a unique positive root
α. As a result, (19) ensures that β > α, which is contrary to the hypothesis,
completing the proof. �

Remark 2.4. — Our restriction |2A| ≤ 3
4p in Theorem 2.1 could be relaxed

somewhat further, but at increasingly greater cost to the resulting constant
α. One simply needs to strengthen the hypothesis of (5) and appropriately
adjust the Fourier analytic calculation in Case 2 in the above proof, using the
correspondingly weakened inequality for (15).

Proof of Theorem 1.3. — As mentioned earlier, Theorem 1.3 is just the special
case of Theorem 2.1 with ε = 3

4 . �

We now proceed to prove the variant that we shall apply in the next section.

Proof of Theorem 1.4. — The proof is very close to that of Theorem 2.1, with
the most significant difference occurring in Case 2. We only highlight the few
differences in the argument.

First observe that, if p = 2, then |2A| < p forces |A| = 1, in which case, the
theorem holds trivially. Therefore, we can assume p ≥ 3. Next, observe (via
Taylor series expansion) that p sin(π/p) is an increasing function for p > 1 with
limit π. The function η/ sin(πη/3) is also an increasing function for η ∈ (0, 1).
Thus, α ≤ − 5

4 + 1
4
√

9 + 8π/ sin(π/3) < 0.3. By hypothesis, |A| ≤ p−r
3 =

1
3p−

1
3β|A|+ 1, implying

|A| ≤ p+ 3
β + 3 <

p+ 3
3 ,(20)

which replaces (4) for the proof. Also, |2A| = 2|A|+ r ≤ 2(p−r3 ) + r = 2p+r
3 .
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At the end of Step B in Case 1, we instead obtain 6
7p−

3
7r−

4
7 ≤ |2A| ≤

2p+r
3 ,

which implies
2
3p ≥

6
7p−

16
21r −

4
7 ≥

6
7p−

16
21α|A|+

16
7 −

4
7 >

6
7p−

16
21α

(p+ 3
3

)
+ 16

7 −
4
7 ,

with the final inequality above in view of (20). Thus, 0 < ( 6
7 −

2
3 −

16
63α)p <

16
21α−

12
7 < 0 (in view of 0 < α < 0.3), which is the contradiction that instead

completes Step B.
At the end of Case 1, we instead likewise obtain

3
4p+ 2 ≤ |2A| ≤ 2p+ r

3 ≤ 2
3p+ 1

3α|A| − 1 < 2
3p+ 1

3α
(p+ 3

3

)
− 1.

This yields the contradiction 0 < ( 3
4 −

2
3 −

α
9 )p < α

3 − 3 < 0 (in view of
0 < α < 0.3) in order to complete Case 1.

For Case 2, we begin by following the argument that proves (16), except
that we use Lev’s sharper estimate [13, Theorem 2] instead of [13, Theorem 1].
Thus, using that any two distinct terms in SA have the shortest arc between
them of length at least δ = 2π/p, we obtain by [13, Theorem 2] applied with
n = 1

3 |2A|+ 1 ≤ p/2 (so δn ≤ π) that for every such nonzero d, we have

|SA(d)| ≤
sin
(( 1

3 |2A|+ 1− 1
2 |A|

) 2π
p

)
sin(πp ) =

sin
(
( 1

3 |A|+
2
3r + 2)πp

)
sin(πp ) .(21)

Let M = 1
3 |A| +

2
3r + 2 and let y = M/p. Note M ≤ ( 1

3 + 2
3α)|A| < ( 1

3 +
2
3 (0.3))p+3

3 < p
2 in view of r ≤ α|A| − 3 and (20), ensuring y ∈ (η3 ,

1
2 ). Then

the inequality in (21) becomes |SA(d)| ≤ sin(yπ)
yp sin(πp ) M . The function f(p, y) =

sin(yπ)
yp sin(πp ) is decreasing in y ∈ (0, 1/2) for any fixed p ≥ 3, as can be seen
by considering the Taylor series expansion of its partial derivative. It is also
decreasing in p for every fixed y ∈ (0, 1/2) by a similar analysis. Letting
γ = f(p, η3 ) > 0, we can, therefore, replace (16) by the bound

|SA(d)| ≤ γ( 1
3 |A|+

2
3r + 2).(22)

Since M π
p <

π
2 , M > 1 and p ≥ 3, it follows that sin(M π

p )−M sin(πp ) ≤ 0 (as
can be seen by considering derivatives with respect to M and using the Taylor
series expansion of tan(πp ) to note tan(πp ) > π

p ). Consequently, we see that
the bound in (21) is at most M , ensuring γ ≤ 1. We now obtain the following
inequality instead of (17):

γ
1 + 2β

3 =
γ( 1

3 |A|+
2
3r + 2)

|A|

≥ |A|(p− `)
|A|1/2(p− |A|)1/2`1/2(p− `)1/2 =

(
p
` − 1
p
|A| − 1

)1/2

.

(23)
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A similar rearrangement to the one that yielded (18) now leads to

2p+ β
3+β (p+ 3)− 3

3 ≥ 2p+ β|A| − 3
3 = 2p+ r

3 ≥ |2A|

>
1− γ2( 1+2β

3 )2(2 + β)
1− γ2( 1+2β

3 )2
p,

(24)

with the first inequality following from (20). Since 0 ≤ β < 1 and 0 < γ ≤ 1,
we have β

3+β < 1 and also 1 − γ2( 1+2β
3 )2 > 0, so (24) implies

(
β+2
β+3

)(
1 −

γ2( 1+2β
3
)2)

> 1 − γ2( 1+2β
3
)2(2 + β). Multiplying both sides by β + 3 > 0

and grouping on the left-hand side the terms involving γ, we obtain (β +
2)2γ2( 1+2β

3
)2
> 1. Taking square roots and expanding, we deduce 2β2+5β+2−

3γ−1 > 0. The quadratic formula thus implies that either β < −5−
√

9+24γ−1

4 <

0 or β >
−5+
√

9+24γ−1

4 = α. Since β > 0, this contradicts the hypothesis
β ≤ α, completing the proof. �

3. Bounds for m-sum-free sets in Z/pZ

In this section, we give new bounds for the quantity dm(Z/pZ) defined in
formula (1) and for the associated limit

dm = lim
p→∞
p prime

dm(Z/pZ).

In Section 3.1, we present some examples of largem-sum-free sets and in Section
3.2, we apply Theorem 1.4 to give a new upper bound for dm(Z/pZ). In Section
3.3 we obtain an improvement of Theorem 1.8.

3.1. Lower bounds for dm(Z/pZ). — As mentioned in the Introduction, a
simple example of a largem-sum-free set is the interval ( 2

m2−4p,
m

m2−4p), having
the asymptotic density 1

m+2 as p → ∞. This gives the largest known size of
m-sum-free sets for m ≤ 6 but not for greater values of m. Indeed, there
is the following construction, following an idea due to Tomasz Schoen. The
version given below incorporates a suggestion of the anonymous referee that,
with some additional modification, yielded the result as stated below. As noted
in the proof, for fixed m, the constant 1

8 can be improved by a small factor
tending to 0 as m→∞.

Lemma 3.1. — For each integer m ≥ 7, we have dm(Z/pZ) ≥ 1
8 (1 − 1

p ) for
every prime p of the form p = 4m2n+ 1. In particular, dm ≥ 1

8 .

Proof. — We identify Z/pZ with the interval of integers [0, p−1] with addition
mod p. Let λ ∈ [3,m] and µ ∈ [0,m−1] be integer parameters to be fixed later
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and consider the interval

J = {4mn+ 1, 4mn+ 2, . . . , 2λmn} ⊂ [0, p− 1].

We define an m-sum-free set A by picking elements from J in appropriate
congruence classes mod m:

A := {x ∈ J : xmodm ∈ [0, µ]}.

Note that the sumset A+A taken in Z is a subset of [0, p− 1] because λ ≤ m
guarantees 2 maxA = 4mnλ ≤ 4m2n = p − 1. We therefore have y ∈ 2A ⇒
ymodm ∈ [0, 2µ].

Now,

J =
dλ2 e−2⋃
i=1

[(4i)mn+ 1, 4(i+ 1)mn] ∪ [(4(dλ2 e − 1)mn+ 1, 2λmn]

⊆
dλ2 e−1⋃
i=1

[(4i)mn+ 1, 4(i+ 1)mn].

Since p = 4m2n + 1, we have m · [(4i)mn + 1, 4(i + 1)mn] = {m − i, 2m −
i, . . . , 4m2n − i} for i ∈ [1, dλ2 e − 1], meaning that m · J is covered by the
progressions

Ui = {m− i, 2m− i, . . . , 4m2n− i}, i ∈ [1, dλ2 e − 1].

For A to be m-sum-free it suffices to ensure that 2A∩ (m ·J) = ∅, and for this,
it suffices for λ and µ to satisfy 2µ ≤ m− (dλ2 e − 1)− 1, that is,

2µ+ dλ2 e ≤ m.

We also have |A| = (µ+ 1) |J|m = 2n(µ+ 1)(λ− 2), so

|A|
p− 1 = (µ+ 1)(λ− 2)

2m2 .

Suppose m ≡ 0 mod 4, so m ≥ 8. Considering λ = m and µ = m
4 yields

|A|
p−1 = (µ+1)(λ−2)

2m2 = m2+2m−8
8m2 , which is at least 1

8 for m ≥ 4.
Suppose m ≡ 1 mod 4, so m ≥ 9. Considering λ = m and µ = m−1

4 yields
|A|
p−1 = (µ+1)(λ−2)

2m2 = m2+m−6
8m2 , which is at least 1

8 for m ≥ 6. We remark that
taking λ = m− 3 and µ = m+3

4 instead yields |A|p−1 = (µ+1)(λ−2)
2m2 = m2+2m−35

8m2 ,
which is slightly better for larger values of m.

Suppose m ≡ 2 mod 4, so m ≥ 10. In this case, we will modify the above
construction with λ = m − 1 and µ = m−2

4 . For these parameters, we have
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dλ2 e − 1 = m−2
2 , 2(µ+ 1) = m+2

2 = m− m−2
2 , and

m · [(4(dλ2 e − 1)mn+ 1, 2λmn] = m · [2(m− 2)mn+ 1, 2(m− 1)mn]
= {m− m−2

2 , 2m− m−2
2 , . . . , 2m2n− m−2

2 },(25)

which is the subset of m · J ⊆ [0, p − 1] congruent to m − m−2
2 modulo m.

Let B = {tm + m+2
4 : mn ≤ t ≤ 2(m − 1)n − 1} and set A′ = A ∪ B. Since

mn ≤ t ≤ 2(m−1)n−1, we have B ⊆ J , while 2B = {2m2n+m−m−2
2 , 2m2n+

2m− m−2
2 , . . . , 4(m− 1)mn−m− m−2

2 }, which is disjoint from the set in (25).
Since A+B is also disjoint from m ·J , it follows that 2A′∩ (m ·J) = ∅, so A′ is
m-sum-free. We have |A

′|
p−1 = |A|+|B|

p−1 = 2n(µ+1)(λ−2)+(m−2)n
p−1 = m2+m−10

8m2 , which
is at least 1

8 for m ≥ 10. We remark that taking λ = m − 2 and µ = m+2
4 in

the original construction instead yields |A|p−1 = (µ+1)(λ−2)
2m2 = m2+2m−24

8m2 , which
is slightly better for larger values of m.

Suppose m ≡ 3 mod 4, so m ≥ 7. We modify the original construction
with λ = m and µ = m−3

4 . For these parameters, we have dλ2 e − 1 = m−1
2 ,

2(µ+ 1) = m+1
2 = m− m−1

2 , and

m · [(4(dλ2 e − 1)mn+ 1, 2λmn] = m · [2(m− 1)mn+ 1, 2m2n]
= {m− m−1

2 , 2m− m−1
2 , . . . , 2m2n− m−1

2 },

which is the subset ofm·J ⊆ [0, p−1] congruent tom−m−1
2 modulom. Let B =

{tm+ m+1
4 : mn ≤ t ≤ 2mn−1} and set A′ = A∪B. Since mn ≤ t ≤ 2mn−1,

we have B ⊆ J , while 2B = {2m2n+m− m−1
2 , 2m2n+ 2m− m−1

2 , . . . , 4m2n−
m − m−1

2 }. Thus, similarly to the previous case, 2A′ ∩ (m · J) = ∅, so A′ is
m-sum-free. We have |A

′|
p−1 = |A|+|B|

p−1 = 2n(µ+1)(λ−2)+mn
p−1 = m2+m−2

8m2 , which is
at least 1

8 for m ≥ 2. We remark that taking λ = m − 1 and µ = m+1
4 in the

original construction instead yields |A|p−1 = (µ+1)(λ−2)
2m2 = m2+2m−15

8m2 , which is
slightly better for larger m.

In all four cases above, we obtain a set A, such that dm(Z/pZ) ≥ |A|
p ≥

|A|
p−1 (1− 1

p ) ≥ 1
8 (1− 1

p ), and now the claim about the limit follows from the fact
that by Dirichlet’s theorem there exist infinitely many primes in the arithmetic
progression {4m2n+ 1 : n ≥ 1}. �

3.2. Upper bound for dm(Z/pZ). — In this section we prove Theorem 1.5,
which we restate here for convenience.

Theorem 3.2. — Let p ≥ 80 be a prime, m be an integer in [2, p − 2], and
c = c(p) be the solution to the equation c = 1+3/p

3+α(c,p) , where α = α(c, p) is the
parameter in Theorem 1.4 with η = c. Then, dm(Z/pZ) < c. In particular,
dm ≤ 1

3.1955 .
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The idea of the proof is roughly the following: either an m-sum-free set A
has a doubling constant at least 2 + α, in which case, since (m · A) ∩ 2A = ∅,
we have (3 + α)|A| ≤ |(m · A)| + |2A| ≤ p and we are done; or we can apply
Theorem 1.4, and thus, working with the two arithmetic progressions provided
by the theorem, we reduce the problem essentially to bounding the size that
two progressions I and J of equal difference can have if the dilatem·J has small
intersection with I. Let us begin by establishing this result about progressions.

Lemma 3.3. — Let p ≥ 80 be prime, 0 < α ≤ 1/5, d ∈ [2, p− 2], and N ∈ N.
Let I and J be progressions in Z/pZ having the same difference and satisfying
|I| = 2N − 1, |J | > (1 +α)N − 3, and |I ∩ (d · J)| ≤ αN − 2. Then, N < p+3

3+α .

Proof. — First note that without loss of generality, we can assume d ≤ p−1
2 ,

since if the lemma is proved with this assumption, then, given d > p−1
2 , we

can multiply by −1 and apply the lemma with the intervals −I and J . Let
us proceed by contradiction supposing that there exists some N (along with
p, d, α, I, and J), such that the hypotheses of the lemma are satisfied, but
N ≥ p+3

3+α . Note that the supposed properties of I and J are conserved, if we
dilate by the inverse of their difference mod p and if we translate, replacing I
by I + dz and J by J + z. It follows that identifying Z/pZ with the integers
[0, p − 1] with addition mod p, we can assume that I = [p − |I|, p − 1] and
J = x+ [0, |J | − 1] mod p, for some x ∈ [0, p− 1].

We claim that we can assume without loss of generality that

d · x ∈ [0, d− 1] mod p.(26)

Indeed, if this does not hold, then either d · x ∈ [d, p − |I| + d − 1] mod p or
d·x ∈ [p−|I|, p−1]. If the former holds, then d·(x−1) /∈ I mod p, so the interval
J ′ = (x−1)+[0, |J |−1] satisfies the hypotheses with |I ∩ (d ·J ′)| ≤ |I ∩ (d ·J)|.
On the other hand, if d ·x ∈ [p−|I|, p−1], then letting J ′ = (x+1)+[0, |J |−1]
we have d · x ∈ I ∩ (d · J) and d · x /∈ I ∩ (d · J ′), so this interval J ′ satisfies
the hypotheses with |I ∩ (d · J ′)| ≤ |I ∩ (d · J)|. In either case, by repeatedly
shifting the interval J , we eventually obtain (26).

Given (26), we may partition d · J into successive progressions Ui (with
difference d) for i ∈ [1, s + 1], such that Ui = (minUi + dZ) ∩ [0, p − 1] with
minUi ∈ [0, d − 1] for i ∈ [1, s], and Us+1 is either empty or consists of an
initial portion of (minUs+1 + dZ) ∩ [0, p− 1] with minUs+1 ∈ [0, d− 1]. Then,
|Ui ∩ I| ≥

⌊
|I|
d

⌋
for i ∈ [1, s]. It follows that |(d · J) ∩ I| ≥ s

⌊
|I|
d

⌋
, whence

αN − 2 ≥ s
⌊
|I|
d

⌋
.(27)

Now, as d · x ∈ [0, d− 1] mod p, each Ui with i ≤ s starts in [0, d− 1] and ends
in [p− d, p− 1], so s is at least the number of consecutive intervals of length p
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that fit inside [0, |J |d− 1]:

s ≥
⌊
|J |d
p

⌋
>

((1 + α)N − 3)d
p

− 1.(28)

Substituting this lower bound for s in (27), as well as the bound
⌊ |I|
d

⌋
≥

|I|
d −

d−1
d = 2N

d − 1, and expanding the resulting product, we obtain αN − 2 >
2(1+α)

p N2 −
( (1+α)d

p + 6
p + 2

d

)
N + 1 + 3d

p . We group all terms involving N on
the right-hand side, note that the other terms grouped on the left-hand side
amount to a negative number, and multiply through by p

2(1+α)N to deduce that

N <
1

2(1 + α)

(
d(1 + α) + 6 + 2p

d
+ αp

)
.(29)

We want to obtain a contradiction from this, using that N ≥ p+3
3+α . To this end,

using the bounds 2 ≤ d ≤ p−1
2 on the right-hand side of (29) is not enough.

However, we shall now show that we can assume 11 ≤ d < p/6, which will be
enough.

First, we claim that s ≥ 1. Indeed, otherwise |J | ≤ |(d · J) ∩ I| + |(d ·
J) ∩ [0, p − |I| − 1]| ≤ αN − 2 +

⌈p−|I|
d

⌉
. Using the assumptions on |I|, |J |,

and d ≥ 2, we deduce that N < p+2d
d+2 ≤

p
4 + 2. This, combined with our

assumptions N ≥ (p+ 3)/(3 + α) and α < 1/5, contradicts p ≥ 80.
Since s ≥ 1, (27) yields αN − 2 ≥ b|I|/dc ≥ 2N

d − 1. It follows that
(αN − 1)d ≥ 2N > 0. Hence, αN − 1 > 0 and d ≥ 2N

αN−1 >
2
α , whence d ≥ 11

follows in view of α ≤ 1
5 .

Note that b|I|/dc ≥ 1, for otherwise 2N = |I|+ 1 < d+ 1 ≤ p+1
2 , contradict-

ing our assumptions N ≥ p+3
3+α and α ≤ 1/5. Combining this with (27) and (28),

we obtain αN − 2 > ((1+α)N−3)d
p − 1, which means d ≤

(
αN−1

(1+α)N−3
)
p < α

1+αp.
As α ≤ 1/5, we conclude that d < p/6.

Now using the bounds 11 ≤ d < p/6 in (29) and the assumption that
N ≥ p+3

3+α , we deduce that p+3
3+α < p

12 + p
11(1+α) + αp

2(1+α) + 3
1+α , implying

1
3.2 <

1
12 + 1

11 + 1
10 + 3

p , contradicting p ≥ 80. �

Remark 3.4. — It is possible to extend the validity of Lemma 3.3 to all
primes p ≥ 5, at the cost of lengthening the proof with several technicalities.
The lemma has potential generalizations that seem of independent interest,
although we do not need to pursue them for our purposes in this paper. For
instance, the anonymous referee raised the question of which values of coeffi-
cients α, β and which functions f(α, β), g(α, β) > 0 ensure that the following
statement holds: if I, J are arithmetic progressions in Z/pZ with common
difference and respective sizes αN + a, βN + b, then N > f(α, β)p implies
|I ∩ (d · J)| > g(α, β)N .
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We can now prove the main result.

Proof of Theorem 3.2. — Let A ⊆ Z/pZ be an m-sum-free subset of maximum
size, with |A| = ηp, and let α = α(η, p) = − 5

4 + 1
4
√

9 + 8 η p sin(π/p)/ sin(πη/3).
Assume by contradiction that η ≥ c. Then, since x 7→ 1+3/p

3+α(x,p) is decreasing in
x ∈ (0, 1), and c = 1+3/p

3+α(c,p) , we deduce that η ≥ c ≥ 1+3/p
3+α , whence

|A| ≥ p+ 3
3 + α

> 1.(30)

As noted at the start of the proof of Theorem 1.4, α(η, p) is increasing for
η ∈ (0, 1) with p sin(π/p)→ π monotonically. Since 2A and m ·A are disjoint,
we have |2A| ≤ p − |A|, while |2A| ≥ 2|A| − 1 by the Cauchy–Davenport
theorem. Thus, 2|A| − 1 ≤ |2A| ≤ p − |A|, implying |A| ≤ p+1

3 and η ≤ p+1
3p .

Since p ≥ 80, we have η ≤ 3
8 and α ≤ − 5

4 + 1
4
√

9 + 3π/ sin(π/8) < 0.2.
Let |2A| = 2|A|+r. Since A ism-sum-free, the sets 2A andm·A are disjoint,

which implies that |2A| < p (as A is nonempty) and that p ≥ |2A|+ |m ·A| =
3|A|+ r. Thus,

|A| ≤ p− r
3 and |2A| = 2|A|+ r ≤ 2p+ r

3 .

Since |2A| < p, the Cauchy–Davenport theorem implies r ≥ −1.
If |2A| = 2|A| + r > (2 + α)|A| − 3, then r > α|A| − 3, in which case

|A| ≤ p−r
3 < p−α|A|+3

3 , which contradicts (30). Therefore, |2A| ≤ (2+α)|A|−3
and r ≤ bα|A| − 3c. We can now apply Theorem 1.4. As a result, there
are arithmetic progressions PA and P2A with common difference g such that
A ⊆ PA, P2A ⊆ 2A, |PA| = b(1 + α)|A| − 2c ≤ p, and |P2A| = 2|A| − 1. It
follows that P := m ·PA is an arithmetic progression with difference mg 6= ±g,
such that

|P ∩ P2A| ≤ |P ∩ 2A| ≤ |PA \A| ≤ α|A| − 2.
We can, therefore, apply Lemma 3.3 with N = |A| (as α < 0.2), deducing
that |A| < p+3

3+α , which is a contradiction. Therefore, we must have η < c, so
dm(Z/pZ) < c, which proves the first claim in the theorem. Taking the limit
of c as p → ∞, we deduce that dm ≤ t, where t is defined by the equation
t = F (t) for the function F (t) = ( 7

4 + 1
4
√

9 + 8 t π/ sin(πt/3))−1. Since F is
monotonically decreasing and satisfies F (3.1955−1) < 3.1955−1, we must have
t < 3.1955−1, which proves the second claim in the theorem. �

3.3. The structure of large sum-free sets in Z/pZ. — In this final part of the
paper, we apply Theorem 1.4 to obtain the following improvement of Theo-
rem 1.8.

Theorem 3.5. — Let p ≥ 14 000 be prime and let A ⊆ Z/pZ be sum-free with
|A| ≥ (0.313)p. Then, m ·A ⊆ [ |A|, p− |A| ] ⊆ Z/pZ, for some m ∈ [1, p− 1].

tome 149 – 2021 – no 1



ON SETS WITH SMALL SUMSET AND m-SUM-FREE SETS IN Z/pZ 175

Proof. — By hypothesis, |A| = ηp > 0 with η ≥ 0.313. Set |2A| = 2|A| + r.
Since A is sum-free, we have (2A)∩A = ∅, implying 2|A|+r = |2A| ≤ p−|A| <
p, whence |A| ≤ p−r

3 . As in the proof of Theorem 3.2, let α = α(η, p) =
− 5

4 + 1
4
√

9 + 8 η p sin(π/p)/ sin(πη/3). Observe that α(η, p) is increasing as a
function of p ≥ 2 and η ∈ (0, 1), so α = α(η, p) ≥ α(0.313, 14000) ≥ β :=
0.195579. If |2A| > (2+β)|A|−3, then we have (2+β)|A|−3 < |2A| ≤ p−|A|,
implying (0.313)p ≤ |A| < p+3

3+β , and, thus, p ≤ 13 875, which is contrary to
the hypothesis. Therefore, we instead conclude that |2A| ≤ (2 + β)|A| − 3 ≤
(2 + α)|A| − 3, allowing us to apply Theorem 1.4 to conclude that there is an
arithmetic progression P ⊆ Z/pZ with A ⊆ P and |P | ≤ |A|+r+1. By dilating
A by the inverse of the difference of the progression P , we can assume without
loss of generality that P has difference 1. Since 2|A|+r = |2A| ≤ (2+β)|A|−3,
we have r ≤ β|A| − 3, and, thus, |P | ≤ |A| + r + 1 ≤ (1 + β)|A| − 2. The
bound |A| ≤ (p + 1)/3 given by the Cauchy–Davenport theorem then implies
|P | ≤ (1 + β)(p+ 1)/3 < p+1

2 . It follows that the sumset A+A is rectifiable.
Let ψ : A+A→ Z be the associated Freiman isomorphism, with coordinate

map ψA : A→ Z. Note that the map of the form a0 + sg 7→ s involved in the
definition of ψA (see the remarks before Lemma 2.3) can be assumed to be just
a translation (since the element g here, being the difference of P , is assumed
to be 1). By slight abuse of notation, we drop the subscript from ψA, denoting
this map also by ψ. Let ψ′ : A− A → Z be the Freiman isomorphism defined
by ψ′(x− y) = ψ(x)− ψ(y), for x, y ∈ A (see the remarks after Theorem 2.2).
Since |P | ≤ |A| + r + 1 ≤ 2|A| − 2 implies |A| > |P |+1

2 , we are assured that
A contains two consecutive elements in P , whence gcd∗(ψ(A)) = 1. Since A
is sum-free, we have (A − A) ∩ A = ∅, and, thus, |A − A| ≤ p − |A|. Since
A−A ∼= ψ(A)−ψ(A), we have |ψ(A)−ψ(A)| = |A−A| and |ψ(A)| = |A|. As a
result, if |ψ(A)−ψ(A)| ≥ 3|ψ(A)|−3, then p−|A| ≥ |A−A| = |ψ(A)−ψ(A)| ≥
3|ψ(A)| − 3 = 3|A| − 3, implying (0.313)p ≤ |A| ≤ p+3

4 , contradicting that
p ≥ 14 000. Therefore, |ψ(A) − ψ(A)| ≤ 3|ψ(A)| − 4, allowing us to apply the
3k− 4 theorem (Theorem 2.2) with the sets ψ(A), −ψ(A). This, together with
the remarks in the paragraph above Theorem 2.2, implies that [−(|A|−1), (|A|−
1)] ⊆ ψ(A)−ψ(A). Hence, [−(|A|−1), (|A|−1)] ⊆ ψ′(A−A) and given the form
of ψ′, it follows that in Z/pZ, we have [−(|A| − 1), (|A| − 1)] ⊆ A−A. Since A
being sum-free implies (A−A)∩A = ∅, this forces A∩[−(|A|−1), (|A|−1)] = ∅,
i.e., A ⊆ [ |A|, p− |A| ], which completes the proof. �
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