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PSEUDOVALUATIONS ON THE DE RHAM–WITT COMPLEX

by Rubén Muñoz--Bertrand

Abstract. — For a polynomial ring over a commutative ring of positive characteristic,
we define on the associated de Rham–Witt complex a set of functions, and show that
they are pseudovaluations in the sense of Davis, Langer and Zink. To achieve this, we
explicitly compute products of basic elements on the complex. We also prove that the
overconvergent de Rham–Witt complex can be recovered using these pseudovaluations.

Résumé (Pseudovaluations sur le complexe de de Rham–Witt). — Pour tout an-
neau polynomial sur un anneau commutatif de caractéristique strictement positive, on
définit sur le complexe de de Rham–Witt associé un ensemble de fonctions, et l’on
démontre que ce sont des pseudovaluations au sens de Davis, Langer et Zink. Pour y
parvenir, on calcule explicitement des produits d’éléments basiques du complexe. On
prouve également que le complexe de de Rham–Witt surconvergent peut être retrouvé
en employant ces pseudovaluations.
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54 R. MUÑOZ--BERTRAND

Introduction

Davis, Langer and Zink introduced the overconvergent de Rham–Witt com-
plex in [2]. It is a complex of sheaves defined on any smooth variety X over a
perfect field k of positive characteristic. It can be used to compute both the
Monsky–Washnitzer and the rigid cohomology of the variety. This comparison
was first established by [2] for quasi-projective smooth varieties; the assumption
of quasi-projectiveness was then removed by Lawless [7].

This complex is defined as a differential graded algebra (dga) contained in the
de Rham–Witt complex WΩ•X/k of Deligne and Illusie. In order to achieve this
they defined for any ε > 0, in the case where X is the spectrum of a polynomial
ring k[X] over k, an order function γε : WΩ•k[X]/k → R ∪ {+∞,−∞}. The
overconvergent de Rham–Witt complex of X is the set of all x ∈ WΩ•k[X]/k,
such that γε(x) 6= −∞, for some ε > 0. In the general case, it is defined as the
functional image of this set for a surjective morphism of smooth commutative
algebras over k.

In degree zero (that is, for Witt vectors), these maps have nice properties.
One of these is that they are pseudovaluations. We recall the definition. A
pseudovaluation on a ring R is a function v : R→ R∪{+∞,−∞}, such that:

v(0) = +∞,
v(1) = 0,

∀r ∈ R, v(r) = v(−r) ,
∀r, s ∈ R, v(r + s) > min{v(r) , v(s)} ,

∀r, s ∈ R, (v(r) 6= −∞) ∧ (v(s) 6= −∞) =⇒ (v(rs) > v(r) + v(s)) .
The last formula will be referred to as the product formula in the remainder

of this article.
Pseudovaluations and their behaviour have been studied in [3]. It appears

that they form a convenient framework to study the overconvergence of recur-
sive sequences. However, there are counterexamples showing that in positive
degree, the maps γε are not pseudovaluations. This becomes an obstacle when
one wants to study the local structure of the overconvergent de Rham–Witt
complex, or when one tries to find an interpretation of F -isocrystals for the
overconvergent de Rham–Witt complex following the work of [4].

In this paper, we define new mappings
ζε : WΩ•k[X]/k → R ∪ {+∞,−∞} ,

for all ε > 0 and prove that these are pseudovaluations. Moreover, we show
that the set of all x ∈ WΩ•k[X]/k, such that ζε(x) 6= −∞, for some ε > 0, also
define the overconvergent de Rham–Witt complex.

In order to do so, in the first section we recall the main results concerning
the de Rham–Witt complex, especially in the case of a polynomial algebra.
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The second section, which is the most technical one, consists of computations
of products of specific elements of the de Rham–Witt complex. The results are
explicit and proven in the case where k is any commutative Z〈p〉-algebra. This
enables us in the last section to define the pseudovaluations and prove that
in the case of a perfect field of positive characteristic, we retrieve with these
functions the overconvergent de Rham–Witt complex.

The product formula comes in handy to control the overconvergence of se-
quences defined by recursion. This is the main motivation for this work, which
will allow us in subsequent papers to study the structure of the overconver-
gent de Rham–Witt complex and, eventually, to give an interpretation of F -
isocrystals as overconvergent de Rham–Witt connections.

1. The de Rham–Witt complex for a polynomial ring

Let p be a prime number. Let k be a commutative Z〈p〉-algebra. Throughout
this article, for any i, j ∈ N, we shall write:

Ji, jK := N ∩ [i, j] .

Let n ∈ N and write k[X] := k[X1, . . . , Xn]. We will first recall basic prop-
erties of the de Rham–Witt complex of k[X], denoted

(
WΩ•k[X]/k, d

)
(for an

introduction, see [5] or [6]). In degree zero, WΩ0
k[X]/k is isomorphic as a W (k)-

algebra to W (k[X]), the ring of Witt vectors over k[X].
There is a morphism of graded rings F : WΩ•k[X]/k → WΩ•k[X]/k called

the Frobenius endormorphism, a morphism V : WΩ•k[X]/k → WΩ•k[X]/k
of graded groups called the Verschiebung endormorphism, as well as a
morphism of monoids [•] : (k[X] ,×)→ (W (k[X]) ,×) called the Teichmüller
lift such that:

∀r ∈ k[X] , F ([r]) = [rp] ,(1)
∀m ∈ N, ∀x, y ∈WΩ•k[X]/k, V

m(xFm(y)) = V m(x) y,(2)
∀m ∈ N, ∀x ∈WΩ•k[X]/k, d(Fm(x)) = pmFm(d(x)) ,(3)

∀m ∈ N, ∀P ∈ k[X] , Fm(d([P ])) =
[
P p

m−1
]
d([P ]) ,(4)

∀i, j ∈ N, ∀x ∈WΩik[X]/k, ∀y ∈WΩjk[X]/k,

d(xy) = (−1)i xd(y) + (−1)(i+1)j
yd(x) ,

(5)

∀m ∈ N, ∀(xi)i∈J1,mK ∈ (W (k[X]))m ,

d

(
m∏

i=1
xi

)
=

m∑

i=1


 ∏

j∈J1,mKr{i}
xj


 d(xi) .

(6)
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56 R. MUÑOZ--BERTRAND

We shall introduce basic elements on the de Rham–Witt complex, called
basic Witt differentials, and recall how any de Rham–Witt differential on k[X]
can be expressed as a series using these elements. We mostly follow [6].

Definition 1.1. — A weight function is a mapping a : J1, nK → N
[

1
p

]
; for

all i ∈ J1, nK, its values shall be written as ai. We define:

|a| :=
n∑

i=1
ai,

and:

Xa :=
n∏

i=1
Xi

ai .

For any weight function a and any J ⊂ J1, nK, we denote by a|J the weight
function that for all i ∈ J1, nK satisfies:

a|J(i) =
{
ai if i ∈ J ,
0 otherwise.

The support of a weight function a is the following set:
Supp(a) := {i ∈ J1, nK | ai 6= 0} .

A partition I of a weight function a is a subset I ⊂ Supp(a). Its size is
its cardinal. We will denote by P the set of all pairs (a, I), where a is a weight
function, and I is a partition of a.

In all this paper, the p-adic valuation shall be denoted vp. For a weight
function a, we fix the following total order � on Supp(a):

∀i, i′ ∈ Supp(a) , i � i′

⇐⇒ ((vp(ai) 6 vp(ai′)) ∧ ((vp(ai) = vp(ai′)) =⇒ (i 6 i′))) .
We will denote by ≺ the associated strict total order and we also let min(a) ∈

Supp(a) be the only element such that min(a) � i, for any i ∈ Supp(a).
Let m ∈ J0, nK. Let I := {ij}j∈J1,mK be a partition of a weight function a.

We will always suppose that ij ≺ ij′ , for all j, j′ ∈ J1,mK, such that j < j′. By
convention, we will say that i0 � i and i ≺ im+1 whenever i ∈ Supp(a). We
define the following m+ 1 subsets of Supp(a) for any l ∈ J0,mK:

Il := {i ∈ Supp(a) | il � i ≺ il+1} .
Let a be a weight function. We set:

vp(a) := min{vp(ai) | i ∈ J1, nK} ,
u(a) := max{0,− vp(a)} .
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If a is not the zero function, we put:

g(a) := Fu(a)+vp(a)
(
d
(
V u(a)

([
Xp− vp(a)a

])))
.

Furthermore, if I is a partition of a, and η is any element in W (k), we set:

e(η, a, I) :=




d
(
V u(a)

(
η
[
Xpu(a)a|I0

]))∏#I
l=2 g(a|Il

) if I0 = ∅ and u(a) 6= 0,

V u(a)
(
η
[
Xpu(a)a|I0

])∏#I
l=1 g(a|Il

) otherwise.

(7)

When I0 = ∅ and u(a) = 0, then V u(a)
(
η
[
Xpu(a)a|I0

])
= η. So one can

notice that, if one ignores η, the element defined above is a product of #I
factors whenever I0 = ∅, and of #I + 1 factors otherwise, the factors being the
images of an element through one of the functions d, g or V . We will use this
fact later, when we define the pseudovaluations on the de Rham–Witt complex
of a polynomial ring.

We recall the action of d, V and F on these elements.

Proposition 1.2. — For any (a, I) ∈ P and any η ∈W (k), we have:

d(e(η, a, I)) =





0 if I0 = ∅,
e(η, a, I ∪ {min(a)}) if I0 6= ∅ and vp(a) 6 0,
pvp(a)e(η, a, I ∪ {min(a)}) if I0 6= ∅ and vp(a) > 0.

Proof. — See [6, proposition 2.6]. �

Proposition 1.3. — For any (a, I) ∈ P and any η ∈W (k), we have:

F (e(η, a, I)) =





e(η, pa, I) if vp(a) < 0 and I0 = ∅,
e(pη, pa, I) if vp(a) < 0 and I0 6= ∅,
e(F (η) , pa, I) if vp(a) > 0.

Proof. — See [6, proposition 2.5]. �

Proposition 1.4. — For any (a, I) ∈ P and any η ∈W (k), we have:

V (e(η, a, I)) =





e
(
V (η) , ap , I

)
if vp(a) > 0,

e
(
pη, ap , I

)
if vp(a) 6 0 and I0 = ∅,

e
(
η, ap , I

)
if vp(a) 6 0 and I0 6= ∅.

Proof. — See [6, proposition 2.5]. �

The de Rham–Witt complex is endowed with a topology called the standard
topology [5, I. 3.1.]. In this article, it will not be necessary to recall its defini-
tion, as we will only need the fact that a series of the form

∑
(a,I)∈P e(ηa,I , a, I),
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58 R. MUÑOZ--BERTRAND

with ηa,I ∈ W (k), for all (a, I) ∈ P, converges in WΩ•k[X]/k if and only if for
any m ∈ N, we have V u(a)(ηa,I) ∈ V m(W (k)) except for a finite number of
(a, I) ∈ P.

The following theorem is essential to the definition of the overconvergent de
Rham–Witt complex, and to its decomposition as a W (k)-module in the case
of a polynomial algebra.

Theorem 1.5. — For any differential x ∈ WΩ•k[X]/k, there exists a unique
function

η : P →W (k)
(a, I) 7→ ηa,I

such that:
x =

∑

(a,I)∈P
e(ηa,I , a, I) .

Proof. — See [6, theorem 2.8]. �

2. Computations

The goal of this section is to make explicit computations of the product of
two basic Witt differentials, that is, elements of the form (7).

Let k be a commutative Z〈p〉-algebra. Let n ∈ N. In what follows, we shall
denote k[X] := k[X1, . . . , Xn]. For any (a, I) ∈ P with a taking values in N,
we will write:

h(a, I) :=
∏

i∈Supp(a)rI
[Xi]ki

∏

j∈I
g
(
a|{j}

)
.

We will use the elements h defined above in order to achieve this, as they
appear to be more convenient for calculations.

Lemma 2.1. — Let R be a commutative k-algebra. Let x ∈ R and let m,m′ ∈
N, such that m + m′ 6= 0. Put a := vp(m+m′) and b := p−a(m+m′). Then
we have in the de Rham–Witt complex WΩ•R/k of R:

[x]m d
(

[x]m
′)

= m′

b
F a
(
d
(

[x]b
))

.

Proof. — Using (1) and (3), we get:

d
(

[x]m+m′
)

= d
(
F a
(

[x]b
))

= paF a
(
d
(

[x]b
))

.

Moreover, as:

(m+m′) [x]m d
(

[x]m
′)

= m′d
(

[x]m+m′
)
,
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PSEUDOVALUATIONS ON THE DE RHAM–WITT COMPLEX 59

we obtain in the case where k = Z〈p〉, R = Z〈p〉[X] and x = X the formula:

pab[x]m d
(

[x]m
′)

= pam′F a
(
d
(

[x]b
))

.

The ring W
(
Z〈p〉[X]

)
has no p-torsion, as Z〈p〉[X] itself has no p-torsion. So

we deduce from theorem 1.5 that WΩ•k[X]/k also has no p-torsion, which allows
us to conclude in this situation. For the general case, using the canonical
commutative diagram:

Z〈p〉[X] R

Z〈p〉 k,

where the upper arrow sends X to x, we conclude using the morphism of
W
(
Z〈p〉

)
-dgas WΩ•Z〈p〉[X]/Z〈p〉 → WΩ•R/k obtained by functoriality of WΩ••/•.

�

The next proposition gives a simple formula for products of values of h. The
goal of the subsequent lemmas will be to use it in order to get a formula for
products of elements of the form (7).

Proposition 2.2. — Let (a, I) , (b, J) ∈ P, such that a and b take values in
N. There exists m ∈ Z〈p〉, such that:

h(a, I)h(b, J) =
{
mh(a+ b, I ∪ J) if I ∩ J = ∅,
0 otherwise.

Proof. — First, we have by definition:

h(a, I)h(b, J)

=
∏

i∈Supp(a)rI
[Xi]ai

∏

i′∈I
g
(
a|{i′}

) ∏

j∈Supp(b)rJ
[Xj ]bj

∏

j′∈J
g
(
b|{j′}

)
.

Since WΩ•k[X]/k is alternating, this product is zero whenever I ∩ J 6= ∅.
Otherwise, we get:

h(a, I)h(b, J)

=
∏

i∈Supp(a+b)r(I∪J)

[Xi]ai+bi
∏

i′∈I
[Xi′ ]bi′ g

(
a|{i′}

) ∏

j′∈J
[Xj′ ]aj′ g

(
b|{j′}

)
.
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60 R. MUÑOZ--BERTRAND

Moreover, for any i′ ∈ I we obtain:

[Xi′ ]bi′ g
(
a|{i′}

) (4)= [Xi′ ]

(
1−p

− vp

(
a|{i′}

))
ai′+bi′

d

(
[Xi]p

− vp

(
a|{i′}

)
ai′

)

2.1= p
− vp

(
a|{i′}

)
ai′

p− vp(ai′+bi′ )(ai′ + bi′)
g
(
(a+ b) |{i′}

)
.

Using the same argument, for any j′ ∈ J , one successfully gets:

[Xj′ ]aj′ g
(
b|{j′}

)
= p

− vp

(
b|{j′}

)
bj′

p− vp(aj′+bj′)(aj′ + bj′)
g
(
(a+ b) |{j′}

)
.

This concludes the proof, because:
∏

i∈Supp(a+b)r(I∪J)

[Xi]ai+bi
∏

i′∈I
g
(
(a+ b) |{i′}

) ∏

j′∈J
g
(
(a+ b) |{j′}

)

= h(a+ b, I ∪ J) . �

Lemma 2.3. — Let (a, I) ∈ P, such that a takes values in N. We have:

g(a) =
∑

j∈Supp(a)

pvp(aj)−vp(a)h(a, {j}) .

Proof. — Write S := Supp(a) for simplicity. We compute:

F vp(a)
(
d
([
Xp− vp(a)a

]))

(4)=
[
X(1−p− vp(a))a

]
d
([
Xp− vp(a)a

])

(6)=
[
X(1−p− vp(a))a

]∑

j∈S


 ∏

j′∈Sr{j}

[
Xj′

p− vp(a)aj′
]

 d
([
Xj

p− vp(a)aj

])

(4)=
∑

j∈S


 ∏

j′∈Sr{j}
[Xj′

aj′ ]


F vp(a)

(
d
([
Xj

p− vp(a)aj

]))

(1)
(3)=
∑

j∈S


 ∏

j′∈Sr{j}
[Xj′

aj′ ]


 pvp(aj)−vp(a)F vp(aj)

(
d
([
Xj

p− vp(aj)aj

]))

=
∑

j∈S
pvp(aj)−vp(a)h(a, {j}) .

This ends the proof because by definition g(a) = F vp(a)
(
d
([
Xp− vp(a)a

]))
.
�
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PSEUDOVALUATIONS ON THE DE RHAM–WITT COMPLEX 61

The next lemma will be used to write any value of the function h defined
above as a linear combination of elements of the form (7). The previous lemma
can be seen as a kind of reciprocal.

Lemma 2.4. — Let (a, I) ∈ P, such that a takes values in N. Denote by
P the set of partitions of Supp(a) of size #I. Then there exists a function
s : P → N ⊂W (k), such that:

h(a, I) =
∑

J∈P
e(s(J) , a, J) .

Proof. — Put m := #I. If m = 0, then obviously h(a, I) = e(1, a, I). Thus,
suppose that m 6= 0. Write {il}l∈J1,mK := I, with ij ≺ ij′ , for any pair j < j′ in
J1,mK, and for all j ∈ Supp(a) put vj := vp(aj) and bj = p−vjaj . By definition:

h(a, I) =
∏

i∈Supp(a)rI
[Xi]ai

∏

j∈I
F vj

(
d
(

[Xj ]bj

))
.

So we can write:

h(a, I) = h
(
a|Supp(a)rIm

, I r {im}
)
F vim

(
d
(

[Xim ]bim

)) ∏

i∈Imr{im}
[Xi]ai .

Moreover, we can compute:

F vim

(
d
(

[Xim ]bim

)) ∏

i∈Imr{im}
[Xi]ai

(1)= F vim


d
(

[Xim ]bim

) ∏

i∈Imr{im}
[Xi]p

−vim ai




(5)= F vim


d
(∏

i∈Im

[Xi]p
−vim ai

)
− [Xim ]bim d


 ∏

i∈Imr{im}
[Xi]p

−vim ai






(1)
(3)= g(a|Im)− F vim

(
[Xim ]bim

)
pvp(a|Imr{im})−vim g

(
a|Imr{im}

)

(1)= g(a|Im
)− pvp(a|Imr{im})−vim [Xim ]aim g

(
a|Imr{im}

)
.

So we get:
h(a, I) = h

(
a|Supp(a)rIm

, I r {im}
)
g(a|Im

)

− pvp(a|Imr{im})−vimh
(
a|{im}∪Supp(a)rIm

, I r {im}
)
g
(
a|Imr{im}

)
.

We can then deduce the lemma by induction on m = #I. Indeed, if we
suppose that h

(
a|Supp(a)rIm

, I r {im}
)
can be written as a linear combina-

tion of elements of the form e
(
1, a|Supp(a)rIm

, J ′
)
, where J ′ is a partition of

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



62 R. MUÑOZ--BERTRAND

Supp(a) r Im of size m− 1, then since

e
(
1, a|Supp(a)rIm

, J ′
)
g(a|Im

) = e(1, a, J ′ ∪ {im}) ,

the lemma is proven for the minuend of the above difference, and one can
conclude for the subtrahend by using the same reasoning. �

Lemma 2.5. — Let (a, I) , (b, J) ∈ P, such that a and b take values in N.
Let η, η′ ∈ W (k). Denoting by P the set of partitions of Supp(a+ b) of size
#I + #J , then there exists a function s : P → Z〈p〉 such that:

e(η, a, I) e(η′, b, J) =
∑

L∈P
e(s(L) ηη′, a+ b, L) .

Proof. — By definition we have e(η, a, I) = η
[
Xa|I0

]∏#I
i=1 g(a|Ii). There is

also a similar equation defining e(η′, b, J). Using lemma 2.3, for any i ∈
J1,#IK, we can write g(a|Ii) as a linear combination of elements of the form
h(a|Ii , {ji}) with ji ∈ Ii. Also, by definition,

[
Xa|I0

]
= h(a|I0 , ∅). Thus, we

can write e(η, a, I) as a linear combination of products of elements of the form
ηh(a|I0 , ∅)

∏#I
i=1 h(a|Ii

, {ji}), where all ji ∈ Ii, for any i ∈ J1,#IK. Again, we
can do the same with e(η′, b, J). We can conclude by using proposition 2.2 and
lemma 2.4. �

Lemma 2.6. — Let (a, I) , (b, J) ∈ P, such that u(a) > u(b) and I0 6= ∅.
Denote by P the set of partitions of size #I + #J of Supp(a+ b), and put:

v :=
{
u(b) if J0 6= ∅,
0 otherwise.

Then for any η, η′ ∈W (k), there exists a function s : P → Z〈p〉 with:

∀L ∈ P,
{
pv+u(a+b) | s(L) if L0 = ∅,
pv | s(L′) otherwise,

such that:

e(η, a, I) e(η′, b, J) =
∑

L∈P
e
(
s(L)V u(a)−u(a+b)

(
ηFu(a)−u(b)(η′)

)
, a+ b, L

)
.
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Proof. — Put Ĩ :=
⋃
i∈J1,#IK Ii. We can compute:

e(η, a, I) e(η′, b, J)
(2)= V u(a)

(
η
[
Xpu(a)(a|I0)

]
Fu(a)(e(1, a|Ĩ , I) e(η′, b, J))

)

1.3= V u(a)
(
η
[
Xpu(a)(a|I0)

]
e
(

1, pu(a)a|Ĩ , I
)
e
(
pvFu(a)−u(b)(η′) , pu(a)b, J

))

= V u(a)
(
e
(
η, pu(a)a, I

)
e
(
pvFu(a)−u(b)(η′) , pu(a)b, J

))
.

These computations have been done so that the basic Witt differentials
appearing in the last line are integral. In particular, we are now in position to
apply lemma 2.5. That is, there is a function s′ : P → Z〈p〉 such that:

e(η, a, I) e(η′, b, J) = V u(a)

(∑

L∈P
e
(
pvs′(L) ηFu(a)−u(b)(η′) , pu(a)(a+ b) , L

))
.

We can conclude by using proposition 1.4 and the fact that the Verschiebung
endomorphism is additive. �

In the last two statements of this section, we are interested in the case where
k has characteristic p. The results become clearer in this situation because we
have p = V (F (1)).

Lemma 2.7. — Suppose k has characteristic p. Let (a, I) , (b, J) ∈ P, such that
u(a) > u(b) and I0 6= ∅. Denote by P the set of partitions of size #I + #J of
Supp(a+ b), and put:

v :=
{
u(b) if J0 6= ∅,
0 otherwise.

Let α, β ∈ N. Then for any η ∈ V α(W (k)) and any η′ ∈ V β(W (k)), there
exists a function s : P →W (k) with:

∀L ∈ P,
{
s(L) ∈ V α+β+v+u(a)(W (k)) if L0 = ∅,
s(L) ∈ V α+β+v+u(a)−u(a+b)(W (k)) otherwise,

such that:

e(η, a, I) e(η′, b, J) =
∑

L∈P
e(s(L) , a+ b, L) .

Proof. — This is a special case of lemma 2.6 when k has characteristic p,
because in that case, we have px = F (V (x)) = V (F (x)) for any x ∈W (k), but
also ηη′ ∈ V α+β(W (k)) [1, proposition 5. p. IX.15]. �

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



64 R. MUÑOZ--BERTRAND

Proposition 2.8. — Suppose k has characteristic p. Let (a, I) , (b, J) ∈ P
with I0 6= ∅. Denote by P the set of partitions of size #I + #J of Supp(a+ b).
Let α, β ∈ N. Then, for any η ∈ V α(W (k)) and any η′ ∈ V β(W (k)), there
exists a function s : P →W (k) with:

∀L ∈ P,
{
s(L) ∈ V α+β+min{u(a),u(b)}(W (k)) if L0 = ∅,
s(L) ∈ V α+β+max{u(a),u(b)}−u(a+b)(W (k)) otherwise,

such that:
e(η, a, I) e(η′, b, J) =

∑

L∈P
e(s(L) , a+ b, L) .

Proof. — This statement is just a special case of lemma 2.7, except when
u(b) > u(a) and J0 = ∅. In that situation, if J ′ := J r {min(b)}, we deduce
from proposition 1.2 that:

e(η, a, I) e(η′, b, J)
= e(η, a, I) d(e(η′, b, J ′))

= (−1)#I (d(e(η, a, I) e(η′, b, J ′))− d(e(η, a, I)) e(η′, b, J ′)) .
This enables us to conclude using lemma 2.7 again. �

3. Pseudovaluations

We shall now consider the case where k is a commutative ring of character-
istic p. Let n ∈ N and let k[X] := k[X1, . . . , Xn]. Recall that theorem 1.5 says
that any x ∈WΩ•k[X]/k can be uniquely written as

∑
(a,I)∈P e(ηa,I , a, I), where

all ηa,I ∈ W (k). This allows us to define specific W (k)-submodules of the de
Rham–Witt complex.

Definition 3.1. — An element x =
∑

(a,I)∈P e(ηa,I , a, I) ∈ WΩ•k[X]/k is said
to be integral if ηa,I = 0, for all a with u(a) 6= 0. We denote by WΩint,•

k[X]/k the
subset of all integral elements of the de Rham–Witt complex.

The element x is said to be fractional if ηa,I = 0 for all a with u(a) = 0. We
denote by WΩfrac,•

k[X]/k the subset of all fractional elements of the de Rham–Witt
complex.

The element x is said to be pure fractional if ηa,I = 0 for all (a, I), such
that u(a) = 0 or I0 = ∅. We denote by WΩfrp,•

k[X]/k the subset of all pure
fractional elements of the de Rham–Witt complex.

Notice that we have the following decomposition as W (k)-modules:

WΩ•k[X]/k
∼= WΩint,•

k[X]/k ⊕WΩfrp,•
k[X]/k ⊕ d

(
WΩfrp,•

k[X]/k

)
.(8)
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This is a refinement of Langer and Zink’s decomposition into integral and
fractional parts [6, (3.9)]. Indeed, we have:

WΩfrac,•
k[X]/k

∼= WΩfrp,•
k[X]/k ⊕ d

(
WΩfrp,•

k[X]/k

)
.

In the whole chapter, for any x ∈ WΩ•k[X]/k, we will denote by x|int, x|frac,
x|frp and x|d(frp) the obvious projections for these decompositions.

We will also denote by vV the V -adic pseudovaluation on W (k). Davis,
Langer and Zink defined the following functions for any ε > 0 [2, (0.3)]:

γε :
WΩ•k[X]/k → R ∪ {+∞,−∞}∑

(a,I)∈P e(ηa,I , a, I) 7→ inf(a,I)∈P{vV (ηa,I) + u(a)− ε|a|} .
To see that this definition coincides with the one given by Davis, Langer and

Zink, it is necessary to see that in their definition of a basic Witt differential,
they ask that vV (ηa,I) > u(a), for all (a, I) ∈ P [6, p. 261]. The definition
given in this article has been modified, which is why we need to add u(a) in
the definition of γε.

The overconvergent de Rham–Witt complex of k[X] is the set of all x ∈
WΩ•k[X]/k, such that there exists ε > 0 with γε(x) 6= −∞.

One of the main obstacles to studying the overconvergence of recursive se-
quences containing products of de Rham–Witt differentials is that these func-
tions are not pseudovaluations. We will first study two counterexamples to
the product rule in the case where k[X] ∼= k[X,Y ] as k-algebras. That is,
we will find x, y ∈ WΩ•k[X]/k, such that for all ε > 0, we have γε(x) 6= −∞,
γε(y) 6= −∞ and γε(xy) < γε(x) + γε(y).

Example 3.2. — For any m ∈ N, notice that:

V m
([
Xpm−1

])
d(V m([X])) = pmd([X]) ,

γε

(
V m
([
Xpm−1

]))
= m− ε(pm − 1)

pm
,

γε(d(V m([X]))) = m− ε

pm
,

γε(pmd([X])) = m− ε < 2m− ε.
This first counterexample illustrates what happens when one takes the prod-

uct of two fractional elements. The phenomenon occurring here with x =
V m
([
Xpm−1]) and y = d(V m([X])) is that the power of the denominator of

the weight functions (which we denoted a 7→ u(a)) can get smaller when taking
products of differentials. Indeed, lemmas 2.6 and 2.7 and proposition 2.8 show
that multiplying basic elements translates as an addition for weight functions.
However, we notice in this example that the V -adic pseudovaluation we have to
calculate gets bigger; it is just not big enough, so it compensates the decrease
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of u. In this example, to get a function satisfying the product formula of pseu-
dovaluations, it seems to be enough to multiply the V -adic pseudovaluation by
2 in the definition of γε. It is still not sufficient in general, as can be seen in
the following counterexample.

Example 3.3. — Let m ∈ N. Then:

γε

(
V m
([
Xpm−1

]))
= m− ε(pm − 1)

pm
,

γε(d(V m([Y ]))) = m− ε

pm
,

γε

(
V m
([
Xpm−1

])
d(V m([Y ]))

)
= m− ε < 2m− ε.

Another type of counterexample thus appears taking x = V m
([
Xpm−1])

and y = d(V m([Y ])). In this situation, x, y and xy are basic Witt differentials,
and the image through u of their associated weight functions is always m.
This happens to be the main reason why the product formula fails with γε
in this context, as we need to add 2m when computing γε(x) + γε(x), but m
only appears once in the computation of γε(xy). So, in order for the product
formula to work in general, we need to multiply the value of u in the definition
of γε by the number of factors in the definition of (7). As this number is smaller
than n, as remarked after the first counterexample, we also have to multiply
the V -adic pseudovaluation by 2n.

This leads us to the definition below, which is a modification of Davis, Langer
and Zink’s definition. From now, n ∈ N is an arbitrary integer.

Definition 3.4. — For any ε > 0 put:

ζε :
WΩ•k[X]/k → R ∪ {+∞,−∞}

x 7→
{

inf(a,I)∈P{2n vV (ηa,I) + #Iu(a)− ε|a|} if I0 = ∅,
inf(a,I)∈P{2n vV (ηa,I) + (#I + 1)u(a)− ε|a|} if I0 6= ∅,

for x =
∑

(a,I)∈P e(ηa,I , a, I).

We will prove that these functions are pseudovaluations. Before we demon-
strate the product formula, we first give a few basic properties. It is, for
instance, immediate that:

∀x, y ∈WΩ•k[X]/k, ζε(x+ y) > min{ζε(x) , ζε(y)} .(9)

Also, a consequence of proposition 1.2 is that:
∀x ∈WΩ•k[X]/k, ζε(d(x)) > ζε(x) .(10)

The following proposition tells us that we recover the definition of the over-
convergent de Rham–Witt complex with these functions.
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Proposition 3.5. — Let x ∈WΩ•k[X]/k. There exists ε > 0, such that γε(x) 6=
−∞ if and only if ζε′(x) 6= −∞, for some ε′ > 0.

Proof. — Notice that whenever n 6= 0, we have:

∀x ∈WΩ•k[X]/k, 2nγ ε
2n

(x) > ζε(x) > γε(x) .

This ends the proof except when n = 0. However, when n = 0, then
WΩ•k[X]/k

∼= W (k) as W (k)-dgas, so there is nothing to do. �

We will now prove the product formula. We are doing this by exhaustion
using the decomposition (8). Even though most of the proofs below follow the
same, simple strategy, it is still interesting to carry them out in detail as one
gets stronger formulas in some cases.

Proposition 3.6. — For any ε > 0 and any x, y ∈WΩint,•
k[X]/k, we have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε(xy) > ζε(x) + ζε(y) .

Proof. — By definition of WΩint,•
k[X]/k, we know that for all (a, I) , (b, J) ∈ P,

there exists ηa,I , η′b,J ∈W (k), such that:

x =
∑

(a,I)∈P
u(a)=0

e(ηa,I , a, I) ,

y =
∑

(b,J)∈P
u(b)=0

e
(
η′b,J , b, J

)
.

For any (a, I) , (b, J) ∈ P, such that u(a) = u(b) = 0, using lemma 2.5 we
get:

ζε
(
e(ηa,I , a, I) e

(
η′b,J , b, J

))
> 2n vV

(
ηa,Iη

′
b,J

)
+ (#I + #J)u(a+ b)− ε|a+ b|.

Since u(a+ b) = 0 and vV
(
ηa,Iη

′
b,J

)
> vV (ηa,I) + vV

(
η′b,J

)
because k has

characteristic p [1, proposition 5. p. IX.15], we can conclude. �

Proposition 3.7. — Let ε > 0. For any x ∈WΩint,•
k[X]/k and any y ∈WΩfrp,•

k[X]/k,
we have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε
(
(xy) |d(frp)

)
> ζε(x) + ζε(y) + 1.
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Proof. — By definition of integral and pure fractional elements, we know that,
for all (a, I) , (b, J) ∈ P, there exists η′a,I , ηb,J ∈W (k) such that:

x =
∑

(b,J)∈P
u(b)=0

e(ηb,J , b, J) ,

y =
∑

(a,I)∈P
u(a)>0
I0 6=∅

e
(
η′a,I , a, I

)
.

Then, for any (a, I) , (b, J) ∈ P, such that u(a) > 0, I0 6= ∅ and u(b) = 0,
lemma 2.7 gives us:

ζε
((
e(ηb,J , b, J) e

(
η′a,I , a, I

))
|d(frp)

)

> 2n
(
vV (ηb,J) + vV

(
η′a,I

)
+ u(a)

)
+ (#I + #J)u(a+ b)− ε|a+ b|.

However, u(a+ b) = u(a), so
ζε
((
e(ηb,J , b, J) e

(
η′a,I , a, I

))
|d(frp)

)
> ζε(x) + ζε(y) + 1,

as needed. �

Proposition 3.8. — For any ε > 0, any j ∈ N, any x ∈ WΩint,j
k[X]/k and any

y ∈WΩfrp,•
k[X]/k, we get:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε((xy) |frp) > ζε(x) + ζε(y) + j.

Proof. — By definition of integral and pure fractional elements, we know that
for all (a, I) , (b, J) ∈ P, there exists η′a,I , ηb,J ∈W (k), such that:

x =
∑

(b,J)∈P
u(b)=0
#J=j

e(ηb,J , b, J) ,

y =
∑

(a,I)∈P
u(a)>0
I0 6=∅

e
(
η′a,I , a, I

)
.

Using lemma 2.7, we know that for any (a, I) , (b, J) ∈ P, such that u(a) > 0,
I0 6= ∅ and u(b) = 0, we have:

ζε
((
e(ηb,J , b, J) e

(
η′a,I , a, I

))
|frp
)

> 2n
(
vV (ηb,J) + vv

(
η′a,I

))
+ (#I + #J + 1)u(a+ b)− ε|a+ b|.

Furthermore, notice that u(a+ b) = u(a) > 0. Therefore, we obtain that
ζε
((
e(ηb,J , b, J) e

(
η′a,I , a, I

))
|frp
)
> ζε(x) + ζε(y) + #J , which ends this proof.

�
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Proposition 3.9. — Let ε > 0. For any x ∈WΩint,•
k[X]/k and any y ∈WΩ•k[X]/k,

we have:
(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε(xy) > ζε(x) + ζε(y) .

Proof. — Recall that y = y|int+y|frp+y|d(frp) and notice that ζε(y|int) > ζε(y),
ζε(y|frp) > ζε(y) and ζε

(
y|d(frp)

)
> ζε(y). Therefore, using proposition 3.7 we

get:
(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε

(
(x(y|frp)) |d(frp)

)
> ζε(x) + ζε(y) + 1.

Applying proposition 3.8 and (9) yields:
(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε((x(y|frp)) |frp) > ζε(x) + ζε(y) .

Using lemma 2.7, we obtain x(y|frp) ∈WΩfrac,•
k[X]/k. Thus, formula (9) implies

that:
(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε(x(y|frp)) > ζε(x) + ζε(y) .

Moreover, using proposition 3.6 we get:
(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε(x(y|int)) > ζε(x) + ζε(y) .

By applying (9) once more, we see that it only remains to show that:
(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε

(
x
(
y|d(frp)

))
> ζε(x) + ζε(y) .

Again by (9), it is sufficient to prove this in the case where x ∈ WΩik[X]/k,
for some i ∈ N, and y ∈ WΩjk[X]/k, for some j ∈ N. Let y′ ∈ WΩfrp,j−1

k[X]/k be
the element such that d(y′) = y|d(frp). Using proposition 1.2 we get ζε(y′) =
ζε
(
y|d(frp)

)
. However, by (5) we find:

x
(
y|d(frp)

)
= xd(y′) = (−1)i

(
d(xy′)− (−1)(i+1)(j−1)

y′d(x)
)
.

So one can conclude using (9), (10) as well as propositions 3.7 and 3.8. �

Proposition 3.10. — For any ε > 0 and any x, y ∈WΩfrp,•
k[X]/k, we get:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε((xy) |frp) > ζε(x) + ζε(y) + 1.

Proof. — Reasoning as in the proof of proposition 3.8, it is enough to prove
that for any (a, I) , (b, J) ∈ P with u(a) 6= 0, I0 6= ∅, u(b) 6= 0 and J0 6= ∅, and
any Witt vectors ηa,I , ηb,J ∈W (k), we have:

ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |frp) > ζε(e(ηa,I , a, I)) + ζε(e(ηb,J , b, J)) + 1.
A consequence of lemma 2.7 is that:

ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |frp)
> 2n(vV (ηa,I) + vV (ηb,J) + u(a) + u(b)− u(a+ b))

+ (#I + #J + 1)u(a+ b)− ε|a+ b|.
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Therefore, one can conclude if one has:

2n(u(a) + u(b)− u(a+ b)) + (#I + #J + 1)u(a+ b)
> (#I + 1)u(a) + (#J + 1)u(b) + 1.

Notice that #I + 1 6 n and #J + 1 6 n because we assumed that I0 6= ∅
and J0 6= ∅. Since u(a+ b) 6 max{u(a) , u(b)}, we get:

2n(u(a) + u(b)) + (#I + #J + 1− 2n)u(a+ b)
> 2nmin{u(a) , u(b)}+ (#I + #J + 1) max{u(a) , u(b)} .

This ends the proof whenever n 6= 0. If n = 0, there is nothing to show. �

Proposition 3.11. — Let ε > 0, x ∈ WΩfrp,•
k[X]/k and y ∈ d

(
WΩfrp,•

k[X]/k

)
. We

have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε((xy) |frp) > ζε(x) + ζε(y) .

Proof. — We only have to demonstrate that for any (a, I) , (b, J) ∈ P with
u(a) 6= 0, I0 6= ∅, u(b) 6= 0 and J0 = ∅, and any Witt vectors ηa,I , ηb,J ∈W (k),
we have ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |frp) > ζε(e(ηa,I , a, I)) + ζε(e(ηb,J , b, J)).
Using proposition 2.8, one obtains:

ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |frp)
> 2n(vV (ηa,I) + vV (ηb,J) + max{u(a) , u(b)} − u(a+ b))

+ (#I + #J + 1)u(a+ b)− ε|a+ b|.
So we can conclude if we show:

2n(max{u(a) , u(b)} − u(a+ b)) + (#I + #J + 1)u(a+ b)
> (#I + 1)u(a) + #Ju(b) .

Notice that #I + 1 6 n because we assumed that I0 6= ∅ and #J 6 n. As
u(a+ b) 6 max{u(a) , u(b)}, we can see that:

2nmax{u(a) , u(b)}+ (#I + #J + 1− 2n)u(a+ b)
> (#I + #J + 1) max{u(a) , u(b)} . �

Proposition 3.12. — For any ε > 0 and any x, y ∈WΩfrp,•
k[X]/k, we have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε
(
(xy) |d(frp)

)
> ζε(x) + ζε(y) + 3.

Proof. — We only have to verify that for any (a, I) , (b, J) ∈ P, such that
u(a) 6= 0, I0 6= ∅, u(b) 6= 0 and J0 6= ∅, and any ηa,I , ηb,J ∈ W (k), we have
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ζε
(
(e(ηa,I , a, I) e(ηb,J , b, J)) |d(frp)

)
> ζε(e(ηa,I , a, I))+ζε(e(ηb,J , b, J))+3. Due

to lemma 2.7 we can see that:
ζε
(
(e(ηa,I , a, I) e(ηb,J , b, J)) |d(frp)

)

> 2n(vV (ηa,I) + vV (ηb,J) + u(a) + u(b)) + (#I + #J)u(a+ b)− ε|a+ b|.
Therefore, the proof is complete if:

2n(u(a) + u(b)) + (#I + #J)u(a+ b) > (#I + 1)u(a) + (#J + 1)u(b) + 3.
In the fractional part that we are studying, we necessarily have u(a) > 0,

u(b) > 0 and u(a+ b) > 0. Moreover, #I + 1 6 n and #J + 1 6 n as we
assumed that I0 6= ∅ and J0 6= ∅. So we get:

2n(u(a) + u(b)) + (#I + #J)u(a+ b)
> (#I + 1)u(a) + (#J + 1)u(b) + 2 + #I + #J .

If #I + #J 6= 0, the proof is complete. Otherwise, it means that we are
multiplying two Witt vectors. In particular, the projection on d

(
WΩfrp,•

k[X]/k

)
is

0, but ζε(0) = +∞, so the proof becomes obvious. �

Proposition 3.13. — For any ε > 0 and any x, y ∈WΩfrp,•
k[X]/k, we have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε((xy) |int) > ζε(x) + ζε(y) + 2.

Proof. — It is enough to prove that for any (a, I) , (b, J) ∈ P, such that
u(a) 6= 0, I0 6= ∅, u(b) 6= 0 and J0 6= ∅, and for any ηa,I , ηb,J ∈ W (k), we
have ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |int) > ζε(e(ηa,I , a, I)) + ζε(e(ηb,J , b, J)) + 2.
However, using lemma 2.7 one gets:

ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |int)
> 2n(vV (ηa,I) + vV (ηb,J) + u(a) + u(b))− ε|a+ b|

because in the integral part, we always have u(a+ b) = 0, which ends the proof
as n > #I + 1 and n > #J + 1 since we assumed that I0 6= ∅ and J0 6= ∅. �

Proposition 3.14. — For any ε > 0 and any x, y ∈WΩfrac,•
k[X]/k, we have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε((xy) |int) > ζε(x) + ζε(y) .

Proof. — We will first show that for any (a, I) , (b, J) ∈ P, such that u(a) 6= 0,
I0 6= ∅ and u(b) 6= 0, and any ηa,I , ηb,J ∈W (k), we always have:

ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |int) > ζε(e(ηa,I , a, I)) + ζε(e(ηb,J , b, J)) .
Due to proposition 2.8 we can see that:

ζε((e(ηa,I , a, I) e(ηb,J , b, J)) |int)
> 2n(vV (ηa,I) + vV (ηb,J) + min{u(a) , u(b)})− ε|a+ b|
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because in the integral part we have u(a+ b) = 0, which is only possible if
u(a) = u(b). This proves this specific case because 2n > (#I + 1 + #J) if
J0 = ∅, and 2n > (#I + 1 + #J + 1) otherwise.

For the general case, notice that if I0 = ∅, then proposition 1.2 gives us the
equality:

e(ηa,I , a, I) e(ηb,J , b, J) = d(e(ηa,I , a, I r {min(a)}) e(ηb,J , b, J))

− (−1)#I−1
e(ηa,I , a, I r {min(a)}) d(e(ηb,J , b, J)) .

Therefore, we can conclude using the first paragraph as well as (10). �

Proposition 3.15. — Let ε > 0, x ∈ WΩfrp,•
k[X]/k and y ∈ d

(
WΩfrp,•

k[X]/k

)
. We

have:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε
(
(xy) |d(frp)

)
> ζε(x) + ζε(y) + 1.

Proof. — We only have to show that for any (a, I) , (b, J) ∈ P, such that
u(a) 6= 0, I0 6= ∅, u(b) 6= 0 and J0 = ∅, and any ηa,I , ηb,J ∈ W (k), we
have ζε

(
(e(ηa,I , a, I) e(ηb,J , b, J)) |d(frp)

)
> ζε(e(ηa,I , a, I))+ζε(e(ηb,J , b, J))+1.

Using proposition 2.8 one finds that:

ζε
(
(e(ηa,I , a, I) e(ηb,J , b, J)) |d(frp)

)

> 2n(vV (ηa,I) + vV (ηb,J) + min{u(a) , u(b)})
+ (#I + #J)u(a+ b)− ε|a+ b|.

So the proof is over if:

2nmin{u(a) , u(b)}+ (#I + #J)u(a+ b) > (#I + 1)u(a) + #Ju(b) + 1.

Since #I + 1 6 n and 1 6 #J 6 n because we assumed that I0 6= ∅
and J0 = ∅, and since u(a+ b) 6= 0 because we study the fractional part,
this inequality becomes obvious whenever u(a) = u(b); if not, then u(a+ b) =
max{u(a) , u(b)}, and we are done. �

Proposition 3.16. — For any ε > 0 and any x, y ∈ d
(
WΩfrp,•

k[X]/k

)
, we get:

(ζε(x) 6= −∞∧ ζε(y) 6= −∞) =⇒ ζε
(
(xy) |d(frp)

)
> ζε(x) + ζε(y) .

Proof. — One can suppose without any loss of generality that x ∈ WΩik[X]/k,
for some i ∈ N. Put y′ ∈WΩfrp,•

k[X]/k, such that d(y′) = y. Using proposition 1.2
we get ζε(y′) = ζε(y). However, xy = (−1)i d(xy′), so we can conclude due to
(9), (10) as well as proposition 3.11. �
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We will now study the cases not treated in the previous statements of this
section. Notice that if one takes x, y ∈ WΩint,•

k[X]/k, then xy ∈ WΩint,•
k[X]/k. In

particular, (xy) |frp = (xy) |d(frp) = 0, which implies:

∀ε > 0, ζε((xy) |frp) = ζε
(
(xy) |d(frp)

)
= +∞.

In a similar fashion, if x ∈WΩint,•
k[X]/k and y ∈WΩfrac,•

k[X]/k, lemma 2.7 implies
that:

∀ε > 0, ζε((xy) |int) = +∞.

Also, if x, y ∈ d
(
WΩfrp,•

k[X]/k

)
, then as xy lies in the image of d, we get

(xy) |frp = 0, which in turn implies that:

∀ε > 0, ζε((xy) |frp) = +∞.

The following table compiles all of the propositions that we have shown
concerning the function ζε, for any ε > 0 (we will always suppose that ζε(x) 6=
−∞ and ζε(y) 6= −∞).

ζε((xy) |int) > ζε((xy) |frp) > ζε
(
(xy) |d(frp)

)
>

x ∈WΩint,•
k[X]/k

y ∈WΩint,•
k[X]/k

ζε(x) + ζε(y) +∞ +∞

x ∈WΩfrp,•
k[X]/k

y ∈WΩint,•
k[X]/k

+∞ ζε(x) + ζε(y) ζε(x) + ζε(y) + 1

x ∈ d
(
WΩfrp,•

k[X]/k

)

y ∈WΩint,•
k[X]/k

+∞ ζε(x) + ζε(y) ζε(x) + ζε(y)

x ∈WΩfrp,•
k[X]/k

y ∈WΩfrp,•
k[X]/k

ζε(x) + ζε(y) + 2 ζε(x) + ζε(y) + 1 ζε(x) + ζε(y) + 3

x ∈ d
(
WΩfrp,•

k[X]/k

)

y ∈WΩfrp,•
k[X]/k

ζε(x) + ζε(y) ζε(x) + ζε(y) ζε(x) + ζε(y) + 1

x ∈ d
(
WΩfrp,•

k[X]/k

)

y ∈ d
(
WΩfrp,•

k[X]/k

) ζε(x) + ζε(y) +∞ ζε(x) + ζε(y)
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In particular, this proves the main theorem of this paper:

Theorem 3.17. — For any ε > 0, the function ζε is a pseudovaluation.

Proof. — This is straightforward using (9) and the previous table. �

Corollary 3.18. — Let ε > 0. Let ϕ : k[X]→ R be a surjective morphism of
commutative k-algebras. Then:

ζε,ϕ : WΩ•R/k → R ∪ {+∞,−∞}
x 7→ sup

{
ζε(y) | y ∈ ϕ−1({x})

}

is a pseudovaluation.

Proof. — According to [3, p. 4], this map is a pseudovaluation if and only if
ζε,ϕ(1) 6= +∞. We will show that ζε,ϕ(1) 6 0. Let y ∈ WΩ•k[X]/k such that
ζε(y) > 0. Write y =

∑
(a,I)∈P e(ηa,I , a, I) with ηa,I ∈ W (k), for all (a, I) ∈ P

using theorem 1.5. Then, by definition of ζε, for all (a, I) ∈ P, such that
ηa,I 6= 0, we must have 2n vV (ηa,I) + u(a) > 0. If n = 0, this cannot happen,
otherwise then either vV (ηa,I) > 0 or u(a) > 0. In all cases, this implies that
e(ηa,I , a, I) is in the image of V . In turn, y is also in the image of V , and by
functoriality of WΩ••/k, so is ϕ(y). In particular, ϕ(y) 6= 1, so ζε,ϕ(1) 6 0, and
we are finished. �

In subsequent papers, we will use these results and this table in order to
study the local structure of the overconvergent de Rham–Witt complex, and
give an interpretation of F -isocrystals in this context.
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