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PARAMETRIC GEOMETRY OF NUMBERS OVER A NUMBER
FIELD AND EXTENSION OF SCALARS
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Dedicated to Jeff Thunder on his 60th birthday.

Abstract. — The parametric geometry of numbers of Schmidt and Summerer deals
with rational approximation to points in Rn. We extend this theory to a number field
K and its completion Kw at a place w in order to treat approximation over K to points
in Kn

w . As a consequence, we find that exponents of approximation over Q in Rn have
the same spectrum as their generalizations over K in Kn

w . When w has relative degree
1 over a place ` of Q, we further relate approximation over K to a point ξ in Kn

w , to
approximation over Q to a point Ξ in Qnd

` obtained from ξ by extension of scalars,
where d is the degree of K over Q. By combination with a result of P. Bel, this allows
us to construct algebraic curves in R3d defined over Q, of degree 2d, containing points
that are very singular with respect to rational approximation.
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258 A. POËLS & D. ROY

Résumé (Géométrie paramétrique des nombres sur un corps de nombres et extension
des scalaires). — La géométrie paramétrique des nombres de Schmidt et Summerer
étudie l’approximation rationnelle des points de Rn. Nous étendons cette théorie à un
corps de nombres K et à son complété Kw en une place w pour traiter de l’approxima-
tion sur K des points de Kn

w . Nous en déduisons que les exposants d’approximation
sur Q des points de Rn possèdent le même spectre que leurs généralisations sur K

dans Kn
w . Lorsque w est de degré relatif égal à un au-dessus d’une place ` de Q, nous

relions aussi l’approximation sur K d’un point ξ de Kn
w à celle sur Q du point Ξ de

Qnd
` obtenu à partir de ξ par extension des scalaires, où d désigne le degré de K sur

Q. En combinant cette observation à un résultat de P. Bel, nous parvenons ainsi à
construire des courbes algébriques dans R3d définies sur Q, de degré 2d, contenant des
points qui sont très singuliers vis à vis de l’approximation rationnelle.

1. Introduction

In Diophantine approximation, one is interested in measuring how well a
given non-zero point ξ ∈ Rn with n ≥ 2 can be approximated by subspaces
of Rn defined over Q of a given dimension k. The most important cases are
k = 1 and k = n − 1, and each naturally gives rise to a pair of exponents of
approximation. For k = 1, they are λ̂(ξ) (resp. λ(ξ)) defined as the supremum
of all real numbers λ for which the inequalities

‖x‖ ≤ Q and ‖x ∧ ξ‖ ≤ Q−λ(1)

have a non-zero solution x ∈ Zn for each large enough Q ≥ 1 (resp. for arbi-
trarily large values of Q ≥ 1). For k = n−1, they are ω̂(ξ) (resp. ω(ξ)) defined
as the supremum of all real numbers ω for which the inequalities

‖x‖ ≤ Q and |x · ξ| ≤ Q−ω(2)

have a non-zero solution x ∈ Zn for each large enough Q ≥ 1 (resp. for arbi-
trarily large values of Q ≥ 1), where the dot represents the usual scalar product
in Rn. This is independent of the choice of norms in Rn and in

∧2 Rn, but for
convenience, we use the Euclidean norms. As these exponents depend only on
the class of ξ in Pn−1(R), we may assume that ‖ξ‖ = 1. We refer the reader
to the paper by Laurent [9] for generalizations in intermediate dimensions k.

While studying such exponents, it is important to restrict ourselves to points
ξ ∈ Rn with Q-linearly independent coordinates, as this yields simpler state-
ments and can be achieved by dropping redundant coordinates if necessary.
For such points, a result of Dirichlet gives

(n− 1)−1 ≤ λ̂(ξ) ≤ λ(ξ) and n− 1 ≤ ω̂(ξ) ≤ ω(ξ).

However, this does not fully describe the spectrum of (λ̂, λ, ω̂, ω), namely the
set of all quadruples (λ̂(ξ), λ(ξ), ω̂(ξ), ω(ξ)) associated with these ξ. For n = 2,
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a complete description is simply given by

1 = λ̂(ξ) = ω̂(ξ) ≤ λ(ξ) = ω(ξ) ≤ ∞

For n = 3, the description is more complicated and was achieved by Laurent in
[8], showing it as a semi-algebraic set. One of the constraints that it involves
is the following remarkable identity due to Jarník [7, Satz 1],

1
λ̂(ξ)

− 1 = 1
ω̂(ξ)− 1 ,(3)

which together with 2 ≤ ω̂(ξ) ≤ ∞ fully describes the spectrum of the pair
(λ̂, ω̂). For n ≥ 4, the spectrum of the four exponents is not known, but
Marnat [11] has shown that it contains an open subset of R4, and thus obeys
no algebraic relation such as (3).

Much of the recent progress, including the breakthrough of Marnat and
Moshchevitin [12] who determined the spectra of the pairs (λ̂, λ) and (ω̂, ω) for
each n ≥ 3, use Schmidt’s and Summerer’s parametric geometry of numbers
[22] in a crucial way. In the dual but equivalent setting of [17], this theory
attaches to any point ξ ∈ Rn with ‖ξ‖ = 1, the family of symmetric convex
bodies of Rn

Cξ(q) = {x ∈ Rn ; ‖x‖ ≤ 1 and |x · ξ| ≤ e−q} ⊆ Rn

parametrized by real numbers q ≥ 0. For each j = 1, . . . , n, let Lξ,j(q) denote
the logarithm of the j-th minimum of Cξ(q) with respect to Zn, namely the
smallest real number t such that etCξ(q) contains at least j linearly independent
points of Zn. Then, form the map

Lξ : [0,∞) −→ Rn
q 7−→ (Lξ,1(q), . . . , Lξ,n(q)) .(4)

Transposed in this setting, the main results of Schmidt and Summerer in [22]
can be summarized as follows. Firstly, they note that the standard exponents
of approximation to ξ, including the four mentioned above, are given by simple
formulas in terms of the inferior and superior limits of the ratios Lξ,j(q)/q as
q goes to infinity. Secondly, they show the existence of a constant γ ≥ 0 and
of a continuous piecewise linear map P : [0,∞) → Rn with growth conditions
involving γ, such that the difference Lξ − P is bounded. Thus, the above-
mentioned exponents of approximation to ξ can be computed, via the same
formulas, in terms of the behaviour of P at infinity. They call such a map P an
(n, γ)-system, and their set increases as the deformation parameter γ increases.
The (n, 0)-systems, whose simpler description is recalled in Section 2, are simply
called n-systems for brevity.

The main result of [17] provides a converse and shows more precisely that
the set of maps Lξ with ξ ∈ Rn and ‖ξ‖ = 1 coincides with the set of n-
systems modulo the additive group of bounded functions from [0,∞) to Rn.
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260 A. POËLS & D. ROY

Moreover, ξ has Q-linearly independent coordinates if and only if any corre-
sponding n-system P = (P1, . . . , Pn) satisfies limq→∞ P1(q) =∞. This reduces
the determination of the spectrum of a family of exponents of approximation
to a combinatorial problem about such n-systems.

A similar theory is developed in [19], with Q replaced by a field of rational
functions in one variable F (T ) over an arbitrary field F , and R replaced by the
completion F ((1/T )) of F (T ) for the degree valuation.

The first goal of this paper is to extend the theory to a number field K and
its completion Kw at a place w, in order to study approximation over K to an
arbitrary non-zero point ξ of Kn

w . In the next section, we show how to attach
to such a point a function Lξ : [0,∞) → Rn from which the four exponents of
approximation to ξ can be computed in the same way as in the case where K is
Q, and w is its place at infinity. We will show that this set of maps also coincides
with the set of n-systems modulo bounded functions. Thus, the spectrum of
these exponents remains the same in this new context. In particular, Jarník’s
identity (3) holds for any point ξ of K3

w with linearly independent coordinates
over K.

The second goal of this paper deals with extension of scalars from Q to a
number field K. For this, we assume that w is a place of K of relative degree
1 over Q, so that Kw = Q` for the place ` of Q induced by w. We also choose
a basis α = (α1, . . . , αd) of K over Q and for each point ξ = (ξ1, . . . , ξn) ∈ Kn

w
we define

Ξ = α⊗ ξ = (α1ξ, . . . , αdξ) ∈ Knd
w = Qnd`(5)

and say that Ξ is obtained from ξ by extending scalars from Q to K. If ξ
has linearly independent coordinates over K, then Ξ has linearly independent
coordinates over Q, and we will show a close relationship between the maps Lξ

and LΞ. From this, we will deduce formulas linking the Diophantine exponents
of approximation to ξ over K with those of Ξ over Q. As a consequence, we
will see that Jarník’s identity (3) yields

1
λ̂(Ξ)

− (2d− 1) = d2

ω̂(Ξ)− (2d− 1) ,(6)

for any Ξ = α ⊗ ξ ∈ Q3d
` constructed from a point ξ ∈ K3

w with K-linearly
independent coordinates.

Let ` be a place of Q. We say that a point ξ ∈ Qn` is very singular if it
has linearly independent coordinates over Q and satisfies λ̂(ξ) > 1/(n − 1).
This requires n ≥ 3. Moreover, by Schmidt’s subspace theorem, such a point
is not algebraic, and so it generates a field Q(ξ) of transcendence degree at
least 1 over Q. The third goal, and the initial motivation of this paper, is to
provide new examples of very singular points of transcendence degree 1. Up
to now, all known examples come from dimension n = 3 and, apart from the
constructions of [16], they are all of the form ξ = (1, ξ, ξ2). Moreover, the

tome 151 – 2023 – no 2



PARAMETRIC GEOMETRY OF NUMBERS AND EXTENSION OF SCALARS 261

supremum of λ̂(1, ξ, ξ2) for a transcendental number ξ ∈ Q` is 1/γ ' 0.618,
where γ = (1 +

√
5)/2 denotes the golden ratio. For Q` = R, this follows from

the constructions of [14, 15] together with the upper bound of [6, Theorem 1a].
For a prime number `, this follows from [25, Chapter 2] or [3] together with [23,
Théorème 2]. More generally, in [1], Bel showed that the result extends to any
number field K and its completion Kw at a place w. Assuming that w extends
` with relative degree 1 and choosing a basis α = (α1, . . . , αd) of K over Q,
we will deduce that Q3d

` contains very singular points of the form (α, ξα, ξ2α)
with ξ ∈ Q`.

2. Notation and main results

Throughout this paper, we fix an algebraic extension K of Q of finite de-
gree d.

2.1. Absolute values. — We denote by M(K) the set of non-trivial places of
K and by M∞(K) the subset of its archimedean places. For each v ∈ M(K),
we denote by Kv the completion of K at v and by dv = [Kv : Qv] its local
degree. When v ∈M∞(K), we normalize the absolute value | |v on Kv so that
it extends the usual absolute value | |∞ on Q. Then Kv embeds isometrically
into C. We identify it with its image R or C and write v | ∞. Otherwise, there
is a unique prime number p with |p|v < 1, and we ask that |p|v = p−1, so that
| |v extends the usual p-adic absolute value on Q. We then write v | p. For
these normalizations and for each a ∈ K∗, the product formula reads∏

v∈M(K)

|a|dv/d
v = 1.

2.2. Local norms and heights. — Given a positive integer n and a place v in
M(K), we define the norm of a point x = (x1, . . . , xn) in Kn

v by

‖x‖v =

(|x1|2v + · · ·+ |xn|2v )1/2 if v | ∞,

max{|x1|v, . . . , |xn|v} otherwise.

For this choice of local norms, we define the height of a non-zero point x in Kn

by

H(x) =
∏

v∈M(K)

‖x‖dv/d
v .

By the product formula, it depends only on the class of x in Pn−1(K) and
satisfies H(x) ≥ 1.

More generally, for each k ∈ {1, . . . , n} and each v ∈ M(K), we define the
norm of a point in

∧k
Kn

v to be the norm of its set of Plücker coordinates in
KN

v , where N =
(
n
k

)
. We also define the height of a point in

∧k
Kn to be

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



262 A. POËLS & D. ROY

the height of its set of Plücker coordinates in KN . This is independent of the
ordering of these coordinates. Then, we define the height of a k-dimensional
subspace V of Kn to be

H(V ) = H(x1 ∧ · · · ∧ xk)
independently of the choice of a basis (x1, . . . ,xk) of V over K. For the sub-
space 0 of Kn, we set H(0) = 1.

2.3. The canonical bilinear form. — We endow Kn with the bilinear form
given by

x · y = x1y1 + · · ·+ xnyn,(7)
for each x = (x1, . . . , xn) and y = (y1, . . . , yn) in Kn. Then we define the
orthogonal space to a subspace V of Kn to be

V ⊥ = {y ∈ Kn ; x · y = 0 for each x ∈ V }.(8)

According to a result of Schmidt, it has the same height H(V ⊥) = H(V ) as V .
For each v ∈ M(K), the same formula (7) provides a bilinear form on Kn

v ,
which we denote in the same way. For a subspace V of Kn

v , we also define V ⊥
by (8) but allowing y to run through Kn

v .

2.4. Exponents of approximation. — Fix a place w ∈ M(K) and a non-zero
point ξ ∈ Kn

w . For each non-zero x ∈ Kn, we slightly modify the notation of
P. Bel in [1] by setting

D∗ξ(x) =
(‖x ∧ ξ‖w

‖ξ‖w

)dw/d ∏
v 6=w
‖x‖dv/d

v ,

Dξ(x) =
( |x · ξ|w
‖ξ‖w

)dw/d ∏
v6=w
‖x‖dv/d

v .

In view of the product formula, these numbers depend only on the class of x
in Pn−1(K). Clearly, they also depend only on the class of ξ in Pn−1(Kw). So,
in practice, we may always normalize ξ so that ‖ξ‖w = 1.

Definition 2.1. — We denote by λ̂(ξ,K,w) (resp. λ(ξ,K,w)) the supremum
of all real numbers λ for which the inequalities

H(x) ≤ Q and D∗ξ(x) ≤ Q−λ

admit a non-zero solution x ∈ Kn, for all sufficiently large (resp. for arbitrarily
large) real numbers Q ≥ 1. We also denote by ω̂(ξ,K,w) (resp. ω(ξ,K,w)) the
supremum of all real numbers ω for which the inequalities

H(x) ≤ Q and Dξ(x) ≤ Q−ω

admit a non-zero solution x ∈ Kn, for all sufficiently large (resp. for arbitrarily
large) real numbers Q ≥ 1.
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By construction, these numbers depend only on the class of ξ in Pn−1(Kw).
Moreover, when K = Q and w = ∞, these are simply the standard exponents
of approximation to a non-zero point ξ ∈ Rn from the Introduction. Indeed,
each point of Pn−1(Q) is represented by a primitive integer point x, that is
a point of Zn with relatively prime coordinates, and we have H(x) = ‖x‖,
D∗ξ(x) = ‖x ∧ ξ‖ and Dξ(x) = |x · ξ| when ‖ξ‖ = 1.

We can now state the main result of P. Bel in [1] to which we alluded in the
Introduction.

Theorem 2.2 (Bel, 2013). — Let w ∈ M(K), and let S denote the set of
elements of K3

w of the form ξ = (1, ξ, ξ2) that have linearly independent coor-
dinates over K. Then, the supremum of the numbers λ̂(ξ,K,w) with ξ ∈ S is
1/γ ' 0.618, where γ = (1 +

√
5)/2 stands for the golden ratio.

2.5. Two dual families of minima. — Let w and ξ ∈ Kn
w be as in Section 2.4.

For each j = 1, . . . , n and each q ≥ 0, we define Lξ,j(q) (resp. L∗ξ,j(q) ) to be
the smallest real number t ≥ 0 for which the conditions

H(x) ≤ et and Dξ(x) ≤ et−q
(
resp. D∗ξ(x) ≤ et−q

)
(9)
admit at least j linearly independent solutions over K in Kn. This minimum
exists since, for any number B ≥ 1, there are only finitely many elements of
Pn−1(K) of height at most B. We combine these functions into two maps

Lξ = (Lξ,1, . . . , Lξ,n) and L∗ξ = (L∗ξ,1, . . . , L∗ξ,n)

from [0,∞) to Rn. For K = Q and Kw = R, the map Lξ is the same as in the
Introduction.

2.6. Then-systems. — Let q0 ∈ [0,∞). An n-system on [q0,∞) is a continuous
function P = (P1, . . . , Pn) from [q0,∞) to Rn with the following combinatorial
properties.
(S1) We have 0 ≤ P1(q) ≤ · · · ≤ Pn(q) and P1(q) + · · · + Pn(q) = q for each

q ∈ [q0,∞).
(S2) There exist s ∈ {1, 2, . . .} ∪ {∞} and a strictly increasing sequence

(qi)0≤i<s in [q0,∞), which is unbounded if s = ∞, such that, over
each subinterval Ii = [qi−1, qi] with 1 ≤ i < s including Is = [qs−1,∞) if
s <∞, the union of the graphs of P1, . . . , Pn decomposes as the union of
some horizontal line segments and one line segment Γi of slope 1 (with
possible crossings), which all project down onto Ii.

(S3) For each index i with 1 ≤ i < s, the line segment Γi ends strictly above
the point where Γi+1 starts (on the vertical line with abscissa qi).

The sequence (qi)0≤i<s is uniquely determined by P. Its elements are called
the switch numbers of P. We say that an n-system is rigid of mesh c, for a
given c > 0, if the n coordinates of P(qi) are distinct positive multiples of c for

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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each index i with 0 ≤ i < s. Then each qi is also a positive multiple of c by
condition (S1). See [17, Figure 1] for a picture showing the combined graph of
a rigid 5-system with s = 3.

For each n-system P = (P1, . . . , Pn) : [q0,∞)→ Rn, we define its dual to be
the map P∗ : [q0,∞)→ Rn given by

P∗(q) =
(
q − Pn(q), q − Pn−1(q), . . . , q − P1(q)

)
for each q ≥ q0.(10)

Note that P∗ is not an n-system unless n = 2, in which case P∗ = P.

2.7. Main results. — With the notation of §2.5, we will show that the main
result of parametric geometry of numbers from [17] naturally extends to the
present more general setting. We state it below in dual form as well.

Theorem A. — Let n ≥ 2 be an integer and let w ∈ M(K). There are
constants c, c′ > 0 depending only on K, w and n with the following property.
For each non-zero point ξ ∈ Kn

w , there is an n-system P on [0,∞) such that

sup
q≥0
‖Lξ(q)−P(q)‖ ≤ c and sup

q≥0
‖L∗ξ(q)−P∗(q)‖ ≤ c.(11)

Conversely, for each n-system P on [0,∞), there is a non-zero point ξ ∈ Kn
w

for which one of the two conditions in (11) holds. Then the second condition
holds with c replaced by c′.

This means, in particular, that the two conditions in (11) are equivalent up
to the value of the constant c. For n = 1, the statement of Theorem A is also
true but not interesting because there is a unique 1-system P on [0,∞), and
it satisfies P(q) = Lξ(q) = q and P∗(q) = L∗ξ(q) = 0 for any q ≥ 0 and any
non-zero ξ ∈ Kw. The next result deals with extension of scalars from Q to K.

Theorem B. — Let n ≥ 2 be an integer, let w ∈ M(K) be a place of K of
relative degree dw = 1 over a place ` of Q, and let α ∈ Kd be a basis of K over
Q. There is a constant c′′ > 0 with the following property. For each non-zero
ξ ∈ Kn

w , the point Ξ = α⊗ ξ ∈ Qnd` (defined in (5)) satisfies

|LΞ,d(i−1)+j(dq)− Lξ,i(q)| ≤ c′′,
|L∗Ξ,d(i−1)+j(dq)− L∗ξ,i(q)− (d− 1)q| ≤ c′′

(12)

for any choice of q ≥ 0, i = 1, . . . , n and j = 1, . . . , d.

Again, the two sets of conditions in (12) in terms of the functions L and L∗
are equivalent up to the value of c′′. Our last main result provides very singular
points on projective algebraic curves of degree 2d defined and irreducible overQ.
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Theorem C. — Suppose that K embeds in Q` for a place ` of Q. Identify K
with its image and choose a basis α ∈ Qd` of K over Q. Then we have

sup
{
λ̂
(
(α, ξα, ξ2α),Q, `

)
; ξ ∈ Q` and [K(ξ) : K] > 2

}
= (dγ2 − 1)−1,

sup
{
ω̂
(
(α, ξα, ξ2α),Q, `

)
; ξ ∈ Q` and [K(ξ) : K] > 2

}
= d(γ2 + 1)− 1,

where γ = (1 +
√

5)/2 stands for the golden ratio.

Since 2<γ2< 3, this, indeed, provides very singular points (α, ξα, ξ2α)∈Q3d
` .

2.8. Outline of the paper. — Most of the paper is devoted to the proof of
Theorem A. This is done in two steps, which we briefly sketch below.

We first show in Section 7 how to attach an n-system to a non-zero point
ξ ∈ Kn

w . The general strategy is similar to that of Schmidt and Summerer in
[22], but we need the adelic versions of Minkowski’s convex body theorem and
of Mahler’s theory of compound bodies recalled in Section 4. We also need
a notion of distance λ(x, C) between a non-zero point x of Kn and an adelic
convex body C, and a related notion of adelic minima for C defined in Section 5.
With those tools, we construct a family of adelic convex bodies Cξ(q) whose
minima are closely related to the map Lξ(q), and we obtain information on this
map by considering approximate compounds C(k)

ξ (q) of Cξ(q). The existence of
an n-system that approximates Lξ(q) up to a bounded function then follows
from a combinatorial result of [17] that is recalled in Section 6.

The combinatorial result of Section 6 is also used in order to attach a point
ξ to an n-system. It shows that we simply have to do it for a rigid n-system R
with a large mesh. The construction of ξ is done in Section 9. We work over the
ring OS of S-integers of K, where S consists of w and all archimedean places
of K. We recursively construct a sequence of ordered bases x(i) of OnS over
OS , one for each of the switch points qi of R. The basis x(i) will realize, up to
bounded factors, the successive minima of the adelic convex body Cξ(q) in the
interval between qi and qi+1 for the point ξ that we want (as illustrated, for
example, in [17, Figure 2]). Each basis x(i), except for the first, is constructed
from the preceding x(i−1) by modifying only one point of it and by moving
the new point up in the sequence, according to the behaviour of the map R
between qi−1 and qi. This new point is obtained by multiplying the old one by
an appropriate S-unit and by adding to this product a linear combination of
some other points of x(i−1) with coefficients in OS , in order to keep control of
the geometry of x(i) in Kn

v for each place v of S. For the places v distinct from
w, this is done so that the image of x(i) in Kn

v remains bounded and almost
orthogonal in a sense that is defined in Section 3. Furthermore, at the place w,
the norms of the basis elements of x(i) in Kn

w are governed by the coordinates
of R(qi), and the subsequence of x(i) common to x(i+1) is almost orthogonal.
Then the lines of Kn

w that are orthogonal to these subsequences for the dot
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product converge to a line whose generator ξ has the required property. The
local estimates that are needed are developed in Section 3, and the recursive
procedure is presented in Section 8, together with crucial estimates for local
norms at the place w expressed in terms of heights only.

With the help of Theorem A, we show in Section 10 that the spectrum of
the four exponents (ω, ω̂, λ, λ̂) is independent of K and w and that it can be
computed in terms of n-systems. We also extend the intermediate exponents
of Laurent to the number field setting and derive the same conclusion for their
spectrum.

Finally, Theorems B and C are proved in Section 12 using a general con-
struction in adelic geometry of numbers from Section 11 that is reminiscent of
work of Jeff Thunder in [24].

3. Local metric estimates

For the sake of generality, we fix here an arbitrary local field L, namely a
complete field with respect to an absolute value | | which either is archimedean
or has a discrete valuation group |L∗| in R∗. For our applications, this will
be Kv for some place v of K. If L is archimedean, we identify it with R or
C through an isometric field embedding in C (unique up to composition with
complex conjugation). Otherwise, we denote by O = {x ∈ L ; |x| ≤ 1} the
valuation ring of L. In this section, we define notions of orthogonality and
distance and provide several estimates that will be needed in later sections
(cf. [17, §4]).

3.1. Norms and orthogonality. — Let k and n be integers with 1 ≤ k ≤ n and
let U be a vector space over L of dimension n. If L ⊆ C, we equip U with
the Euclidean norm associated to an inner product on U (real if L = R and
complex if L = C). Then there is a unique inner product on

∧k
U such that,

for any orthonormal basis (u1, . . . ,un) of U , the products ui1 ∧ · · · ∧ uik with
1 ≤ i1 < · · · < ik ≤ n form an orthonormal basis of

∧k
U , and we equip this

space with the associated Euclidean norm. If L is not archimedean, the ring
O is a principal ideal domain, and we equip U with the maximum norm with
respect to some basis of U over L. Then, the unit ball B for that norm is the
free rank n sub-O-module of U generated by this basis, and, for each x ∈ U ,
we have

‖x‖ = min{|a| ; a ∈ L and x ∈ aB}.

Moreover, the sub-O-module
∧kB of

∧k
U generated by the products of k

elements of B is free of rankN =
(
n
k

)
, and we equip

∧k
U with the corresponding

norm.
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If V is a subspace of U , we endow it with the induced norm. This norm
is admissible because, if L 6⊆ C, it is associated to the sub-O-module B ∩ V
of V , which is free of rank dimL(V ). We say that subspaces V1, . . . , Vm of V
are (topologically) orthogonal and, following the notation of [19, §2.2], we write
their sum as

V1 ⊥top · · · ⊥top Vm,

if, for any choice of (x1, . . . ,xm) ∈ V1 × · · · × Vm, we have

‖x1 + · · ·+ xm‖ =
{

(‖x1‖2 + · · ·+ ‖xm‖2)1/2 if L ⊆ C,
max{‖x1‖, . . . , ‖xm‖} otherwise.

When L ⊆ C, this is the usual notion, and it amounts to asking that V1, . . . , Vm
be pairwise orthogonal. However, when L is non-archimedean, the latter con-
dition is necessary but not sufficient. We say that a point x ∈ U is orthogonal
to a subspace V of U if 〈x〉L and V are orthogonal. We say that an m-tuple
of vectors (x1, . . . ,xm) ∈ Um is orthogonal if the subspaces 〈x1〉L, . . . , 〈xm〉L
that they span are orthogonal. We say that it is orthonormal if, moreover, they
have norm 1. Again, these are the usual notions when L ⊆ C. When L 6⊆ C,
an orthonormal basis of U is simply a basis of B as an O-module. In general,
an m-tuple of non-zero vectors (x1, . . . ,xm) of U is orthogonal (resp. orthonor-
mal) if and only if it can be extended to an orthogonal (resp. orthonormal)
basis (x1, . . . ,xn) of U . We will also need the following criterion.

Lemma 3.1. — With the above notation, let x1, . . . ,xm ∈ U \ {0}. Then, we
have

‖x1 ∧ · · · ∧ xm‖ ≤ ‖x1‖ · · · ‖xm‖,

with equality if and only if (x1, . . . ,xm) is orthogonal.

On Ln we have the canonical bilinear form or dot product given by (7) for
any pair of points x = (x1, . . . , xn) and y = (y1, . . . , yn) in Ln. If L ⊆ C, this
is connected with the inner product

(x,y) := x · y = x1y1 + · · ·+ xnyn,

where y = (y1, . . . , yn) denotes the complex conjugate of y, and we equip Ln
with the corresponding Euclidean norm. Otherwise, we equip Ln with the
maximum norm, so that its unit ball is On. When L = Kv, this agrees with
the definitions of Section 2.2 both for the norm on Ln and the corresponding
norm on

∧k
Ln. We conclude with the following observation.

Lemma 3.2. — Let (u1, . . . ,un) be an orthonormal basis of Ln. The dual basis
(u∗1, . . . ,u∗n) of Ln with respect to the dot product is also orthonormal.
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Proof. — If L ⊆ C, then u∗j is the complex conjugate uj of uj for each index
j = 1, . . . , n, thus (u∗i ,u∗j ) = (ui,uj) = δi,j for each i, j ∈ {1, . . . , n}, and we
are done. If L 6⊆ C, then (u1, . . . ,un) is a basis of On as an O-module, thus
(u∗1, . . . ,u∗n) is also a basis of On as needed. �

3.2. Distances. — Again, let 1 ≤ k ≤ n be integers and let U be a vector
space over L of dimension n equipped with an admissible norm, as above. By
the choice of norm on Ln, a basis (u1, . . . ,un) of U is orthonormal if and
only if the linear map from Ln to U sending a point (a1, . . . , an) ∈ Ln to
a1u1 + · · · + anun ∈ U is an isometry. We consider the following notions of
distance.

Definition 3.3. — The (projective) distance between non-zero points x and
y of U , or between the lines 〈x〉L and 〈y〉L that they generate, is

dist(x,y) := dist(〈x〉L, 〈y〉L) := ‖x ∧ y‖
‖x‖‖y‖ ∈ [0, 1].

If V1, V2 are subspaces of U of the same dimension k, then
∧k

V1,
∧k

V2 are
one-dimensional subspaces of

∧k
U , and we define

dist(V1, V2) = dist
(∧k

V1,
∧k

V2
)
.

As Schmidt notes in [20, §8], the distance between non-zero points of U
satisfies the triangle inequality when L ⊆ C. When L is non-archimedean, we
state below a stronger inequality, which we leave to the reader.

Lemma 3.4. — For any non-zero points x1,x2,x3 ∈ U , we have

dist(x1,x3) ≤
{

dist(x1,x2) + dist(x2,x3) if L ⊆ C,
max{dist(x1,x2), dist(x2,x3)} else.

The same holds if xj is replaced by a subspace Vj of U of dimension k ≥ 1 for
j = 1, 2, 3.

The second assertion of the lemma follows from the first when k = 1. The
general case where k > 1 follows by considering the lines

∧k
Vj inside

∧k
U .

For any subspace V of U , we can write U = W ⊥top V for some other
subspace W of U . It suffices to choose an orthonormal basis (u1, . . . ,uk) for V
(empty if V = 0), to complete it to an orthonormal basis (u1, . . . ,un) of U
and to take W = 〈uk+1, . . . ,un〉L. So, we may write any x ∈ U in the form
x = w + v with w ∈W orthogonal to V and v ∈ V . If L ⊆ C, this decomposi-
tion is unique. In general, it is not unique, but the next result shows that ‖w‖
is independent of the decomposition (upon noting that w = 0 when x = 0).
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Lemma 3.5. — Let V be a non-zero subspace of U and let x ∈ U \ {0}. Write
x = w + v with w orthogonal to V and v ∈ V . Then we have

dist(x, V ) := min
{

dist(x,y) ; y ∈ V \ {0}
}

= ‖w‖
‖x‖ .(13)

Proof. — Let y ∈ V \ {0}. Since w is orthogonal to V , it is orthogonal to y.
So, the products w ∧ y and v ∧ y are orthogonal in

∧2
U . Consequently, we

find

dist(x,y) = ‖w ∧ y + v ∧ y‖
‖x‖ ‖y‖ ≥ ‖w ∧ y‖

‖x‖ ‖y‖ = ‖w‖
‖x‖ ,

with equality everywhere, if v = 0 or if y = v 6= 0. �

By Lemma 3.1, non-zero points x, y of U are orthogonal if and only if
dist(x,y) = 1. Thus, with the notation of Lemma 3.5, the point x is orthogonal
to V if and only if dist(x, V ) = 1. Moreover, we have x ∈ V if and only if
dist(x, V ) = 0. We also note the following alternative formula for dist(x, V ).

Lemma 3.6. — Let x and V be as in Lemma 3.5 and let (y1, . . . ,yk) be a basis
of V . Then we have

dist(x, V ) = ‖x ∧ y1 ∧ · · · ∧ yk‖
‖x‖‖y1 ∧ · · · ∧ yk‖

.(14)

Proof. — Since the right-hand side of (14) is independent of the choice of
(y1, . . . ,yk), we may assume that this basis is orthogonal. Then, for the de-
composition x = w + v of Lemma 3.5, the sequence (w,y1, . . . ,yk) is also
orthogonal. Thus, using Lemma 3.1, we find

‖x ∧ y1 ∧ · · · ∧ yk‖ = ‖w ∧ y1 ∧ · · · ∧ yk‖ = ‖w‖ ‖y1 ∧ · · · ∧ yk‖,

and so the right-hand side of (14) reduces to ‖w‖/‖x‖ = dist(x, V ). �

For the next crucial lemma, we apply the previous results with U = Ln.

Lemma 3.7. — Suppose that n ≥ m ≥ 2 for an integer m. Let V1, V2 be
subspaces of Ln of dimension m− 1 for which W = V1 ∩ V2 has dimension at
least m− 2. Then we have

dist(V1, V2) = max
{

dist(x, V2) ; x ∈ V1 \ {0}
}
.(15)

Moreover, if V1 6= V2, if (w1, . . . ,wm−2) is a basis of W , and if vi ∈ Vi \W
for i = 1, 2, then upon writing ω = w1 ∧ · · · ∧wm−2 we have

dist(V1, V2) = ‖ω‖ ‖ω ∧ v1 ∧ v2‖
‖ω ∧ v1‖ ‖ω ∧ v2‖

.(16)
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Proof. — We may assume that V1 6= V2 since otherwise both sides of (15) are
zero. We also note that the right-hand side of (16) is independent of the choice
of w1, . . . ,wm−2,v1,v2. So, we choose for (w1, . . . ,wm−2) an orthonormal
basis of W and we complete it to an orthonormal basis (w1, . . . ,wm−2,v2,u)
of V1 + V2 with v2 ∈ V2. We also choose a unit vector v1 ∈ V1 of the form
v1 = av2 + bu with (a, b) ∈ L2. Then (w1, . . . ,wm−2,vi) is an orthonormal
basis of Vi for i = 1, 2 and we have ‖(a, b)‖ = 1. Moreover, the pair (ω∧v2, ω∧u)
is orthonormal in

∧m−1
Ln. Since ω ∧ v1 = aω ∧ v2 + bω ∧ u, we deduce that

dist(V1, V2) = dist(ω ∧ v1, ω ∧ v2) = |b|.

This proves (16) since ‖ω∧v1∧v2‖ = ‖bω∧u∧v2‖ = |b|. Finally, let x ∈ V1\{0}
and write x = w + tv1 with w ∈ W and t ∈ L. Then, x = tbu + v, where
v = w + tav2 ∈ V2, and u is orthogonal to V2. So, Lemma 3.5 gives

dist(x, V2) = |tb|
‖x‖ ≤

|tb|
|t|

= |b|

with equality if x = v1. This proves (15). �

Corollary 3.8. — Let V1, V2 be as in Lemma 3.7 and let x ∈ Ln \{0}. Then
we have

dist(x, V2) ≤
{

dist(x, V1) + dist(V1, V2) if L ⊆ C,
max{dist(x, V1),dist(V1, V2)} else.

Proof. — Choose y1 ∈ V1 \ {0} such that dist(x,y1) = dist(x, V1), and
y2 ∈ V2 \ {0} such that dist(y1,y2) = dist(y1, V2). By Lemma 3.7, we have
dist(y1,y2) ≤ dist(V1, V2). As dist(x, V2) ≤ dist(x,y2), the conclusion follows
from the triangle inequality of Lemma 3.4 applied to x, y1 and y2. �

3.3. Duality. — For each k = 0, . . . , n, the dot product on Ln =
∧1
Ln induces

a non-degenerate bilinear map from
∧k

Ln×
∧k

Ln to L, also denoted by a dot
and given on pure products by

(x1 ∧ · · · ∧ xk) · (y1 ∧ · · · ∧ yk) = det(xi · yj),

with the convention that, for k = 0, the empty wedge product is 1 ∈ L =
∧0
Ln,

and the empty determinant is 1 as well.
Let (e1, . . . , en) denote the canonical basis of Ln and let E = e1 ∧ · · · ∧ en.

For k as above, there is a unique isomorphism ϕk :
∧k

Ln →
∧n−k

Ln such that

(X ∧Y) ·E = ϕk(X) ·Y,

for any X ∈
∧k

Ln and Y ∈
∧n−k

Ln. If (u1, . . . ,un) is any basis of Ln
with u1 ∧ · · · ∧ un = E, and if (u∗1, . . . ,u∗n) denotes the dual basis of Ln for
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the dot product, a short computation shows that, for any k-tuple of integers
i = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n, we have

ϕk(ui1 ∧ · · · ∧ uik ) = ε(i, j)u∗j1
∧ · · · ∧ u∗jn−k

,(17)

where j = (j1, . . . , jn−k) denotes the complementary increasing sequence of
integers for which (i, j) is a permutation of (1, . . . , n), and ε(i, j) ∈ {−1, 1} is
the signature of this permutation. In particular, if we choose (u1, . . . ,un) to
be the canonical basis of Ln, which is its own dual, this formula shows that ϕk
is an isometry. Furthermore, if V is a subspace of Ln of dimension k, we may
choose (u1, . . . ,un) so that (u1, . . . ,uk) is a basis of V . Then (u∗k+1, . . . ,u∗n)
is a basis of the subspace

V ⊥ = {y ∈ Ln ; x · y = 0 for each x ∈ V },

and the same formula implies that

ϕk(
∧k

V ) =
∧n−k

V ⊥.

As ϕk is an isometry, it preserves the distance, and so we conclude as follows.

Lemma 3.9. — For any pair of subspaces V1, V2 of Ln of the same dimension
k with 0 < k < n, we have

dist(V1, V2) = dist(V ⊥1 , V ⊥2 ).

In particular, if V1, V2 have dimension n − 1 > 0, and if V ⊥i = 〈ui〉L for
i = 1, 2, then dist(V1, V2) = dist(u1,u2). When L = R, this observation also
follows from [17, Lemma 4.4].

3.4. Almost orthogonal sequences. — We set

δ =
{

1 if L ⊆ C,
0 otherwise

(18)

and say that a non-empty sequence (x1, . . . ,xm) in Ln is almost orthogonal if
it is linearly independent over L and satisfies

dist(xj , 〈x1, . . . ,xj−1〉L) ≥ 1− δ/2j−1 (2 ≤ j ≤ m).

Thus, almost orthogonal means orthogonal when L is non-archimedean. As
in [17, §4], we note that any non-empty subsequence of an almost orthogonal
sequence is almost orthogonal. Since

∏
j≥2(1 − δ/2j−1) ≥ e−2δ, we find the

following estimate (cf. [17, Lemma 4.6]).

Lemma 3.10. — For any almost orthogonal sequence (x1, . . . ,xm) in Ln, we
have

e−2δ‖x1‖ · · · ‖xm‖ ≤ ‖x1 ∧ · · · ∧ xm‖ ≤ ‖x1‖ · · · ‖xm‖.
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The next crucial result is analogous to [17, Lemma 4.7]. It uses the conven-
tion that a hat on an element of a sequence or product means that this element
is omitted from the sequence or product.

Lemma 3.11. — Let k, `, m be integers with 1 ≤ k < ` ≤ m ≤ n and let
y1, . . . ,ym be linearly independent points of Ln. Suppose that each of the
sequences (y1, . . . , ŷ` , . . . ,ym) and (y1, . . . , ŷk, . . . ,ym) is almost orthogonal.
Then, the subspaces

V1 = 〈y1, . . . , ŷ` , . . . ,ym〉L and V2 = 〈y1, . . . , ŷk , . . . ,ym〉L
that they span in Ln satisfy

dist(V1, V2) ≤ e4δ ‖y1 ∧ · · · ∧ ym‖
‖y1‖ · · · ‖ym‖

.

Proof. — Upon setting ω = y1∧ · · ·∧ ŷk ∧ · · ·∧ ŷ` ∧ · · ·∧ym, Lemma 3.7 gives

dist(V1, V2) = ‖ω‖ ‖y1 ∧ · · · ∧ ym‖
‖ω ∧ y`‖ ‖ω ∧ yk‖

.

The conclusion follows because, by Lemma 3.10,

‖ω ∧ y`‖ ‖ω ∧ yk‖ ≥ e−4δ(‖y1‖ · · · ‖̂yk‖ · · · ‖ym‖
)(
‖y1‖ · · · ‖̂y`‖ · · · ‖ym‖

)
≥ e−4δ‖ω‖

(
‖y1‖ · · · ‖ym‖

)
.

�

We conclude with a simple estimate.

Lemma 3.12. — For any unit vectors u,u′ ∈ Ln and any x ∈ Ln, we have

|x · u| ≤ 2δ max{|x · u′|, ‖x‖dist(u,u′)}.(19)

Proof. — We have ‖(x·u)u′−(x·u′)u‖ ≤ ‖x‖ ‖u∧u′‖ for any x,u,u′ ∈ Ln. �

When x · u′ = 0, this simply becomes |x · u| ≤ 2δ‖x‖ dist(u,u′).

4. Adelic geometry of numbers

For each place v of K, we form the compact set

Ov = {x ∈ Kv ; |x|v ≤ 1}.

When v - ∞, this is the ring of integers of Kv, and we follow MacFeat [13] in
normalizing the Haar measure µv on Kv so that µv(Ov) = 1. When v | ∞, we
set µv to be the Lebesgue measure on Kv, with µv(Ov) = 2 if Kv = R, and
µv(Ov) = π if Kv = C. We also denote by µv the product measure on Kn

v .
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The ring of adèles of K is the subring KA of
∏

v∈M(K)Kv, which consists of
the sequences (av) with av ∈ Ov for all but finitely v. It is endowed with the
unique topology that extends the product topology on the set

OA :=
∏
v|∞

Kv ×
∏
v-∞

Ov

and makes KA into a locally compact ring with OA as an open subring. Then
K embeds in KA as a discrete subring via the diagonal map. We denote by µ
the Haar measure on KA whose restriction to OA is the product of the µv, and
we use the same notation for the product measure on Kn

A .
When v | ∞, a (Minkowski) convex body of Kn

v is any compact convex
neighbourhood Cv of 0 such that a Cv ⊆ Cv for each a ∈ Ov. When v - ∞,
this is any finitely generated (thus free and compact) Ov-submodule Cv of Kn

v
of rank n. Finally, a convex body of Kn

A is any product C =
∏

v Cv where Cv

is a convex body of Kn
v for each v, and Cv = Onv for all but finitely v. Then

the induced topology on C coincides with the usual product topology, and its
volume µ(C) =

∏
v µv(Cv) is finite and positive.

For each j = 1, . . . , n, we define the j-th minimum λj(C) of a convex body
C =

∏
v Cv of Kn

A to be the smallest λ > 0 for which the dilated convex body

λ C =
∏
v|∞

(
λ Cv

)∏
v-∞

Cv

contains at least j linearly independent elements of Kn over K. With this
notation, the adelic version of Minkowski’s theorem reads as follows [13, 2].

Theorem 4.1 (McFeat, 1971; Bombieri and Vaaler, 1983). — For any convex
body C of Kn

A , we have

(λ1(C) · · ·λn(C))d µ(C) � 1,

with implicit constants that depend only on K and n.

We refer the reader to [13, Theorems 5 and 6], [2, Theorems 3 and 6] and
[24, Corollary of Theorem 1] for explicit lower bounds and upper bounds. In
particular, this result implies that, if the volume µ(C) of C is large enough, then
λ1(C) ≤ 1, and so C contains a non-zero point of Kn.

More generally, fix an integer k with 1 ≤ k ≤ n and set N =
(
n
k

)
. The

K-linear isomorphism from
∧k

Kn to KN that sends a point to its Plücker
coordinates extends to a Kv-linear topological isomorphism from

∧k
Kn

v to KN
v

and to a KA-linear topological isomorphism from
∧k

Kn
A to KN

A . Identifying
these pairs of spaces, we obtain a measure µv on

∧k
Kn

v for each v ∈ M(K)
and a measure µ on

∧k
Kn

A . This also provides the notion of a (Minkowski)
convex body Kv of

∧k
Kn

v for each v ∈M(K) and of a convex body K =
∏

vKv
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of
∧k

Kn
A , as well as the notion of the j-th minimum λj(K) of K with respect

to
∧k

Kn, for each j = 1, . . . , N .
Let C =

∏
v Cv be a convex body of Kn

A . Its k-th compound is the convex
body

∧k C =
∏

v(
∧k Cv) of

∧k
Kn

A whose component
∧k Cv at a place v is the

smallest Minkowski convex body of
∧k

Kn
v containing all products x1∧· · ·∧xk

of k elements x1, . . . ,xk of Cv. In particular, we have
∧1 C = C. In this context,

E. B. Burger extended Mahler’s theory of compound bodies in [5]. Leaving out
the explicit values of the constants from [5, Theorem 1.2], he showed that the
minima of these convex bodies are related as follows.

Theorem 4.2 (Burger, 1993). — With the above notation, order the N prod-
ucts λi1(C) · · ·λik (C) with 1 ≤ i1 < · · · < ik ≤ n into a non-decreasing sequence
Λ1 ≤ · · · ≤ ΛN . Then, for each j = 1, . . . , N , we have

λj

(∧kC) � Λj ,

with implicit constants depending only on K and n.

We note that Λ1 = λ1(C) · · ·λk(C), and that Λ2 = λ1(C) · · ·λk−1(C)λk+1(C)
if k < n. Moreover, if x1, . . . ,xn are linearly independent elements ofKn which
realize the successive minima of C in the sense that xi ∈ λi(C)C for i = 1, . . . , n,
then X = x1∧· · ·∧xk belongs to Λ1

∧kC. Thus, by the above theorem, the first
minimum of

∧kC is realized up to a bounded factor by the pure product X.
In practice, the compounds of a given convex body are difficult to compute

exactly. So, we instead use approximations of them, like in the standard theory
(see [21, Chapter IV, §7]).

5. Dilations

The group of idèles of K is the group K∗A of invertible elements of KA. It
contains the multiplicative groupK∗ ofK as a subgroup. We define the module
|a|A of an idèle a = (av) ∈ K∗A by

|a|A =
∏

v∈M(K)

|av|dv/d
v ∈ R>0

and recall that |α|A = 1 for any α ∈ K∗. Then, for each convex body C =
∏

v Cv

of Kn
A , the product

a C =
∏

v∈M(K)

(av Cv)

is a convex body of volume µ(a C) = |a|dnA µ(C). This construction extends the
definition of λC with λ ∈ R>0 by identifying any such λ with the idèle having
component λ at each archimedean place v | ∞ and component 1 at all other
places.
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Definition 5.1. — For C as above and for each non-zero x ∈ Kn, we set

λ(x, C) = min{|a|A ; a ∈ K∗A and x ∈ aC}.(20)

For each j = 1, . . . , n, we also define λAj (C) to be the smallest λ > 0 for which
there are at least j linearly independent elements x of Kn with λ(x, C) ≤ λ.

The minimum exists in (20) because for each v ∈M(K) there is a non-zero
av ∈ Kv with |av|v minimal, such that x ∈ avCv, and we may choose av = 1 for
all but finitely many v. Moreover, by the product formula, the value λ(x, C),
which we view as a sort of distance from x to C, depends only on the class of x
in Pn−1(K). In particular, it is independent of x if n = 1. We also note that,
for any given t > 0, the non-zero points x of Kn with λ(x, C) ≤ t have height
at most ct for a constant c > 0 depending only on C. So these points x belong
to finitely many classes in Pn−1(K), and for them λ(x, C) takes finitely many
values in [0, t]. Hence, there is a basis (x1, . . . ,xn) of Kn over K such that
λAj (C) = λ(xj , C) for each j = 1, . . . , n. In particular, it is sensible to define
each λAj (C) as a minimum.

To compare these minima to those of MacFeat and Bombieri–Vaaler, we
need the following special case of the strong approximation theorem from [10,
Theorem 3].

Lemma 5.2. — There exists a constant c1 = c1(K) > 0 with the following
property. For each a = (av) ∈ K∗A with |a|A ≥ c1, there exists α ∈ K∗ such
that |α|v ≤ |av|v for each v ∈M(K).

Note that this also follows from the adelic version of Minkowski’s theorem,
because, for given a = (av) ∈ K∗A, the set of points (xv) ∈ KA with |xv|v ≤ |av|v
for all v is the convex body aB ofKA of volume |a|dAµ(B), where B =

∏
vOv. So,

if |a|A is large enough, Theorem 4.1 gives λ1(aB) ≤ 1, and thus aB contains
some non-zero element of K.

Proposition 5.3. — Let C be a convex body of Kn
A and let j ∈ {1, . . . , n}.

Then, we have

c−1
1 λj(C) ≤ λAj (C) ≤ λj(C),(21)

where c1 comes from Lemma 5.2. Moreover, for each idèle a ∈ K∗A, we also
have

λAj (a C) = |a|−1
A λAj (C).(22)

Proof. — Set λ = λAj (C) and choose a set F of j linearly independent points x
of Kn with λ(x, C) ≤ λ. Given x ∈ F , there exists a ∈ K∗A with |a|A ≤ λ such
that x ∈ aC. As the idèle a′ = (a′v) := c1λa

−1 satisfies |a′|A ≥ c1, Lemma 5.2
provides α ∈ K∗, such that |α|v ≤ |a′v|v for each v ∈M(K), and then the point
αx of Kn belongs to αaC ⊆ a′aC = c1λC. Doing this for each x ∈ F , we obtain
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j linearly independent points of Kn in c1λC. This means that λj(C) ≤ c1λ,
which amounts to the first inequality in (21).

To prove the second inequality in (21), set λ = λj(C). Then λC contains
at least j linearly independent elements of Kn. As |λ|A = λ, this implies that
λAj (C) ≤ λ, and we are done.

Finally, (22) follows from the definitions and the multiplicativity of the mod-
ule on K∗A. �

In view of our identifications (see Section 4), the above results and definitions
apply with C replaced by any convex body K =

∏
vKv of

∧k
Kn

A for any integer
1 ≤ k ≤ n, provided that n is replaced by N =

(
n
k

)
and that Kn is replaced by∧k

Kn.

6. A combinatorial result

In preparation for the proof of Theorem A in the next sections, we will
need the following result from [17]. We refer the reader to Section 2.6 for the
definition of an n-system.

Proposition 6.1. — Let c ≥ 0. Suppose that, for each k = 1, . . . , n, there are
continuous functions Lk : [0,∞)→ R and Mk : [0,∞)→ R which are piecewise
linear with slopes 0 and 1 and which satisfy the following properties:

(1) 0 ≤ L1(q) ≤ · · · ≤ Ln(q) ≤ q for each q ≥ 0;
(2) |Mk(q)− L1(q)− · · · − Lk(q)| ≤ c for each k = 1, . . . , n and each q ≥ 0;
(3) Mn(q) = q for each q ≥ 0;
(4) if, for some integer k with 1 ≤ k < n and some q > 0, the function Mk

changes slope from 1 to 0 at q, then |Lk+1(q)− Lk(q)| ≤ 2c.
Choose c′ > 24n3c and set

ti = (1 + 2 + · · ·+ i)c′ for i = 0, 1, . . . , n.

Then there exists an n-system R = (R1, . . . , Rn) on [0,∞), whose restriction
to [tn,∞) is rigid of mesh c′, such that

(5) max1≤k≤n |Lk(q)−Rk(q)| ≤ 4n2c′ for each q ≥ 0;
(6) R(ti) =

(
0, . . . , 0, c′, 2c′, . . . , ic′

)
for each i = 0, 1, . . . , n.

Proof. — Define M0 = 0 and Pk = Mk − Mk−1 for k = 1, . . . , n. Also
put γ = 6c. By adapting the proof of [17, Theorem 2.9], we find that the
map P = (P1, . . . , Pn) : [0,∞) → Rn is an (n, γ)-system in the sense of [17,
Definition 2.8], with |Lk(q) − Pk(q)| ≤ γ for each q ≥ 0 and k = 1, . . . , n.
Then, arguing as in the proof of [17, Theorem 8.2], we obtain a rigid n-system
R = (R1, . . . , Rn) : [tn,∞) → Rn of mesh c′, which satisfies condition (5) for
each q ≥ tn. In particular, R(tn) is a strictly increasing sequence of positive
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integer multiples of c′ with sum tn, and so R(tn) = (c′, 2c′, . . . , nc′). From this
it follows that R extends uniquely to an n-system on [0,∞) satisfying condi-
tion (6) (see the proof of [17, Theorem 8.1]). For each k = 1, . . . , n and each
q ≥ 0, we have 0 ≤ Lk(q), Rk(q) ≤ q, and thus |Lk −Rk| is bounded above by
max{tn, 4n2c′} = 4n2c′ on [0,∞). �

Note that, for c = 0, the hypotheses of Proposition 6.1 amount to asking
that the map L := (L1, . . . , Ln) itself be an n-system on [0,∞) (and that
Mk = L1 + · · · + Lk for each k = 1, . . . , n). In fact, this is how n-systems are
defined in [17, §2.5] (where they are called (n, 0)-systems). From this, we infer
the following result of the approximation.

Corollary 6.2. — Let L = (L1, . . . , Ln) be an n-system on [0,∞), let c′ > 0,
and let q0 = (n2−n+1)c′/2. Then, there exists an n-system R = (R1, . . . , Rn)
on [0,∞) whose restriction to [q0,∞) is rigid of mesh c′/2, which satisfies
max1≤k≤n |Lk(q)−Rk(q)| ≤ 4n2c′ for each q ≥ 0, and for which R1 has slope 1
on [q0, q0 + c′/2].

Proof. — The conditions (1)–(4) of Proposition 6.1 are satisfied for the choice
of c = 0 and of Mk = L1 + · · · + Lk for each k = 1, . . . , n. So its conclusion
applies for the given c′. Consider the resulting n-system R = (R1, . . . , Rn) on
[0,∞). On [tn−1, tn], the union of the graphs of R1, . . . , Rn consists of n − 1
horizontal line segments of ordinates c′, 2c′, . . . , (n− 1)c′ and one line segment
of slope 1 joining (tn−1, 0) to (tn, nc′). Since q0 = tn−1 + c′/2, we deduce that
R(q0) = (c′/2, c′, 2c′, . . . , (n − 1)c′) and that R1 has slope 1 on [q0, q0 + c′/2].
Finally, since R is rigid of mesh c′ on [tn,∞), it is also rigid of mesh c′/2 on
[q0,∞). �

This corollary will be useful when it comes to approximate an n-system L
by the map Lξ attached to a non-zero point ξ ∈ Kn

w , because it reduces the
problem to approximating an n-system R as in the corollary. The property
that R1 has slope 1 to the right of q0 will simplify the argument.

7. From points to n-systems

The goal of this section is to prove the first and last assertions of Theorem A.
To this end, we fix an integer n ≥ 2, a place w ∈M(K), and a non-zero point
ξ ∈ Kn

w . As Lξ and L∗ξ depend only on the line 〈ξ〉Kw spanned by ξ in Kn
w , we

assume, to simplify the computations, that
‖ξ‖w = 1.

Using the general strategy of Schmidt and Summerer in [22], we will show that
the components L1, . . . , Ln of Lξ satisfy the hypotheses of Proposition 6.1 for
some choice of functions M1, . . . ,Mn and some constant c = c(K,w, n) ≥ 1.
This will ensure the existence of an n-system P : [0,∞) → Rn for which the
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difference Lξ−P is bounded, and we will show that this is equivalent to L∗ξ−P∗
being bounded. The precise argument given below is adapted from [17, §2]. In
all estimates, the implicit constants involved in the symbol � depend only on
K, w and n. We also use the convention that a hat on an element of a sequence
or product means that this element is omitted from the sequence or product.

For each k ∈ {1, . . . , n− 1}, there is a unique bilinear map

Kn
w ×

∧k
Kn

w −→
∧k−1

Kn
w

(y,X) 7−→ y yX

called contraction, which satisfies

y y (x1 ∧ · · · ∧ xk) =
k∑
i=1

(−1)i−1(y · xi)x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk,(23)

for any y,x1, . . . ,xk ∈ Kn
w . For k = 1, this is the dot product y y x = y · x.

We use this to define a map L(k)
ξ as follows.

Definition 7.1. — Let k ∈ {1, . . . , n−1} and let N =
(
n
k

)
. For each non-zero

X ∈
∧k

Kn, we set

Dξ(X) = ‖ξ yX‖dw/d
w

∏
v6=w
‖X‖dv/d

v .

As ‖ξ‖w = 1, this agrees with the definition of Section 2.4 for k = 1. We also
define a map Lξ(X, ·) : [0,∞)→ R by

Lξ(X, q) = max
{

logH(X), q + logDξ(X)} (q ≥ 0).(24)

For each j = 1, . . . , N and q ≥ 0, we denote by L(k)
ξ,j (q) the smallest real number

t ≥ 0 for which there exist at least j linearly independent elements X of
∧k

Kn

for which Lξ(X, q) ≤ t or equivalently for which

H(X) ≤ et and Dξ(X) ≤ et−q.

Finally, we define L(k)
ξ : [0,∞) → RN by L(k)

ξ (q) =
(
L

(k)
ξ,1(q), . . . , L(k)

ξ,N (q)
)
for

each q ≥ 0.

Since, for a non-zero X ∈
∧k

Kn, the numbers H(X) and Dξ(X) depend
only on the class of X in projective space on

∧k
Kn, and since for each B ≥ 1

there are finitely many classes of height at most B, each number L(k)
ξ,j (q) can,

indeed, be defined as a minimum. For k = 1, we recover L(1)
ξ = Lξ. The first

step is to compare these maps with the minima of the following families of
adelic convex bodies.
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Definition 7.2. — Let k and N be as in Definition 7.1. For each q ≥ 0,
we denote by C(k)

ξ (q) the convex body of
∧k

Kn
A , which consists of the points

X = (Xv) satisfying

‖Xv‖v ≤ 1 for each v ∈M(K) and ‖ξ yXw‖w ≤ e−qd/dw .

We also set Cξ(q) = C(1)
ξ (q).

Thus, Cξ(q) consists of the points (xv) ∈ Kn
A satisfying

‖xv‖v ≤ 1 for each v ∈M(K) and |xw · ξ|w ≤ e−qd/dw .

Its volume is µ(Cξ(q)) � e−qd. Applying Definition 5.1, we first obtain the
following estimate.

Lemma 7.3. — Let k ∈ {1, . . . , n − 1}, let X ∈
∧k

Kn \ {0} and let q ≥ 0.
Then, we have

λ(X, C(k)
ξ (q)) � max{H(X), eqDξ(X)} = exp(Lξ(X, q)).

Proof. — An idèle a = (av) ofK of smallest module such that X ∈ aC(k)
ξ (q) has

|av|v = ‖X‖v for each place v 6= w, and |aw|w = max{‖X‖w, r‖ξ yX‖w}, where
r is the smallest element of the valuation group |K∗w|w at w with r ≥ eqd/dw .
The estimate follows since r � eqd/dw and λ(X, C(k)

ξ (q)) = |a|A for such a. �

Lemma 7.4. — Let k ∈ {1, . . . , n− 1} and N =
(
n
k

)
. For each q ≥ 0, we have

0 ≤ L(k)
ξ,1(q) ≤ · · · ≤ L(k)

ξ,N (q) ≤ q,

exp(L(k)
ξ,j (q)) � λj(C

(k)
ξ (q)) (1 ≤ j ≤ N).

(25)

Moreover, the functions L(k)
ξ,j are continuous and piecewise linear with slopes 0

and 1 on [0,∞). Finally, if L(k)
ξ,1 changes slope from 1 to 0 at a point q > 0,

then L(k)
ξ,1(q) = L

(k)
ξ,2(q).

Proof. — For given q ≥ 0 and j ∈ {1, . . . , N}, the number L(k)
ξ,j (q) (resp.

λAj (C(k)
ξ (q))) is, by definition, the minimum of

max
X∈E

exp(Lξ(X, q))
(
resp. max

X∈E
λ(X, C(k)

ξ (q))
)
,(26)

where E runs through all sets of j linearly independent elements of
∧k

Kn.
Taking for E a set of j products ei1 ∧ · · · ∧ eik with 1 ≤ i1 < · · · < ik ≤ n,
where (e1, . . . , en) is the canonical basis of Kn, we deduce that L(k)

ξ,j (q) ≤ q

because those products e have Dξ(e) ≤ 1 = H(e) as ‖ξ‖w = 1. This yields
the first set of inequalities in (25). Using Lemma 7.3, we also deduce that
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exp(L(k)
ξ,j (q)) � λAj (C(k)

ξ (q)). The second set of estimates in (25) then follows
using Proposition 5.3 with

∧k
Kn

A identified to KN
A .

Fix Q > 0. For each q ∈ [0, Q], we have L(k)
ξ,j (q) ≤ q ≤ Q. Thus, in

computing L(k)
ξ,j (q) on [0, Q] in terms of the projective invariants (26), it suffices

to choose E inside a set F of representatives in
∧k

Kn of points of P(
∧k

Kn)
of height at most eQ. Since F is finite, we deduce that L(k)

ξ,j is continuous and
piecewise linear with slopes 0 and 1 on [0, Q]. As Q can be taken arbitrarily
large, this property extends to [0,∞). Finally, if L(k)

ξ,1 changes slope from 1 to
0 at a point q > 0, there exist ε > 0 and X,Y ∈

∧k
Kn, such that

L
(k)
ξ,1(t) =

{
Lξ(X, t) = t+ logDξ(X) for q − ε ≤ t ≤ q,
Lξ(Y, t) = logH(Y) for q ≤ t ≤ q + ε.

Thus, X,Y are linearly independent, and so L(k)
ξ,1(q) = L

(k)
ξ,2(q). �

The next lemma compares the convex body C(k)
ξ (q) with the k-th compound

of Cξ(q).

Lemma 7.5. — Let k and N be as in Lemma 7.4. For each q ≥ 0, we have∧kCξ(q) ⊆ kC(k)
ξ (q) and C(k)

ξ (q) ⊆ N
∧kCξ(q).(27)

Proof. — Fix a choice of q ≥ 0 and, for simplicity, set

C := Cξ(q) =
∏

v

Cv and C(k) := C(k)
ξ (q) =

∏
v

C(k)
v .

Let v ∈M(K) and let Xv = x1 ∧ · · · ∧ xk with x1, . . . ,xk ∈ Cv. We find

‖Xv‖v ≤ ‖x1‖v · · · ‖xk‖v ≤ 1,

thus,Xv ∈ C(k)
v if v 6= w. If v = w, formula (23) also yields ‖ξyXw‖w ≤ kδe−qd/dw ,

where δ = 1 if w | ∞ and δ = 0 else, thus, Xw ∈ kδC(k)
w . This implies the first

inclusion in (27).
To prove the second inclusion, it suffices to show that each Xv ∈ C(k)

v can
be written as a sum of N products of k elements of Cv. For v 6= w, this is
immediate since Cv contains e1, . . . , en and since the products ei1 ∧ · · · ∧ eik
with 1 ≤ i1 < · · · < ik ≤ n form an orthonormal basis ofKn

v . As ‖Xv‖v ≤ 1, the
N coordinates of Xv in this basis have absolute values of at most 1, and we are
done. For v = w, we complete u1 = ξ into an orthonormal basis (u1, . . . ,un) of
Kn

w and we form its dual basis (u∗1, . . . ,u∗n) with respect to the dot product. By
Lemma 3.2, this new basis is also orthonormal. Moreover, we have ξ · u∗1 = 1
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and ξ ·u∗i = 0 for i = 2, . . . , n. Thus, Cw contains u∗2, . . . ,u∗n, as well as cu∗1 for
any c ∈ Kw with |c|w ≤ e−qd/dw . Upon writing

Xw =
∑

1≤i1<···<ik≤n
ci1,...,ik u∗i1 ∧ · · · ∧ u∗ik ,

we find
ξ yXw =

∑
1<i2<···<ik≤n

c1,i2,...,ik u∗i2 ∧ · · · ∧ u∗ik .

As ‖Xw‖w ≤ 1 and ‖ξ yXw‖w ≤ e−qd/dw , we deduce that |ci1,...,ik |w is bounded
above by e−qd/dw if i1 = 1, and by 1 otherwise, so we are done. �

We can now prove the following part of Theorem A.

Proposition 7.6. — There is an n-system P : [0,∞)→ Rn such that ‖Lξ−P‖
is uniformly bounded by a constant depending only on K, w and n.

Proof. — Set Mk = L
(k)
ξ,1 for k = 1, . . . , n − 1 and define Mn(q) = q for each

q ≥ 0. It suffices to show that these functions and the functions Lk = Lξ,k

satisfy all the hypotheses of Proposition 6.1 for some constant c = c(K,w, n).
By Lemma 7.4, we only have to verify conditions (2) and (4) of that proposition.
Theorem 4.1 gives

λ1(Cξ(q)) · · ·λn(Cξ(q)) � µ(Cξ(q))−1/d � eq,(28)
while for each k = 1, . . . , n− 1, Theorem 4.2 provides

λ1
(∧kCξ(q)

)
� λ1(Cξ(q)) · · ·λk(Cξ(q)),

λ2
(∧kCξ(q)

)
� λ1(Cξ(q)) · · ·λk−1(Cξ(q))λk+1(Cξ(q)).

The inclusions of Lemma 7.5 combined with (25) also imply that

λj
(∧kCξ(q)

)
� λj

(
C(k)

ξ (q)
)
� exp(L(k)

ξ,j (q)) for j = 1, . . . ,
(
n

k

)
.

Taking logarithms, we obtain the inequalities of Proposition 6.1 (2), as well as

|L(k)
ξ,2(q)− L1(q)− · · · − Lk−1(q)− Lk+1(q)| ≤ c (1 ≤ k < n, q ≥ 0),

for some constant c = c(K,w, n). Finally, if, for some k < n, the function Mk

changes slope from 1 to 0 at a point q > 0, Lemma 7.4 gives

L
(k)
ξ,2(q) = L

(k)
ξ,1(q) = Mk(q).

Then comparing the last estimate with that of Proposition 6.1 (2), we obtain
|Lk+1(q)−Lk(q)| ≤ 2c. Thus, condition (4) of Proposition 6.1 holds as well. �

To compare approximation to Lξ by an n-system P and approximation to
L∗ξ by the dual map P∗ defined by (10), we first note the following equality.
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Lemma 7.7. — We have L(n−1)
ξ = L∗ξ.

Proof. — Consider the K-linear map ϕ : Kn →
∧n−1

Kn given by

ϕ(x) = x y (e1 ∧ · · · ∧ en),

for each x ∈ Kn. Writing x = (x1, . . . , xn), we find that

ϕ(x) =
n∑
i=1

(−1)i−1xie1 ∧ · · · ∧ êi ∧ · · · ∧ en.

Thus, ϕ is an isomorphism and, for each place v of K, it extends to a Kv-linear
isometry ϕv : Kn

v →
∧n−1

Kn
v given by the same formulas. Moreover, a short

computation shows that

‖ξ y ϕw(x)‖w = ‖x ∧ ξ‖w,

for each x ∈ Kn
w . Thus, for each non-zero x ∈ Kn, we have

H(ϕ(x)) = H(x) and Dξ(ϕ(x)) = D∗ξ(x),

and the conclusion follows since ϕ is an isomorphism. �

Lemma 7.8. — There is a constant c∗ = c∗(K,w, n) such that

|L∗ξ,j(q) + Lξ,k(q)− q| ≤ c∗

for each q ≥ 0 and each j, k ∈ {1, . . . , n} with j + k = n+ 1.

Proof. — For q, j and k as above, Theorem 4.2 combined with (28) provides

λj
(∧n−1Cξ(q)

)
� λ1(Cξ(q)) · · · ̂λk(Cξ(q)) · · ·λn(Cξ(q)) � eq

λk(Cξ(q)) .

Using Lemmas 7.5, 7.4 and 7.7 in this order, we also find

λj
(∧n−1Cξ(q)

)
� λj(C(n−1)

ξ (q)) � exp(L(n−1)
ξ,j (q)) = exp(L∗ξ,j(q)),

while λk(Cξ(q)) � exp(Lξ,k(q)). The conclusion follows by taking logarithms.
�

We deduce the following complement to Proposition 7.6.

Proposition 7.9. — Let P = (P1, . . . , Pn) be an n-system on [0,∞). If one
of the conditions (11) from Theorem A holds with a constant c, then the other
holds with c replaced by c+ c∗

√
n, where c∗ comes from Lemma 7.8.

Proof. — With q, j and k as in Lemma 7.8, the definition of P∗ in (10) gives
P ∗j (q) + Pk(q) = q. Hence, the inequality of the lemma may be restated as∣∣(L∗ξ,j(q)− P ∗j (q)) + (Lξ,k(q)− Pk(q))

∣∣ ≤ c∗,
and the result follows. �
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We conclude this section with the following observation.

Lemma 7.10. — For q ≥ 0, define C∗ξ(q) to be the set of points (xv) ∈ Kn
A

satisfying

‖xv‖v ≤ 1 for each v ∈M(K) and ‖xw ∧ ξ‖w ≤ e−qd/dw .

Then λj(C∗ξ(q)) = λj(C(n−1)
ξ (q)) � exp(L(n−1)

ξ,j (q)) = exp(L∗ξ,j(q)), for each
j = 1, . . . , n.

Proof. — Going back to the proof of Lemma 7.7, we find that the KA-linear
isomorphism ϕA : Kn

A →
∧n−1

Kn
A , which extends ϕ, maps C∗ξ(q) to C(n−1)

ξ (q)
for each q ≥ 0. Thus, these convex bodies have the same minima. The remain-
ing estimates follow from (25) in Lemma 7.4 and from Lemma 7.7. �

8. Construction of bases

As in the preceding section, we assume n ≥ 2 and we fix a place w ∈M(K).
We also set

S = M∞(K) ∪ {w}

and denote by OS = ∩v/∈S(K ∩ Ov) the ring of S-integers of K. The goal of
this section is to provide a general recursive construction of bases of OnS as
an OS-module. In the next section, we will use it to complete the proof of
Theorem A. The general strategy is similar to that of [17, §5] but complicated
by the fact that we need these bases to obey several properties at each place
of S. In particular, we will need them to be almost orthogonal in Kn

v for each
v ∈ S \ {w}, in the sense of Section 3.4 for L = Kv. We start by recalling two
general results of approximation by elements of OS within

∏
v∈S Kv.

The group of S-units of K is the group O∗S of invertible elements of OS . It is
well-known that its image under the logarithmic embedding, namely the set of
points (log |ε|v)v∈S with ε ∈ O∗S , forms a lattice within the hyperplane of RS of
points (xv)v∈S with

∑
v∈S dvxv = 0. Thus, there is a constant c2 = c2(K,S) ≥ 1

with the following property.

Lemma 8.1. — For any choice of positive real numbers (rv)v∈S with∏
v∈S r

dv
v = 1, there exists an S-unit ε ∈ O∗S which satisfies c−1

2 rv ≤ |ε|v ≤ c2rv

for each v ∈ S.

From [10, Theorem 3] of Mahler, there is also a constant c3 = c3(K,S) ≥ 1
with the following property.

Lemma 8.2. — For any (av)v∈S ∈
∏

v∈S Kv and any family of positive real
numbers (tv)v∈S with

∏
v∈S t

dv/d
v ≥ c3, there exists an S-integer α ∈ OS which

satisfies |α− av|v ≤ tv for each v ∈ S.
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In fact, the result of Mahler shows this with a constant c3 that depends only
on K when each tv belongs to the valuation group of Kv. As we do not require
this, our constant c3 depends on S as well, but in a weak form.

From now on, we fix a constant C in the valuation group of Kw, with

C ≥ n2n+1(c3c4)d/dw where c4 = n2n(2ec2)2.(29)

In agreement with the notation of Section 3.4 for L = Kw, we set

δ =
{

1 if w | ∞,
0 otherwise.

For the other places v ∈ S \ {w}, no special notation is needed since they are
all archimedean, and so the results of that section apply to L = Kv with δ = 1.
For convenience, we also define

∆ = {(a1, . . . , an) ∈ Zn ; 0 ≤ a1 ≤ · · · ≤ an}.(30)

We are interested in bases of OnS with three kinds of properties.

Definition 8.3. — Let x = (x1, . . . ,xn) be a basis of OnS over OS . We say
that
• x is admissible if, for any v ∈ S \ {w}, it is almost orthogonal in Kn

v and
satisfies 1 ≤ ‖xj‖v ≤ (2ec2)2 for j = 1, . . . , n;

• x has size a = (a1, . . . , an) ∈ ∆ if Caj ≤ ‖xj‖w ≤ (1 + δ)Caj for
j = 1, . . . , n;

• x has type (k, `) for integers 1 ≤ k < ` ≤ n if

distw
(
x`, 〈x1, . . . , x̂k, . . . ,x`−1〉Kw) ≥ 1− 1

2`−1 .

We start with two quick consequences.

Lemma 8.4. — Suppose that x = (x1, . . . ,xn) is an admissible basis of OnS
over OS of size a = (a1, . . . , an) ∈ ∆. Then, for each index j = 1, . . . , `, we
have Cajdw/d ≤ H(xj) ≤ c5Cajdw/d, where c5 = (2ec2)2.

Proof. — Let j ∈ {1, . . . , n}. For each place v of K not in S, the n-tuple x is
a basis of Onv over Ov, hence ‖xj‖v = 1. This yields H(xj) =

∏
v∈S ‖xj‖

dv/d
v ,

and the conclusion follows. �

Lemma 8.5. — Let k, `, m be integers with 1 ≤ k < ` ≤ m ≤ n and let
y = (y1, . . . ,yn) be an admissible basis of OnS over OS. Suppose that the
subsequences (y1, . . . , ŷ` , . . . ,ym) and (y1, . . . , ŷk, . . . ,ym) are both almost or-
thogonal in Kn

w . Then, the subspaces

V1 = 〈y1, . . . , ŷ` , . . . ,ym〉Kw and V2 = 〈y1, . . . , ŷk, . . . ,ym〉Kw
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that they span in Kn
w satisfy

distw(V1, V2)dw/d ≤ e4H(〈y1, . . . ,ym〉K)
H(y1) · · ·H(ym) .

Proof. — Using Lemma 3.11 with L = Kw, we find

distw(V1, V2)dw/d ≤
(
e4δ ‖y1 ∧ · · · ∧ ym‖w

‖y1‖w · · · ‖ym‖w

)dw/d

= A
H(〈y1, . . . ,ym〉K)
H(y1) · · ·H(ym) ,

where

A = e4δdw/d
∏

v∈S\{w}

(
‖y1‖v · · · ‖ym‖v

‖y1 ∧ · · · ∧ ym‖v

)dv/d

.

Since y is an admissible basis ofOnS , the sequence (y1, . . . ,ym) is almost orthog-
onal in Kn

v for each place v ∈ S other than w. As such a place v is archimedean,
Lemma 3.10 shows that the corresponding factor of A is bounded above by
e2dv/d. This gives A ≤ e4. �

The main result of this section is the following construction which, in essence,
generalizes [17, Lemma 5.1]. The crucial novelty is the introduction of an S-unit
ε in condition (3) below (in the context of [17] where K = Q and S = {∞}, it
would simply be ε = ±1).

Lemma 8.6. — Let h, k, ` be integers with

1 ≤ k < ` ≤ n and 1 ≤ h ≤ ` ≤ n.

Suppose that elements a = (a1, . . . , an) and b = (b1, . . . , bn) of ∆ satisfy
(1) b` > a` and (b1, . . . , b̂` , . . . , bn) = (a1, . . . , âh , . . . , an).

Suppose, moreover, that x = (x1, . . . ,xn) is an admissible basis of OnS over OS
of size a. Then there exists an admissible basis y = (y1, . . . ,yn) of OnS over
OS of size b and type (k, `) such that

(2) (y1, . . . , ŷ` , . . . ,yn) = (x1, . . . , x̂h, . . . ,xn),
(3) y` ∈ εxh + 〈x1, . . . , x̂h, . . . ,x`〉OS

for some ε ∈ O∗S.

Proof. — We use (2) as a definition of y1, . . . , ŷ` , . . . ,yn. Then, the n-tuple
y = (y1, . . . ,yn) is a basis of OnS over OS , for any choice of y` satisfying (3).

We set rv = 2e2c2‖xh‖−1
v for each v ∈ S \{w}, and define rw by the condition∏

v∈S r
dv
v = 1. Since x is admissible, we have rv ≥ (2c2)−1 for v 6= w, so

rdw
w ≤ (2c2)d. Then Lemma 8.1 provides an S-unit ε ∈ O∗S with

2e2 ≤ ‖εxh‖v ≤ 2e2c22 for each v ∈ S \ {w},(31)
|ε|dw

w ≤ (c2rw)dw ≤ (2c2)2d.(32)
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For each v ∈ S, we define
Uv = 〈x1, . . . ,x`〉Kv ,

Vv = 〈x1, . . . , x̂h, . . . ,x`〉Kv = 〈y1, . . . ,y`−1〉Kv

and we choose a unit vector uv ∈ Uv such that
Uv = 〈uv〉Kv ⊥top Vv.

If v 6= w, we write

εxh = cvuv +
`−1∑
j=1

cv,jyj ,(33)

with coefficients cv and cv,j in Kv. For v = w, we also define
Ww = 〈y1, . . . , ŷk, . . . ,y`−1〉Kw

and choose a unit vector vw ∈ Vw such that
Vw = 〈vw〉Kw ⊥top Ww.

This provides a decomposition Uw = 〈uw〉Kw ⊥top 〈vw〉Kw ⊥top Ww. We choose
B ∈ Kw with

|B|w = (1 + δ/2)Cb` .(34)

This is possible because if w - ∞, then δ = 0 and C belongs to the valuation
group of Kw. We then write

εxh = cwuw +Bvw +
`−1∑
j=1

cw,jyj ,(35)

with cw and cw,j in Kw. The approximation lemma 8.2 provides, for each
j = 1, . . . , `− 1, an S-integer αj ∈ OS such that

|αj − cv,j |v ≤ c−1
4 for all v ∈ S \ {w},

|αj − cw,j |w ≤ (c3c4)d/dw ,
(36)

for the constant c4 = n2n(2ec2)2 defined in (29). Then the point

y` = εxh −
`−1∑
j=1

αjyj(37)

fulfills condition (3), and so y = (y1, . . . ,yn) is an OS-basis of OnS .

1° To show that y is admissible, we fix a place v ∈ S \{w} ⊆M∞(K). Since
x is admissible, we directly obtain 1 ≤ ‖yj‖v ≤ (2ec2)2 for each j 6= ` because
of equality (2). As x is almost orthogonal in Kn

v , its subsequence
(x1, . . . , x̂h, . . . ,x`) = (y1, . . . ,y`−1)
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is also almost orthogonal. Moreover, for each integer j with `+ 1 ≤ j ≤ n, we
have xj = yj and 〈x1, . . . ,xj−1〉Kv = 〈y1, . . . ,yj−1〉Kv , and thus

distv
(
yj , 〈y1, . . . ,yj−1〉Kv

)
= distv

(
xj , 〈x1, . . . ,xj−1〉Kv

)
≥ 1− (1/2)j−1.

Since 〈y1, . . . ,y`−1〉Kv = Vv, it only remains to show that

1 ≤ ‖y`‖v ≤ (2ec2)2 and distv(y`, Vv) ≥ 1− (1/2)`−1.(38)

To this end, we first note that, since (x1, . . . ,xn) is almost orthogonal in Kn
v ,

Lemmas 3.6 and 3.10 yield

1 ≥ distv(xh, Vv) = ‖x1 ∧ · · · ∧ x`‖v

‖xh‖v‖x1 ∧ · · · ∧ x̂h ∧ · · · ∧ x`‖v
≥ ‖x1 ∧ · · · ∧ x`‖v

‖x1‖v · · · ‖x`‖v
≥ e−2.

On the other hand, Lemma 3.5 applied to the decomposition of εxh in (33)
gives

distv(xh, Vv) = distv(εxh, Vv) = |cv|v
‖εxh‖v

.

Using the estimates of (31) for ‖εxh‖v, we deduce that

2 ≤ |cv|v ≤ 2e2c22.(39)

Combining (33) and (37), we obtain

y` = cvuv +
`−1∑
j=1

(cv,j − αj)yj .

Using (36), this decomposition of y` implies

‖y` − cvuv‖v ≤
`−1∑
j=1

c−1
4 ‖yj‖v ≤ nc−1

4 (2ec2)2 = 2−n,

and, thus, 1 ≤ ‖y`‖v ≤ (2ec2)2 by (39). Finally, Lemma 3.5 gives

distv(y`, Vv) = |cv|v
‖y`‖v

≥ |cv|v
|cv|v + 2−n ≥

2
2 + 2−n ≥ 1− 1

2n+1 ,

which completes the proof of (38). Thus, y is admissible.

2° We now show that y has size b. Since x has size a, relations (1) and (2)
reduce the problem to showing that

Cb` ≤ ‖y`‖w ≤ (1 + δ)Cb` .(40)

To prove this, we first combine (35) and (37) to obtain

y` = cwuw +Bvw +
`−1∑
j=1

(cw,j − αj)yj ,
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and note that the decomposition of εxh in (35) implies

|cw|w = ‖cwuw‖w ≤ ‖εxh‖w ≤ (2c2)2d/dw‖xh‖w,

where the last estimation comes from (32). Using (36), we deduce that

‖y` −Bvw‖w ≤ |cw|w +
`−1∑
j=1

(c3c4)d/dw‖yj‖w ≤ (c3c4)d/dw
∑̀
j=1
‖xj‖w.

We also note that ‖xj‖w ≤ 2Caj ≤ 2Cb`−1 for j = 1, . . . , ` because x has size
a, and hypothesis (1) gives a1 ≤ · · · ≤ a` < b`. Using hypothesis (29) on C,
we conclude that

‖y` −Bvw‖w ≤ 2n(c3c4)d/dwCb`−1 ≤ 2−nCb` .(41)

Using the value for |B|w in (34), this yields (40). So y has size b.

3° It remains to show that y has type (k, `).
By (41), we have a decomposition y` = Bvw +z with ‖z‖w ≤ 2−n|B|w. Thus,

distw(y`,Ww) ≥ |B|w − ‖z‖w

‖y`‖w
≥ 1− 2−n

1 + 2−n ≥ 1− 1
2n−1 if w | ∞,

distw(y`,Ww) ≥ |B|w
‖y`‖w

= 1 otherwise.

In both cases, this yields distw(y`,Ww) ≥ 1− δ/2`−1. So y has type (k, `). �

We will also need the following complementary result.

Lemma 8.7. — With the same hypotheses and notation, let m be an integer
with ` ≤ m ≤ n.

(i) We have 〈x1, . . . ,xm〉K = 〈y1, . . . ,ym〉K . If m < n, we also have
xm+1 = ym+1.

(ii) If the sequence (x1, . . . , x̂h, . . . ,x`) is almost orthogonal in Kn
w , then the

sequence (y1, . . . , ŷk, . . . ,y`) is also almost orthogonal in Kn
w .

(iii) If both (x1, . . . , x̂h, . . . ,xm) and (y1, . . . , ŷk, . . . ,ym) are almost orthog-
onal in Kn

w , then the subspaces of Kn
w that they span,

V1 = 〈x1, . . . , x̂h, . . . ,xm〉Kw and V2 = 〈y1, . . . , ŷk, . . . ,ym〉Kw

satisfy

distw(V1, V2)dw/d ≤ e4H(〈y1, . . . ,ym〉K)
H(y1) · · ·H(ym) ≤ e

4 c5
Cdw/d

H(〈x1, . . . ,xm〉K)
H(x1) · · ·H(xm) .(42)

When (iii) holds with m < n, estimates (42) together with Corollary 3.8
allow us to connect the distances from xm+1 = ym+1 to V1 and V2 in terms of
heights only.
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Proof. — Part (i) follows directly from conditions (2) and (3) of Lemma 8.6.
To prove (ii) we note that (x1, . . . , x̂h, . . . ,x`) = (y1, . . . ,y`−1). Thus, if this

sequence is almost orthogonal inKn
w , so is its subsequence (y1, . . . , ŷk, . . . ,y`−1).

Since y is of type (k, `), we then conclude that (y1, . . . , ŷk, . . . ,y`) is almost
orthogonal in Kn

w .
Under the hypotheses of (iii), the first inequality in (42) follows from

Lemma 8.5 because (x1, . . . , x̂h, . . . ,xm) coincides with (y1, . . . , ŷ`, . . . ,ym).
To prove the second inequality, we use the fact that x and y have respective
sizes a and b with ah ≤ a` < b`. By Lemma 8.4, we obtain

H(x1) · · ·H(xm)
H(y1) · · ·H(ym) = H(xh)

H(y`)
≤ c5C(ah−b`)dw/d ≤ c5

Cdw/d
.

The required inequality follows since H(〈y1, . . . ,ym〉K) = H(〈x1, . . . ,xm〉K)
by (i). �

We conclude with the following existence result, which for us replaces [17,
Lemma 5.2].

Lemma 8.8. — Let a = (a1, . . . , an) ∈ Zn with 0 ≤ a1 < · · · < an. There
exists an admissible basis x = (x1, . . . ,xn) of OnS over OS of size a and type
(1, n) such that (x1, . . . ,xn−1) is almost orthogonal in Kn

w .

Proof. — Starting from the canonical basis (e1, . . . , en) of Kn, Lemma 8.6
applied recursively n times with h = k = 1 and ` = n provides points x1, . . . ,xn
of OnS such that, for each j = 0, . . . , n, the n-tuple (ej+1, . . . , en,x1, . . . ,xj) is
an admissible basis of OnS of size (0, . . . , 0, a1, . . . , aj) and type (1, n). For each
j with 2 ≤ j ≤ n− 1, we find

distw
(
xj , 〈x1, . . . ,xj−1〉Kw

)
≥ distw

(
xj , 〈ej+2, . . . , en,x1, . . . ,xj−1〉Kw

)
≥ 1− 1/2n−1.

Thus, (x1, . . . ,xn−1) is almost orthogonal in Kn
w . �

9. From n-systems to points

Let L : [0,∞) → Rn be an arbitrary n-system. To complete the proof of
Theorem A, it remains to show the existence of a non-zero point ξ ∈ Kn

w for
which ‖L− Lξ‖ is bounded above by a constant depending only on K, w and
n. To this end, consider the n-system R = (R1, . . . , Rn) provided by Corollary
6.2 for the choice of c′ = 2c, where

c = dw

d
log(C),

for the constant C = C(K,w, n) of the preceding section, satisfying (29). Since
‖L − R‖ is bounded above by a constant depending only on K, n and w,
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it suffices to construct a non-zero point ξ ∈ Kn
w for which ‖R − Lξ‖ is also

bounded above by such a constant.
Let q0 = (n2−n+1)c, so that the restriction of R to [q0,∞) is rigid of mesh

c. We denote by (qi)0≤i<s the finite or infinite sequence of switch points of R
on that interval, with cardinality s ∈ {1, 2, . . .} ∪ {∞}. For each integer i with
0 ≤ i < s, we set

a(i) = c−1R(qi) = (a(i)
1 , . . . , a(i)

n ) ∈ ∆,

where ∆ ⊂ Zn is defined by (30). We have Rj(qi) = ca
(i)
j for j = 1, . . . , n and

qi = ca
(i)
1 + · · ·+ ca(i)

n (0 ≤ i < s).(43)

We also denote by ki the index j for which the right derivative of Rj at qi is 1
and, when i > 0, we denote by `i the index j for which the left derivative of Rj
at qi is 1. By the choice of R, we have k0 = 1. Finally, we set `0 = n. Then,
for each integer i with 1 ≤ i < s, we have
(P1) 1 = k0 < `0 = n and 1 ≤ ki < `i ≤ n,

(P2) `i ≥ ki−1 and a
(i)
`i
> a

(i−1)
`i

,

(P3)
(
a

(i)
1 , . . . , â

(i)
`i
, . . . , a

(i)
n

)
=
(
a

(i−1)
1 , . . . , â

(i−1)
ki−1

, . . . , a
(i−1)
n

)
.

From these data, it is a simple matter to reconstruct the function R. Let

Φ: Rn → {(x1, . . . , xn) ∈ Rn ; x1 ≤ x2 ≤ · · · ≤ xn}

denote the continuous function that reorders the coordinates of a point as a
non-decreasing sequence and set qs =∞ if s <∞. Then, for each q ∈ [qi, qi+1),
we have

R(q) = Φ(R(qi) + (q − qi)eki
)

= Φ(R1(qi), . . . , Rki
(qi) + q − qi, . . . , Rn(qi)).

(44)

The formula also extends to q = qi+1, if i+ 1 < s.
We first apply the results of the preceding section to construct a specific

sequence of bases of OnS . Its relevance to our problem will become clear in the
corollaries that we derive afterwards.

Proposition 9.1. — There exists a sequence (x(i))0≤i<s of bases of OnS over
OS such that, for each integer i with 0 ≤ i < s, the basis x(i) = (x(i)

1 , . . . ,x(i)
n )

is admissible of size a(i) and type (ki, `i) with the additional property that, when
i ≥ 1,

(1)
(
x(i)

1 , . . . , x̂(i)
`i
, . . . ,x(i)

n

)
=
(
x(i−1)

1 , . . . , x̂(i−1)
ki−1

, . . . ,x(i−1)
n

)
,

(2) x(i)
`i
∈ εix(i−1)

ki−1
+ 〈x(i−1)

1 , . . . , x̂(i−1)
ki−1

, . . . ,x(i−1)
`i
〉OS

for some εi ∈ O∗S.
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We may further require that the sequence x̂(−1) := (x(0)
1 , . . . ,x(0)

n−1) is almost
orthogonal in Kn

w . Then, for each integer i with 0 ≤ i < s, the sequence

x̂(i) := (x(i)
1 , . . . , x̂(i)

ki
, . . . ,x(i)

n ) is also almost orthogonal in Kn
w . Finally, for

each i with −1 ≤ i < s, choose a unit vector ui of Kn
w which is orthogonal to

each vector of x̂(i) with respect to the dot product. Then we further have

distw(ui,uj) ≤ 2δ exp((4− qi+1)d/dw) (−1 ≤ i < j < s).(45)

Proof. — Lemma 8.6 provides such a sequence of bases recursively, starting
from any admissible basis x(0) = (x(0)

1 , . . . ,x(0)
n ) of size a(0) and type (k0, `0).

To build x(i) from x(i−1) for an integer i with 1 ≤ i < s, we apply this lemma
with h = ki−1, (k, `) = (ki, `i), a = a(i−1) and b = a(i). The hypotheses of the
lemma are fulfilled by virtue of conditions (P1)–(P3).

By Lemma 8.8 we may choose the initial basis x(0) so that x̂(−1) is almost
orthogonal inKn

w . Assuming this, we now prove by induction that x̂(i) is almost
orthogonal in Kn

w for each i with 0 ≤ i < s.
We first note that x̂(0) = (x(0)

2 , . . . ,x(0)
n ) is almost orthogonal in Kn

w because
x(0) has type (1, n) and the sequence (x(0)

2 , . . . ,x(0)
n−1) is almost orthogonal in

Kn
w , as a subsequence of the almost orthogonal sequence x̂(−1).
Suppose now that x̂(i) is almost orthogonal in Kn

w for each i = 0, . . . , t− 1,
where t is an integer with 1 ≤ t < s. To complete the induction step, we will
show, by induction on m, that (x(t)

1 , . . . , x̂(t)
kt
, . . . ,x(t)

m ) is almost orthogonal in
Kn

w , for each m = `t, . . . , n. For m = `t, this follows from Lemma 8.7 (ii)

since (x(t−1)
1 , . . . , x̂(t−1)

kt−1
, . . . ,x(t−1)

`t
) is almost orthogonal in Kn

w . If `t = n,
we are done. Otherwise, let m be an integer with `t ≤ m < n for which
(x(t)

1 , . . . , x̂(t)
kt
, . . . ,x(t)

m ) is almost orthogonal in Kn
w . Since `0 = n > m, there

is a largest integer r with 0 ≤ r < t such that `r > m. This means that
`r+1, . . . , `t ≤ m, and so kr, . . . , kt ≤ m by (P1) and (P2). Moreover, we have
x(r)
m+1 = · · · = x(t)

m+1 by Lemma 8.7 (i). Define

U (i) = 〈x(i)
1 , . . . ,x(i)

m 〉Kw and V (i) = 〈x(i)
1 , . . . , x̂(i)

ki
, . . . ,x(i)

m 〉Kw ,(46)

for i = r, . . . , t. We claim that

distw(x(r)
m+1, V

(r)) ≥ 1− δ

2m and distw(V (r), V (t)) ≤ 1
2m .(47)

If we take this for granted, Corollary 3.8 gives distw(x(t)
m+1, V

(t)) ≥ 1− δ/2m−1,
which is exactly what we need to complete the induction on m and, thus, to
complete the main induction as well.
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If r ≥ 1 and m + 1 < `r, the (m + 1)-tuple (x(r)
1 , . . . ,x(r)

m+1) is almost
orthogonal in Kn

w as a subsequence of(
x(r)

1 , . . . , x̂(r)
`r
, . . . ,x(r)

n

)
=
(
x(r−1)

1 , . . . , x̂(r−1)
kr−1

, . . . ,x(r−1)
n

)
.

If r = 0 andm+1 < `0 = n, it is also almost orthogonal inKn
w , as a subsequence

of x̂(−1). So, independently of r, if m+ 1 < `r, we obtain

distw(x(r)
m+1, V

(r)) ≥ distw(x(r)
m+1, U

(r)) ≥ 1− δ

2m ,

which gives the first inequality in (47). If m + 1 = `r, the latter inequality
holds by construction, since x(r) has type (kr, `r).

To prove the second inequality in (47), we apply Lemma 8.7 (iii). For each
i = r + 1, . . . , t, it gives

distw(V (i−1), V (i))dw/d ≤ e4H(〈x(i)
1 , . . . ,x(i)

m 〉K)
H(x(i)

1 ) · · ·H(x(i)
m )

≤ e4 c5
Cdw/d

H(〈x(i−1)
1 , . . . ,x(i−1)

m 〉K)
H(x(i−1)

1 ) · · ·H(x(i−1)
m )

,

and so, for the same values of i, we obtain

distw(V (i−1), V (i))dw/d ≤ e4
( c5
Cdw/d

)i−r H(〈x(r)
1 , . . . ,x(r)

m 〉K)
H(x(r)

1 ) · · ·H(x(r)
m )

≤ e4
( c5
Cdw/d

)i−r
.

Since C ≥ 2n(e4c5)d/dw , this yields distw(V (i−1), V (i)) ≤ 2−(i−r)n for each
integer i = r + 1, . . . , t, and so by the triangle inequality of Lemma 3.4 we
obtain

distw(V (r), V (t)) ≤
t∑

i=r+1
distw(V (i−1), V (i)) ≤ 1

2n−1 ≤
1

2m ,

which completes the proof of (47).
By the above, the sequence x̂(i) is almost orthogonal in Kn

w for each i with
−1 ≤ i < s. For those i, take V (i) to be the subspace of Kn

w spanned by x̂(i),
so that (V (i))⊥ = 〈ui〉Kw . When 0 ≤ i < s, both x̂(i−1) and x̂(i) are almost
orthogonal subsequences of x(i). Then Lemmas 3.9 and 8.5 yield

distw(ui−1,ui)dw/d = distw(V (i−1), V (i))dw/d ≤ e4

H(x(i)
1 ) · · ·H(x(i)

n )
(0 ≤ i < s)
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because 〈x(i)
1 , . . . ,x(i)

n 〉K = Kn has height 1. Since the basis x(i) is admissible
of size a(i), Lemma 8.4 further gives

logH(x(i)
j ) ≥ a(i)

j (dw/d) log(C) = ca
(i)
j for j = 1, . . . , n.

Using (43), we conclude that

distw(ui−1,ui)dw/d ≤ exp
(

4−
n∑
j=1

ca
(i)
j

)
= exp(4− qi) (0 ≤ i < s).

Since (qi)0≤i<s is a strictly increasing sequence of multiples of c and since
cd/dw = log(C) ≥ log(2), we deduce that

distw(uj−1,uj) ≤ exp((4− qj)d/dw) ≤ (1/2)j−i exp((4− qi)d/dw),

for each pair of integers 0 ≤ i < j < s. Then, (45) follows from the triangle
inequality of Lemma 3.4. �

For the corollary below, we recall our convention that qs =∞ when s <∞.
As a special case of (24), we also recall that, for each x ∈ Kn, each non-zero
ξ ∈ Kn

w and each q ≥ 0, we have by definition

Lξ(x, q) = max{logH(x), q + logDξ(x)}.

Corollary 9.2. — Under the hypotheses of Proposition 9.1, there is a unit
vector ξ ∈ Kn

w such that, for each integer i with 0 ≤ i < s and each q ∈ [qi, qi+1),
we have

Lξ(x(i)
j , q) ≤ c6 +Rj(qi) +

{
q − qi if j = ki,
0 otherwise,

where c6 = 6 + log(c5).

Proof. — Consider the sequence of unit vectors (ui)−1≤i<s given by the propo-
sition. If s =∞, it follows from (45) that its image in Pn−1(Kw) converges to
the class of a unit vector ξ ∈ Kn

w , such that

distw(ui, ξ) ≤ 2δ exp((4− qi+1)d/dw) (−1 ≤ i < s).(48)

When s <∞, we have qs =∞ by convention, and (48) holds with ξ = us−1.
We now fix i and j with 0 ≤ i < s and 1 ≤ j ≤ n. For each q ≥ 0, we have

Lξ(x(i)
j , q) = logH(x(i)

j ) + max
{

0, q + dw

d
log
|x(i)
j · ξ|w
‖x(i)

j ‖w

}
.(49)

We also have x(i)
ki
· ui−1 = 0 because x(i)

ki
belongs to the sequence x̂(i−1). So

(19) yields

|x(i)
ki
· ξ|w ≤ 2δ‖x(i)

ki
‖w distw(ui−1, ξ).
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If j 6= ki, we instead have x(i)
j ·ui = 0 because x(i)

j belongs to x̂(i), and so (19)
yields

|x(i)
j · ξ|w ≤ 2δ‖x(i)

j ‖w distw(ui, ξ).

Using (48) and noting that 4δ ≤ exp(2d/dw), we deduce that

dw

d
log
|x(i)
j · ξ|w
‖x(i)

j ‖w

≤

{
6− qi if j = ki,
6− qi+1 otherwise.

Moreover, Lemma 8.4 gives logH(x(i)
j ) ≤ log(c5) + ca

(i)
j = c6−6 +Rj(qi) since

x(i) has size a. The conclusion follows by substituting the last two estimates
into (49). �

We can now complete the proof of Theorem A as follows.

Corollary 9.3. — Let ξ be as in Corollary 9.2. Then, there is a constant
c7 = c7(K,w, n) such that

max
1≤j≤n

|Lξ,j(q)−Rj(q)| ≤ c7,(50)

for each q ≥ 0.

Proof. — Fix an integer i with 0 ≤ i < s and a point q ∈ [qi, qi+1). Denote by

(r1, . . . , rn) = Φ
(
Lξ(x(i)

1 , q), . . . , Lξ(x(i)
n , q)

)
the numbers Lξ(x(i)

j , q) with 1 ≤ j ≤ n written in non-decreasing order. Since
x(i) is a basis of OnS over OS , it is also a basis ofKn overK, and so by definition
we have

Lξ,j(q) ≤ rj (1 ≤ j ≤ n).

By Corollary 9.2 and formula (44), we also have

rj ≤ c6 +Rj(q) (1 ≤ j ≤ n).

By definition of an n-system, we further have
∑n
j=1Rj(q) = q. Thus, by

Lemma 7.4 (for k = 1) and the estimates of (28), we find
n∑
j=1

(
c6 +Rj(q)− Lξ,j(q)

)
= nc6 + q −

n∑
j=1

Lξ,j(q) ≤ c6 + c7,

for a constant c7 = c7(K,w, n) ≥ max{c6, q0}. This yields (50) because each
summand in the main sum on the left-hand side is non-negative. Finally, (50)
also holds for each q ∈ [0, q0), because for such q, the numbers Rj(q) and Lξ,j(q)
belong to [0, q0) ⊆ [0, c7). �
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10. Spectra of exponents of approximation

We fix a place w of K and an integer n ≥ 2. For each non-zero ξ ∈ Kn
w , we

write ω̂(ξ) for ω̂(ξ,K,w) and similarly for the three other exponents introduced
in Section 2.4. Our goal is to show that their spectrum is independent of the
choice of K and w and, more precisely, that it can be expressed in terms of
n-systems, as mentioned in the Introduction. We will also generalize to the
present setting the exponents of Laurent from [9] and show that the same
applies to their spectrum. We start with the following observation.

Lemma 10.1. — For each non-zero ξ ∈ Kn
w , we have

lim inf
q→∞

Lξ,1(q)
q

= 1
ω(ξ) + 1 , lim sup

q→∞

Lξ,1(q)
q

= 1
ω̂(ξ) + 1 ,

lim inf
q→∞

L∗ξ,1(q)
q

= 1
λ(ξ) + 1 , lim sup

q→∞

L∗ξ,1(q)
q

= 1
λ̂(ξ) + 1

.

Proof. — By Definition 2.1, the number ω̂(ξ) (resp. ω(ξ)) is the supremum of
all ω ≥ 0 such that, for each sufficiently large t > 0 (resp. for arbitrarily large
t > 0), there is a non-zero point x ∈ Kn with H(x) ≤ et and Dξ(x) ≤ e−ωt.
By definition of Lξ,1 in Section 2.5, the existence of such x translates into
Lξ,1((ω + 1)t) ≤ t. Using the change of variables q = (ω + 1)t, we deduce that
ω̂(ξ) (resp. ω(ξ)) is the supremum of all ω ≥ 0 for which q−1Lξ,1(q) ≤ 1/(ω+1)
for each sufficiently large q > 0 (resp. for arbitrarily large q > 0). This yields
the first row of formulas. The second one is proved in the same way. �

For any function P = (P1, . . . , Pn) : [0,∞) → Rn and any j = 1, . . . , n, we
define

¯
ϕ
j
(P) = lim inf

q→∞

Pj(q)
q

and ϕ̄j(P) = lim sup
q→∞

Pj(q)
q

.

The following generalization of [17, Corollary 1.4] characterizes the spectrum
of (ω, ω̂, λ, λ̂).

Proposition 10.2. — The set S of quadruples(
1

ω(ξ) + 1 ,
1

ω̂(ξ) + 1 ,
1

λ(ξ) + 1 ,
1

λ̂(ξ) + 1

)
∈ [0, 1]4

where ξ ∈ Kn
w has K-linearly independent coordinates coincides with the set of

quadruples (
¯
ϕ1(P), ϕ̄1(P), 1− ϕ̄n(P), 1−

¯
ϕ
n
(P)
)
∈ [0, 1]4

where P = (P1, . . . , Pn) is an n-system with first component P1 unbounded.
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Proof. — By the lemma, S consists of the points
(
¯
ϕ1(Lξ), ϕ̄1(Lξ),

¯
ϕ1(L∗ξ), ϕ̄1(L∗ξ))

for all ξ ∈ Kn
w withK-linearly independent coordinates. By definition of Lξ,1 in

Section 2.5, that condition on ξ is equivalent to asking that Lξ,1 is unbounded.
Thus, by Theorem A, the set S consists of the points

(
¯
ϕ1(P), ϕ̄1(P),

¯
ϕ1(P∗), ϕ̄1(P∗)

)
where P = (P1, . . . , Pn) is an n-system whose first component P1 is unbounded.
The conclusion follows since, for any n-system P, one has

¯
ϕ1(P∗) = 1− ϕ̄n(P)

and ϕ̄1(P∗) = 1−
¯
ϕ
n
(P) . �

Corollary 10.3. — The set S is independent of the choice of K and w. In
particular, since Jarník’s identity (3) holds for any point ξ of Q3

∞ = R3 with
Q-linearly independent coordinates, it also holds for any point ξ of K3

w with
K-linearly independent coordinates.

To generalize the exponents of Laurent from [9], we fix an integer k with
1 ≤ k ≤ n− 1, and we assume for simplicity that ‖ξ‖w = 1. For each non-zero
X ∈

∧k
Kn, we define

D∗ξ(X) = ‖ξ ∧X‖dw/d
w

∏
v6=w

‖X‖dv/d
v

in addition to the quantity Dξ(X) from Definition 7.1. For k = 1, this agrees
with the notation of Section 2.4 since ‖ξ‖w = 1. We note the following fact.

Lemma 10.4. — For given ω ≥ 0 and Q ≥ 1, the following conditions are
equivalent:

(i) there is a non-zero X ∈
∧k

Kn with H(X) ≤ Q and D∗ξ(X) ≤ Q−ω;

(ii) there is a non-zero Y ∈
∧n−k

Kn with H(Y) ≤ Q and Dξ(Y) ≤ Q−ω.

Proof. — Consider the Kv-linear isometry ϕk,v :
∧k

Kn
v →

∧n−k
Kn

v from Sec-
tion 3.3 for each v ∈M(K). They all restrict to a single K-linear isomorphism
ϕk :

∧k
Kn →

∧n−k
Kn. Moreover, for each X ∈

∧k
Kn

w , we have
ξ y ϕk,w(X) = ϕk+1,w(X ∧ ξ)

(cf. [4, §3, Lemma 2]) and thus ‖ξ y ϕk,w(X)‖w = ‖X ∧ ξ‖w. We conclude
that, if X ∈

∧k
Kn is non-zero, then the point Y = ϕk(X) ∈

∧n−k
Kn is non-

zero with H(Y) = H(X) and Dξ(Y) = D∗ξ(X). Thus, the two conditions are
equivalent. �

Definition 10.5. — We denote by ωk−1(ξ) (resp. ω̂k−1(ξ)) the supremum of
all ω ≥ 0 for which the equivalent conditions of Lemma 10.4 are fulfilled for
arbitrarily large values of Q (resp. for all sufficiently large values of Q).
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For k = 1, applying condition (i) shows that ω0(ξ) = λ(ξ) and ω̂0(ξ) = λ̂(ξ).
For k = n− 1, applying condition (ii) instead shows that ωn−2(ξ) = ω(ξ) and
ω̂n−2(ξ) = ω̂(ξ). Moreover, for K = Q, w =∞ and any choice of k, the number
ωk−1(ξ) defined above coincides with the exponent of Laurent from [9], in view
of condition (i): see [9, §2, Remark] or [4, §4, Proposition].

Arguing as in Lemma 10.1, using condition (ii) and the definition of L(k−1)
ξ,1 ,

we deduce that

1
ωk−1(ξ) + 1 = lim inf

q→∞

L
(n−k)
ξ,1 (q)
q

and 1
ω̂k−1(ξ) + 1 = lim sup

q→∞

L
(n−k)
ξ,1 (q)
q

.

On the other hand, the proof of Proposition 7.6 shows that L(j)
ξ,1 differs by a

bounded function from Lξ,1 + · · ·+Lξ,j , for each j = 1, . . . , n−1. We conclude
that the spectrum of these 2n − 2 exponents is independent of K and w, and
characterized as follows (cf. [18, Proposition 3.1]).

Proposition 10.6. — The set of points(
(ω0(ξ) + 1)−1, . . . , (ωn−2(ξ) + 1)−1, (ω̂0(ξ) + 1)−1, . . . , (ω̂n−2(ξ) + 1)−1) ,

where ξ ∈ Kn
w has K-linearly independent coordinates coincides with the set of

points (
¯
ψ
n−1(P), . . . ,

¯
ψ1(P), ψ̄n−1(P), . . . , ψ̄1(P)

)
,

where P = (P1, . . . , Pn) is an n-system with first component P1 unbounded, and

¯
ψ
j
(P) = lim inf

q→∞

P1(q) + · · ·+ Pj(q)
q

,

ψ̄j(P) = lim sup
q→∞

P1(q) + · · ·+ Pj(q)
q

,

for j = 1, . . . , n− 1.

As in [9, Definition 2], the exponent ωk−1(ξ) can be described geometrically
as the supremum of all ω ≥ 0 for which there are infinitely many subspaces V
of Kn of dimension k that satisfy

inf{distw(ξ,x) ; x ∈ V } ≤ H(V )−(ω+1)d/dw .

We simply sketch the proof, similar to that of [4, §4, Proposition], using
the results of Section 7. We first observe that, in defining ωk−1(ξ) through
condition (ii) of Lemma 10.4, we may take for Y a point of

∧n−k
Kn which

realizes the first minimum of C(n−k)
ξ (t), where t = (ω + 1) log(Q). Since that

convex body is comparable to
∧n−kCξ(t), we may even choose Y to be the

wedge product of the first n−k points of a basis ofKn which realizes the minima
of Cξ(t) (see the comments after Theorem 4.2). Let W denote the subspace
of Kn spanned by these points, so that Y spans

∧n−k
W , and let V = W⊥.
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Then, going back to the proof of the lemma, we find that ϕk(
∧k

V ) =
∧n−k

W

and so Y = ϕk(X) for some generator X of
∧k

V . In defining ωk−1(ξ) through
condition (i), we may thus assume that X has this form. For such a point,
Lemma 3.6 yields D∗ξ(X) = distw(ξ, V )dw/dH(V ), where V = 〈V 〉Kw is the
topological closure of V in Kn

w , and the claim follows.

11. The principle of Thunder

In his alternative proof of the adelic Minkowski theorem [24], Jeff Thunder
relates the successive minima of a convex body ofKn

A to those of an appropriate
convex body of QdnA . We formulate his idea below as a general principle.

To this end, we use the following construction, whereQdn andKn are viewed,
respectively, as subsets of QdnA and Kn

A under the diagonal embedding.

Lemma 11.1. — Let T : Qdn → Kn be a Q-linear isomorphism. For each place
u of Q and each place v of K above u, we denote by Tv : Qdnu → Kv the Qu-linear
map that extends T . Then

Tu : Qdnu −→
∏

v|u K
n
v

x 7−→ (Tv(x))v|u

is a Qu-linear isomorphism. Moreover, the map

TA : QdnA −→ Kn
A

(xu)u∈M(Q) 7−→
(
(Tv(xu))v|u

)
u∈M(Q)

is the unique QA-linear map that extends T . It is also an isomorphism.

Proof. — By construction the map Tu is Qu-linear with domain and codomain
of the same dimension dn =

∑
v|u dvn as vector spaces over Qu. Moreover,

Tu(Qdn) is the image of Kn in
∏

v|u K
n
v under the diagonal embedding, which is

dense in this product. So Tu is surjective and, therefore, it is an isomorphism.
This proves the first assertion, and the others follow from it. �

Proposition 11.2 (Thunder’s principle). — With the notation of Lemma 11.1,
let K be a convex body of Kn

A . Then, C := T−1
A (K) is a convex body of QdnA ,

and we have

λd(i−1)+j(C) � λi(K) (1 ≤ i ≤ n, 1 ≤ j ≤ d),

with implied constants that depend only on K, n and T .

Proof. — Writing K =
∏

v∈M(K)Kv, we find that C =
∏
u∈M(Q) Cu, where

Cu =
⋂
v|u

T−1
v (Kv)
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is a convex body of Qdnu for each u ∈ M(Q). For all but finitely many places
u 6=∞, we also have that Tu(Zdnu ) =

∏
v|uOnv =

∏
v|uKv and so Cu = Zdnu . Thus,

C is a convex body of QdnA .
Choose linearly independent elements y1, . . . ,yn of Kn over K which realize

the successive minima of K, choose a basis ω = (ω1, . . . , ωd) of the ring of
integers OK of K as a Z-module and let c = max{|ωj |v ; 1 ≤ j ≤ d and v | ∞}.
Then the points

xi,j := T−1(ωjyi) ∈ Qdn (1 ≤ i ≤ n, 1 ≤ j ≤ d)
are linearly independent over Q. For each indexing pair (i, j), we also have
yi ∈ λi(K)K and ωjK ⊆ cK, thus ωjyi ∈ cλi(K)K. As T∞ is linear over
Q∞ = R, this means that

xi,j ∈ T−1
A (cλi(K)K) = cλi(K)C.

In view of the linear independence of the points xi,j and the fact that we have
λ1(K) ≤ · · · ≤ λn(K), we conclude that

λd(i−1)+j(C) ≤ cλi(K) (1 ≤ i ≤ n, 1 ≤ j ≤ d).
On the other hand, since TA is QA-linear and invertible, we have µ(C) = c′µ(K)
for some constant c′ > 0 which depends only on TA. So, the adelic Minkowski’s
theorem 4.1, applied to C and K separately, yields

λ1(C) · · ·λdn(C) � µ(C)−1 � µ(K)−1 � (λ1(K) · · ·λn(K))d.
The conclusion follows. �

12. Proofs of Theorems B and C

We fix a basis α = (α1, . . . , αd) of K over Q, a place w of K of local
degree dw = 1 above a place ` of Q, so that Kw = Q`, and a non-zero point
ξ = (ξ1, . . . , ξn) ∈ Kn

w = Qn` , assuming n ≥ 2. We form
Ξ = α⊗ ξ =

(
α1ξ, . . . , αdξ

)
∈ (Kn

w )d = (Qn` )d,
and note that

‖Ξ‖` = ‖α‖w‖ξ‖w.(51)
In order to apply the results of Section 7, we need to adjust Definition 7.2 so
that the family of convex bodies in QdnA attached to Ξ, and the family of convex
bodies in Kn

A attached to ξ do not depend on the norms of those points. Thus,
for each q ≥ 0, we define
CΞ(q) =

{
(xu)∈QdnA ; ‖Ξ‖−1

` |x` · Ξ|`≤ e
−q and ‖xu‖u≤ 1 for each u∈M(Q)

}
,

Cξ(q) =
{

(yv)∈Kn
A ; ‖ξ‖−1

w |yw · ξ|w≤ e−qd and ‖yv‖v≤ 1 for each v∈M(K)
}
,

since dw = 1. In order to relate the minima of these convex bodies and to deduce
relationships between the standard four exponents of approximation attached
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to the triples (Ξ,Q, `) and (ξ,K,w), we consider the Q-linear isomorphism
T : (Qn)d → Kn given by

T (x1, . . . ,xd) = α1x1 + · · ·+ αdxd,
for any x1, . . . ,xd ∈ Qn. For each place u of Q and each place v of K above u,
it extends by continuity to a Qu-linear map Tv from (Qnu )d to Kn

v given by

Tv(x1, . . . ,xd) = α1x1 + · · ·+ αdxd,
for any x1, . . . ,xd ∈ Qnu . Following Lemma 11.1, this yields a Qu-linear isomor-
phism Tu from Qndu to

∏
v|u K

n
v , as well as a QA-linear isomorphism TA from

QndA to Kn
A .

Proposition 12.1. — There is an idèle a ∈ K∗A that depends only on K, w,
α and n such that, for each q ≥ 0,

a−1CΞ(dq) ⊆ T−1
A (Cξ(q)) ⊆ a CΞ(dq).

Proof. — Fix a place u of Q. Since Tu is a Qu-linear isomorphism, there exists
a constant cu ≥ 1, such that

c−1
u ‖x‖u ≤ max

v|u
‖Tv(x)‖v ≤ cu‖x‖u,

for all x ∈ Qndu . Since Tu(Zndu ) =
∏

v|uOnv for all but finitely many u 6= ∞, we
may take cu = 1 for those u. When u = ` and x = (x1, . . . ,xd) ∈ (Qn` )d, we
also find

x · Ξ =
d∑
i=1

αixi · ξ = Tw(x) · ξ,

thus |x · Ξ|` = |Tw(x) · ξ|w. Then, using (51) and assuming that we have
c` ≥ max{‖α‖w, ‖α‖−1

w }, we deduce that

c−1
`

|x · Ξ|`
‖Ξ‖`

≤ |Tw(x) · ξ|w
‖ξ‖w

≤ c`
|x · Ξ|`
‖Ξ‖`

.

Choose an idèle a = (au) ∈ Q∗A such that |au|u ≥ cu for each u ∈ M(Q).
Then, if x = (xu) ∈ QndA and y = (yv) ∈ Kn

A are related by y = TA(x), the
above estimates yield

‖a−1
u xu‖u ≤ max

v|u
‖yv‖v ≤ ‖auxu‖u,

|a−1
` x` · Ξ|`
‖Ξ‖`

≤ |yw · ξ|w
‖ξ‖w

≤ |a`x` · Ξ|`
‖Ξ‖`

.

So, if y ∈ Cξ(q) (resp. ax ∈ CΞ(dq)) for some q ≥ 0, then a−1x ∈ CΞ(dq)
(resp. y ∈ Cξ(q)). This means that we have a−1T−1

A (Cξ(q)) ⊆ CΞ(dq) (resp.
a−1CΞ(dq) ⊆ T−1

A (Cξ(q))), as needed. �
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By Proposition 5.3 and Thunder’s principle (Proposition 11.2), the above
result yields the following estimates.

Corollary 12.2. — For each i = 1, . . . , n, each j = 1, . . . , d and each q ≥ 0,
we have

λd(i−1)+j(CΞ(dq)) � λi(Cξ(q)),(52)
with implicit constants that depend only on K, α, n and w.

Proof of Theorem B. — Fix i, j and q as above. Taking logarithms on both
sides of (52) and using Lemma 7.4, we obtain that the absolute value of the
difference

LΞ,d(i−1)+j(dq)− Lξ,i(q)(53)
is bounded above by a constant that depends only on K, α, n and w. Letting
i′ = n+ 1− i and j′ = d+ 1− j, Lemma 7.8 shows that the same applies to

LΞ,d(i−1)+j(dq) + L∗Ξ,d(i′−1)+j′(dq)− dq and Lξ,i(q) + L∗ξ,i′(q)− q.

Subtracting from the first number the sum of the second and of (53), we obtain
that

L∗Ξ,d(i′−1)+j′(dq)− L∗ξ,i′(q)− (d− 1)q

also has absolute value bounded above by such a constant. As i′ runs from 1
to n with i, and as j′ runs from 1 to d with j, this proves the two inequalities
of Theorem B. �

Corollary 12.3. — Upon writing ω̂(ξ) for ω̂(ξ,K,w), ω̂(Ξ) for ω̂(Ξ,Q, `),
and similarly for the other exponents, we have

d
(
ω̂(ξ) + 1

)
= ω̂(Ξ) + 1, d

(
ω(ξ) + 1

)
= ω(Ξ) + 1,

d
( 1
λ̂(ξ)

+ 1
)

= 1
λ̂(Ξ)

+ 1, d
( 1
λ(ξ) + 1

)
= 1
λ(Ξ) + 1.

Proof. — By Theorem B, the ratios LΞ,1(dq)/q and Lξ,1(q)/q have the same
limit points as q goes to infinity. In particular, they have the same superior
limit and the same inferior limit. Applying Lemma 10.1 separately to (Ξ,Q, `)
and (ξ,K,w) to compute these limits and comparing the results, we get the
first row of equalities.

By Theorem B, the quantities L∗Ξ,1(dq)/q−d and L∗ξ,1(q)/q−1 also have the
same limit points as q goes to infinity, and the same lemma yields the second
row of equalities. �

As an application, suppose that n = 3 and that ξ ∈ K3
w has linearly indepen-

dent coordinates over K. Then, ξ satisfies Jarník’s identity (3) by Corollary
10.3. Using the formulas of the above corollary, we deduce the identity (6)
relating λ̂(Ξ) and ω̂(Ξ).
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Proof of Theorem C. — Let S denote the subset of K3
w from Theorem 2.2 of

Bel. Since the supremum of λ̂(ξ,K,w) is 1/γ as ξ runs through S, the formulas
of Corollary 12.3 imply that for the corresponding points Ξ = α⊗ξ, the supre-
mum of λ̂(Ξ,Q, `) is 1/(dγ2−1). Since the points ξ of S satisfy Jarník’s identity
(3), the supremum of ω̂(ξ,K,w) is γ2 as ξ runs through S. So, for the corre-
sponding points Ξ = α⊗ ξ, we find similarly that the supremum of ω̂(Ξ,Q, `)
is d(γ2 + 1)− 1. This proves Theorem C because, for ξ = (1, ξ, ξ2) ∈ S, the 3d
coordinates of (α, ξα, ξ2α) form a permutation of those of Ξ = (α1ξ, . . . , αdξ),
and so these two points have the same exponents of approximation. �

As a final remark, suppose that P = (P1, . . . , Pn) is an n-system on [0,∞)
for which Lξ −P is bounded. Then the difference LΞ −R is bounded for the
function R = (R1, . . . , Rnd) from [0,∞) to Rnd given by

Rd(i−1)+j(q) = Pi(q/d) (1 ≤ i ≤ n, 1 ≤ j ≤ d, q ≥ 0).

If d > 1, this is not an nd-system because its components are piecewise linear
with slopes 0 and 1/d. However, it is a generalized nd-system in the sense
of [18, Definition 4.5], and so it can easily be approximated uniformly by an
nd-system, as explained in [18, Section 4].
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