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LANDAU DAMPING IN DYNAMICAL LORENTZ GASES

by Thierry Goudon & Léo Vivion

Abstract. — We analyze Landau damping mechanism for variants of Vlasov equa-
tions, with a time-dependent linear force term and a self-consistent potential that
involves an additional memory effect. This question is directly motivated by a model
describing the interaction of particles with their environment, through momentum and
energy exchanges with a vibrating field. We establish the stability of homogeneous
states. We highlight how the coupling influences the stability criterion, in comparison
to the standard Vlasov case.

Résumé (Amortissement Landau pour des gaz de Lorentz inélastiques). — On ana-
lyse le mécanisme de l’amortissement Landau pour certaines variantes d’équations de
Vlasov, qui impliquent un terme de force linéaire dépendant du temps et un potentiel
auto-consistant comportant un effet mémoire additionnel. Cette étude est directement
motivée par la description de particules en interaction avec leur environnement, à tra-
vers des échanges de moment et d’énergie avec un champ de vibrations. On établit la
stabilité d’états spatialement homogènes. On met ainsi en évidence comment le cou-
plage affecte le critère de stabilité, en comparaison avec l’équation de Vlasov usuelle.
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238 T. GOUDON & L. VIVION

1. Introduction

In this work, we go back to the analysis of Landau damping mechanisms in
kinetic equations. This effect was highlighted for the Vlasov equation of plasma
physics in the pioneering work of L. Landau [23] and extended to gravitational
models in astrophysics [25, 26], where it is thought to play a key role in the
stability of galaxies. It can be interpreted as a stability statement about steady
solutions, leading to a decay of the self-consistent force. A complete mathemat-
ical analysis of Landau damping for nonlinear Vlasov equations was performed
in [27], and revisited later in [6, 7] (see also [21]). Similar behaviors have been
revealed for the 2D Euler system [5]. The phenomena are surprising since they
describe damping mechanisms, counter-intuitive for reversible equations that
apparently do not present any dissipative process.

The starting point of this contribution comes from an original model intro-
duced by L. Bruneau and S. De Bièvre [8] describing the motion of a single
classical particle interacting with its environment. The particle is described by
its position t 7→ q(t) ∈ Rd, while the behavior of the environment is embodied
into a scalar field (t, x, z) ∈ (0,∞) × Rd × Rn 7→ ψ(t, x, z). The dynamic is
modeled by the following set of differential equations

q̈(t) = −∇V (q(t))−
∫∫

Rd×Rn
σ1(q(t)− y) σ2(z) ∇xΨ(t, y, z) dy dz,

∂2
ttΨ(t, x, z)− c2∆zΨ(t, x, z) = −σ2(z)σ1(x− q(t)), x ∈ Rd, z ∈ Rn.

(1)

It corresponds to the intuition of a particle moving through an infinite set of
n-dimensional elastic membranes, one for each position x ∈ Rd. The physical
properties of the membranes are characterized by the wave speed c > 0. The
coupling between the particles and the environment is governed by two form
functions σ1, σ2, which are both nonnegative, smooth, and radially symmetric
functions; they can be seen as determining the influence domain of the particle
in each direction, the direction of particle’s motion and the direction of wave
propagation, respectively. It is, therefore, relevant to assume that both form
functions have a compact support. The particle exchanges its kinetic energy
with the vibrations of the membranes. These mechanisms eventually act like
a friction force since the particle’s energy is evacuated in the membranes, and,
depending on the shape of the external potential x 7→ V (x), they determine the
large time behavior of the particle. We refer the reader to [1, 11, 12, 13, 22, 29]
for further studies of the system (1), which include numerical experiments and
interpretation by means of random walks.
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The system (1) can be generalized by considering a set of N particles going
through the membranes. The mean field regime N →∞ leads to the following
PDE system

∂tF + v · ∇xF −∇x(V + Φ[Ψ]) · ∇vF = 0, t ≥ 0, x ∈ Rd, v ∈ Rd,(2a) (
∂2
ttΨ− c2∆zΨ

)
(t, x, z) = −σ2(z)

∫
Rd
σ1(x− y)ρ(t, y) dy,(2b)

t ≥ 0, x ∈ Rd, z ∈ Rn,

ρ(t, x) =
∫
Rd
F (t, x, v) dv,(2c)

Φ[Ψ](t, x) =
∫∫

Rd×Rn
σ1(x− y)σ2(z)Ψ(t, y, z) dz dy, t ≥ 0, x ∈ Rd,(2d)

where now (t, x, v) 7→ F (t, x, v) is interpreted as the particle distribution func-
tion in phase space, x ∈ Rd being the position variable and v ∈ Rd the velocity
variable. The system (2a)–(2d) is completed by initial conditions

F
∣∣
t=0 = F0, (Ψ, ∂tΨ)

∣∣
t=0 = (Ψ0,Ψ1).(3)

We refer the reader to [17, 31] for the derivation of the N -particles system and
the analysis of the mean field regime that leads to (2a)–(2d). The existence
of solutions of (2a)–(2d) is investigated in [9]. Furthermore, asymptotic issues
that reveal an unexpected connection with the gravitational Vlasov–Poisson
equation are also discussed. This relation with another model of statistical
physics can guide our intuition to analyze further mathematical properties of
(2a)–(2d). In this spirit, the existence of equilibrium states and their stability
is discussed in [2], adding in the kinetic model a dissipative effect with the
Fokker–Planck operator, and in [10], where a variational approach is adopted
for the collisionless model, following [19, 20, 34].

We wish to continue this analysis, adopting a different viewpoint. In [2, 10]
the effect of a confining potential x 7→ V (x) is considered, which governs the
shape of the equilibrium states. Here, we change the geometry of the problem,
replacing the confining assumption on the external potential, by the assumption
that particles’ motion holds in the d−dimensional torus Td. In such a frame-
work, like for the usual Vlasov–Poisson system, we can find space-homogeneous
stationary solutions and we wish to investigate their stability. This question is
directly reminiscent of the well-known phenomena of damping highlighted in
plasma physics by L. Landau [23]: for the electrostatic Vlasov–Poisson system,
it can be shown that the electric field of the linearized system decays expo-
nentially fast. For gravitational interactions a similar discussion dates back to
D. Lynden–Bell [25, 26]. In fact, Landau’s analysis [23] was concerned with
the linearized equation only. Of course the linearization procedure is question-
able, and the nonlinear dynamics might significantly depart from the linear
behavior, as pointed out in [3]. A stunning analysis of the nonlinear problem
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240 T. GOUDON & L. VIVION

in the analytic framework was recently performed by C. Mouhot and C. Villani
[27, 32]. A simplified analysis of Landau damping was proposed in [6]; we also
refer the reader to [15] for results based on Sobolev regularity (with a definition
of the force that involves only a finite number of Fourier modes, though). The
Landau damping around homogeneous solutions has also been investigated in
the whole space Rd [7], thus dealing with a set of particles having an infinite
mass. See also [21] for an alternative approach that uses integration along
phase-space characteristics. We wish to address these issues for the system
(2a)–(2d), still when V = 0. The analysis of the nonlinear equations is quite
involved; it requires a complex functional framework and fine estimates to con-
trol the nonlinear effects, the so-called “plasma echoes”, that can break the
damping mechanisms observed on the linearized model. It has been recently
shown that insufficient regularity of the perturbation can annihilate the damp-
ing mechanisms, and the proof (which, though, is very specific to the coupling
with the Poisson equation; it is not clear that the argument applies for more
regular convolution kernels) uses precisely the role of the plasma echoes against
damping [4]. Nevertheless, it turns out that identifying stability conditions for
the linearized problem plays a central role in the analysis of nonlinear stability,
see [27, Condition (L)]. Beyond their interest for the specific model (2a)–(2d)
of particles interacting with their environment, the results that we shall discuss
can be thought of with some generality. Indeed, as we shall detail below, the
equation for the particle distribution function can be recast as follows

∂tF + v · ∇xF −∇xΦI · ∇vF −∇xΦS · ∇vF = 0,
where the potential splits into two parts, which both induce new issues

compared to the case of the “standard” Vlasov system (hereafter simply referred
to as the “Vlasov equation”):
• ΦI(t, x) does not depend on F ; this is a linear contribution in the equa-
tion. The damping then relies on suitable time-decay properties, here
related to the dispersion properties of the free wave equation.
• The self-consistent potential ΦS(t, x) is defined by a convolution with
respect to space, combined with a half-convolution with respect to time

ΦS(t, x) = −
∫ t

0

∫
Σ(x− y)pc(t− s)ρ(s, y) dy ds.

Then Landau damping relies on properties of the kernel Σ, which is quite
similar to the analysis of the Vlasov case, but also on decay properties
of the kernel pc.

The discussion is organized as follows. We start by checking that we can find
homogeneous solutions in Section 2. We also introduce different, but comple-
mentary, ways to think of the equations and we make a series of comments
explaining how the problem differs from the usual Vlasov system. We com-
plete this preliminary section by paying specific attention to the properties of
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the kernel pc, depending on the dimension n, which play a crucial role in the
analysis. In Section 3, which is the heart of this work, we turn to the linearized
problem. The analysis of the linearized equation reduces to studying a certain
integral equation, satisfied by the Fourier coefficients of macroscopic density.
That the damping occurs relies on a stability criterion on the kernel of this
Volterra equation, which, at least, can be verified when c, the speed of wave
propagation, is large enough. Next, we briefly explain the method for proving
nonlinear Landau damping for the free space problem, for which the functional
framework is less intricate, in Section 4.1. We present how the main arguments
should be adapted for the torus in Section 4.2. We further discuss the stability
criterion in Section 5, in the spirit of the Penrose criterion. Quite surprisingly,
we are led to an intricate expression, which is much more complicated than
for the Vlasov model. Nevertheless, these expressions allows us to establish
some conclusions close to what is known on the gravitational Vlasov case. We
also propose several interpretations of criteria that lead to (un)stable solutions.
The interested reader will find fully detailed arguments in [33] and numerical
illustrations in [18].

2. Preliminaries

In what follows, Xd stands indifferently for Td or Rd, and for given functions
φ : x ∈ Xd 7→ φ(x) and g : v ∈ Rd 7→ g(v), we denote〈

ϕ
〉
Xd =

∫
Xd
ϕ(x) dx,

〈
g
〉
Rd =

∫
Rd
g(v) dv,

where dx is either the usual Lebesgue measure on Xd = Rd or the normalized
Lebesgue measure on Xd = Td. We shall also use indifferently the notation ·̂
for the Fourier coefficients of a Td−periodic function

ϕ : Td → R, ϕ̂(k) =
∫
Td
e−ik·xϕ(x) dx for k ∈ Zd,

or the Fourier transform over Rm (with m = d or m = n)

ϕ : Rm → R, ϕ̂(ξ) =
∫
Rm

e−ix·ξϕ(x) dx for ξ ∈ Rm.

We equally use the same notation for a function φ depending on x ∈ Xd and
v ∈ Rd

ϕ̂(k, ξ) =
∫∫

Xd×Rm
e−ik·xe−iξ·vϕ(x, v) dv dx,

for ξ ∈ Rm and either k ∈ Zd (case Xd = Td) or k ∈ Rd (case Xd = Rd). In the
sequel, we shall use the shorthand notation k ∈ X?d to encompass these two
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242 T. GOUDON & L. VIVION

situations. Throughout the paper, we shall use the notations

〈x〉 =
√

1 + x2

and, given a real number s, s+ means s + ε for ε > 0 arbitrarily small. We
write A . B when we can find a constant C > 0 such that A ≤ CB. Here,
A, B are, in general, functions of time, space, velocity, or their associated
Fourier variables; it is thus understood that C is uniform over these variables.
In certain circumstances, we write A .r B to emphasize the fact that the
constant C depends on the parameter r. The analysis involves Sobolev, Besov,
and Gevrey spaces, possibly with regularity indices that can differ depending
on the variables. The necessary definitions are collected in Appendix A.

2.1. Rewriting the equations. — Due to the linearity of the wave equation,
the solution of (2b) can be split into a contribution that depends only on the
initial condition (Ψ0,Ψ1) and a contribution that depends only on ρ, see [9,
Eq. (6)–(8)]. Accordingly, we split the potential into

Φ = ΦI + ΦS ,

where ΦI depends only on (Ψ0,Ψ1) as follows

ΦI(t, x) = 1
(2π)n

∫∫
Rn×Xd

σ1(x− y)

×
(

Ψ̂0(y, ζ) cos(c|ζ|t) + Ψ̂1(y, ζ) sin(c|ζ|t)
c|ζ|

)
σ̂2(ζ) dy dζ

(4)

and the coupling term reads

ΦS(t, x) = −
∫ t

0
pc(t− s)Σ ? ρ(s, x) ds,

Σ = σ1 ? σ1,

pc(t) =
∫
Rn

sin(c|ζ|t)
c|ζ|

|σ̂2(ζ)|2 dζ
(2π)n .

(5)

The properties of the function t 7→ pc(t), collected in Lemma 2.2 below, play a
crucial role in the asymptotic analysis of (2a)–(2d).

2.2. Homogeneous solutions. — Let ρ0 > 0 and let v 7→ M(v) be a given
function, such that

∫
RdM(v) dv = 1. We claim that

M : (x, v) ∈ Xd × Rd 7−→M (x, v) = ρ0M(v)

is a stationary solution of (2a)–(2d), associated to a spatially homogeneous po-
tential Φ, when starting from spatially homogeneous data for the wave equa-
tion. On the torus, since M and dx are normalized, and ρ0 is the mass of

tome 149 – 2021 – no 2



LANDAU DAMPING IN DYNAMICAL LORENTZ GASES 243

the solution M . With F = M , the right-hand side of the wave equation (2b)
becomes

−σ2(z)
∫∫

Xd×Rd
σ1(x− y)M (y, v) dv dy = −σ2(z)

〈
σ1
〉
Xd
〈
M
〉
Rd ,

which depends only on the variable z ∈ Rn. Therefore, considering the space-
homogeneous initial data (x, z) 7→ (ΨH

0 (z),ΨH
1 (z)), the solution of the wave

equation

∂2
ttΨH − c2∆zΨH = −σ2(z)

〈
σ1
〉
Xd
〈
M
〉
Rd

is given by the inverse Fourier transform of

Ψ̂H(t, ξ) = Ψ̂H
0 (ξ) cos(c|ξ|t) + Ψ̂H

1 (ξ) sin(c|ξ|t)
c|ξ|

− 1− cos(c|ξ|t)
c2|ξ|2

σ̂2(ξ)
〈
σ1
〉
Xd
〈
M
〉
Rd ,

and it does not depend on the space variable x. Accordingly, the associated
potential

Φ[ΨH ](t, x) =
〈
σ1
〉
Xd

∫∫
Rn
σ2(z)ΨH(t, z) dz

does not depend on x. We obtain

(∂t + v · ∇x)M = 0 = ∇xΦ[ΨH ] · ∇vM ,

and, finally, (M ,ΨH) is a homogeneous solution of (2a)–(2d). We bring the
attention of the reader to the fact that, in the case Xd = Rd, the homogeneous
solutions have infinite mass and infinite energy.

Remark 2.1 (Stationary solutions). — A specific case of interest corresponds
to stationary solutions. Let us associate to M the function

Ψeq(z) = 1
c2

Γ(z)
〈
σ1
〉
Xd
〈
M
〉
Rd ,

where Γ is the solution of ∆zΓ(z) = σ2(z). It defines a stationary solution Ψeq
for the wave equation (2c) (with initial data ΨH

0 = Ψeq and ΨH
1 = 0). The

associated potential thus reads∫∫
Xd×Rn

σ1(x− y)σ2(z)Ψeq(z) dxdz =
〈
σ1
〉
Xd

∫
Rn
σ2(z)Ψeq(z) dz,

which does not depend on the space variable x ∈ Xd or on the time variable t.
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2.3. Equations for the fluctuations. — Given a space-homogeneous solution
(M ,ΨH), we expand the solution as

F (t, x, v) = M (v) + f(t, x, v), Ψ(t, x, z) = ΨH(t, z) + ψ(t, x, z).(6)

The fluctuations (f, ψ) satisfy
∂tf + v · ∇xf −∇xΦ[ψ] · ∇v(M + f) = 0,(7a)

Φ[ψ](t, x) =
∫∫

Xd×Rn
σ1(x− y)σ2(z)ψ(t, y, z) dy dz,(7b)

∂2
ttψ − c2∆zψ = −σ2(z)

∫
Rd
σ1(x− y)%(t, y) dy,(7c)

%(t, x) =
∫
Rd
f(t, x, v) dv,(7d)

completed by the initial conditions
f(0, x, v) = f0(x, v), (ψ(0, x, z), ∂tψ(0, x, z)) = (ψ0(x, z), ψ1(x, z)).(8)

As was said above, it can be convenient to set ψ(t, x, z) = ψI(t, x, z)+ψS(t, x, z),
with the contribution from the initial data

ψ̂I(t, x, ξ) = ψ̂0(x, ξ) cos(c|ξ|t) + ψ̂1(x, ξ) sin(c|ξ|t)
c|ξ|

and the self-consistent contribution

ψ̂S(t, x, ξ) = −
∫ t

0

sin(c|ξ|[t− τ ])
c|ξ|

σ̂2(ξ)σ1 ? %(τ, x) dτ.

Plugging this into the expression of the potential, we get
Φ[ψ](t, x) = σ1 ? (FI(t)− σ1 ? G%(t)) (x),

where we have set

FI(t, x) =
∫
Rn
σ2(z)ψI(t, x, z) dz

and

G%(t, x) =
∫ t

0
pc(t− τ)%(τ, x) dτ.

Hence, the evolution equation for the fluctuation f can be recast as
∂tf + v · ∇xf −∇σ1 ? (FI − σ1 ? G%) · ∇v(M + f) = 0.(9)

Finally, let us introduce
g(t, x, v) = f(t, x+ tv, v),

which allows us to get rid of the advection operator. We remark that
∂tg(t, x, v) = (∂t + v · ∇x)f(t, x+ tv, v)
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and
(∇vf)(t, x+ tv, v) = ∇v

[
f(t, x+ tv, v)

]
− t∇xf(t, x+ tv, v)

= (∇v − t∇x)g(t, x, v).
Thus, (9) becomes

∂tg(t, x, v) =∇σ1 ? (FI −σ1 ?G%)(t, x+ tv) · (∇v − t∇x)(M + g)(t, x, v),(10a)
g(0, x, v) = f0(x, v).(10b)

The following rough statement gives the flavor of the result that we wish to
justify.

Theorem. — We assume that the data σ1, σ2, ψ0, ψ1, f0 are smooth enough.
We assume, furthermore, that the analog of the (L)-condition for the Vlasov-
wave equation holds. If, initially, the fluctuation is small enough, then, we
can find an asymptotic profile g∞, so that g(t) − g∞, and the applied force
∇σ1 ? (FI − σ1 ? G%) tend to 0 as t→∞.

The precise statements are given in Theorem 4.4 (case Xd = Rd) and The-
orem 4.16 (case Xd = Td). Let us make a few comments to announce the
forthcoming analysis.
• The stability condition (L) (see Sections 3.4 and 5), like for the usual
Vlasov equation, imposes that a certain symbol cannot reach the value
1. In particular, the stability condition holds provided that the wave
speed c is large enough, see Proposition 3.10.
• The functional framework is a bit intricate. Roughly speaking, we dis-
tinguish two types of results, depending on whether we are working with
analytic functions and regularity measured by means of Gevrey spaces
(for the torus, the result applies only in this framework), or with func-
tions having enough Sobolev regularity (the result on Rd applies in this
context, and we can also establish the damping for the linearized prob-
lems in both cases Xd = Rd and Xd = Td). Detailed definitions of the
functional spaces are given in Appendix A.
• Typically, the smallness assumption is imposed on a certain space X
(of Gevrey or Sobolev type), but the damping holds in slightly “less
regular” spaces Y , with X ⊂ Y . The rate of convergence depends on
the functional framework (Gevrey vs. Sobolev) and how far Y is from
X.
• For the problem on Rd, we shall need to assume d ≥ 3; the method
breaks down in smaller dimensions, for reasons that already appeared
for the Vlasov–Poisson system [7].

The result is further illustrated in Fig. 2.1, which brings out the limitations of
the statement. In particular, it shows the role of the dimension n, which governs
the energy dissipation capability through the wave equation, and the role of
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(a) c = 1, n = 3

(b) c = 1, n = 1

(c) c = .1, n = 3

Figure 2.1. Evolution of the norm of the force E = ∇Φ
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the wave speed c, which should be large enough to ensure the stability (L)-
condition. With n = 3 and c large enough, the force field decays (exponentially
fast) to 0, according to the statement above, see Fig. 2.1-A. When n = 1, there
is no dispersion by the wave equation, and we observe that the amplitude of
the force field increases, Fig. 2.1-B. A similar instability occurs when n = 3
if the wave speed becomes too low, Fig. 2.1-C. In the latter cases, we observe
that reducing the size ε of the perturbation does not restore the damping. We
refer the reader to [18] for details on the numerical methods and a thorough
numerical investigation of Landau damping phenomena and comments on the
N -particles dynamics.

For the usual Vlasov equation, the main ingredients to justify Landau damp-
ing can be recapped as follows:
• The transport operator induces a phase mixing phenomena, which is a
source of decay for the macroscopic density %.
• When linearizing the system around the homogeneous solution, the
Fourier modes of % decouple, leading to a Volterra equation for the
Fourier transform of the density. It permits to identify a stability cri-
terion that depends on the homogeneous solution and the potential, so
that the linear dynamics induced by the force term does not annihilate
the effects of the phase mixing.
• It remains to control the nonlinear effects with the plasma echoes that
tend to contribute against the phase mixing.

Technically, in order to address this program, one assumes the smallness of the
data and justifies uniform boundedness with respect to time, and, eventually,
Landau damping. In particular, the echoes should be controlled by means of
the underlying norms. Rewriting the potential with (4)–(5), we realize that the
system (2a)–(2d) substantially differs from the usual Vlasov system dealt with
in [27] and [6, 7] in the following aspects:
• There is an additional term ∇xΦI · ∇vF, with a force independent on
the particles density. This linear perturbation could drive the solution
far from the homogeneous state M .
• The self-consistent potential ΦS involves a half-convolution with respect
to the time variable, inducing a sort of memory effect. In particular,
the function pc dramatically influences the expression of the stability
criterion.

As we shall see, the analysis of the linearized problem, and the stability crite-
rion, sensibly differ from the Vlasov case. Nevertheless, this linearized analysis
remains at the heart of the proof of Landau damping; once Landau damping
has been established for the linearized equation, the arguments of [27] and
[6, 7] can be adapted to handle the nonlinear problem. Furthermore, we will
also highlight the analogies with the gravitational Vlasov–Poisson problem, in
terms of conditions of the equilibrium profile. We address both the confined
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case Xd = Td and the free space problem Xd = Rd underlying the differences
needed, depending on the technical framework.

2.4. The kernel pc. — As was said above, the decay properties of the kernel
pc, consequences of the dispersion properties of the wave equations, are crucial
for the analysis. When n ≥ 3, pc is integrable and satisfies∫ ∞

0
pc(t) dt = κ

c2
, with κ =

∫
Rn

|σ̂2(ζ)|2

|ζ|2
dζ <∞,

see [9, Lemma 4.4]. The following statement strengthens this result, depending
on the dimension n ≥ 2 and the assumptions on the form function σ2. Roughly
speaking, we distinguish the case of odd dimensions n ≥ 3 where the necessary
estimates are consequences of the Huygens’ principle, and even dimensions
where the dispersion effects are weaker. Similar considerations apply when
dealing with the term FI . The analysis is performed dealing with quite general
form functions σ2. It turns out that the Besov space Bn−1,1

1 (see Appendix A)
is an adapted functional framework to highlight the key dispersion estimates.
In the adopted modeling, σ2 is naturally smooth, and the reader unfamiliar
with Besov spaces can just assume that σ2 lies in the Schwartz class and reach
the same conclusions.

Lemma 2.2. — Let n ≥ 2 and let σ2 belong to the Besov space Bn−1,1
1 .

(i) There exists a constant C(σ2) > 0, such that

|pc(t)| ≤
C(σ2)
c〈ct〉n−1

2
.

(ii) Moreover, if |σ2(z)| . 〈z〉−m2 with m2 > n+(n−1)/2, then there exists
a constant C(σ2) > 0, such that

|pc(t)| ≤
C(σ2)
c〈ct〉n−1 .

Let n ≥ 3 be an odd integer.
(iii) Suppose that |σ2(z)| . 〈z〉−m2 for some m2 > n+ α, with α > 0. Then

there exists a constant C(σ2) > 0, such that

|pc(t)| ≤
C(σ2)
c〈ct〉α

.

(iv) Let λ > 0. If |σ2(z)| . exp(−λ2|z|) for some λ2 > λ, then there exists
a constant C(σ2) > 0, such that

|pc(t)| ≤
C(σ2) e−λ|ct|

c
.
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(v) If σ2 ∈ C0
c (Rn) with supp(σ2) ⊂ B(0, R2), then pc has a compact support

included in [0, 2R2
c ], and it satisfies

|pc(t)| ≤ C
‖σ2‖L2n/(n+2)‖σ2‖L2

c
,

for a certain constant C > 0.

Through the vibration of the medium, the decay of pc is intimately con-
nected to the energy dissipation mechanisms, which are at the heart of the
qualitative properties of the model introduced in [8]. In dimension n = 1, a
direct computation by means of D’Alembert formula shows that

pc(t) = 1
2c

∫ +∞

−∞
σ2(z)

(∫ z+ct

z−ct
σ2(s) ds

)
dz −−−→

t→∞

1
2c‖σ2‖2L1

z
> 0.

Hence, in this case, pc /∈ L1(0,∞); there is no loss of memory at all. Numerical
simulations, indeed, confirm that there are no damping phenomena, see Fig. 2.1
and further results in [18]. Similarly, working in the torus Tn for the wave
equation leads to

pc(t) =
∑
6̀=0

|σ̂2(`)|2

c`
sin(c`t) + |σ̂2(0)|2t.

This shows that there is no possible energy dispersion mechanism in this ge-
ometry.

This is further illustrated in Fig. 2.2, which provides the shape of the function
pc in several situations. In dimension n = 1, t 7→ pc(t) tends to a positive
constant as t → ∞, as observed above. In dimension n = 3, it is compactly
supported, and both its amplitude and the size of its support are reduced
when c increases, according to Lemma 2.2-v). As we shall see later, the rate of

Figure 2.2. Graph of the function pc for n = 1 (left) and
n = 3 (right) for several values of the wave speed c (the same
data as in [18])
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Landau damping is directly related to the decay rate of pc. If even dimensions
n are considered, the best decay rate provided by Lemma 2.2 leads to |pc(t)| .
〈t〉−(n−1). However, Landau damping also requires some regularity on the
Cauchy data for the Vlasov equation. For instance, the analysis of the nonlinear
Landau damping in Rd, inspired from [7], leads is to suppose that the data lies
in the Sobolev space H36 (which might be suboptimal, see [7, Remark 1]).
This imposes a constraint on the decay of pc, which amounts to a condition
on the dimension n for the wave equation (such as n − 1 ≥ 36, see (H1)
and (A1)–(A2)). Then, one may wish to identify the minimal regularity
assumptions to obtain Landau damping. The alternative proof of [21], which
is less demanding in terms of regularity, could be adapted in order to extend
the result in this direction. It is easier to discuss the linearized problem, for
which we obtain n ≥ 6 (see Remark 3.5). We point out that when n is odd,
the only condition is n ≥ 3, for both the linear and the nonlinear cases.

Proof. — The proof relies on dispersion estimates for the wave equation, which
we shall use in several places. Let us denote by (

.
W,W ) the group of the wave

equation (with propagation speed c = 1); we write the solution of the Cauchy
problem {

(∂2
tt − c2∆z)Υ(t, z) = 0,

(Υ, ∂tΥ)
∣∣
t=0 = (Υ0,Υ1),

(11)

as Υ(t, ·) =
.
W (ct)Υ0 + 1

cW (ct)Υ1. In terms of Fourier variable,
.
W (t) corre-

sponds to multiplication by cos(|ζ|t) andW (t) to multiplication by sin(|ζ|t)/|ζ|:

̂.W (ct)Υ0(ζ) = cos(c|ζ|t)Υ̂0(ζ) and 1
c
Ŵ (ct)Υ1(ζ) = sin(c|ζ|t)

c|ζ|
Υ̂1(ζ).

Therefore, pc can be cast as

pc(t) = 1
c

∫
Rn
σ2W (ct)σ2 dz.

The dispersion estimates rely on the operators U±(t) defined by

Û±Υ(ζ) = e±i|ζ|t Υ̂(ζ).

Indeed, since
.
W (t) = (U+ + U−)/2 and W (t) = (U+ − U−)/(2i

√
−∆z) an

estimate with U±(t) can be translated into an estimate for
.
W (t) and W (t).

The basic estimate reads as follows (see, e.g., [16, Proof of Proposition 3.1]
and the references therein): if Υ has its Fourier transform supported in {ζ ∈
Rn | 2j−1 ≤ |ζ| ≤ 2j+1}, then

‖U±(t)Υ‖L∞z ≤ C min
(

2nj , 2
n+1

2 j |t|−
n−1

2

)
‖Υ‖L1

z
.(12)
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Estimate (12) can be refined as follows, see [30, Proof of Lemma 3.2],

|U±(t)Υ(z)|

≤ CN min
(

2nj , 2
n+1

2 j |t|−
n−1

2 , 2(n+1
2 −N)j |t|−

n−1
2
∣∣ |t| − |z| ∣∣−N) ‖Υ‖L1

z
,

(13)

where N can be any integer. Such an estimate can be seen as a generalization
of Huygens’ principle, which holds only in odd dimensions; it tells us that
U±(t)Υ reaches its maximum next to the cone t = |z|. In order to use these
estimates, we introduce a sequence ϕj ∈ S(Rn), such that

∑
j ϕ̂j(ζ) = 1 and

for any j ∈ Z, supp(ϕ̂j) ⊂ {ζ | 2j−1 ≤ |ζ| ≤ 2j+1}. We set Υj = ϕj ?Υ so that
Υ =

∑
j Υj and thanks to (12) we get

‖U±(t)Υ‖L∞z ≤ C min

∑
j∈Z

2nj‖Υj‖L1
z
, |t|−

n−1
2
∑
j∈Z

2
n+1

2 j‖Υj‖L1
z

 ,(14)

where
∑
j 2sj‖Υj‖L1

z
is nothing but the

.
Bs,11 -norm of Υ (see Appendix A).

Therefore, since Bs,11 embeds continuously into the homogeneous space
.
Bs,11

for any s ≥ 0, we get

‖U±(t)Υ‖L∞z ≤ C min
(

1, |t|−
n−1

2

)
‖Υ‖Bn,11

. 〈t〉−
n−1

2 ‖Υ‖Bn,11
.(15)

Similarly, from (13), we get

|U±(t)Υ(z)|

≤ CN min
(
‖Υ‖ .

Bn,11
, |t|−

n−1
2 ‖Υ‖ .

B
n+1

2 ,1
1

, |t|−
n−1

2
∣∣ |t| − |z| ∣∣−N‖Υ‖ .

B
n+1

2 −N,1
1

)
.

Note that we do not work with a Besov space with negative regularity index s
(which would imply irrelevant conditions on ξ = 0). Assuming N ≤ (n+ 1)/2,
we are led to

|U±(t)Υ(z)| ≤ CN min
(

1, |t|−
n−1

2 , |t|−
n−1

2
∣∣ |t| − |z| ∣∣−N) ‖Υ‖Bn,11

.(16)

We can now finish the proof of Lemma 2.2. Since pc(t) = 1
c (
∫
σ2W (ct)σ2 dz),

we have |pc(t)| ≤ 1
c‖σ2‖L1

z
‖W (ct)σ2‖L∞z . By applying (a variant with an extra

factor 1/2j−1 of) (12), we obtain

‖W (ct)ϕj ? σ2‖L∞z ≤
C

2j−1 min
(

2nj , 2
n+1

2 j |ct|−
n−1

2

)
‖ϕj ? σ2‖L1

z
.

Summing over j ∈ Z yields

|pc(t)| ≤
K

c〈ct〉n−1
2
‖σ2‖L1

z
‖σ2‖Bn−1,1

1
,
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which proves (i). Estimate (ii) uses the refined estimate (13), which, for any
N ∈ N, gives

|W (ct)ϕj ? σ2(z)|

≤ CN
2j−1 min

(
2nj , 2

n+1
2 j |ct|−

n−1
2 , 2(n+1

2 −N)j |ct|−
n−1

2
∣∣ |ct| − |z| ∣∣−N)‖ϕj ? σ2‖L1

z
.

With N = (n− 1)/2 and summing over j ∈ Z, we get

|pc(t)|

≤ 2CN
c

(∫
Rn
|σ2(z)|min

(
1, |ct|−

n−1
2 , |ct|−

n−1
2
∣∣ |ct| − |z| ∣∣−n−1

2
)

dz
)
‖σ2‖Bn−1,1

1
.

We have ∫
Rn
|σ2(z)|min

(
1, |ct|−

n−1
2 , |ct|−

n−1
2
∣∣ |ct| − |z| ∣∣−n−1

2

)
dz

.
∫
Rn
|σ2(z)|min

(
〈ct〉−

n−1
2 ,
〈
|ct|
∣∣ |ct| − |z| ∣∣〉−n−1

2

)
dz.

We split the integration domain into the ball B(0, |ct|/2) and its complementary
and we obtain∫

Rn
|σ2(z)|min

(
〈ct〉−

n−1
2 ,
〈
|ct|
∣∣ |ct| − |z| ∣∣〉−n−1

2

)
dz

=
∫
B(0, |ct|2 )

|σ2(z)|
〈
|ct|
∣∣ |ct| − |z| ∣∣〉−n−1

2 dz +
∫
{B(0, |ct|2 )

|σ2(z)| 〈ct〉−
n−1

2 dz

≤
∫
B(0, |ct|2 )

|σ2|
〈
|ct|2

2

〉−n−1
2

dz + 〈ct〉−
n−1

2

(∫
{B(0, |ct|2 )

|σ2(z)|dz
)

.

〈
|ct|
2

〉−(n−1)
‖σ2‖L1

z
+ 〈ct〉−

n−1
2

〈
|ct|
2

〉−n−1
2
(∫

{B(0, |ct|2 )
|σ2(z)|〈z〉

n−1
2 dz

)
.

The assumption on σ2 ensures that the last integral is finite.
We turn to the specific case of odd dimensions. The role of the Huygens

principle clearly appears with the estimate (v). Indeed, when n is odd, the
support assumption on σ2 implies that

if ct ≥ R2 + |z| then W (ct)σ2(z) = 0.

Therefore, when t ≥ 2R2
c , the product σ2(z)W (ct)σ2(z) vanishes (see Fig. 2.3)

and pc(t) = 0. Bearing in mind that n ≥ 3, Hölder inequality yields

|pc(t)| ≤
1
c
‖σ2‖L2n/(n+2)‖W (ct)σ2‖L2n/(n−2) .
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t

x

T

B(0, R)

Figure 2.3. Propagation cone: the signal emanating from
the ball B(0, R) cannot be felt in this ball after time T

We conclude by combining the Sobolev embedding inequality, see e.g., [24,
Lemma 8.3], ‖W (ct)σ2‖L2n/(n−2) ≤ CS‖∇zW (ct)σ2‖L2 , and the energy conser-
vation for the wave equation, which implies

‖∇zW (ct)σ2‖2L2 ≤ ‖∂s(W (s)σ2)
∣∣
s=ct‖

2
L2 + ‖∇zW (ct)σ2‖2L2 ≤ ‖σ2‖2L2 .

We turn to the proof of (iii). Consider t > 0 and 0 < R < ct. We split as
follows

σ2 = σ21|z|≤R + σ21|z|>R := u1 + u2.

By linearity of the wave equation, we can write

pc(t) = 1
c

∫
Rn
σ2W (ct)u1 dz + 1

c

∫
Rn
σ2W (ct)u2 dz.

Since u1 is supported in B(0, R), the support of W (ct)u1 lies in {z | ct − R ≤
|z| ≤ ct + R}. Since ct − R > 0, the first integral is dominated as follows (we
already know from the proof of (i) that ‖W (ct)u1‖L∞z . ‖σ2‖Bn−1,1

1
)∣∣∣∣∫

Rn
σ2W (ct)u1 dz

∣∣∣∣ = 〈ct−R〉−α
∣∣∣∣∣
∫
{B(0,ct−R)

〈ct−R〉ασ2(z)W (ct)u1(z) dz

∣∣∣∣∣
. 〈ct−R〉−α

(∫
{B(0,ct−R)

〈z〉α|σ2(z)|dz
)
‖σ2‖Bn−1,1

1
.
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By virtue of the assumptions on σ2, the right-hand side is finite. The integral
with u2 can be estimated using Plancherel’s formula, which yields∫

Rn
σ2W (ct)u2 dz =

∫
Rn
σ̂2(ζ) sin(c|ζ|t)

|ζ|
û2(ζ) dζ =

∫
Rn
u2W (ct)σ2 dz.

This leads to∣∣∣∣ ∫
Rn
σ2W (ct)u2 dz

∣∣∣∣= ∣∣∣∣ ∫
Rn
u2W (ct)σ2 dz

∣∣∣∣.(∫
Rn
|σ2(z)|1|z|>R dz

)
‖σ2‖Bn−1,1

1

= 〈R〉−α
(∫

Rn
〈R〉α|σ2(z)|1|z|>R dz

)
‖σ2‖Bn−1,1

1

≤〈R〉−α
(∫

Rn
〈z〉α|σ2(z)|dz

)
‖σ2‖Bn−1,1

1
,

which is finite, too. We have proved that

|pc(t)| .
1
c

(
〈ct−R〉−α + 〈R〉−α

)
and we conclude by setting R = ct/2. Item (iv) is similarly justified, just
replacing the polynomial weights by exponential weights. �

Analogous conclusions apply to FI , which can be cast as

FI(t, x) =
∫
Rn
σ2(z)

( .
W (ct)Ψ0(x, z) + 1

c
W (ct)Ψ1(x, z)

)
dz.

3. Linearized Landau Damping

3.1. The linearized system. — In the expansion (6), let us assume that the
fluctuations f and ψ remain small, so that we neglect the quadratic term (with
respect to the perturbations) ∇xΦ[ψ] · ∇vf in the evolution equations (note in
particular that this assumes the smallness of the initial fluctuations (ψ0, ψ1)).
We are thus led to the following linearized system

∂tf + v · ∇xf −∇xφ · ∇vM = 0, t ≥ 0, x ∈ Xd, v ∈ Rd,(17a)

φ(t, x) =
∫∫

Xd×Rn
σ1(x− y)ψ(t, y, z)σ2(z) dz dy, t ≥ 0, x ∈ Xd(17b)

∂2
ttψ − c2∆zψ = −σ2(z)

∫
Xd
σ1(x− y)%(t, y) dy, t ≥ 0, x ∈ Xd, z ∈ Rn,(17c)

%(t, x) =
∫
Rd
f(t, x, v) dv, t ≥ 0, x ∈ Xd.(17d)

The system is completed by the initial conditions
f
∣∣
t=0 = f0, (ψ, ∂tψ)

∣∣
t=0 = (ψ0, ψ1).(18)

The expected result can be explained as follows: let us assume that the fluctua-
tion does not provide additional mass:

∫∫
f(0, x, v) dv dx = 0, and, to fix ideas,
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ψ0 = 0 and ψ1 = 0. In such a case, linearized Landau damping asserts that %
converges strongly to 0, while f converges weakly to 0, as t → ∞. Moreover,
the potential φ also vanishes for large times. We shall establish that such a
behavior holds for the system (17)–(18).

We start by applying the Fourier transform, with respect to x and v to (17a).
This yields

(∂t − k · ∇ξ)f̂(t, k, ξ) = −k · ξ φ̂(t, k) M̂ (ξ).
The equation can be integrated along characteristics, which leads to the fol-
lowing Duhamel formula

f̂(t, k, ξ) = f̂0(k, ξ+ tk)−
∫ t

0

(
ξ+ (t− τ)k

)
· k φ̂(τ, k) M̂

(
ξ+ (t− τ)k

)
dτ.(19)

We turn to the expression of the Fourier coefficients of the potential. We remind
the reader that we can split the potential into

φ = φI + φS ,

where φI depends only on (ψ0, ψ1) as follows

φI(t, x) =
∫∫

Xd×Rn
σ1(x− y)σ2(z)

( .
W (ct)ψ0(y, z) + 1

c
W (ct)ψ1(y, z)

)
︸ ︷︷ ︸

=ψI(t,y,z)

dy dz,(20)

and the coupling term reads

φS(t, x) = −
∫ t

0
pc(t− τ)Σ ? %(τ, x) dτ.

Plugging the expression of φ = φI + φS into (19), we obtain

f̂(t, k, ξ)

= f̂0(k, ξ + tk)−
∫ t

0

(
ξ + (t− τ)k

)
· k φ̂I(τ, k) M̂

(
ξ + (t− τ)k

)
dτ

+ |σ̂1(k)|2
∫ t

0

(
ξ + (t− τ)k

)
· k
(∫ τ

0
pc(τ − s)%̂(s, k) ds

)
M̂
(
ξ + (t− τ)k

)
dτ

= f̂0(k, ξ + tk)−
∫ t

0

(
ξ + (t− τ)k

)
· k φ̂I(τ, k) M̂

(
ξ + (t− τ)k

)
dτ

+ |σ̂1(k)|2
∫ t

0

(∫ t

s

pc(τ − s)
(
ξ + k(t− τ)

)
· k M̂

(
ξ + (t− τ)k

)
dτ
)
%̂(s, k) ds

= f̂0(k, ξ + tk)−
∫ t

0

(
ξ + (t− τ)k

)
· k φ̂I(τ, k) M̂

(
ξ + (t− τ)k

)
dτ

+ |σ̂1(k)|2
∫ t

0

(∫ t−s

0
pc(τ)

(
ξ + (t− [τ + s])k

)
· k M̂

(
ξ + (t− [τ + s])k

)
dτ
)

× %̂(s, k) dς.
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We are led to an integral equation for the (Fourier coefficients of the) macro-
scopic density by considering this relation for ξ = 0. Let us set

a(t, k) = f̂0(k, tk)− |k|2
∫ t

0
φ̂I(τ, k) (t− τ)M̂

(
(t− τ)k

)
dτ(21)

and

K (t, k) = |k|2 |σ̂1(k)|2
∫ t

0
pc(τ) (t− τ)M̂

(
(t− τ)k

)
dτ.(22)

Then, we obtain an integral equation for the fluctuation of the macroscopic
density

%̂(t, k) = a(t, k) +
∫ t

0
K (t− s, k)%̂(s, k) ds.(23)

The analysis of this relation makes use of the Laplace transform

ϕ : (0,∞)→ C, Lϕ(ω) =
∫ +∞

0
e−ωtϕ(t) dt for ω ∈ C,

which is well defined for Re(ω) large enough.

3.2. Linearized Landau damping in finite regularity. — The linearized Landau
damping holds with an algebraic rate provided that the solution % of (23)
satisfies

|%̂(t, k)| ≤ C〈tk〉−m(24)

(see, for instance, [27, section 3]) for a certain m > 0. For Volterra equations
such as (23), we can establish (see [6, Lemma 4.1], [7, Proposition 2.2]) mode-
by-mode estimates in the L2

t norm: for any k∫ +∞

0
〈tk〉2m |%̂(t, k)|2 dt ≤ C2

LD

∫ +∞

0
〈tk〉2m |a(t, k)|2 dt,(25)

where CLD > 0 does not depend on k. From such an L2
t estimate, we get an

L∞t estimate as follows

〈tk〉m|%̂(t, k)| ≤ 〈tk〉m|a(t, k)|+
∣∣∣∣ ∫ t

0
〈(t− τ)k + τk〉mKk(t− τ, k)%̂(τ, k) dτ

∣∣∣∣
≤〈tk〉m|a(t, k)|+

(∫ t

0
〈τk〉2m|K (τ, k)|2 dτ

)1/2(∫ t

0
〈τk〉2m|%̂(τ, k)|2 dτ

)1/2
≤〈tk〉m|a(t, k)|+CLD

(∫ t

0
〈τk〉2m|K (τ, k)|2 dτ

)1/2(∫ t

0
〈τk〉2m|a(τ, k)|2 dτ

)1/2
,
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where we are left with the task of verifying that


sup
t≥0

k∈X?d\{0}

〈tk〉m |a(t, k)| < +∞,

sup
k∈X?d\{0}

(∫ +∞

0
〈τk〉2m |K (τ, k)|2 dτ

)(∫ +∞

0
〈τk〉2m |a(τ, k)|2 dτ

)
< +∞

(26)

hold. We shall identify conditions on a(t, k) and K (t, k), such that (25) applies
and justify that (26) is satisfied. We refer the reader to [7, Proof of Proposition
2.2] for a proof of the following claim.

Lemma 3.1. — Let K satisfy

inf
k∈X?d\{0}

∣∣1−L K (ω, k)
∣∣ ≥ κ > 0 for Re(ω) ≥ 0,(L)

and for any 0 ≤ j ≤ m :

sup
k∈X?d\{0}
Re(ω)≥0

(
|k|j

∣∣∂jωL K (ω, k)
∣∣) < +∞.

Then there exists a constant CLD > 0, which does not depend on k, such that
the solutions of (23) satisfy (25).

Estimate (25) makes sense when t 7→ 〈tk〉ma(t, k) is square integrable, a
property that needs to be carefully checked in the current framework.

Condition (L) gives rise to a stability criterion on the stationary profile
M . Since the operator K involves the kernel pc the detailed condition differs
substantially from the usual Vlasov case. That this statement applies for our
purpose relies on the following assumptions:
(H1): n > m+ 5

2 ,
(H2): σ2 ∈ Bn−1,1

1 and |σ2(z)| ≤ C2〈z〉−m2 with m2 >
3n−1

2 ,

(H3): supk∈X?d

(∥∥∥ψ̂0(k)
∥∥∥
Bn,11,(z)

+
∥∥∥ψ̂1(k)

∥∥∥
Bn−1,1

1,(z)

)
< +∞,

(H4): |σ̂1(k)| ≤ C1〈k〉−m1 with m1 > m+ 1,
(H5):

∣∣∣M̂ (ξ)
∣∣∣ ≤ C〈ξ〉−m̄ with m̄ > m + 2 and

∣∣∣f̂0(k, ξ)
∣∣∣ ≤ C0〈ξ〉−m0 with

m0 > m+ 1
2 .

Proposition 3.2. — Assume (H1)–(H5).
(i) There exists a constant A > 0, such that for any 0 ≤ j ≤ m, k ∈ X?d\{0}

and ω ∈ C with Re(ω) ≥ 0, we have

|k|j
∣∣∂jωL K (ω, k)

∣∣ ≤ A.
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(ii) For any k ∈ X?d \ {0},∫ +∞

0
|k|〈tk〉2m |a(t, k)|2 dt < +∞.

(iii) (26) holds.

The regularity of the data σ1, M , and f0 is controlled by assumptions (H4)–
(H5); the higher the algebraic decay rate m requested on the Fourier modes
of %, see (24), the higher the regularity on the data. Assumption (H1) tunes
the dimension n for the wave equation; the decay of the Fourier modes of % is
limited by the dispersion of the wave equation, which is stronger as n increases.

However, as indicated in Lemma 2.2, for odd n, the Huygens principle and
the decay of σ2 imply strengthened decay properties on pc. Accordingly, Propo-
sition 3.2 applies replacing (H1)–(H3) by
(H1’): n ≥ 3 is odd,
(H2’): σ2 ∈ Bn−1,1

1 and |σ2(z)| ≤ C2〈z〉−m2 with m2 > n+m+ 3
2

(H3’): • supk∈X?d
(∥∥ψ̂0(k)

∥∥
Bn,11,(z)

+
∥∥ψ̂1(k)

∥∥
Bn−1,1

1,(z)

)
< +∞,

• there exists a constant C > 0, such that

sup
k∈X?d

(∣∣ψ̂0(k, z)
∣∣+
∣∣ψ̂1(k, z)

∣∣) ≤ C〈z〉−m2 .

Hypothesis (H2) or (H2’) can be relaxed. Indeed, the decay imposed in (H2),
(H2’) on σ2 allows us to apply the refined dispersion estimates described in the
proof of Lemma 2.2. Nevertheless, we can simply use the standard estimates
as in Lemma 2.2-i). Then, the decay of pc is slower and, as a counterpart, the
dimension n in (H1) is more constrained. Proposition 3.2 applies replacing
(H1)–(H2) by
(H1”): n > 2m+ 4.
(H2”): σ2 ∈ Bn−1,1

1 .
Before proving Proposition 3.2 let us detail a useful statement.

Lemma 3.3. — Let α > 1 and β ≥ 0. For any γ ≥ 0, such that γ ≤ β et
γ < α− 1, we have ∫ t

0
〈t− τ〉−α〈τk〉−β dτ . 〈k〉γ〈tk〉−γ .(27)

Proof. — We split the integral∫ t

0
〈t− τ〉−α〈τk〉−β dτ =

∫ t/2

0
+
∫ t

t/2
〈t− τ〉−α〈τk〉−β dτ

≤
∫ t/2

0
〈t− τ〉−α dτ +

∫ t

t/2
〈t− τ〉−α

〈
tk

2

〉−β
dτ.
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The second integral is dominated by∫ t

t/2
〈t− τ〉−α

〈
tk

2

〉−β
dτ . 〈tk〉−β

∫ +∞

0
〈u〉−α du,

which is finite provided that α > 1. For the first integral, we observe that, for
any 0 ≤ τ ≤ t/2,

〈tk〉 =
〈
t

k
2k
〉
≤
〈
t

2

〉
〈2k〉 ≤ 〈t− τ〉〈2k〉

holds, and we infer that∫ t/2

0
〈t− τ〉−α dτ ≤ 〈2k〉

γ

〈tk〉γ

∫ +∞

0
〈u〉γ−α du.

The right-hand side is finite when γ < α− 1, which finishes the proof. �

Proof of Proposition 3.2. — (i) We start from

∂jωL K (ω, k)

= |k| |σ̂1(k)|2
∫ +∞

0
(−t)je−ωt

(∫ t

0
pc(τ)|k|(t− τ)M̂ ([t− τ ]k) dτ

)
dt.

Permuting integrals and with the change of variables u = t− τ , we get

|k|j
∣∣∂jωL K (ω, k)

∣∣
≤ |k| |σ̂1(k)|2

∫ +∞

0

(∫ +∞

0
|(u+ τ)k|j |pc(τ)| |uk|

∣∣∣M̂ (uk)
∣∣∣ du

)
dτ

. |σ̂1(k)|2
(∫ +∞

0
|τk|j |pc(τ)|dτ

)(∫ +∞

0
|uk|j+1

∣∣∣M̂ (uk)
∣∣∣ du|k|

)
= |k|j |σ̂1(k)|2

(∫ +∞

0
|τ |j |pc(τ)|dτ

)(∫ +∞

0
|s|j+1

∣∣∣∣M̂ (
k

|k|
s

)∣∣∣∣ ds
)
.

By (H4), |k|j |σ̂1(k)|2 is bounded. Then (H2) allows us to apply Lemma 2.2,
and we deduce that |pc(t)| . 〈t〉−(n−1). Due to (H1) the second factor is
finite. Finally, (H5) implies that the last factor is also finite and remains
uniformly bounded with respect to k. We point out that the mechanisms of
this estimate differs substantially from the standard Vlasov case, where the
decay rate improves with the mode. Here, pc does not carry any frequency k,
but the powers of |k| are controlled by the decay assumptions on σ̂1.
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(ii) The term to be estimated can be cast as (we use 〈tk〉 . 〈τk〉〈(t− τ)k〉):∫ +∞

0
〈tk〉2 |a(t, k)|2 dt

.
∫ +∞

0
〈tk〉2m

∣∣∣f̂0(k, tk)
∣∣∣2 dt+

∫ +∞

0
〈tk〉−(1+)

∣∣∣∣ ∫ t

0
〈τk〉m+ 1

2
+
|k|φ̂I(τ, k)

× 〈(t− τ)k〉m+ 1
2

+
(t− τ)|k|M̂ ([t− τ ]k) dτ

∣∣∣∣2 dt

.
1
|k|

∫ +∞

0
〈u〉2m

∣∣∣∣f̂0

(
k,

k

|k|
u)
∣∣∣∣2 du+ 1

|k|

(∫ +∞

0
〈τk〉2m+1+

|k|
∣∣φ̂I(τ, k)

∣∣2 dτ
)

×
(∫ +∞

0
〈sk〉2m+3+ ∣∣M̂ (sk)

∣∣2 |k|ds)(∫ +∞

0
〈u〉−(1+) du

)
.

Using (H5) we infer

1
|k|

∫ +∞

0
〈u〉2m

∣∣∣∣f̂0(k, k
|k|
u)
∣∣∣∣2 du . 1

|k|

∫ +∞

0
〈u〉−1+

dt . 1
|k|
,

and ∫ +∞

0
〈sk〉2m+3+

∣∣∣M̂ (sk)
∣∣∣2 |k|ds . ∫ +∞

0
〈u〉−(1+) dt . 1,

It remains to justify that∫ +∞

0
〈τk〉2m+1+

|k|
∣∣∣φ̂I(τ, k)

∣∣∣2 dτ

is finite for any k ∈ X?d \ {0}. To this end we observe that the dispersion
induced by the wave equation ensures

∣∣∣φ̂I(τ, k)
∣∣∣ . |σ̂1(k)|

(
‖σ2‖L1

z
+ C2

)(
‖ψ̂0(k)‖Bn,11,(z)

+ 1
c
‖ψ̂1(k)‖Bn−1,1

1,(z)

)
1

〈cτ〉n−1 .

(28)

This follows from

φ̂I(τ, k) = σ̂1(k)
∫
Rn
σ2(z)

( .
W (cτ)(ψ̂0(k)) + 1

c
W (cτ)(ψ̂1(k))

)
(z) dz,

and reasoning as in the proof of Lemma 2.2-(ii). We conclude that∫ +∞

0
〈τk〉2m+1+

|k|
∣∣∣φ̂I(τ, k)

∣∣∣2 dτ

. |k| |σ̂1(k)|2
(
‖ψ̂0(k)‖Bn,11,(z)

+ 1
c
‖ψ̂1(k)‖Bn−1,1

1,(z)

) ∫ +∞

0

〈τ〉2m+1+〈k〉2m+1+

〈cτ〉2(n−1) dτ

. 〈k〉2m+2+
|σ̂1(k)|2

(
‖ψ̂0(k)‖Bn,11,(z)

+ 1
c
‖ψ̂1(k)‖Bn−1,1

1,(z)

) ∫ +∞

0

〈τ〉2m+1+

〈cτ〉2(n−1) dτ.
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That this quantity is bounded uniformly with respect to k is a consequence of
(H1), (H3), and (H4).

(iii) We have obtained∫ +∞

0
〈tk〉2m|a(t, k)|2 dt . 1

|k|
,

where the factor 1/|k| comes from a change of variables. We justify similarly
that supt,k〈tk〉m|a(t, k)| < ∞. (There is no factor 1/|k| is this estimate.) It
remains to study

sup
k

(∫ +∞

0
〈tk〉2m|K (t, k)|2 dt

)(∫ +∞

0
〈tk〉2m|a(t, k)|2 dt

)
and to show that ∫ +∞

0
〈tk〉2m|K (t, k)|2 dt . |k|.

Observe that

K (t, k) = |k||σ̂1(k)|2
∫ t

0
pc(t− τ) τ |k|M̂ (τk) dτ.

Based on (H2), (H5), and Lemma 2.2, we write∣∣∣∣∫ t

0
pc(t− τ) τ |k|M̂ (τk) dτ

∣∣∣∣ . ∫ t

0
〈t− τ〉−(n−1)〈τk〉−(m̄−1) dτ.

Lemma 3.3 allows us to dominate this quantity by 〈k〉γ〈tk〉−γ for any γ ≥ 0,
such that γ ≤ m̄ − 1 and γ < n − 2. In particular, with (H1) and (H5) it
applies with γ = m+ 1+/2. We conclude that∫ +∞

0
〈tk〉2m|K (t, k)|2 dt . |k|

(
sup
k
〈k〉2m+1+

|σ̂1(k)|4
) ∫ +∞

0
〈tk〉−(1+)|k|dt . |k|

which ends the proof. �

We can now state the results for linearized Landau damping in finite reg-
ularity on the torus or the whole space. For the sake of conciseness we only
mention the case of Rd (see [33] for further results).

Proposition 3.4 (Linearized Landau damping on Rd with finite regularity).
— Let Xd = Rd and m > 0. Let us assume (H1)–(H5) and (L). There exists
a constant C > 0, such that for every k ∈ Rd \ {0} and for every t ≥ 0,

|%̂(t, k)| ≤ C〈tk〉−m.

Moreover, if m is large enough, then, as t → +∞, the fluctuation of spatial
density %(t), the force term ∇xφ, and the fluctuation of media ψ(t) converge
strongly to 0. To be more specific:
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• If m > d/2, then for every r ∈ [0,m− d
2 ) there exists a constant Cr > 0,

such that

‖%(t)‖Hrx ≤ Cr 〈t〉
− d2 .

• If m > (d+2)/2, then for every r ∈ [0,m1− d+2
2 ), there exists a constant

C̄r > 0, such that

‖∇xφI(t)‖Hrx ≤ C̄r 〈t〉
−(n−1)

and for every r ∈ [0, 2m1 − d+2
2 ), there exists a constant C̄ ′r, such that

‖∇xφS(t)‖Hrx ≤ C̄
′
r 〈t〉−

d+2
2 .

• If m > d/2 and n > d+ 3, then for every r ∈ [0,m1 − d
2 ), there exists a

constant C̃r > 0, such that∥∥∥∥ψ(t)−
.
W (ct)ψ0 −

1
c
W (ct)ψ1

∥∥∥∥
L∞z H

r
x

≤ C̃r 〈t〉−
d
2 .

Remark 3.5. — Let us detail a few examples:
(i) For the density, with d = 3, n ≥ 5, m = 2, m0 = 3, m1 = 4, m2 >

(3n− 1)/2, and m̄ = 5, we get

‖%(t)‖L2
x
. 〈t〉− 3

2 .

Moreover, with d = 3, n ≥ 8, m = 5, m0 = 6, m1 = 7, m2 > (3n− 1)/2
and m̄ = 8, we obtain

‖%(t)‖L∞x . ‖%(t)‖H3
x
. 〈t〉− 3

2 .

(ii) For the force, with d = 3, n ≥ 6, m = 3, m0 = 4, m1 = 5, m2 >
(3n− 1)/2 and m̄ = 6, we get

‖∇xφ(t)‖L2
x
. 〈t〉− 5

2 .

Moreover, with d = 3, n ≥ 6, m = 3, m0 = 4, m1 = 6, m2 > (3n− 1)/2
and m̄ = 6, we obtain

‖∇xφ(t)‖L∞x . ‖∇xφ(t)‖H3
x
. 〈t〉− 5

2 .

(iii) For the vibration field, with d = 3, n ≥ 7, m = 2, m0 = 3, m1 = 4,
m2 > (3n− 1)/2, and m̄ = 5, we get∥∥∥∥ψ(t)−

.
W (ct)ψ0 −

1
c
W (ct)ψ1

∥∥∥∥
L∞z L

2
x

. 〈t〉− 3
2 .
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Moreover, with d = 3, n ≥ 7, m = 2, m0 = 3, m1 = 5, m2 > (3n− 1)/2,
and m̄ = 5, we have∥∥∥∥ψ(t)−

.
W (ct)ψ0 −

1
c
W (ct)ψ1

∥∥∥∥
L∞z L

∞
x

.

∥∥∥∥ψ(t)−
.
W (ct)ψ0 −

1
c
W (ct)ψ1

∥∥∥∥
L∞z H

3
x

. 〈t〉− 3
2 .

Remark 3.6. — As explained in Proposition 3.2, the decay of %̂(t, k) is directly
related to the dispersion of the wave equation, and, thus, on n. This explains
the constraints on the dimension n. Nevertheless, when n ≥ 3 is odd, we can
obtain the time decay of %̂(t, k) without further restrictions on n. Accordingly,
with (H1’)–(H3’) et (H4)–(H5) the convergence to 0 of the density fluctu-
ation % and the force ∇xφ can be established. However, constraints appear
when considering the fluctuation of the medium ψ; with the norms that we are
using, we need n > d+ 3. In dimension d = 3, this excludes n = 3 and n = 5.
This restriction can be relaxed by considering instead the supremum over a ball
B(0, R) of finite radius. For instance, in dimension d = 3 with n = 3, assuming
(H1’)–(H3’) and (H4)–(H5), we can show that, for any 0 < R <∞,

sup
z∈B(0,R)

∥∥∥∥ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)

∥∥∥∥
Hrx

≤ CR〈t〉−1,

where CR > 0 blows up as R→ +∞. Further details on this issue can be found
in the proof of Proposition 3.4.

Proof of Proposition 3.4. — Owing to (H1)–(H5) we can apply Proposi-
tion 3.2 and Lemma 3.1. Proposition 3.2 ensures that (26) holds and from
this, we can exhibit C > 0, independent of k, such that for any k ∈ Rd \ {0},

〈tk〉m |%̂(t, k)| ≤ C.

That %(t) converges to 0 is a consequence of

‖%(t)‖2Hrx ' ‖%(t)‖2L2
x

+ ‖%(t)‖2.
Hrx

=
∫
Rd
|%̂(t, k)|2 dk +

∫
Rd
|k|2r |%̂(t, k)|2 dk

.
1
td

∫
Rd
〈tk〉−2m td dk + 1

td+2r

∫
Rd
|tk|2r〈tk〉−2m td dk

= 1
td

∫
Rd
〈x〉−2m dx+ 1

td+2r

∫
Rd
|x|2r〈x〉−2m dx,

where all integrals are finite provided 2r − 2m < −d, that is, r < m− d/2.
Next, we estimate both terms of ∇xφ = ∇xφI +∇xφS . We have

‖∇xφI(t)‖2Hrx '
∫
Rd
|k|2

∣∣∣φ̂I(t, k)
∣∣∣2 dk +

∫
Rd
|k|2r+2

∣∣∣φ̂I(t, k)
∣∣∣2 dk,
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and, as noticed when proving Proposition 3.2, φ̂I(t, k) satisfies (28). It follows
that

‖∇xφI(t)‖2Hrx .c
(∫

Rd
|k|2|σ̂1(k)|2 dk +

∫
Rd
|k|2r+2|σ̂1(k)|2 dk

)
〈t〉−2(n−1),

where the two integrals are finite, due to (H4), when r < m1 − 1− d/2. Next,
we apply Lemma 2.2-(ii):

‖∇xφS(t)‖2Hrx '
∫
Rd
|k|2

∣∣∣φ̂S(t, k)
∣∣∣2 dk +

∫
Rd
|k|2r+2

∣∣∣φ̂S(t, k)
∣∣∣2 dk

=
∫
Rd

(
|k|2 + |k|2r+2)|σ̂1(k)|4

∣∣∣∣∫ t

0
pc(t− τ)%̂(τ, k) dτ

∣∣∣∣2 dk

.c

∫
Rd

(
|k|2 + |k|2r+2)|σ̂1(k)|4

∣∣∣∣∫ t

0
〈t− τ〉−(n−1)〈τk〉−m dτ

∣∣∣∣2 dk.

By Lemma 3.3, for any γ ≥ 0 such that γ ≤ m and γ < n− 2, we get∫ t

0
〈t− τ〉−(n−1)〈τk〉−m dτ . 〈k〉γ〈tk〉−γ ,

and we conclude with

‖∇xφS(t)‖2Hrx .c
∫
Rd

(
|k|2 + |k|2r+2)|σ̂1(k)|4〈k〉2γ〈tk〉−2γ dk

.

(
sup
k
〈k〉2r+2γ |σ̂1(k)|4

)
t−(d+2)

∫
Rd
|tk|2〈tk〉−2γ td dk

=
(

sup
k
〈k〉2r+2γ |σ̂1(k)|4

)
t−(d+2)

∫
Rd
|x|2〈x〉−2γ dx.

The last integral is finite when 2 − 2γ < −d, that is γ > (d + 2)/2, and the
supremum over k is also finite provided 2r + 2γ ≤ 4m1, that is, r ≤ 2m1 − γ.

We turn to ψ. We have

ψ(t)−
.
W (ct)ψ0 −

1
c
W (ct)ψ1 = −1

c

∫ t

0
W
(
c[t− τ ]

)
σ2 σ1 ? %(τ) dτ.

Hence, for any z ∈ Rn, we obtain

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hrx

'
∫
Rd

(
1 + |k|2r

)
|σ̂1(k)|2

∣∣∣∣1c
∫ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣2 dk.

We combine the dispersion estimate (15) to (24) and arrive at∣∣∣∣1c
∫ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣ .c ∫ t

0
〈t− τ〉−

n−1
2 〈τk〉−m dτ.
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Lemma 3.3 allows us to obtain, for any γ ≥ 0, such that γ ≤ m and γ <
(n− 1)/2− 1, ∫ t

0
〈t− τ〉−

n−1
2 〈τk〉−m dτ . 〈k〉γ〈tk〉−γ .

We deduce that

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hrx

.c

∫
Rd

(
1 + |k|2r

)
|σ̂1(k)|2〈k〉2γ〈tk〉−2γ dk

.

(
sup
k
〈k〉2r+2γ |σ̂1(k)|2

)
t−d

∫
Rd
〈tk〉−2γ td dk

=
(

sup
k
〈k〉2r+2γ |σ̂1(k)|2

)
t−d

∫
Rd
〈x〉−2γ dx.

The last integral is finite when γ > d/2 (this imposes m > d/2 and n > d+ 3).
The supremum over k is finite provided 2r + 2γ ≤ 2m1, that is, r ≤ m1 − γ.

The estimate in Remark 3.6 is obtained by restricting to the z’s in the ball
B(0, |ct|/4). We apply the refined estimate (16), gathered to (24). We get∣∣∣∣1c

∫ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣
.

1
c
|k|− 1

2

∫ t

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈τk〉−m dτ.

We proceed as for proving Lemma 3.3; for any γ ≥ 0, we obtain∫ t

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈τk〉−m dτ

.
〈2k〉γ

〈tk〉γ

∫ t/2

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈t/2〉γ dτ

+
∫ t

t/2

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈tk/2〉−m dτ

≤ 〈2k〉
γ

〈tk〉γ

∫ t/2

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈t− τ〉γ dτ

+ 〈tk/2〉−m
∫ t

t/2

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 dτ

= 〈2k〉
γ

〈tk〉γ

∫ t

t/2

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 〈u〉γ du

+ 〈tk/2〉−m
∫ t/2

0

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 du.
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First, ct/2 ≤ cu ≤ ct and 0 ≤ |z| ≤ ct/4 imply |cu−|z| | ≥ ct/4 ≥ cu/2, so that

〈
cu ·

∣∣cu− |z| ∣∣〉−1 ≤
〈
c2u2

2

〉−1

.c 〈u〉−2.

We thus deduce that∫ t

t/2

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 〈u〉γ du .

∫ +∞

0
〈u〉−(n−1)〈u〉γ du,

which is finite when γ < n− 2. Second, we have∫ t/2

0

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 du .c

∫
R

〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 du.

As |u| → +∞, we have〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 '|z| 〈u〉−(n−1),

which is finite provided n ≥ 3. However, we should make precise how it depends
on |z|. To this end, we write∫

R

〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 du =
∫
R
〈(u+ |z|/2) · (u− |z|/2)〉−

n−1
2 du

=
∫
R

〈
u2 − |z|2/4

〉−n−1
2 du =

∫
R

( 〈
u2〉

〈u2 − |z|2/4〉

)n−1
2 〈

u2〉−n−1
2 du.

A mere function analysis shows that, for any a ≥ 0,

x 7→ 〈x〉2

〈x− a〉2

reaches its maximum over [0,+∞) for x = (a+
√
a2 + 4)/2, which leads to( 〈

u2〉
〈u2 − |z|2/4〉

)n−1
2

. |z|n−1.

It follows that∫
R

〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 du . |z|n−1
∫
R
〈u〉−(n−1) du . |z|n−1.

Therefore, when n ≥ 3, for any γ ∈ [0, n− 2) and z ∈ B(0, ct/4), we have∣∣∣∣1c
∫ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣ .c 〈k〉γ〈tk〉−γ + |z|n−1〈tk〉−m.
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We infer that

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hrx

.c

∫
Rd

(
1 + |k|2r

)
|σ̂1(k)|2

(
〈k〉2γ〈tk〉−2γ + |z|2(n−1)〈tk〉−2m

)
dk

.
〈z〉2(n−1)

td

(
sup
k
〈k〉2r+2γ |σ̂1(k)|2

)∫
Rd

(
〈tk〉−2γ + 〈tk〉−2m) td dk

= 〈z〉
2(n−1)

td

(
sup
k
〈k〉2r+2γ |σ̂1(k)|2

)∫
Rd

(
〈x〉−2γ + 〈x〉−2m) dx,

where the last integral is finite when γ,m > d/2. When n is even, we can use
(H1’)–(H3’) instead; the condition on m imposes regularity on the data but
no further restriction on n. Such restrictions arise from the condition on γ; we
already have γ ∈ [0, n − 2). To be more specific, we have n > (d + 4)/2. For
d = 1, this holds for any n ≥ 3; but for for d = 2 or for the most relevant
case d = 3, we should assume n ≥ 4 and n ≥ 5, respectively. Nonetheless, it is
equally possible to make use of the decay of σ̂1 in order to obtain a singularity
that remains integrable at 0 and gives more integrability at +∞. The price to
be paid is the strengthening of the regularity of σ1 and, more importantly, a
reduced convergence rate for large times. To be specific, we get

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hrx

.c

∫
Rd

(
1 + |k|2r

)
|σ̂1(k)|2

(
〈k〉2γ〈tk〉−2γ + |z|2(n−1)〈tk〉−2m

)
dk

=
∫
Rd

(
|k|d−1 + |k|2r+d−1) |k|−(d−1)|σ̂1(k)|2

×
(
〈k〉2γ〈tk〉−2γ + |z|2(n−1)〈tk〉−2m

)
dk

.
〈z〉2(n−1)

t

(
sup
k
〈k〉2r+2γ+d−1|σ̂1(k)|2

)
×
∫
Rd
|tk|−(d−1) (〈tk〉−2γ + 〈tk〉−2m) td dk

= 〈z〉
2(n−1)

t

(
sup
k
〈k〉2r+2γ+d−1|σ̂1(k)|2

)
×
∫
Rd
|x|−(d−1) (〈x〉−2γ + 〈x〉−2m) dx.

The last integral is finite when γ > 1/2. This is compatible with the condition
γ < n− 2 provided n ≥ 3. It is possible to optimize this approach in order to
find a sharp decay rate. �
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3.3. Linearized Landau damping in analytic regularity. — That the linearized
Landau damping holds with an exponential rate relies, from (23), on an esti-
mate on % such as

|%̂(t, k)| ≤ C e−λ|tk|(29)
(see [27, section 3]) for some λ > 0. To this end we shall use the analog in
analytic regularity of Lemma 3.1.

Lemma 3.7. — Suppose that L K (ω|k|, k)is well defined on k ∈ X?d \{0} and
ω ∈ {z ∈ C | Re(z) > −Λ} for a certain Λ > 0. We also suppose that

inf
k∈X?d\{0}

∣∣1−L K (ω|k|, k)
∣∣ ≥ κ > 0 for Re(ω) > −Λ(L′)

is fulfilled. Then, for any 0 < λ < Λ, we can find CLD > 0, which does not
depend on k, such that any solution of (23) satisfies, for any k ∈ X?d \ {0},∫ +∞

0
e2λ|tk| |%̂(t, k)|2 dt ≤ C2

LD

∫ +∞

0
e2λ|tk| |a(t, k)|2 dt.(30)

We refer the reader to [32, Proof of Lemma 3.5] or [6, Section 4] for details
on this statement. It allows us to derive the following estimate in L∞t norm
eλ|tk| |%̂(t, k)| ≤ eλ|tk| |a(t, k)|

+ CLD

(∫ +∞

0
e2λ|τk||K (τ, k)|2 dτ

)1/2(∫ +∞

0
e2λ|τk||a(τ, k)|2 dτ

)1/2
.

It remains to check that the data satisfy


sup
t≥0

k∈X?d\{0}

eλ|tk| |a(t, k)| < +∞,

sup
k∈X?d\{0}

(∫ +∞

0
e2λ|τk||K (τ, k)|2 dτ

)(∫ +∞

0
|k|e2λ|τk||a(τ, k)|2 dτ

)
< +∞.

(31)

In order to apply Lemma 3.7 and to check that (31) holds we assume
(K1): n ≥ 3 is odd,
(K2): σ2 ∈ C0

c (Rn) with supp(σ2) ⊂ B(0, R2),
(K3): we have supp(ψ0, ψ1) ⊂ Xd ×B(0, RI), for some 0 < RI <∞, and

sup
k∈X?d

{∫
Rn

(
|ψ̂1(k, z)|2 + c2|∇zψ̂0(k, z)|2

)
dz
}

= EI <∞,

(K4): the function σ1 : Xd → (0,∞) is radially symmetric and real analytic,
and, in particular (see [32, Proposition 3.16]), there exists C1, λ1 > 0
such that, for any k ∈ X?d, |σ̂1(k)| ≤ C1 e

−λ1|k|.
(K5): there exists C0, λ0 > 0 such that for any ξ ∈ Rd, k ∈ X?d we have

|M̂ (ξ)| ≤ C e−λ̄|ξ|, |f̂0(k, ξ)| ≤ C0 e
−λ0|ξ|.
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Namely, we assume analytic regularity on the data with (K4) and (K5).
Note that (K4) is not a strong restriction in the present context, contrarily
to what it could be for the Vlasov case, since for this model, σ1 is naturally
smooth. Moreover, physically, the form function σ1 would naturally be com-
pactly supported (the support being interpreted as the “domain of influence”
of the particle), which does not make sense in the analytic framework. Thus,
we should here think of σ1 as a peaked bump function. We also bear in mind
the fact that σ1 is radially symmetric; its Fourier coefficients are real, and we
have σ̂1 ? σ1(k) = |σ̂1(k)|2 ≥ 0. These assumptions, together with the finite
speed of propagation for the wave equation, allow us to control the “initial
data” contribution in (21) and the kernel (22). Let us explain the role of (K3)
for the associated contribution to (20) in (21). In (20), ψI is the solution of the
wave equation on Rn, starting from initial data (ψ0, ψ1). The space variable
x ∈ Xd appears only as a parameter in this equation. Assumption (K3) means
that the Fourier transform (with respect to the parameter) of the initial data
has finite and uniformly bounded energy. When Xd = Td, (K3) holds under
the condition∫∫

Xd×Rn

(
|ψ1(x, z)|2 + c2|∇zψ0(x, z)|2

)
dz dx = EI <∞,

which implies that the Fourier coefficients of the energy lies in `2(Zd), and thus
in `∞(Zd). This assumption is quite natural since this quantity is involved in
the global energy balance for (2a)–(2d), see [9, 10, 31]. Working in Rd this has
to be replaced by condition (K3).

A naive intuition would relate the damping rate to the decay rate of pc. In
finite regularity, we indeed obtained a polynomial damping rate assuming the
polynomial decay of pc. The analytic framework is more demanding, and it is
not enough to assume the exponential decay of pc. The proof of Lemma 3.9
below will make the role of the stronger assumptions (K1)–(K2) clear.

Proposition 3.8. — Suppose (K1)–(K5). The quantity L K (ω|k|, k) is well
defined for any ω ∈ C, such that Re(ω) > −λ̄ and (31) holds for any λ > 0,
such that

λ < min
(
λ0, λ̄,

cλ1

R2
,

cλ1

RI +R2

)
.

The statement follows from a direct application of the following claim and
reproducing the computations of the proof of Proposition 3.2.

Lemma 3.9. — Suppose (K1)–(K5).
(i) Let a(t, k) be defined by (21). Then, there exists α > 0, such that for

every 0 < λ < min(λ0, λ̄, cλ1/(RI + R2)), |a(t, k)| ≤ αe−λ|k|t holds for
any t ≥ 0, k ∈ X?d.
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(ii) Let K (t, k) be defined by (22). Then, there exists C > 0, such that for
every 0 < λ < min(λ̄, cλ1/R2), |K (t, k)| ≤ Ce−λ|k|t holds for any t ≥ 0,
k ∈ X?d.

Proof. — We start with the proof of (i). First of all, assumption (K5) tells us
that

|f̂0(k, tk)| ≤ C0 e
−λ0t|k|,

and since

|a(t, k)| . |f̂0(k, tk)|+ |k|2
∫ t

0

∣∣∣φ̂I(τ, k)
∣∣∣ (t− τ)

∣∣∣M̂ (
(t− τ)k

)∣∣∣ dτ,

we only have to deal with second term. Then, relation (20) can be recast as

φI(t, x) =
∫
Xd
σ1(x− y)

(∫
Rn
σ2(z)ψI(t, x, z) dz

)
dy

with ψI the solution of the free wave equation

(∂2
tt − c2∆z)ψI = 0,

(ψI , ∂tψI)
∣∣
t=0 = (ψ0, ψ1).

Assumptions (K1) and (K3) allow us to make use of Huygens’ principle, which
tells us that

supp(ψI(t, x, ·)) ⊂
{
z ∈ Rn, ct−RI ≤ |z| ≤ ct+RI

}
.

Therefore, by virtue of (K2), the product σ2(z)ψI(t, x, z) vanishes when t ≥
RI+R2

c = S0 for any x ∈ Xd, z ∈ Rn (see Fig. 2.3). Hence, φI is supported in
[0, S0]× Xd, and we can write

φ̂I(τ, k) = σ̂1(k)
(∫

Rn
σ2 ψ̂I(τ, k) dz

)
1t≤S0 .

Moreover, thanks to Sobolev’s embedding, energy conservation for the wave
equation, and assumption (K3), we have∣∣∣∣∫

Rn
σ2 ψ̂I(τ, k) dz

∣∣∣∣
≤ ‖σ2‖

L
2n
n+2
z

‖ψ̂I(τ, k)‖
L

2n
n−2
z

. ‖σ2‖
L

2n
n+2
z

‖∇zψ̂I(τ, k)‖L2
z

≤ 1
c
‖σ2‖

L
2n
n+2
z

(
‖∂tψ̂I(τ, k)‖2L2

z
+ c2‖∇zψ̂I(τ, k)‖2L2

z

) 1
2

= 1
c
‖σ2‖

L
2n
n+2
z

(
‖ψ̂1(k)‖2L2

z
+ c2‖∇zψ̂0(k)‖2L2

z

) 1
2 ≤ 1

c
‖σ2‖

L
2n
n+2
z

√
EI .
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From these two facts, and thanks to (K4)–(K5), we can eventually conclude
as follows: for every 0 < λ < min(λ̄, λ1/S0),

|k|2
∫ t

0

∣∣∣Φ̂I(τ, k)
∣∣∣ (t− τ)

∣∣∣M̂ (
(t− τ)k

)∣∣∣ dτ

. |k|2e−λ1|k|
∫ S0

0
|t− τ |e−λ̄(t−τ)|k| dτ

= |k|2e−λ1|k|
∫ S0

0
|t− τ |e−λ(t−τ)|k|e−(λ̄−λ)(t−τ)|k| dτ

≤ S2
0

(
sup
k
|k|2e−(λ1−λS0)|k|

)
e−λ|tk|.

Accordingly, a(t, k) is dominated by O(e−λ|k|t), uniformly with respect to k,
for 0 < λ < min(λ0, λ̄, λ1/S0). (Note that S0 behaves like 1/c; as c becomes
large, only λ0 and λ̄ are relevant in this condition.)

We now turn to the estimate on K . With (K4), (K5), and Lemma 2.2 (we
use (K1) and (K2) to apply this lemma), we can estimate K as follows: for
every 0 < λ < min(λ̄, cλ1/R2),

|K (t, k)| ≤ |k|2|σ̂1(k)|2
∫ 2R2

c

0
|pc(τ)| (t− τ)

∣∣∣M̂ (
(t− τ)k

)∣∣∣ dτ

. |k|2e−2λ1|k|
∫ 2R2

c

0
(t− τ)e−λ(t−τ)|k|e−(λ̄−λ)|k| dτ

.

(
sup
k
|k|2e−2(λ1−R2

c λ)|k|
)
e−λ|tk|,

which tells us that K (t, k) is dominated by O(e−λ|k|t), uniformly with respect
to k, provided 0 < λ < min

(
λ̄, cλ1

R2

)
. �

Hence, assuming (K1)–(K5) and (L′), the solution of (17)–(18) satisfies
(29). We deduce the convergence of the fluctuation of density %(t), force∇xφ(t),
and medium ψ(t) (with an exponential rate on the torus and a polynomial rate
for the free space problem), like in Proposition 3.4 and [27, Theorem 3.1].

3.4. Stability criterion for large wave speeds. — We turn to investigate the
“(L)-condition” made on the Laplace transform of K (see (L) and (L′)), where

L K (ω, k) = |σ̂1(k)|2 L pc(ω)L (|k|2tM̂ (kt))(ω).

In fact, for the Vlasov equation, such a property holds under a smallness as-
sumption, see [27, Condition (a) in Proposition 2.1]. Here, this condition can
be rephrased by means of a condition on the wave speed c � 1. The latter
confirms the intuition that the damping is related to the ability to evacuate the
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particles’ energy through the membranes, see [8]. (It also raises the issue of de-
termining whether or not there exists stable equilibrium for c� 1.) A similar
smallness condition on 1/c appears in the asymptotic statements for a single
particle [8, Theorem 2, 3 & 4], for the analysis of the relaxation to equilibrium
for the Vlasov-Wave–Fokker–Planck model [2, Theorem 2.3], and the stability
analysis in [10]. Moreover, as mentioned in the Introduction, up to a suitable
c-dependent rescaling of the coupling, the regime c → ∞ leads to the usual
Vlasov system [8], and it can be checked that the stability criterion for large
c’s is consistent to the condition exhibited for the Vlasov equation. The role
of the wave speed c on the damping phenomena is investigated on numerical
grounds in [18].

Proposition 3.10 (Stability criterion for large c’s). — (i) Assume (H1)–
(H2) and (H4)–(H5). There exists c0 > 0, such that if c > c0, then
condition (L) is fulfilled.

(ii) Assume (K1)–(K2) and (K4)–(K5). There exists c0 > 0, such that if
c > c0, then condition (L′) is fulfilled.

Proof. — We only detail the proof of (ii), the former item being justified by a
similar approach. Let 0 < Λ < min(λ̄, cλ1/R2) and let ω be a complex number,
such that Re(ω) > −Λ. On the one hand, we have, for any k 6= 0,∣∣∣L (|k|2tM̂ (tk)

)
(ω|k|)

∣∣∣ =
∣∣∣∣∫ ∞

0
sM̂

( k
|k|
s
)
e−ωs ds

∣∣∣∣ . ∫ ∞
0

se−λ̄seΛs ds . 1.

On the other hand, Lemma 2.2 allows us to estimate the Laplace transform of
the kernel pc as follows∣∣L pc(ω|k|)

∣∣ ≤ ‖pc‖L∞ ∫ 2R2/c

0
eΛ|k|s ds . 1

c

e
2R2
c Λ|k|

c
.

Owing to (K4), we obtain

|σ̂1(k)|2
∣∣L pc(ω|k|)

∣∣ . 1
c2
e−2(λ1−R2

c Λ)|k|.

We observe that the right-hand side tends to 0 as c → ∞. Therefore, for any
κ ∈ (0, 1), provided that c is large enough, we have

sup
k 6=0
|L K (ω|k|, k)| ≤ 1− κ

for any ω ∈ C with Re(ω) > −Λ, which implies infk 6=0 |L K (ω|k|, k) − 1| ≥
κ > 0. �

Section 5 provides a thorough discussion of the stability criterion, beyond
the mere assumption of large wave speeds c.
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4. Nonlinear Landau Damping

In this section, we briefly explain how nonlinear Landau damping can be
justified. We consider two distinct geometrical and functional frameworks: the
free space problem can be handled by working with Sobolev spaces [7], while
the dispersion effects of the transport operator do not operate on the torus,
and we work with analytic regularity [6, 27]. We point out the new difficulties
compared to the Vlasov case and explain how the arguments can be adapted
for our purposes. Fully detailed proofs and further comments can be found
in [33].

4.1. The free space problem. — We shall see that the damping in Rd occurs
with a restriction on the space dimension: we should assume d ≥ 3. As in [7],
the analysis in the whole space relies on dispersive phenomena attached to the
free transport operator; these effects are, indeed, strong enough to dominate
the plasma echoes when d ≥ 2, and a further technical restriction arises in the
bootstrap argument, which leads to imposing d ≥ 3. We remind the reader
that details on the functional spaces can be found in Appendix A.

We go back to the formulation (9). Compared to the usual Vlasov equation,
the expression of the potential Φ[ψ] now involves the contribution of the initial
data FI , and the self-consistent part G% presents a memory effect, through
the kernel pc. It is convenient to think of the problem with some generality on
these quantities. Thus, let us collect the hypothesis on the data of the problem:
FI , pc and σ1. We refer the reader to the previous section to translate these
assumptions on the original data σ2, ψ0 and ψ1.
(A1): There exists an exponent αI > 0 sufficiently large, such that

sup
k∈Rd

∣∣∣F̂I(t, k)
∣∣∣ . 〈t〉−αI .

(A2): There exists an exponent αc > 0 sufficiently large, such that

|pc(t)| . 〈t〉−αc .

(A3): σ1 ∈ S (Rd): for any α ≥ 0 we have

lim
|k|→+∞

〈k〉α|σ̂1(k)| = 0.

This formulation of the hypothesis has the advantage of pushing the gener-
ality of the result, both on the “linear” perturbation due to the data through
FI and on the memory effects in the self-consistent potential through pc. The
following claims are crucial for our purposes: roughly speaking, they explain
why the situation is not very different from the Vlasov case, once the role of
FI(t) and pc is well understood, and it justifies that the approach of [7] is
robust enough to be adapted. Note that (A1) is the assumption that makes
the constants C1(FI) and C2(FI) below meaningful.
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Proposition 4.1. — Let (A1)–(A3) be fulfilled. Then for any 0 < T < ∞
and any s ≥ 0, such that s < αI − 1/2 and s < (αc − 1)/2, the following three
estimates hold∥∥∥Asσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L2
(t)L

2
(k)

. C1(FI) + ‖As%̂‖2L2
(t)L

2
(k)
,(32a) ∥∥∥Asσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L∞(k)L
2
(t)

. C1(FI) + ‖As%̂‖2L∞(k)L
2
(t)
,(32b)

sup
t∈[0,T ]

sup
k∈Rd
〈k, tk〉s|σ̂1(k)|

∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)
∣∣∣(32c)

. C2(FI) + sup
t∈[0,T ]

sup
k∈Rd
〈k, tk〉s |%̂(t, k)| ,

with

C1(FI) =
∫ +∞

0
〈t〉2s sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt and C2(FI) = sup

t,k
〈t〉s

∣∣∣F̂I(t, k)
∣∣∣ .

Remark 4.2. — We shall use the following variant of the statement: for any
polynomial k 7→ P (k), we have∥∥∥PAsσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L2
(t)L

2
(k)

. C1(FI) + ‖As%̂‖2L2
(t)L

2
(k)
,(33a) ∥∥∥PAsσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L∞(k)L
2
(t)

. C1(FI) + ‖As%̂‖2L∞(k)L
2
(t)
,(33b)

sup
t∈[0,T ]

sup
k∈Rd
〈k, tk〉sP (k)|σ̂1(k)|

∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)
∣∣∣(33c)

. C2(FI) + sup
t∈[0,T ]

sup
k∈Rd
〈k, tk〉s |%̂(t, k)| ,

These estimates can be justified since σ1 lies in the Schwartz class and, thus,
P (k)σ̂1(k) remains a function with fast decay.

Proof. — In order to prove (32a), we analyze the contribution from F̂I and
Ĝ% separately as follows∥∥∥Asσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L2
(t)L

2
k

.
∫ T

0

∫
Rd
k

|k|〈k, tk〉2s|σ̂1(k)|2|F̂I(t, k)|2 dk dt︸ ︷︷ ︸
=I

+
∫ T

0

∫
Rd
k

|k|〈k, tk〉2s|σ̂1(k)|4|Ĝ%(t, k)|2 dk dt︸ ︷︷ ︸
=II

.
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For I, by using 〈k, tk〉2 ≤ 〈k〉2〈t〉2, we readily obtain

I ≤
(∫

Rd
k

|k|〈k〉2s|σ̂1(k)|2 dk
)(∫ +∞

0
〈t〉2s sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt

)
.

For II, we start by applying the Cauchy-Schwarz inequality

|Ĝ%(t, k)|2 =
∣∣∣∣∫ t

0
pc(t− τ)%(τ, k) dτ

∣∣∣∣2
≤
(∫ t

0
|pc(t− τ)|dτ

)(∫ t

0
|pc(t− τ)||%̂(τ, k)|2 dτ

)
.

Going back to II, we are led to

II ≤ ‖pc‖L1

∫ T

0

∫ t

0
|pc(t− τ)|

×

(∫
Rd
k

|k|〈k, τk〉2s 〈k, tk〉
2s

〈k, τk〉2s
|σ̂1(k)|4|%̂(t, k)|2 dk

)
dτ dt.

A simple study of function shows that (for t ≥ τ)

sup
k∈Rd

〈k, tk〉2s

〈k, τk〉2s
≤ 〈t〉

2s

〈τ〉2s
.

Since |σ̂1(k)| ≤ ‖σ1‖L1 . 1 and using Fubini’s theorem, we obtain

II . ‖pc‖L1

∫ T

0

(∫ T

τ

|pc(t− τ)| 〈t〉
2s

〈τ〉2s
‖As%̂(τ)‖2L2

(k)
dt
)

dτ

. ‖pc‖L1

∫ T

0
‖As%̂(τ)‖2L2

(k)

(∫ T−τ

0
|pc(u)| 〈u+ τ〉2s

〈τ〉2s
du
)

dτ.

Since 〈u+ τ〉2s . 〈u〉2s〈τ〉2s, we arrive at

II . ‖pc‖L1

(∫ +∞

0
〈u〉2s|pc(u)|du

)
‖As%̂‖2L2

(t)L
2
(k)
.

This ends the proof of (32a).
Estimate (32b) follows the same strategy: for k ∈ Rd, we split as follows∫ T

0
|k|〈k, tk〉2s|σ̂1(k)|2

∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)
∣∣∣2 dt

≤
∫ T

0
|k|〈k, tk〉2s|σ̂1(k)|2|F̂I(t, k)|2 dt︸ ︷︷ ︸

=J

+
∫ T

0
|k|〈k, tk〉2s|σ̂1(k)|4|Ĝ%(t, k)|2 dt︸ ︷︷ ︸

=JJ

.
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Proceeding as above, we obtain

J ≤
(

sup
k∈Rd

|k|〈k〉2s|σ̂1(k)|2
)(∫ +∞

0
〈t〉2s sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt

)
and

JJ . ‖pc‖L1

∫ T

0

(∫ T

τ

|pc(t− τ)| 〈t〉
2s

〈τ〉2s
|k|〈k, τk〉2s|%̂(τ, k)|2 dt

)
dτ

. ‖pc‖L1

(∫ +∞

0
〈u〉2s|pc(u)|du

)(∫ T

0
|k|〈k, τk〉2s|%̂(τ, k)|2 dτ

)
.

We proceed with a slightly different approach for (32c) when dealing with the
contribution involving Ĝ%. For any t ∈ [0, T ] and k ∈ Rd, we write

〈k, tk〉s|σ̂1(k)|
∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)

∣∣∣
.

(
sup
k∈Rd
〈k〉s|σ̂1(k)|

)(
sup
t∈[0,T ]

〈t〉s sup
k

∣∣∣F̂I(t, k)
∣∣∣)+ 〈k, tk〉s|Ĝ%(t, k)|.

Since

〈k, tk〉s|Ĝ%(t, k)| ≤
∫ t

0
|pc(t− τ)| 〈k, tk〉

s

〈k, τk〉s
〈k, τk〉s|%̂(τ, k)|dτ

.

(∫ t

0
|pc(t− τ)| 〈t〉

s

〈τ〉s
dτ
)(

sup
τ∈[0,T ]

sup
k∈Rd
〈k, τk〉s|%̂(τ, k)|

)
,

it suffices to observe that∫ t

0
|pc(t− τ)| 〈t〉

s

〈τ〉s
dτ <∞,

by virtue of (A2). �

Proposition 4.3. — Let (A1)–(A3) be fulfilled. Assume that M ∈ H s̃
P with

P > d/2 and s̃ ≥ 0. Then, for any s ≥ 0 such that s < s̃− 2d and s < αI − 1,
we have ∥∥∥∥(t, k) 7→ As(t, k)

∫ t

0
∇̂xσ1(k)F̂I(τ, k)∇̂vM

(
(t− τ)k

)
dτ
∥∥∥∥
L2

(t)L
2
(k)

(34a)

.
∫ +∞

0
〈t〉2s+1+

sup
k

∣∣∣F̂I(t, k)
∣∣∣2 dt,∥∥∥∥(t, k) 7→ As(t, k)

∫ t

0
∇̂xσ1(k)F̂I(τ, k)∇̂vM

(
(t− τ)k

)
dτ
∥∥∥∥
L∞(k)L

2
(t)

(34b)

.
∫ +∞

0
〈t〉2s+1+

sup
k

∣∣∣F̂I(t, k)
∣∣∣2 dt,
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Proof. — First, let us introduce the following notation

I(t, k) = As(t, k)
∫ t

0
∇̂xσ1(k)F̂I(τ, k)∇̂vM

(
(t− τ)k

)
dτ

and estimate for every k ∈ Rd the L2
(t) norm of t 7→ I(t, k). By using the

relations 〈k, tk〉 . 〈k, τk〉〈[t− τ ]k〉 and 〈k, τk〉 ≤ 〈k〉〈τ〉, we obtain∫ T

0
|I(t, k)|2 dt . |k|3|σ̂1(k)|2

∫ T

0
〈tk〉−(1+)

×
(∫ t

0
〈τk〉 1

2
+
〈k, τk〉s

∣∣∣F̂I(τ, k)
∣∣∣ 〈(t− τ)k〉s+ 1

2
+
∣∣∣∇̂vM (

(t− τ)k
)∣∣∣)2

dt

. |k||σ̂1(k)|2
∫ T

0
〈tk〉−(1+)

(∫ +∞

0
〈τk〉1

+
〈k, τk〉2s

∣∣∣F̂I(τ, k)
∣∣∣2 dτ

)
×
(∫ +∞

0
〈(t− τ)k〉2s+1+

∣∣∣∇̂vM (
(t− τ)k

)∣∣∣2 |k|dτ) |k|dt
. |k|〈k〉2s+1+

|σ̂1(k)|2
(∫ +∞

0
〈τ〉2s+1+

sup
k
|F̂I(τ, k)|2 dτ

)
×

(∫ +∞

0
〈u〉2s+1+

∣∣∣∣∇̂vM (
u
k

|k|
)∣∣∣∣2 du

)∫ T

0
〈u〉−(1+) du.

Since M ∈ H s̃
P , we have ξ 7→ 〈ξ〉s̃M̂ (ξ) ∈ HP , where P > d/2, and Sobolev’s

embedding yields |M̂ (ξ)| . ‖M̂ ‖HP 〈ξ〉−s̃. Then, as soon as s < s̃− (1+), this
ensures that the integral involving M is uniformly bounded with respect to k.
Eventually (A3) ensures that both L2

(k)L
2
(t) and L∞(k)L

2
(t)-norm of I(t, k) are

dominated as asserted. �

The analysis of Landau damping, as it is already clear for the linearized
problem, relies heavily on the formulation of the problem by means of the
Fourier variables. Let us collect the useful formula from which the reasoning
starts. Integrating (10a)–(10b) over [0, t], we get

g(t, x, v) = f0(x, v) +
∫ t

0
∇xσ1 ? (FI − σ1 ? G%)(τ, x+ τv)

· (∇v − τ∇x)(M (v) + g(τ, x, v)) dτ.

We check that∫
R2d

u(x+ τv, v)e−ik·xe−iξ·v dv dx =
∫
R2d

u(y, v)e−ik·ye−i(ξ−τk)·v dv dx

= û(k, ξ − τk).
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We also bear in mind that 1̂(v)(ξ) = δ(ξ = 0) and 1̂(x)(k) = δ(k = 0). We,
thus, obtain

ĝ(t, k, ξ) = f̂0(k, ξ)−
∫ t

0

∫
R2d

nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n)δ(ζ = τn)

· (ξ − ζ)M̂ (ξ − ζ)δ(n = k) dn dζ dτ

−
∫ t

0

∫
R2d

nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n)δ(ζ = τn)

· (ξ − ζ − τ(k − n))ĝ(τ, k − n, ξ − ζ) dndζ dτ

= f̂0(k, ξ)−
∫ t

0
kσ̂1(k)(F̂I − σ̂1Ĝ%)(τ, τk) · (ξ− τk)M̂ (ξ− τk) dτ

−
∫ t

0

∫
Rd
nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n)

· (ξ − τk)ĝ(τ, k − n, ξ − τn) dn dτ.

(35)

Eventually, the macroscopic density is evaluated by

%̂(t, k) =
∫
R2d

f(t, x, v)e−ik·x dv dx =
∫
R2d

g(t, x− tv, v)e−ik·x dv dx

=
∫
R2d

g(t, y, v)e−ik·ye−itk·v dv dy = ĝ(t, k, tk).

Going back to (35) with ξ = tk we arrive at

%̂(t, k) = f̂0(k, tk)−
∫ t

0
kσ̂1(k)(F̂I − σ̂1Ĝ%)(τ, τk) · (t− τ)kM̂ ((t− τ)k) dτ(36)

−
∫ t

0

∫
Rd
nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n)

· ((t− τ)k)ĝ(τ, k − n, tk − τn) dndτ.
4.1.1. Main result. — We are ready now to state the main result about non-
linear Landau damping. As was said above, the proof makes the constraint
d ≥ 3 appear on the space dimension.

Theorem 4.4 (Landau damping in Rd). — Let d ≥ 3. Suppose (A1)–(A3).
There exists universal constants ε0, R0 > 0 and r ∈ (0, R0), such that if s > R0,∑

α∈Nd
|α|≤P

‖xαf0‖2Hs
P
≤ ε2

0

∫ +∞

0
〈t〉2s sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt ≤ ε2

0,

sup
t,k
〈t〉s

∣∣∣F̂I(t, k)
∣∣∣ ≤ ε0,
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and M ∈ H s̃
P (Rdv) with P > d/2 and s̃ ≥ s+ 2d satisfies (L), then, the unique

solution g of (10a)–(10b) is globally defined. Moreover, there exists g∞ ∈ Hr
P ,

such that

‖g(t)− g∞‖Hσ
P
. ε0〈t〉−

d
2 for 0 ≤ σ ≤ r,(37a)

|ĝ(t, k, tk)| . ε0〈k, tk〉−(r+d+2)(37b)
‖〈∇x〉σ∇σ1 ? (FI(t)− σ1 ? Gg(t))‖L∞( dx) . ε0〈t〉−d−1 for σ ≥ 0(37c)

holds.

Remark 4.5. — Estimate (37c) holds because σ1 is assumed to be in the
Schwartz class; this assumption can be relaxed at the price of introducing
constraints on the regularity exponent σ.

Estimate (37b) provides a decay of %̂(t, k) with rate 〈k, tk〉−(r+d+2); the
statement can be completed by the convergence to 0 of the fluctuations ψ of
the medium state, see Proposition 3.4.

The proof of Landau damping in fact relies on a bootstrap estimate, see [7,
Proposition 2.5], which states as follows.

Proposition 4.6 (Bootstrap). — Let the hypothesis of Theorem 4.4 be fulfilled
and let 0 < δ < 1/2. There exists real numbers 2(d+ 1) + 1 < s1 < s2 < s3 <
s4 < s and K1, ...,K5 ≥ 1, such that, for any g ∈ C0([0, T ], Hs

P ) solution of
(10a)–(10b) on the time interval [0, T ] verifying

‖〈t∇x,∇v〉g(t)‖2Hs4
P
≤ 4K1ε

2〈t〉5,(38a)

‖As4 %̂‖2L2
(t)L

2
(k)
≤ 4K2ε

2,(38b)

‖|∇x|δg(t)‖2Hs3
P
≤ 4K3ε

2,(38c)

‖As2 %̂‖2L∞(k)L
2
(t)
≤ 4K4ε

2,(38d)

‖ ̂〈∇x,v〉s1g(t)‖L∞(k,ξ) ≤ 4K5ε,(38e)

for 0 < ε ≤ ε0 small enough, the following estimates hold on [0, T ]

‖〈t∇x,∇v〉g(t)‖2Hs4
P
≤ 2K1ε

2〈t〉5,(39a)

‖As4 %̂‖2L2
(t)L

2
(k)
≤ 2K2ε

2,(39b)

‖|∇x|δg(t)‖2Hs3
P
≤ 2K3ε

2,(39c)

‖As2 %̂‖2L∞(k)L
2
(t)
≤ 2K4ε

2,(39d)

‖ ̂〈∇x,v〉s1g(t)‖L∞(k,ξ) ≤ 2K5ε.(39e)
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Remark 4.7. — In the proof, we shall see how the si’s are chosen according
to some compatibility conditions. This choice determines the possible value for
R0 that arises in Theorem 4.4 as a threshold for the Sobolev regularity in which
the damping is evaluated. To be specific, Proposition 4.6 holds for s > s4 + 2d
and si > si−1 + 2d, and in Theorem 4.4, we can set

R0 = s4 + 2d, r = s1 − d− 2.

The condition on ε0 imposes a smallness constraint on the initial perturbation.

Remark 4.8. — It might be surprising that the half-convolution with respect
to time plays a relatively weak role in this statement, compared to the Vlasov
case. At first sight, we would suspect that the memory effect changes the control
of the force terms a lot or that it imposes further restrictions. In fact, the heart
of the proof relies on the estimates in Proposition 4.1, and the main impact
of the memory term is rather on the stability condition, where it completely
modifies, in a quite intricate way, the expression of the symbol L K . This
can be seen as a confirmation of the robustness of the approach designed in
[27, 6, 7].

The proof of Landau damping from the bootstrap closely follows [7]; full
details can be found in [33]. The bootstrap argument in itself is adapted from
[7] by taking advantage of the analogies with the Vlasov equation. There are
two main differences that require some care: the additional term FI(t) should
be controlled with the bootstrap norms, and all quantities where ‖%(t)‖ arises in
[7] should here be controlled by ‖G%‖. Both ‖FI(t)‖ and the estimates of ‖G%‖
by ‖%(t)‖ should be evaluated by using the norms involved in Proposition 4.6.
These issues are the motivation for Proposition 4.1 and Proposition 4.3. For
instance, let us detail this strategy for the estimate of As4 %̂ in the L2

(k)L
2
(t)

norm. The other estimates proceed similarly, by combining the arguments of
[7] to Propositions 4.1 and 4.3, see [33].
4.1.2. Estimate of the L2

(k)L
2
(t) norm of As4 %̂.The estimate of As4 %̂ is a con-

sequence of the following two claims, for which we refer the reader to [7, Sec-
tion 2.3 and 3]. The former is a version of Lemma 3.1 adapted to the norms of
the bootstrap.

Proposition 4.9 (Linearized damping on Rd). — Let the assumptions of
Theorem 4.4 be fulfilled. We consider a family of functions {t ∈ [0, T ] 7→
a(t, k), k ∈ Rd}. We suppose that, for any k ∈ Rd,∫ T

0
|k|〈k, tk〉2s|a(t, k)|2 dt < +∞,
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holds. Then, we can find a constant CLD (which does not depend on k and T ),
such that any solution (t, k) 7→ φ(t, k) of the system

φ(t, k) = a(t, k) +
∫ t

0
K (t− τ, k)φ(τ, k) dτ

= a(t, k) +
∫ t

0
|σ̂1(k)|2|k|2(t− τ)M̂ ([t− τ ]k)

(∫ τ

0
pc(τ − σ)φ(σ, k) dσ

)
dτ,

on [0, T ] satisfies the following estimate: for any k ∈ Rd∫ T

0
|k|〈k, tk〉2s|φ(t, k)|2 dt ≤ CLD

∫ T

0
|k|〈k, tk〉2s|a(t, k)|2 dt.

The second estimate is concerned with the time-response kernel

K̄(t, τ, k, n) = |k|
1/2|n|1/2|k(t− τ)|

〈n〉2
|ĝ(t, k − n, tk − τn)| ,

which is a crucial quantity for the analysis of the echo phenomena. This leads to
the constraint on s1 involved in Proposition 4.6. Technically, this statement is
substantially different when Xd = Td or when Xd = Rd. In the torus, the proof
needs analytic regularity but is free of constraint on the space dimension d (see
[6, Section 6]). For the free space problem, the argument relies on dispersion
mechanisms of the transport operator, which are strong enough only when
d ≥ 2; in this situation it is, thus, possible to work in finite regularity.

Proposition 4.10. — Let 0 < T < ∞. Let s1 > 2(d + 1) + 1. The following
two estimates hold

sup
t∈[0,T ]

sup
k∈Rd

∫ t

0

∫
Rd
K̄(t, τ, k, n) dndτ . sup

τ∈[0,T ]
sup
k,ξ∈Rd

〈k, ξ〉s1 |ĝ(τ, k, ξ)|

and

sup
τ∈[0,T ]

sup
n∈Rd

∫ T

τ

∫
Rd
K̄(t, τ, k, n) dk dt . sup

τ∈[0,T ]
sup
k,ξ∈Rd

〈k, ξ〉s1 |ĝ(τ, k, ξ)| .

Remark 4.11. — The factor 1/〈n〉2 in the kernel K̄ comes from the convolu-
tion kernel used in [7]. Here, since σ1 is of the Schwartz class, this factor can
be replaced by 1/〈n〉m with m ∈ N as large as we wish.

We follow the arguments of [7] closely, up to the perturbation due to FI

and Gg; as pointed out above, these perturbations do not modify the analysis
substantially, owing to Proposition 4.1 and Proposition 4.3.
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We start from the expression of %̂(t, k) in (36) and apply Proposition 4.9 to
estimate the L2

(t) norm of Asi %̂ (with i ∈ {2, 4}). We get

‖Asi %̂(·, k)‖2L2
(t)
.
∫ T

0
|k|〈k, tk〉2si |f̂0(k, tk)|2 dt(40)

+
∫ T

0

∣∣∣∣∫ t

0
|k|1/2〈k, tk〉s4k σ̂1(k)F̂I(τ, k) · [t− τ ]kM̂ ([t− τ ]k) dτ

∣∣∣∣2 dt

+
∫ T

0

∣∣∣∣ ∫ t

0

∫
Rdn
|k|1/2〈k, tk〉s4n σ̂1(n)

(
F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

)
· [t− τ ]k ĝ(τ, k − n, tk − τn) dτ dn

∣∣∣∣2 dt.

Integrating (40) with respect to k yields

‖As4 %̂‖2L2
(k)L

2
(t)
.
∫
Rd

∫ T

0
|k|〈k, tk〉2s4

∣∣∣f̂0(k, tk)
∣∣∣2 dk dt

+
∫
Rd

∫ t

0

∣∣∣∣∫ t

0
|k|1/2〈k, tk〉s4kσ̂1(k)F̂I(τ, k) · (t− τ)kf̂0([t− τ ]k) dτ

∣∣∣∣2 dk dt

+
∫
Rd

∫ T

0

∣∣∣∣ ∫ t

0

∫
Rd
|k|1/2〈k, tk〉s4nσ̂1(n)

(
F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

)
· (t− τ)kĝ(τ, k − n, tk − τn) dτ dn

∣∣∣∣2 dk dt.

We denote the three terms on the right-hand side as CT1, CT2 and NLT,
respectively (standing for “constant terms 1 and 2, nonlinear term”). In what
follows, we shall split the discussion according to the estimate NLT . NLTT +
NLTR, where NLTT (for transport) and NLTR (for reaction) stand for the
contributions that arise from the following decomposition

〈k, tk〉s4 . 〈k − n, tk − τn〉s4 + 〈n, τn〉s4 .

Estimate on CT1 and CT2. Thanks to [7, Lemma 2.6] we have

CT1 .
∑
α∈Nd
|α|≤P

‖(x, v) 7→ xαf0(x, v)‖2Hs
P
≤ ε2.

In Proposition 4.3, we already obtained CT2 . ε2.
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Estimate on NLTT. As said above, having Proposition 4.1 at hand permits us
to readily adapt the arguments of [7]. The Cauchy–Schwarz inequality yields

NLTT ≤
∫
Rd

∫ T

0

(∫ t

0

∫
Rd
〈τ〉5/2|n||σ̂1(n)||F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)|dτ dn

)
×
(∫ t

0

∫
Rd
〈τ〉−5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣ k|〈k − n, tk − τn〉2s4

× |(t− τ)k|2|ĝ(τ, k − n, tk − τn)|2 dτ dn
)

dk dt.

Now, (32c) and (38e) ensure that

〈n, τn〉s1 |σ̂1(n)||F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)| . (1 +K5)ε.

Since |n|〈τ〉 ≤ 〈n, τn〉, we get∫ t

0

∫
Rd
〈τ〉5/2|n||σ̂1(n)||F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)|dτ dn

.

(∫ t

0
〈τ〉5/2

∫
Rdn
|n|〈n, τn〉−s1 dn dτ

)
(1 +K5)ε

.

(∫ +∞

0
〈τ〉5/2−d−1 dτ

)
(1 +K5)ε . (1 +K5)ε,

where the last estimate assumes the condition 5/2−d−1 < −1, that is, d > 5/2.
This is one of the constraints on the space dimension d, which imply that the
analysis applies only when d ≥ 3.

Going back to NLTT we are led to (by using (|t− τ)k| ≤ 〈τ(k−n), tk− τn〉)

NLTT . (1 +K5)ε
∫
Rd

∫ T

0

(∫ t

0

∫
Rd
〈τ〉+5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣

× 〈τ〉−5|k|〈k − n, tk − τn〉2s4〈τ(k − n), tk − τn〉2

× |ĝ(τ, k − n, tk − τn)|2 dτ dn
)

dk dt

. (1 +K5)ε
∫
Rd

∫ T

0
〈τ〉+5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣

×
(∫ T

τ

∫
Rd
〈τ〉−5|k|〈k − n, tk − τn〉2s4〈τ(k − n), tk − τn〉2

× |ĝ(τ, k − n, tk − τn)|2 dtdk
)

dndτ
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. (1 +K5)ε
(∫

Rd

∫ T

0
〈τ〉+5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣ dn dτ

)
×
(

sup
0≤τ≤T

sup
n∈Rd
〈τ〉−5

∫
Rd

∫ +∞

−∞
〈k − n, tk − τn〉2s4〈τ(k − n), tk − τn〉2

× |ĝ(τ, k − n, tk − τn)|2|k|dt dk
)

. (1 +K5)2ε2

×
(

sup
0≤τ≤T

sup
n∈Rd
〈τ〉−5

∫
Rd
|k|
∫ +∞

−∞

∣∣〈τ(k − n), tk − τn〉〈k − n, tk − τn〉s4

× ĝ(τ, k − n, tk − τn)
∣∣2 dtdk

)
.

With two changes of variables and by applying [7, Lemma 2.8], we obtain∫
Rd
|k|
∫ +∞

−∞
|〈τ(k − n), tk − τn〉〈k − n, tk − τn〉s4 ĝ(τ, k − n, tk − τn)|2 dtdk

=
∫
Rd

∫ +∞

−∞

∣∣∣∣〈τ(k − n), t k
|k|
− τn

〉〈
k − n, t k

|k|
− τn

〉s4
× ĝ(τ, k − n, tk − τn)

∣∣∣∣2 dt dk

≤ sup
ω∈Sd−1

sup
x∈Rd

∫
Rd

∫ +∞

−∞

∣∣〈τ(k − n), tω + x〉〈k − n, tω + x〉s4

× ĝ(τ, k − n, tω + x)
∣∣2 dtdk

≤ sup
ω∈Sd−1

sup
x∈Rd

∫
Rd

∫ +∞

−∞

∣∣〈τk, tω + x〉〈k, tω + x〉s4 ĝ(τ, k − n, tω + x)
∣∣2 dtdk

. ‖〈τ∇x,∇v〉g(τ)‖2Hs4
P
.

Finally, combining this with (38a) we obtain

NLTT . (1 +K5)2K1ε
4.

Estimate on NLTR. We make the time-response kernel K̄ appear:

NLTR =
∫
Rd

∫ T

0

(∫ t

0

∫
Rd
K̄(t, τ, k, n)〈n, τn〉s4 |n|1/2〈n〉2|σ̂1(n)|

×
∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

∣∣∣ dτ dn
)2

dk dt.

tome 149 – 2021 – no 2



LANDAU DAMPING IN DYNAMICAL LORENTZ GASES 285

Then, the Cauchy–Schwarz inequality and Fubini’s theorem allow us to obtain

NLTR .
∫
Rd

∫ T

0

(∫ t

0

∫
Rd
K̄(t, τ, k, n) dτ dn

)
×
(∫ t

0

∫
Rd
K̄(t, τ, k, n)〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

×
∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

∣∣∣2 dτ dn
)

dk dt

.

(
sup
t∈[0,T ]

sup
k∈Rd

∫ t

0

∫
Rd
K̄(t, τ, k, n) dτ dn

)

×
∫ T

0

∫
Rd

(∫ T

τ

∫
Rd
K̄(t, τ, k, n) dt dk

)
〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

×
∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

∣∣∣2 dτ dn

.

(
sup
t∈[0,T ]

sup
k∈Rd

∫ t

0

∫
Rd
K̄(t, τ, k, n) dτ dn

)

×

(
sup

τ∈[0,T ]
sup
n∈Rd

∫ T

τ

∫
Rd
K̄(t, τ, k, n) dtdk

)

×
∫ T

0

∫
Rd
〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣2 dτ dn.

By using (32a) and (38b), we obtain∫ T

0

∫
Rd
〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣2dτ dn . (1 +K2)ε2.

Gathering this with Lemma 4.10 and (38e), we are led to

NLTR . (1 +K2)K2
5ε

4.

Recap. We have shown that, if g is a solution of (10a)–(10b) satisfying (38a)–
(38e) on [0, T ], then

‖As4 %̂‖2L2
(k)L

2
(t)
.
(
1 + (1 +K5)2K1ε

2 + (1 +K2)K2
5ε

2) ε2.

Let us denote by C1 the constant hidden in the symbol . of this estimate.
Choosing K2 ≥ C1 and ε� 1 so that

(1 +K5)2K1ε
2 + (1 +K2)K2

5ε
2 ≤ 1

allows us to conclude that (39b) holds.
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4.2. Periodic framework. — The dispersive effect that has been used for prov-
ing Landau damping on Rd does not exist on the torus. For this reason, in
order to control the echoes, we shall work in the analytic framework, follow-
ing [6]. For the Vlasov–Poisson problem, the analysis of [4] is a hint that this
regularity could be necessary. As a counterpart of this regularity, there is no
restriction on the space dimension d.

The proof still relies on a bootstrap argument, see [6]. There are two main
arguments, like on Rd: firstly, the force term ∇σ1 ? (FI(t)− σ1 ? G%(t)) can be
controlled, in suitable norms, by the macroscopic density %(t), and, secondly,
the contribution associated to the initial data

∫ t
0 ∇σ1?FI(τ, x+τv)·∇vM (v) dτ

does not perturb the bootstrap property too much (here, we refer the reader
to the remarks made when analyzing the whole space problem).

We shall work with the Gevrey spaces Fλ,σ;s and Gλ,σ;s
P , which involve three

parameters to control the decay of the Fourier variables associated to the po-
sition/velocity pair, see Appendix A. Here and below, we assume that

σ > d/2, P > d/2, 0 < s ≤ 1.

For the parameter λ, it will be considered as a function of the time variable
λ : t 7→ λ(t) ∈ (0,∞), continuous and decreasing.

In contrast to what we did for the problem on Rd, we do not express general
conditions on FI and pc. Instead, we shall use the same assumptions as in the
case of linearized Landau damping. For the sake of convenience, let us recall
them here.
(K1): n ≥ 3 is odd.
(K2): σ2 ∈ C0

c (Rn) with supp(σ2) ⊂ B(0, R2).
(K3): supp(ψi) ⊂ Td ×B(0, RI), i = 1, 2 and

EI =
∫∫

Td×Rn

(
|ψ1(x, z)|2 + c2|∇zψ0(x, z)|

)
dx dz < +∞.

(K4): σ1 : Td → R+ is radially symmetry and analytic; in particular there ex-
ist C1, λ1 > 0, such that |σ̂1(k)| ≤ C1 exp(−λ1|k|) holds for any k ∈ Zd.

Note that assumption (K5) on M and f0 will be replaced by M , f0 ∈ Gλ̃0,0;s
P .

As a consequence of (K1) and (K2), the kernel pc has a compact support:
supp(pc) ⊂ [0, 2R2/c], see Lemma 2.2. By virtue of (K2) and (K3), FI is
also compactly supported: supp(FI) ⊂ [0, (RI +R2)/c], as pointed out in the
proof of Lemma 3.9. In what follows, the following parameters will play an
important role

2R2/c, S0 = (RI +R2)/c.
4.2.1. Preparation of the bootstrap argument. — The following statement, an
analog for the torus of Proposition 4.1, is a crucial ingredient to justify the
bootstrap property.
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Proposition 4.12. — Let (K1)–(K4) be fulfilled. Let t 7→ λ(t) > 0 be a
continuous and decreasing function. For any σ ≥ 0 and 0 < s ≤ 1, we get

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖2Fλ(t),σ;s(41)

. EI10≤t≤S0 +
∫ t

0
|pc(t− τ)| ‖%(τ)‖2Fλ(τ),σ;s dτ.

Consequently, the following estimates hold

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖2Fλ(t),σ;s . EI +
∫ t

0
‖%(τ)‖2Fλ(τ),σ;s dτ,(42a)

sup
τ∈[0,t]

‖∇σ1 ? (FI(τ)− σ1 ? G%(τ))‖2Fλ(τ),σ;s . EI + sup
τ∈[0,t]

‖%(τ)‖2Fλ(τ),σ;s ,(42b) ∫ t

0
‖∇σ1 ? (FI(τ)− σ1 ? G%(τ))‖2Fλ(τ),σ;s dτ . EI +

∫ t

0
‖%(τ)‖2Fλ(τ),σ;s dτ.(42c)

Remark 4.13. — The following observations will be useful:
i) In the specific case s = 1, we shall need a further assumption on λ(0);

for this situation, we assume

λ(0) < C(λ1, 2R2/c, S0) = min(λ1/〈S0〉, 2λ1/〈2R2/c〉).

ii) In contrast to the analysis of the Vlasov–Poisson problem, a control of∫
‖%‖ dτ ensures a pointwise control of the force term. This fact, which

can be seen as a kind of regularizing effect of the half-time-convolution,
simplifies the proof of the bootstrap property.

iii) Like for the whole space problem, the exponential decay of σ̂1(k) can
be used to absorb any polynomial with respect to k that arises in the
estimates, see Remark 4.2.

Proof. — We estimate separately the contributions from FI and G%:

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖2Fλ(t),σ;s

. ‖∇σ1 ?FI(t)‖2Fλ(t),σ;s + ‖∇Σ ? G%(t)‖2Fλ(t),σ;s .

For the former, we use supp(FI) ⊂ [0, S0]×Td and the estimate (see the proof
of Lemma 3.9)

|k| |σ̂1(k)| |F̂I(t, k)| ≤ C1|k|e−λ1|k|‖σ2‖L2n/(n+2)

√
EI10≤t≤S0 .(43)

We obtain

‖∇σ1 ?FI(t)‖2Fλ(t),σ;s .

( ∑
k∈Zd
〈k, tk〉2σe2λ(t)〈k,tk〉s |k|2e−2λ1|k|2

)
EI10≤t≤S0

.

( ∑
k∈Zd
〈k〉2σ〈S0〉2σe2λ(0)〈k〉s〈S0〉s |k|2e−2λ1|k|2

)
EI10≤t≤S0 .
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When 0 < s < 1 the sum is finite; when s = 1, we should impose the additional
condition λ1 > λ(0)〈S0〉.

For the latter, we apply the Cauchy–Schwarz inequality, so that

‖∇Σ ? G%(t)‖2Fλ(t),σ;s

=
∑
k∈Zd
〈k, tk〉2σe2λ(t)〈k,tk〉s |k|2|σ̂1(k)|4

∣∣∣∣∫ t

0
pc(t− τ)%̂(τ, k) dτ

∣∣∣∣2

≤ ‖pc‖L1

∫ t

0
|pc(t− τ)|

∑
k∈Zd
〈k, tk〉2σe2λ(t)〈k,tk〉s |k|2|σ̂1(k)|4|%̂(τ, k)|2

 dτ

= ‖pc‖L1

∫ t

0
|pc(t− τ)|

∑
k∈Zd

Ik(t, τ)〈k, τk〉2σe2λ(t)〈k,τk〉s |%̂(τ, k)|2
 dτ.

It follows that

Ik(t, τ) = |k|2|σ̂1(k)|4 〈k, tk〉
2σ

〈k, τk〉2σ
e2(λ(t)−λ(τ)〈k,tk〉seλ(τ)(〈k,tk〉s−〈k,τk〉s).

Therefore, if Ik(t, τ) is bounded uniformly with respect to k, t and τ , then we
get

‖∇Σ ? G%(t)‖2Fλ(t),σ;s .
∫ t

0
|pc(t− τ)| ‖%(τ)‖2Fλ(τ),σ;s dτ.

We are left with the task of justifying a uniform bound on Ik(t, τ). To this
end, we remember that pc has a compact support; we can restrict the time
integration to 0 ≤ t− τ ≤ 2R2/c. For t ≥ τ , a simple analysis of the function
shows that

sup
k∈Zd

〈k, tk〉2σ

〈k, τk〉2σ
≤ 〈t〉

2σ

〈τ〉2σ
≤ 〈t− τ〉2σ ≤ 〈2R2/c〉2σ.

Since t 7→ λ(t) is decreasing, we have exp(2(λ(t)− λ(τ))〈k, tk〉s) ≤ 1. Finally,
with 0 < s ≤ 1, we have (see [6, Lemma 3.2])

|〈x〉s − 〈y〉s| ≤ 〈x− y〉s,
so that

〈k, tk〉s − 〈k, τk〉s ≤ 〈(t− τ)k〉s ≤
〈2R2

c
k
〉s

and

exp(2λ(τ) (〈k, tk〉s − 〈k, τk〉s)) ≤ exp
(

2λ(0)
〈2R2

c

〉s
〈k〉s

)
.

We conclude with
Ik(t, τ) ≤ C4

1 |k|2e−4λ1|k|〈2R2/c〉2σe2λ(0)〈 2R2
c 〉

s〈k〉s ,

when 0 < s < 1, while for s = 1 we further assume 4λ1 > 2λ(0)〈2R2/c〉. �
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We turn to the estimate of the force term
∫ t

0 ∇σ1?FI(τ, x+τv) ·∇vM (v) dτ
by means of the norms involved in the bootstrap.

Proposition 4.14. — Let (K1)–(K4). Assume that M ∈ Gλ̃0,0;s
P for some

integer P > d/2. Let t 7→ λ(t) > 0 be continuous, decreasing, and such that
λ(0) < λ̃0. Then, for any σ ≥ 0 and 0 < s ≤ 1, we have∫ T

0

∥∥∥∥∫ t

0
∇σ1 ?FI(τ, x+ τ v) · ∇vM (v) dτ

∥∥∥∥2

Fλ(t),σ;s
dt . EI .(44)

Remark 4.15. — Again, when s = 1, a constraint on λ(0), such as λ(0) <
C ′(λ1, S0) = λ1/〈S0〉, should be imposed.

Proof. — We start with∫ T

0

∥∥∥∥∫ t

0
∇σ1 ?FI(τ, x+ τ v) · ∇vM (v) dτ

∥∥∥∥2

Fλ(t),σ;s
dt

≤
∫ T

0

∑
k∈Zd\{0}

(∫ t

0
〈k, tk〉σeλ(t)〈k,tk〉s |k| |σ̂1(k)|

∣∣∣F̂I(τ, k)
∣∣∣

×
∣∣(t− τ)k

∣∣ ∣∣∣M̂ (
(t− τ ])k

)∣∣∣ dτ
)2

dt,

and we define I(t, k) as follows

I(t, k) =
∫ t

0
〈k, tk〉σeλ(t)〈k,tk〉s |k| |σ̂1(k)|

∣∣∣F̂I(τ, k)
∣∣∣∣∣(t− τ)k

∣∣∣∣∣M̂ (
(t− τ ])k

)∣∣∣dτ.
For any k 6= 0, we have 〈t〉 ≤ 〈k, tk〉, and since λ is decreasing, we obtain

I(t, k) ≤ 〈t〉−1
∫ t

0
〈k, τk〉σ+1eλ(τ)〈k,τk〉s |k| |σ̂1(k)|

∣∣∣F̂I(τ, k)
∣∣∣

× 〈[t− τ ]k〉σ+1eλ(τ)〈[t−τ ]k〉s |t− τ | |k|
∣∣∣M̂ ([t− τ ]k)

∣∣∣ dτ.

Since ‖ξ 7→ exp(λ̃0〈ξ〉s)M̂ (ξ)‖HP . ‖M ‖
Gλ̃0,0;s
P

and P > d/2, the Sobolev

embedding HP ↪→ C0 ensures that

|M̂ (ξ)| . e−λ̃0〈ξ〉s .

Then, by using (43), we arrive at

I(t, k) . 〈t〉−1〈k〉σ+1〈S0〉σ+1eλ(0)〈k〉s〈S0〉s |k|e−λ1|k|

×
(∫ t

0
〈[t− τ ]k〉σ+1eλ(0)〈[t−τ ]k〉s |t− τ | |k|e−λ̃0〈[t−τ ]k〉s dτ

)√
EI .
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Since λ(0) < λ̃0 we have∫ t

0
〈[t− τ ]k〉σ+1eλ(0)〈[t−τ ]k〉s |t− τ | |k|e−λ̃0〈[t−τ ]k〉s dτ

≤
∫
R
〈u〉σ+2e−(λ̃0−λ(0))〈u〉s du . 1.

Therefore, when 0 < s < 1 we obtain
∫ T

0
∑
k I(t, k)2 dt . EI , and for s = 1, we

conclude similarly at the price of a constraint such as λ1 > λ(0)〈S0〉. �

4.2.2. Main result. — That Landau damping holds on the torus can be for-
mulated as follows.

Theorem 4.16 (Landau damping in Td). — Let (K1)–(K4) be fulfilled. Let
P > d/2 be an integer, 0 < s ≤ 1 be a real number, and M , f0 ∈ Gλ̃0,0;s

P with
λ̃0 > 0. We also assume (without any loss of generality) that

∫∫
f0 dv dx = 0.

There exists a universal constant ε0, such that if

‖f0‖
Gλ̃0,σ;s
P

≤ ε0 ; EI ≤ ε2
0,

and M satisfies (L), then, the unique solution g of (10a)–(10b) is globally
defined. To be more specific, for any 0 < λ′ < λ̃0, we have g ∈ C0(R+;Gλ′,0;s),
and there exists an asymptotic density g∞ ∈ Gλ′,0;s, the space average of which
vanishes, such that

‖g(t)− g∞‖Gλ′,0;s . ε0e
− 1

2 (λ̃0−λ′)〈t〉s ,(45a)

‖%(t)‖Fλ′,0;s . ε0e
− 1

2 (λ̃0−λ′)〈t〉s ,(45b)

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖Fλ′,0;s . ε0e
− 1

2 (λ̃0−λ′)〈t〉s .(45c)

Remark 4.17. — When s = 1 the constraint on λ′ becomes

λ′ < min
(
λ̃0,

λ1

〈S0〉
,

2λ1

〈2R2/c〉

)
.

Remark 4.18. — Estimate (45b) can be rephrased as a decay of %̂(t, k), such
as exp(−λ′〈tk〉s). This can also be used to establish that fluctuation of the
medium ψ tends to 0, see Proposition 3.4).

Like for the problem set on Rd, the proof relies on a bootstrap argument,
which, in this context, states as follows.

Proposition 4.19 (Bootstrap). — Let the assumptions of Theorem 4.16 be
fulfilled. Let α0 = (λ̃0 + λ′)/2 and σ > d/2 + 6. There exists a function
λ : R+ → (α0, λ̃0), continuous and decreasing, a real β > 2, and constants
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K1,K2,K3,K4 > 0, such that if g is a solution of (10a)–(10b) on the time
interval [0, T ] verifying

‖g(t)‖2
Gλ(t),σ+1;s
P

≤ 4K1〈t〉7ε2(46a)

‖g(t)‖2
Gλ(t),σ−β;s
P

≤ 4K2ε
2(46b) ∫ T

0
‖%(t)‖2Fλ(t),σ;s dt ≤ 4K3ε

2(46c)

for 0 < ε ≤ ε0 small enough, then g also satisfies, on [0, T ], the estimates
‖g(t)‖2

Gλ(t),σ+1;s
P

≤ 2K1〈t〉7ε2(47a)

‖g(t)‖2
Gλ(t),σ−β;s
P

≤ 2K2ε
2(47b) ∫ T

0
‖%(t)‖2Fλ(t),σ;s dt ≤ 2K3ε

2(47c)

‖%(t)‖2Fλ(t),σ;s ≤ 2K4〈t〉ε2.(47d)

Remark 4.20. — The role of (47d) is a bit different from its analog for the
Vlasov–Poisson problem. Indeed, the interest of this estimate is to provide a
pointwise control on the force term. However, here, as was said above, such a
control can be obtained by estimating

∫
‖%(t)‖2Fλ(t),σ;s dt. Consequently, (47c)

is enough to finish the proof, without using (47d) and the proof simplifies
slightly. Nevertheless, we keep (47d) in the statement since it is useful to
justify (45b).

The justification of the bootstrap follows the same approach as for the prob-
lem on Rd. Since the structure of the Vlasov-wave equation is close to the
structure of the Vlasov–Poisson equation, we can perform the same estimates
as in [6]. The price to be paid is to replace terms of the form ‖%(t)‖F by

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖F .(48)

Then all the difficulty consists in controlling (48) by means of ‖%(t)‖F . Since
Proposition 4.12 allows us to perform this kind of estimate, we have a complete
proof of the Proposition 4.19 by applying this strategy. Details can be found
in [33].

5. Discussion of the stability criterion

In this section, we come back to the stability criteria (L) and (L′), which
are absolutely crucial for justifying Landau damping. We already know that a
large wave speed guarantees damping, see Proposition 3.10. Nevertheless, we
may also wonder, for a given wave speed c, whether an equilibrium M is stable
or unstable.
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5.1. Towards a Landau–Penrose criterion. — For the usual Vlasov equation,
a “practical” condition on the equilibrium M is—the Penrose criterion, see
[27, Condition (c) in Proposition 2.1]—can be exhibited to ensure linearized
stability. By following a similar approach we expect to find a criterion with
the same flavor for the Vlasov-wave problem. However, we shall see that the
half-convolution with respect to time that defines pc makes the criterion much
more intricate.

Throughout this section, we assume that

σ1 and σ2 are radially symmetric,

which makes the computation more explicit. With slight abuse, we shall use the
same notation for radially symmetric functions and their radial representation.
As a warm-up, let us briefly recall why it suffices to check that ω ∈ iR 7→
L (ω|k|, k) ∈ C never crosses the real axis beyond 1, see the details in [32,
Section 3.4] for the Vlasov–Poisson equation and in [33] the Vlasov-wave model.

The first step of the reasoning consists in showing that it is sufficient to
check that L K (ω|k|, k) 6= 1 for every k and ω ∈ C with Re(ω) ≥ 0. Let
us distinguish four different cases, depending on whether Xd = Td or Rd and
whether we are considering (L) or (L′).
First case: Xd = Td and (L). — In this case, we check that L K

(
(α +

iβ)|k|, k
)
converges to 0 when |k| → +∞, uniformly with respect to α + iβ,

and it converges to 0 when α → +∞, uniformly with respect to k and β.
Moreover, thanks to the Riemann–Lebesgue lemma, we can also prove that
L K

(
(α+iβ)|k|, k

)
converges to 0 when |β| → +∞. There is a priori no reason

for the latter convergence to be uniform with respect to k and α. However, since
we consider an infimum over all k ∈ Zd \ {0}, the first convergence ensures us
that we can restrict ourselves to a finite number of modes k, and the convergence
when |β| → +∞ is, indeed, uniform with respect to k. We can also justify that
this convergence is uniform with respect to α. To this end, we show that
α 7→ L K

(
α + iβ)|k|, k

)
is uniformly continuous with respect to k and β.

Since the convergence of L K to 0 when α → +∞ is uniform with respect
to β, we can consider α in a compact subset of (0,∞) and then (by uniform
continuity) only a finite number of α’s. Now, we know that outside of a compact
of {ω ∈ C , Re(ω) ≥ 0} × Zd \ {0} the application (ω, k) 7→ L K (ω|k|, k) is
far from 1. Since in a compact of this set there is a finite number of modes
k, and since the application ω 7→ L K (ω|k|, k) is continuous, condition (L) is
satisfied if and only if L K (ω|k|, k) 6= 1 for every k ∈ Zd \{0} and every ω ∈ C
such that Re(ω) ≥ 0.
Second case: Xd = Rd and (L). — This case is not far from the previous one,
we only have to understand what happens when k lives in a continuum space
like Rd \ {0}. If we fix some δ > 0 arbitrarily small and if we only consider the
infimum over {|k| ≥ δ}, then we can follow the same strategy, up to the fact
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that we now have to justify the uniform continuity of k 7→ L K
(
(α+ iβ)|k|, k

)
with respect to β.

Next, we study what happens when k goes to 0 (this point is irrelevant for
the usual Vlasov case; since the potential is singular at 0 the symbol L K
cannot reach 1 when k → 0). It is not possible to extend k 7→ L K (ω|k|, k)
by continuity at 0, but for every sequence (kn)n∈N, such that kn → 0, up to
a subsequence, we can assume that (kn/|kn|)n∈N converges to a certain σ∞.
Then we are led to

lim
n→+∞

L K (ω|kn|, kn) = |σ̂1(0)|2
(∫ +∞

0
pc(t) dt

)(∫ +∞

0
e−ωu u M̂ (uσ∞) du

)
.

Since
∫∞

0 pc dt = κ/c2, we conclude that (L) is satisfied if and only if for every
k ∈ Rd \ {0}, σ ∈ Sd−1, ω ∈ C with Re(ω) ≥ 0,

L K (ω|k|, k) 6= 1 and L(ω, σ) = κ

c2
|σ̂1(0)|2

(∫ +∞

0
e−ωu u M̂ (uσ) du

)
6= 1.

Third case: Xd = Td and (L′). — In this case, we show the uniform continuity
with respect to k and β of α 7→ L K

(
(α+ iβ)|k|, k

)
when α lies in an interval

of the form (−λ,+∞) with λ > 0. Then, if the criterion (L′) is satisfied for a
certain κ > 0, for all ω = α+ iβ with α ≥ 0, we can find 0 < Λ < λ, such that
(possibly replacing κ by κ/2) criterion (L′) is satisfied for all ω = α+ iβ with
α > −Λ.

From this point, we can apply the arguments of the first case to conclude
that (L′) is satisfied if and only if L K (ω|k|, k) 6= 1 for every k ∈ Zd \ {0} and
ω ∈ C with Re(ω) ≥ 0.
Fourth case: Xd = Rd and (L′). — By combining the arguments of the third
and second cases we obtain that (L′) is satisfied if and only if for every k ∈
Rd \ {0}, σ ∈ Sd−1, ω ∈ C with Re(ω) ≥ 0,

L K (ω|k|, k) 6= 1 and L(ω, σ) 6= 1.
The second step of the argument consists in applying Rouché’s theorem in

order to compute the number of zeros of ω 7→ L K (ω|k|, k) − 1 in a certain
compact of {ω ∈ C , Re(ω) ≥ 0} (note that is possible to justify that ω 7→
L K (ω|k|, k) is holomorphic). To be more specific, the previous step allows us
to find a radius Ω > 0, such that L K is far from 1 for every k and ω ∈ C with
Re(ω) ≥ 0 and |ω| ≥ Ω. If we assume, for every k, that ω 7→ L K (ω|k|, k)
never achieves the value 1 on the imaginary axis, then Rouché’s theorem tells
us that the number of zeros of ω 7→ L K (ω|k|, k)− 1 is equal to

N = 1
2iπ

∫
ΓΩ

∂ωL K (ω|k|, k)
L K (ω|k|, k)− 1 dω,

where ΓΩ = CΩ ∪ [−iΩ, iΩ] with CΩ = {Ωeiθ , θ ∈ [π/2, 3π/2]}. We split the
integral over the path ΓΩ into a contribution over CΩ and an other contribution
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over [−iΩ, iΩ], and we let Ω go to +∞; we can justify that the integral over
CΩ goes to 0 and eventually obtain

N = 1
2iπ

∫
L K (i|k|R,k)

1
z − 1 dz.

Since L K (iβ|k|, k)→ 0 when β → ±∞, L K (i|k|R, k)∪ {0} is a closed path
in C (which does not cross 1), and we deduce that L K (iω|k|, k) 6= 1 for every
k and ω ∈ C with Re(ω) ≥ 0 i, and only if, L K (iβ|k|, k) 6= 1 for every k
and β ∈ R, and the winding number of the path L K (i|k|R, k) ∪ {0} around
1 is equal to 0. This formulation eventually allows us to obtain the announced
sufficient (but not necessary) criterion: if for every k and β ∈ R

Im (L K (iβ|k|, k)) = 0 =⇒ Re (L K (iβ|k|, k)) < 1,

then the linear stability criterion is satisfied.

Remark 5.1. — For Xd = Rd, the second step also has to be performed on the
symbol L. Then the complete sufficient condition is: if for every k ∈ Rd \ {0}
and σ ∈ Sd−1, β ∈ R 7→ L K (iβ|k|, k), and β ∈ R 7→ L(iβ, σ) never crosses
the real axis beyond 1, then the linear stability criterion is satisfied.

5.2. Computations of Laplace transforms for the Penrose criterion. — In order
to find an expression for the stability criterion, we compute L K (ω|k|, k) on
the imaginary axis; namely, with β ∈ R, we consider

L K
(
iβ|k|, k

)
= lim
α→0
α>0

L K
(
(α+ iβ)|k|, k

)
= ρ0|σ̂1(k)|2

{
lim
α→0
α>0

L pc
(
(α+ iβ)|k|

)}{
lim
α→0
α>0

L
(
t|k|2M̂(tk)

)(
(α+ iβ)|k|

)}
,

where

v 7→M (v) = ρ0M(v), ρ0 > 0,
∫
M(v) dv = 1.

The computation of the Laplace transform of t 7→ t|k|2 M̂(tk) is based on
the Plemelj formula (see [14, Example 5.2]), which leads to (see [27, Proposi-
tion 2.1])

lim
α→0
α>0

L
(
t|k|2M̂(kt)

)(
(α+ iβ)|k|, k

)
= −P.V.

∫
R

µ′k/|k|(r)
r + β

dr − iπµ′k/|k|(−β),

where P.V. denotes the usual principal value operator, and µk/|k| is the one-
dimensional marginal of M defined by

µk/|k|(r) =
∫
v⊥·k=0

M
(
r
k

|k|
+ v⊥

)
dv⊥.
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Next, the Laplace transform of pc can be determined by using the classical
result [28, Formula (VI,2;13)]

L
(
1t≥0 sin(θt)

)
(ω) = θ

ω2 + θ2 , for Re(ω) > 0.

For α > 0, β ∈ R, we thus get (we recall that pc is defined by (5))

L pc
(
(α+ iβ)|k|

)
= 1

(2π)n

∫
Rn

|σ̂2(ζ)|2

(α+ iβ)2|k|2 + c2|ζ|2
dζ.

Since σ2 is radially symmetric, its Fourier transform is also radially symmetric,
and we can write

L pc
(
(α+ iβ)|k|

)
= |S

n−1|
(2π)n

∫ +∞

0

rn−1|σ̂2(r)|2

(α2 − β2)|k|2 + c2r2 + 2iαβ|k|2 dr.

In order to compute this integral we will apply the following Plemelj-like for-
mula.

Lemma 5.2. — Let n ≥ 3. Let f : R → R be of Schwartz class. We have for
any κ 6= 0,

lim
λ→0
λ>0

∫ +∞

0

rn−1f(r)
r2 − κ2 + λ2 + 2iκλ dr

= P.V.
∫ +∞

0

rn−1f(r)
r2 − κ2 dr − sgn(κ) iπ2 κ

n−2f(|κ|).

We postpone the proof of this claim until the end of this section. We apply
this formula with f(r) = |σ̂2(r)|2, λ = α|k|/c and κ = β|k|/c in order to obtain

lim
α→0
α>0

L pc
(
(α+ iβ)|k|

)
= 1
c2
|Sn−1|
(2π)n

(
P.V.

∫ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr − sgn(β) iπ2

(β|k|
c

)n−2 ∣∣∣σ̂2

( |βk|
c

)∣∣∣2).
We point out that Lemma 5.2 cannot be applied with β = 0. Nevertheless, the
previous formula makes sense even when β = 0; in this case, a direct application
of the dominated convergence theorem allows us to obtain

lim
α→0
α>0

L pc(α|k|) = 1
(2π)n

∫
Rn

|σ̂2(ζ)|2

c2|ζ|2
dζ = κ

c2
,

which is consistent with the general formula.
Therefore, we obtain the following expression for L K (iβ|k|, k) which iden-

tifies the real and imaginary parts,

L K (iβ|k|, k) = ρ0

c2
|Sn−1|
(2π)n |σ̂1(k)|2 (R(β|k|, k) + iI (β|k|, k)) ,
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where

R(β|k|, k) = −
(

P.V.
∫ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr
)(

P.V.
∫
R

µ′k/|k|(r)
r + β

dr
)

− sgn(β)π
2

2

(β|k|
c

)n−2 ∣∣∣σ̂2

( |βk|
c

)∣∣∣2 µ′k/|k|(−β),

and

I (β|k|, k) = −π µ′k/|k|(−β)
(

P.V.
∫ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr
)

+ sgn(β)π2

(β|k|
c

)n−2 ∣∣∣σ̂2

( |βk|
c

)∣∣∣2(P.V.
∫
R

µ′k/|k|(r)
r + β

dr
)
.

This leads to the Penrose stability criterion
(P): If

sgn(β)
2

(β|k|
c

)n−2 ∣∣∣σ̂2

( |βk|
c

)∣∣∣2(P.V.
∫
R

µ′k/|k|(r)
r + β

dr
)

= µ′k/|k|(−β)
(

P.V.
∫ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr
)
,

then

−ρ0

c2
|Sn−1|
(2π)n |σ̂1(k)|2

{(
P.V.

∫ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr
)(

P.V.
∫
R

µ′k/|k|(r)
r + β

dr
)

+ sgn(β)π
2

2

(
β|k|
c

)n−2 ∣∣∣∣σ̂2

(
|βk|
c

)∣∣∣∣2µ′k/|k|(−β)
}
< 1.

When Xd = Rd, the Penrose criterion (P) has to be completed with the
following criterion
(P’): for all ω ∈ Sd

if µ′ω(−β) = 0 then −ρ0κ

c2
|σ̂1(0)|2

(
P.V.

∫
R

µ′ω(r)
r + β

dr
)
< 1,

We conclude that when (P) (respectively, (P) and (P’)) is satisfied, then
(L) holds. This criterion is much more involved than the Penrose criterion for
the Vlasov equation, because the memory term pc changes the evaluation of
the symbol L K completely and does not keep a simple separation between
the real and imaginary parts.

Remark 5.3. — Let us rescale the problem as in [9]: roughly speaking, this
amounts to replacing the wave equation by

∂2
ttψ − c2∆zψ = −c2σ2 σ1 ? ρ.
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Letting c run to +∞, the problem looks like the Vlasov equation where the
self-consistent potential is defined by the convolution −κσ1 ? σ1 ? ρ. According
to [27], the stability criterion for this limiting problem reads

if µ′k/|k|(−β) = 0, then − ρ0κ |σ̂1(k)|2
(

P.V.
∫
R

µ′k/|k|(r)
r + β

dr
)
< 1,

which corresponds to the limit c → +∞ in the rescaled version of (P) (note
that in this scaling, the symbol L K is multiplied by c2). In particular, note
the minus sign in front of the coefficient ρ0|σ̂1(k)|2: it makes the situation very
similar to that of the attractive Vlasov system.

We finish this section with the proof of the Plemelj-like formula that we used
in order to compute the Laplace transform of pc.

Proof of Lemma 5.2. — Let us denote by I(λ) the quantity under considera-
tion and f(r) = g(r2); with the change of variable u = r2 we get

I(λ) = 1
2

∫ +∞

0

γ(u)
u− κ2 + λ2 + 2iκλ du,

where γ(u) = un/2−1g(u). We adapt the computations that lead to Plemelj’s
formula. It is crucial to remark that

γ′ ∈ Lp((0,∞)) for some 1 < p < 2.(49)

(At worst, γ′(u) has the same singularity as 1/
√
u as u→ 0.) We start with

I(λ) = 1
2

∫ +∞

0

γ(u)
(u− κ2 + λ2)2 + 4κ2λ2 (u− κ2 + λ2) du

− 2iκλ
2

∫ +∞

0

γ(u)
(u− κ2 + λ2)2 + 4κ2λ2 du.

Setting v = u− κ2 + λ2, and w = v/(2|κ|λ), the second term recasts as

− i2
κ

|κ|

∫ +∞

−κ2+λ2

γ(v + κ2 − λ2)(
v

2|κ|λ

)2
+ 1

dv
2|κ|λ

= −sgn(κ) i2

∫ +∞

− 1
2

(
λ
|κ|−

|κ|
λ

) γ(2|κ|λw + κ2 − λ2)
w2 + 1 dw,

which tends to −i sgn(κ)π γ(κ2)/2 as λ→ 0. Similarly, we consider

J(λ) =
∫ +∞

−κ2+λ2

v

v2 + 4κ2λ2 γ(v + κ2 − λ2) dv.
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Since λ is intended to tend to 0, we can consider κ2 � λ2 > 0 Given 0 < δ <
κ2 − λ2, we split into two parts

J(λ) =
∫
|v|>δ

. . . dv +
∫ +δ

−δ
. . . dv = Jδ(λ) + Jδ(λ).

First, we show that Jδ(λ) tends to 0 as δ → 0, uniformly with respect to λ.
Indeed, since v 7→ v/(v2 + λ2) is odd and thanks to (49), we have

|Jδ(λ)| =

∣∣∣∣∣
∫ +δ

−δ

v

v2 + 4κ2λ2

[
γ(v + κ2 − λ2)− γ(κ2 − λ2)

]
dv

∣∣∣∣∣
≤ ‖γ′‖Lp

∫ +δ

−δ

1
|v|1/p

dv −−−→
δ→0

0.

By dominated convergence, we get (owing to the fast decay at infinity of γ′)

lim
λ→0

Jδ(λ) =
∫
|v|>δ

1v≥−κ2
γ(v + κ2)

v
dv

=
∫ −δ
−κ2

γ(v + κ2)− γ(κ2)
v

dv +
∫ κ2

δ

γ(v + κ2)− γ(κ2)
v

dv

+
∫ +∞

κ2

γ(v + κ2)
v

dv.

The same reasoning shows that this quantity admits a limit as δ goes 0, which
we write with the shorthand notation

lim
δ→0

lim
λ→0

Jδ(λ) = P.V.
∫ ∞
−κ2

γ(v + κ2)
v

dv. �

5.3. Stable and unstable states. — The criterion (P) is a bit ugly and not
that practical. Nevertheless, some relevant information can be extracted from
the formula, again showing the similarity with the attractive Vlasov–Poisson
equation.

Proposition 5.4. — Let Xd = Rd with d ≥ 3. Let M be a spatially homo-
geneous and radially symmetric equilibrium. Then, there exists a threshold for
the wave speed c0(M , σ1, σ2) > 0, such that for any 0 < c < c0(M , σ1, σ2), M
in an unstable equilibrium state.

Proof. — We find k and β, such that L K (iβ|k|, k) = 1. To this end, we use
the fact that L pc(iβ|k|) belongs to R for β = 0 and the radial symmetry of
M , which implies that L (|k|2tM̂(tk))(iβ|k|, k), is also real when β = 0:

L K (0, k) = −ρ0 |σ̂1(k)|2
(

P.V.
∫
R

µ′k/|k|(r)
r

dr
)
κ

c2
.(50)
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Moreover, the symmetry of M (and the condition on the dimension d, see
Remark 5.5 below) also ensures (except for M = 0, but 0 is obviously a stable
state)

−
(

P.V.
∫
R

µ′k/|k|(r)
r

dr
)
> 0.

Now let us pick a vector k0, such that σ̂1(k0) 6= 0. As far as c is small enough,
we have L K (0, k0) > 1. Next,

L K (0, λk0) −−−−−→
λ→+∞

0,

and the continuity of λ ∈ R 7→ σ̂1(λk0) (observe that λk0/|λk0| does not depend
on λ, and, thus, only σ̂1 depends on λ in the expression of L K (0, λk0)) allow
us to exhibit a λ0 ∈ R, such that L K (0, λ0k0) = 1. �

Remark 5.5. — The condition d ≥ 3 ensures that all marginals of a nonnega-
tive radially symmetric function M are nonincreasing functions of |v|, see [27,
Remark 2.2], which yields

−
(

P.V.
∫
R

µ′k/|k|(r)
r

dr
)
≥ 0.(51)

When d = 1 or d = 2 this does not hold in full generality. Nevertheless,
Proposition 5.4 still holds provided that (51) is fulfilled.

Remark 5.6. — When Xd = Td, the same proof shows that, for any spatially
homogeneous and radially symmetric equilibrium, we can find some wave speed
c, such that M is unstable. However, since k ∈ Zd, it is not clear that we can
exhibit a nontrivial interval [0, c0(M )] such that instability occurs.

To identify a threshold on c determining whether or not the stability criterion
holds can be interpreted by means of Jeans’ criterion, a standard criterion for
the Vlasov–Poisson system, see [27, Proposition 2.1 & Remark 2.2]). To be
more specific, let us consider a form function σ1 defined on Rd, the Fourier
transform of which has a singularity at ξ = 0: typically, σ̂1(k) = |k|−α for some
α > 1. Of course, such a singular potential is beyond the analysis detailed
in this paper; we only use this assumption to establish a parallel with the
usual Jeans criterion. Let σ(L)

1 be the periodic potential defined on TdL =
(R/(2πLZ))d by

σ
(L)
1 (x) =

∑
k∈Zd

σ1(x+ 2πLk).

Observing that σ̂(L)
1 (k) = σ̂1(k/L), (50) becomes

L K (0, k) = −ρ0
L2α

|k|2α

(
P.V.

∫
R

µ′k/|k|(r)
r

dr
)
κ

c2
,
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where L has a role similar to 1/c. In particular, for any spatially homogeneous
equilibrium M , there exists a critical length LJ beyond which the equilibrium
can be unstable; this defines Jeans’ length.

Remark 5.7. — DenotingM = ρ0M , withM being normalized, we can equally
say (with the same arguments) that, for any fixedwave speed c, we can find amass
threshold m0(M, c, σ1, σ2) > 0, such that for any ρ0 > m0(M, c, σ1, σ2), M is
unstable. Nevertheless, we point out that, for c fixed, the mass ρ0 of the profile
M is not the unique quantity that governs the stability of M , as indicated by
the following claim.

Proposition 5.8. — Let M be a spatially homogeneous equilibrium. We can
find two positive constants C1 = C1(c, σ1, σ2) and C2 = C2(c, σ1, σ2), such that

if, for any ω ∈ Sd, we have
∫ +∞

0
u
∣∣∣M̂ (uω)

∣∣∣ du ≤ C1(c, σ1, σ2),

then M is stable,

if there exists ω ∈ Sd, such that
∫ +∞

0
uM̂ (uω) du ≥ C2(c, σ1, σ2),

then M is unstable.

This statement can be interpreted as follows. For fixed c, σ1 and σ2, there
always exist stable spatially homogeneous equilibria with an arbitrarily large
mass (respectively, kinetic energy), and there always exist unstable spatially
homogeneous equilibria with an arbitrarily small mass (respectively, kinetic
energy). This comes from the fact that the constants C1 and C2 in Proposi-
tion 5.8 are left invariant by the rescaling M → Mλ(v) = λd−2M (λv), while
the associated mass (respectively, kinetic energy) is invariant for the scaling
M → λdM (λv) (respectively, M → λd+2M (λv)). These findings are investi-
gated on numerical grounds in [18].

Proof. — The first part of the statement is a direct consequence of Proposi-
tion 3.10, which tells us that a given profile M is stable provided that c is
large enough. The second part of the statement is a direct consequence of
Proposition 5.4, and it comes from the formula

L (|k|2tM̂ (tk))(0, k) = ρ0

(
P.V.

∫
R

µ′k/|k|(r)
r

dr
)

=
∫ +∞

0
uM̂ (uω) du. �

Appendix A. Functional framework

A.1. Besov spaces. — Besov spaces are well adapted to study the dispersion
properties of wave propagations; refined estimates are expressed naturally in
this framework. We refer the reader to [16] for a thorough introduction to these
functional spaces in the context of dispersion estimates for the wave equation.
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Further relevant references can be found in [16]. For the sake of completeness
let us here remind the reader of the basic definition of Besov spaces.

The definition relies on a dyadic decomposition in the Fourier variable. Let
φ ∈ S(Rn) be such that

0 ≤ φ̂ ≤ 1, φ̂(ζ) = 1 for |ζ| ≤ 1 and φ̂(ζ) = 0 for |ζ| ≥ 2.

Then we define the sequence
(
ϕj
)
j∈Z ⊂ S(Rn) by

ϕ̂0(ζ) = φ̂(ζ)− φ̂(2ζ),
ϕ̂j(ζ) = ϕ̂0(2−jζ) for any j ∈ Z \ {0}.

Hence, the following properties hold

for every ζ 6= 0,
∑
j

ϕ̂j(ζ) = 1,

for every j ∈ Z, supp(ϕ̂j) ⊂ {ζ | 2j−1 ≤ |ζ| ≤ 2j+1}.

Let p, q ≥ 1 and s ∈ R. A tempered distribution f ∈ S ′(Rn) is said to be
element of (the homogeneous Besov space)

.
Bs,pq if

i) f̂ ∈ L1
loc(Rn)

ii) The sequence
(
2sj‖ϕj ? f‖Lp

)
j∈Z lies in `q(Z).

One can prove that the Besov space
.
Bs,pq endowed with the norm ‖ · ‖ .

Bs,pq

defined by

‖f‖ .
Bs,pq

=
(∑
j∈Z

2qsj‖ϕj ? f‖qLp
)1/q

is a Banach space.
Condition i) does not appear in [16]. We adopt it in order to avoid some

technicalities due to the fact that the Fourier transform of polynomials has
a support reduced to {0}. Indeed, since the dyadic decomposition (ϕj) does
not capture what happens at the frequency ζ = 0, depending on the indices,
the norm ‖ · ‖ .

Bs,pq
may not be able to distinguish the tempered distribution

f = 0 from any other nonzero tempered distribution with a support equal to
{0}. In full generality, the equality f =

∑
j ϕj ? f holds on S ′(Rn) only up

to polynomials and to make ‖ · ‖ .
Bs,pq

a norm imposes working on a quotient
space. However, the equality f =

∑
j ϕj ? f holds on the subset of S ′(Rn)

made of tempered distributions with a Fourier transform in L1
loc; then ‖ · ‖ .Bs,pq

is a norm on this subspace, which motivates the restriction i), adapted to our
purposes. We refer the interested reader to [16] and references therein for the
basic properties satisfied by homogeneous Besov spaces. Let us just mention
that when p = 2 and q = 2, the homogeneous Besov space

.
Bs,22 is nothing but
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the classical homogeneous Sobolev space
.
Hs. In general there is no embedding

between
.
Bs,pq and

.
Bs
′,p
q (when s′ ≥ s, if s ≥ 0, 2s′j ≥ 2sj for j ≥ 0, but

2s′j < 2sj for j < 0), but one can obtain conditions on p, q, s and p′, q′, s′ in
order to get that

.
Bs,pq embeds into

.
Bs
′,p′

q′ .
Let p, q ≥ 1 and s ∈ R. A tempered distribution f ∈ S ′(Rn) is said to be an

element of Bs,pq if
• φ ? f ∈ Lp(Rn)
• The sequence

(
2sj‖ϕj ? f‖Lp

)
j∈N is in lq(N).

One can prove that the Besov space Bs,pq endowed with the norm ‖ · ‖Bs,pq
defined by

‖f‖Bs,pq = ‖φ ? f‖Lp +
(∑
j∈N

2qsj‖ϕj ? f‖qLp
)1/q

is a Banach space. When p = 2 and q = 2, the inhomogeneous Besov space
Bs,22 is the classical Sobolev space Hs. When s ≥ 0, one can prove that
Bs,pq = Lp∩

.
Bs,pq (and then that Bs,pq embeds into

.
Bs,pq ). Moreover, since these

spaces are inhomogeneous, Bs′,pq embeds into Bs,pq when s′ ≥ s.

A.2. Sobolev-type spaces on Rd. — Using the shorthand notation 〈x〉 = (1 +
|x|2)1/2, for s ∈ R, m ∈ N \ {0}, we denote

Hs(Rm) =
{
u : Rm → R,

∫
Rm
〈x〉2s|û(x)|2 dx

}
,

the standard Sobolev spaces. Given x and y in Rd, x, y stands for the vector
in R2d that results from the concatenation of x and y. Consequently, we can
set 〈x, y〉 = (1 + |x|2 + |y|2)1/2. With α = (α1, . . . αd) ∈ Nd, we introduce the
differential operator

Dα
ξ = (−i∂α1

ξ1
) · · · (−i∂αdξd ).

For s ≥ 0, Hs still stands for the standard Sobolev space. We shall make use of
the norms introduced in [7]. We deal with functions f : (0,∞)×Rd×Rd → R,
and for P ∈ N, s ≥ 0, we denote

‖f(t)‖2Hs
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ vαf(t, x, v)‖2Hs

=
∑
α∈Nd
|α|≤P

∫∫
Rd×Rd

〈k, ξ〉2s
∣∣∣Dα

ξ f̂(t, k, ξ)
∣∣∣2 dk dξ.

(52)
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It is also convenient to consider

‖〈t∇x,∇v〉f(t)‖2Hs
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ 〈t∇x,∇v〉vαf(t, x, v)‖2Hs

=
∑
α∈Nd
|α|≤P

∫∫
Rd×Rd

〈tk, ξ〉2〈k, ξ〉2s
∣∣∣Dα

ξ f̂(t, k, ξ)
∣∣∣2 dk dξ

(there is a slight abuse of notation here since the right-hand side is actually
equivalent to the definition of ‖〈t∇x,∇v〉f(t)‖2Hs

P
based on (52)) and∥∥ |∇x|δf(t)

∥∥2
Hs
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ |∇x|δvαf(t, x, v)‖2Hs

=
∑
α∈Nd
|α|≤P

∫∫
Rd×Rd

|k|2δ〈k, ξ〉2s
∣∣∣Dα

ξ f̂(t, k, ξ)
∣∣∣2 dk dξ.

We shall also use L∞-type estimate on Fourier transforms; we set∥∥∥ ̂〈∇x,v〉sf
∥∥∥
L∞(t)L

∞
(k,ξ)

= sup
t∈[0,T ]

(
sup
k,ξ∈Rd

{
〈k, ξ〉s

∣∣∣f̂(t, k, ξ)
∣∣∣}) .

For a function (t, x) ∈ (0,∞) × Rd 7→ %(t, x) ∈ R we introduce the modified
Sobolev norm ∫

Rd
|k|〈k, tk〉2s|%̂(t, k)|2 dk = ‖As(t)%̂(t)‖L2

(k)
,

where we have set

As(t, k) = |k|1/2〈k, tk〉s,

and we also use

‖As%̂‖L2
(k,t)

=
∫ T

0

∫
Rd
|k|〈k, tk〉2s|%̂(t, k)|2 dk dt,

and

‖As%̂‖L∞(k)L
2
(t)

= sup
k∈Rd

(∫ T

0
|k|〈k, tk〉2s|%̂(t, k)|2

)1/2

.

The norms defined on the macroscopic density % equally apply to the kinetic
quantity g, replacing %̂(t, k) by ĝ(t, k, tk).
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A.3. Gevrey-type spaces on Td. — To analyze the problem on the torus, we
need to introduce some Gevrey norms. Let g : (0,∞)t × Tdx × Rdv → R. The
Gevrey norm ‖ · ‖Gλ,σ;s is defined by

‖g(t)‖2Gλ,σ;s =
∑
k∈Zd

∫
Rd
ξ

〈k, ξ〉2σe2λ〈k,ξ〉s |ĝ(t, k, ξ)|2 dξ,

and we also need the Gevrey norm ‖ · ‖Fλ,σ;s given by

‖g(t)‖2Fλ,σ;s =
∑
k∈Zd
〈k, tk〉2σe2λ〈k,tk〉s |ĝ(t, k, tk)|2 .

Let % : Rt × Tdx → R. The Gevrey norm ‖ · ‖Fλ,σ;s reads

‖%(t)‖2Fλ,σ;s =
∑
k∈Zd
〈k, tk〉2σe2λ〈k,tk〉s |%̂(t, k)|2 .

In what follows, we always assume λ, σ ≥ 0 and 0 < s ≤ 1.
As a warm-up, we observe that with g(t, x, v) = f(t, x+ tv, v) and %(t, x) =∫
f(t, x, v) dv, we have

‖%(t)‖Fλ,σ;s = ‖g(t)‖Fλ,σ;s .

Moreover, assuming σ > d/2 we have a σ−ring property; with h(t, x, v) =
%(t, x+ tv)g(t, x, v), we have

‖h(t)‖Gλ,σ;s . ‖%(t)‖Fλ,σ;s‖g(t)‖Gλ,σ;s .

Finally, we shall also need the following Gevrey norm: for P ∈ N, we define
the norm ‖ · ‖Gλ,σ;s

P
of a function (t, x, v) 7→ g(t, x, v) by

‖g(t)‖2Gλ,σ;s
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ vαg(t, x, v)‖2Gλ,σ;s

=
∑
α∈Nd
|α|≤P

∑
k∈Zd

∫
Rd
ξ

〈k, ξ〉2σe2λ〈k,ξ〉s ∣∣Dα
ξ ĝ(t, k, ξ)

∣∣2 dξ.

The σ−ring estimate equally applies to this norm.
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