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ON THE GLOBAL DETERMINANT METHOD

by Chunhui Liu

Abstract. — In this paper, we build the global determinant method of Salberger
by Arakelov geometry explicitly. As an application, we study the dependence on the
degree of the number of rational points of bounded height in plane curves. We will also
explain why some constants will be more explicit if we admit the generalized Riemann
hypothesis.

Résumé (Autour de la méthode globale de déterminant). — Dans cet article, on
construit la méthode globale de déterminant de Salberger par la géométrie d’Ara-
kelov explicitement. Comme une application, on étudie la dépendance du degré du
nombre de points rationnels de hauteur majorée dans courbes planes. On expliquera
aussi pourquoi certaines constantes seront plus explicites si on admet l’hypothèse gé-
néralisée de Riemann.

1. Introduction

Let X ↪→ PnK be a projective variety over a number field K. For every
rational point ξ ∈ X(K), we denote by HK(ξ) the height (see (1) for the
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700 C. LIU

definition) of ξ with respect to the above closed immersion, for example, the
classic Weil height (cf. [25, §B.2, Definition]). Let

S(X;B) = {ξ ∈ X(K) | HK(ξ) 6 B},

where B > 1 and the embedding morphism is omitted. By Northcott’s prop-
erty, the cardinality #S(X;B) is finite for a fixed B ∈ R.

In order to understand the density of the rational points of X, it is an
important approach to study the function #S(X;B) with the variable B ∈
R+. For different required properties of #S(X;B), numerous methods have
been applied. In this article, we are interested in the uniform upper bound
of #S(X;B) for all X ↪→ PnK with fixed degree and dimension, and for those
satisfying certain common conditions.

1.1. Determinant method. — In order to understand the function #S(X;B)
of the variable B ∈ R+, we will introduce the so-called determinant method to
study the number of rational points with bounded height in arithmetic varieties,
which was proposed in [24].
1.1.1. Basic ideas and history. — Traditionally, the determinant method was
proposed over the rational number field Q to avoid some extra technical trou-
bles. In [3] (see also [35]), Bombieri and Pila proposed a method of determinant
argument to study plane affine curves. The monomials of a certain degree eval-
uated on a family of rational points in S(X;B) having the same reduction
modulo some prime numbers form a matrix whose determinant is zero by a
local estimate. By this method, they proved #S(X;B) �δ,ε B

2/δ+ε for all
ε > 0, where δ = deg(X).

In [24], Heath-Brown generalized the method of [3] to the higher dimensional
case. His idea is to focus on a subset of S(X;B) whose reductions modulo a
prime number are a same regular point, and he proved that this subset can be
covered by a bounded degree hypersurface, which does not contain the generic
point of X. Then he counted the number of regular points over finite fields
and controlled the regular reductions. In [5], Broberg generalized it to the case
over arbitrary number fields.

In [41, 42], Serre asked whether #S(X;B) �X Bdim(X)(logB)c is verified
for all arithmetic varieties X with a particular constant c. In [24], Heath-
Brown proposed a uniform version #S(X;B) �d,δ,ε B

d+ε for all ε > 0 with
δ = deg(X) and d = dim(X), which is called the dimension growth conjecture.
He proved this conjecture for some special cases. Later, Browning, Heath-
Brown and Salberger had some contributions to this subject, see [6, 7, 8] for
the improvements of the determinant method and the proofs under certain
conditions. In [39], Salberger considered the general reductions, and the mul-
tiplicities of rational points were taken into consideration, and he proved the
dimension growth conjecture with certain conditions on the subvarieties of X.
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ON THE GLOBAL DETERMINANT METHOD 701

1.1.2. A global version. — The so-called global determinant method was first
introduced by Salberger in [40] in order to study the dimension growth con-
jecture mentioned above. In general, it allows one to use only one auxiliary
hypersurface to cover the rational points of bounded height, and one needs to
optimize the degree of this hypersurface. By the global version, he proved the
dimension growth conjecture for deg(X) = δ > 4 and #S(X;B)�δ B

2
δ logB,

when X is a curve.
In [48], Walsh refined the global determinant method in [40], and he removed

the logB term in [40], when X is a curve.
1.1.3. The dependence on degree. — Let X ↪→ PnQ be a geometrically integral
variety of degree δ and dimension d. We are also interested in the dependence
of the uniform upper bound of #S(X;B) on δ, in particular when X is a plane
curve (n = 2 and d = 1).

In [47], Walkowiak studied this problem by counting integral points over
Z. In [32, Théorème 2.10], Motte obtained an estimate, which has a better
dependence on B but a worse dependence on δ than that in [47, Théorème 1].

In fact, one is able to obtain a better dependence on δ by the global deter-
minant method. In [10], Castryck, Cluckers, Dittmann and Nguyen improved
[48] by giving an explicit dependence on δ. As applications, they obtained
#S(X;B) � δ4B2/δ, when X is a plane curve, and a better partial result of
the dimension growth conjecture than that in [40], and the estimates in [47]
and [32] for the case of plane curves.

In [34], the work [10] was generalized over an arbitrary global field. Before
[34] was announced, Vermeulen studied the case over Fq(t) in [46].

Besides the uniform bounds of rational points, [10] also studied the bound of
2-torsion points of the class group of number fields, which improved the work
[2, Theorem 1.1] of Bhargava, Shankar, Taniguchi, Thorne, Tsimerman and Y.
Zhao.
1.1.4. Formulation with Arakelov geometry. — In [12, 13], H. Chen reformu-
lated the work of Salberger [39] by Bost’s slope method from Arakelov geometry
developed in [4]. In this formulation, H. Chen replaced the matrix of mono-
mials by the evaluation map, which sends a global section of a particular line
bundle to its values on a family of rational points. With the slope inequalities,
we can control the height of the evaluation map in the slope method, which
replaces the role of Siegel’s lemma in controlling heights.

There are two advantages of the Arakelov geometry approach. First, Arake-
lov geometry gives a natural conceptual framework for the determinant method
over arbitrary number fields. Next, it is easier to obtain explicit estimates,
since the constants obtained from the slope inequalities are given explicitly in
general.
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702 C. LIU

1.2. A global version with the formulation of Arakelov geometry. — In this ar-
ticle, we will construct the global determinant method over an arbitrary number
field by Arakelov geometry following the strategy of [12, 13]. As a direct appli-
cation, we will study the problem of counting rational points in plane curves
and we consider how these upper bounds depend on the degree. Some of the
ideas were inspired by [40, 48, 10].
1.2.1. Main results. — First, we have the control of auxiliary hypersurface
below in Corollary 5.5 and Corollary 5.6, which are deduced from Theorem 5.4.

Theorem 1.1. — Let X be a geometrically integral hypersurface in PnK of
degree δ, and

an = n

(n− 1)δ1/(n−1)

be a constant depending on n. Then there is a hypersurface of degree $, which
covers S(X;B) but does not contain the generic point of X. In addition, we
have

$ �K,n δ
3Ban

in Corollary 5.5, and

$ �K,n δ
3−1/(n−1)Ban max

{
logB

[K : Q] , 1
}

in Corollary 5.6.
If we assume the generalized Riemann hypothesis, the above constants de-

pending on K and n will be given explicitly in Corollary 5.5 and Corollary 5.6.

Since we apply the approach of Arakelov geometry in this article, we no
longer use the technique of “change of coordinate” in [48, §3] and [10, §3.4].
Instead, we are able to obtain a uniform estimate directly.
1.2.2. Potential applications. — Similar to the previous applications of the
determinant, the above estimates can be applied to study the uniform upper
bound of the number of rational points with bounded height, where we will ini-
tiate the induction on the dimension as usual and the study of the distribution
of the loci of small degree in a variety (see [40, §4] for such an example, which
considered the density of conics in a cubic surface). By the above operation,
we are able to obtain estimates of general arithmetic varieties from those of
hypersurfaces via a suitable linear projection.

Since our method works over an arbitrary number field and gives an ex-
plicit estimate (or under some technical conditions), it is possible that further
applications will work well under the same conditions and also be explicit.

As a direct application, we have the following results on counting the rational
points of the bounded height in plane curves in Theorem 6.1 and Theorem 6.2.
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ON THE GLOBAL DETERMINANT METHOD 703

Theorem 1.2. — Let X be a geometrically integral plane curve in P2
K of de-

gree δ. Then we have
#S(X;B)�K δ4B2/δ

in Theorem 6.1 and
#S(X;B)�K δ3B2/δ logB

in Theorem 6.2.
If we assume the generalized Riemann hypothesis, the above constants de-

pending on K will be given explicitly in Theorem 6.1 and Theorem 6.2.

Theorem 6.1 generalizes [10, Theorem 2] over an arbitrary number field
and gives an explicit estimate under the assumption of the generalized Rie-
mann hypothesis. Theorem 6.2 can be viewed as a projective analogue of [10,
Theorem 3] over an arbitrary number field and a better partial result of the
conjecture of Heath-Brown referred to in Remark 6.3. These two estimates are
better than those given in [47, Théorème 1] and [32, Théorème 2.10].
1.2.3. The role of the generalized Riemann hypothesis. — In this work, some
explicit estimates of the distribution of prime ideals are applied. If we admit
GRH (the generalized Riemann hypothesis) of the Dedekind zeta func-
tion of the base number field, we are able to obtain more explicit estimates; see
[20], for example. Without the assumptions of GRH, it seems to be very diffi-
cult to obtain such explicit estimates over an arbitrary number field, since we
do not know the zero-free region of the Dedekind zeta function. If we know the
zero-free region clearly enough, for example, if we work in the rational number
field Q or totally imaginary fields (see [44] and [22], respectively), or we just
want an implicit estimate (see [37]), we do not need to suppose GRH.

1.3. Organization of the article. — This paper is organized as following. In §2,
we provide some preliminaries to construct the determinant method. In §3, we
formulate the global determinant method by the slope method. In §4, we give
some useful estimates on the non-geometrically integral reductions, a count of
multiplicities over finite fields, the distributions of some particular prime ideals,
and the geometric Hilbert–Samuel function. In §5, we provide an explicit upper
bound of the determinant and lower bounds of auxiliary hypersurfaces. In §6,
we give two uniform upper bounds of rational points of bounded height in plane
curves. In §7, under the assumption of GRH, we give some explicit estimates
of the distribution of prime ideals of bounded norm in a ring of integers and
explain how to apply these explicit estimates in the global determinant to get
more explicit estimates. In Appendix A, we will give an explicit lower bound
of a useful function induced by the local Hilbert–Samuel function.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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2. Fundamental settings

In this section, we will introduce some preliminaries to help understand the
problem of counting rational points of bounded height. In particular, we will
provide some basic notions in Arakelov geometry.

2.1. Counting rational points of bounded height. — Let K be a number field
and OK be its ring of integers. We denote by MK,f the set of finite places
of K and by MK,∞ the set of infinite places of K. In addition, we denote by
MK = MK,f tMK,∞ the set of places of K. For every v ∈MK and x ∈ K, we
define the absolute value |x|v =

∣∣NKv/Qv (x)
∣∣ 1

[Kv :Qv ]
v

for each v ∈MK , extending
the usual absolute values of Qp or R. Here, Qv denotes the p-adic field Qp,
where v is extended from p under the extension K/Q.

Let ξ = [ξ0 : · · · : ξn] ∈ PnK(K). We define the height of ξ in PnK as

HK(ξ) =
∏

v∈MK

max
06i6n

{
|ξi|[Kv:Qv]

v

}
.(1)

We also define the logarithmic height of ξ as

h(ξ) = 1
[K : Q] logHK(ξ),(2)

which is invariant under the extensions over K (cf. [25, Lemma B.2.1]).
Suppose that X is a closed integral subscheme of PnK , and φ : X ↪→ PnK is the

closed immersion. For ξ ∈ X(K), we define HK(ξ) = HK(φ(ξ)) and, usually,
we omit the closed immersion φ if there is no confusion. Next, we denote

S(X;B) = {ξ ∈ X(K)|HK(ξ) 6 B}, and N(X;B) = #S(X;B).

By Northcott’s property (cf. [25, Theorem B.2.3]), the cardinality N(X;B) is
finite for a fixed B > 1.

2.2. A function induced by local Hilbert–Samuel functions. — In this part, we
will introduce a function induced by the local Hilbert–Samuel function of
schemes at a closed point and we will use this function in Proposition 3.4.
For the motivation and background, see [39, §2] and [13, §3.2].

Let k be a field and X be a closed subscheme of Pnk of pure dimension d,
which means all its irreducible components have the same dimension. Let ξ be
a closed point of X. We denote by

Hξ(s) = dimκ(ξ)

(
msX,ξ/m

s+1
X,ξ

)
(3)

the local Hilbert–Samuel function of X at the point ξ with the variable s ∈ N,
where mX,ξ is the maximal ideal of the local ring OX,ξ, and κ(ξ) is the residue

tome 150 – 2022 – no 4



ON THE GLOBAL DETERMINANT METHOD 705

field of the local ring OX,ξ. For this function, we have the polynomial asymp-
totic

Hξ(s) = µξ(X)
(d− 1)!s

d−1 + o(sd−1),(4)

when s → +∞ and we define the positive integer µξ(X) as the multiplicity of
point ξ in X.

We define the series {qξ(m)}m>0 as the increasing series of non-negative
integers such that every integer s ∈ N appears exactly Hξ(s) times in this
series. For example, if Hξ(0) = 1, Hξ(1) = 2, Hξ(2) = 4, Hξ(3) = 5, . . ., then
the series {qξ(m)}m>0 is

{0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, . . .}.

Let {Qξ(m)}m>0 be the partial sum of the series {qξ(m)}m>0, which is
Qξ(m) = qξ(0) + qξ(1) + · · ·+ qξ(m),(5)

for all m ∈ N.
IfX is a hypersurface of Pnk , then by [26, Example 2.70 (2)] the local Hilbert–

Samuel function of X at the point ξ defined in (3) is

Hξ(s) =
(
n+ s− 1

s

)
−
(
n+ s− µξ(X)− 1

s− µξ(X)

)
.

In this case, we have the following explicit lower bound of Qξ(m), which is

Qξ(m) >
(

(n− 1)!
µξ(X)

) 1
n−1

(
n− 1
n

)
m

n
n−1 − n3 + 2n2 + n− 4

2n(n+ 1) m.(6)

This lower bound has the optimal dominant term by the argument in [39,
Main Lemma 2.5] and some other subsequent references. In Appendix A, we
will provide a detailed proof of this lower bound.

2.3. Normed vector bundles. — A normed vector bundle over SpecOK is all
the pairings E =

(
E, (‖ · ‖v)v∈MK,∞

)
, where

• E is a projective OK-module of finite rank;
• (‖ · ‖v)v∈MK,∞

is a family of norms, where ‖ · ‖v is a norm over E⊗OK ,v
C, which is invariant under the action of Gal(C/Kv). We consider a
complex place and its conjugation as two different places.

If for all v ∈MK,∞, the norms (‖ · ‖v)v∈MK,∞
are Hermitian, we say that E

is a Hermitian vector bundle over SpecOK . If rkOK (E) = 1, we say that E is
a Hermitian line bundle.

Suppose that F is a sub-OK-module of E. We say that F is a saturated
sub-OK-module if E/F is a torsion-free OK-module.

Let E =
(
E, (‖ · ‖E,v)v∈MK,∞

)
and F =

(
F, (‖ · ‖F,v)v∈MK,∞

)
be two Her-

mitian vector bundles. If F is a saturated sub-OK-module of E and ‖ · ‖F,v is
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the restriction of ‖ · ‖E,v over F ⊗OK ,v C for every v ∈MK,∞, we say that F is
a sub-Hermitian vector bundle of E over SpecOK .

We say that G =
(
G, (‖ · ‖G,v)v∈MK,∞

)
is a quotient Hermitian vector bundle

of E over SpecOK , if for every v ∈MK,∞, the module G is a projective quotient
OK-module of E, and ‖ · ‖G,v is the induced quotient space norm of ‖ · ‖E,v.

For simplicity, we will denote it by EK = E ⊗OK K below.

2.4. Arakelov invariants. — Let E be a Hermitian vector bundle over SpecOK ,
and {s1, . . . , sr} be a K-basis of EK . We will introduce some invariants in
Arakelov geometry below.
2.4.1. Arakelov degree. — The Arakelov degree of E is defined as

d̂eg(E) = −
∑
v∈MK

[Kv : Qv] log ‖s1 ∧ · · · ∧ sr‖v

= log (# (E/OKs1 + · · ·+OKsr))

− 1
2

∑
v∈MK,∞

[Kv : Qv] log det (〈si, sj〉v,16i,j6r) ,

where ‖s1 ∧ · · · ∧ sr‖v follows the definition in [11, 2.1.9] for all v ∈MK,∞, and
〈si, sj〉v,16i,j6r is the Gram matrix of the basis {s1, . . . , sr} with respect to
v ∈MK,∞. We refer the readers to [17, 2.4.1] for a proof of the equivalence of
the above two definitions. The Arakelov degree is independent of the choice of
the basis {s1, . . . , sr} by the product formula (cf. [33, Chap. III, Proposition
1.3]). In addition, we define

d̂egn(E) = 1
[K : Q] d̂eg(E)

as the normalized Arakelov degree of E, which is independent of the choice
of K.
2.4.2. Slope. — Let E be a non-zero Hermitian vector bundle over SpecOK
and rk(E) be the rank of E. The slope of E is defined as

µ̂(E) := 1
rk(E) d̂egn(E).

In addition, we denote by µ̂max(E) the maximal value of slopes of all non-
zero Hermitian subbundles and by µ̂min(E) the minimal value of slopes of all
non-zero Hermitian quotients bundles of E.
2.4.3. Height of linear maps. — Let E and F be two non-zero Hermitian vec-
tor bundles over SpecOK and φ : EK → FK be a non-zero homomorphism.
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The height of φ is defined as

h(φ) = 1
[K : Q]

∑
v∈MK

log ‖φ‖v,

where ‖φ‖v is the operator norm of φv : E ⊗K Kv → F ⊗K Kv induced by the
above linear homomorphism with respect to v ∈MK .

We refer the readers to [4, Appendix A] for some equalities and inequalities
on Arakelov degrees and corresponding heights of homomorphisms.

2.5. Arithmetic Hilbert–Samuel function. — Let E be a Hermitian vector bun-
dle of rank n+1 over SpecOK and P(E) be the projective space that represents
the functor from the category of commutative OK-algebras to the category of
sets mapping all OK-algebra A to the set of projective quotient A-module of
E⊗OKA of rank 1. Let OP(E)(1) (or O(1) if there is no confusion) be the univer-
sal bundle, and we denote by OP(E)(D) (or O(D)) the line bundle OP(E)(1)⊗D
for simplicity. The Hermitian metrics on E induce by quotient of Hermitian
metrics (i.e., Fubini–Study metrics) on OP(E)(1), which define a Hermitian line
bundle OP(E)(1) on P(E).

For every D ∈ N+, let

ED = H0 (P(E),OP(E)(D)
)
,(7)

and let r(n,D) be its rank over OK . In fact, we have

r(n,D) =
(
n+D

D

)
.(8)

For each v ∈MK,∞, we denote by ‖ · ‖v,sup the norm over ED,v = ED⊗OK ,v C,
such that

∀ s ∈ ED,v, ‖s‖v,sup = sup
x∈P(EK)v(C)

‖s(x)‖v,FS,(9)

where ‖ · ‖v,FS is the corresponding Fubini–Study norm.
2.5.1. Metric of John. — Next, we introduce the metric of John, see [45] for
a systematic introduction of this notion. In general, for a given symmetric
convex body C, there exists the unique ellipsoid, called the ellipsoid of John,
contained in C with the maximal volume.

For the OK-module ED and any place v ∈ MK,∞, we take the ellipsoid of
John of its unit closed ball defined via the norm‖ · ‖v,sup, and this ellipsoid
induces a Hermitian norm, denoted by ‖ · ‖v,J . For every section s ∈ ED, the
inequality

‖s‖v,sup 6 ‖s‖v,J 6
√
r(n,D)‖s‖v,sup(10)

is verified by [45, Theorem 3.3.6].
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2.5.2. Evaluation map. — Let X be an integral closed subscheme of P(EK)
and X be the Zariski closure of X in P(E). We denote by

ηX,D : ED,K = H0 (P(EK),O(D))→ H0 (X,OP(EK)(1)|⊗DX
)

(11)

the evaluation map over X induced by the closed immersion of X in P(EK). We
denote by FD the largest saturated sub-OK-module of H0 (X ,OP(E)(1)|⊗DX

)
,

such that FD,K = Im(ηX,D). When the integer D is large enough, the homo-
morphism ηX,D is surjective, which means FD = H0(X ,OP(E)(1)|⊗DX ).

The OK-module FD is equipped with the quotient metrics (from ED), such
that FD is a Hermitian vector bundle over SpecOK . We denote this Hermitian
vector bundle by FD.

Definition 2.1 (Arithmetic Hilbert–Samuel function). — Let FD be the Her-
mitian vector bundle over SpecOK defined above from the map (11). We say
that the function that maps the positive integer D to µ̂(FD) is the arithmetic
Hilbert–Samuel function of X with respect to the Hermitian line bundle O(1).

2.6. Height of rational points. — In this part, we will define a height function
of rational points by Arakelov geometry.

Let E be a Hermitian vector bundle of rank n + 1 over SpecOK , P ∈
P(EK)(K) and P ∈ P(E)(OK) be the Zariski closure of P in P(E). Let OP(E)(1)
be the universal bundle equipped with the corresponding Fubini–Study metric
at each v ∈MK,∞; then P∗OP(E)(1) is a Hermitian vector bundle over SpecOK .
We define the height of the rational point P with respect to OP(E)(1) as

hOP(E)(1)(P ) = d̂egn
(
P∗OP(E)(1)

)
.(12)

We keep all the above notations. We choose

E =
(
O⊕(n+1)
K , (‖ · ‖v)v∈MK,∞

)
,(13)

where for every v ∈ MK,∞, ‖ · ‖v is the `2-norm mapping (t0, . . . , tn) to√
|v(t0)|2 + · · ·+ |v(tn)|2. In this case, we use the notations PnK = P(EK)

and PnOK = P(E) for simplicity. We suppose that P has a K-rational projective
coordinate [x0 : · · · : xn]; then we have (cf. [31, Proposition 9.10])

hOP(E)(1)(P ) =
∑

v∈MK,f

[Kv : Qv]
[K : Q] log

(
max

16i6n
|xi|v

)

+ 1
2

∑
v∈MK,∞

[Kv : Qv]
[K : Q] log

 n∑
j=0
|v(xj)|2

 .
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Remark 2.2. — We compare the logarithmic height h( · ) defined in (2) and
the height hOP(E)(1)( · ) defined in (12) by Arakelov geometry, where E is defined
in (13). In fact, by an elementary calculation, the inequality∣∣∣h(P )− hOP(E)(1)(P )

∣∣∣ 6 1
2 log(n+ 1)

is uniformly verified for all P ∈ PnK(K).

Let ψ : X ↪→ PnK be a projective scheme and P ∈ X(K). We define the
height of P as hOP(E)(1)(ψ(P )). We will just use the notation hOP(E)(1)(P ) or
h(P ) if there is no confusion of the morphism ψ and the Hermitian line bundle
OP(E)(1).

2.7. Height functions of arithmetic varieties. — In this part, we will introduce
several height functions of arithmetic varieties, which evaluate their arithmetic
complexities.
2.7.1. Arakelov height. — First, we will introduce a kind of height functions of
arithmetic varieties defined by the arithmetic intersection theory developed by
Gillet and Soulé in [18], which was first introduced by Faltings in [15, Definition
2.5]; see also [43, III.6].

Definition 2.3 (Arakelov height). — Let K be a number field, OK be its ring
of integers, E be a Hermitian vector bundle of rank n + 1 over SpecOK and
L be a Hermitian line bundle over P(E). Let X be a pure dimensional closed
subscheme of P(EK) of dimension d and X be the Zariski closure of X in P(E).
The Arakelov height of X is defined as the arithmetic intersection number

1
[K : Q] d̂eg

(
ĉ1(L)d+1 · [X ]

)
,

where ĉ1(L) is the arithmetic first Chern class of L (cf. [43, Chap. III.4,
Proposition 1] for its definition). This height is noted by hL(X) or hL(X ).

Remark 2.4. — With all the notations in Definition 2.1 and Definition 2.3,
by [36, Théorème A], we have

hO(1)(X) = lim
D→+∞

d̂egn(FD)
Dd+1/(d+ 1)! .

2.7.2. Heights of hypersurfaces. — Let X be a hypersurface in PnK of degree δ.
By [23, Proposition 7.6 (d), Chap. I], X is defined by a homogeneous polyno-
mial of degree δ. We define a height function of hypersurfaces by considering
its polynomial of definition.
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Definition 2.5 (Naive height). — Let

f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

ai0,...,inT
i0
0 · · ·T inn ∈ K[T0, . . . , Tn].

We define the naive height of f(T0, . . . , Tn) as

HK(f) =
∏

v∈MK

max
(i0,...,in)∈Nn+1

{|ai0,...,in |v}
[Kv:Qv]

,

and

h(f) = 1
[K : Q] logHK(f).

In addition, if f(T0, . . . , Tn) is homogeneous and defines the hypersurface X ↪→
PnK , we define the naive height of X as

HK(X) = HK(f) and h(X) = h(f).

2.7.3. Comparison of height functions. — In order to compare hO(1)(X ) and
h(X) for a hypersurface X, we refer to the following result in [27].

Proposition 2.6. — Let X be a hypersurface in PnK of degree δ. With all the
notations above, we have

−δ
(

1
2δ log ((n+ 1)(δ + 1)) + 1

2Hn
)
6 h(X)− hO(1)(X )

6 δ

(
log 2 + 5 log(n+ 1)− 1

2Hn
)
,

where Hn = 1 + · · ·+ 1
n .

Proof. — Since X is a hypersurface, the Chow variety of X is just X itself.
Then we have the result from [27, Proposition 3.7] directly after some elemen-
tary calculations. �

3. Global determinant method for hypersurfaces

In the rest of this article, unless especially mentioned, we suppose that X
is an integral hypersurface in PnK , and X is its Zariski closure in PnOK . In
fact, X → SpecK is the generic fiber of X → SpecOK . When we consider
the height h(P ) of a rational point P ∈ X(K) embedded into PnK , we use the
definition in (12) by Arakelov geometry. Let p be a maximal ideal of OK ; we
denote by Xp = X ×SpecOK SpecFp → Fp the fiber at p.

Let r1(n,D) be the rank of FD over OK , where FD is defined in §2.5. For
the case where X is a hypersurface of degree δ in PnK , we have

r1(n,D) =
(
n+D

n

)
−
(
n+D − δ

n

)
.
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Our main target of this section is to prove the following result.

Theorem 3.1. — We keep all the notations in §2.5 and this section. Let X
be a closed integral subscheme in Pnk and X be its Zariski closure in PnOK . Let
{pj}j∈J be a finite family of maximal ideals of OK , and {Pi}i∈I be a family
of rational points of X. For a fixed prime ideal p of OK , let µξ(Xp) be the
multiplicity of the point ξ in Xp; we denote n(Xp) =

∑
ξ∈X (Fp) µξ(Xp). If the

inequality

sup
i∈I

h(Pi) <
µ̂(FD)
D

− log r1(n,D)
2D

(14)

+ 1
[K :Q]

∑
j∈J

(
(n− 1)!

1
n−1 (n− 1)r1(n,D)

1
n−1

nDn(Xpj )
1

n−1
− n3 + 2n2 + n− 4

2Dn(n+ 1)

)
logN(pj)

is verified, then there exists a section s ∈ ED,K , which contains {Pi}i∈I but
does not contain the generic point of X. In other words, {Pi}i∈I can be covered
by a hypersurface of degree D that does not contain the generic point of X.

3.1. Auxiliary results. — We refer to some results in [12, 13], which are used
in the reformulation of the determinant method by Arakelov geometry. We will
also prove a new auxiliary lemma.

Proposition 3.2 ([12], Proposition 2.2). — Let E be a Hermitian vector bun-
dle of rank r > 0 over SpecOK and {Li}i∈I be a family of Hermitian line
bundles over SpecOK . If

φ : EK →
⊕
i∈I

Li,K

is an injective homomorphism, then there exists a subset I0 of I whose cardi-
nality is r such that the following equality

µ̂(E) = 1
r

(∑
i∈I0

µ̂(Li) + h
(
∧r
(
prI0 ◦φ

)))
is verified, where prI0 :

⊕
i∈I Li,K →

⊕
i∈I0

Li,K is the canonical projection.

In order to benefit the readers, we will provide the details of the construction
of certain local homomorphisms, which are introduced in [39, Lemma 2.4]; see
also [13, §3.2].

Let X be an integral closed subscheme of PnK and X be the Zariski closure of
X in PnOK . Let p be a maximal ideal of OK and ξ ∈X (Fp). In this case, OX ,ξ

is a local algebra over OK,p. Let (fi)16i6m be a family of local homomorphisms
of OK,p-algebras from OX ,ξ to OK,p.
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Let E be a free sub-OK,p-module of finite type of OX ,ξ and let f be the
OK,p-linear homomorphism

(fi|E)16i6m : E → O⊕mK,p.

Since f1 is a local homomorphism of OK,p-algebras, it must be surjective. Let
a be the kernel of f1, then we have OX ,ξ/a ∼= OK,p. Furthermore, since OX ,ξ

is a local ring, and we suppose that mξ is its maximal ideal, we have mξ ⊇ a.
Moreover, since f1 is a local homomorphism, we have a + pOX ,ξ = mξ. For
each j ∈ N, aj/aj+1 is an OX ,ξ/a ∼= OK,p-module of finite type.

In order to estimate its rank, we need the following result.

Lemma 3.3. — With all the above notations and constructions, we have

Fp ⊗OK,p (aj/aj+1) ∼= (a/a ∩ pOX ,ξ)j / (a/a ∩ pOX ,ξ)j+1

∼= (mξ/mξ ∩ pOX ,ξ)j / (mξ/mξ ∩ pOX ,ξ)j+1
.

Proof. — By definition, we have

Fp ⊗OK,p (aj/aj+1) ∼= (a/a ∩ pOX ,ξ)j / (a/a ∩ pOX ,ξ)j+1
.

Next, from the facts a + pOX ,ξ = mξ and a ⊆ mξ, we claim that

a + mξ ∩ pOX ,ξ = mξ ∩ (a + pOX ,ξ) = mξ

is verified. In fact, for every x ∈ mξ = mξ ∩ (a + pOX ,ξ), there exist v ∈ a and
w ∈ pOX ,ξ, such that x = v +w. Then w = x− v ∈ mξ. Since v, x ∈ mξ, then
w ∈ mξ ∩ pOX ,ξ. So we have x ∈ a + mξ ∩ pOX ,ξ. Conversely, since mξ is the
maximal ideal, a + mξ ∩ pOX ,ξ ⊆ mξ.

By the above fact, we have

a/a ∩ pOX ,ξ
∼= a/a ∩ (mξ ∩ pOX ,ξ)
∼= (a + mξ ∩ pOX ,ξ)/mξ ∩ pOX ,ξ

∼= mξ/mξ ∩ pOX ,ξ,

which terminates the proof. �

With Nakayama’s lemma (cf. [30, Theorem 2.2]) we deduce that the rank of
aj/aj+1 overOK,p is equal to the rank of (mξ/mξ∩pOX ,ξ)j/(mξ/mξ∩pOX ,ξ)j+1

over Fp from the isomorphism in Lemma 3.3, which is the value of the local
Hilbert–Samuel function Hξ(j) defined in (3).

With this fact, we consider the filtration

OX ,ξ = a0 ⊇ a ⊇ a2 ⊇ · · · ⊇ aj ⊇ aj+1 ⊇ · · ·

of OX ,ξ, which induces the filtration

F : E = E ∩ a0 ⊇ E ∩ a ⊇ E ∩ a2 ⊇ · · · ⊇ E ∩ aj ⊇ E ∩ aj+1 ⊇ · · ·(15)

of E, whose j-th sub-quotient E ∩ aj/E ∩ aj+1 is a free OK,p-module of rank
smaller than or equal to Hξ(j).
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We suppose that the reductions of all the above local homomorphisms
f1, . . . , fm modulo p are same, which means that all the composed homomor-
phisms

OX ,ξ
fi−→ OK,p → Fp

are the same for all i = 1, . . . ,m, where the last arrow is the canonical reduction
morphism modulo p. We note that N(p) = #Fp. In this case, the restriction
of f on E ∩ aj has its norm smaller than N(p)−j . In fact, for any 1 6 i 6 m,
we have fi(a) ⊆ pOK,p and, hence, we have fi(aj) ⊆ pjOK,p.

From the above argument, we have the following result from [13, Lemma 3.2,
Lemma 3.3].

Proposition 3.4 ([13], Proposition 3.4). — Let p be a maximal ideal of OK
and ξ ∈X (Fp). Suppose that {fi}16i6m is a family of local OK,p-linear homo-
morphisms from OX ,ξ to OK,p, whose reduction modulo p is the same. Let E
be a free sub-OK,p-module of finite type of OX ,ξ and f = (fi|E)16i6m. Then
for any integer r > 1, we have

‖ ∧r fK‖ 6 N(p)−Qξ(r),(16)

where N(p) = #(OK/p), and Qξ(r) is defined in (5).

The following lemma will be used in the global determinant estimate.

Lemma 3.5. — Let (K, | · |) be a normed field, E1, E2, F1, F2 be four normed
vector spaces over K, f1 : E1 → F1 and f2 : E2 → F2 be two K-linear isomor-
phisms. Suppose dimK(E1) = dimK(F1) = r1 and dimK(E2) = dimK(F2) =
r2. We equipped

f1 ⊕ f2 : E1 ⊕ E2 → F2 ⊕ F2

with the corresponding maximal value norms. Then we have∥∥∧r1+r2 (f1 ⊕ f2)
∥∥ = ‖ ∧r1 f1‖ · ‖ ∧r2 f2‖,

where the above ‖ · ‖ is the norm of operators.

Proof. — By definition, the linear maps ∧r1f1 and ∧r2f2 are both scalar prod-
ucts by the corresponding determinants, and ∧r1+r2 (f1 ⊕ f2) is the scalar prod-
uct of the above two determinants. Then we have the result directly by defini-
tion. �

3.2. Proof of Theorem 3.1. — We will prove Theorem 3.1; some ideas of the
proof below were inspired by [13, §3].
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Proof of Theorem 3.1. — Let D be an integer larger than 1. We suppose that
the global section predicted by Theorem 3.1 does not exist. Then the evaluation
map

f : FD,K →
⊕
i∈I

P ∗i OPn
K

(D)

is injective. We can replace I by one of its subsets, such that f is an iso-
morphism. From now on, we suppose f is isomorphic, which means #I =
r1(n,D) = rkFD,K . Then by Proposition 3.2 we have

µ̂(FD) = 1
r1(n,D)

(
D
∑
i∈I

h(Pi) + h
(
∧r1(n,D)f

))
,

which implies

µ̂(FD)
D

6 sup
i∈I

h(Pi) + 1
Dr1(n,D)h

(
∧r1(n,D)f

)
.

We now estimate the height of ∧r1(n,D)f . For every v ∈MK,∞, we have
1

r1(n,D) log ‖ ∧r1(n,D) f‖v 6 log ‖f‖v 6 log
√
r1(n,D),

where the second inequality comes from the definition of metrics of John in
§2.5.1.

We now consider the case of v ∈MK,f . The homomorphism f is induced by
a homomorphism of OK-module

FD →
⊕
i∈I
P∗i OPnOK

(D),

where Pi is the Zariski closure of Pi in X for each i ∈ I. Then for every
v ∈MK,f , we have log ‖ ∧r1(n,D) f‖v 6 0.

We fix a maximal ideal p of OK corresponding to v ∈MK,f and decompose
the set {Pi}i∈I as the disjoint union

{Pi}i∈I =
⋃

ξ∈X (Fp)

{Pl,ξ}
mξ
l=1,

where all elements in {Pl,ξ}
mξ
l=1 modulo p are the same point ξ ∈ X (Fp). If

{Pl,ξ}
mξ
l=1 is empty for some ξ ∈X (Fp), we define mξ = 0 for simplicity. With

the above notations, let ⋃
ξ∈X (Fp)

{sl,ξ}
mξ
l=1

be an OK,p-basis of FD,p, such that f(sl,ξ) generates P∗l,ξOPnOK
(D) for all l =

1, . . . ,mξ and ξ ∈X (Fp). Since OK,p is a local ring, the OK,p-module FD,p is
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free, and then there exists such a basis for a fixed maximal ideal p. We denote
by FD,ξ the sub-OK,p-module of FD,p generated by {sl,ξ}

mξ
l=1.

By Proposition 3.4, we have

log
∥∥∥∧rk(FD,ξ)f |FD,ξ

∥∥∥
p
6 −Qξ(rk(FD,ξ)) logN(p).

By definition, we have

FD,p =
⊕

ξ∈X (Fp)

FD,ξ,

and

r1(n,D) =
∑

ξ∈X (Fp)

rk(FD,ξ).(17)

Then from the above construction, by applying Lemma 3.5 and Proposition 3.4,
respectively, we obtain

log
∥∥∥∧r1(n,D)f

∥∥∥
p

=
∑

ξ∈X (Fp)

log
∥∥∥∧rk(FD,ξ)f |FD,ξ

∥∥∥
p

6 −
∑

ξ∈X (Fp)

Qξ (rk(FD,ξ)) logN(p).

In order to estimate the term
1

r1(n,D)
∑

ξ∈X (Fp)

Qξ (rk(FD,ξ)) ,

by (6), we have∑
ξ∈X (Fp)

Qξ (rk(FD,ξ))

>
∑

ξ∈X (Fp)

((
(n− 1)!
µξ(Xp)

) 1
n−1
(
n− 1
n

)
rk(FD,ξ)

n
n−1 − n3 + 2n2 + n− 4

2n(n+ 1) rk(FD,ξ)
)

= (n− 1)!
1

n−1 (n− 1)
n

∑
ξ∈X (Fp)

rk(FD,ξ)
n
n−1

µξ(Xp)
1

n−1
− n3 + 2n2 + n− 4

2n(n+ 1) r1(n,D).

By (17) and Hölder’s inequality, we have

∑
ξ∈X (Fp)

rk(FD,ξ)
n
n−1

µξ(Xp)
1

n−1
>

(∑
ξ∈X (Fp) rk(FD,ξ)

) n
n−1

(∑
ξ∈X (Fp) µξ(Xp)

) 1
n−1

= r1(n,D)
n
n−1

n(Xp)
1

n−1
,
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where n(Xp) is defined in the statement of Theorem 3.1. Then we obtain the
inequality

µ̂(FD)
D

6 sup
i∈I

h(Pi) + log r1(n,D)
2D

− 1
[K :Q]

∑
j∈J

(
(n− 1)!

1
n− 1 (n− 1)r1(n,D)

1
n− 1

nDn(Xpj )
1

n−1
− n3 + 2n2 +n− 4

2Dn(n+ 1)

)
logN(pj),

which leads to a contradiction. �

4. Some quantitative estimates

In order to apply the global determinant method introduced in Theorem 3.1,
we need to gather enough information on the term n(Xp) in it. For this target,
we need to have a control of the reduction type of X ↪→ PnOK → SpecOK ,
an upper bound of n(Xp) when Xp → SpecFp is geometrically integral, and
a distribution of certain prime ideals of OK . We will also provide an explicit
estimate of the geometric Hilbert–Samuel function of hypersurfaces.

4.1. Control of the non-geometrically integral reductions. — Let X ↪→ PnK be
a geometrically integral hypersurface of degree δ, X ↪→ PnOK → SpecOK
be its Zariski closure, and XFp

= X ×SpecOK SpecFp → SpecFp for every
p ∈ SpmOK . By [21, Théorème 9.7.7], the set

Q(X ) =
{
p ∈ SpmOK |XFp

→ SpecFp is not geometrically integral
}

(18)

is finite.
Next, we introduce a numerical description of the set Q(X ). In fact, there

are fruitful results on this subject, but most of them are over rational number
field Q. In [28], the estimate [38, Satz 4] was generalized over arbitrary number
fields by using a height function in an adelic sense by the approach of [27, §3.4].
By [28, Proposition 4.1], we have

1
[K : Q]

∑
p∈Q(X )

logN(p) 6 (δ2 − 1)h(X) + C(n, δ),(19)

where h(X) is the naive height ofX defined in Definition 2.5, N(p) = #(OK/p),
and the constant

C(n, δ) = (δ2 − 1)
(

3 log δ + δ log 3 + log
(
n+ δ

δ

))
.

In fact, we have C(n, δ)�n δ
3.
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4.2. Quantitative estimates over finite fields. — In this subsection, we give an
upper bound of the term n(Xp) for an arbitrary maximal ideal p of OK , where
n(Xp) is defined in the statement of Theorem 3.1. In this part, we consider
this problem over arbitrary finite fields.

Let Fq be the finite field with q elements, X be a geometrically integral
hypersurface in PnFq of degree δ, and n(XFq ) =

∑
ξ∈X(Fq) µξ(X), where µξ(X)

is the multiplicity of ξ in X defined via the local Hilbert–Samuel function in
(4). Then we have

n(XFq ) = #X(Fq) +
∑

ξ∈X(Fq)

(µξ(X)− 1) .

In order to estimate n(XFq ), we will consider the terms #X(Fq) and∑
ξ∈X(Fq) (µξ(X)− 1) separately.

4.2.1. For the estimate of #X(Fq), there are fruitful results. For our applica-
tion, we have the following result deduced from [9, Corollary 5.6].

Proposition 4.1. — Let X ↪→ PnFq be a geometrically integral hypersurface of
degree δ over the finite field Fq. When q 6 δ2 or q > 27δ4, we have

#X(Fq)− qn−1 6 nδ2qn−
3
2 .

Proof. — We consider this estimate case by case as follows.
1. If q 6 δ, we have #X(Fq) 6 #Pn(Fq) = qn + · · ·+ 1. Then

#X(Fq)− qn−1 6 nqn 6 nδ2qn−
3
2 .

2. If δ + 1 6 q 6 δ2, we have #X(Fq) 6 δ#Pn−1(Fq) = δ(qn−1 + · · ·+ 1).
Then

#X(Fq)− qn−1 6 (δ − 1)qn−1 + δ(qn−2 + · · ·+ 1) 6 nδ2qn−
3
2 .

3. If q > 27δ4, by [9, Corollary 5.6], we have

#X(Fq)− qn−1 6 (δ − 1)(δ − 2)qn− 3
2 + (5δ2 + δ + 1)qn−2 6 nδ2qn−

3
2 . �

Remark 4.2. — With all the notations in Proposition 4.1, when δ2 �n q �n

δ4, by [9, Corollary 5.6], we have

#X(Fq)− qn−1 6 (δ − 1)(δ − 2)qn− 3
2 +B(n, δ)qn−2,

where the constant satisfies B(n, δ)�n δ
4. It seems that the constant B(n, δ)

could have a better dependence on δ, but to the author’s knowledge, we do not
know the answer.
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4.2.2. For the term
∑
ξ∈X(Fq) (µξ(X)− 1), by [29, Theorem 5.1], we have∑

ξ∈X(Fq)

(µξ(X)− 1) 6 1
2

∑
ξ∈X(Fq)

µξ(X) (µξ(X)− 1)(20)

6
(n− 1)2

2 δ(δ − 1) max{δ − 1, q}n−2,

which has the optimal dependances on δ and max{δ − 1, q}, when q > δ − 1.
4.2.3. We combine Proposition 4.1 and the estimate (20). When q 6 δ2 or
q > 27δ4, we have

n(XFq ) 6 qn−1 + n2δ2 max {q, δ − 1}n−
3
2

by an elementary calculation. In addition, we have
1

n(XFq )
1

n−1
>

1
q
− n2δ2

max {q, δ − 1}
3
2

(21)

under the same assumption of q and δ as above.

4.3. Distribution of certain prime ideals. — In this part, we will consider some
distributions of prime ideals of the ring of integers of number fields.
4.3.1. Distribution of prime ideals containing a fixed ideal. — In this part,
we will consider the distribution of certain maximal ideals of OK . First, we
generalize [40, Lemma 1.10] over an arbitrary number field, where the former
result works over Z only.

Lemma 4.3. — Let a be a proper ideal of OK , p be a prime ideal of OK , and
N(a) = #(OK/a). Then we have

1
[K : Q]

∑
p⊇a

logN(p)
N(p) 6 log log (N(a)) + 2,

where the above sum runs over all prime ideals contained in a of OK .

Proof. — We will prove the inequality for the case of K = Q at first and then
show the general case with it.
Case of K = Q. — In this case, we will repeat the proof of [40, Lemma
1.10] by Salberger, since this preprint is not easily available. Suppose that a is
generated by the positive square-free integer π and let m be a positive integer,
such that m 6 π. For the prime p, let vp(m) be the largest integer, such that
pvp(m) | m. By [44, Tome I, Corollaire 1.7] and [44, Tome I, Théorème 1.8], we
have

m
∑
p|π

log p
p
−
∑
p|π

log p 6
∑
p|π

vp(m!) log p 6
∑
p6π

vp(m!) log p = logm! 6 m logm,
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and then we obtain∑
p|π

log p
p
6 logm+ 1

m

∑
p|π

log p 6 logm+ 1
m

log π.

Let m = [log π] for π > 2; then we accomplish the proof for K = Q.
Case of arbitrary number fields. — Let

a = p
vp1 (a)
1 · · · pvpk (a)

k ,

where p1, . . . , pk are distinct prime ideals of OK , and vpi(a) ∈ N+ for all i =
1, . . . , k. Let the prime pi be the characteristic of the prime ideal pi, where
i = 1, . . . , k as above. For a fixed prime p, there are at most [K : Q] prime
ideals of characteristic p in OK . For all prime p and f ∈ N+, we have

log pf

pf
6

log p
p

.

Let P (a) be the product of all the different characteristics of p1, . . . , pk; we
have P (a) 6 N(a) by definition directly. Then by the above facts, we obtain∑

p⊇a

logN(p)
N(p) 6 [K : Q]

∑
p|P (a)

log p
p

.

With the case K = Q, we have∑
p|P (a)

log p
p
6 log logP (a) + 2 6 log logN(a) + 2,

which proves the assertion. �

4.3.2. Distribution of prime ideals with bounded norm. — Let x ∈ R+, p ∈
SpmOK and N(p) = #(OK/p). In this part, we consider

θK(x) =
∑

N(p)6x

logN(p), ψK(x) =
∑

N(p)6x

logN(p)
N(p) , φK(x) =

∑
N(p)6x

logN(p)
N(p) 3

2
.

(22)

When K = Q, these are classic estimates of Chebyshev function (cf. [44,
Tome I, Théorème 2.11]) and Mertens’ first theorem (cf. [44, Tome I, Théorème
1.8]). For the case of arbitrary number fields, a generalization of [44, Tome
I, Théorème 2.11] is Landau’s prime ideals theorem (cf. [37, Theorem 2.2]),
and a generalization of Mertens’ first theorem was deduced from this in [37,
Lemma 2.3].

In this part, we will give a more explicit version of some results [37] that
will be used in the application of Theorem 3.1.
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By Landau’s prime ideal theorem (cf. [37, Theorem 2.2]), we have

θk(x) = x+OK
(
xe−c

√
log x),

where c is a constant depending on K. Then there exists a function ε1(K,x)
of the number field K and x ∈ R+, such that

|θK(x)− x| 6 ε1(K,x),(23)

where ε1(K,x) = OK
(
xe−c

√
log x) for all x ∈ R+, and c depends on K only.

By [37, Lemma 2.3], we have

ψK(x) = log x+OK(1),

which is obtained by Abel’s summation formula applied in [37, Lemma 2.1].
Then there exists a function ε2(K) of the number field K, such that

|ψK(x)− log x| 6 ε2(K).(24)

Similarly to the application of [37, Lemma 2.1] to the proof of [37, Lemma
2.3], we have

φK(x) = θK(x)
x

3
2

+ 3
2

∫ x

2

θK(t)
t

5
2

dt

by [37, Lemma 2.1]. Then by (23), we have∣∣∣∣φK(x)− 1√
x
− 3

2

∫ x

2

1
t

3
2
dt

∣∣∣∣ 6 ε1(K,x)
x

3
2

+ 3
2

∫ x

2

ε1(K, t)
t

5
2

dt.

Then by an elementary calculation, there exists a function ε3(K,x) of the
number field K and x ∈ R+, such that∣∣∣∣φK(x)− 3

2
√

2 + 2√
x

∣∣∣∣ 6 ε3(K,x),(25)

where

ε3(K,x) = ε1(K,x)
x

3
2

+ 3
2

∫ x

2

ε1(K, t)
t

5
2

dt.(26)

4.3.3. Distribution of non-geometrically integral reductions. — In this part,
we consider a distribution of the prime ideals modulo, of which the reductions
are not geometrically integral. In the estimate below, the estimates of (22) will
be involved.

Proposition 4.4. — Let X be a geometrically integral hypersurface of degree
δ in PnK and X be its Zariski closure in PnOK . Let p ∈ SpmOK , N(p) =
#(OK/p),

Q′(X ) =
{
p ∈ SpmOK

∣∣N(p) > 27δ4 and Xp → SpecFp

not geometrically integral
}
,
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and

b′(X ) =
∏

p∈Q′(X )

exp
(

logN(p)
N(p)

)
.

Then we have
b′(X ) 6 exp (2ε2(K)− 3 log 3 + [K : Q])

· (δ−2 − δ−4)
(
h(X) +

(
3 log δ + δ log 3 + log

(
n+ δ

δ

)))
,

where h(X) is defined in Definition 2.5, and ε2(K) is defined in (24).

Proof. — We denote by P ′(X ) the product of all maximal ideals in Q′(X ),
and

c′(X ) = (δ2 − 1)
(
h(X) +

(
3 log δ + δ log 3 + log

(
n+ δ

δ

)))
.

Then by Lemma 4.3 and (19), we have
1

[K : Q] log b′(X ) = 1
[K : Q]

∑
p∈Q′(X )

logN(p)
N(p)

6
1

[K : Q]
∑

27δ4<N(p)6c′(X )

logN(p)
N(p) + 1

[K : Q]
∑

p∈Q′(X )
N(p)>c′(X )

logN(p)
c′(X ) .

By (24), we have
1

[K : Q]
∑

27δ4<N(p)6c′(X )

logN(p)
N(p)

= 1
[K : Q]

∑
N(p)6c′(X )

logN(p)
N(p) − 1

[K : Q]
∑

N(p)627δ4

logN(p)
N(p)

6
1

[K : Q] (log c′(X )− 4 log δ + 2ε2(K)− 3 log 3) ,

where ε2(K) is defined in (24) depending on K only.
Let
Q(X ) =

{
p ∈ SpmOK |XFp

→ SpecFp is not geometrically integral
}
.

Since Q′(X ) ⊆ Q(X ), we have
1

[K : Q]
∑

p∈Q′(X )
N(p)>c′(X )

logN(p)
c′(X ) 6

1
[K : Q]c′(X )

∑
p∈Q(X )

logN(p) 6 1,

where the last inequality is from (19). By combining the above two estimates,
we terminate the proof. �
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Remark 4.5. — With all the notations and assumptions in Proposition 4.4,
we have

b′(X )�n,K max
{
δ−2h(X), δ−1} .

4.4. An explicit estimate of the geometric Hilbert–Samuel function. — In this
part, we will provide an explicit lower bound of the geometric Hilbert–Samuel
function of a projective hypersurface, which will be used in the application of
the determinant method. The inequality

(N −m+ 1)m

m! 6

(
N

m

)
6

(N − (m− 1)/2)m

m!
will be helpful in the calculation below.

Lemma 4.6. — Let X be a hypersurface of degree δ in PnK . We denote by
r1(n,D) its geometric Hilbert–Samuel function with the variable D. When
D > δ + 1, we have

r1(n,D)
1

n−1 > n−1

√
δ

(n− 1)!D − (δ − 2) n−1

√
δ

(n− 1)! ,

and

r1(n,D)
1

n−1 6 n−1

√
δ

(n− 1)!D + n

2
n−1

√
δ

(n− 1)! .

Proof. — In fact, we have

r1(n,D) =
(
n+D

n

)
−
(
n+D − δ

n

)
when D > δ + 1.

In order to obtain the lower bound, we have

r1(n,D) =
δ∑
j=1

(
D − δ + n− 1 + j

n− 1

)
>
δ(D − δ + 2)n−1

(n− 1)!(27)

>
δ

(n− 1)!D
n−1 − δ(δ − 2)

(n− 1)!D
n−2.

Then we obtain

r1(n,D)
1

n−1 > n−1

√
δ

(n− 1)!D
(

1− δ − 2
D

) 1
n−1

> n−1

√
δ

(n− 1)!D − (δ − 2) n−1

√
δ

(n− 1)!

when D > δ + 1.
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On the other hand, we have

r1(n,D) =
δ∑
j=1

(
D − δ + n− 1 + j

n− 1

)
(28)

6
δ(D + n

2 )n−1

(n− 1)! = δDn−1

(n− 1)!

(
1 + n

2D

)n−1
,

which terminates the proof by an elementary calculation. �

5. An explicit estimate of the determinant

In this section, we will give an upper bound of the degree of the auxiliary
hypersurface determined by Theorem 3.1.

5.1. Uniform lower bound of arithmetic Hilbert–Samuel functions. — Firstly,
we refer to a result in [12], which is an application of the uniform lower bound
of the arithmetic Hilbert–Samuel functions to the determinant method.

Proposition 5.1 ([12], Proposition 2.12). — We keep all the notations in
§2.5. Let X be a closed integral subscheme of PnK , Z = (Pi)i∈I be a family of
rational points and

φZ,D : FD,K →
⊕
i∈I

P ∗i OPn
K

(D)

be the evaluation map. If we have the inequality

sup
i∈I

hO(1)(Pi) <
µ̂max(FD)

D
− 1

2D log r1(n,D),

where r1(n,D) = rk(FD), and the height function hO(1)( · ) is defined in (12),
then the homomorphism φZ,D is not able to be injective.

The uniform lower bound of µ̂(FD) for allD > 1 will play a significant role in
the construction of auxiliary hypersurfaces if we want to apply Proposition 5.1.
In [14], David and Philippon give an explicit uniform lower bound of µ̂(FD).
This result is reformulated by H. Chen in [12, Theorem 4.8] with the language
of the slope method. In fact, let X be a closed integral subscheme of PnK of
dimension d and degree δ, and X be its Zariski closure in PnOK . The inequality

µ̂(FD)
D

>
d!

δ(2d+ 2)d+1hO(1)(X )− log(n+ 1)− 2d(29)

is uniformly verified for all D > 2(n− d)(δ − 1) + d+ 2 (see also [12, Remark
4.9] for some minor modifications), where hO(1)(X ) follows the definition in
Definition 2.3.
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By Proposition 5.1, all the rational points with small heights in a projective
variety can be covered by one hypersurface that does not contain the generic
point of the original variety. The following result gives a numerical description
of this observation.

Proposition 5.2. — Let X be an integral hypersurface of degree δ in PnK , the
constant Hn = 1 + · · ·+ 1

n and the constant

C1(n) = − (2n)n

(n− 1)!

(
log 2 + 5 log(n+ 1)− 1

2Hn
)
− 3

2 log(n+ 1)− 2n−1.

(30)

If
logB

[K : Q] <
(n− 1)!
δ(2n)n h(X) + C1(n),

then there exists a hypersurface of degree smaller than 2δ+n−1, which contains
all rational points in S(X;B) but does not contain the generic point of X, where
we use the height function defined in (12).

Proof. — If there does not exist such a hypersurface, the evaluation map φZ,D
in Proposition 5.1 is injective. On the other hand, by (29), Proposition 2.6 and
the fact that

r1(n,D) 6
(
n+D

n

)
6 (n+ 1)D

is uniformly verified for all n,D > 1, we obtain
logB

[K : Q] <
(n− 1)!
δ(2n)n h(X) + C1(n)

6
(n− 1)!
δ(2n)n hO(1)(X )− 3

2 log(n+ 1)− 2n−1

6
µ̂max(FD)

D
− 1

2D log r1(n,D),

which contradicts Proposition 5.1. �

Remark 5.3. — With all the notations in Proposition 5.2; with the arithmetic
Hilbert–Samuel Theorem of arithmetic ample line bundles (cf. [19, Theorem
8], [49, Theorem 1.4] and [1, Théorème principal]), we have

µ̂(FD) =
hO(1)(X )

nδ
D + o(D)

for D tends into infinity. So it is expected that we can obtain a better uniform
lower bound of µ̂(FD) than that in (29). If we have a better explicit lower
bound, we can improve the bound given in Proposition 5.2.
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5.2. Estimate of the determinant. — In the global determinant method, for
each geometrically integral hypersurface, we allow only one auxiliary hypersur-
face to cover its rational points with bounded height not containing the generic
point of the original hypersurface and we optimize the degree of this auxiliary
hypersurface.

In this part, we will give an upper bound of the degree of the auxiliary
hypersurface determined in Theorem 3.1, where the size of non-geometrically
integral reductions and the height of the original hypersurface will be involved.

Before the statement of the main theorem in this paragraph, we will intro-
duce two constants depending on the number field K and the positive integer
n > 2, which will be used in the estimate of the determinant.

Let K be a number field; we denote

κ1(K) = sup
x∈R+

ε1(K,x)
x

,(31)

where ε1(K,x) is introduced in (23). By [37, Theorem 2.2], the above supre-
mum exists, and κ1(K) depends on K only.

Let δ > 1 and n > 2 be two integers; we denote

κ2(K,n) = sup
δ>1

{
−3 log 3 + 2n2

3
√

3
+ 2n2δ2ε3(K, 27δ4) + 2ε2(K)

}
,(32)

where ε2(K) is defined in (24), and ε3(K,x) is defined in (26). By taking
[37, Theorem 2.2] into the estimate of (26), the above supremum exists, and
κ2(K,n) depends on K and n only.

Theorem 5.4. — Let K be a number field. Let X be a geometrically integral
hypersurface in PnK of degree δ > 2 and S(X;B) be the set of rational points in
X whose height is smaller than B with respect to the above closed immersion;
see (12) for the definition of the height function used above. Then there exists
a hypersurface in PnK of degree smaller than

eC2(n,K)Bn/((n−1)δ1/(n−1))δ4−1/(n−1) b′(X )
HK(X)

n!
(n−1)(2n)n δ

−1−1/(n−1) ,

which covers S(X;B) but does not contain the generic point of X, where the
constant

C2(n,K) = nC1(n)[K : Q]
(n− 1) n−1

√
2

+ κ2(K,n) + log(n− 1)!
n− 1

+ 3 + n3 + 2n2 + n− 4
2(n2 − 1) n−1

√
(n− 1)!

(
1 + n

4

)
(1 + κ1(K)) ,

the constant C1(n) is defined in (30), b′(X ) is defined in Proposition 4.4,
κ1(K) is defined in (31), κ2(K,n) is defined in (32), and the height HK(X)
of X is defined in Definition 2.5.
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Proof. — By Proposition 5.2, we divide the proof into two parts.
I. The case of large height varieties. — If

logB
[K : Q] <

(n− 1)!
δ(2n)n h(X) + C1(n),

where the constant C1(n) is defined in (30) and h(X) is defined in Definition 2.5,
then by Proposition 5.2, S(X;B) can be covered by a hypersurface of degree
no more than 2δ + n − 1, which does not contain the generic point of X. By
an elementary calculation, we obtain that 2δ+n− 1 is smaller than the bound
provided in the statement of the theorem, for n > 2, δ > 1, b′(X ) > 1 and
HK(X) > 1.
II. The case of small height varieties. — For the case of

logB
[K : Q] >

(n− 1)!
δ(2n)n h(X) + C1(n),

which is equivalent to

h(X) 6 δ(2n)n

(n− 1)! ·
(

logB
[K : Q] − C1(n)

)
,

we will treat it as follows. We keep all the notations in Theorem 3.1 and we
suppose D > 3δ log δ + n− 1 > 2δ + n− 1 from now on. We denote the set

R(X ) = {p ∈ SpmOK | 27δ4 6 N(p) 6 r1(n,D)
1

n−1 ,

Xp → SpecFp is geometrically integral}

and we apply Theorem 3.1 to the reductions at R(X ). If there does not exist
such a hypersurface, then by Theorem 3.1 applied in the above sense, we have

logB
[K : Q] >

µ̂(FD)
D

− log r1(n,D)
2D

+ 1
[K :Q]

∑
p∈R(X )

(
(n− 1)!

1
n−1 (n− 1)r1(n,D)

1
n−1

nDn(Xp)
1

n−1
− n3 + 2n2 +n− 4

2Dn(n+ 1)

)
logN(p).

From the explicit lower bound of µ̂(FD) provided at (29) and Proposition 5.2,
we deduce

logB
[K : Q] −

(n− 1)!
δ(2n)n h(X) + C1(n)(33)

>
(n− 1)!

1
n−1 (n− 1)r1(n,D)

1
n−1

nD[K : Q]
∑

p∈R(X )

logN(p)
n(Xp)

1
n−1

− n3 + 2n2 + n− 4
2nD(n+ 1)[K : Q]

∑
p∈R(X )

logN(p).
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II-1. Estimate of
∑

p∈R(X )
logN(p)

n(Xp)
1

n−1
. — In order to estimate the sum∑

p∈R(X )
logN(p)

n(Xp)
1

n−1
in (33), by (21), we have

∑
p∈R(X )

logN(p)
n(Xp)

1
n−1
>

∑
p∈R(X )

logN(p)
N(p) − n2δ2

∑
p∈R(X )

logN(p)
N(p) 3

2
.

For the estimate of
∑

p∈R(X )
logN(p)
N(p) , we denote

Q′(X ) =
{
p ∈ SpmOK

∣∣ 27δ4 6 N(p) 6 r1(n,D)
1

n−1 ,

XFp
→ SpecFp is not geometrically integral

}
.

Then by (24), we have

∑
p∈R(X )

logN(p)
N(p) =

∑
27δ46N(p)6r1(n,D)

1
n−1

logN(p)
N(p) −

∑
p∈Q′(X )

logN(p)
N(p)

>
1

n− 1 log r1(n,D)− 3 log 3− 4 log δ − 2ε2(K)− log (b′(X )) ,

where the notation b′(X ) is introduced in Proposition 4.4, and ε2(K) is defined
in (24).

For the term
∑

p∈R(X )
logN(p)
N(p)

3
2
, it is equal to zero when r1(n,D)

1
n−1 6 27δ4.

When r1(n,D)
1

n−1 > 27δ4, by (25), we have

∑
p∈R(X )

logN(p)
N(p) 3

2
6

∑
27δ46N(p)6r1(n,D)

1
n−1

logN(p)
N(p) 3

2

6
2

3
√

3δ2
− 2r1(n,D)−

1
2(n−1) + 2ε3(K, 27δ4).

By the above two estimates, we obtain∑
p∈R(X )

logN(p)
n(Xp)

1
n−1

(34)

>
1

n− 1 log r1(n,D)− 3 log 3− 4 log δ − log (b′(X ))− 2ε2(K)

− n2δ2
(

2
3
√

3δ2
− 2r1(n,D)−

1
2(n−1) + 2ε3(K, 27δ4)

)
by combining the above two inequalities.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



728 C. LIU

II-2. Estimate of
∑

p∈R(X ) logN(p). — For the estimate of
∑

p∈R(X ) logN(p),
by (23), we have

1
D

∑
p∈R(X )

logN(p) 6 1
D

∑
N(p)6r1(n,D)

1
n−1

logN(p)(35)

6
1
D

(
r1(n,D)

1
n−1 + ε1

(
K, r1(n,D)

1
n−1

))
,

where ε1(K,x) is defined in (23).
II-3. Deducing the contradiction. — We take (34) and (35) into (33), and we
do some elementary calculations. Then the inequality

logB
[K : Q] −

(n− 1)!
δ(2n)n h(X) + C1(n)

(36)

>
(n− 1)!

1
n−1 (n− 1)

n[K : Q] · r1(n,D)
1

n−1

D

(
1

n− 1 log r1(n,D)− log (b′(X ))

− 4 log δ − 3 log 3− 2n2

3
√

3
+ 2n2δ2

r1(n,D)
1

2(n−1)
− 2n2δ2ε3(K, 27δ4)− 2ε2(K)

)

− n3 + 2n2 + n− 4
2n(n+ 1)[K : Q] ·

r1(n,D)
1

n−1

D

1 +
ε1

(
K, r1(n,D)

1
n−1

)
r1(n,D)

1
n−1


is uniformly verified for all D > 3δ log δ + n− 1 > 2δ + n− 1.

From (27) in Lemma 4.6, we have

1
n− 1 log r1(n,D) > logD + 1

n− 1 log δ − 1
n− 1 log (n− 1)!(37)

when D > 2δ + n− 1.
We take Lemma 4.6 and (37) into (36), and by the fact

ε1

(
K, r1(n,D)

1
n−1

)
r1(n,D)

1
n−1

6 κ1(K)

and

3 log 3− 2n2

3
√

3
+ 2n2δ2

r1(n,D)
1

2(n−1)
− 2n2δ2ε3(K, 27δ4)− 2ε2(K) > −κ2(n,K),
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we obtain
n

(n− 1) n−1
√
δ

(
logB − [K : Q](n− 1)!

δ(2n)n h(X) + C1(n)[K : Q]
)

(38)

>

(
1− δ − 2

D

)(
logD −

(
4− 1

n− 1

)
log δ

− log (b′(X ))− κ2(n,K)− log(n− 1)!
n− 1

)

− n3 + 2n2 + n− 4
2(n2 − 1) n−1

√
(n− 1)!

·
(

1 + n

4

)
(1 + κ1(K)) .

When D > 3δ log δ + n− 1 > 2δ + n− 1 and δ > 2, we have

δ − 2
D

(
logD −

(
4− 1

n− 1

)
log δ − log(n− 1)!

n− 1 − log (b′(X ))− κ2(K,n)
)

6
δ − 2
D

logD 6 3

by an elementary calculation. We take the above inequality into (38) and then
we obtain

n

(n− 1) n−1
√
δ

(
logB − [K : Q](n− 1)!

δ(2n)n h(X) + C1(n)[K : Q]
)

> logD −
(

4− 1
n− 1

)
log δ − log (b′(X ))− κ2(K,n)− 3− log(n− 1)!

n− 1

− n3 + 2n2 + n− 4
2(n2 − 1) n−1

√
(n− 1)!

·
(

1 + n

4

)
(1 + κ1(K)) ,

which deduces

logD 6 n logB
(n− 1) n−1

√
δ
− [K : Q]n!
δ1+ 1

n−1 (n− 1)(2n)n
h(X) + log (b′(X ))

+
(

4− 1
n− 1

)
log δ + C2(n,K),

with the constant C2(n,K) in the statement of this theorem, and this leads to
the contradiction. �

5.3. Control of auxiliary hypersurfaces. — The following two upper bounds of
the degree of the auxiliary hypersurface are deduced from Theorem 5.4 directly.

Corollary 5.5. — We keep all the notations and conditions in Theorem 5.4.
Then there exists a hypersurface of degree smaller than

C3(n,K)δ3Bn/((n−1)δ1/(n−1)),
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which covers S(X;B) but does not contain the generic point of X, where the
constant

C3(n,K) = eC2(n,K) (n+ 6)(n− 1)(2n)n exp (2ε2(K)− 3 log 3 + [K : Q])
n! ,

and C2(n,K) is defined in Theorem 5.4.

Proof. — By the upper bound of b′(X ) given in Proposition 4.4, we have

b′(X ) 6 exp (2ε2(K)− 3 log 3 + [K : Q])

· (δ−2 − δ−4)
(
h(X) +

(
3 log δ + δ log 3 + log

(
n+ δ

δ

)))
6 exp (2ε2(K)− 3 log 3 + [K : Q]) δ−2 (h(X) + (3δ + 2δ + δ log(n+ 1)))
6 (n+ 6) exp (2ε2(K)− 3 log 3 + [K : Q]) max{δ−2h(X), δ−1}.

We denote by GK(X) = HK(X)
n!

(n−1)(2n)n δ
−1− 1

n−1
> 1 for simplicity, where

the last inequality is obtained by definition directly. Then by an elementary
calculation, we have

b′(X )

HK(X)
n!

(n−1)(2n)n δ
−1− 1

n−1

6 (n+ 6) exp (2ε2(K)− 3 log 3 + [K : Q])

·
max

{
δ
−1+ 1

n−1 (n−1)(2n)n
n![K:Q] logGK(X), δ−1

}
GK(X)

6
(n+ 6)(n− 1)(2n)n exp (2ε2(K)− 3 log 3 + [K : Q])

n! δ−1+ 1
n−1 .

We have the assertion by taking the above estimate into Theorem 5.4. �

Compared with Corollary 5.5, the result below has a better dependence on
the degree of the original hypersurface but a little worse dependence on the
bound of heights.

Corollary 5.6. — We keep all the notations and conditions in Theorem 5.4.
Then there exists a hypersurface of degree smaller than

C ′3(n,K)δ3− 1
n−1

HK(X)
n!

(n−1)(2n)n δ
−1− 1

n−1
Bn/((n−1)δ1/(n−1)) max

{
logB

[K : Q] , 1
}
,

which covers S(X;B) but does not contain the generic point of X, where the
constant

C ′3(n,K) = −eC2(n,K)C1(n)(n+ 6)(2n)n exp (2ε2(K)− 3 log 3 + [K : Q])
(n− 1)! ,
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C1(n) is defined in (30), C2(n,K) is defined in Theorem 5.4 and HK(X) is
defined in Definition 2.5.

Proof. — If

logB
[K : Q] <

(n− 1)!
δ(2n)n h(X) + C1(n),

then by Proposition 5.2, S(X;B) can be covered by a hypersurface of degree
no more than 2δ + n− 1, which does not contain the generic point of X. The
upper bound of the degree satisfies the bound provided in the statement.

If
logB

[K : Q] >
(n− 1)!
δ(2n)n h(X) + C1(n),

which is equivalent to

h(X) 6 δ(2n)n

(n− 1)! ·
logB

[K : Q] −
δ(2n)n

(n− 1)!C1(n),

then we deal with it as follows. Similarly to the proof of Corollary 5.5, we have

b′(X ) 6 (n+ 6) exp (2ε2(K)− 3 log 3 + [K : Q]) max{δ−2h(X), δ−1},

where b′(X ) is the same as in Proposition 4.4 and Theorem 5.4. Then we have

b′(X )

HK(X)
n!

(n−1)(2n)n δ
−1− 1

n−1

6
(n+ 6) exp (2ε2(K)− 3 log 3 + [K : Q]) δ−1

HK(X)
n!

(n−1)(2n)n δ
−1− 1

n−1

·max
{

(2n)n

(n− 1)!

(
logB

[K : Q] − C1(n)
)
, 1
}

6
−C1(n)(n+ 6)(2n)n exp(2ε2(K)− 3 log 3 + [K :Q])

(n− 1)!HK(X)
n!

(n−1)(2n)n δ
−1− 1

n−1
δ−1 max

{
logB

[K :Q] , 1
}
,

and we obtain the assertion by taking the above inequality into Theorem 5.4.
�

6. Counting rational points in plane curves

As applications of Corollary 5.5 and Corollary 5.6 we have the following
uniform upper bounds of the number of rational points with bounded height
in plane curves.
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6.1. A generalization over an arbitrary number field. — The following result
generalizes [10, Theorem 2] over an arbitrary number field, which has the op-
timal dependence on the bound of heights.

Theorem 6.1. — Let X be a geometrically integral curves in P2
K of degree δ.

Then we have

#S(X;B) 6 C3(2,K)δ4B2/δ,

where the constant C3(2,K) is defined in Corollary 5.5. In addition, we have

#S(X;B)�K δ4B2/δ.

Proof. — We apply the Bézout theorem in the intersection theory (cf. [16,
Proposition 8.4]) to X and the auxiliary hypersurface determined in Corollary
5.5 for the case of n = 2, and then we obtain the result. �

6.2. A better dependence on the degree. — In this part, we will provide another
uniform upper bound of rational points with bounded height in plane curves.
This result has a better dependence on the degree than that of Theorem 6.1,
but a bit worse dependence on the bound of heights.

Theorem 6.2. — Let X be a geometrically integral curves in P2
K of degree δ.

Then we have

#S(X;B) 6 C ′3(2,K)δ3B2/δ max
{

logB
[K : Q] , 1

}
,

where the constant C ′3(2,K) is defined in Corollary 5.6. In addition, we have

#S(X;B)�K δ3B2/δ logB,

when B > exp([K : Q]).

Proof. — This is the same application of the Bézout theorem in the intersection
theory (cf. [16, Proposition 8.4]) to Corollary 5.6 as that of Corollary 6.1 when
n = 2, where we take HK(X) > 1 defined in Definition 2.5 into consideration.

�

Remark 6.3. — It seems that the upper bound given in Theorem 6.1 and
Theorem 6.2 are not optimal. Actually, for a geometrically integral plane curve
X ↪→ P2

Q of degree δ, Heath-Brown conjectured the uniform upper bound

#S(X;B)� δ2B2/δ.

By the examples given in [10, §6], the exponent 2 of δ in the above conjecture
would be optimal.
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7. Explicit estimates under the assumption of GRH

Under the assumption of GRH (the generalized Riemann hypothesis)
for the Dedekind zeta function of the number field K, we have more explicit
estimates of

θK(x) =
∑

N(p)6x

logN(p), ψK(x) =
∑

N(p)6x

logN(p)
N(p) , and

φK(x) =
∑

N(p)6x

logN(p)
N(p) 3

2
,

where x ∈ R+, p ∈ SpmOK , and N(p) = #(OK/p). With these results, we are
able to obtain more explicit estimates of in the global determinant method and
more explicit estimates in the densities of rational points. In this section, we
will give explicit estimates of the remainders of the above θK(x), ψK(x) and
φK(x).

7.1. Explicit estimates of the distribution of prime ideals with bounded norms.
— In order to obtain explicit estimates, first we refer to a result in [20] under
the assumption of GRH. Then by the same technique as in [37], we get an
explicit generalization of Mertens’ first theorem. If we do not need the explicit
version, it is not necessary to assume GRH.

Let ∆K be the discriminant of the number field K. By [20, Corollary 1.3],
if x > 3, we have

|θK(x)− x| 6
√
x

((
1

2π log
(

18.8x
log2 x

)
+ 2.3

)
log ∆K

+
(

1
8π log2

(
18.8x
log2 x

)
+ 1.3

)
[K : Q] + 0.3 log x+ 14.6

)

6
√
x log2 x (log ∆K + [K : Q])

(
1

2π(log2 x)
log
(

18.8x
log2 x

)
+ 3.6

+ 1
8π(log2 x)

log2
(

18.8x
log2 x

)
+ 0.3 1

log x + 14.6 1
log2 x

)

under the assumption of GRH. Since x > 3, we obtain

|θK(x)− x| 6 528
√
x log2 x (log ∆K + [K : Q])(39)

by Mathematica under the same assumption.
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Similarly to the application of [37, Lemma 2.1] to the proof of [37, Lemma
2.3], by Abel’s summation formula, we have

ψK(x) = θK(x)
x

+
∫ x

2

θK(t)
t2

dt.

From (39), we have∣∣∣∣ψK(x)− 1−
∫ x

2

1
t
dt

∣∣∣∣ 6 528 (log ∆K + [K : Q])
(

log2 x√
x

+
∫ x

2

log2 t

t
3
2
dt

)
.

Then by an elementary calculation executed by Mathematica, we obtain

|ψK(x)− log x| 6 9550 (log ∆K + [K : Q])(40)

for x > 3 under the assumption of GRH.
As above, we have

φK(x) = θK(x)
x

3
2

+ 3
2

∫ x

2

θK(t)
t

5
2

dt.

Then from (39), we obtain∣∣∣∣φK(x)− 1√
x
− 3

2

∫ x

2

1
t

3
2
dt

∣∣∣∣ 6 792(log ∆K + [K : Q])
(

log2 x

x
+
∫ x

2

log2 t

t2
dt

)
.

Then after an elementary calculation executed by Mathematica, we have∣∣∣∣φK(x)− 3
2
√

2 + 2
x

1
2

∣∣∣∣ 6 2516 log2 x

x
(log ∆K + [K : Q])(41)

uniformly for all x ∈ R+ under the assumption of GRH.

7.2. Estimates of remainders. — We compare (23) with (39), (24) with (40)
and (25) with (41). Then we can suppose

ε1(K,x) = 528
√
x log2 x (log ∆K + [K : Q])

in (23),

ε2(K) = 9550 (log ∆K + [K : Q])

in (24) and

ε3(K,x) = 2516 log2 x

x
(log ∆K + [K : Q])

in (25) under the assumption of GRH. We take the above estimates of ε1(K,x),
ε2(K) and ε3(K,x) into Proposition 4.4, (31) and (32), and then we obtain
a more explicit estimate in Theorem 5.4. Hence, the estimates in Corollary
5.5, Corollary 5.6, Theorem 6.1 and Theorem 6.2 are more explicit under the
assumption of GRH.
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Remark 7.1. — In addition to the case of K = Q, if we work over some other
particular number fields, the assumption of the generalized Riemann hypothesis
may not be obligatory. For example, in [22, Theorem 2], we are able to do it
over totally imaginary fields. It depends on the understanding of the zero-free
region of the Dedekind zeta function of the number field K.

Appendix A. An explicit lower bound of Qξ(r)

In this Appendix, we give an explicit lower bound of the function Qξ(r)
defined in (5) for the case of hypersurfaces.

In the following proof of Proposition A.1, the inequality
(N −m+ 1)m

m! 6

(
N

m

)
6

(N − (m− 1)/2)m

m!
will be very useful, where N and m are two positive integers, and N > m > 1.

Proposition A.1. — Let X be a hypersurface of Pnk , ξ be a closed point in
X and µξ be the multiplicity of ξ in X induced by its local Hilbert–Samuel
function. The function Qξ(r) is defined in the equality (5). Then we have

Qξ(r) >
(

(n− 1)!
µξ

) 1
n−1

(
n− 1
n

)
r

n
n−1 − n3 + 2n2 + n− 4

2n(n+ 1) r.

Proof. — For the case of hypersurfaces, by [26, Example 2.70 (2)], we have

Hξ(s) =
(
n+ s− 1

s

)
−
(
n+ s− µξ − 1

s− µξ

)
.

We define the function Uξ(k) = Hξ(0) + · · ·+Hξ(k), and then we have

Uξ(k) =
k∑
j=0

(
n+ j − 1

j

)
−

k∑
j=0

(
n+ j − µξ − 1

j − µξ

)

=
(
n+ k

n

)
−
(
n+ k − µξ

n

)
.

Then we obtain

Qξ(Uξ(k)) =
n∑
j=0

jHξ(j)

=
k∑
j=0

j

(
j + n− 1
n− 1

)
−

k∑
j=0

j

(
n+ j − µξ − 1

n− 1

)

= n

(
k + n

n+ 1

)
− n

(
k − µξ + n

n+ 1

)
− µξ

(
n+ k − µξ

n

)
.
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Let r ∈]Uξ(k − 1), Uξ(k)]. By the definition of Qξ(r) in the equality (5), we
have the inequality

Qξ(Uξ(k − 1)) 6 Qξ(r) 6 Qξ(Uξ(k)).

So, we have

Qξ(r) = Qξ(Uξ(k − 1)) + k(r − Uξ(k − 1))

= n

(
n+ k − 1
n+ 1

)
− n

(
n+ k − µξ − 1

n+ 1

)
− µξ

(
n+ k − µξ − 1

n

)
+ kr − k

(
n+ k − 1

n

)
+ k

(
n+ k − µξ − 1

n

)
= kr +

(
n+ k − µξ
n+ 1

)
−
(
n+ k

n+ 1

)
.(42)

In order to get a lower bound of Qξ(r), we need to estimate the term(
n+ k − µξ
n+ 1

)
−
(
n+ k

n+ 1

)
.

In fact, we have the estimate[(
n+ k

n+ 1

)
−
(
n+ k − µξ
n+ 1

)]/
Uξ(k − 1)

=
[(
n+ k

n+ 1

)
−
(
n+ k − µξ
n+ 1

)]/[(n+ k − 1
n

)
−
(
n+ k − µξ − 1

n

)]
= (n+ k)(n+ k − 1) · · · k − (n+ k − µξ) · · · (k − µξ)

(n+ 1)[(n+ k − 1) · · · k − (n+ k − µξ − 1) · · · (k − µξ)]

=
(n+k)(n+k−1)

k−1
(n+k−2)···(k−1)

(n+k−µξ−1)···(k−µξ) − (n+ k − µξ)[
n+k−1
k−1

[ (n+k−2)···(k−1)
(n+k−µξ−1)···(k−µξ)

]
− 1
]
(n+ 1)

= 1
n+ 1

[
n+ k + µξ

n+k−1
k−1 ·

(n+k−2)···(k−1)
(n+k−µξ−1)···(k−µξ) − 1

]

6
1

n+ 1

[
n+ k + µξ(

n+k−1
n+k−µξ−1

)n − 1

]
= 1
n+ 1

[
n+ k + (n+ k − µξ − 1)n

(n+ k − 1)n−1 + · · ·+ (n+ k − µξ − 1)n−1

]
6

1
n+ 1

(
n+ k + n+ k − µξ − 1

n

)
= (n+ 1)k + n2 + n− µξ − 1

n(n+ 1) .
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By the equality (42), we obtain

Qξ(r) = kr +
(
n+ k − µξ
n+ 1

)
−
(
n+ k

n+ 1

)
> kr − (n+ 1)k + n2 + n− µξ − 1

n(n+ 1) Uξ(k − 1)(43)

> kr − (n+ 1)k + n2 + n− µξ − 1
n(n+ 1) r

= (n2 − 1)k − n2 − n+ µξ + 1
n(n+ 1) r

=
(
n− 1
n

k − n2 + n− µξ − 1
n(n+ 1)

)
r,

where we use the estimate Uξ(k − 1) < r in the inequality (43). In addition,
we obtain the inequality

r 6 Uξ(k) =
(
n+ k

n

)
−
(
n+ k − µξ

n

)
=

µξ∑
j=1

(
n+ k − j
n− 1

)

6
1

(n− 1)!

µξ∑
j=1

(k + n

2 − j + 1)n−1.

In addition, we have
µξ∑
j=1

(k + n

2 − j + 1)n−1 6 µξ
(
k + n

2

)n−1
.

Then

k >
1

n−1
√
µξ

n−1
√

(n− 1)!r − n

2 .

Finally, we have

Qξ(r) >
(
n− 1
n

(
1

n−1
√
µξ

n−1
√

(n− 1)!r − n

2

)
− n2 + n− µξ − 1

n(n+ 1)

)
r

>

(
(n− 1)!
µξ

) 1
n−1

(
n− 1
n

)
r

n
n−1 − n3 + 2n2 + n− 4

2n(n+ 1) r,

for µξ > 1. Then we obtain the result. �
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