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ABOUT PLANE PERIODIC WAVES
OF THE NONLINEAR SCHRÖDINGER EQUATIONS

by Corentin Audiard & L. Miguel Rodrigues

Abstract. — The present contribution contains a quite extensive theory for the
stability analysis of plane periodic waves of general Schrödinger equations. On the
one hand, we put the one-dimensional theory, or in other words the stability theory
for longitudinal perturbations, on par with the one available for systems of Korteweg
type, including results on coperiodic spectral instability, nonlinear coperiodic orbital
stability, sideband spectral instability and linearized large-time dynamics in relation
with modulation theory, and resolutions of all the involved assumptions in both the
small-amplitude and large-period regimes. On the other hand, we provide extensions
of the spectral part of the latter to the multidimensional context. Notably, we provide
suitable multidimensional modulation formal asymptotics, validate those at the spec-
tral level, and use them to prove that waves are always spectrally unstable in both the
small-amplitude and the large-period regimes.
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112 C. AUDIARD & L. M. RODRIGUES

Résumé (À propos des ondes planes périodiques des équations de Schrödinger non
linéaires). — Le travail présenté ici comprend une théorie relativement complète
permettant l’analyse de la stabilité des ondes planes périodiques des équations de
Schrödinger générales. D’une part, nous mettons la théorie unidimensionnelle, ou au-
trement dit la théorie de stabilité sous perturbations longitudinales, au niveau de celle
disponible pour les systèmes de type Korteweg, en y incluant des résultats sur l’instabi-
lité spectrale co-périodique, la stabilité orbitale non linéaire co-périodique, l’instabilité
spectrale latérale et la dynamique linéarisée en temps long et ses relations avec la théo-
rie de la modulation, et en résolvant toutes les hypothèses associées dans les régimes
de petite amplitude et de grande période. D’autre part, nous étendons la partie spec-
trale de cette analyse au contexte multidimensionnel. En particulier, nous développons
une asymptotique formelle de modulation multidimensionnelle, validons celle-ci au ni-
veau spectral et l’utilisons pour démontrer que les ondes sont toujours spectralement
instables à la fois dans les régimes de petite amplitude et de grande période.

1. Introduction

We consider Schrödinger equations in the form
i ∂tf = −divx

(
κ(|f |2)∇xf

)
+ κ′(|f |2) ‖∇xf‖2 f + 2W ′(|f |2) f(1)

(or some anisotropic generalizations) with W a smooth real-valued function
and κ a smooth positive-valued function, bounded away from zero, where the
unknown f is complex valued, f(t,x) ∈ C, and (t,x) ∈ R×Rd. Note that the
sign assumption on κ may be replaced with the assumption that κ is real valued
and far from zero since one may change the sign of κ by replacing (f, κ,W )
with (f,−κ,−W ).

Since the nonlinearity is not holomorphic in f , it is convenient to adopt a
real point of view and introduce real and imaginary parts f = a+i b, U =

(
a
b

)
.

Multiplication by − i is, thus, encoded in

J =
(

0 1
−1 0

)
,(2)

and Equation (1) takes the form

∂tU = J
(
−divx

(
κ(‖U‖2)∇xU

)
+ κ′(‖U‖2) ‖∇xU‖2 U + 2W ′(‖U‖2) U

)
.

(3)

The problem has a Hamiltonian structure
∂tU = J δH0[U] with H0 [U] = 1

2κ(‖U‖2)‖∇xU‖2 ,+W (‖U‖2),

with δ denoting the variational gradient1. Indeed, our interest in (1) originates
in the fact that we regard the class of equations (1) as the most natural class of

1. See the notational section at the end of the present Introduction for a definition.

tome 150 – 2022 – no 1



NLS PERIODIC WAVES 113

isotropic quasi/linear dispersive Hamiltonian equations, including most classi-
cal semilinear Schrödinger equations. See [54] for a comprehensive introduction
to the latter. In Appendix C, we also show how to treat some anisotropic ver-
sions of the equations.

Note that in the above form, invariances are embedded with respect to ro-
tations, time translations and space translations; if f is a solution, so is f̃
when

f̃(t,x) = e− iφ0 f(t,x) , φ0 ∈ R , rotational invariance ,

f̃(t,x) = f(t− t0,x) , t0 ∈ R , time translation invariance ,

f̃(t,x) = f(t,x− x0) , x0 ∈ Rd , space translation invariance .
Actually, rotations and time and space translations leave the Hamiltonian H0
essentially unchanged, in a sense made explicit in Appendix A. Thus, through
a suitable version of Noether’s principle, they are associated with conservation
laws, respectively on mass M[U] = 1

2‖U‖2, Hamiltonian H0[U] and momentum
Q[U] = (Qj [U])j , with Qj [U] = 1

2JU · ∂jU, j = 1, . . . , d. Namely, invariance
by rotation implies that any solution U to (3) satisfies the mass conservation
law

∂tM(U) =
∑

j

∂j

(
JδM[U] · ∇Uxj

H0[U]
)
.(4)

Likewise, invariance by time translation implies that (3) contains the conser-
vation law

∂tH0[U] =
∑

j

∂j

(
∇Uxj

H0[U] · JδH0[U]
)
.(5)

Finally, invariance by spatial translation implies that from (3) stems

∂t (Q[U]) = ∇x

(
1
2JU · JδH0[U]−H0[U]

)
+
∑

`

∂`(Jδ Q[U] · ∇Ux`
H0[U]) .

(6)

The reader is referred to Appendix A for a derivation of the latter.
We are interested in the analysis of the dynamics of near-plane periodic uni-

formly traveling waves of (1). Let us first recall that a (uniformly traveling)
wave is a solution whose time evolution occurs through the action of symme-
tries. We say that the wave is a plane wave when in a suitable frame it is
constant in all but one direction, and that it is periodic if it is periodic up to
symmetries. Given the foregoing set of symmetries, after choosing for the sake
of concreteness, the direction of propagation as2 e1 and the normalizing period

2. Throughout the text, we denote as ej the jth vector of the canonical basis of Rd. In
particular, e1 = (1, 0, . . . , 0).
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114 C. AUDIARD & L. M. RODRIGUES

to be 1 through the introduction of wavenumbers, we are interested in solutions
to (1) of the form

f(t,x) = e− i(kφ (x−c
x
t)+ω

φ
t) f(kx (x− cx t))

= e− i(kφ x+(ωφ−kφ cx) t) f(kx x+ ωx t) ,

with profile f 1-periodic, wavenumbers (kφ, kx) ∈ R2, kx > 0, time frequencies
(ωφ, ωx) ∈ R2, spatial speed cx ∈ R, where

x = (x,y) ωx = −kx cx .
In other terms, we consider solutions to (3) in the form

U(t,x) = e(kφ (x−c
x
t)+ω

φ
t)J U(kx (x− cx t)) ,(7)

with U 1-periodic (and nonconstant). More general periodic plane waves are
also considered in Appendix D. Beyond references to results involved in our
analysis given along the text and comparison to the literature provided near
each main statement, in order to place our contribution in a bigger picture, we
refer the reader to [37] for a general background on nonlinear wave dynamics
and to [46, 30, 14] for material more specific to Hamiltonian systems.

To set the frame for linearization, we observe that going to a frame adapted
to the background wave in (7) by

U(t,x) = e(kφ (x−cx t)+ωφ t)J V(t, kx (x− cx t),y) ,
changes (3) into

∂tV = JδH[V] ,
(8)

H[V] := H0(V, (kx∂x + kφJ)V,∇yV)−ωφM[V] + cxQ1(V, (kx∂x + kφJ)V)
= H0(V, (kx∂x + kφJ)V,∇yV)−

(
ωφ− kφ cx

)
M[V]−ωxQ1[V] ,

and that (t, x,y) 7→ U(x) is a stationary solution to (8). Direct linearization of
(8) near this solution provides the linear equation ∂tV = LV with L defined
by

LV = J Hess H[U ](V) ,(9)
where Hess denotes the variational Hessian, that is, Hess = Lδ with L denoting
linearization. Incidentally, we point out that the natural splitting

H0 = Hx
0 + Hy , Hy [U] = 1

2κ(‖U‖2)‖∇yU‖2 ,
may be followed all the way through frame change and linearization

H= Hx + Hy ,

L = J Hess Hx[U ] + J Hess Hy[U ] =: Lx + Ly ,

with Ly = −κ(‖U‖2)J ∆y.
tome 150 – 2022 – no 1
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As made explicit in Section 3.1 at the spectral and linear level, to make
the most of the spatial structure of periodic plane waves, it is convenient to
introduce a suitable Bloch–Fourier integral transform. As a result, one may
analyze the action of L defined on L2(R) through3 the actions of Lξ,η defined
on L2((0, 1)) with periodic boundary conditions, where (ξ,η) ∈ [−π, π]×Rd−1,
ξ being a longitudinal Floquet exponent and η a transverse Fourier frequency.
The operator Lξ,η encodes the action of J Hess H[U ] on functions of the form

x = (x,y) 7→ ei ξx+i η·y W(x) , W(·+ 1) = W ,

through

J Hess H[U ]
(
(x,y) 7→ ei ξx+i η·y W(x)

)
(x) = ei ξx+i η·y (Lξ,ηW)(x) .

In particular, the spectrum of L coincides with the union over (ξ,η) of the
spectra of Lξ,η. In turn, as recalled in Section 3.3, generalizing the analysis
of Gardner [25], the spectrum of each Lξ,η may be conveniently analyzed with
the help of an Evans function Dξ( · ,η), an analytic function whose zeros agree
in location and algebraic multiplicity4 with the spectrum of Lξ,η. A large part
of our spectral analysis hinges on the derivation of an expansion of Dξ(λ,η)
when (λ, ξ,η) is small (Theorem 3.2).

As derived in Section 2, families of plane periodic profiles in a fixed direc-
tion – here taken to be e1 – form four-dimensional manifolds when identified up
to rotational and spatial translations, parametrized by (µx, cx, ωφ, µφ), where
(µx, µφ) are constants of integration of profile equations associated with conser-
vation laws (4) and (6) (or, more precisely, its first component since we consider
waves propagating along e1). The averages along wave profiles of quantities of
interest are expressed in terms of an action integral Θ(µx, cx, ωφ, µφ) and its
derivatives. This action integral plays a prominent role in our analysis. A sig-
nificant part of our analysis, indeed, aims at reducing properties of operators
acting on infinite-dimensional spaces to properties of this finite-dimensional
function.

After these preliminary observations, we here give a brief account of each of
our main results and provide only later in the text more specialized comments
around precise statements. Our main achievements are essentially twofold.
On the one hand, we provide counterparts to the main upshots of [12, 13, 9,
10, 11, 50] – derived for one-dimensional Hamiltonian equations of Korteweg
type – for one-dimensional Hamiltonian equations of Schrödinger type. On the
other hand, we extend parts of this analysis to the present multidimensional
framework.

3. As, by using Fourier transforms on constant-coefficient operators one reduces their
action on functions over the whole space to finite-dimensional operators parametrized by
Fourier frequencies.

4. Defined, for the spectrum, as the rank of the residue of the resolvent map.
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116 C. AUDIARD & L. M. RODRIGUES

1.1. Longitudinal perturbations. — To describe the former, we temporarily
restrict ourselves to longitudinal perturbations or somewhat equivalently to
the case d = 1. At the linear level, this amounts to setting η = 0.

The first set of results that we prove concerns perturbations that in the
above adapted moving frame are spatially periodic with the same period as the
background waves, so-called coperiodic perturbations. At the linear level, this
amounts to restricting ourselves to (ξ,η) = (0, 0). In Theorem 4.1, as in [9], we
prove that a wave of parameters (µ

x
, cx, ωφ, µφ), such that Hess(Θ)(µ

x
, cx, ωφ, µφ)

is invertible, is
1. H1 (conditionally) nonlinearly (orbitally) stable under coperiodic longi-

tudinal perturbations if Hess(Θ)(µ
x
, cx, ωφ, µφ) has negative signature 2

and ∂2
µxΘ(µ

x
, cx, ωφ, µφ) 6= 0;

2. spectrally (exponentially) unstable under coperiodic longitudinal per-
turbations if this negative signature is either 1 or 3, or equivalently if
Hess(Θ)(µ

x
, cx, ωφ, µφ) has negative determinant.

The main upshot here is that instead of the rather long list of assumptions that
would be required by directly applying the abstract general theory [27, 14],
assumptions are both simple and expressed in terms of the finite-dimensional
Θ.

Then, as in [10], we elucidate these criteria in two limits of interest, the
solitary-wave limit when the spatial period tends to infinity and the harmonic
limit when the amplitude of the wave tends to zero. To describe the solitary-
wave regime, let us point out that the solitary-wave profiles under consideration
are naturally parametrized by (cx, ρ, kφ), where ρ > 0 is the limiting value at
spatial infinities of its mass, and that families of solitary waves also come
with an action integral Θ(s)(cx, ρ, kφ), known as the Boussinesq momentum of
stability [16, 5, 6] and for Schrödinger-like equations associated with the famous
Vakhitov–Kolokolov slope condition [55]. The reader may consult [58, 41, 14]
as entering gates in the quite extensive mathematical literature on the latter.
In Theorem 4.3, we prove that

1. in nondegenerate small-amplitude regimes, waves are nonlinearly stable
to coperiodic perturbations;

2. in the large-period regimenear a solitarywaveof parameters (c(0)
x , ρ(0), k

(0)
φ ),

coperiodic spectral instability occurs when ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) < 0,

whereas coperiodic nonlinear orbital stability holds when
∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) > 0.

Both results appear to be new in this context. Note in particular that our small-
amplitude regime is disjoint from the cubic semilinear one considered in [24]
since there the constant asymptotic mass is taken to be zero. Yet, in the large-
period regime, the spectral instability result could also be partly recovered by
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NLS PERIODIC WAVES 117

combining a spectral instability result for solitary waves available in the above-
mentioned literature for some semilinear equations, with a nontrivial spectral
perturbation argument from [26, 52, 57].

The rest of our results on longitudinal perturbations concerns sideband lon-
gitudinal perturbations, that is, perturbations corresponding to (ξ,η) = (ξ, 0)
with ξ small (but nonzero) and geometrical optics à la Whitham [56].

The latter is derived by inserting in (3) the two-phase slow/fast-oscillatory
ansatz

U(ε)(t, x) = e
1
εϕ

(ε)
φ

(ε t,ε x) J U (ε)

(
ε t, ε x; ϕ

(ε)
x (ε t, ε x)

ε

)
; ,(10)

with, for any (T,X), ζ 7→ U (ε)(T,X; ζ) periodic of period 1 and, as ε→ 0,

U (ε)(T,X; ζ) = U0(T,X; ζ) + εU1(T,X; ζ) + o(ε) ,

ϕ
(ε)
φ (T,X) = (ϕφ)0(T,X) + ε (ϕφ)1(T,X) + o(ε) ,

ϕ(ε)
x (T,X) = (ϕx)0(T,X) + ε (ϕx)1(T,X) + o(ε) .

Arguing heuristically and identifying orders of ε as detailed in Section 4.2, one
obtains that the foregoing ansatz may describe the behavior of solutions to
(3) provided that the leading profile U0 stems from a slow modulation of wave
parameters

U0(T,X; ζ) = U (µx,cx,ωφ,µφ)(T,X)(ζ) ,(11)

where U (µx,cx,ωφ,µφ) denotes a wave profile of parameters (µx, cx, ωφ, µφ), with
local wavenumbers (kφ, kx) = (∂X(ϕφ)0, ∂X(ϕx)0), and the slow evolution of
local parameters obeys

kxA0 Hess Θ (∂T + cx∂X)




µx
cx
ωφ
µφ


 = B0 ∂X




µx
cx
ωφ
µφ


 ,(12)

where

A0 :=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , B0 :=




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .
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118 C. AUDIARD & L. M. RODRIGUES

Let us point out that actually, in the derivation sketched above, System (12)
is first obtained in the equivalent form





∂T kx = ∂Xωx

∂Tq = ∂X (µx − cxq)
∂Tm = ∂X (µφ − cxm)
∂T kφ = ∂X (ωφ − cx kφ)

,(13)

with m and q denoting averages over one period of, respectively, M(U) and
Q1(U , (kφ J + kx∂ζ)U), with U = U (µx,cx,ωφ,µφ). Note that two of the equations
of (13) are so-called conservations of waves, whereas the two others arise as
averaged equations. For a more thorough introduction to modulation systems
such as (13) in the context of Hamiltonian systems, we refer the reader to the
introduction of [10] and references therein.

Our second set of results concerns spectral validation of the foregoing formal
arguments in the slow/sideband regime. More explicitly, as in [13], we obtain
in the specialization of Theorem 3.2 to η = 0 that

Dξ(λ, 0) (λ,ξ)→(0,0)= det
(
λA0 Hess Θ(µ

x
, cx, ωφ, µφ)− i ξB0

)

+O
(
(|λ|4 + |ξ|4) |λ|

)
,

(14)

for a wave of parameter (µ
x
, cx, ωφ, µφ). This connects the slow/sideband Bloch

spectral dispersion relation for the wave profile U as a stationary solution to
(8) with the slow/slow Fourier dispersion relation for (µ

x
, cx, ωφ, µφ) as a solu-

tion to (12). Among the direct consequences of (14) derived in Corollary 4.5,
we point out that this implies that if Hess(Θ)(µ

x
, cx, ωφ, µφ) is invertible, and

(12) fails to be weakly hyperbolic at (µ
x
, cx, ωφ, µφ), then the wave is spec-

trally exponentially unstable to sideband perturbations. Afterwards, as in [11],
in Theorem 4.6, we combine asymptotics for (12) with the foregoing instability
criterion to derive that waves are spectrally exponentially unstable to longitu-
dinal sideband perturbations

1. in nondegenerate small-amplitude regimes near a harmonic wave train,
such that δhyp < 0 or δBF < 0, with indices (δhyp, δBF ) defined explicitly
in (71) and (72);

2. in the large-period regimenear a solitarywaveof parameters (c(0)
x , ρ(0), k

(0)
φ ),

such that ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) < 0.

Again, these results are new in this context, except for the corollary about weak
hyperbolicity that overlaps with the recent preprint5 [20] – based on the recent

5. During the editorial process of the present paper it became a published paper.
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[40] –, which appeared during the preparation of the present contribution. Note,
however, that our proof of the corollary is different, and our assumptions are
considerably weaker.

Our third set of results concerning longitudinal perturbations shows that for
spectrally stable waves in a suitable dispersive sense, by including higher-order
corrections in (12), one obtains a version of (11)–(12) that captures at any
arbitrary order the large-time asymptotics for the slow/sideband part of the
linearized dynamics. Besides the oscillatory-integral analysis directly borrowed
from [50], this hinges on a spectral validation of the formal asymptotics –
obtained in Theorem 4.7 – as predictors for expansions of spectral projectors
(and not only of spectral curves) in the slow/sideband regime. The identified
decay is inherently of dispersive type, and we refer the curious reader to [42, 23]
for comparisons with the well-known theory for constant-coefficient operators.
Let us stress that deriving global-in-time dispersive estimates for nonconstant,
nonnormal operators is a considerably harder task and that the analysis in
[50] has provided the first-ever dispersive estimates for the linearized dynamics
about a periodic wave. We also point out that a large-time dynamical validation
of modulation systems for general data – as opposed to a spectral validation
or a validation for well-prepared data – requires the identification of effective
initial data for modulation systems, a highly nontrivial task that cannot be
guessed from the formal arguments sketched above.

At this stage, the reader could wonder how, in a not-so-large number of
pages, Schrödinger-like counterparts to Korteweg-like results, originally requir-
ing a quite massive body of literature [12, 13, 9, 10, 11, 50], can be obtained.
There are at least two phenomena at work. On the one hand, we have ac-
tually left a significant part of [11, 50] without counterparts. Results in [11]
were mainly motivated by the study of dispersive shocks, and the few stabil-
ity results adapted here from [11] were obtained there almost in passing. The
analysis in [50] studies the full linearized dynamics for the Korteweg–de Vries
equation. Yet, the underlying arguments being technically demanding, we have
chosen to adapt here only the part of the analysis directly related to modula-
tion behavior, for the sake of both consistency and brevity. On the other hand,
some of the results proved here are actually deduced from the results derived
for some Korteweg-like systems rather than proved from scratch.

The key to these deductions is a suitable study of Madelung’s transformation
[43]. As we develop in Section 2.3, even at the level of generality considered
here, Madelung’s transformation provides a convenient hydrodynamic formu-
lation of (1) of Korteweg type. A solution U to (3) is related to a solution
(ρ,v), with curl-free velocity v, of a Euler–Korteweg system through

U =
√

2 ρ eθ J
(

1
0

)
, v = ∇xθ .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



120 C. AUDIARD & L. M. RODRIGUES

We refer the reader to [18] for some background on the transformation and its
mathematical use. Let us stress that the transformation changes the geometric
structure of the equations dramatically, in both its group of symmetries and its
conservation laws. A basic observation that makes the Madelung’s transforma-
tion particularly efficient here is that nonconstant periodic wave profiles stay
away from zero. Consistently, the asymptotic regimes that we consider also lie
in the far-from-zero zone. Our coperiodic nonlinear orbital stability result is in
particular proved here by studying in Lemma 4.2 correspondences through the
Madelung’s transformation. Even more efficiently, the identification of respec-
tive action integrals also reduces the asymptotic expansions of Hess Θ required
here to those already obtained in [10, 11]. For the sake of completeness, in
Section 3.2, we also carry out a detailed study of spectral correspondences.
Yet those fail to fully elucidate spectral behavior near (λ, ξ,η) = (0, 0, 0) and,
thus, they play no role in our spectral and linear analyses.

1.2. General perturbations. — In the second part of our analysis, we extend
the spectral results of the longitudinal part to genuinely multidimensional per-
turbations.

To begin with we provide an instability criterion for perturbations that are
longitudinally coperiodic, that is, that corresponds to ξ = 0. The correspond-
ing result, Corollary 5.1-(1), is made somewhat more explicit in Lemma 5.2.
Yet we do not investigate the corresponding asymptotics because in the mul-
tidimensional context, we are more interested in determining whether waves
may be stable against any perturbation, and the present coperiodic instabil-
ity criterion turns out to be weaker than the slow/sideband one contained in
Corollary 5.1-(2), which we describe now.

The second, and main, set of results of this second part focuses on slow/side-
band perturbations corresponding to the regime (λ, ξ,η) small. In the latter
regime, generalizing the longitudinal analysis, we derive an instability criterion,
interpret it in terms of formal geometrical optics, and elucidate it in both the
small-amplitude and large-period asymptotics.

Concerning geometrical optics, a key observation is that even if one is merely
interested in the stability of waves in the specific form (7), the relevant modu-
lation theory involves more general waves in the form

U(t,x) = e(kφ·(x−cx ex t)+ωφ t)J U(kx · (x− cx ex t)) ,(15)

with U 1-periodic and kx nonzero of unitary direction ex. The main departure
in (15) from (7) is that kx and kφ are no longer assumed to be colinear. To
stress comparisons with (7), let us decompose (kx,kφ) as

kx = kx ex , kφ = kφ ex + k̃φ ,
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with k̃φ orthogonal to ex. In Section 2.6, we show that this more general set of
plane waves may be conveniently parametrized by (µx, cx, ωφ, µφ, ex, k̃φ), with
(ex, k̃φ) varying in the 2(d − 1)-dimensional manifold of vectors, such that ex
is unitary, and k̃φ is orthogonal to ex.

With this in hand, adding possible slow dependence on y in (10) through

U(ε)(t,x) = e
1
εϕ

(ε)
φ

(ε t,εx) J U (ε)

(
ε t, εx; ϕ

(ε)
x (ε t, εx)

ε

)
(16)

and arguing as before leads to the modulation behavior

U0(T,X; ζ) = U (µx,cx,ωφ,µφ,ex ,̃kφ)(T,X)(ζ) ,(17)

with local wavevectors (kφ,kx) = (∇X(ϕφ)0,∇X(ϕx)0), and the slow evolution
of local parameters obeys





∂Tkx = ∇Xωx

∂Tq = ∇X

(
µx − cxq+ 1

2 τ0 ‖k̃φ‖
2
)

+ divX
(
τ1 k̃φ ⊗ k̃φ + τ2 (k̃φ ⊗ ex + ex⊗k̃φ) + τ3 (ex⊗ ex−Id)

)

∂Tm = divX
(

(µφ − cxm) ex +τ1 k̃φ
)

∂Tkφ = ∇X (ωφ − cx kφ)

,

(18)

with extra constraints (propagated by the time evolution) that kx and kφ are
curl free. In System (18), a ⊗ b denotes the matrix of (j, `)-coordinate a` bj ,
divX acts on matrix-valued maps row-wise, and q, τ0, τ1, τ2, and τ3 denote
the averages over one period of, respectively,

Q(U , (kφ J + kx∂ζ)U), κ′(‖U‖2) ‖U‖2, κ(‖U‖2) ‖U‖2,
κ(‖U‖2) JU · (kφ J + kx∂ζ)U and κ(‖U‖2) ‖(kφ J + kx∂ζ)U‖2 ,

with U = U (µx,cx,ωφ,µφ,ex ,̃kφ). Linearizing System (18) about the constant
(µ
x
, cx, ωφ, µφ, e1, 0) yields, after a few manipulations,





kxA0 Hess Θ (∂T + cx∂X)




µx
cx
ωφ
µφ


 = B0 ∂X




µx
cx
ωφ
µφ


+




0 0
τ3 τ2
τ2 τ1
0 0



(

divX(ex)
divX(k̃φ)

)

(∂T + cx∂X) ex = − (∇X − e1 ∂X) cx
(∂T + cx∂X) k̃φ = (∇X − e1 ∂X)ωφ

(19)
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with extra constraints that k̃φ and ex are orthogonal to ex = e1 and that
kxex + kx ex and kφex + kφ ex +k̃φ are curl free, where (kx, kφ) are deviations
given explicitly as

kx = −k2
x d (∂µxΘ)(µx, cx, ωφ, µφ) , kφ = kx

kx
kφ− kx d (∂µφΘ)(µx, cx, ωφ, µφ) ,

where total derivatives are taken with respect to (µx, cx, ωφ, µφ), and evaluation
is at (µ

x
, cx, ωφ, µφ, e1, 0). In System 19, Hess Θ = Hess(µx,cx,ωφ,µφ) Θ is like-

wise evaluated at (µ
x
, cx, ωφ, µφ, e1, 0), and A0 and B0 are as in System (12).

As made explicit in Section 5.1, our Theorem 3.2 provides a spectral valida-
tion of (18) in the form

λ2(d−1) ×Dξ(λ,η) (λ,ξ,η)→(0,0,0)=

det




λ

(
I2(d−1) 0

0 A0 Hess Θ

)
− i ξ

(
0 0
0 B0

)
+




0 0 0 − iη 0 0
0 0 0 0 iη 0
0 0 0 0 0 0

τ3
k
x

iηT τ2
k
x

iηT 0 0 0 0
τ2
kx

iηT τ1
kx

iηT 0 0 0 0
0 0 0 0 0 0







+O
(
|λ|2(d−1) (|λ|+ |ξ|+ ‖η‖)5

)
,

or equivalently in the form

Dξ(λ,η) (λ,ξ,η)→(0,0,0)= det
(
λA0 Hess Θ− i ξB0 + ‖η‖

2

λ
C0

)

+O
(
(|λ|+ |ξ|+ ‖η‖)5) ,

(20)

with

C0 :=




0 0 0 0
0 −σ3 σ2 0
0 −σ2 σ1 0
0 0 0 0


 , σj =

τ j
kx

, j ∈ {1, 2, 3} .

In the foregoing, again Hess Θ = Hess(µx,cx,ωφ,µφ) Θ(µ
x
, cx, ωφ, µφ, e1, 0). Note

that, consistently with the equality, the structure of B0 and C0 implies that the
apparent singularity in λ of the left-hand side of (20) is, indeed, spurious, each
factor ‖η‖2/λ being necessarily paired with a factor λ in the expansion of the
determinant. The only other rigorous spectral validation of a multidimensional
modulation system that we are aware of is [45], which deals with systems of
parabolic conservation laws.
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It follows directly from (20) that if (19) fails to be weakly hyperbolic at
(µ
x
, cx, ωφ, µφ, e1, 0), then the corresponding wave is spectrally exponentially

unstable. In Section 5.2, besides this most general instability criterion, we
provide two instability criteria, more specific but easier to check, corresponding
to the breaking of multiple roots near η = 0 (Proposition 5.4) and near ξ = 0
(Proposition 5.5)m respectively.

Afterwards, we turn to the elucidation of the full instability criterion in
the asymptotic regimes already studied in the longitudinal part. Our striking
conclusion is that, when d ≥ 2, in nondegenerate cases, plane waves of the
form (7) are spectrally exponentially unstable in both the small-amplitude
(Theorem 5.8) and the large-period (Theorem 5.6) regimes. More explicitly, we
prove that such waves are spectrally exponentially unstable to slow/sideband
perturbations

1. in nondegenerate, small-amplitude regimes near an harmonic wave train,
such that δhyp 6= 0 and δBF 6= 0, with indices defined explicitly in (71)
and (72);

2. in the large-period regimenear a solitarywaveof parameters (c(0)
x , ρ(0), k

(0)
φ ),

such that ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) 6= 0.

Let us stress that to obtain the latter we derive various instability scenarios
– all hinging on expansion (20), thus occurring in the region (λ, ξ,η) small –
corresponding to different instability criteria. The point is that the union of
these criteria covers all possibilities. In particular, in the harmonic limit, the
argument requires the full strength of the joint expansion in (λ, ξ,η), and it is
relatively elementary – see Appendix B – to check that the instability is non-
trivial in the sense that it occurs even in cases when the limiting constant states
is spectrally stable. We also stress that both asymptotic results are derived by
extending to the multidimensional context some of the finest properties of lon-
gitudinal modulated systems proved in [11] from the asymptotic expansions of
Hess Θ obtained in [10].

All the results about general perturbations are new, including this form
of the formal derivation of a modulation system. The only small overlap of
which we are aware is with [40] appearing during the preparation of the present
contribution and studying to leading order the spectrum of L(0,η) near λ = 0,
when η is small. Even for this partial result, our proof is different, and our
assumptions are considerably weaker. Let us also stress that [40] discusses
neither modulation systems nor asymptotic regimes. Finally, we point out that
the operator L(0,η) depends on η only through the scalar parameter ‖η‖2, so
that the problem studied in [40] fits the frame of spectral analysis of analytic
one-parameter perturbations, a subpart of general spectral perturbation theory
that is considerably more regular and simpler, even compared to two-parameter
perturbations like we consider here. Concerning the latter, we refer the reader
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to [38, 21] for a general background on spectral theory. In addition to [40],
in the large-period regime, we again expect that the spectral instability result
could be partly recovered by combining a spectral instability result for solitary
waves available in the literature for some specific semilinear equations [51], with
a nontrivial spectral perturbation argument as mentioned above [26, 52, 57].
Extensions and open problems. — Since such plane waves play a role in the
nearby modulation theory, the reader may wonder whether our main results
extend to more general plane waves in the form (15). As was pointed out in
Section 2.6, it is straightforward to check that it is so for all results concerning
longitudinal perturbations. Concerning instability under general perturbations,
a first obvious answer is that instabilities persist under perturbations and, thus,
extend to waves associated with small k̃φ. In Appendix D, we show how to
extend the results to all waves in the semilinear case, that is, when κ is constant,
and in the high-dimensional case, that is, when d ≥ 3.

Finally, in Appendix C, we show how to extend our results to anisotropic
equations, even with dispersion of mixed signature, for waves propagating in a
principal direction.

Although our results strongly hint at the multidimensional spectral insta-
bility of any periodic plane wave, they do leave this question unanswered,
even for semilinear versions of (1). In the reverse direction of leaving some
hope for stability, we stress that there are known natural examples of classes
of one-dimensional equations for which both small-amplitude and large-period
waves are unstable, but there are bands of stable periodic waves. The reader
is referred to [2, 35, 1] for examples on the Korteweg–de Vries/Kuramoto–
Sivashinsky equation and to [4, 3] for examples on shallow-water Saint-Venant
equations. We regard the elucidation of this possibility, even numerically, as
an important open question. We point out, as an intermediate issue whose
resolution would already be interesting, and probably more tractable, the de-
termination of whether there exist periodic waves of (1) associated with wave
parameters at which the modulation system (18) is weakly hyperbolic.

Let us conclude the global presentation of our main results by recalling
that more specialized discussions, including more technical comparisons to the
literature, are provided throughout the text.
Outline. — The next two sections contain general preliminary material: the
first one on the structure of wave profile manifolds and the following one on
adapted spectral theory. The latter, however, contains two highly nontriv-
ial results: spectral conjugations through a linearized Madelung’s transform
(Section 3.2) and the slow/sideband expansion of the Evans function (Theo-
rem 3.2) – a key block of our spectral analysis. After these two sections follow
two sections devoted, respectively, to longitudinal perturbations and to gen-
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eral perturbations. Appendices contain key algebraic relations stemming from
invariances and symmetries used throughout the text (Appendix A), the exam-
ination of constant-state spectral stability (Appendix B), extensions to more
general equations (Appendix C), and more general profiles (Appendix D) and
a table of symbols (Appendix E).

Subsections of the two main sections are in clear correspondence with various
sets of results described in the Introduction, so that the reader interested in
a specific class of results may jump to the relevant part of the analysis and
refer to the table of symbols to search for the definitions involved.
Notation. — Before engaging in more concrete analysis, we here make our
conventions for vectorial, differential and variational notation explicit.

Throughout we identify vectors with columns. The partial derivative with
respect to a variable a is denoted ∂a, or ∂j when variables are numbered and a is
the jth one. The piece of notation d stands for differentiation, so that d g(x)(h)
denotes the derivative of g at x in the direction h. The Jacobian matrix Jac g(x)
is the matrix associated with the linear map d g(x) in the canonical basis. The
gradient ∇g(x) is the adjoint matrix of Jac g(x), and we sometimes use suffix
a to denote the gradient with respect to a. The Hessian operator Hess is given
as the Jacobian of the gradient, Hess g = Jac(∇g). The divergence operator
div is the opposite of the dual of the ∇ operator. We say that a vector field is
curl free if its Jacobian is valued in symmetric matrices.

For any two vectors V and W in Rd0 , thought of as column vectors, V⊗W
stands for the rank-1, square matrix of size d0

V⊗W = V WT ,

whatever d0, where T stands for matrix transposition. Acting on square-valued
maps, div acts row-wise. A dot · denotes the standard scalar product. Since,
as a consequence of invariance by rotational changes, our differential operators
act mostly component-wise, we believe that no confusion is possible and do not
mark differences of meaning of · even when two vectorial structures coexist.
The convention is that summation in scalar products is taken over compatible
dimensions. For instance,

V · ∇UH0(U,∇xU) =
2∑

j=1
Vj ∂UjH0(U,∇xU) ,

ex ·∇∇xUH0(U,∇xU) =
d∑

j=1
(ex)j ∇∂jUH0(U,∇xU) ,

∇xU · ∇∇xUH0(U,∇xU) =
d∑

j=1

2∑

`=1
∂jU`∇∂jU`H0(U,∇xU) .
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We also use notation for differential calculus on functional spaces (thus, in
infinite dimensions), mostly in variational form. We use L to denote lineariza-
tion, analogously to d, so that L(F)[U]V denotes the linearization of F at U
in the direction V. Notation δ stands for variational derivative and plays a role
analogous to gradient, except that we use it on functional densities instead of
functionals. With suitable boundary conditions, this would be the gradient for
the L2 structure of the functional associated with the given functional density
at hand. We only consider functional densities depending on derivatives up to
order 1, so that this is explicitly given as

δA[U] = ∇UA(U,∇xU)− divx (∇∇xUA(U,∇U)) .
In this context, Hess denotes the linearization of the variational derivative,
Hess = Lδ, here explicitly

HessA[U]V = d(U,∇xU)(∇UA)(U,∇xU)(V,∇xV)
− divx

(
d(U,∇xU)(∇∇xUA)(U,∇xU)(V,∇xV)

)
.

Even when one is interested in a single wave, nearby waves enter in stability
considerations. We almost systematically use underlining to denote quantities
associated with the particular given background wave under study. In partic-
ular, when a wave parametrization is available, underlining denotes evaluation
at the parameters of the particular wave under study.

2. Structure of periodic wave profiles

To begin with, we gather some facts about plane traveling wave manifolds.
Up to Section 2.6, we restrict to waves in the form (7). Consistently, here, for
concision, we may set Q = Q1.

2.1. Radius equation. — To analyze the structure of the wave profiles, we step
back from (7) and look for profiles in the form

U(t,x) = eωφ tJ V(x− cx t) ,(21)
without normalizing to enforce 1-periodicity. The profile equation becomes

0 = δHu[V] , with Hu[V] = H0[V]− ωφM[V] + cxQ[V] .(22)
Moreover, we note that, as a consequence of the rotational and spatial trans-
lation invariances of Hu, (22) also contains the following form of mass and
momentum conservations

0 = − d
dx (V · J∇Ux

Hu[V]) ,(23)

0 = d
dx (−Hu[V] + ∂xV · ∇UxHu[V])(24)
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and introduce µφ and µx corresponding constants of integration, so that
µφ = JV · ∇Ux

Hu[V] ,(25)

µx = dV
dx · ∇UxHu[V]−Hu[V] .(26)

Observe that reciprocally by differentiating (25)–(26) one obtains

JV · δHu[V] = 0 and
(
V · dV

dx

)
V · δHu[V] = 0 ,

which yields (22) provided that the set where V · dV
d x vanishes has an empty

interior.
We now check that the above-mentioned condition on V · dV

d x excludes only
solutions of the form (21) that have constant modulus and travel uniformly in
phase. Since (22) is a differential equation, it is already clear that if V vanishes
on some nontrivial interval, then V ≡ 0, and from now on we exclude this
case from our analysis. Then, if V · dV

d x vanishes on some nontrivial interval, it
follows that on this interval ‖V‖ is a constant equal to some r0 > 0 and from
(25) that

V(x) = e
2µφ−cx r2

0
2κ(r2

0) r2
0
xJ (

r0 eϕφJ e1
)
,

for some ϕφ ∈ R. Since the formula provides a solution to (22) everywhere,
this holds everywhere, and henceforth we also exclude this case. However, these
constant solutions are discussed further in Appendix B.

Now to analyze (22) further we first recast (25)–(26) in a more explicit form,

µφ = κ(‖V‖2) JV · dV
dx + cx

2 ‖V‖
2 ,

µx = 1
2κ(‖V‖2)

∥∥∥∥
dV
dx

∥∥∥∥
2
−W (‖V‖2) + ωφ

2 ‖V‖
2 .

Then we set α = ‖V‖2 and observe that

α
dV
dx = 1

2
dα
dx V + JV · dV

dx JV ,

α

∥∥∥∥
dV
dx

∥∥∥∥
2

= 1
4

(
dα
dx

)2
+
(

JV · dV
dx

)2
.

In particular, from (25)–(26) stems

1
8κ(α)

(
dα
dx

)2
+Wα(α; cx, ωφ, µφ) = µx α ,(27)

with

Wα(α; cx, ωφ, µφ) := −W (α)α+ ωφ
2 α2 + 1

8
(2µφ − cx α)2

κ(α) .(28)

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



128 C. AUDIARD & L. M. RODRIGUES

Consistently going back to (22), one derives
1
4κ(α)d2 α

dx2 + κ′(α)
κ(α) (µx α−Wα(α)) + ∂αWα(α) = µx .(29)

As a consequence, since α ≥ 0, if α vanishes at some point, then its derivative
also vanishes there, and µφ = 0. From this we deduce near the same point

dα
dx = O(α) and JV · dV

dx = O(α) hence dV
dx = O(

√
α) ,

This implies µx = −W (0) and corresponds to the trivial solution to (22) given
by V ≡ 0 that we have already ruled out. Note that this exclusion may be
enforced by requiring (µx, µφ) 6= (−W (0), 0).

The foregoing discussion ensures that V actually does not vanish, so that in
particular r =

√
α = ‖V‖ is a smooth function solving

1
2κ(r2)

(
d r
dx

)2
+Wr(r; cx, ωφ, µφ) = µx,(30)

where Wr is defined by

Wr(r; cx, ωφ, µφ) := 1
r2Wα(r2; cx, ωφ, µφ)(31)

= −W (r2) + ωφ
2 r2 + 1

8
(2µφ − cx r2)2

κ(r2) r2 ,

and

κ(r2) d2 r

dx2 + 2r κ
′(r2)
κ(r2) (µx −Wr(r)) + ∂rWr(r) = 0 .(32)

Note that the excluded case where r is constant equal to some r0 happens only
when

µx = −Wr(r0; cx, ωφ, µφ) and 0 = ∂rWr(r0; cx, ωφ, µφ) .
When coming back from (30) to (22) some care is needed when µφ is zero

since thenWr may be extended to R, but solutions to (30) taking negative val-
ues must still be discarded. Except for that point, one readily obtains from (25)
that the family of solutions to (22)–(25)–(26) is associated with any solution r
to (30)

V(x) = e

(∫ x+ϕx

0

2µφ − cx r(y)
2κ(r(y)2) r(y)2 d y

)
J (
r(x+ ϕx) eϕφJ e1

)
,

parametrized by rotational and spatial shifts (ϕφ, ϕx) ∈ R2.
Classical arguments show that if parameters are such that (30) defines6 a

nontrivial closed curve in phase-space that is included in the half-plane r > 0,

6. The relation could define many connected components but implicitly we discuss them
one by one. See Figures 2.1 and 2.2.
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then the above construction yields a wave of the sought form, unique up to
translations in rotational and spatial positions.

2.2. Jump map. — Rather than focusing on the existence of periodic waves,
we now turn our focus to their parametrization, assuming the existence of
a given reference wave V. As announced, parameters associated with V are
underlined, and, more generally, any functional F evaluated at the reference
wave is denoted F .

In the unscaled framework, instead of wavenumbers (kx, kφ), we rather ma-
nipulate the spatial period Xx := 1/kx and the rotational shift7 ξφ := kφ/kx
that satisfy

V(·+Xx) = eξφ J V(·).

Our goal is to show the existence of nearby waves and to determine which
parameters are suitable for wave parametrization among
ωφ , rotational pulsation
cx , spatial speed

V(0), dV
dx (0), initial data for the wave profile ODE

µφ, µx, constants of integration associated with conservation laws
Xx, spatial period
ξφ, rotational shift after a period
ϕφ, ϕx, rotational and spatial translations.

It follows from the Cauchy–Lipschitz theory that functions V satisfying equa-
tion (22) are uniquely and smoothly determined by initial data (V(0), dV

d x (0)) =
(V0,V1), and parameters of the equation (ωφ, cx), on some common neighbor-
hood of [0, Xx] provided that (V0,V1, ωφ, cx) is sufficiently close to (V(0), dV

d x (0),
ωφ, cx). Note that the point 0 plays no particular role, and we may use a spa-
tial translation to replace it with another nearby point so as to ensure suitable
conditions on (V(0), dV

d x (0)). In particular, there is no loss in generality in
assuming that V(0) · dV

d x (0) 6= 0.
At this stage, to carry out algebraic manipulations it is convenient to intro-

duce notation

Sφ[U] := JU · ∇UxH0[U] ,
Sx[U] := −H0[U] + Ux · ∇UxH0[U] .

7. We refrain from using the word Floquet exponent for ξφ to avoid confusion with Floquet
exponents involved in integral transforms.
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so that (25)–(26) is written as
µφ = Sφ[V] + cxM[V] ,(33)
µx = Sx[V] + ωφM[V] .(34)

Now we observe that dUx
(Sφ,Sx)(V(0), dV

d x (0)) has the determinant
(κ(‖V(0)‖2))2 V(0) · dV

d x (0) 6= 0. In particular, as a consequence of the implicit
function theorem, for (V0,V1, cx, ωφ, µφ, µx) near (V(0), dV

d x (0), cx, ωφ, µφ, µx),

µφ = Sφ(V0,V1) + cxM(V0) ,
µx = Sx(V0,V1) + ωφM(V0) ,

is smoothly (and equivalently) solved as
V1 = V1(V0; cx, ωφ, µφ, µx) .

The same is true near (V(Xx), dV
d x (Xx), cx, ωφ, µφ, µx). This implies that, on

the one hand, one may replace (V0,V1, ωφ, cx) with (V0, ωφ, cx, µφ, µx) in the
parametrization of solutions to (22) and, on the other hand, since values of
(Sφ[V] + cxM[V],Sx[V] +ωφM[V]) are invariant under the flow of (22), that, as
a consequence of the Cauchy–Lipschitz theory, solutions to (22) defined on a
neighborhood of [0, Xx] extend as solutions on R such that V(·+Xx) = eξφ JV(·)
if and only if V(Xx) = eξφ JV(0).

We now show that we may replace (V0, ωφ, cx, µφ, µx) with (ϕφ, ϕx, ωφ, cx,
µφ, µx) by taking the solution corresponding to V0 = V(0) and acting with
rotational and spatial translations. The action of rotational and spatial trans-
lations is V(·) 7→ Vϕφ,ϕx := eϕφJ V(· + ϕx). Obviously, it leaves the set of
periodic-wave profiles invariant and, among parameters, interacts only with
initial data, thus, after the elimination of V1, only with V0. Let us denote by
V(µx,cx,ωφ,µφ) the solution to (22), such that

V(µx,cx,ωφ,µφ)(0) = V(0) , d
dxV

(µx,cx,ωφ,µφ)(0) = V1(V(0); cx, ωφ, µφ, µx) .

At background parameters the map
(ϕφ, ϕx, µx, cx, ωφ, µφ) 7→ (V(µx,cx,ωφ,µφ))ϕφ,ϕx(0)

has Jacobian determinant with respect to variations in (ϕφ, ϕx) equal to V(0) ·
dV
d x (0) 6= 0. Thus, as claimed, as a consequence of the implicit function
theorem, one may smoothly and invertibly replace (V0, ωφ, cx, µφ, µx) with
(ϕφ, ϕx, ωφ, cx, µφ, µx) to parametrize solutions to (22) near the background
profile.

As a conclusion, when identified up to rotational and spatial translations,
periodic-wave profiles are smoothly identified as the zero level set of the map

(µx, cx, ωφ, µφ, Xx, ξφ) 7→ V(µx,cx,ωφ,µφ)(Xx)− eξφJ V(µx,cx,ωφ,µφ)(0) .
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Now, at background parameters, the foregoing map has Jacobian determinant
with respect to variations in (Xx, ξφ) equal to V(0) · dV

d x (0) 6= 0. Therefore,
a third application of the implicit function theorem achieves the proof of the
following proposition.

Proposition 2.1. — Near a periodic-wave profile with nonconstant mass, pe-
riodic wave profiles form a six-dimensional manifold smoothly parametrized as

(ϕφ, ϕx, ωφ, cx, µφ, µx) 7→ (V(ωφ,cx,µφ,µx)
ϕφ,ϕx , Xx(ωφ, cx, µφ, µx), ξφ(ωφ, cx, µφ, µx)) ,

with, for any (ϕφ, ϕx),

V(ωφ,cx,µφ,µx)
ϕφ,ϕx (·) = eϕφJ V(ωφ,cx,µφ,µx)

0,0 (·+ ϕx) .

2.3. Madelung’s transformation. — To ease comparisons with the analyses in
[12, 13, 9, 10, 11] for dispersive systems of Korteweg type, including Euler–
Korteweg systems and quasi-linear Korteweg–de Vries equations, we now pro-
vide hydrodynamic formulations of (1)/(3) and correspondences between the
respective periodic waves. The reader is referred to [8] for similar discussions
concerning other kinds of traveling waves.

In the present section, we temporarily go back to the general multidimen-
sional framework. On the one hand, we consider for f = a + i b, U =

(
a
b

)
,

a system in the form

∂tU = J δH#[U] with H# [U] = Heff

(
M[U],Q[U], 1

2 ‖∇xU‖2
)
.

(35)

Then we introduce
U(ρ, θ) :=

√
2 ρ eθ J(e1) , (ρ, θ) ∈ R+ ×R ,

and

H#[(ρ,v)] := Heff

(
ρ, ρv, 1

4ρ‖∇xρ‖2 + ρ ‖v‖2
)

and observe that

ρ = M[U(ρ(·), θ(·))] , ∇xθ = Q[U(ρ(·), θ(·))]
M[U(ρ(·), θ(·))] ,

H#[(ρ,∇xθ)] = H# [U(ρ(·), θ(·))] .
We also point out that

U(ρ, θ) · J δH# [U(ρ(·), θ(·))] = divx (δvH#[(ρ,∇xθ)])(36)
1
2ρJU(ρ, θ) · J δH# [U(ρ(·), θ(·))] = δρH#[(ρ,∇xθ)] ,(37)
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so that if U solves (35) and is bounded away from zero, then

(ρ,v) :=
(
M[U], Q[U]

M[U]

)
(38)

solves

∂t

(
ρ
v

)
= J δH#[(ρ,v)] ,(39)

with the constraint that v is curl free, where J denotes the skew-symmetric
operator

J :=
(

0 divx
∇x 0

)
.

Note that the curl-free constraint is preserved by the time evolution, so that it
is sufficient to prescribe it on the initial data.

Reciprocally, if (ρ,v) solves (39), and ρ is bounded below away from zero,
then for any θ such that

∂tθ = δρH#[(ρ,v)] ,(40)
we have ∇vθ = v, and U := U(ρ(·), θ(·)) solves (35). Note, moreover, that
under such conditions, for any (t0,x0, θ0), (40) possesses a unique solution,
such that θ(t0,x0) = θ0 and that, for any x0, (40) could alternatively be
replaced by: for any t, ∂tθ(t,x0) = δρH#[(ρ,v)](t,x0) and ∇vθ(t, · ) = v(t, · ).

We point out that whereas the Madelung transformation U 7→ (ρ,v) quo-
tients the rotational invariance, it preserves the time and space translation
invariances. With respect to the latter, we consider

Qj [ρ,v] := ρv · ej , j = 1, . . . , d,
and observe that, on the one hand, Qj generates spatial translations along the
direction ej in the sense that if v is curl-free, then

ej ·∇
(
ρ
v

)
= J δQj [(ρ,v)] ,

and that, on the other hand,
Qj [(ρ,∇θ)] = Qj [U(ρ(·), θ(·))] .

We also note that (39) implies
∂t (Qj(ρ,v)) = ∂j (ρ ∂ρH#[(ρ,v)]−H#[(ρ,v)])

+ divx
(
vj ∇vH#[(ρ,v)] + ρxj ∇∇xρH#[(ρ,v)]

)
,

and, for comparison with (6), that when U = U(ρ(·), θ(·)), v = ∇xθ,
∇Uxj

Qj [U] · JδH#[U] = ρ ∂ρH#[(ρ,v)] ,
JδQj [U] · ∇Ux`

H#[U] = vj ∂v`H#[(ρ,v)] + ρxj ∂ρx`H#[(ρ,v)] .
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Concerning the time translation invariance, we note that (39) implies

∂t (H#(ρ,v)) = divx
(
δρH#[(ρ,v)]∇vH#[(ρ,v)]

+ divx(∇vH#[(ρ,v)])∇∇xρH#[(ρ,v)]
)

;

and, for comparison with (5), that when U = U(ρ(·), θ(·)), v = ∇xθ,

∇Uxj
H#[U] · JδH#[U] = δρH#[(ρ,v)] ∂vjH#[(ρ,v)]

+ divx(∇vH#[(ρ,v)]) ∂ρxjH#[(ρ,v)] .

In the hydrodynamic formulation, what replaces to some extent the rota-
tional invariance and its accompanying conservation law for M[U] is the fact
that the time evolution in (39) obeys a system of d+ 1 conservation laws and
that one may add to H# any affine function of (ρ,v) without changing (39).
With this respect, to compare (4) with the equation on ∂tρ, we note that when
U = U(ρ(·), θ(·)), v = ∇xθ,

JδM[U] · ∇Uxj
H#[U] = ∂vjH#[(ρ,v)] .

To make the discussion slightly more concrete, we compute that when H# = H0,
one receives

H0[(ρ,v)] := H#[(ρ,v)] = κ(2 ρ) ρ ‖v‖2 + κ(2 ρ)
4 ρ ‖∇ρ‖

2 +W (2 ρ) ,(41)

and that when H# = Hu, one receives

Hu[(ρ,v)] := H#[(ρ,v)] = H0[(ρ,v)]− ωφρ+ cxQ1(ρ,v) .

Turning to the identification of periodic traveling waves moving in the di-
rection e1, we now restrict the spatial variable to dimension 1 and consider
functions independent of time. We point out that V is a solution to

0 = δHu[V] , µφ = JV · ∇UxHu[V] ,

bounded away from zero if and only if V = U(ρ(·), θ(·)), with ρ bounded below
away from zero, v = d θ

d x , and 0 = δHEK[(ρ, v)], where

HEK[(ρ, v)] := Hu[(ρ, v)]− µφ v = H0[(ρ, v)]− ωφρ− µφ v + cxQ(ρ, v) .(42)

Moreover, then with µx as in (26),

µx = −Hu[(ρ, v)] + v µφ + ρx ∂ρxHu[(ρ, v)]
= ρx ∂ρxHEK[(ρ, v)]−HEK[(ρ, v)] ,

and

v = ν(ρ; cx, µφ) := µφ − cx ρ
2 ρ κ(2 ρ) .(43)

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



134 C. AUDIARD & L. M. RODRIGUES

Furthermore, we stress that under these circumstances, there exists kφ such
that x 7→ e−kφ xJ V(x) is periodic of period Xx if and only (ρ, v) is periodic of
period Xx, and when this happens, kφ is the average of v over one period.

With notation8 from [11], we have untangled the correspondences in param-
eters

cx = c , µx = µ , Xx = Ξ ,
ωφ = −λρ , µφ = −λv , kφ = 〈v〉 ,

in addition to the pointwise correspondences of mass, momentum, and Hamil-
tonian.

We also point out that we have recovered the reduction of profile equations
to a two-dimensional Hamiltonian system associated with

κ(2 ρ)
4 ρ

(
d ρ
dx

)2
+Wρ(ρ; cx, ωφ, µφ) = µx ,(44)

where

Wρ(ρ; cx, ωφ, µφ) := −W (2 ρ)− κ(2 ρ) ρ (ν(ρ))2

+ ωφ ρ+ µφ ν(ρ)− cxQ(ρ, ν(ρ)) ,
(45)

with ν(ρ) = ν(ρ; cx, µφ).

2.4. Action integral. — Motivated by the foregoing sections we introduce

Θ(µx, cx, ωφ, µφ) :=
∫ Xx

0

(
H0[V] + cxQ[V]− ωφM[V]− µφ

Q[V]
M[V] + µx

)
dx ,

(46)

with (Xx,V) associated with (µx, cx, ωφ, µφ) as in Section 2.2. Note that Θ is,
indeed, independent of (ϕφ, ϕx), and since

kφXx = ξφ =
∫ Xx

0

Q[V]
M[V] dx ,

we also have

Θ(µx, cx, ωφ, µφ) =
∫ Xx

0
(H0[V] + cxQ[V]− ωφM[V]− µφ kφ + µx) dx ,

with (Xx, kφ,V) associated with (µx, cx, ωφ, µφ) as in Section 2.2.
Based on (44) we stress the following basic alternative formula

Θ(µx, cx, ωφ, µφ) = 2
∫ ρmax

ρmin

√
µx −Wρ(ρ; cx, ωφ, µφ))

√
κ(2 ρ)
ρ

d ρ ,

8. Except that (ρ, v) plays the role of (v, u) in [11].
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where ρmin = ρmin(µx, cx, µφ, ωφ) and ρmax = ρmax(µx, cx, µφ, ωφ) are, respec-
tively, the minimum and maximum values of M[V]. Note that ρmin and ρmax
are (locally) characterized by

µx =Wρ(ρmin; cx, ωφ, µφ) , µx =Wρ(ρmax; cx, ωφ, µφ) .

A fundamental observation, intensively used in [12, 13, 9, 10, 11], is that




∂µxΘ(µx, cx, ωφ, µφ) = Xx ,

∂cxΘ(µx, cx, ωφ, µφ) =
∫ Xx

0
Q[V] dx ,

∂ωφΘ(µx, cx, ωφ, µφ) = −
∫ Xx

0
M[V] dx ,

∂µφΘ(µx, cx, ωφ, µφ) = −
∫ Xx

0

Q[V]
M[V] dx .

(47)

See, for instance, [12, Proposition 1] for a proof9 of this elementary fact. For
each of those, we also have

∂#Θ(µx, cx, ωφ, µφ) =
∫ ρmax

ρmin

∂#(µx −Wρ)(ρ; cx, ωφ, µφ)√
µx −Wρ(ρ; cx, ωφ, µφ))

√
2κ(2 ρ)

2 ρ d ρ .

2.5. Asymptotic regimes. — As in [10, 11], we shall specialize most of the
general results to two asymptotic regimes: small-amplitude and large-period
asymptotics.

We make explicit here the descriptions of both regimes in terms of parame-
ters. Let (ρ(0), k

(0)
φ ) ∈ (0,∞)×R. Then, for any φ(0) ∈ R,

V(0)(x) =
√

2ρ(0) e(φ(0)+k(0)
φ

x)J(e1)

defines an unscaled profile with parameters (µ(0)
x
, c

(0)
x , ω

(0)
φ , µ

(0)
φ ) determined by

(see (25),(26))

µ(0)
φ

= c(0)
x ρ(0) + κ(2ρ(0)) 2 ρ(0) k

(0)
φ ,

ω
(0)
φ = c(0)

x k
(0)
φ +

(
κ′(2ρ(0)) 2 ρ(0) + κ(2ρ(0))

)
(k(0)
φ )2 + 2W ′(2ρ(0))

µ(0)
x

= −1
2 κ(2ρ(0)) 2ρ(0) (k(0)

φ )2 −W (2ρ(0))− c(0)
x ρ(0)k

(0)
φ + ω

(0)
φ ρ(0) + µ(0)

φ
k

(0)
φ ,

except for c(0)
x ∈ R, which may be chosen arbitrarily. Using ν, and Wρ in-

troduced in (43)–(45), the determination of parameters is equivalently written

9. Let us recall that in this reference, the role of (ρ, v) is played by (v, u). Note that the
proof given there uses V · Vx(0) = 0, but this may be assumed up to an harmless spatial
translation.
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as
k

(0)
φ = ν(ρ(0); c(0)

x , µ(0)
φ

) ,

0 = ∂ρWρ(ρ(0); c(0)
x , ω

(0)
φ , µ(0)

φ
) ,

µ(0)
x

=Wρ(ρ(0); c(0)
x , ω

(0)
φ , µ(0)

φ
) .

In this alternate formulation, it is clear thatwe could instead fix (ρ(0), µ
(0)
φ , c

(0)
x ) ∈

(0,∞)×R2 and determine (k(0)
φ , ω

(0)
φ , µ(0)

x
) correspondingly.

We are only interested in nondegenerate constant solutions and, thus, assume

∂2
ρWρ(ρ(0); c(0)

x , ω
(0)
φ , µ(0)

φ
) 6= 0.

Under this condition, for any (c(0)
x , ω

(0)
φ , µ

(0)
φ ) in some neighborhood of

(c(0)
x , ω

(0)
φ , µ

(0)
φ ), there is a unique corresponding

(ρ(0), k
(0)
φ , µ(0)

x ) := (ρ(0), k
(0)
φ , µ(0)

x )(c(0)
x , ω

(0)
φ , µ

(0)
φ ) ,

in some neighborhood of (ρ(0), k
(0)
φ , µ(0)

x
).

When
∂2
ρWρ(ρ(0); c(0)

x , ω
(0)
φ , µ(0)

φ
) > 0 ,

to any (cx, ωφ, µφ, µx) sufficiently close to (c(0)
x , ω

(0)
φ , µ

(0)
φ , µ(0)

x
) and satisfying

µx > µ(0)
x (cx, ωφ, µφ)

corresponds a unique – up to rotational and spatial translations invariances
– periodic traveling wave with mass close10 to ρ(0)(cx, ωφ, µφ). The small-
amplitude limit denotes the asymptotics µx − µ

(0)
x (cx, ωφ, µφ) → 0, and the

small-amplitude regime is the zone where µx − µ
(0)
x (cx, ωφ, µφ) is small but

positive. Incidentally, we point out that the limiting small amplitude period is
given by

X(0)
x (cx, ωφ, µφ) := 2π

√
κ(2 ρ(0))

2ρ(0)∂2
ρWρ(ρ(0); cx, ωφ, µφ) ,(48)

with ρ(0) = ρ(0)(cx, ωφ, µφ).
When

∂2
ρWρ(ρ(0); c(0)

x , ω
(0)
φ , µ(0)

φ
) < 0 ,

there are at most two solitary wave profiles with parameters (c(0)
x , ω

(0)
φ , µ

(0)
φ ),

namely at most one with ρ(0) as both an infimum and an end state for its mass

10. Recall that there could be various branches corresponding to the same parameters.
We give this precision to exclude other branches; see Figure 2.1.
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Figure 2.1. Small-amplitude limit with two branches with
the same parameters. The upper graph is the graph of µx−Wρ

as a function of ρ. The lower graph is, in the (ρ, d ρ
d x ) phase

plane, the level set defined by (44). The two closed curves
correspond to two periodic waves, the curve of interest being
the one circling ρ(0).

and at most one with ρ(0) as both a supremum and an end state for its mass;
see Figure 2.2. Concerning the large-period regime, we restrict ourselves to the
case when the periodic-wave profile asymptotes a single solitary-wave profile
and leave aside the case11 when the periodic wave profile is asymptotically
obtained by gluing two pieces of distinct solitary wave profiles sharing the same
end state. From now on, we focus on the case where ρ(0) is an infimum. Note
that when there are two solitary waves with the same endstate/parameters,

11. There are yet more possibilities (involving fronts/kinks in addition to solitary waves),
but they may be thought of as degenerate in the sense that they form a manifold of a
smaller dimension. The two-bump case is nondegenerate but was left aside in [10] as a priori
significantly different from the single-bump case dealt with here and there.
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Figure 2.2. Solitary-wave limit with two branches with
the same parameters. The upper graph is the graph of µx−Wρ

as a function of ρ. The lower graph is, in the (ρ, d ρ
d x ) phase

plane, the level set defined by (44). In both graphs, we super-
impose images corresponding to parameters of the solitary-
wave limit and nearby parameters corresponding to periodic
waves of a large period. The curves of interest are the right-
hand ones.

they generate distinct branches of (single-bump) periodic waves, thus, may be
analyzed independently. Moreover, we point out that the related analysis of
the supremum case is completely analogous. The existence of a solitary wave
of such a type is equivalent to the existence of ρ(s) > ρ(0), such that

Wρ(ρ(s); c(0)
x , ω

(0)
φ , µ(0)

φ
) = µ(0)

x
, ∂ρWρ(ρ(s); c(0)

x , ω
(0)
φ , µ(0)

φ
) > 0 ,
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and

∀ρ ∈ (ρ(0), ρ(s)), Wρ(ρ; c(0)
x , ω

(0)
φ , µ(0)

φ
) 6= µ(0)

x
,

where (ρ(0), µ(0)
x

) = (ρ(0), µ
(0)
x )(c(0)

x , ω
(0)
φ , µ

(0)
φ ). The situation is stable by per-

turbation of parameters (c(0)
x , ω

(0)
φ , µ

(0)
φ ). Assuming the latter, one deduces that

to any (µx, cx, ωφ, µφ) sufficiently close to (µ(0)
x
, c

(0)
x , ω

(0)
φ , µ

(0)
φ ) and satisfying

µx < µ(0)
x (cx, ωφ, µφ),

corresponds aunique –up to rotational and spatial translations invariances – peri-
odic travelingwavewithmass average andmassminimumclose toρ(0)(cx, ωφ, µφ).
The large period limit denotes the asymptotics µx−µ(0)

x (cx, ωφ, µφ)→ 0 and the
large period regime is the zone where µx − µ(0)

x (cx, ωφ, µφ) is sufficiently small
but negative.

From the point of view of the solitary waves themselves, it is actually both
more natural and more convenient to keep a parametrization by (cx, ρ(0), kφ)
rather than by (cx, ωφ, µφ), with ρ(0) the end state. This is consistent with
the fact that variations in the end state (thus in (ρ, kφ)) play no role in the
classical stability analysis of solitary waves (under localized perturbations).
Assuming as above that there is a ρ(s) associated with (c(0)

x , ρ(0), k
(0)
φ ), one

deduces that for any (cx, ρ(0), kφ) sufficiently close to (c(0)
x , ρ(0), k

(0)
φ ), there

exists ρ(s) = ρ(s)(cx, ρ(0), kφ) close to ρ(s) such that

Wρ(ρ(s); cx, ω(0)
φ , µ

(0)
φ ) = (µx)(0) , ∂ρWρ(ρ(s); cx, ω(0)

φ , µ
(0)
φ ) > 0 ,

and

∀ρ ∈ (ρ(0), ρ
(s)), Wρ(ρ; cx, ω(0)

φ , µ
(0)
φ ) 6= (µx)(0) ,

where (ω(0)
φ , µ

(0)
φ ) = (ω(0)

φ , µ
(0)
φ )(cx, ρ(0), kφ) is defined implicitly by

(ρ(0), kφ) = (ρ(0), k
(0)
φ )(cx, ω(0)

φ , µ
(0)
φ ) ,

and (µx)(0) = (µx)(0)(cx, ρ(0), kφ) :=µ
(0)
x (cx, ω(0)

φ (cx, ρ(0), kφ), µ(0)
φ (cx, ρ(0), kφ)).

The mass of the corresponding solitary-wave profile ρ(s) = ρ(s)( · ; cx, ρ(0), kφ)
is then obtained by solving

κ(2 ρ(s))
2 ρ(s)

d2 ρ(s)

dx 2 = −
(
κ′(2 ρ(s))

2 ρ(s)
− κ(2 ρ(s))

4 ρ2
(s)

)(d ρ(s)

dx

)2

− ∂ρWρ(ρ(s); cx, ω(0)
φ , µ

(0)
φ ) ,
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with ρ(s)( 0 ; cx, ρ(0), kφ) = ρ(s)(cx, ρ(0), kφ). Then the unscaled profile V(s) =
V(s)( · ; cx, ρ(0), kφ) is obtained through12

V(s) =
√

2 ρ(s) eθ(s) J(e1) ,

θ(s)(x) =
∫ x

0
ν(ρ(s)( · ; cx, ρ(0), kφ); cx, µ(0)

φ (cx, ρ, kφ)) .

Stability conditions are expressed in terms of

Θ(s)(cx, ρ, kφ) :=
∫ ∞

−∞

(
H0[V(s)] + cxQ[V(s)]− ω(0)

φ M[V(s)]

− µ(0)
φ

Q[V(s)]
M[V(s)]

+ (µx)(0)

)
.

(49)

Concerning the small-amplitude limit, although this is less crucial, at some
point it will also be convenient to adopt a parametrization of limiting harmonic
wave trains by (kx, ρ(0), kφ) (rather than by (cx, ωφ, µφ)). Our starting point
was a parametrization by (cx, ρ(0), kφ), so that we only need to examine the
invertibility of the relation cx 7→ 1/X(0)

x at fixed (ρ, kφ). The equation to invert
is

∂2
ρWρ(ρ; cx, ωφ, µφ) = 1

2
κ(2 ρ)

2ρ (2π kx)2 ,

with (ωφ, µφ) associated with (cx, ρ, kφ) through
kφ = ν(ρ; cx, µφ) , 0 = ∂ρWρ(ρ; cx, ωφ, µφ) .(50)

Straightforward computations detailed in [11, Appendix A] show that

∂2
ρWρ(ρ; cx, ωφ, µφ) = 1

κ(2 ρ) 2ρ det(B HessH(0)(ρ, kφ) + cx I2)

−2κ(2 ρ) 2ρ ∂ρν(ρ; cx, µφ) = 2cx + Tr(B HessH(0)(ρ, kφ)) ,
where

B :=
(

0 1
1 0

)
, H(0)(ρ, v) := κ(2 ρ)ρ v2 +W (2 ρ) .(51)

Let us stress incidentally that H(0) is the zero dispersion limit of the Hamilton-
ian H0 of the hydrodynamic formulation of the Schrödinger equation,
and B is the self-adjoint matrix involved in this formulation. As a result, if
∂ρν(ρ(0); c(0)

x , µ
(0)
φ ) 6= 0, then locally one may, indeed, parametrize waves by

(kx, ρ, kφ), and we shall denote
cx = c(0)

x (kx, ρ, kφ) , ω(0)
x (kx, ρ, kφ) := −kx c(0)

x (kx, ρ, kφ) ,
the corresponding harmonic phase speed and associated spatial time frequency.

12. The choice of the point where the value ρ(s)(cx, ρ, kφ) is achieved (respectively of
θ(s)(0; cx, ρ, kφ)), quotients the invariance by spatial (respectively rotational) translation.
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2.6. General plane waves. — We now explain how to extend the foregoing
analysis to more general plane waves in the form (15). So far, we have discussed
explicitly the case when kφ and kx point in the direction of e1. The main task
is to show how to reduce to the case when kφ and kx are colinear, that is, when
k̃φ = 0.

Let us first observe that for any vector k̃φ, the frame change

U(t,x) = ek̃φ·x J Ũ(t,x)
changes (3) into

∂tŨ = JδH̃kφ
[Ũ] ,

H̃kφ
[Ũ] := H0(Ũ, (∇x + k̃φJ)Ũ)(52)

= H0(Ũ,∇xŨ) + 1
2 ‖Ũ‖

2 κ(‖Ũ‖2) ‖k̃φ‖2 + κ(‖Ũ‖2) k̃φ · Q[Ũ] .

As a consequence, if one is simply interested in analyzing the structure of
waves or the behavior of solutions arising from longitudinal perturbations or
more generally from perturbations depending only on directions orthogonal to
k̃φ, it is sufficient to fix ex and k̃φ (orthogonal to each other) and replace H0
with H0,̃kφ

defined by

H0,̃kφ
[Ũ] := H0(Ũ,∇xŨ) + 1

2 ‖Ũ‖
2 κ(‖Ũ‖2) ‖k̃φ‖2 ,

or equivalently to replace W with Wk̃φ
defined through

Wk̃φ
(α) := W (α) + 1

2 ακ(α) ‖k̃φ‖2 .

With this point of view, all quantities manipulated in previous subsections
of the present section should be thought of as implicitly depending on ex and
k̃φ. Note, however, that actually they do not depend on ex and depend on k̃φ
only through ‖k̃φ‖2. In particular, their first-order derivatives with respect to
k̃φ vanish at k̃φ = 0.

To prepare the analysis of stability under general perturbations, let us make
explicit the relations defining constants of integration and averaged quantities
for general plane waves taken in the form

U(t,x) = e
(

k̃φ·(x−c
x

e
x
t)+ω

φ
t
)

J V(ex ·(x− cx ex t)) ,
generalizing (21). We still have

µφ = Sφ[V] + cxM[V] ,
but Sφ should be taken as

Sφ[V] = JV · (ex ·∇Ux) H0,̃kφ
(V, ex ∂ζV) .
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Likewise
µx = Sx[V] + ωφM[V] ,

with
Sx[V] = −H0,̃kφ

(V, ex ∂ζV) + ∂ζV · (ex ·∇Ux) H0,̃kφ
(V, ex ∂ζV) .

This implies that

Q[U] = ex ·Q(V, ex ∂ζV) ex +M[V] k̃φ ,

JU · ∇UxH0[U] = ex (µφ − cxM[V]) + k̃φ κ(‖V‖2) 2M[V] ,
1
2JU · JδH0[U]−H0[U] = µx − cx ex ·Q(V, ex ∂ζV)

− κ(‖V‖2) ‖∂ζV‖2 + κ′(‖V‖2)M[V] ‖k̃φ‖2 ,

Jδ Qj [U] · ∇Ux`
H0[U] = κ(‖V‖2)

(
(ex)j ∂ζV + (k̃φ)j JV

)

·
(

(ex)` ∂ζV + (k̃φ)` JV
)
,

with right-hand terms evaluated at (ex ·(x− cx ex t)).

3. Structure of the spectrum

Now we turn to gathering key facts about the spectrum of operators arising
from linearization, in suitable frames, about periodic plane waves.

3.1. The Bloch transform. — Our first observation is that, due to a suitable
integral transform, the spectrum of the linearized operator L defined in (9)
may be studied through normal-mode analysis.

To begin with, we introduce a suitable Fourier–Bloch transform, as a mix of
a Floquet/Bloch transform in the x variable and the Fourier transform in the
y variable:

B(g)(ξ, x,η) = ǧ(ξ, x,η) :=
∑

j∈Z
ei 2jπx ĝ(ξ + 2jπ,η) ,(53)

where ĝ is the usual Fourier transform normalized so that for x = (x,y)

F(g)(ξ,η) = ĝ(ξ,η) := 1
(2π)d

∫

R
e− i ξx−i η·y g(x) d x,

g(x) =
∫

R
ei ξx+i η·y ĝ(ξ,η) d ξ dη .

Obviously, ǧ(ξ, · ,η) is periodic of period 1 for any (ξ, η), that is,
∀x ∈ R, ǧ(ξ, x+ 1,η) = ǧ(ξ, x,η) .
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As follows readily from (53) and basic Fourier theory, (2π)d/2 B is a total isom-
etry from L2(Rd) to L2((−π, π)× (0, 1)×Rd−1), and it satisfies the inversion
formula

g(x) =
∫ π

−π

∫

Rd−1
ei ξx+i η·y ǧ(ξ, x,η) d ξ dη .(54)

The Poisson summation formula provides an alternative equivalent formula for
(53)

ǧ(ξ, x,η) = 1
2π
∑

`∈Z
e− i ξ(x+`) Fy(g)(x+ `,η) ,

where Fy denotes the Fourier transform in the y-variable only.
The key feature of the transform B is that in some sense it diagonalizes

differential operators whose coefficients do not depend on y and are 1-periodic
in x. For large classes of such operators P = P (x, ∂x,∇y), stands

B(Pu)(ξ, x,η) = P (x, ∂x + i ξ, iη)B(u)(ξ, x,η) ,

so that the action of such operators on functions defined on Rd is reduced to
the action of Pξ,η = P (x, ∂x + i ξ, iη) on 1-periodic functions, parametrized by
(ξ,η).

In particular, for L as in (9) we have

(Lg)(x) =
∫ π

−π

∫

Rd−1
ei ξx+i η·y (Lξ,η ǧ(ξ, · ,η))(x) , d ξ dη,

where Lξ,η acts on 1-periodic functions and from H = Hx + Hy inherits the
splitting

Lξ,η := Lxξ + Ly
η , with Ly

η := ‖η‖2 κ(‖U‖2) J ,
and Lxξ given by

LxξV = J
(

d(U,Ux)(∇UH)(U,∇xU)(V, (∂x + i ξ)V)

− (∂x + i ξ)
(
d(U,Ux)(∇UxH)(U,∇xU)(V, (∂x + i ξ)V)

) )
.

On13 L2
per((0, 1)) each Lξ,η has a compact resolvent and depends analytically

on (ξ,η) in the strong resolvent sense.
It is both classical and relatively straightforward to derive from the latter and

the isometry of (2π)d/2 B that the spectrum of L on L2(R) coincides with the
union over (ξ,η) ∈ [−π, π]×Rd−1 of the spectrum of each Lξ,η on L2

per((0, 1)).
The reader is referred to [48, p.30-31] for more details on the argument, to [39]

13. We insist on the subscript per to emphasize that corresponding domains involve
Hs

per((0, 1)) spaces, thus effectively encoding periodic boundary conditions when s > 1/2.
Notation “Lper

ξ,η
acts on L2((0, 1))” would be mathematically more accurate but more

cumbersome.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



144 C. AUDIARD & L. M. RODRIGUES

for a general background on the Bloch transform, and to [48, 49] for comments
on its use in periodic-wave stability problems.

3.2. Linearizing Madelung’s transformation. — We would like to point out
here how the analysis of Section 2.3 may be extended to the spectral level. We
stress that working with Bloch–Fourier symbols Lξ,η provides crucial simplifi-
cations in the arguments.

Firstly, we observe that linearizing (36)–(37) provides all the necessary alge-
braic identities. Secondly, we note that applying a Bloch–Fourier transform to
both sides of the foregoing identities yields the required algebraic conjugations
between the respective Bloch–Fourier symbols.

To go beyond algebraic relations, we start with a few notational or elemen-
tary considerations.

1. From elementary elliptic regularity arguments, it follows that the L2
per-

spectrum of each Lξ,η coincides with its H1
per-spectrum.

2. With L2
curlξ,η ((0, 1)) denoting the space of L2((0, 1); C)d-functions v,

such that14
(

(∂x + i ξ)
iη

)
∧ v = 0 ,

we observe that when (ξ,η) ∈ [−π, π]×Rd−1 \ {(0, 0)},

Iξ,η : H1
per((0, 1)) −→ L2

curlξ,η ((0, 1)) , θ 7→
(

(∂x + i ξ)
iη

)
θ

is a bounded invertible operator.
3. The linearization of the relation

U = e−
kφ
kx

(·)J U(ρ(·), θ(·)) ,

at U , (ρ, θ), is given by

m : H1
per((0, 1); C2) −→ H1

per((0, 1); C)2 , V 7→
(
U ·V, JU

2ρ ·V
)

and is bounded and invertible with inverse

m−1 : H1
per((0, 1); C)2 −→ H1

per((0, 1); C2) , (ρ, θ) 7→ ρ
U
2 ρ + θ JU .

Considering Lξ,η as an operator on H1
per and denoting Lξ,η the correspond-

ing Bloch–Fourier symbol for the associated Euler–Korteweg system (39), we

14. The condition means: (∂x + i ξ)vj = i ηj−1v1 for 2 ≤ j ≤ d, and ηjv` = η`vj for
1 ≤ j, ` ≤ d− 1. When d = 1, L2

curlξ,η
((0, 1)) = L2((0, 1); C).
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deduce when (ξ,η) ∈ [−π, π]×Rd−1 \ {(0, 0)}, the conjugation

Lξ,η = m−1
(

I 0
0 I−1

ξ,η

)
Lξ,η

(
I 0
0 Iξ,η

)
m .

Of course, the conjugation yields the identity of spectra, including algebraic
multiplicities but also the identity of the detailed algebraic structure of each
eigenvalue. When d = 1, by continuity of the eigenvalues with respect to ξ, one
also concludes that L0 and L0 share the same spectrum, including algebraic
multiplicities, but algebraic structures may differ (and as stressed below, in
general, they do). Note that to go from spectral to linear stability it is actually
crucial to examine semisimplicity of eigenvalues.

For this reason, we focus now a bit more on the case (ξ,η) = (0, 0). To begin
with, denoting L2

0((0, 1)) the space of L2((0, 1); C)d-functions v of the form
(
v
0

)
, with

∫ 1

0
v = 0 ,

we observe that

I(0) : H1
per((0, 1)) −→ L2

0((0, 1)) , θ 7→
(
∂x
0

)
θ

is a bounded invertible operator. Moreover, we point out that L0,0 leaves
H1

per((0, 1)) × L2
0((0, 1)) invariant,15 and its restriction is conjugated to L0,0

through

L0,0 = m−1
(

I 0
0 (I(0))−1

)
(L0,0)|H1

per((0,1))×L2
0((0,1))

(
I 0
0 I(0)

)
m .

Denoting π0 the orthogonal projector of H1
per((0, 1)) × L2

curl0,0((0, 1)) on
H1

per((0, 1)) × L2
0((0, 1)) we also note that (I − π0)L0,0 (I − π0) is identically

zero, and π0 L0,0 (I − π0) is bounded. As a conclusion, one derives when λ is
nonzero and does not belong to the spectrum of L(0,0) or equivalently, when λ
is nonzero and does not belong to the spectrum of L(0,0)

(λI− L(0,0))−1 = 1
λ

(I− π0)

+
(

I 0
0 I(0)

)
m−1(λI− L(0,0))−1 m

(
I 0
0 (I(0))−1

)(
π0 + 1

λ
π0 L0,0 (I− π0)

)
,

so that for nonzero eigenvalues, the algebraic structures16 of L(0,0) and L0,0 are
the same.

15. For an unbounded operator A defined on X with domain D, we say that Y , a subspace
of X, is left invariant by A if A(D ∩ Y ) ⊂ Y , and, in this case, A|Y is defined on Y with
domain D ∩ Y .

16. Recall that the algebraic structure of an eigenvalue λ0 of an operator A is read on the
singular part of λ 7→ (λI−A)−1 at λ = λ0.
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As we comment further below, in general, 0 is an eigenvalue of L(0,0) of
algebraic multiplicity 4 with two Jordan blocks of height 2, whereas, when
d = 1, 0 is an eigenvalue of L0 of algebraic multiplicity 4 with geometric
multiplicity 3 and one Jordan block of height 2.

3.3. The Evans function. — Since each Lξ,η acts on functions of a scalar vari-
able, it is convenient to analyze their spectra by focusing on spatial dynamics,
rewriting spectral problems in terms of ODEs of the spatial variable. Adapting
the construction of Gardner [25] to the situation at hand, this leads to the
introduction of a suitable Evans function.

To keep spectral ODEs as simple as possible, it is expedient to work with
unscaled equations as in Section 2. Explicitly, with the notation from Section 2,
for λ ∈ C and η ∈ Rd−1, we consider R( · , x0;λ,η) the solution operator of the
first-order four-dimensional differential operator canonically associated with
the second-order two-dimensional operator J Hess Hu[V] + ‖η‖2 κ(‖V‖2)J− λ.
Note that R(x0, x0;λ,η) = I4. Accordingly, we introduce the Evans function

Dx0
ξ (λ,η) = det

(
R(x0 +Xx, x0;λ,η)− ei ξ diag(eξφJ

, eξφJ)
)
.(55)

The choice of x0 is immaterial; we shall set x0 = 0 and drop the corresponding
superscript in the following.

The backbone of the Evans function theory is that λ0 belongs to the spec-
trum of Lξ,η if and only if λ0 is a root of Dξ( · ,η), and that its (algebraic)
multiplicity as an eigenvalue of Lξ,η agrees with its multiplicity as a root of
Dξ( · ,η). The first part of the claim is a simple reformulation of the fact that
the spectrum of Lξ,η contains only eigenvalues, whereas the second part may be
derived from the expression of resolvents of Lξ,η at λ in terms of solution oper-
ators R( · , ·;λ,η) and the characterization/definition of algebraic multiplicity
at λ0 as the rank of the residue at λ0 of the resolvent map.

To a large extent, the benefits from using an Evans function instead of
directly studying spectra are the same as those arising from the consideration
of characteristic polynomials to study finite-dimensional spectra.

3.4. High-frequency analysis. — It is quite straightforward to check that when
|<(λ)| is sufficiently large, λ does not belong to the spectrum of any Lξ,η. When
λ is real, and ξ ∈ {0, π}, Dξ(λ,η) is real valued, and we would like to go further
and determine its sign when (λ,η) is sufficiently large with λ real. This is useful
in order to derive instability criteria based on the intermediate value theorem.

Since the principal part of Lξ,η has nonconstant coefficients, this is not com-
pletely trivial, but one may reduce the computation to the constant-coefficient
case by a homotopy argument similar to the one in [9].
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Proposition 3.1. — Let V be an unscaled wave profile (in the sense of (22)).
There exists R0 > 0 such that for any (λ,η) ∈ R×Rd−1 satisfying |λ|+‖η‖2 ≥
R0, we have D0(λ,η) > 0 and Dπ(λ,η) > 0.

Proof. — An elementary Lax–Milgram type argument shows that when (λ,η)
is sufficiently large (with λ real) independently of θ ∈ [0, 1], λ does not belong
to the spectrum of

L(θ)
0,η := (1− θ)L0,η + θ J(−(kx ∂x + kφJ)2 + ‖η‖2)

on L2
per((0, 1)), for any θ ∈ [0, 1]. The needed estimates stem from the form

L(θ)
0,η = J((θ + (1− θ)κ(‖U‖2)) (−k2

x∂
2
x + ‖η‖2))

+ lower order terms independent of λ and η

and the fact that min(κ(‖U‖2)) > 0. Indeed, for some positive constants c, C
independent of (λ,η, θ) ∈ R ×Rd−1 × [0, 1]

〈(JV− sgn(λ)V, (L(θ)
0,η − λ)V)〉L2 ≥ c (‖V‖2H1 + (‖η‖2 + |λ|)‖V‖2)

− C ‖V‖H1 ‖V‖L2

≥ c

2 (‖V‖2H1 + (‖η‖2 + |λ|)‖V‖2) ,

provided that (λ,η) is sufficiently large and V ∈ H2
per((0, 1)). A similar bound

holds for the adjoint problem.
For the correspondingEvans functions, this implies that (λ,η, θ) 7→ D

(θ)
0 (λ,η)

has a constant sign on
{

(λ,η, θ) ∈ R ×Rd−1 × [0, 1] ; |λ|+ ‖η‖ ≥ R0 ,
}

for some R0 > 0. This sign is easily evaluated by considering either D(1)
0 (λ, 0)

when λ is large or17 D
(1)
0 (0,η) when ‖η‖ is large. The foregoing computations

can be made even more explicit running first another homotopy argument mov-
ing J(−(kx ∂x + kφJ)2 + ‖η‖2) to J(−k2

x ∂
2
x + ‖η‖2), thus reducing to ξ

φ
= 0;

in this case, we have D(1)
0 (0,η) = (e‖η‖Xx −1)2 (e−‖η‖Xx −1)2.

The study of Dπ(λ,η) is nearly identical and thus omitted. �

3.5. Low-frequency analysis. — Now we turn to the derivation of an expansion
of Dξ(λ,η) when (λ, ξ,η) is small. We begin with a few preliminary remarks
to prepare such an expansion.

For the sake of brevity in algebraic manipulations, we introduce the notation

[A]0 := A(Xx)− eξφJ
A(0) .

17. When d = 1, this requires us to first embed artificially the spectral problem at hand
in a corresponding higher-dimensional problem.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



148 C. AUDIARD & L. M. RODRIGUES

Let us observe that if A[U] = A(U, Ux) is rotationally invariant,

LA[U]V = LA[eϕφJ U] eϕφJ V ,

for any ϕφ ∈ R; hence if V(·+Xx) = eξφJ V(·),

(LA[V]ψ)(0) = d(U,Ux)A(V(Xx),Vx(Xx))(eξφJ
ψ(0), eξφJ

ψx(0)) ,
(LA[V]ψ)(Xx)− (LA[V]ψ)(0) = d(U,Ux)A(V(Xx),Vx(Xx))([ψ]0, [ψx]0) .

All relevant quantities depend on η only through ‖η‖2 and a wealth of infor-
mation on the regime (λ, ξ,η) small – used repeatedly below without mention
– is obtained by differentiating (22), (33) and (34); for a = ωφ, cx, µφ, µx,

[∂aV]0 = ∂aξφ eξφJ JV(0)− ∂aXx eξφJ Vx(0) ,(56)
(L(Sφ + cxM)[V]∂aV)(0) = ∂aµφ − ∂acxM[V](0) ,(57)
(L(Sx + ωφM)[V]∂aV)(0) = ∂aµx − ∂aωφM[V](0) .(58)

Finally, from Appendix A we derive that if

λψ = J Hess Hu[V]ψ + ‖η‖2 κ(‖V‖2)Jψ ,

then

λLM[V]ψ = ∂x (L(Sφ + cxM)[V]ψ)− ‖η‖2 κ(‖V‖2) JV ·ψ ,(59)
λLQ1[V]ψ = ∂x

(
L(Sx + ωφM)[V]ψ

)
− ‖η‖2 κ(‖V‖2)Vx ·ψ(60)

+ ∂x

(
1
2JV ·

(
λψ − ‖η‖2 κ(‖V‖2)Jψ

))
.

Moreover, as has already been mentioned in Section 2.2

det(dUx
(Sφ,Sx)(V(Xx),Vx(Xx)) = (κ(‖V(0)‖2))2 V(0) · Vx(0) .

Theorem 3.2. — With the notation from Section 2, consider an unscaled wave
profile V such that V · Vx 6≡ 0. Then the corresponding Evans function expands
uniformly in ξ ∈ [−π, π] as

Dξ(λ,η) = det
(
λΣt − (ei ξ −1)I4 + ‖η‖2

λ Σy

)(61)

+O
(
(|λ|+ |ξ|+ ‖η‖2) (|λ|2 + |ξ|2 + ‖η‖2) (|λ|(|λ|+ |ξ|) + ‖η‖2)

)
,
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when (λ,η)→ (0, 0), with

Σt =




∂aξφ

∂aXx∫X
x

0 LM[V]∂aV + M[V](0) ∂aXx∫Xx
0 LQ1[V]∂aV + Q1[V](0) ∂aXx



a=ωφ,cx,µφ,µx

,

Σy =




0 0 0 0

0 0 0 0
∫X

x

0 κ(‖V‖2) ‖V‖2 −
∫X

x

0 κ(‖V‖2) JV · Vx 0 0
∫X

x

0 κ(‖V‖2)Vx · JV −
∫X

x

0 κ(‖V‖2) ‖Vx‖2 0 0



.

Note that the structure of Σy is consistent with the fact that there is actually
no singularity in the low-frequency expansion of the Evans function; every
power of ‖η‖2/λ is balanced by a corresponding power of λ.

Proof. — By a density argument on the point where the Evans function is
considered, we may reduce the analysis to the case when V(0) · Vx(0) 6= 0.

Guided by rotation and translation invariance, we introduce

Ψ1( · ;λ,η) =R( · , 0;λ,η)
(

JV(0)
JVx(0)

)
Ψ2( · ;λ,η) =R( · , 0;λ,η)

(
Vx(0)
Vxx(0)

)
,

Ψ3( · ;λ,η) =R( · , 0;λ,η)
(
∂µφV(0)
∂µφVx(0)

)
Ψ4( · ;λ,η) =R( · , 0;λ,η)

(
∂µxV(0)
∂µxVx(0)

)
,

so that in particular

Ψ1( · ; 0, 0) =
(

JV
JVx

)
, Ψ2( · ; 0, 0) =

(
Vx
Vxx

)

Ψ3( · ; 0, 0) =
(
∂µφV
∂µφVx

)
, Ψ4( · ; 0, 0) =

(
∂µxV
∂µxVx

)
.

Then we set Ψ =
(

Ψ1 Ψ2 Ψ3 Ψ4

)
and observe that from the computations in

Section 2.2 stems

Dξ(λ,η) = (κ(‖V(0)‖2))2

× det
(

[Ψ( · ;λ,η)]0 − (ei ξ −1) diag(eξφJ
, eξφJ)Ψ(0;λ,η)

)
.
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Note that each Ψ`( · ;λ,η) splits as (ψ`( · ;λ,η), (ψ`)x( · ;λ,η)) for some
ψ`( · ;λ,η) and that

λψ` = J Hess Hu[V]ψ` + ‖η‖2 κ(‖V‖2)Jψ` .

We may now use the identities (59) (60)) and perform line combinations so
as to obtain that (V(0) · Vx(0))×Dξ(λ,η) coincides with the determinant of a
matrix of the form



[ψ`]0 − (ei ξ −1) eξφJ
ψ`(0)

λ
∫ X

x

0 LM[V](ψ`) + ‖η‖2 ∫ Xx

0 κ(‖V‖2) JV · ψ` − (ei ξ −1) (L(Sφ + cxM)[V]ψ`)(0)

λ
∫ X

x

0 LQ1[V](ψ`) + ‖η‖2 ∫ Xx

0 κ(‖V‖2)Vx · ψ`
−(ei ξ −1)

((
L(Sx + ωφM)[V] +

(
λ
2 JV − ‖η‖2 κ(‖V‖2)V

)
·
)
ψ`
)

(0)



`

,

in the limit (λ,η) → (0, 0) (where we have left implicit the dependence of
ψ` on (λ,η) for the sake of concision). Then we observe that it follows from
invariances by rotational and spatial translations that the first two columns of
the foregoing matrix are of the form




O(|λ|+ |ξ|+ ‖η‖2)
O(|λ|+ |ξ|+ ‖η‖2)

O(|λ| (|λ|+ |ξ|) + ‖η‖2)
O(|λ| (|λ|+ |ξ|) + ‖η‖2)



,

when (λ,η) → (0, 0) and that, as follows by comparing respective equations,
both ∂λψ1( · ; 0, 0) and ∂ωφV on the one hand and ∂λψ2( · ; 0, 0), and −∂cxV on
the other hand, differ only by a linear combination of ψ1( · ; 0, 0), ψ2( · ; 0, 0),
ψ3( · ; 0, 0) and ψ4( · ; 0, 0).

Therefore, from a direct expansion and a column manipulation, one derives
that

(−V(0) · Vx(0))×Dξ(λ,η) = det
(
C1 C2 C3 C4

)
,

with

C1 =




λ [∂ωφV]0 − (ei ξ −1) eξφJ JV(0)
λ2 ∫Xx

0 LM[V]∂ωφV + ‖η‖2
∫Xx

0 κ(‖V‖2) ‖V‖2
λ2 ∫Xx

0 LQ1[V]∂ωφV + ‖η‖2
∫X

x

0 κ(‖V‖2)Vx · JV




+




O(|λ|(|λ|+ |ξ|) + ‖η‖2)
O((|λ|2 + ‖η‖2)(|λ|+ |ξ|) + ‖η‖4)
O((|λ|2 + ‖η‖2)(|λ|+ |ξ|) + ‖η‖4)


 ,
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C2 =




λ [∂cxV]0 + (ei ξ −1) eξφJ Vx(0)
λ2 ∫Xx

0 LM[V]∂cxV +λ (ei ξ −1)M[V](0)−‖η‖2
∫Xx

0 κ(‖V‖2) JV · Vx
λ2 ∫Xx

0 LQ1[V]∂cxV +λ (ei ξ −1)Q1[V](0)−‖η‖2
∫Xx

0 κ(‖V‖2) ‖Vx‖2




+




O(|λ|(|λ|+ |ξ|) + ‖η‖2)
O((|λ|2 + ‖η‖2)(|λ|+ |ξ|) + ‖η‖4)
O((|λ|2 + ‖η‖2)(|λ|+ |ξ|) + ‖η‖4)


 ,

C3 =




[∂µφV]0 − (ei ξ −1) eξφJ
∂µφV(0)

λ
∫X

x

0 LM[V]∂µφV + ‖η‖2
∫X

x

0 κ(‖V‖2) JV · ∂µφV − (ei ξ −1)
λ
∫Xx

0 LQ1[V]∂µφV + ‖η‖2
∫Xx

0 κ(‖V‖2)Vx · ∂µφV




+




O(|λ|+ ‖η‖2)
O((|λ|+ ‖η‖2)(|λ|+ |ξ|+ ‖η‖2))
O((|λ|+ ‖η‖2)(|λ|+ |ξ|+ ‖η‖2))


 ,

and

C4 =




[∂µxV]0 − (ei ξ −1) eξφJ
∂µxV(0)

λ
∫Xx

0 LM[V]∂µxV + ‖η‖2
∫Xx

0 κ(‖V‖2) JV · ∂µxV
λ
∫X

x

0 LQ1[V]∂µxV + ‖η‖2
∫X

x

0 κ(‖V‖2)Vx · ∂µxV − (ei ξ −1)




+




O(|λ|+ ‖η‖2)
O((|λ|+ ‖η‖2)(|λ|+ |ξ|+ ‖η‖2))
O((|λ|+ ‖η‖2)(|λ|+ |ξ|+ ‖η‖2))


 .

Then the result follows steadily from an expansion of the determinant and a
few manipulations on the first two lines based on Formula (56) for [∂aV]0. �

4. Longitudinal perturbations

We begin by completing and discussing consequences of the latter sections on
the stability analysis for longitudinal perturbations. For results derived – via
Madelung’s transformation – from corresponding known results for larger classes
of Euler–Korteweg systems, we also provide some hints about direct proofs.

4.1. Coperiodic perturbations. — As in [12, 9], we connect stability with re-
spect to coperiodic longitudinal perturbations with properties of the Hessian
of the action integral Θ. We remember that Θ is considered as a function of
(µx, cx, ωφ, µφ), in that order.

At the spectral level, restricting ourselves to coperiodic longitudinal pertur-
bations corresponds to focusing on L0,0, the Bloch–Fourier symbol at (ξ,η) =
(0, 0). It is thus worth pointing out that it follows from identities in (47) that

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



152 C. AUDIARD & L. M. RODRIGUES

the matrix Σt in Theorem 3.2 is such that

Σt =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0



(

I2 0
0 −I2

)
Hess Θ




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


(62)

so that
D0(λ, 0) = λ4 det (Hess Θ) +O

(
|λ|5

)
(63)

as |λ| → 0. Combining it with Proposition 3.1 provides the first half of the
following theorem. Incidentally, we point out that we expect that this half could
alternatively be derived by counting Krein signatures and refer the reader to
[9, Remark 3] and [37, Chapter 13] for more information on the latter.

Theorem 4.1. — Let U be a wave profile of parameter (µ
x
, cx, ωφ, µφ), such

that Hess Θ(µ
x
, cx, ωφ, µφ) is nonsingular.

1. The number of eigenvalues of L0,0 in (0,+∞), counted with algebraic
multiplicity, is
• even if det (Hess Θ) (µ

x
, cx, ωφ, µφ) > 0 ;

• odd if det (Hess Θ) (µ
x
, cx, ωφ, µφ) < 0.

In particular, in the latter case, the wave is spectrally exponentially un-
stable to coperiodic longitudinal perturbations.

2. Assume that ∂2
µxΘ(µ

x
, cx, ωφ, µφ) 6= 0 and that the negative signature of

Hess Θ(µ
x
, cx, ωφ, µφ) equals 2. Then the wave is conditionally orbitally

stable in H1
per((0, Xx)).

By conditional orbital stability in H1
per((0, Xx)), we mean that for any

δ0 > 0, there exists ε0 > 0 such that for any U0 satisfying
inf

(ϕφ,ϕx)∈R2

∥∥U0 − eϕφJ U( ·+ ϕx )
∥∥
H1

per((0,1)) ≤ ε0

and any solution18 U to (8) defined on an interval I containing 0, starting from
U(0, · ) = U0 and sufficiently smooth to guarantee that
• U ∈ C0(I;H1

per((0, 1)));
• t 7→

∫X
x

0 M[U(t, · )], t 7→
∫X

x

0 Q1[U(t, · )] and t 7→
∫X

x

0 H[U(t, · )] are
constant on I;

then for any t ∈ I,
inf

(ϕφ,ϕx)∈R2

∥∥U(t, · )− eϕφJ U( ·+ ϕx )
∥∥
H1

per((0,1)) ≤ δ0 .

18. Knowing in which precise sense does not matter since only conservations are used in
the stability argument.
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To go from conditional orbital stability to orbital stability one needs to know
that for the notion of solution at hand controlling the H1-norm is sufficient to
prevent finite-time blowup. This is in particular the case when κ is constant;
see e.g., [19, Section 3.5]).

Proof. — The first point is a direct consequence of identity (63) andD0(λ, 0) > 0
for λ real and large (Proposition 3.1).

The second part is deduced from a corresponding result for the Euler–Korte-
weg system (39): (ρ, u) is conditionally orbitally stable in H1

per×L2
per((0, 1)) if

the negative signature of Hess Θ(µ
x
, cx, ωφ, µφ) equals 2. See Theorem 3 and

its accompanying remarks in [9, Section 4.2] (conveniently summarized as [10,
Theorem 1]). The conversion to our setting stems from the following lemma
and the fact that System (39) preserves the integral of v1. �

Lemma 4.2. — 1. For any c0 > 0, there exist ε > 0 and C, such that if
U ∈ H1

per((0, 1)) satisfies ‖U‖ ≥ c0, then for any (ϕφ, ϕx) ∈ R2 and any
U ∈ H1

per((0, 1)) satisfying
∥∥U− eϕφJ U( ·+ ϕx )

∥∥
H1

per((0,1)) ≤ ε ,

with

(ρ, ṽ) =
(
M[U], Q1[U]

M[U]

)
, (ρ, ṽ) =

(
M[U ], Q1[U ]

M[U]

)
,

there holds (ρ, ṽ), (ρ, ṽ) ∈ H1
per((0, 1))× L2((0, 1)),

∫ 1
0 ṽ =

∫ 1
0 ṽ = 0, and

∥∥(ρ, ṽ)− (ρ, ṽ)( ·+ ϕx )
∥∥
H1

per×L2
per

≤ C
(

1 + ‖U‖3H1
per

)∥∥U− eϕφJ U( ·+ ϕx )
∥∥
H1

per
.

2. There exists C such that if

U =
√

2ρ eθJ(e1) , U =
√

2ρ eθJ(e1) ,

with (ρ, ∂xθ), (ρ, ∂xθ) ∈ H1
per((0, 1))× L2((0, 1)),

∫ 1
0 ∂xθ =

∫ 1
0 ∂xθ = 0,

then U ∈ H1
per((0, 1)), U ∈ H1

per((0, 1)) and, for any ϕx ∈ R,
∥∥U− eϕφJ U( ·+ ϕx )

∥∥
H1

per

≤ C
(

1 + ‖(ρ, ∂xθ)‖2H1
per×L2

per
+
∥∥(ρ, ∂xθ)

∥∥2
H1

per×L2
per

)

×
∥∥(ρ, ∂xθ)− (ρ, ∂xθ)( ·+ ϕx )

∥∥
H1

per×L2
per

where

ϕφ =
∫ 1

0
(θ(ζ)− θ( ζ + ϕx ))dζ .
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Proof. — The proof of the lemma is quite straightforward, using the continuous
embedding

H1
per((0, 1)) ↪→ L∞((0, 1))

and the Poincaré inequality. We use the latter in the following form. There
exists C such that for any θ such that ∂xθ ∈ L2((0, 1)),

∫ 1
0 ∂xθ = 0, we have

θ ∈ H1
per((0, 1)), and if

∫ 1
0 θ = 0,

‖θ‖L2((0,1)) ≤ C ‖∂xθ‖L2((0,1)) . �

The first part of the foregoing theorem could also be deduced from [12, 9]
through Section 3.2. In the reverse direction, we expect that the second part
could be deduced from abstract results directly concerning equations of the
same type as the nonlinear Schrödinger equation – see [27, 14] – essentially as
the conclusions in [9] used here were deduced there by combining an abstract
result – [9, Theorem 3] – with a result proving connections with the action
integral – [9, Theorem 7].

As in [10] for systems of Korteweg type, we now specialize Theorem 4.1 to
two asymptotic regimes, small-amplitude and large-period. To state our result,
in the small-amplitude regime, we need one more nondegeneracy index

a0(cx, ρ, kφ) := 1
8(∂2

ρWρ)3

[
5
3(∂3

ρWρ)2 − ∂2
ρWρ ∂

4
ρWρ

(64)

− 4 ∂2
ρWρ ∂

3
ρWρ

(
κ′(2ρ)
κ(ρ) −

1
2 ρ

)

+ 16 (∂2
ρWρ)2

(
κ′′(2ρ)
κ(ρ) −

1
2 ρ

κ′(2ρ)
κ(ρ) + 1

2 (ρ)2

)]
,

with derivatives of Wρ evaluated at (ρ; cx, ωφ, µφ), (ωφ, µφ) being associated
with (cx, ρ, kφ) through (50). The following theorem is then merely a transla-
tion of Corollaries 1 and 2 in [10].

Theorem 4.3. — 1. In the small amplitude regime near a (c(0)
x , ρ(0), k

(0)
φ ),

such that19

∂ρν(ρ(0); c(0)
x , µ(0)

φ
) 6= 0 , a0(c(0)

x , ρ(0), k
(0)
φ ) 6= 0 ,

we have that ∂2
µxΘ 6= 0 and that the negative signature of Hess Θ equals 2,

so that waves are conditionally orbitally stable in H1
per((0, Xx)).

19. With µ(0)
φ

associated with (c(0)
x , ρ(0), k(0)

φ
) through (50).

tome 150 – 2022 – no 1



NLS PERIODIC WAVES 155

2. In the large period regime, ∂2
µxΘ 6= 0 and

• if ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) > 0 then in the large period regime near

(c(0)
x , ρ(0), k

(0)
φ ), the negative signature of Hess Θ equals 2, so that

waves are conditionally orbitally stable in H1
per((0, Xx));

• if ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) < 0, then in the large-period regime near

(c(0)
x , ρ(0), k

(0)
φ ), the negative signature of Hess Θ equals 3, so that

waves are spectrally exponentially unstable to coperiodic longitudinal
perturbations.

A few comments are in order.
1. The condition a0 6= 0 is directly connected to the condition ∂2

µxΘ 6= 0
since a0X

(0)
x is the limiting value of ∂2

µxΘ 6= 0 in the small-amplitude
regime; see [10, Theorem 4].

2. The small-amplitude regime considered here is disjoint from the one an-
alyzed for the semilinear cubic Schrödinger equations in [24] since here
the constant asymptotic mass is nonzero, namely ρ(0) > 0.

3. The condition on ∂2
cxΘ(s) agrees with the usual criterion for stability of

solitary waves, known as the Vakhitov–Kolokolov slope condition; see
e.g., [27].

4.2. Sideband perturbations. — Sideband perturbations are perturbations
corresponding to Floquet exponents ξ arbitrarily small but nonzero. As in
[12, 13, 11], we analyze the spectrum of Lξ,0 near 0 when ξ is small. Some
instability criteria associated with this part of the spectrum could be deduced
readily from Theorem 3.2. Yet we postpone these conclusions slightly since we
are more interested in proving that such rigorous conclusions agree with those
guessed from formal geometrical optics considerations.

Thus, let us consider the two-phase slow/fast-oscillatory ansatz

U(ε)(t, x) = e
1
εϕ

(ε)
φ

(ε t,ε x) J U (ε)

(
ε t, ε x; ϕ

(ε)
x (ε t, ε x)

ε

)
,(65)

with, for any (T,X), ζ 7→ U (ε)(T,X; ζ) periodic of period 1 and, as ε→ 0,

U (ε)(T,X; ζ) = U0(T,X; ζ) + εU1(T,X; ζ) + o(ε) ,

ϕ
(ε)
φ (T,X) = (ϕφ)0(T,X) + ε (ϕφ)1(T,X) + o(ε) ,

ϕ(ε)
x (T,X) = (ϕx)0(T,X) + ε (ϕx)1(T,X) + o(ε) .

Requiring (65) to solve (3) up to a remainder of size o(1) is equivalent to
ζ 7→ U0(T,X; ζ) being a scaled profile of a periodic traveling wave of (22).
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Explicitly,

JδH0(U0, e1 (kφJ + kx∂ζ)U0) = ωφJU0 − cx (kφJ + kx∂ζ)U0 ,(66)

with local parameters (depending on slow variables (T,X)) related to phases
by

∂T (ϕφ)0 = ωφ − kφ cx , ∂X(ϕφ)0 = kφ , ∂T (ϕx)0 = ωx , ∂X(ϕx)0 = kx .

Symmetry of derivatives already constrains the slow evolution of wave param-
eters with

∂T kφ = ∂X (ωφ − kφ cx) , ∂T kx = ∂Xωx .

Since periodic profiles form a four-dimensional manifold (after discarding trans-
lation and rotation parameters), in order to determine the leading-order dy-
namics of (65), we need two more equations. The fastest way to obtain such
equations is to also require (65) to solve (4) and (6) up to remainders of size
o(ε). Observing that all quantities in (4) and (6) are independent of phases,

∂T (M(U0)) = ∂X(Sφ(U0, e1 (kx∂ζ + kφJ)U0)) + ∂ζ (∗) ,
∂T (Q1(U0, e1 (kx∂ζ + kφJ)U0))

= ∂X
((
∇Ux

Q1 · JδH0 + Sx
)
(U0, e1 (kx∂ζ + kφJ)U0)

)
+ ∂ζ (∗∗) ,

with omitted terms ∗ and ∗∗ 1-periodic in ζ. Averaging in ζ (using (66))
provides two more equations, completing the modulation system





∂T kx = ∂Xωx

∂T (〈Q(1U0, e1 (kx∂ζ + kφJ)U0)〉)
= ∂X(〈(ωφM− cxQ1 + Sx)(U0, e1 (kx∂ζ + kφJ)U0)〉)

∂T (〈M(U0)〉) = ∂X(〈Sφ(U0, e1 (kx∂ζ + kφJ)U0)〉)
∂T kφ = ∂X (ωφ − kφ cx)

,(67)

where 〈 · 〉 =
∫ 1

0
· dζ is the average over a periodic cell.

The reader may wonder why in the foregoing formal derivation we asked
for (3) to be satisfied at order 1 and for (4) and (6) to be satisfied at order
ε. Alternatively, one may ask for (3) to be satisfied at order ε and check that
requirements on (4) and (6) come as necessary conditions. One may also check
that when (3) is satisfied at order 1, so are (4) and (6).

System (67) should be thought of as a system for functions defined on the
manifold of periodic traveling waves (identified when coinciding up to rotational
and spatial translations). To make this more concrete, we now rewrite it in
terms of parameters (µx, cx, ωφ, µφ). To do so, with notation from Section 2,
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we introduce 



m(µx, cx, ωφ, µφ) := 〈M[V]〉 = 1
Xx

∫ Xx

0
M[V]dx ,

q(µx, cx, ωφ, µφ) := 〈Q[V]〉 = 1
Xx

∫ Xx

0
Q1[V]dx ,

(68)

where V is the unscaled profile associated with (µx, cx, ωφ, µφ), and Xx is the
corresponding period. By making use of (33) and (34), one obtains





∂T kx = ∂Xωx

∂Tq = ∂X (µx − cxq)
∂Tm = ∂X (µφ − cxm)
∂T kφ = ∂X (ωφ − cx kφ)

(69)

as an alternative form of (67). To connect with the analysis of other sections
in terms of the action integral Θ, we recall (47)

kx = 1
∂µxΘ ,




1
q

m

kφ


 = A0∇Θ

∂µxΘ , with A0 :=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

Thus (for smooth solutions), System (69) takes the alternative form

kxA0 Hess Θ (∂T + cx∂X)




µx
cx
ωφ
µφ


 = B0 ∂X




µx
cx
ωφ
µφ


 ,(70)

with

B0 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

Remark 4.4. — One may check that the modulated system (69), also often
called Whitham’s system, agrees with the one derived for the associated Euler–
Korteweg system (39) by injecting a one-phase slow/fast-oscillatory ansatz. See
[48, 13, 11] for a discussion of the latter. This may be achieved by direct com-
parisons of either formal ansatz, averaged forms, or more concrete parameter-
ized forms.

We now specialize the use of System (69) to the discussion of the dynamics
near a particular periodic traveling wave. Note that traveling-wave solutions
fit the ansatz (65) and correspond to the case when phases ϕφ and ϕx are affine
functions of the slow variables, and wave parameters are constant. Thus, when
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U is a wave profile of parameters (µ
x
, cx, ωφ, µφ), one may expect that the

stability20 of (µ
x
, cx, ωφ, µφ) as a solution to (69) is necessary for the stability

of U as a solution to (8). The literature proving such a claim at the spectral
level is now quite extensive, and we refer the reader to [53, 44], [13, 17], [36],
and [32] for respectively, results on parabolic systems, Hamiltonian systems of
Korteweg type, lattice dynamical systems, and some hyperbolic systems with
discontinuous waves. Yet this is the first time21 that a result for a class of
systems with symmetry group of dimension higher than 1 is established.

In the present case, the spectral validation of (69) is a simple corollary of
Theorem 3.2 based on a counting root argument for analytic functions, since

λΣt − (ei ξ −1)I4 =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0



(
λA0 Hess Θ− (ei ξ −1) B0

)



0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


 .

Corollary 4.5. — Consider an unscaled wave profile V such that V · Vx 6≡ 0,
with associated parameters (µ

x
, cx, ωφ, µφ).

1. The following three statements are equivalent.
• 0 is an eigenvalue of algebraic multiplicity 4 of L0,0.
• The map (µx, cx, ωφ, µφ) 7→ (kx,q,m, kφ) is a local diffeomorphism
near (µ

x
, cx, ωφ, µφ).

• Hess Θ(µ
x
, cx, ωφ, µφ) is nonsingular.

2. Assume thatHess Θ(µ
x
, cx, ωφ, µφ) is nonsingular. Then there exist λ0> 0,

ξ0 > 0 and C0 such that
• for any ξ ∈ [−ξ0, ξ0], Lξ,0 possesses four eigenvalues (counted with
algebraic multiplicity) in the disk B(0, λ0);
• if a − cx is a characteristic speed of (69) at (µ

x
, cx, ωφ, µφ)

of algebraic multiplicity r, that is, if a is an eigenvalue of
(kxA0 Hess Θ(µ

x
, cx, ωφ, µφ))−1B0 of algebraic multiplicity r, then

for any ξ ∈ [−ξ0, ξ0], Lξ,0 possesses r eigenvalues (counted with
algebraic multiplicity) in the disk B(i kxξ a , C0|ξ|1+ 1

r ).
In particular, if System (69) is not weakly hyperbolic at (µ

x
, cx, ωφ, µφ),

that is, if (kxA0 Hess Θ(µ
x
, cx, ωφ, µφ))−1B0 possesses a nonreal eigen-

value, then the wave is spectrally unstable to longitudinal sideband per-
turbations.

A few comments are in order.

20. Incidentally, we point out that from the homogeneity of first-order systems it follows
that ill-posedness and stability are essentially the same for systems such as (69).

21. Except for the almost simultaneous [20]. See the detailed comparison in Section 4.3.
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1. Note that the subtraction of cx in the second part of the corollary ac-
counts for the fact that System 69 is not expressed in a comoving frame.

2. The second part of the foregoing corollary could also be deduced from
results in [13] through Madelung’s transformation.

We now turn to the small-amplitude and large-period regimes. To describe
the small-amplitude regime, we need to introduce two instability indices

δhyp(cx, ωφ, µφ) := W ′′(2 ρ(0)) +
(
κ′′(2 ρ(0)) ρ(0) + κ′(2 ρ(0))

)
(k(0)
φ )2(71)

and

(72)
δBF (cx, ωφ, µφ) :=

(
1
2
κ(2 ρ(0))

2 ρ(0)

(
2π
X

(0)
x

)2
)3

×
(
−3
(
κ′(2 ρ(0))
κ(2 ρ(0))

)2

− 2 κ
′(2 ρ(0))
κ(2 ρ(0))

1
2 ρ(0) + κ′′(2 ρ(0))

κ(2 ρ(0))

)

+
(

1
2
κ(2 ρ(0))

2 ρ(0)

(
2π
X

(0)
x

)2
)2

×
(
W ′′(2 ρ(0))

(
−12

(
κ′(2 ρ(0))
κ(2 ρ(0))

)2
− 6 κ

′(2 ρ(0))
κ(2 ρ(0))

1
2 ρ(0)

+ 4
(

1
2 ρ(0)

)2
+ 3 κ

′′(2 ρ(0))
κ(2 ρ(0))

)

+ 4W ′′′(2 ρ(0))
(
κ′(2 ρ(0))
κ(2 ρ(0)) + 2 1

2 ρ(0)

)
+ 2W ′′′′(2 ρ(0))

)

+
(

1
2
κ(2 ρ(0))

2 ρ(0)

(
2π
X

(0)
x

)2
)

×
(

12 (W ′′(2 ρ(0)))2

((
κ′(2 ρ(0))
κ(2 ρ(0))

)2

+ 4 κ
′(2 ρ(0))
κ(2 ρ(0))

1
2 ρ(0) + 3

(
1

2 ρ(0)

)2
)

+ 8W ′′(2 ρ(0))W ′′′(2 ρ(0))
(

4 κ
′(2 ρ(0))
κ(2 ρ(0)) + 5 1

2 ρ(0)

)

+ 4
3

(
W ′′′(2 ρ(0))

)2
+ 6W ′′(2 ρ(0))W ′′′′(2 ρ(0))

)

+ 8W ′′(2 ρ(0))
(
W ′′′(2 ρ(0)) + 3W ′′(2 ρ(0))

(
κ′(2 ρ(0))
κ(2 ρ(0)) + 1

2 ρ(0)

))2

,
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where (ρ(0), k
(0)
φ ) are the associated limiting mass and rotational shift, and X(0)

x

is the associated period.
The following theorem is a consequence of Corollary 4.5 and results in [11]

for the Euler–Korteweg systems, namely Theorems 7 and 8, respectively, for
the first and second points22.

Theorem 4.6. — 1. In the small-amplitude regime near a (c(0)
x , ρ(0), k

(0)
φ )

such that
∂ρν(ρ(0); c(0)

x , µ(0)
φ

) 6= 0 ,

Hess Θ is nonsingular, and if

δhyp(c(0)
x , ω

(0)
φ , µ(0)

φ
) < 0 or δBF (c(0)

x , ω
(0)
φ , µ(0)

φ
) < 0 ,

then waves are spectrally exponentially unstable to longitudinal sideband
perturbations.

2. If ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) 6= 0, then, in the large-period regime near

(c(0)
x , ρ(0), k

(0)
φ ), Hess Θ is nonsingular, and if

∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) < 0 ,

then in the large-period regime near (c(0)
x , ρ(0), k

(0)
φ ), waves are spectrally

exponentially unstable to longitudinal sideband perturbations.

A few comments are worth making. In particular, we borrow here some of
the upshots of the much more comprehensive analysis in [11].

1. Again, we point out that the small-amplitude regime considered here
is disjoint from the one analyzed for the semilinear cubic Schrödinger
equations in [24]. Let us, however, stress that for the semilinear cubic
Schrödinger equations our instability criterion provides instability if and
only if the potential is focusing, independently of the particular limit
value under consideration. This is consistent with the conclusions for
the case ρ(0) = 0 derived in [24].

2. In the small-amplitude limit, the characteristic velocities split into two
groups of two. One of these groups converges to the linear group velocity
at the limiting constant value and the sign of δBF precisely determines
how this double root splits. The corresponding instability is often re-
ferred to as the Benjamin–Feir instability. The other group converges
to the characteristic velocities of a dispersionless hydrodynamic system
at the limiting constant value; see [11, Theorem 7]. The sign of δhyp
decides the weak hyperbolicity of the latter system. When κ is constant,
it is directly related to the focusing/defocusing nature of the potential
W (namely W ′′ negative/positive).

22. In notation of [11], δBF is ∆MI .
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3. A similar scenario takes place in the large-period limit, with the phase
velocity of the solitary wave replacing the linear group velocity. The
sign of ∂2

cxΘ(s) determines how the double root splits. However, due to
the nature of end states of solitary waves, the dispersionless system is
always hyperbolic, hence the reduction to a single instability index. See
Appendix B for some related details.

4.3. Large-time dynamics. — Our interest in modulated systems also hinges
on the belief that they play a deep role in the description of the large-time
dynamics. In other words, one expects that near stable waves the large-time
dynamics is well approximated by simply varying wave parameters in a space–
time dependent way and that the dynamics of these parameters is itself well
captured by some (higher-order version of a) modulated system.

The latter scenario has been proved to occur at the nonlinear level for a large
class of parabolic systems [33, 34] and at the linearized level for the Korteweg–
de Vries equation [50]. The reader is also referred to [48, 49] for some more
intuitive arguments supporting the general claim.

We would like to extend here a small part of the analysis in [50] to the class
of equations under consideration. We begin by revisiting the second part of
Corollary 4.5 from the point of view of Floquet symbols rather than Evans’
functions. The goal is to provide a description of how eigenfunctions and spec-
tral projectors behave near the quadruple eigenvalue at the origin. Once this
is done, the arguments of [50] may be directly imported and provide different
results (adapted to the presence of a two-dimensional group of symmetries) but
with nearly identical – thus omitted – proofs.

In a certain way, we leave the point of view convenient for spatial dynamics
to focus on time dynamics. To do so, it is expedient to use scaled variables so
as to normalize period and to parameter waves not by phase-portrait param-
eters (µx, cx, ωφ, µφ) but by modulation parameters (kx, kφ,q,m). The first
part of Corollary 4.5 proves that the latter is possible when the eigenvalue at
the origin is indeed of multiplicity 4. Therefore, in the present section, we
consider scaled profiles U as in (8) and parameters (µx, cx, ωφ, µφ) as functions
of (kx, kφ,q,m). In scaled variables, the averaged mass and impulse from (68)
take the form

m = 〈M(U)〉 =
∫ 1

0

1
2‖U‖

2 ,

q = 〈Q1(U , e1(kx∂x + kφJ)U)〉 =
∫ 1

0

1
2JU · (kx∂x + kφJ)U .
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Our focus is on the operator Lξ,0 = Lxξ . Correspondingly, we consider the
Whitham matrix-valued map

W(µx, cx, ωφ, µφ) := Jac




ωx
ωφ − cx kφ
µx − cxq
µφ − cxm


 .(73)

To connect both objects, we shall use various algebraic relations obtained from
profile equations and conservation laws that we first derive.

Differentiating profile equation δHu[U ] = 0 with respect to rotational and
spatial translation parameters (left implicit here) and to (q,m) yields

L0,0 Ux = 0 , L0,0 ∂qU =
(
∂qωφ − kφ ∂qcx

)
JU − kx∂qcx Ux ,(74)

L0,0 JU = 0 , L0,0 ∂mU =
(
∂mωφ − kφ ∂mcx

)
JU − kx ∂mcx Ux .(75)

To highlight the role of ∂kxU and ∂kφU we expand

Lξ,0 = L0,0 + i kxξ L(1) + (i kxξ)2 L(2) .

Differentiating profile equations with respect to (kx, kφ) leaves
{
L0,0 ∂kxU =

(
∂kxωφ − kφ ∂kxcx

)
JU − kx ∂kxcx Ux − L(1) Ux ,

L0,0 ∂kφU =
(
∂kφωφ − kφ ∂kφcx

)
JU − kx ∂kφcx Ux − L(1) JU .

(76)

By differentiating the definitions of mass and impulse averages, we also obtain
that

∫ 1

0
δQ1(U , e1(kx∂x + kφJ)U)Ux = 0 ,(77)

∫ 1

0
δQ1(U , e1(kx∂x + kφJ)U) JU = 0 ,

∫ 1

0
δQ1(U , e1(kx∂x + kφJ)U) ∂qU = 1 ,(78)

∫ 1

0
δQ1(U , e1(kx∂x + kφJ)U) ∂mU = 0 ,

∫ 1

0
δQ1(U , e1(kx∂x + kφJ)U) ∂kxU = −

∫ 1

0
dUx Q1(U , e1(kx∂x + kφJ)U)Ux(79)

= − 1
kx

(q− kφm) ,
∫ 1

0
δQ1(U , e1(kx∂x + kφJ)U) ∂kφU = −

∫ 1

0
dUx Q(U , e1(kx∂x + kφJ)U) JU(80)

= −m ,
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and ∫ 1

0
δM[U ]Ux = 0 ,

∫ 1

0
δM[U ] ∂qU = 0 ,

∫ 1

0
δM[U ] ∂kx U = 0 ,(81)

∫ 1

0
δM[U ] JU = 0 ,

∫ 1

0
δM[U ] ∂mU = 1 ,

∫ 1

0
δM[U ] ∂kφ U = 0 , .(82)

Finally, linearizing conservation laws for mass and impulse provides for any
smooth V
δM[U ] · Lξ,0V

= kx(∂x + i ξ)
(
∇U(Sφ + cxM)(U , e1(kx∂x + kφJ)U) ·V

+∇Ux(Sφ + cxM)(U , e1(kx∂x + kφJ)U) · (kx(∂x + i ξ) + kφJ)V
)

and
∇UQ1(U , e1(kx∂x + kφJ)U) · Lξ,0V
+∇Ux

Q1(U , e1(kx∂x + kφJ)U) · (kx(∂x + i ξ) + kφJ)Lξ,0V

= kx(∂x + i ξ)
(
∇Ux

Q1(U , e1(kx∂x + kφJ)U) · Lξ,0V

+∇U(Sx + ωφM)(U , e1(kx∂x + kφJ)U) ·V

+∇Ux
(Sx + ωφM)(U , e1(kx∂x + kφJ)U) · (kx(∂x + i ξ) + kφJ)V

)
.

Evaluating at ξ = 0 and integrating show
L∗0,0 δQ1(U , (kx∂x + kφJ)U) = 0, L∗0,0 δM[U ] = 0 ,(83)

where L∗0,0 denotes the adjoint of L0,0. Alternatively, the latter may be checked
by using explicit expressions of δQ1(U , e1(kx∂x + kφJ)U) and δM[U ] in terms
of JU and Ux and Hamiltonian duality L∗0,0 = −J−1 L0,0 J. At next orders, for
V smooth and periodic, we also deduce

〈δM[U ];L(1)V〉L2 = 〈δ(Sφ + cxM)(U , e1(kx∂x + kφJ)U); V〉L2 ,(84)
〈δM[U ];L(2)V〉L2 = 〈∇Ux

(Sφ + cxM)(U , e1(kx∂x + kφJ)U); V〉L2 ,(85)
and

〈δQ1(U , e1(kx∂x + kφJ)U);L(1)V〉L2(86)
= 〈δ(Sx + ωφM)(U , e1(kx∂x + kφJ)U); V〉L2 ,

〈δQ1(U , e1(kx∂x + kφJ)U);L(2)V〉L2(87)
= 〈∇Ux

(Sx + ωφM)(U , e1(kx∂x + kφJ)U); V〉L2 ,
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In the foregoing relations, 〈·; ·〉L2 denotes the canonical Hermitian scalar prod-
uct on L2((0, 1); C2), C-linear on the right23.

These are the key algebraic relations to prove the following proposition.

Theorem 4.7. — Let U be a wave profile such that U · Ux 6≡ 0 and that
0 has algebraic multiplicity exactly 4 as an eigenvalue of L0,0. Assume that
eigenvalues of W are distinct.
There exist λ0 > 0, ξ0 ∈ (0, π), analytic curves λj : [−ξ0, ξ0] → B(0, λ0),
j = 1, 2, 3, 4, such that for ξ ∈ [−ξ0, ξ0]

σ(Lξ,0) ∩B(0, λ0) = {λj(ξ)|j ∈ {1, 2, 3, 4}}

and associated left and right eigenfunctions ψ̃j(ξ, · ) and ψj(ξ, · ), j = 1, 2, 3, 4,
satisfying pairing relations24

〈ψ̃j(ξ, · ), ψ`(ξ, · )〉L2 = i kxξ δ
j
` , 1 ≤ j, ` ≤ 4 ,

obtained as

ψj(ξ, · ) =
2∑

`=1
β

(j)
` (ξ) q`(ξ, · ) + (i kxξ)

4∑

`=3
β

(j)
` (ξ) q`(ξ, · )

ψ̃j(ξ, · ) = −(i kxξ)
2∑

`=1
β̃

(j)
` (ξ) q̃`(ξ, · ) +

4∑

`=3
β̃

(j)
` (ξ, · ) q̃`(ξ, · ) ,

where
• (qj(ξ, · ))1≤j≤4 and (q̃j(ξ, · ))1≤j≤4 are dual bases of spaces associated with
the spectrum in B(0, λ0) of respectively Lξ,0 and its adjoint L∗ξ,0, that are
analytic in ξ and such that

(q1(0, · ), q2(0, · ), q3(0, · ), q4(0, · )) = (Ux,JU , ∂qU , ∂mU) ,
(q̃3(0, · ), q̃4(0, · )) = (δQ1(U , e1(kx∂x + kφJ)U), δM[U ])

= (−kx JUx + kφ U , U) ,
(∂ξq1(0, · ), ∂ξq2(0, · )) = i kx (∂kxU , ∂kφU) ;

• (β(j)(ξ))1≤j≤4 and (β̃(j)(ξ))1≤j≤4 are dual bases of C4 that are analytic
in ξ and such that (β(j)(0))1≤j≤4 and (β̃(j)(0))1≤j≤4 are dual right and
left eigenbases of cx I4+W associated with eigenvalues (a(j)

0 )1≤j≤4 labeled
so that

λj(ξ)
ξ→0= i kxξa

(j)
0 +O(|ξ|3) , 1 ≤ j ≤ 4 .

23. That is, 〈f ; g〉L2 =
∫ 1

0 f̄ · g.
24. With δj

`
= 1 if j = `, and δj

`
= 0 otherwise.
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The way in which the eigenvalue 0 of multiplicity 4 breaks is highly non-
generic from the point of view of abstract spectral theory. Indeed, we already
know from Corollary 4.5 that the four arising eigenvalues are differentiable at
ξ = 0, and we obtain that when eigenvalues of W are distinct, the four eigen-
values of Lξ,0 are analytic in ξ. This should be contrasted with the fact that
eigenvalues arising from generic Jordan blocks of height 2 are no better than
1
2 -Hölder (and, in particular, are not Lipschitz).

Proof. — We make extensive use of standard spectral perturbation theory as
expounded at length in [38]. To begin with, we introduce λ0 > 0 and ξ0 > 0,
such that for |ξ| ≤ ξ0, the spectrum of Lξ,0 in B(0, λ0) has multiplicity 4 and de-
note by Πξ the corresponding Riesz spectral projector. From (74), the range of
Π0 is spanned by (Ux,JU , ∂qU , ∂mU) and from (77),(81), we may choose a dual
basis of the range of Π∗0 in the form (∗, ∗∗, δQ1(U , e1(kx∂x + kφJ)U), δM[U ]).
By Kato’s perturbation method, we may extend these dual bases as dual bases
(qj(ξ, · ))1≤j≤4 and (q̃j(ξ, ·))1≤j≤4 of, respectively, the ranges of Πξ and Π∗ξ .

One may use the corresponding coordinates to reduce the study of the spec-
trum of Lξ,0 to the consideration of the matrix

Λξ :=
(
〈q̃j(ξ, · );Lξ,0 q`(ξ, · )〉L2

)
(j,`)∈{1,2,3,4}2 .

From relations expounded above stems

Λ0 =




0 0 −kx ∂qcx −kx ∂mcx
0 0 ∂qωφ − kφ ∂qcx ∂mωφ − kφ ∂mcx
0 0 0 0
0 0 0 0


 .

Note, in particular, that Λ2
0 is zero. From (76), we also derive

〈q̃j(0, · );L(1) q`(0, · )〉L2 = 0 , 3 ≤ j ≤ 4 , 1 ≤ ` ≤ 2 .

Thus,

Λ̃ξ := 1
i kx ξ

P−1
ξ Λξ Pξ , Pξ :=

(
I2 0
0 i kx ξ I2

)
, ξ 6= 0(88)

defines a matrix Λ̃ξ extending analytically to ξ = 0.
Our main intermediate goal is to compute Λ̃0. We first show that we may

enforce

∂ξq1(0, · ) = i kx ∂kxU , ∂ξq2(0, · ) = ∂kφU .(89)

To do so, for ` = 1, 2, by expanding Πξ(Lξ,0q`(ξ, · )) = Lξ,0q`(ξ, · ), we derive
that L0,0∂ξq`(0, · )+i kxL(1)q`(0, · ) belongs to the range of Π0. Comparing this
with equations for ∂kxU and ∂kφU we deduce that L0,0(∂ξq1(0, · ) − i kx∂kxU)
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and L0,0(∂ξq2(0, · )− i kx∂kφU), thus also ∂ξq1(0, · )− i kx∂kxU and ∂ξq2(0, · )−
i kx∂kφU belong to the range of Π0. Let (α(`)

j )1≤j≤4, 1≤`≤2 be such that

∂ξq1(0, · )− i kx∂kxU =
4∑

j=1
α

(1)
j qj(0, · ) ,

∂ξq2(0, · )− i kx∂kφU =
4∑

j=1
α

(2)
j qj(0, · ) .

Lessening ξ0 if necessary, one may then replace (qj(ξ, · ))1≤j≤4 with

q1(ξ, · )− ξ
4∑

j=1
α

(1)
j qj(ξ, · ) , q2(ξ, · )− ξ

4∑

j=1
α

(2)
j qj(ξ, · ) , q3(ξ, · ) , q4(ξ, · ) ,

and (q̃j(ξ, · ))1≤j≤4 with

q̃j(ξ, · ) + ξ

2∑

`=1
α̃

(`)
j (ξ)q̃`(ξ, · ) , j = 1, 2, 3, 4 ,

with (α̃(`)
j (ξ))1≤j≤4, 1≤`≤2 tuned to preserve duality relations and have (89),

which we assume from now on. To make the most of associated relations, we
observe that from duality stems

〈∂ξ q̃j(0, · ); q`(0, · )〉L2 = −〈q̃j(0, · ); ∂ξq`(0, · )〉L2 , 1 ≤ j , ` ≤ 4 .

Since

(Λ̃0)j,` =
〈
q̃j(0, · );

1
i kx
L0,0 ∂ξ q`(0, · ) + L(1) q`(0, · )

〉
L2
, 1 ≤ j ≤ 2 , 1 ≤ ` ≤ 2 ,

(Λ̃0)j,` = (Λ0)j,` , 1 ≤ j ≤ 2 , 3 ≤ ` ≤ 4 ,

from (76) this readily gives
(

(Λ̃0)j,`
)

1≤j≤2, 1≤`≤4

=
(

−kx ∂kxcx −kx ∂kφcx −kx ∂qcx −kx ∂mcx
∂kxωφ − kφ ∂kxcx ∂kφωφ − kφ ∂kφcx ∂qωφ − kφ ∂qcx ∂mωφ − kφ ∂mcx

)
.

The extra relations also carry

(Λ̃0)j,` =
〈
q̃j(0, · );

1
i kx
L(1) ∂ξ q`(0, · ) + L(2) q`(0, · )

〉
L2

+ (m∂k(`)ωφ − q∂k(`)cx) δ3
j , 3 ≤ j ≤ 4 , 1 ≤ ` ≤ 2 ,

(Λ̃0)j,` =
〈
q̃j(0, · );L(1) q`(0, · )

〉
L2

+ (m∂m(`)ωφ − q∂m(`)cx) δ3
j , 3 ≤ j ≤ 4 , 3 ≤ ` ≤ 4 ,
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with k(1) = kx, k(2) = kφ, m(3) = q, and m(4) = m. Using (84) and (86) to
evaluate the foregoing expressions leads to the final identification

Λ̃0 = cx I4 + W .

The proof is then completed by diagonalizing matrices Λ̃ξ, which have simple
eigenvalues provided that ξ0 is taken sufficiently small and undoing the various
transformations. �

We would like to make a few comments on the foregoing proof.
1. Although this is useless for our purposes, one may also compute explicitly
q̃1(0, · ) and q̃2(0, · ) as combinations of JUx, U , J∂qU and J∂mU . Indeed,
it follows from Hamiltonian duality that the four vectors form a basis of
the range of Π∗0, and their scalar products with Ux, JU , ∂qU and ∂mU
are explicitly known.

2. The assumption that the eigenvalues of W are distinct is only used at the
very end of the proof. Removing it, the arguments still give an alternative
proof of the second part of Corollary 4.5. For semilinear equations, this
has already been carried out, to some extent, in the recent [40] with a
few variations that we point out now.
(a) The authors of [40] further assume that L0,0 exhibits two Jordan

blocks of height 2 at 0; in other words, they assume that the above
matrix Λ0 has rank 2.

(b) In [40], no formal interpretation is provided for the underlying in-
stability criterion. In particular, no connection with geometrical
optics and modulated systems is offered for the matrix Λ̃0. This
connection was established in a recent preprint [20], building upon
[40]. Hence, the next remarks also apply to [20].

(c) The structure of eigenfunctions is left out of the discussion in
[40], whereas this is our main motivation for reproving in a different
way the second part of Corollary 4.5. In turn, the main focus of [40]
is on spectral stability, and the authors supplement their analysis
with numerical experiments for cubic and quintic semilinear equa-
tions.

(d) We have taken advantage of the fact that we have already proven
the first part of Corollary 4.5 to use modulation coordinates
(kx, kφ,q,m), whereas the analysis in [40] is carried out with phase-
portrait parameters (µx, cx, ωφ, µφ).

In the remaining part of this section, since we are only discussing longitudinal
perturbations, we assume d = 1 for the sake of readability. Then, denoting
by (S(t))t∈R the group associated with the operator L on L2(R) and, for ξ ∈
[−π, π], by (Sξ(t))t∈R the group associated with the operator Lξ on L2

per((0, 1)),
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we note that from Bloch inversion (54) stems

(S(t)g)(x) =
∫ π

−π
ei ξx (Sξ(t)ǧ(ξ, · ))(x) d ξ .

Our main concern here is to analyze the large-time dynamics for the slow
sideband part of the evolution

(Sp(t)g)(x) :=
∫ π

−π
ei ξx χ(ξ) (Sξ(t) Πξ ǧ(ξ, · ))(x) d ξ ,

where χ is a smooth cut-off function equal to 1 on [−ξ0/2, ξ0/2] and to 0
outside of [−ξ0, ξ0], with ξ0 > 0 as in the statement of Theorem 4.7 and Πξ the
associated spectral projector, as in the proof of Theorem 4.7.

Let us explain in which sense this is expected to be the principal part of
the linearized evolution for suitably spectrally stable waves. As a first remark
we point out that when considering general perturbations on R (as opposed to
coperiodic perturbations) we have to abandon not only stability in its strongest
sense, which would require a control of ‖U − U‖X (in some functional space
X of functions defined on R), but also orbital stability, which here requires a
control of

inf
(ϕφ,ϕx)∈R2

∥∥e−ϕφJ U( · − ϕx )− U
∥∥
X
,

and, instead, to adopt the notion of space-modulated stability that is encoded
by bounds on

inf
(ϕφ,ϕx) functions on R

(∥∥∥e−ϕφ(·)J U( · − ϕx(·) )− U
∥∥∥
X

+ ‖∂xϕφ‖X + ‖∂xϕx‖X
)
.

Rather than bounding ‖V‖X or

inf
(ϕφ,ϕx)∈R2

V=ϕφ JU+ϕx Ux+Ṽ

‖Ṽ‖X ,

at the linearized level, this consists in trying to bound

NX(V) := inf
(ϕφ,ϕx) functions on R

V=ϕφ JU+ϕx Ux+Ṽ

(
‖Ṽ‖X + ‖∂xϕφ‖X + ‖∂xϕx‖X

)
.

Note that NX precisely quotients “locally” the unstable directions highlighted
in (the proof of) Theorem 4.7, so that ϕφ, ϕx should be thought of as local pa-
rameters. Here we adapt to the case with a two-dimensional symmetry group
the nonlinear notion formalized in [34] and its linearized counterpart intro-
duced in [50]. Both notions have been proved to be sharp for a large class of
parabolic systems in [34] and for the linearized Korteweg–de Vries equation in
[50], respectively. The reader is also referred to [48, 49] for some more intuitive
descriptions of the notions at hand.
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Remark 4.8. — An incorrect choice of stability type would lead to a claim of
instability in situations where the global shape is preserved but positions need
to be resynchronized either uniformly in space in the orbitally stable case or
in a slowly varying way in the space-modulated stable case. In the latter case,
the underlying spurious growth is due to the presence of Jordan blocks in the
spectrum, and this results in departures from the background profile that are
algebraic in time (when no space-dependent synchronization is allowed). Thus,
concluding to a genuine instability either at the linear or nonlinear requires
extra care in the analysis. See, for instance, [22] for an example of the latter.
Unfortunately, although it seems clear that some extra analysis could be carried
out to fill this gap, the only general nonlinear instability result available so far
[31] is expressed as an instability for the strongest sense of stability.

Following the lines of [50], one expects that for suitably spectrally stable
waves the following bounds hold

‖(S(t)− Sp(t))V0‖Hs(R) ≤ CsNHs(R)(V0) , t ∈ R , s ∈ N ,

‖(S(t)− Sp(t))V0‖L∞(R) ≤
C

|t| 12
NL1(R)(V0) , t ∈ R

(with constants independent of (t,V0)). We shall not try to prove or even
formulate more precisely the latter, but the reader should keep in mind the
claimed |t|−1/2 decay so as to compare it with bounds below. In particular, the
conclusions of the next theorem contain that

NL∞(R)(Sp(t)V0) ≤ C

(1 + |t|) 1
3
NL1(R)(V0) , t ∈ R .

Theorem 4.9 (Slow modulation behavior). — Under the assumptions of The-
orem 4.7 and with its set of notation, assume, moreover, that

1. for any ξ ∈ [−ξ0, ξ0], for j ∈ {1, 2, 3, 4}, λj(ξ) ∈ i R;
2. for j ∈ {1, 2, 3, 4}, ∂3

ξλj(0) 6= 0.

There exists C > 0 such that for any V0 such that NL1(R)(V0) < ∞, there
exists local parameter functions ϕx, ϕφ, q and m such that for any time t ∈ R

∥∥∥Sp(t) (V0)− ϕx(t, · )Ux − ϕφ(t, · ) JU

− dkx,kφ,q,m U · (kx∂xϕx(t, · ), kx∂xϕφ(t, · ),q(t, · ),m(t, · ))
∥∥∥
L∞(R)

≤ C

(1 + |t|) 1
2
NL1(R)(V0) ,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



170 C. AUDIARD & L. M. RODRIGUES

where ϕx(t, · ) and ϕφ(t, · ) are centered, ϕx(t, · ), ϕφ(t, · ), q(t, · ), and m(t, · )
are low frequency25, and

‖(kx∂xϕx(t, · ), kx∂xϕφ(t, · ),q(t, · ),m(t, · ))‖L∞(R) ≤
C

(1 + |t|) 1
3
NL1(R)(V0) .

We omit the proof of Theorem 4.9 since with Theorem 4.7 in hand, the
proof is identical to that of the corresponding result in [50]. Theorem 4.7 is
the counterpart of [50, Proposition 2.1], while Theorem 4.9 is a low-frequency
version of [50, Theorem 1.3] (which is why the decay factor is bounded at t = 0);
see, in particular, [50, Propositions 3.2 & 4.2]. Yet we would like to add some
comments.

1. A choice of local parameters can be given explicitly:



kx∂xϕx(t, · )
kx∂xϕφ(t, · )

q(t, · )
m(t, · )


(x) = sp(t)(V0)(x)

:=
4∑

j=1

∫ π

−π
ei ξx+λj(ξ) t χ(ξ)β(j)(ξ) 〈ψ̃j(ξ, · ), |V0 (ξ, · )〉L2 d ξ .

This is motivated by the explicit diagonalization of LξΠξ from Theo-
rem 4.7, which implies

Sξ(t) Πξ g = 1
i kxξ




4∑

j=1
eλj(ξ) t β(j)

1 (ξ) 〈ψ̃j(ξ, · ), g〉L2


 q1(ξ, · )

+ 1
i kxξ




4∑

j=1
eλj(ξ) t β(j)

2 (ξ) 〈ψ̃j(ξ, · ), g〉L2


 q2(ξ, · )

+




4∑

j=1
eλj(ξ) t β(j)

3 (ξ) 〈ψ̃j(ξ, · ), g〉L2


 q3(ξ, · )

+




4∑

j=1
eλj(ξ) t β(j)

4 (ξ) 〈ψ̃j(ξ, · ), g〉L2


 q4(ξ, · ) ;

the choice of local parameters is then dictated by analyzing the various
expressions (including remainders) arising from expansions with respect
to ξ of q1(ξ, · ), q2(ξ, · ) at order 2 and q3(ξ, · ), q4(ξ, · ), at order 1. One
may also replace χ with a cut-off function with support closer to the
origin if required.

25. In the sense that their (distributional) Fourier transform has compact support that
could be taken arbitrarily close to the origin.
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2. Note that, since (∂ξλj(0))j∈{1,2,3,4} are two-by-two distinct, assuming
that for any ξ ∈ [−ξ0, ξ0] and any j, λj(ξ) ∈ i R, from the Hamiltonian
symmetry of the spectrum one derives that for |ξ| ≤ ξ0 (ξ0 sufficiently
small) and any j ∈ {1, 2, 3, 4} λj(ξ) = λj(−ξ) = −λj(−ξ). In particular,
for any j ∈ {1, 2, 3, 4}, λj(·) is an odd function, and thus ∂2

ξλj(0) = 0.
Therefore, the assumption that for j ∈ {1, 2, 3, 4}, ∂3

ξλj(0) 6= 0 expresses
that the dispersive effects on local parameters are as strong as possible.
In contrast, the |t|−1/2 decay claimed for the leftover part S(t) − Sp(t)
is expected to be derivable from the assumption that outside the origin
(λ, ξ) = (0, 0) second-order derivatives with respect to ξ of spectral curves
do not vanish.

3. For the semilinear defocusing cubic Schrödinger equation, full spectral
stability under longitudinal perturbations is known for all the waves, and
we expect that the remaining assumptions may be checked by reliable
elementary numerics by using explicit formula for the spectra obtained
in [15].

Theorem 4.9 essentially proves that Sp(t)(V0) fits well with a large-time lin-
earized version of the ansatz (65) with U0(T,X; ·) being a periodic wave profile
of parameters, such that kx = ∂Xϕx and kφ = ∂Xϕφ. We now prove that some
version of (67) drives the evolution of local parameters (kx∂xϕx, kx∂xϕφ,q,m)
of Theorem 4.9. We need to modify (67) so as to account for dispersive effects.

Let P0 diagonalize W so that P0 =
(
β(1)(0) β(2)(0) β(3)(0) β(4)(0)

)

P−1
0 =




β̃(1)(0)
β̃(2)(0)
β̃(3)(0)
β̃(4)(0)


 , P−1

0 WP0 = diag(a(1)
0 − cx, a

(2)
0 − cx, a

(3)
0 − cx, a

(4)
0 − cx) ,

and define for q an integer

Dq(ξ) := P0 diag
(
λ

[q]
1 (ξ)− a(1)

0 i kxξ, λ
[q]
2 (ξ)− a(2)

0 i kxξ,

λ
[q]
3 (ξ)− a(3)

0 i kxξ, λ
[q]
4 (ξ)− a(4)

0 i kxξ
)
P−1

0 ,

where λ[q]
j (ξ) is the qth order Taylor expansion of λj(ξ) near 0. By conven-

tion we also include the pseudo-differential case where q = ∞ by choosing
λ

(∞)
j as a smooth purely imaginary-valued function that coincides with λj in

a neighborhood of zero. Then consider the higher-order linearized modulation
system

∂t




kx
kφ
q

m


 = kx (W + cxI4) ∂x




kx
kφ
q

m


+Dq(i−1 ∂x)




kx
kφ
q

m


 .(90)
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Note that when q = 3, Dq(i−1 ∂x) takes the form D3(kx∂x)3, where D3 is a
real-valued matrix.

Theorem 4.10 (Averaged dynamics). — Let q be an odd integer larger than
1, or q =∞. Under the assumptions of Theorem 4.9, there exist C > 0 and a
cut-off function χ̃ such that for any V0 such that NL1(R)(V0) <∞, there exist
(ϕ(0)
x , ϕ

(0)
φ ) centered and low frequency such that with Ṽ0 := V0 − ϕ(0)

x Ux −
ϕ

(0)
φ JU

‖Ṽ0‖L1(R) + ‖∂xϕ(0)
x ‖L1(R) + ‖∂xϕ(0)

φ ‖L1(R) ≤ 2NL1(R)(V0) ,

and for any such (ϕ(0)
x , ϕ

(0)
φ ), the local parameters (kx∂xϕx, kx∂xϕφ,q,m) of

Theorem 4.9 may be chosen in such a way that with



k
(0)
x

k
(0)
φ

q(0)

m(0)


 := χ̃(i−1 ∂x)




kx∂xϕ
(0)
x

kx∂xϕ
(0)
φ

δQ(U , kx∂xU + kφJU) Ṽ0

δM[U ] Ṽ0


 ,

for any time t ∈ R
∥∥∥(kx∂xϕx(t, · ), kx∂xϕφ(t, · ),q(t, · ),m(t, · ))

− ΣWq (t)(k(0)
x , k

(0)
φ ,q(0),m(0))

∥∥∥
L∞(R)

≤ C

(1 + |t|)
q+1

2(q+2)
NL1(R)(V0) ,

and∥∥∥∥(ϕx(t, · ), ϕφ(t, · ))−
(

e1
e2

)
· (kx∂x)−1ΣWq (t)(k(0)

x , k
(0)
φ ,q(0),m(0))

∥∥∥∥
L∞(R)

≤ C NL1(R)(V0)





1
(1 + |t|) 1

3
if q ≥ 5

1
(1 + |t|) 1

5
if q = 3

,

where ΣWq is the solution operator to System (90).

Again, we omit the proof as nearly identical to the one of the corresponding
result in [50], namely Theorems 1.4 (q = 3) and 1.5 (q > 3), but provide a few
comments.

1. In the case q = 3, one may drop the low-frequency cut-off χ̃(i−1 ∂x)
(provided that one restricts to times |t| ≥ 1) since it is here only to com-
pensate for the fact that when q ≥ 5, one cannot infer good dispersive
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properties of the Taylor expansions globally in frequency. This is some-
how analogous to the fact that slow expansions of well-behaved parabolic
systems may produce ill-posed systems. Similar estimates hold for q = 1
but are somewhat pointless since the decay rate is then the same as in
Theorem 4.9.

2. If one is willing to use a less explicit and pleasant formula for (k(0)
x , k

(0)
φ ,

q(0),m(0)), then the description of (ϕx(t, · ), ϕφ(t, · )) may actually be
achieved up to an error of size (1 + |t|)− 1

3 if q = 3 and (1 + |t|)−
q−1

2(q+2) , if
q ≥ 5; see [50, Theorems 1.5 & 1.6].

3. If one removes the assumption that (ϕ(0)
x , ϕ

(0)
φ ) is low frequency, then the

formula for (k(0)
x , k

(0)
φ ,q(0),m(0)) should be modified as




k
(0)
x

k
(0)
φ

q(0)

m(0)


 := χ̃(i−1 ∂x)

·




kx∂xϕ
(0)
x

kx∂xϕ
(0)
φ

δQ(U , kx∂xU + kφJU) Ṽ0− (M[U ]−m)
(
kφ∂xϕ

(0)
x − kx∂xϕ(0)

φ

)

δM[U ] Ṽ0− (M[U ]−m)∂xϕ(0)
x



.

To illustrate how the high-frequency corrections arise let us point out
that

〈δM[U ]; ­
ϕ

(0)
x Ux(ξ, · )〉L2 = −[ ̂(M[U ]−m) ∂xϕ(0)

x ](ξ)

+ i ξ 〈M[U ]; }
ϕ

(0)
x (ξ, · )− ϕ̂(0)

x (ξ)〉L2 ,

and that extra ξ-factors bring extra decay.
4. We expect that in the case q = 3, System (90) could be derived from

higher-order versions of geometrical optics as in [44]. In contrast, the
formal derivation of either System (90) in the general case or of effec-
tive data (k(0)

x , k
(0)
φ ,q(0),m(0)) (in particular when (ϕ(0)

x , ϕ
(0)
φ ) is not low

frequency) seems out of reach.
5. The foregoing construction of Dq closely follows the classical construc-

tion of artificial viscosity systems as large-time asymptotic equivalents to
systems that are only parabolic in the hypocoercive sense of Kawashima.
We refer the reader to, for instance, [29, Section 6], [47], [34, Appen-
dix B], or [48, Appendix A] for a description of the latter. A notable
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difference, however, is that in the diffusive context, higher-order expan-
sions of dispersion relations beyond the second-order necessary to cap-
ture some dissipation do not provide any sharper description since the
second-order expansion already provides the maximal rate compatible
with a first-order expansion of eigenvectors. Here, one needs to use the
full pseudo-differential dispersion relations so as to reach a description
up to O(|t|−1/2) error terms.

6. We infer from Theorems 4.9 and 4.10 that at leading order, the behavior
of Sp(t)(V0) is captured by a linear modulation of phases ϕx(t, · )Ux +
ϕφ(t, · ) JU , and the phase shifts (ϕx, ϕφ) are the antiderivative of the two
first components of a four-dimensional vector (kx∂xϕx, kx∂xϕφ,q,m)
that itself is at leading-order a sum of four linear dispersive waves of
Airy type, each one traveling with its own velocity. In particular, three
scales coexist: the oscillation of the background wave at scale 1 in Ux and
JU , spatial separation of the four dispersive waves at linear hyperbolic
scale t, the width of Airy waves of size t1/3. We refer the reader to [2, 50]
for an enlightening illustration by direct simulations of similar multiscale,
large-time dynamics.

5. General perturbations

We now come back to the general spectral stability problem. We begin with
a corollary to Theorem 3.2, from which we recall the following key formula.
The Evans function Dξ(λ,η) expands as

Dξ(λ,η) (λ,η)→(0,0)= det
(
λΣt − (ei ξ −1)I4 + ‖η‖2

λ Σy

)

+O
(
(|λ|+ |ξ|+ ‖η‖2) (|λ|2 + |ξ|2 + ‖η‖2) (|λ|(|λ|+ |ξ|) + ‖η‖2)

)
.

For later use, we introduce the homogeneous fourth-order polynomial with real
coefficients26

∆0(λ, z, ζ) := det
(
λΣt − z I4 + ζ2

λ Σy

)
.(91)

That the coefficients of ∆0 are real may be seen directly or related to the
fact that D0(λ,η) is real when λ and η are real. Likewise, note that for any
(ε, λ, z, ζ) ∈ C4

∆0(λ, z,−ζ) = ∆0(λ, z, ζ) , ∆0(−λ,−z, ζ) = ∆0(λ, z, ζ) ,
∆0(ελ, εz, εζ) = ε4∆0(λ, z, ζ) , ∆0(λ, z, ζ) = ∆0(λ, z, ζ) .

The second and the fourth relations are inherited from original real and Hamil-
tonian symmetries.

26. The formula being extended by continuity to incorporate the cases when λ = 0.
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Since the longitudinal perturbations have already been analyzed at length,
the following corollary focuses on perturbations that do have a transverse com-
ponent.

Corollary 5.1. — Consider an unscaled wave profile V such that V · Vx 6≡ 0.
1. Assume that there exists (λ0, ζ0) ∈ R2, such that ζ0 6= 0 and

∆0(λ0, 0, ζ0) < 0. Then the wave is spectrally exponentially unstable
to perturbations that are longitudinally coperiodic and transversally ar-
bitrarily slow, that is, L0,η has eigenvalues of positive real part for η
arbitrarily small but nonzero.

2. Assume that there exists (λ0, ξ0, ζ0) ∈ C ×R2, such that ζ0 6= 0 and λ0
is a root of ∆0( · , i ξ0, ζ0) of algebraic multiplicity r. Then there exist C0
and η0 > 0, such that for any η such that 0 < ‖η‖ ≤ η0,

L ‖η‖
|ζ0|

ξ0,η

possesses r eigenvalues (counted with algebraic multiplicity) in the disk

B

(‖η‖
|ζ0|

λ0 , C0‖η‖1+ 1
r

)
.

In particular if <(λ0) 6= 0, then the wave is spectrally unstable.

Proof. — By using symmetries of ∆0 we may assume that λ0 ≥ 0 and r0 = 1.
Then since Theorem 3.2 ensures

D0(‖η‖λ0,η) ‖η‖→0= ‖η‖4 ∆0(λ0, 1) +O(‖η‖5) ,

we deduce that there exists η0 > 0, such that for any 0 < ‖η‖ ≤ η0,
D0(‖η‖λ0,η) < 0. Comparing this with Proposition 3.1 yields that when
0 < ‖η‖ ≤ η0, the spectrum of L0,η intersects (0,+∞).

The second part stems from a counting root argument based directly on
Theorem 3.2 and the symmetries of ∆0 . �

At this stage, two more comments are worth stating.
1. Since both Theorem 3.2 and Proposition 3.1 include the case ξ = π

besides the case ξ = 0, one may obtain a ξ = π counterpart to the
first parts of Theorem 4.1 and Corollary 5.1. Yet the corresponding
instability criteria are never met since ∆0(0,−2, 0) > 0. For a similar
reason, although Theorem 3.2 deals with arbitrary Floquet exponents
ξ, the second parts of Corollaries 4.5 and 5.1 involve Floquet exponents
converging to ξ = 0. This is due to the fact that ∆0(0, (ei ξ −1), 0) = 0 if
and only if ξ ∈ 2πZ.
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2. We point out that to some extent the restriction to ξ0 = 0 of the second
part of the corollary has already been derived in the recent [40] with a
few variations that we point out now.
(a) The authors restrict themselves to semilinear equations, a fact that

comes with quite a few algebraic simplifications in computations.
(b) They further assume that L0,0 exhibits two Jordan blocks of height

2 at 0.
(c) Their proof goes by direct spectral perturbation of L0,0 rather than

Evans function computations.

5.1. Geometrical optics. — Prior to studying at length properties of ∆0, we
show that the latter may be derived from a suitable version of geometrical optics
à la Whitham. To start bridging the gap, we first recall (62) and observe that

λΣt − zI4 + ζ2

λ
Σy =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0



(
λA0 Hess Θ− zB0 + ζ2

λ
C0

)



0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


 ,

(92)

with

A0 =
(

I2 0
0 −I2

)
, B0 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , C0 :=




0 0 0 0
0 −σ3 σ2 0
0 −σ2 σ1 0
0 0 0 0


 ,

where

σ1 :=
∫ Xx

0
κ(‖V‖2) ‖V‖2 , σ2 :=

∫ Xx

0
κ(‖V‖2) JV · Vx ,(93)

σ3 :=
∫ X

x

0
κ(‖V‖2) ‖Vx‖2 .

In particular

∆0(λ, z, ζ) = det
(
λA0 Hess Θ− zB0 + ζ2

λ
C0

)
.(94)

Now let us start formal asymptotics with a multidimensional ansatz similar
to (65)

U(ε)(t,x) = e
1
εϕ

(ε)
φ

(ε t,εx) J U (ε)

(
ε t, εx; ϕ

(ε)
x (ε t, εx)

ε

)
,(95)
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with

U (ε)(T,X; ζ) = U0(T,X; ζ) + εU1(T,X; ζ) + o(ε) ,

ϕ
(ε)
φ (T,X) = (ϕφ)0(T,X) + ε (ϕφ)1(T,X) + o(ε) ,

ϕ(ε)
x (T,X) = (ϕx)0(T,X) + ε (ϕx)1(T,X) + o(ε) ,

with U0(T,X; ·) and U1(T,X; ·) 1-periodic. Inserting (95) in (3) yields at lead-
ing order

(∂T (ϕφ)0J + ∂T (ϕx)0∂ζ)U0 = JδH0 (U0, (∇X(ϕφ)0J +∇X(ϕx)0∂ζ)U0) ,

so that for each (T,X), U0(T,X; ·) must be a wave profile as in (15), such that

∂T (ϕφ)0 = ωφ − cxkφ , ∇X(ϕφ)0 = kφ , ∂T (ϕx)0 = ωx , ∇X(ϕx)0 = kx .

As a consequence, kx and kφ are curl free and

∂Tkφ = ∇X (ωφ − kφ cx) , ∂Tkx = ∇Xωx .(96)

Moreover, inserting (95) in (4) and (6) yields at leading order, respectively,

∂T (M(U0)) = divX
(

JU0 · ∇UxH0 (U0, (kφJ + kx∂ζ)U0)
)

+ ∂ζ(∗)

and

∂T

(
Q(U0, (kφJ + kx∂ζ)U0)

)

= ∇X

(
1
2JU0 · JδH0(U0, (kφJ + kx∂ζ)U0)−H0(U0, (kφJ + kx∂ζ)U0)

)

+
∑

`

∂X`

(
Jδ Q(U0, (kφJ + kx∂ζ)U0) · ∇UX`

H0(U0, (kφJ + kx∂ζ)U0)
)

+ ∂ζ(∗∗) ,
with ∗ and ∗∗ 1-periodic in ζ. Averaging the foregoing equations using formulas
in Section 2.6 provides equations that combined with (96) yield





∂Tkx = ∇Xωx

∂Tq = ∇X

(
µx − cxq+ 1

2 τ0 ‖k̃φ‖
2
)

+ divX
(
τ1 k̃φ ⊗ k̃φ + τ2 (k̃φ ⊗ ex + ex⊗k̃φ) + τ3 (ex⊗ ex−Id)

)

∂Tm = divX
(

(µφ − cxm) ex +τ1 k̃φ
)

∂Tkφ = ∇X (ωφ − cx kφ)

,

(97)
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with curl-free kx and kφ, where

τ0 := 〈κ′(‖U0‖2) ‖U0‖2〉 , τ1 := 〈κ(‖U0‖2) ‖U0‖2〉 ,
τ2 := 〈κ(‖U0‖2) JU0 · (kφ J + kx∂ζ)U0〉 , τ3 := 〈κ(‖U0‖2) ‖(kφ J + kx∂ζ)U0‖2〉 .

Before linearizing, in order to prepare System 97 for comparison, we recall
that kx = kx ex, kφ = kφ ex +k̃φ, and q = q ex +m k̃φ, with ex unitary and
k̃φ orthogonal to ex and write (97) in terms of (kx, kφ,m,q, ex, k̃φ). By using
that, for any derivative ∂],

ex ·∂] ex = 0 , ex ·∂]k̃φ = −k̃φ · ∂] ex ,(98)

this yields





∂T ex = 1
kx

(∇X − ex ex ·∇X)ωx

∂T k̃φ = (∇X − ex ex ·∇X) (ωφ − cx kφ)− kφ
kx

(∇X − ex ex ·∇X)ωx

− ex
k̃φ
kx
· ∇Xωx

∂T kx = ex ·∇Xωx

∂Tq = ex ·∇X

(
µx − cxq+ 1

2 τ0 ‖k̃φ‖
2
)

+ m
k̃φ
kx
· ∇Xωx

+ ex ·divX
(
τ1 k̃φ ⊗ k̃φ + τ2 (k̃φ ⊗ ex + ex⊗k̃φ) + τ3 (ex⊗ ex−Id)

)

∂Tm = divX
(

(µφ − cxm) ex +τ1 k̃φ
)

∂T kφ = ex ·∇X (ωφ − cx kφ) + k̃φ
kx
· ∇Xωx

(99)

with ex unitary, k̃φ orthogonal to ex, and kx ex and kφ ex +k̃φ curl free. Sys-
tem (99) may be simplified further by noticing that from curl-free conditions
(and (98)) stem

(∇X − ex ex ·∇X)kx = kx (ex ·∇X) ex ,

(∇X − ex ex ·∇X)kφ = (ex ·∇X)k̃φ +∇X
(
exT) k̃φ + kφ (ex ·∇X) ex .
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This leaves as an equivalent system





(∂T + cx(ex ·∇X)) ex = −(∇X − ex ex ·∇X)cx

(∂T + cx(ex ·∇X))k̃φ = (∇X − ex ex ·∇X)ωφ − ex
k̃φ
kx
· ∇Xωx

− cx∇X
(
exT) k̃φ

∂T kx = ex ·∇Xωx

∂Tq = ex ·∇X

(
µx − cxq+ 1

2 τ0 ‖k̃φ‖
2
)

+ m
k̃φ
kx
· ∇Xωx

+ ex ·divX
(
τ1 k̃φ ⊗ k̃φ + τ2 (k̃φ ⊗ ex + ex⊗k̃φ)

+ τ3 (ex⊗ ex−Id)
)

∂Tm = divX
(

(µφ − cxm) ex +τ1 k̃φ
)

∂T kφ = ex ·∇X (ωφ − cx kφ) + k̃φ
kx
· ∇Xωx

(100)

with ex unitary, k̃φ orthogonal to ex, and kx ex and kφ ex +k̃φ curl free.
Linearizing System (100) about the constant (µ

x
, cx, ωφ, µφ, e1, 0) yields





(∂T + cx∂X) ex = − (∇X − e1 ∂X) cx
(∂T + cx∂X) k̃φ = (∇X − e1 ∂X)ωφ

kxA0 Hess Θ (∂T + cx∂X)




µx
cx
ωφ
µφ


 = B0 ∂X




µx
cx
ωφ
µφ


+




0 0
τ3 τ2
τ2 τ1
0 0



(

divX(ex)
divX(k̃φ)

)

(101)

with extra constraints that k̃φ and ex are orthogonal to ex = e1 and that kxex+
kx ex and kφex + kφ ex +k̃φ are curl free, where (kx, kφ) are given explicitly as

kx = −k2
x d (∂µxΘ)(µx, cx, ωφ, µφ) ,(102)

kφ = kx
kx

kφ − kx d (∂µφΘ)(µx, cx, ωφ, µφ) ,

where total derivatives are taken with respect to (µx, cx, ωφ, µφ), and evalua-
tion is at (µ

x
, cx, ωφ, µφ, e1, 0). In System 101, Hess Θ = Hess(µx,cx,ωφ,µφ) Θ is

likewise evaluated at (µ
x
, cx, ωφ, µφ, e1, 0). For the convenience of the reader,

we detail some of the observations and manipulations used to go from (100) to
(101).
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1. As in going from (69) to (70), derivatives of Θ arise in (101) and (102)
from (47).

2. As pointed out in Section 2.6, d(ex ,̃kφ) (∇(µx,cx,ωφ,µφ)Θ) vanish at
(µ
x
, cx, ωφ, µφ, e1, 0).

3. For any scalar-valued function a,

ex · divX (a (ex ⊗ ex − Id)) = 0 .

4. From orthogonality constraints stem that for any derivative ∂],

ex · ∂] ex = 0 , ex · ∂]k̃φ = 0 ,

so that

ex · divX (ex ⊗ ex + ex⊗ex) = divX(ex) ,

ex · divX
(

ex ⊗ k̃φ + k̃φ ⊗ ex
)

= divX(k̃φ) .

At this stage, noting that for j ∈ {1, 2, 3}, σj = τ j/kx, a few line manipula-
tions achieve proving the claimed relation between ∆0 and modulated systems
in the form

λ2(d−1) ×∆0(λ, i ξ, ‖η‖)

= det




λ

(
I2(d−1) 0

0 A0 Hess Θ

)
− i ξ

(
0 0
0 B0

)
+




0 0 0 − iη 0 0
0 0 0 0 iη 0
0 0 0 0 0 0

τ3
k
x

iηT τ2
k
x

iηT 0 0 0 0
τ2
kx

iηT τ1
kx

iηT 0 0 0 0
0 0 0 0 0 0







.

5.2. Instability criteria. — The rest of the section is devoted to the study of
instability criteria contained in Corollary 5.1 and its longitudinal counterparts.

We begin by rephrasing the main consequence of Corollary 5.1. A stable
wave must satisfy

1. for any (λ, ζ) ∈ R2, ∆0(λ, 0, ζ) ≥ 0;
2. for any (ξ, ζ) ∈ R2, the roots of the (real) polynomial ω 7→ ∆0(iω, i ξ, ζ)

are real.
Note that the latter condition may be expressed explicitly as inequality con-
straints on some polynomial expressions in (ξ, ζ) ∈ R2, but the expressions
involved are rather cumbersome.
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The restriction to ξ = 0 is much simpler to analyze. To do so, let us introduce
notation for coefficients of ∆0

∆0(λ, z, ζ) =
∑

0≤m,n,p≤4
m+n+p=4
p≤m

δ(m,n,p)λ
m−p zn ζ2p ,(103)

and note that
∆0(λ, 0, ζ) = λ4 δ(4,0,0) + ζ2λ2 δ(3,0,1) + ζ4 δ(2,0,2) .

A straightforward consequence is the following stability condition.

Lemma 5.2. — If the wave is stable, then for any ζ ∈ R2, the roots of the
polynomial ω 7→ ∆0(iω, 0, ζ) are real and

δ4,0,0 ≥ 0 , δ3,0,1 ≥ 2
√
|δ4,0,0 δ2,0,2| , δ2,0,2 ≥ 0 .(104)

Moreover, if all the signs of the three inequalities in (104) are strict, then
∆0(λ, 0, ζ) > 0 when (λ, ζ) ∈ R2 \ {0}, and the roots of ω 7→ ∆0(iω, 0, ζ) are
distinct when ζ 6= 0.

Note that the mere combination of the cases η = 0 – corresponding to longi-
tudinal perturbations – (studied in Corollary 4.5 and in [40]) and ξ = 0 – cor-
responding to longitudinally coperiodic perturbations – (studied in Lemma 5.2
and in [40]) is a priori insufficient to capture the full strength of Corollary 5.1.
Indeed, note that the associated instability criteria do not involve coefficients
δ(1,2,1) and δ(2,1,1). To illustrate why we expect that these coefficients matter,
let us consider an abstract real polynomial π0 of the form (103). Then
• fixing all coefficients except δ(2,1,1) with δ4,0,0 6= 0 and choosing some

(ξ0, ζ0) ∈ (R∗)2, it follows that if |δ(2,1,1)| is sufficiently large, then either
ω 7→ π0(iω, i ξ0, ζ0) or ω 7→ π0(iω,− i ξ0, ζ0) possesses a nonreal root;
• fixing all coefficients except δ(1,2,1) with δ4,0,0 6= 0 and choosing some

(ξ0, ζ0) ∈ (R∗)2, it follows that if |δ(1,2,1)| is sufficiently large with
δ(1,2,1) < 0, then ω 7→ π0(iω, i ξ0, ζ0) possesses a nonreal root.

A less pessimistic guess could be that the inspection of the regimes |ξ| � |ζ|
and |ζ| � |ξ| (that are perturbations of ξ = 0 and ζ = 0) could involve the
missing coefficients and be sufficient to decide the instability criteria encoded
by Corollary 5.1. For an example of a closely related situation where such a
scenario occurs, the reader is referred to [44, 35]. Yet the following lemma sug-
gests that even this weaker claim can be expected only in degenerate situations.
Let us also anticipate a bit and stress that the coefficient δ(1,2,1) plays a deep
role in our analysis of the small-amplitude regime.

Lemma 5.3. — 1. Assume that Σt is nonsingular and that the eigenvalues
of Σt are real and distinct, or equivalently, that Hess Θ is nonsingular
and that the characteristic values of the modulation system are real and
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distinct. Then there exists ε0 > 0, such that when (ξ, ζ) ∈ R2 \{(0, 0)} is
such that |ζ| ≤ ε0 |ξ|, the fourth-order real polynomial ω 7→ ∆0(iω, i ξ, ζ)
possesses four distinct real roots.

2. Assume that Σt is nonsingular and that the eigenvalues of (Σt)−1Σy are
positive and distinct. Then there exists ε0 > 0, such that when (ξ, ζ) ∈
R2 \ {(0, 0)} is such that |ξ| ≤ ε0 |ζ|, the fourth-order real polynomial
ω 7→ ∆0(iω, i ξ, ζ) possesses four distinct real roots.

Recall that if Σt is nonsingular and either Σt possesses a nonreal eigenvalue,
or (Σt)−1Σy possesses an eigenvalue in C \ [0,+∞), then the associated wave
is unstable.

Proof. — The distinct character follows from continuity of polynomial roots
(applied, respectively, at ζ = 0 and ξ = 0). Then their reality is deduced from
the stability by complex conjugation of the root set of real polynomials. �

More generally, the transition to nonreal roots of ω 7→ ∆0(iω, i ξ, ζ) may only
occur near a (ξ0, ζ0) where the polynomial possesses a multiple root. With this
in mind, we now elucidate how the breaking of a multiple root occurs near
ξ = 0 and near ζ = 0.

Proposition 5.4 (Breaking of a multiple root near η = 0). — Assume that Σt
is nonsingular and that ω0 is a real eigenvalue of (Σt)−1 of algebraic multiplicity
r0. If

either
(
r0 ≥ 3 and δ(1,2,1) + δ(2,1,1)ω0 + δ(3,0,1)ω

2
0 6= 0

)
,

or
(
r0 = 2 and

δ(1,2,1) + δ(2,1,1)ω0 + δ(3,0,1)ω
2
0

1
r0!∂

r0
λ ∆0(ω0, 1, 0)

< 0
)
,

then the corresponding wave is spectrally unstable.

Proof. — This follows from the Taylor expansion of ∆0

∆0(λ, i ξ, ‖η‖) = (λ− i ξω0)r0
ξ4−r0∂r0

λ ∆0(iω0, i, 0)
r0!

+ ‖η‖2
(
δ1,2,1(i ξ)2 + δ2,1,1λ i ξ + δ3,0,1λ

2
)

+O
(
|λ− i ξω0|r0+1 + ‖η‖4

)
.
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Hence from Theorem 3.2 and a continuity argument there are r0 roots of
Dξ( · , ‖η‖) near i ξω0 that expand as

i ξ ω0 + i ξZ
(‖η‖
|ξ|

) 2
r0
(
δ(1,2,1) + δ(2,1,1)ω0 + δ(3,0,1)ω

2
0

1
r0!∂

r0
λ ∆0(ω0, 1, 0)

) 1
r0

+O
(
|ξ|
(‖η‖
|ξ|

) 2
r0
((‖η‖
|ξ|

) 2
r0

+ |ξ|3
‖η‖2

))
,

in the limit (
|ξ|, ‖η‖|ξ| ,

|ξ|3
‖η‖2

)
→ (0, 0, 0) ,

where Z runs over the r0th roots of unity. �

Proposition 5.5 (Breaking of a multiple root near ξ = 0). — Assume that
δ(4,0,0) 6= 0 and δ2

(3,0,1) = 4 δ(4,0,0) δ(2,0,2). If

δ(2,1,1) δ(4,0,0) −
1
2δ(3,1,0) δ(3,0,1) 6= 0 ,

then the corresponding wave is spectrally unstable.

Proof. — From Lemma 5.2, stability requires δ(4,0,0) > 0, δ(2,0,2) ≥ 0, and
δ(3,0,1) = 2

√
δ(4,0,0) δ(2,0,2), and we assume this from now on. The polynomial

∆0 is then

∆0(λ, i ξ, ζ) = δ(4,0,0)

(
λ2 +

√
δ(2,0,2)

δ(4,0,0)
ζ2

)2

+ i ξ(δ(2,1,1)λζ
2 + δ(3,1,0)λ

3)

+O
(
ξ2(λ2 + ζ2)).

)

We begin with the case δ(2,0,2) 6= 0. To analyze it we introduce

ω0 :=
(
δ(2,0,2)

δ(4,0,0)

)1/4
=
√

δ(3,0,1)

2δ(4,0,0)
.

Then for each σ ∈ {−1, 1}, when (‖η‖, |ξ|/‖η‖, ‖η‖3/|ξ|2) is sufficiently small,
there are 2 roots of Dξ( · , ‖η‖) near iσ‖η‖ω0 that expand as

iσ‖η‖ω0

(
1± 1

2δ(4,0,0)

√
σξ

‖η‖

(
δ(2,1,1)δ(4,0,0) −

1
2δ(3,1,0)δ(3,0,1)

)

+O
(
‖η‖

√
|ξ|
‖η‖

( |ξ|
‖η‖ + ‖η‖

2

|ξ|

)))
,

in the limit
(
‖η‖, |ξ|‖η‖ ,

‖η‖2
|ξ|

)
→ 0.
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When δ(2,0,2) = 0 – thus also δ(3,0,1) = 0 – and (‖η‖, |ξ|/‖η‖, ‖η‖2/|ξ|) is
sufficiently small, three of the four roots of Dξ( · , ‖η‖) near 0 expand as

i ‖η‖ 2
3 ξ

1
3 Z

(
δ(2,1,1)

δ(4,0,0)

) 1
3

+O
(
‖η‖ 2

3 |ξ| 13
(( |ξ|
‖η‖

) 2
3

+ ‖η‖
2

|ξ|

))
,

where Z runs over the 3rd roots of unity, in the limit
(
‖η‖, |ξ|‖η‖ ,

‖η‖2
|ξ|

)
→ (0, 0, 0) . �

5.3. Large-period regime. — We now examine consequences of Corollary 5.1
in asymptotic regimes described in from Section 2.5. Since the large-period
regime turns out to be significantly simpler to analyze, we begin the solitary-
wave limit.

We prove the following theorem.

Theorem 5.6. — When d ≥ 2, if ∂2
cxΘ(s)(c(0)

x , ρ(0), k
(0)
φ ) 6= 0 then, in the large

period regime near (c(0)
x , ρ(0), k

(0)
φ ), System 97 fails to be weakly hyperbolic, and

waves are spectrally exponentially unstable to transversally slow, longitudinally
coperiodic perturbations.

Before turning to the proof of Theorem 5.6, we would like to add one com-
ment. It is natural to wonder whether the proved instability corresponds to an
instability of the limiting solitary-wave and even to expect that one could argue
the other way around by proving the instability of solitary waves and deduce
periodic-wave instability in the large-period regime by a spectral perturbation
argument. When ∂2

cxΘ(s)(c(0)
x , ρ(0), k

(0)
φ ) < 0, this is a well-known fact. We

expect this to be true under the assumptions of Theorem 5.6. Yet, so far,
general results for solitary-wave instabilities [7, 51] have been proven only for
semilinear cases. More precisely, they have been proven for very specific forms
of Schrödinger equations and for larger classes of Euler–Korteweg systems, suf-
ficiently general to include all our semilinear cases. In the semilinear case, a
different proof of Theorem 5.6 could thus be obtained by applying results from
[7, 51] to solitary waves of the associated Euler–Korteweg systems, transfer-
ring those to large-period periodic waves of the same Euler–Korteweg systems
through a suitable spectral perturbation theorem in the spirit of [26, 52, 57]
and passing the latter to the Schrödinger systems by the results of Section 3.2.

Let us stress that instead our proof goes by examining the large-period limit
of a periodic-wave criterion. Incidentally, we point out that our periodic-wave
criterion is orthogonal to the arguments in [51] but shares some similarities with
those in [7]. For the adaptation as a periodic-wave criterion of the arguments
of the former, the reader is referred to [28].
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One of the advantages of the way we have chosen is that it offers a symmetric
treatment of both limits of interest, whereas the spectral perturbation argument
fails in the harmonic limit. Another one is that we prove that the instability
is of modulation type, being associated with the failure of weak hyperbolicity
of System 97.

The rest of the present section is devoted to the proof of Theorem 5.6. This
section and the next about the harmonic regime use formulation (94) and build
upon intermediate27 results from [10] and [11] on systems of Korteweg type.
Indeed, in the solitary-wave limit, once relevant asymptotic expansions have
been recalled, the proof shall be quite straightforward.

To ease notational translations, it is useful to recall that in Section 2.3 we
have derived for (3) the hydrodynamic formulation (39)

∂t

(
ρ
v

)
= J δH0[(ρ,v)] ,(105)

with v curl free, where

J =
(

0 div
∇ 0

)

and

H0[(ρ,v)] = κ(2 ρ) ρ ‖v‖2 + κ(2 ρ)
4 ρ ‖∇xρ‖2 .

In turn, the Hamiltonian problems studied in [10, 11] include systems28 in the
form (105) but with a larger class of Hamiltonian densities, given in original
notation from [10, 11] as

H[(ρ,u))] = 1
2τ(v)‖u‖2 + 1

2κ(v)‖∇xv‖2 + f(v) .

Thus, when importing results from [10, 11], we shall keep in mind the notational
correspondence

(v, u)→ (ρ, v) , κ(v)→ 1
2ρκ(2ρ) , τ(v)→ 2ρ κ(2ρ) , f(v)→W (2ρ) .

27. As opposed to main results.
28. Restricted to the one-dimensional case.
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To derive expansions for σ1, σ2 and σ3, it is convenient to use the profile
equation (44) so as to write them as

σ1 =
∫ ρmax(µx)

ρmin(µx)

f1(ρ)√
µx −Wρ(ρ)

√
2κ(2 ρ)

2 ρ d ρ ,

σ2 =
∫ ρmax(µx)

ρmin(µx)

f2(ρ)√
µx −Wρ(ρ)

√
2κ(2 ρ)

2 ρ d ρ ,

σ3 =
∫ ρmax(µx)

ρmin(µx)

f3(ρ)√
µx −Wρ(ρ)

√
2κ(2 ρ)

2 ρ d ρ

+
∫ ρmax(µx)

ρmin(µx)

√
µx −Wρ(ρ)

√
2κ(2 ρ)

2 ρ d ρ ,

with

f1(ρ) := κ(2 ρ) 2 ρ ,
f2(ρ; cx, µφ) := κ(2 ρ) 2 ρ ν(ρ; cx, µφ) ,
f3(ρ; cx, µφ) := κ(2 ρ) 2 ρ (ν(ρ; cx , µφ))2 .

In this form, [10, Proposition C.3] is directly applicable and yields the required
expansions.

In the above and from now on, we mostly keep the dependence on (cx, ωφ, µφ)
implicit for the sake of readability. This is consistent with the fact that the
limit is reached by holding (cx, ωφ, µφ) fixed and taking µx sufficiently close
to µ

(0)
x (cx, ωφ, µφ) (uniformly for (cx, ωφ, µφ) in a compact neighborhood of

(c(0)
x , ω

(0)
φ , µ

(0)
φ )).

The solitary-wave expansions naturally involve a mass conjugated to the
minimal29 mass of periodic waves. Explicitly, in the large-period regime there
exists ρdual = ρdual(µx; cx, ωφ, µφ), such that

µx =Wρ(ρdual) ,

with ρdual < ρ(0), and µx − Wρ(·) does not vanish on (ρdual, ρmin). In other
words, ρdual is the first cancellation point of µx −Wρ(·) on the left of ρ(0); see
Figure 2.2.

The following theorem gathers the relevant pieces of asymptotic expansions.
Up to a slight extension to incorporate expansions of σ1, σ2, σ3, it is the
translation in our setting of results from [10, Theorem 3.16 & Lemma 4.1]. We

29. Recall that we have decided to focus only on the case when the end state of the mass
of the limiting solitary wave is also its infimum.
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borrow the statement and notation30 from [11, Proposition 4 & Theorem 2],
where relevant results from [10] are compactly summarized.

Theorem 5.7 ([10]). — In the large-period regime, there exist real numbers as,
bs, a positive number hs, a vector Xs, and a symmetric matrix Os – depending
smoothly on the parameters (cx, ωφ, µφ) – such that, with31

ε(µx) := ρmin(µx)− ρdual(µx)
ρmax(µx)− ρmin(µx) , cs := − 1

2∂2
ρWρ(ρ(0)) ,(106)

π

X
(s)
x

∇Θ = −V0 ln ε−Xs + ε

2 V0 −
1

2hs
(as V0 + bs W0 + cs Z0) ε2 ln ε

+O
(
ε2) ,

(107)

π

X
(s)
x

Hess Θ = hs
1 + ε

ε2 V0 ⊗ V0

+ (as V0 ⊗ V0 + bs (V0 ⊗W0 + W0 ⊗V0)) ln ε
+ (T0 ⊗T0 + 2cs W0 ⊗W0 + cs (Z0 ⊗V0 + V0 ⊗ Z0)) ln ε
+ Os +O

(
ε ln ε

)
,

(108)

and, for j = 1, 2, 3,
π

X
(s)
x

σj = −fj(ρ(0)) ln ε+O(1) ,

where

X(s)
x :=

√
−κ(ρ(0))
∂2
ρWρ(ρ(0)) ,

V0 :=




1
q(ρ(0))
ρ(0)

ν(ρ(0))


 , W0 :=




0
∂ρq(ρ(0))

1
∂ρν(ρ(0))


 ,

Z0 :=




0
∂2
ρq(ρ(0))

0
∂2
ρν(ρ(0))


 , T0 := 1√

κ(2 ρ(0)) 2 ρ(0)




0
ρ(0)

0
1


 ,

30. Except for a few variations. We use (X(s)
x , ε) instead of (Ξs, ρ) and (ρdual, ρmin, ρmax)

instead of (v1, v2, v3). The subscript 0 was originally s.

31. The parameter ε goes to zero as
√
µ

(0)
x (cx, ωφ, µφ)− µx.
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with q defined by
q(ρ) := ρ ν(ρ) .

Moreover, the vectors are such that
V0 ·B−1

0 A0 V0 = 0 , V0 ·B−1
0 A0 W0 = 0 , V0 ·B−1

0 A0 T0 = 0 ,
V0 ·B−1

0 A0 Z0 = −W0 ·B−1
0 A0 W0 ,

T0 ·B−1
0 A0 T0 = 0 , T0 ·B−1

0 A0 Z0 = 0 ,
e1 ·V0 = 1 , e1 ·W0 = 0 , e1 ·Z0 = 0 , e1 ·T0 = 0 ,

and
X

(s)
x

π
(B−1

0 A0V0) ·Xs = −∂cxΘ(s)(c(0)
x , ρ(0), k

(0)
φ ) ,

X
(s)
x

π
(B−1

0 A0V0) ·Os B−1
0 A0V0 = ∂2

cxΘ(s)(c(0)
x , ρ(0), k

(0)
φ ) .

As a consequence, after a few straightforward but tedious computations,
omitted here but detailed in the discussion preceding32 [11, Theorem 8] stems
that

π

X
(s)
x




1 0 0
0
√

1+ε
ε 0

0 0 I2


P0(−B−1

0 A0) Hess Θ P−1
0




1 0 0
0 ε√

1+ε 0
0 0 I2




=




−cs w0 ln(ε) +O(1)
√

1 + ε
ε hs +O(ε ln(ε)) O(ln(ε))

√
1 + ε
ε

X
(s)
x

π
∂2
cxΘ(s) +O(ln(ε)) −cs w0 ln(ε) +O(1)

√
1 + ε
ε ysT +O(ln(ε))

O(1) O(ε ln(ε)) Σ−1
0 ln(ε) +O(1)




with ys some two-dimensional vector, and

P0 :=
(
− e2 V0 T0 W0

)T

Σ0 :=
(
σ0 0
w0
2 1

)
(B HessH(0)(ρ(0), k

(0)
φ ) + cx I2)

(
σ0 0
w0
2 1

)−1
,(109)

where

σ0 := −T0 ·B−1
0 A0W0 = 1√

κ(2 ρ(0)) 2 ρ(0)

w0 := −W0 ·B−1
0 A0W0 = 2∂ρν(ρ(0)) .

32. In notation of [11], P0 = PsTß, −B−1
0 A0 = ß−1, ys = (D−1

s )Tys, Σ−1
0 = ΣsD−1

s

and (
σs 0
ws
2 1

)
= As B−1 .
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Moreover,

Σ−1
0 =

(
0 2csσ0
σ0 2csw0

)
.

We recall that H(0) is the zero dispersion limit of the Hamiltonian H0 of the hy-
drodynamic formulation of the Schrödinger equation, and B is the self-adjoint
matrix involved in this formulation; see (51).

Observe also that from the foregoing it follows that

δ(4,0,0) = det(Hess Θ)

= − (ln(ε))2

ε2
(X(s)

x )5

π5
hs ∂

2
cxΘ(s)

det(B HessH(0) + cx I2) +O
(

ln(ε)
ε2

)

= (ln(ε))2

ε2
(X(s)

x )5

π5 2cs σ2
0 hs ∂

2
cxΘ(s) +O

(
ln(ε)
ε2

)

= − (ln(ε))2

ε2
(X(s)

x )5

π5
hs ∂

2
cxΘ(s)

κ(2 ρ(0)) 2 ρ(0) ∂2
ρWρ(ρ(0)) +O

(
ln(ε)
ε2

)
.

Likewise,

δ(0,4,0) = 1 , δ(1,3,0) = O(1) ,

δ(2,2,0) = − 1
ε2

(X(s)
x )3

π3 hs ∂
2
cxΘ(s) +O

(
ln(ε)
ε

)
,

δ(3,1,0) = − ln(ε)
ε2

(X(s)
x )4

π4 2cs w0 hs ∂
2
cxΘ(s) +O

(
1
ε2

)
.

To go on we need to compute a similar expansion for



1 0 0
0
√

1+ε
ε 0

0 0 I2


P0(−B−1

0 C0) P−1
0




1 0 0
0 ε√

1+ε 0
0 0 I2


 .

A direct computation yields

−P0B−1
0 C0 =




0 0 0 0
0 σ3 + ν(ρ(0))σ2 −(σ2 + ν(ρ(0))σ1) 0
0 σ0σ2 −σ0σ1 0
0 w0

2 σ2 −w0
2 σ1 0


 ,

and

P−1
0 =




∗ ∗ ∗ ∗
−1 0 0 0

ν(ρ(0)) 0 − w0
2σ0

1
∗ ∗ ∗ ∗


 ,
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so that

−P0B−1
0 C0P−1

0 =



0 0 0 0
−(σ3 + 2ν(ρ(0))σ2 + ν(ρ(0))2σ1) 0 w0

2σ0
(σ2 + ν(ρ(0))σ1) −(σ2 + ν(ρ(0))σ1)

−σ0(σ2 + ν(ρ(0))σ1) 0 w0
2 σ1 −σ0σ1

−w0
2 (σ2 + ν(ρ(0))σ1) 0 w2

0
4σ0

σ1 −w0
2 σ1


 .

To ease computations and materialize both symmetry and size we introduce

δ
(s)
1 := σ1

− ln(ε)X(s)
x /π

, δ
(s)
2 := σ2 + ν(ρ(0))σ1

− ln(ε)X(s)
x /π

,

δ
(s)
3 := σ3 + 2ν(ρ(0))σ2 + ν(ρ(0))2σ1

− ln(ε)X(s)
x /π

.

Thus,

−




1 0 0
0
√

1+ε
ε 0

0 0 I2


P0B−1

0 C0P−1
0




1 0 0
0 ε√

1+ε 0
0 0 I2




= X
(s)
x

π




0 0 0 0
δ

(s)
3

√
1+ε
ε ln(ε) 0 − w0

2σ0
δ

(s)
2

√
1+ε
ε ln(ε) δ(s)

2

√
1+ε
ε ln(ε)

σ0δ
(s)
2 ln(ε) 0 −w0

2 δ
(s)
1 ln(ε) σ0δ

(s)
1 ln(ε)

w0
2 δ

(s)
2 ln(ε) 0 − w2

0
4σ0

δ
(s)
1 ln(ε) w0

2 δ
(s)
1 ln(ε)


 ,

with

δ
(s)
1 = f1(ρ(0)) +O

(
1

ln(ε)

)
,

δ
(s)
2 = 2 ν(ρ(0)) f1(ρ(0)) +O

(
1

ln(ε)

)
,

δ
(s)
3 = 4 ν(ρ(0))2 f1(ρ(0)) +O

(
1

ln(ε)

)
.

At main order the matrix has rank 1, and with this observation we find

δ(2,0,2) = O
(

(ln(ε))2

ε2

)
,

δ(3,0,1) = (ln(ε))3

ε2
(X(s)

x )4

π4 2 cs σ2
0 hsδ

(s)
3 +O

(
(ln(ε))2

ε2

)
.

Note that this already yields the instability condition in the large period regime:

∂2
cxΘ(s) > 0 ,
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This may be derived, for instance, by examining the limit ε→ 0 of the rescaled

∆0

( √
ε λ√
| ln(ε)|

, 0,
√
ε ζ

ln(ε)

)

=
(
− (X(s)

x )5

π5
hs ∂

2
cxΘ(s)

κ(0) 2 ρ(0) ∂2
ρW(0)

ρ

+O
(

1
ln ε

))
λ4 +O

(
ζ4

ln2 ε

)

+
(

(X(s)
x )4

π4 2 cs σ2
0 hs4(ν(0))22ρ(0)κ(0) +O

(
1

ln ε

))
λ2ζ2 .

According to both Theorem 4.3 and Theorem 4.6, ∂2
cxΘ(s) < 0 also yields

instability. Applying Theorem 4.3 shows that the instability may be obtained
with ξ = 0, whereas applying Theorem 4.6 shows that it also corresponds to a
failure of weak hyperbolicity of the modulated system.

This achieves the proof of Theorem 5.6.

5.4. Small-amplitude regime. — We now turn to the small-amplitude limit.
Our goal is to prove the following theorem.

Theorem 5.8. — In the small amplitude regime near a (c(0)
x , ρ(0), k

(0)
φ ), such

that

∂ρν(ρ(0); c(0)
x , µ(0)

φ
) 6= 0 ,

and33

δhyp × δBF (c(0)
x , ω

(0)
φ , µ(0)

φ
) 6= 0

waves are spectrally exponentially unstable to transversally slow, longitudinal
sideband perturbations.

Let us stress that, as proved in Appendix B, the limiting constant state is
spectrally stable if and only if δhyp < 0, so that, when δhyp > 0, the result is
nontrivial from the point of view of spectral perturbation. The overall proof
strategy is the same as in the large-period regime, but the final argument is sig-
nificantly more cumbersome. In particular, it involves essentially all coefficients
of ∆0.

To begin with, we gather relevant expansions. The following is a straightfor-
ward extension of [10, Theorem 3.14 & Lemma 4.1], with notation taken from
[11, Theorem 2 & Proposition 4].

33. Where δhyp, δBF are as in (71)–(72).
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Theorem 5.9 ([10]). — In the small-amplitude regime, there exist a real num-
ber b0 and a positive number c0 – depending smoothly on the parameters (cx, ωφ, µφ)
– such that, with a0 given by (64) and34

ε(µx) := ρmax(µx)− ρmin(µx)
2

ρmin(µx)− ρdual(µx)
ρmax(µx)− ρmin(µx) , c0 := 1

2∂2
ρWρ(ρ(0)) ,

we have

4c0
X

(0)
x

∇Θ = 4c0 V0 + (a0 V0 + b0 W0 + c0 Z0) ε2 +O(ε4) ,(110)

1
X

(0)
x

Hess Θ = a0 V0 ⊗V0 + b0 (V0 ⊗W0 + W0 ⊗V0)−T0 ⊗T0(111)

+ 2 c0 W0 ⊗W0 + c0 (V0 ⊗ Z0 + Z0 ⊗V0) +O(ε2) ,

and, for j = 1, 2, 3,

4c0
X

(0)
x

σj = 4c0 fj(ρ(0)) +O(ε2) ,

where X(0)
x denotes the harmonic period (48), and the other quantities are as

in Theorem 5.7.

Our starting point is

1
X

(0)
x




1 0 0
0 1
ε 0

0 0 I2


 P̃−1

0 P0(−B−1
0 A0) Hess Θ P−1

0 P̃0




1 0 0
0 ε 0
0 0 I2




=




1
λε

d0 ε+O(ε3) O(ε2)
e0 ε+O(ε2) 1

λε
O(ε)

O(ε2) O(ε3) Σ−1
ε


 ,

with

λε = − 1
c0 w0

+O(ε2) , Σε = Σ0 +O(ε2) ,

34. The parameter ε goes to zero as
√
µx − µ(0)

x (cx, ωφ, µφ).
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d0 and e0 having the sign35 respectively of δBF and of 2ρ(0) κ(2ρ(0))w2
0 +8δhyp,

P̃0 =




1 0 `T

0 1 0
0 r I2


 , P̃−1

0 =




1 `Tr −`T

0 1 0
0 −r I2


 ,

where

r = −(Σ−1
0 + c0 w0)−1

(
b0 σ0

b0 w0 + c0 ζ0

)
, ` = −

(
0 σ0
σ0 w0

)−1
r .

Note that

Σ−1
0 =

(
0 −2c0σ0
σ0 −2c0w0

)
, δhyp = 1

4

(
w2

0
4σ2

0
− 1

2c0

)
,

det(Σ−1
0 + c0 w0) = −16 c20 σ2

0 δhyp ,

(Tr(Σ−1
0 ))2 − 4 det(Σ−1

0 ) = 64 c20 σ2
0 δhyp .

This yields δ(0,4,0) = 1,

δ(4,0,0) = det(Hess Θ) = (X(0)
x )4

(
1
λ2
ε

− ε2 d0 e0

)
det(Σ−1

ε ) +O
(
ε4) ,

δ(3,1,0) = (X(0)
x )3

(
2
λε

det(Σ−1
ε ) +

(
1
λ2
ε

− ε2 d0 e0

)
Tr(Σ−1

ε )
)

+O
(
ε4) ,

δ(2,2,0) = (X(0)
x )2

(
det(Σ−1

ε ) +
(

1
λ2
ε

− ε2 d0 e0

)
+ 2
λε

Tr(Σ−1
ε )
)

+O
(
ε4) ,

δ(1,3,0) = X(0)
x

(
2
λε

+ Tr(Σ−1
ε )
)
,

35. In notation of [11], with (b, g)→ (1, ν),

δBF = 1
16

4τ(∂vg)5

b3k0

∂2
vW + 3τ (∂vg)2

−∂2
vW + 3τ (∂vg)2 ×∆MI ,

δhyp = 1
4
∂2
vH= 1

4
(τ (∂vg)2 − ∂2

vW) ,

2ρ(0) κ(2ρ(0))w2
0 + 8δhyp = 2(−∂2

vW + 3τ (∂vg)2) , w0 = w0 = 2∂vg
b

,

d0 = τ(∂vg)5

b3 k0 (∂2
vW)3 (−∂2

vW + 3τ (∂vg)2) ∆MI , d0 e0 =
c3
0 w

5
0

4 k0
∆MI ,
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which is equivalent to

∆0

(
λ

X
(0)
x

, z, 0
)

=
((

λ

λε
+ z

)2
− λ2ε2d0 ε0

)
det(λΣ−1

ε + z I2)

+O(ε4 λ2 (|λ|2 + |z|2)) ,

∆0

(
λ

X
(0)
x

, z − λ

λε
, 0
)

=
(
z2 − λ2ε2d0 ε0

)
det
(
λ

(
Σ−1
ε −

1
λε

I2

)
+ z I2

)

+O(ε4 λ2 (|λ|2 + |z|2)) .
One recovers the instability criteria on δBF and δhyp in the form that instability
stems both from d0 ε0 < 0 and from

(
Tr(Σ−1

0 )
)2 − 4 det(Σ−1

0 ) < 0.
This motivates a first shift to

∆̃0(λ, z, ζ) := ∆0

(
λ

X
(0)
x

, z − λ

λε
,
ζ

X
(0)
x

)
.

Note that we still have an expansion in the form

∆̃0(λ, z, ζ) =
∑

0≤m,n,p≤4
m+n+p=4
p≤m

δ̃(m,n,p)λ
m−p zn ζ2p ,

but that expressing instability criteria in terms of ∆̃0 is not obvious and will
require some care. We already know that δ̃(0,4,0) = 1, and then

δ̃(4,0,0) = −ε2 d0 e0 det
(

Σ−1
ε −

1
λε

I2

)
+O

(
ε4) ,

δ̃(3,1,0) = −ε2 d0 e0 Tr
(

Σ−1
ε −

1
λε

I2

)
+O

(
ε4) ,

δ̃(2,2,0) = det
(

Σ−1
ε −

1
λε

I2

)
− ε2 d0 e0 +O

(
ε4) ,

δ̃(1,3,0) = Tr
(

Σ−1
ε −

1
λε

I2

)
= O(ε2) .

Now, as in the solitary-wave limit, we introduce

δ
(0)
1 := σ1

X
(0)
x

, δ
(0)
2 := σ2 + ν(ρ(0))σ1

X
(0)
x

, δ
(0)
3 := σ3 + 2ν(ρ(0))σ2 + ν(ρ(0))2σ1

X
(0)
x

,

so that

−P0B−1
0 C0P−1

0 = −X(0)
x




0 0 0 0
δ

(0)
3 0 − w0

2σ0
δ

(0)
2 δ

(0)
2

σ0δ
(0)
2 0 −w0

2 δ
(0)
1 σ0δ

(0)
1

w0
2 δ

(0)
2 0 − w2

0
4σ0

δ
(0)
1

w0
2 δ

(0)
1



,
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with

δ
(0)
1 = f1(ρ(0)) +O

(
ε2) ,

δ
(0)
2 = 2 ν(ρ(0)) f1(ρ(0)) +O

(
ε2) ,

δ
(0)
3 = 4 ν(ρ(0))2 f1(ρ(0)) +O

(
ε2) .

Then we compute that

− 1
X

(0)
x




1 0 0
0 1
ε 0

0 0 I2


 P̃−1

0 P0B−1
0 C0 P−1

0 P̃0




1 0 0
0 ε 0
0 0 I2




=




O(1) O(ε) O(1) O(1)
δ

(0)
3
ε O(1) O

(
ε−1) O

(
ε−1)

O(1) O(ε) O(1) O(1)
O(1) O(ε) O(1) O(1)




and observe that the latter matrix takes the form

matrix of rank 1× ( I4 +O(ε2) ) .

As a result,

δ̃(2,0,2) = O(ε2) , δ̃(3,0,1) = −δ(0)
3 d0 det

(
Σ−1
ε −

1
λε

I2

)
+O(ε2) ,

δ̃(2,1,1) = O(1) , δ̃(1,2,1) = O(1) .

Taking the limit ε→ 0 in

∆0

(
λε

X
(0)
x

(
−ε− 1

4Z + ε
1
4 Λ
)
, ε−

1
4Z, ε

1
4

Γ
X

(0)
x

)

yields the limiting

Λ2 Z2 det
(

Σ−1
0 −

1
λ0

I2

)
− δ(0)

3 d0 det
(

Σ−1
0 −

1
λ0

I2

)
λ2

0 Z
2 Γ2 = 0 ,

where we recall det
(

Σ−1
0 − 1

λ0
I2

)
= −16c20σ2

0δhyp. From this, one deduces that
when δhyp 6= 0, δBF > 0 gives instability since d0 has the sign of δBF .

Since Theorem 4.6 already concludes instability from δBF > 0 this concludes
the proof of Theorem 5.8.
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Appendix A. Symmetries and conservation laws

In the present paper, including the current section, we only consider func-
tional densities depending on derivatives up to order 1. In particular,

LA[U ](JδB[U ]) = −LB[U ](JδA[U ])

+
∑

`

∂`

(
∇Ux`A[U ] · JδB[U ] +∇Ux`B[U ] · JδA[U ]

)
.

As a consequence, if Ut = JδH[U ], then
(G[U ])t = −LH[U ](JδG[U ])

+
∑

`

∂`

(
∇Ux`G[U ] · JδH[U ] +∇Ux`H[U ] · JδG[U ]

)
.

(112)

The main point in concrete uses of the latter equality is that U 7→
LH[U ](JδG[U ]) encodes the variation of H under the action of the group gen-
erated by G. Here, we consider two kinds of invariance by the action of a group
generated by a functional density:
• stationarity of the density functional H under the action of the group
generated by G encoded by

LH[U ](JδG[U ]) ≡ 0 ,
in which case (112) reduces to

(G[U ])t =
∑

`

∂`

(
∇Ux`G[U ] · JδH[U ] +∇Ux`H[U ] · JδG[U ]

)
;

• commutation of the density functional H with the action of the group
generated by G encoded by

LH[U ](JδG[U ]) = JδG[H[U ]] ,
in which case (112) reduces to

(G[U ])t = −JδG[H[U ]] +
∑

`

∂`

(
∇Ux`G[U ] · JδH[U ] +∇Ux`H[U ] · JδG[U ]

)
.

Note that in the latter case if the group is a group of translations, then the
latter equation is still a conservation law.

Specializing the first case to G = M gives

(M[U ])t =
∑

`

∂`

(
∇Ux`H[U ] · JU

)
,

whereas a specialization of the second case to G = Qj and to G = H gives,
respectively,

(Qj [U ])t = ∂j(∇UxjQj [U ] · JδH[U ]−H[U ]) +
∑

`

∂`

(
∇Ux`H[U ] · Uxj

)
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and

(H[U ])t =
∑

`

∂`

(
∇Ux`H[U ] · JδH[U ]

)
.

To compute how these conservation laws are transformed when going to uni-
formly moving frames we also record the following simple but useful relations

LM[U ](JδM[U ]) = 0 , LM[U ](JδQ`[U ]) = ∂`(M[U ]) ,
LQj [U ](JδM[U ]) = −∂j(M[U ]) , LQj [U ](JδQ`[U ]) = ∂`(Qj [U ]) ,
LH[U ](JδM[U ]) = 0 , LH[U ](JδQ`[U ]) = ∂`(H[U ]) .

Among the foregoing identities only the third one is not a simple expression of
invariances of M, Qj and H, but it may be deduced from the second one.

For our purposes, it is also crucial to derive linearized versions of the algebraic
relations expounded above. Let us defineFG,H byFG,H[U ] =LG[U ](JδH[U ]), so
that Ut = JδH[U ] implies (G(U))t = FG,H[U ]. Now note that if U is such that
δH[U ] = 0, then LFG,H[U ](V ) = LG[U ](JLδH[U ](V )). In particular, if U t = 0
and δH[U ] = 0, then Vt = JLδH[U ](V ) implies

(LG[U ]V )t = LFG,H[U ](V ) .
The latter computations also provide similar conclusions for the associated
spectral problems.

Appendix B. Spectral stability of constant states

In the present section, we study the spectral stability of constant solutions
to (3). By constant solutions we mean solutions that are constant up to the
symmetries, thus solutions in the form36

U(t,x) = e(kφ·x+ωφ t)J U(0) ,(113)

with U(0) a constant vector of R2, kφ ∈ Rd, and ωφ ∈ R. Since it is almost
costless and will be useful in Appendix C, we consider an even more general
class of Hamiltonian equations

∂tU = J δH0[U] , with H0 [U] = 1
2∇xU ·D(‖U‖2)∇xU +W (‖U‖2) ,

(114)

where D is valued in real symmetric d× d-matrices. That U from (113) solves
(114) reduces to either U(0) is zero or

ωφ = 2W ′(‖U(0)‖2) + kφ ·D(‖U(0)‖2) kφ + ‖U(0)‖2 kφ ·D′(‖U(0)‖2) kφ .
(115)

36. The action of spatial translations is redundant with the action of rotations for this
class of solutions.
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For the sake of concision and comparison, it is expedient to introduce the
dispersionless hydrodynamic Hamiltonian

H(0)(ρ,v) := ρv ·D(2 ρ)v +W (2 ρ) .

As a first instance, note that with ρ(0) := M(U(0)), (115) takes the concise
form ωφ = ∂ρH

(0)(ρ(0),kφ).
Changing frame through U(t,x) = e(kφ·x+ωφ t)J V(t,x), linearizing, and us-

ing the Fourier transform brings the spectral stability question under consider-
ation to the question of knowing whether for any ξ ∈ Rd, the linear operator
on C2

V 7→
[

U(0) ·V× ∂2
ρH

(0)(ρ(0),kφ) + 2 JU(0) ·V× kφ ·D′(2 ρ(0)) i ξ
]

JU(0)

+
[
2 U(0) ·V× kφ ·D′(2 ρ(0)) i ξ

]
U(0)

+
[
ξ ·D(2 ρ(0))ξ

]
JV +

[
2 kφ ·D(2 ρ(0)) i ξ

]
V

has purely imaginary spectrum. If U(0) = 0, then, by diagonalizing J, one gets
that the latter spectrum is

i
(
±ξ ·D(2 ρ(0))ξ + 2 kφ ·D(2 ρ(0))ξ

)
∈ i R ,

hence spectral stability holds. When U(0) 6= 0, we may use V 7→ (U(0) ·
V,JU(0) ·V) as a coordinate map in which the above operator’s matrix is

(
2 ∂ρ∇vH

(0)(ρ(0),kφ) · i ξ −ξ ·D(2 ρ(0))ξ
2 ρ(0) ∂2

ρH
(0)(ρ(0),kφ) + ξ ·D(2 ρ(0))ξ 2 ∂ρ∇vH

(0)(ρ(0),kφ) · i ξ

)
.

Thus, when U(0) 6= 0, spectral stability holds if and only if for any ξ ∈ Rd, the
solutions in λ of

(
λ− 2 i ∂ρ∇vH

(0)(ρ(0),kφ) · ξ
)2

+ ξ ·D(2 ρ(0))ξ
(

2 ρ(0) ∂2
ρH

(0)(ρ(0),kφ) + ξ ·D(2 ρ(0))ξ
)

= 0

are purely imaginary, that is, if and only if, for any ξ ∈ Rd,

ξ ·D(2 ρ(0))ξ
(

2 ρ(0) ∂2
ρH

(0)(ρ(0),kφ) + ξ ·D(2 ρ(0))ξ
)
≥ 0 .

As a conclusion, spectral stability holds if and only if, for any unitary e ∈ Rd,
e ·D(2 ρ(0)) e× ρ(0) ∂2

ρH
(0)(ρ(0),kφ) ≥ 0 .

For comparison, let us point out that ∂2
ρH

(0)(ρ(0),kφ) = 4 δhyp.

Lemma B.1. — Let U(0) be a constant profile for a solution to (114) in the
sense of (113). Then, with ρ(0) := M(U(0)), the corresponding solution is
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spectrally exponentially unstable if and only if D(2 ρ(0)) is not the zero matrix,
ρ(0) δhyp 6= 0, and one of the two following possibilities hold

1. there exists e+ such that e+ ·D(2 ρ(0)) e+ > 0 and e− such that
e− ·D(2 ρ(0)) e− < 0;

2. D(2 ρ(0)) is nonnegative (respectively nonpositive) and δhyp < 0 (respec-
tively, δhyp > 0).

Remark B.2. — In the present contribution, we are interested in constant
solutions only as far as they are reachable either as the constant limit in the
small-amplitude regime or as the limiting solitary-wave end state in the large-
period regime. Extending [10, Appendix A], let us point out that when D has
a sign (either nonnegative or nonpositive), constant states associated with a
large-period regime are always spectrally stable. We prove here this claim for
equations of type (3). Let us recall that with ν and Wρ defined through

Wρ(ρ) = −H(0)(ρ, ν(ρ) ex +k̃φ) + ωφ ρ+ µφ ν(ρ)− cxρ ν(ρ) ,

0 = − ex · ∇vH
(0)(ρ, ν(ρ) ex +k̃φ) + µφ − cx ρ ,

this means that we focus on the case when ∂2
ρWρ(ρ(0)) < 0. By differentiating

the foregoing identities, one deduces that

∂ρWρ(ρ) = −∂ρH(0)(ρ, ν(ρ) ex +k̃φ) + ωφ − cxν(ρ) ,

2 ρ κ(2 ρ) ν′(ρ) = − ex · ∂ρ∇vH
(0)(ρ, ν(ρ) ex +k̃φ)− cx ,

∂2
ρWρ(ρ) = −∂2

ρH
(0)(ρ, ν(ρ) ex +k̃φ) + (ν′(ρ))2

2 ρ κ(2 ρ) .

From this stems that, for (ρ(0),kφ) = (ρ(0), ν(ρ(0)) ex +k̃φ), the saddle condi-
tion ∂2

ρWρ(ρ(0)) < 0 implies ∂2
ρH

(0)(ρ,kφ) > 0 i.e., δhyp > 0, as claimed.

Appendix C. Anisotropic equations

In the present section, we show how to generalize most of our results from
systems of the form (3) to systems of the form (114), namely,

∂tU = J δH0[U] , with H0 [U] = 1
2∇xU ·D(‖U‖2)∇xU +W (‖U‖2) ,

where D is valued in real symmetric d × d-matrices. As in Appendix D, our
goal is not to transfer our methodology (with possibly different outcomes) but
to point out what is readily accessible by simple changes in notation.

Consistently with the rest of the present paper, we shall discuss explicitly
only waves in the form (7). Yet let us anticipate from Appendix D that even for
System (114) as considered here, all longitudinal results apply equally well to
waves of the form (15) and that instability results about general perturbations
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also generalize when either D is constant (semilinear case) or when d ≥ 3, and,
for any α, k̃φ is an eigenvector of D(α).

The restriction on generality that we make here is that we consider waves of
type (7) propagating in a direction that is a principal direction for the dispersion
of (114). We assume that, for any α, ex is an eigenvector of D(α) for a nonzero
eigenvalue. This includes the case, considered in [40], that when d = 2, waves
propagate in the direction e1 and

D ≡
(

1 0
0 ±1

)
.

It follows readily from the principal-direction restriction that all longitudinal
results still hold with

κ(α) := ex ·D(α) ex ,(116)
and we recall that at this stage, there is no loss in generality in assuming κ
positive valued. Unfortunately, in genuinely anisotropic cases, the principal-
direction restriction is essentially incompatible with modulation of the direction
ex and, thus, rules out any hope for a modulational interpretation in the spirit
of Section 5.1.

Therefore, under this assumption, we focus on extending the instability re-
sults of Section 5. As far as this goal is concerned, it is sufficient to deal with
the case when d = 2, ex = e1, and

H0 [U] = 1
2κ(‖U‖2)‖∂xU‖2 +W (‖U‖2) + 1

2 κ̃(‖U‖2)‖∂yU‖2 ,(117)

with κ as in (116) and κ̃ ranging over all the functions κ̃ given by
κ̃(α) := e ·D(α) e ,

where e is a unitary vector orthogonal to ex. Note that this reduction hinges
on the obvious facts that there is no loss in taking η under the form ‖η‖ e with
e as above, and that, for any α, the space of vectors orthogonal to ex is stable
under the action of D(α).

Up to minor changes that we detail below, Corollary 5.1 and results of Sec-
tion 5.2 extend readily to the case (117) with ex = e1. Indeed, the changes
required in Theorem 3.2 and its proof are purely notational, and in the state-
ment, the only place where κ should be replaced with κ̃ is in the definition of
Σy, or, in other words, in the definition of σ1, σ2 and σ3. Explicitly,

σ1 :=
∫ X

x

0
κ̃(‖V‖2) ‖V‖2 , σ2 :=

∫ X
x

0
κ̃(‖V‖2) JV · Vx ,

σ3 :=
∫ X

x

0
κ̃(‖V‖2) ‖Vx‖2 .

The proof of Proposition 3.1 requires more significant changes, but all of them
are elementary. The upshot is that in Proposition 3.1, the ellipticity condition
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|λ| + ‖η‖2 ≥ R0 should be replaced with |λ| ≥ R0 (1 + ‖η‖2). This weaker
conclusion is still sufficient to derive Corollary 5.1. Once the above-mentioned
change in Σy has been performed, all the results of Section 5.2 hold unchanged.

Note, for instance, that in Lemma 5.2, only the coefficients δ(m,n,p) with
p 6= 0 depend on the choice of the transverse coefficient κ̃. This stems from the
fact that the wave profiles are independent of this coefficient. Note, moreover,
that the dependence of δ(m,n,p) on κ̃ has the parity of p. Thus, it follows from
Lemma 5.2 that waves cannot be spectrally stable to perturbations that are
longitudinally coperiodic for both κ̃ and −κ̃ except possibly if δ4,0,0 = δ3,0,1 =
δ2,0,2 = 0. Note that in the latter degenerate case, in particular, 0 has algebraic
multiplicity larger than 4 as an eigenvalue of L0,0. Moreover, it follows from
an inspection of the coefficients of Σt and Σy and a Cauchy–Schwarz argument
that this latter degenerate case cannot occur when κ̃ has a definite sign (either
positive or negative).

Now we turn to the generalization of asymptotic results in Sections 5.3
and 5.4. It is important to track there how the replacement of κ with κ̃ at
some places impacts the proof. In the integral representations of σ1, σ2 and
σ3, κ should be replaced with κ̃ in definitions of f1, f2, and f3, and the formula
for σ3 should be modified as

σ3 =
∫ ρmax(µx)

ρmin(µx)

f3(ρ)√
µx −Wρ(ρ)

√
2κ(2 ρ)

2 ρ d ρ

+
∫ ρmax(µx)

ρmin(µx)

κ̃(2 ρ)
κ(2 ρ)

√
µx −Wρ(ρ)

√
2κ(2 ρ)

2 ρ d ρ .

These changes appear in proofs of Theorems 5.6 and 5.8 only through the value
f1(2 ρ(0)). When κ̃(2 ρ(0)) > 0, the arguments still apply, so that instability
still occurs.

Let us now focus on the case when κ̃(2 ρ(0)) < 0. Recall that we have
normalized signs to ensure κ(2 ρ(0)) > 0. Thus, it follows from Lemma B.1
that if δhyp 6= 0, the limiting constant state is spectrally unstable. Note that,
as pointed out in Remark B.2, the condition δhyp 6= 0 holds systematically at
the large-period limit. So we only need to explain how to transfer spectral
instability from limiting constant states to nearby periodic waves.

In the small-amplitude regimes, the transfer follows from a direct standard
perturbation argument for isolated eigenvalues of finite multiplicity, considering
the constant-coefficient operators obtained by linearizing about the constant
state as a periodic operator. To perform this comparison it is important, even
at the constant limit, to choose a frame adapted to the harmonic limit. Indeed,
let us observe that the choice of a frame – among those in which the reference
solution is stationary – does impact the spectrum of the linearized operator,
yet without altering the instable character of this spectrum. We omit details
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of the standard argument and, again, refer the reader to [38] for background
on spectral perturbation theory. The large-period regime is trickier to analyze
but is covered by [57].

To summarize, we have obtained that under the principal-direction assump-
tion, when D(2 ρ(0)) is nontrivial – in the sense that there exists e orthogonal
to ex such that D(2 ρ(0)) e is not zero –, spectral instability holds

1. in the large-period regime when at the limiting solitary wave ∂2
cxΘ(s) 6= 0;

2. in the small-amplitude regime when at the limiting constant ∂ρν 6= 0 and
δhyp δBF 6= 0.

Appendix D. General plane waves

In the present section, we show how our general analysis may be applied
to more general plane waves in the form (15). Whereas we believe that our
methodology can be applied to all these waves (with possibly different out-
comes), our aim here is merely to point out what is readily accessible by a
simple change in frame or notation.

As was already highlighted in Section 2.6, all our longitudinal results apply
as they are, once one has replaced W with Wk̃φ

defined through

Wk̃φ
(α) := W (α) + 1

2 ακ(α) ‖k̃φ‖2 = H(0)
(α

2 , k̃φ
)
.

Thus, we only need to discuss our results on general perturbations, focused on
proving spectral exponential instability.
Dimension larger than 2. — A simple but efficient observation is that when
one restricts oneself to perturbations that are constant in the direction of k̃φ,
all transverse contributions due to the fact that k̃φ is nonzero disappear. As a
direct consequence, when k̃φ 6= 0 but d ≥ 3, all the spectral instability results
hold as they are (up to the change W →Wk̃φ

), and a modulational interpreta-
tion is available for the spectral expansion of Dξ(λ,η) when (λ, ξ,η)→ (0, 0, 0)
under the condition η · k̃φ = 0. In particular, when d ≥ 3, in nondegener-
ate cases, spectral instability occurs in both small-amplitude and large-period
regimes. Except for the generalization of the modulational interpretation, this
argument also applies to the more general form of the equations considered
in Appendix C under the assumption that, for any α, k̃φ is an eigenvector
of D(α).
The semilinear case. — In the semilinear case, one may go further by using a
form of Galilean invariance. Let us consider System (114) with D ≡ D0. Then
for any vector k̃φ, if U solves (114) so does

(t,x) 7→ e
(

k̃φ·D0k̃φ t+k̃φ·x
)

J U(t,x + t 2 D0 k̃φ) .
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The foregoing transformation preserves (in)stability properties and brings
waves of type (15) into waves of type (7). Thus, in the semilinear case, there
is absolutely no loss in generality in assuming the form (7).

Appendix E. Table of symbols

Here we have gathered page numbers of main definitions for symbols that
are used recurrently throughout the text. Pieces of notation specific to a sec-
tion are not indexed here. For groups of symbols introduced simultaneously,
the definitions may run over a few pages. We recall that underlining is used
throughout to denote specialization at a specific background wave.

δ, Hess, L, ⊗, div , 125 C0, τ0, τ1, τ2, τ3, σ1, σ2, σ3, 121
L, Lx, Ly, Hx, Hy, 114 HEK, ν, Wρ, 133
µx, µφ, Hu, 126 H̃kφ

, H0,̃kφ
, Wk̃φ

, 141

kx, ex, kφ, k̃φ, q, 120 ∆0, 174
U(ρ, θ), J , H0, Qj , Hu, 131 kx, kφ, cx, ωx, ωφ, H, 114
Θ(s), B , H(0), 140 Θ, ρmin, ρmax, 134
δhyp, δBF , 159 A0, B0, m, q, 117
f1, f2, f3, 186 Xx, ξφ, ϕφ, ϕx, 129
J, κ ,W, H0, M, Q, Qj , 112 (0), (s), 135
Lξ,η, ξ, η, Lxξ , B, ,̌ F , ,̂ 142 Σt, Σy, 148
Dξ(λ,η), R(x, x0;λ,η), 146 δ(m,n,p), 181
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