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CENTRAL POINTS OF THE DOUBLE HEPTAGON TRANSLATION
SURFACE ARE NOT CONNECTION POINTS

by Julien Boulanger

Abstract. — We consider flow directions on the translation surfaces formed from
double (2n + 1)-gons and give a sufficient condition in terms of a natural continued
fractions algorithm for a direction to be hyperbolic in the sense that it is a fixed
direction for some hyperbolic element of the Veech group of the surface. In particular,
we give explicit points with coordinates in the trace field of the double heptagon
translation surface, that are not so-called connection points. Among these are the
central points of the heptagons, giving a negative answer to a question by P. Hubert
and T. Schmidt [1].

Résumé (Les points centraux du double heptagone ne sont pas des points de connex-
ion). — On s’intéresse au flot directionnel sur les surfaces de translation obtenues à
partir de deux (2n + 1)-gones dont on a recollé les côtés parallèles, et on donne une
condition suffisante pour qu’une direction soit hyperbolique, c’est à dire fixée par une
direction hyperbolique du groupe de Veech, en termes d’un algorithme de fractions
continues naturel sur les directions de la surface. En particulier, cela nous permet
d’exhiber des points sur le double heptagone à coordonnées dans le corps de trace qui
ne sont pas des points de connexion. Parmi ces points on peut notamment trouver les
points centraux des heptagones, ce qui donne une réponse négative à une question de
P. Hubert et T. Schmidt [1].

Texte reçu le 20 septembre 2020, modifié le 9 septembre 2021, accepté le 27 octobre 2021.
Julien Boulanger, Institut Fourier, UMR 5582, Laboratoire de Mathématiques. Univer-
sité Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France • E-mail : julien.
boulanger@univ-grenoble-alpes.fr

Mathematical subject classification (2010). — 51H99.
Key words and phrases. — Translation surfaces, Veech groups, connection points.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2022/459/$ 5.00
© Société Mathématique de France doi:10.24033/bsmf.2851

http://dx.doi.org/10.24033/bsmf.2851


460 J. BOULANGER

1. Introduction and statement of the results

A translation surface is a genus g topological surface with an atlas of charts
on the surface minus a finite set of points such that all transition functions are
translations. These surfaces can also be described as the surfaces obtained by
gluing pairs of opposite parallel sides of a collection of Euclidean polygons by
translations. Such surfaces arise naturally in the study of billiard table dynam-
ics: the Katok–Zemlyakov unfolding procedure, which consists in reflecting the
billiard every time the trajectory hits an edge instead of reflecting the trajec-
tory, replaces the billiard flow on a polygon by a directional flow on isometric
translation surfaces. The study of translation surfaces has been flourishing,
with major recent advances such as the results in [12], [10], or [11], but there
still remains various open questions, for instance in the area of Veech groups.
One of these questions is to characterize so-called connection points, for which
little is known for translation surfaces whose trace field is of degree 3 or more
over Q. In this paper, we look at two particular points of the double heptagon
surface, whose trace field is cubic over Q, and show that they are not connec-
tion points. For surveys about translation surfaces, see [25] and [24], and for
Veech groups, see [16].

Before looking at connection points, one needs to understand better par-
abolic (or hyperbolic) directions; that is, directions fixed by a parabolic (or
hyperbolic) element of the Veech group. For Veech surfaces, periodic direc-
tions, saddle connection directions and directions fixed by parabolic elements
of the Veech group coincide. For these terms, see the background and [16]. For
translation surfaces whose trace field is quadratic or Q, C. McMullen showed
in [18] that (after a natural normalization) the periodic directions are exactly
those with slopes in the trace field. When the trace field is of higher degree, it
is no longer true, and the periodic directions in general form a proper subset of
the directions whose slope belong to the trace field. D. Davis and S. Lelièvre [8]
characterized the parabolic directions for the double pentagon surface using a
continued fractions algorithm. Their results can be directly extended to the
(2n+ 1)-gon, which has a trace field of degree n over Q.

In this paper, we use the algorithm to characterize hyperbolic directions
whose slopes belong to the trace field for each double (2n + 1)-gon surface,
which are made of two copies of a (2n + 1)-gon with parallel opposite sides
glued together. We find explicit examples of such directions for the double
heptagon. This allows us to prove that central points of the double heptagon
are not connection points, see Theorem 1.3. This answers negatively a question
of P. Hubert and T. Schmidt. Recall that the central points of the double
heptagon are the centers of the heptagons. A nonsingular point of a translation
surface is called a connection point if every separatrix passing through this
point can be extended to a saddle connection. In fact, the author does not
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CENTRAL POINTS OF THE DOUBLE HEPTAGON TRANSLATION SURFACE 461

know any example of a nonperiodic connection point1 for a translation surface
whose trace field is of degree 3 over Q or higher.

Theorem 1.1. — Let n ≥ 2, for the double (2n+1)-gon surface, the directions
that end in a periodic sequence (of period ≥ 2) for the continued fractions
algorithm are hyperbolic directions.

Proposition 1.2 (Double heptagon case). — For the double heptagon surface,
there are hyperbolic directions in the trace field.

This proposition is already known from [2] and [13], where a different method
is used. Our method provides an answer to the question of central points as
connection points, which was not known.

Theorem 1.3. — Central points of the double heptagon are not connection
points.

Moreover, one can look at double (2n+1)-gons with more sides. For example,
the same result holds for the double nonagon:

Theorem 1.4. — Central points of the double nonagon are not connection
points.

Moreover, various tests that we conducted suggest the following conjecture,
which is not new since we found the same ideas in [13].

Conjecture 1.5. — For the double heptagon and the double nonagon, all the
directions in the trace field are either parabolic or hyperbolic.

What is interesting is that these results do not seem to generalize to the
double hendecagon, for example. In fact, for the double hendecagon, we were
not able to find any direction in the trace field that ends in a periodic sequence.
These issues will be discussed in Section 5.

2. Background

A translation surface (X,ω) is a real compact genus g surface X with an
atlas ω such that all transition functions are translations except on a finite set
of singularities Σ, along with a distinguished direction. Alternatively, it can be
seen as a surface obtained from a finite collection of polygons embedded in C by
gluing pairs of parallel opposite sides by translation. We get a surface X with
a flat metric and a finite number of singularities. We define X ′ = X−Σ, which
inherits the translation structure of X and defines a Riemannian structure
on X ′. Therefore, we have notions of geodesics, length, angle, and geodesic

1. A point is periodic if its orbit under the action of the affine group is finite, otherwise it
is nonperiodic, see [15].
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462 J. BOULANGER

flow (called directional flow). This allows us make the following definitions,
which will be useful in Section 4.

Definitions 2.1. — (i) A separatrix is a geodesic line emanating from a
singularity.

(ii) A saddle connection is a separatrix connecting singularities without any
singularities on its interior.

(iii) A nonsingular point of the translation surface is called a connection
point, if every separatrix passing through this point can be extended to
a saddle connection.

The action of GL+
2 (R) on polygons induces an action on the moduli space of

translation surfaces (see, for example, [25]). Two surfaces are affinely equiva-
lent, if they lie in the same orbit. The stabilizer of a given translation surface X
is called the Veech group of X and is denoted by SL(X). In particular, affinely
equivalent surfaces have a conjugated Veech group. As well as introducing the
notion (although not the name) W.A. Veech showed in [23] that they are dis-
crete subgroups of SL2(R). Hence, we can classify elements of the Veech group
into three types: elliptic (|tr(M)| < 2), parabolic (|tr(M)| = 2), and hyperbolic
(|tr(M)| > 2). Any element of the Veech group induces a diffeomorphism of
the surface. Such diffeomorphisms are called affine diffeomorphisms.
Trace field. — The trace field of a group Γ ⊂ SL2(R) is the subfield of R gen-
erated over Q by {tr(M),M ∈ Γ}. One defines the trace field of a translation
surface to be the trace field of its Veech group.

Let X be a genus g translation surface. We have the following theorems:

Theorem 2.2 (see [17]). — The trace field of X has degree at most g over Q.
Assume the Veech group of X contains a hyperbolic element M . Then the

trace field is exactly Q[tr(M)].

It is a classical result (see, for instance, [22]) that after a normalization, there
exists an atlas such that every parabolic direction has its slope in the trace field,
and every connection point has coordinates in the trace field. Specifically in
the quadratic case, we have the following result:

Theorem 2.3 ([18], Theorem 5.1, see also [3]). — If the trace field is quadratic
over Q, then every direction whose slope lies in the trace field is parabolic.

3. Hyperbolic directions for the double (2n + 1)-gon

I. Bouw andM. Möller in [4] gave a large class of Veech surfaces. W.P. Hooper
gave a geometric interpretation of these surfaces in [14] and proved in particular
that the double (2n+1)-gon is affinely equivalent to a staircase polygonal model.
See also [6], [9], and [20]. See Figure 3.1 for the double heptagon’s staircase
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CENTRAL POINTS OF THE DOUBLE HEPTAGON TRANSLATION SURFACE 463

model. We will use this model to construct the continued fractions algorithm
at the heart of this paper, which is a direct generalization of that described
in [8] in the setting of the double pentagon. For more results on the double
pentagon, see also [7].

Figure 3.1. The staircase model for the double heptagon (in
red we show one of the two heptagons).

The staircase model can be constructed as follows : Let each Ri, i = 1, . . . ,
2n − 1 be the rectangle of side sin( iπ

2n+1 ) and sin( (i+1)π
2n+1 ). Glue Ri and Ri+1

such that edges of the same size are glued together, each side being glued to
the opposite side of the other rectangle as shown in Figure 3.2. Parallel edges
of R1 (or R2n−1) that are not glued to an edge of another rectangle are glued
together.

Figure 3.2. How to glue the rectangles Ri. Each edge of Ri
is glued to the one with the same number in Ri−1 or Ri+1.

It is then an easy calculation to establish the following lemma, which, in
fact, is a particular case of Lemma 6.6 from [6] (see also [23]).

Lemma 3.1. — Let n ≥ 2 be an integer. Then in the staircase model for
the double (2n + 1)-gon translation surface, there is a horizontal (or vertical)
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464 J. BOULANGER

decomposition into cylinders such that all cylinders have modulus equal to an =
2 cos( π

2n+1 ).

In fact, for computational reasons, it will be more convenient to rescale the
staircase by a factor 1

sin( nπ
2n+1 ) , so that each side can be expressed in the trace

field, and the longer side has length 1.
Let us now look at the short diagonals of the staircase. We get 2n− 1 short

diagonal vectors denoted by Di, i ∈ J1, 2n − 1K. We set D0 to be the shortest
horizontal vector and D2n the shortest vertical vector. We rescale such that
D0 and D2n are length 1 vectors. We drew the diagonals in a graph as shown
in Figure 3.3 for the double heptagon (n = 3). All the Di’s have a Euclidean
norm bigger than 1 (except D0 and D2n with norm equal to 1).

Figure 3.3. The diagonals of the double heptagon stair-
case divide the positive cone into six subcones. The diago-
nals are rescaled so that D0 and D2n are length 1 vectors.
We have D0 = (1, 0), D1 = (a3, 1), D2 = (a2

3 − 1, a3),
D3 = (a2

3−1, a2
3−1), and the other diagonals are symmetrical

about the first bisector.

Let Mi, i ∈ J0, 2n − 1K be the matrix that maps D0 = (1, 0) to Di and
D2n = (0, 1) to Di+1. Let Σ denote the first quadrant, and Σi its image under
Mi (we include Di inMi). The matrixMi is in the Veech group of the staircase
and is associated to an affine homeomorphism of the staircase surface, which
we still denote by Mi. This homeomorphism sends parabolic (or hyperbolic)
directions2 to parabolic (or hyperbolic) directions that are in the ith cone. In
fact, these matricesMi already appear in [21]. Iterating this process, we obtain
a way to construct new parabolic (or hyperbolic) directions once we have found
one. Conversely, we have a continued fractions algorithm given by the following
definition.

2. Here and throughout, by direction we mean an element of the projective line P(R2).
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Definition 3.2 (continued fractions algorithm for the staircase model). —
Given a direction in the first quadrant as the entry, apply the following proce-
dure:

1) If the direction lies in the ith cone, apply M−1
i .

2) If the direction is neither horizontal nor vertical, go back to step 1.

The following theorem is due to D. Davis and S. Lelièvre. It is stated in [8]
in the case of the double pentagon, but the same arguments can be directly
extended to the double (2n+ 1)-gon.

Theorem 3.3 ([8]). — A direction on the double (2n+1)-gon is parabolic if and
only if the continued fractions algorithm terminates at the horizontal direction.

This theorem gives the first possibility for this algorithm to end. The other
possibility would be an eventually periodic ending, i.e., if we apply the algo-
rithm a certain number of times, the direction we get is a direction that we
already got in a previous step. Here, we characterize these directions in the
trace field and we prove Theorem 1.1, which can be stated more formally in
the following way:

Theorem 3.4. — The continued fractions algorithm is eventually periodic for
a direction θ (which is neither horizontal nor vertical) in the trace field if and
only if θ is the image by a matrix Mik . . .Mi1 of an eigendirection for a hyper-
bolic matrix of the form Mj1 . . .Mjl . In particular, every eventually periodic
direction for the continued fractions algorithm is an eigendirection for a hyper-
bolic matrix of the Veech group.

Proof. — If θ is eventually periodic for the algorithm, let k denote the length
of the preperiod of θ. Then, we have matrices Mi1 , . . . ,Mik , such that
θ′ = (Mik . . .Mi1)−1(θ) is periodic for the algorithm. That is, there exist
Mj1 , . . . ,Mjl such that Mj1 . . .Mjl(θ′) = θ′. Then M = Mj1 . . .Mjl is, indeed,
a hyperbolic matrix since all Mjs dilate lengths in the first quadrant, which
means that the eigenvalue of Mj1 . . .Mjl for the direction θ′ has to be strictly
bigger than 1. Moreover, M belongs to the Veech group, being a product of
elements of the Veech group.

Conversely, let us suppose that there are i1, . . . , ik, j1, . . . , jl such that
Mj1 . . .Mjl(θ′) = θ′, whereM =Mj1 . . .Mjl is hyperbolic and θ=Mik . . .Mi1(θ′).
First, it is clear that θ′ belongs to the first quadrant by the Perron–Frobenius
theorem since all the matrices Mi have positive entries, and that the only se-
quences j1, . . . , jl such that M = Mj1 . . .Mjl have possible zero entries are if
j1 = . . . = jl = 0 or j1 = . . . = jl = 2n, which gives a matrix M that is
parabolic and not hyperbolic. Thus, θ belongs to the first quadrant as well
because the Mi’s are contractions of the first quadrant. Moreover, at every
step q, Miq . . .Mi1(θ′) belongs to the first quadrant. By construction of the
algorithm, it follows that applying the algorithm to the direction θ leads to θ′

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



466 J. BOULANGER

after k steps. By the same argument, since Mj1 . . .Mjl(θ′) = θ′ and θ′ belongs
to the first quadrant, we conclude that the sequence jl, . . . , j1 is exactly the
sequence of indices we would have got if we had applied the algorithm to θ′,
and that θ′ is a periodic direction for the algorithm. Hence, θ is an eventually
periodic direction for the algorithm. �

Remark 3.5. — A point worth noting is that the sequence of sectors along the
algorithm allows us to construct the matrix M , which stabilizes the original
direction. This will allow us, for the double heptagon, to find a separatrix whose
direction is eventually periodic for the algorithm and, hence, is not parabolic,
which means that the separatrix does not extend to a saddle connection.

Example 3.6. — For the continued fractions algorithm on the double hep-
tagon:
• The direction of slope a2

3 − 1 is 2-periodic and fixed by the hyperbolic
matrix M5M0.
• The direction of slope 39

7 a
2
3 + 30

7 a3 − 19
7 is 28-periodic and fixed by the

hyperbolic matrix M12
5 M2

4M
12
0 M2M0.

4. Connection points

In this section, we finally show that central points of the double heptagon
are not connection points. We first give some motivation to their study.

Connection points have been studied in [15] by P. Hubert and T. Schmidt,
who gave a construction of translation surfaces with infinitely generated Veech
groups as branched covers over nonperiodic connection points. C. McMullen
proved the existence of these points in [19] in the case of a quadratic trace
field and implicitly showed that the connection points are exactly the points
with coordinates in the trace field. However, in a higher degree there is no
such result, neither concerning connection points nor about infinitely generated
Veech groups. One of the easiest nonquadratic surfaces is the double heptagon,
whose trace field is of degree 3 over Q. P. Arnoux and T. Schmidt implicitly
showed (see [2]) that for the double heptagon surface there are points with
coordinates in the trace field that are not connection points. Still, it was not
known whether or not central points of the double heptagon were connection
points. Here, we provide a negative answer to this question.

By definition, for proving that a point is not a connection point, it suffices
to find a separatrix passing through it, which cannot be extended to a saddle
connection, for instance because the separatrix lies in a hyperbolic direction.
We managed to find such a separatrix for a central point, which is drawn in
Figure 4.1. Of course, both central points play a symmetric role, so it suffices
to consider either one of them.

tome 150 – 2022 – no 2
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Figure 4.1. The green separatrix, passing through one of the
central points with slope sin(π7 )(− 8

3 cos(π7 )2 + 4 cos(π7 ) − 4
3 ),

does not extend to a saddle connection.

We are now able to prove Proposition 1.2. More precisely:

Proposition 4.1. — The green separatrix in Figure 4.1 has a hyperbolic di-
rection.

Proof. — Let us work with the staircase model. Recall that it is affinely equiv-
alent to the double heptagon model. The transition matrix is given by

T =
(

cos(π7 ) + 1 cos(π7 ) + 1
− sin(π7 ) sin(π7 )

)
.

In this setting, we get Figure 4.2, and the slope of the new green direction is
3

13a
2 + 6

13a−
1

13 , where a = a3 = 2 cos(π7 ).

Figure 4.2. The same green separatrix in the staircase model
does not extend to a saddle connection.

We apply the continued fractions algorithm to the green direction and notice
that it ends in a periodic sequence of directions, which means that the green
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direction is fixed by a hyperbolic matrix of the Veech group, namely,

M = M2
4M5M0(M−1

4 )2 =
(
−34a2 − 26a+ 19 22a2 + 21a− 14
−50a2 − 41a+ 28 35a2 + 26a− 17

)
.

It follows thatM is hyperbolic (of trace 2+a2) and belongs to the Veech group.
Explicitly,

M =
(

a 1
a2 − 1 a

) (
a 1

a2 − 1 a

) (
1 0
a 1

) (
1 a
0 1

) (
a −1

−a2 + 1 a

) (
a −1

−a2 + 1 a

)
.

Finally, going back to the Veech group of the double heptagon model we get
that TMT−1 fixes the green direction of Figure 4.1, which is then a hyperbolic
direction. �

It follows from this proof that the central points are not connection points,
since the green separatrix of Figure 4.1, having a hyperbolic direction, cannot
be extended to a saddle connection. This proves Theorem 1.3.

Remark 4.2. — The green separatrix used for the proof is not the only sepa-
ratrix passing through one of the central points whose direction is hyperbolic.
For example, one could have taken the separatrix of Figure 4.3, which is hyper-
bolic and fixed (in the staircase model) by the matrix SM3

5M0M
−2
5 S−1. Here,

S is the quarter-turn
(

0 −1
1 0

)
in the Veech group.

Figure 4.3. Another example of a separatrix whose direction
is hyperbolic and in the trace field.

5. Further directions

In the previous sections, we looked at an algorithm defined for all (2n+ 1)-
gons and used it for the case of the double heptagon to show that the central
points are not connection points. One can ask what happens if we look at
double (2n+1)-gons with more sides. It appears that the same result holds for
the double nonagon. More precisely:
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Proposition 5.1. — The green direction of Figure 5.1 is hyperbolic. Hence,
the central points of the double nonagon are not connection points.

Proof. — The proof is similar to the case of the double heptagon. We work
with the staircase model and use the continued fractions algorithm to find a
separatrix passing through one of the central points whose direction is hyper-
bolic. It appears that the green direction of Figure 5.1, starting at a singularity
with slope a2

4 + 2a4 + 1 and reaching one of the central point is hyperbolic and
fixed by the matrix

M = M4
0M5M

2
7 =

(
23a2

4 + 12a4 − 1 9a4 + 4
5a4 + 3 a2

4 − 1

)
,

where a4 = 2 cos(π9 ), and the Mi’s correspond to the matrices of the algorithm
for the double nonagon staircase. Namely:

M0 =
(

1 a4
0 1

)
, M5 =

(
a2

4 − 1 a4
a4 + 1 a2

4 − 1

)
, M7 =

(
1 0
a4 1

)
. �

Figure 5.1. The green separatrix in the staircase model for
the double nonagon does not extend to a saddle connection.

Conversely, we conducted tests for the double hendecagon but found no
directions with periodic ending. This is closely related to Remark 9 of [13] made
in the setting of λ-continued fractions for Hecke groups, saying that the authors
did not find any hyperbolic direction in the trace field for 11 ≤ 2n+1 ≤ 29. The
interpretation in our setting relies on Veech having shown in [23] that the Veech
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group of the double (2n + 1)-gon is conjugated to the Hecke group H2n+1
3, 4.

In fact, other methods still allow to prove that central points of the double
hendecagon are not connection points, this will be shown in a forthcoming
work. See also [2] and [5] for related results.

Moreover, the study of directions in the double heptagon and the double
nonagon has shown that there are either parabolic or hyperbolic directions in
the trace field. However, could there be something else? It is a priori possible
that the algorithm does not terminate for a given direction. In fact, our tests
suggest that this does not happen in those cases, which leads to a precise version
of Conjecture 1.5:

Conjecture 5.2. — For the double heptagon and the double nonagon, every
direction in the trace field terminates for the continued fractions algorithm.
In particular, every direction in the trace field would be either parabolic or
hyperbolic.

In fact, this conjecture is also related to a conjecture in [13] about the
possible orbits on Q(2 cos( π

2n+1 )) ∪ {∞} under the projective action of the
Hecke triangle group H2n+1. Once again, the behavior appears to be very
different for the double hendecagon: there seems to be directions in the trace
field that never terminate for the continued fractions algorithm.

Another interesting corollary of this result is related to billiard trajectories
and was suggested to the author by C. McMullen. Recall that the double
heptagon surface arises from the unfolding of the triangular billiard with angles
(π2 ,

π
7 ,

5π
14 ). The green separatrix in the proof of Proposition 4.1 is the lift of

a vertex-to-vertex trajectory, drawn in Figure 5.2. In particular, there exists
vertex-to-vertex trajectories whose directions are not parabolic (which means
that there also exists a billiard trajectory in this direction that equidistributes).

Figure 5.2. The green vertex-to-vertex trajectory on the tri-
angular billiard unfolds to a directional trajectory whose di-
rection is hyperbolic according to Section 4.

3. For k ≥ 3, Hk =
〈(

0 −1
1 0

)
;
(

1 λk
0 1

)〉
, where λk = 2 cos(π

k
)

4. While the Veech group of the 2n-gon is conjugated to a subgroup of order 2 of the
Hecke group H2n.
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