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ABOUT C∞ FOLIATIONS BY HOLOMORPHIC CURVES ON
COMPLEX SURFACES

by Olivier Thom

Abstract. — We study those real C∞ foliations in complex surfaces whose leaves are
holomorphic curves. The main motivation is to try and understand these foliations in
neighborhoods of curves: can we expect the space of foliations in a fixed neighborhood
to be infinite-dimensional, or are there some contexts under which every such foliation
is holomorphic?

We give some restrictions and study in more detail the geometry of foliations whose
leaves belong to a holomorphic family of holomorphic curves. In particular, we classify
all real-analytic foliations on neighborhoods of curves that are locally diffeomorphic to
foliations by lines, under some non-degeneracy hypothesis.

Résumé (Sur les feuilletages C∞ par courbes holomorphes dans les surfaces com-
plexes). — Nous étudions ces feuilletages C∞ dans des surfaces complexes dont les
feuilles sont des courbes holomorphes. La principale motivation est d’essayer de com-
prendre ces feuilletages dans des voisinages de courbes: peut-on s’attendre à ce que
l’espace des feuilletages dans un voisinage fixé soit de dimension infinie, ou y a-t-il des
contextes dans lesquels chacun des ces feuilletages est holomorphe?

Nous donnons quelques restrictions et étudions plus en détail la géométrie des
feuilletages dont les feuilles appartiennent à une famille holomorphe de courbes holo-
morphes. En particulier, nous classifions tous les feuilletages analytiques réels dans des
voisinages de courbes qui sont localement difféomorphes à des feuilletages par droites,
sous certaines hypothèses de non-dégénéricité.
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438 O. THOM

1. Introduction

In this paper, we study real C∞ foliations in complex surfaces whose leaves
are holomorphic curves; we will call such foliations semiholomorphic for short
in this text.

These foliations appear naturally in many different contexts and were stud-
ied from different points of view, sometimes under different names. After giving
some definitions, we will briefly review some problems related to semiholomor-
phic foliations and recall some results that might be of interest.

1.1. Equations. — Let U ⊂ C2 be an open set and F a C∞ real codimension
2 foliation on U . The foliation F is called semiholomorphic if the subsheaf
TF ⊂ TU consists of holomorphic directions: TF ⊂ T 1,0U .

Suppose that U is equipped with holomorphic coordinates (x, y) and that the
foliation is smooth and nowhere vertical: ∂

∂y /∈ TpF for every p ∈ U . Then the
foliation can be described by the (1, 0)-form ω = dy−λdx, where λ ∈ C∞(U,C)
is the slope. This (1, 0)-form satisfies the integrability condition

ω ∧ ω ∧ dω = 0.(1)

In terms of the function λ, this equation writes:

∂λ

∂x̄
+ λ

∂λ

∂ȳ
= 0.(2)

Conversely, a field of holomorphic directions written as the kernel of a (1, 0)-
form ω defines a semiholomorphic foliation if and only if the integrability con-
dition (1) is satisfied.

Suppose that F is smooth on U and that L is a real codimension 2 sub-
variety of U invariant by F . Then at every point p ∈ L, the tangent space
TL is a complex direction. This shows that L is a complex curve, and that a
semiholomorphic foliation is exactly a C∞ foliation by holomorphic curves.

Example 1.1. — Consider the (1, 0)-form Im(x)dy − Im(y)dx. It satisfies
equation (1) and so defines a semiholomorphic foliation. This foliation has
singular set R× R. The leaf passing through (x0, y0) /∈ R2 has the equation

y = y0 + Im(y0)
Im(x0) (x− x0)

= Im(y0)
Im(x0)x+

(
Re(y0)− Im(y0)

Im(x0)Re(x0)
)
.

Note that the leaves of this foliation are exactly the complex affine lines with
real parameters.
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1.2. Holomorphic motion. — Consider an open set U ⊂ C2 and a semiholo-
morphic foliation F in U . Fix a transverse holomorphic fibration {x = cte}
on U and a local trivialization (x, y) of this fibration. Write Tx as the fiber
above x. Consider also an origin 0 ∈ U and suppose that the curve {y = 0} is
a leaf of F .

For each x, consider the holonomy transport ϕx : T0 → Tx obtained by
following the leaves of F . This is a family of C∞ diffeomorphisms depending
holomorphically on the parameter x. Using the trivialization, we can consider
ϕx as a family of germs of diffeomorphisms in the variable y. Conversely, given
any family ϕx of germs of diffeomorphisms depending holomorphically on the
parameter x, we can construct a semiholomorphic foliation transverse to the
fibration {x = cte} by taking trajectories of points y0 ∈ T0.

To find the equivalence with the previous point of view, consider a point
(x, y) ∈ U and write y0 as the point of intersection between T0 and the leaf
passing through (x, y). This means that y = ϕx(y0), or rather y0 = ϕ−1

x (y).
Then the slope of the foliation is

λ(x, y) = ∂ϕ

∂x
(x, ϕ−1

x (y)).

Example 1.2. — In Example 1.1, the holonomy transport between transver-
sals above x0 = i and x is written as

ϕx(y) = Re(y) + xIm(y).

This point of view appears naturally in holomorphic dynamics; see, for ex-
ample, [11] and [14]. The main problem studied from this point of view is
the extension of the semiholomorphic foliation in the transverse direction; the
results show that the transversal behavior is very similar to that of C∞ objects
(for example, the proof of [14, §2] involves partitions of unity). The most com-
plete theorem obtained in this direction seems to be [13]: in D× C, any set of
disjoint complex curves (Ce)e∈E transverse to the fibers C can be extended to
a semiholomorphic foliation in D× C transverse to the vertical fibration.

1.3. Levi-flat hypersurfaces and Ueda theory. — An interesting motivation for
semiholomorphic foliations comes from Ueda theory and, more generally, the
study of Levi-flat hypersurfaces. Recall that a smooth C∞ real hypersurface
H in a complex surface S is called Levi-flat if the field of complex directions
TH ∩ J(TH) is integrable on H, where J : TS → TS denotes the operator
given by multiplication by i.

It follows that H is foliated by complex curves. In the C∞ category, we
cannot say anything a priori about the transverse regularity of this foliation;
however, when a Levi-flat hypersurface H is real analytic, then by [5] this foli-
ation can be extended to a holomorphic foliation in a neighborhood of H. Note
that if we have a smooth C∞ foliation by smooth Levi-flat hypersurfacesH in S,
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440 O. THOM

the field of complex directions TH∩J(TH) defines a smooth semiholomorphic
foliation.

These kinds of objects appear naturally in the study of neighborhoods of
compact complex curves; by a theorem of T. Ueda [16], for a smooth compact
curve C in a complex surface S with torsion normal bundle, either C admits
a system of strictly pseudo-concave neighborhoods, or C admits a logarithmic
1-form ω with poles along C and purely imaginary periods. The foliation
defined by this 1-form is a smooth holomorphic foliation admitting C as a leaf
and with unitary holonomy. It follows that there exists in S a foliation by
Levi-flat hypersurfaces, each of which is the border of a neighborhood of C,
and that the foliation defined by ω is the semiholomorphic foliation tangent
to it. Thus, when NC is torsion, any semiholomorphic foliation defined in a
neighborhood of C, tangent to a foliation by Levi-flat hypersurfaces of this
kind, is necessarily holomorphic.

This theorem is also true for smooth compact curves C with a generic normal
bundle of degree 0, but in non-generic cases, the question is still open (typically,
the non-generic cases correspond to neighborhood S of C, which are formally
but not analytically linearizable).

An interesting question would then be to understand when a neighborhood S
of a compact curve C admits smooth semiholomorphic foliations tangent to C,
which are not holomorphic, and, in particular, whether these semiholomorphic
foliations are exceptional objects or if any neighborhood S admits one of them.

1.4. Teichmüller theory. — Holomorphic motions, and thus semiholomorphic
foliations, appear naturally in the context of Teichmüller theory, giving rise to
some interesting examples; see, for example, [3] and [12] for more details.

Let us just give one example to explain the link between the two. Con-
sider the plane C of the variable y, and a polygon Pi inside it equipped with
identifications of opposite parallel sides, giving rise to a translation surface Ci.
Suppose that one side is included in the real axis and that Pi is contained in
the upper half-plane Hy. Now, for every x ∈ H, consider the linear application
ϕx ∈ GL2(R) fixing the real axis and sending i to x. The application ϕx sends
the polygon Pi to some polygon Px defining a translation surface Cx.

Figure 1.1. A deformation of translation surfaces
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We can consider the space of pairs (x, y) ∈ H × C as a complex surface
equipped with a holomorphic motion (ϕx); the set of points (x, y) with y ∈ Px
is stable by the motion, and we can see the union of the translation surfaces
S = ∪xCx as a quotient of it. The semiholomorphic foliation F defined by (ϕx)
descends to a semiholomorphic foliation on the bundle of translation surfaces S.
Note that the application ϕx writes as ϕx(y) = Re(y) +xIm(y), so that locally
the foliation F is, in fact, that of Example 1.1.

When the translation surfaces admit a lattice of symmetries L, the foliation
descends to a foliation on the surface S/L. However, by standard arguments,
the lattice L cannot be cocompact. Indeed, if S/L were compact, the length of
the shortest loop in Cx, being a continuous function of x, should be bounded
by below. However, this length tends to zero for C(ti), when R 3 t→ 0.

1.5. Monge–Ampère foliations. — A large class of examples is also given by
Monge–Ampère foliations, in the sense of [2]: given a real plurisubharmonic
function f ∈ C∞(U) in some open set U ⊂ C2, introduce the complex hessian
Ω = ∂∂f : it is a (1, 1)-form, and whenever Ω ∧ Ω = 0, the field of complex
directions X defined by the equation iXΩ = 0 is a semiholomorphic foliation.
In dimension 2, each foliation can be obtained this way, but for foliations of
higher codimension, the two notions are no more equivalent (see [2] and [7] for
more details).

In the article [7], the authors also studied general semiholomorphic foliations
and obtained some interesting results. More precisely, following the ideas of [1]
for Monge–Ampère foliations, they studied Bott’s partial connection of a semi-
holomorphic foliation F which is not holomorphic and showed that it induces
a connection of negative curvature on the normal bundle N1,0F . This allows
us to define an intrinsic metric of curvature -4 on the leaves of F .

These two facts have interesting consequences, for example that a semiholo-
morphic foliation whose leaves are compact is always holomorphic [7, Example
6.6] (see also [17] for another proof of this fact using different tools), or that
a semiholomorphic foliation whose leaves are parabolic is necessarily holomor-
phic [10].

1.6. Summary of this article. — We begin in Section 2.1 by recalling how the
antiholomorphic part ηF of Bott’s partial connection gives a hyperbolic singular
metric |ηF |2 on the leaves of F , as was already noted in [7]. We then carry on
studying the metric |ηF |2 to obtain finer results.

It follows from [7] that if a smooth semiholomorphic foliation F on a surface
S has a compact curve C, then C · C < 0. In Theorem 2.8, we show also that
C ·C ≥ 1− g, with equality when the form i∗CηF has no zeroes (remember that
the metric |ηF |2 is well defined, so that even if ηF is not a well-defined 1-form
on C, its zeroes are well defined).
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Also, we note in Theorem 2.10 that under some reasonable hypotheses, the
leaves of a non-holomorphic semiholomorphic foliation should be complete for
the metric |ηF |2. This reminds us of the article [4] with the differences that in
the semiholomorpic context, the metric arises naturally from the foliation but
can be a singular metric.

In Section 3, we introduce some other geometric invariants of semiholomor-
phic foliations F . Informally, we consider the smallest holomorphic family of
holomorphic curves containing the leaves of F , call it a system of curves defined
by F and call semirank its number of parameters. These notions are invariant
under biholomorphisms, and although a generic C∞ foliation will be of infinite
semirank, we show in Proposition 3.6 that real-analytic semiholomorphic fo-
liations are of semirank 2. Note also that all the examples where the leaves
are lines are of semirank 2, so this motivates us to restrict our attention to
foliations of semirank 2 for the rest of the article.

This additional hypothesis gives us some new tools to study these objects; for
example, we can use the duality between two-parameter families of curves. This
topic has a long history, and we will refer the reader to [8] and the references
therein for more details. In a local context, note that if we fix a two-parameter
family of curves, the set of parameters is a complex surface Ǔ and that a semi-
holomorphic foliation gives a real surface SF in Ǔ . Studying F then reduces
to studying SF . In particular, if F is the universal cover of a semiholomorphic
foliation in the neighborhood of a curve C, then the fundamental group of C
acts by holomorphic automorphisms of the system of curves, and its action on
the dual Ǔ stabilizes the real surface SF . These conditions are very strong,
and we will use them extensively.

As we saw in Theorem 2.10, we can expect interesting examples to have
complete leaves. At the end of this section, we try to describe what a semi-
holomorphic foliation in an open set U ⊂ C2 with complete leaves should look
like in semirank 2, which should be the generic behavior for a semiholomorphic
foliation of any semirank.

In the last section, we consider foliations whose system of curves is a pro-
jective structure in the sense of [8]. These projective structures are better
understood than general families of curves, and, as we saw, they can arise nat-
urally from global contexts. In particular, we classify all real-analytic foliations
F on neighborhoods of compact curves C, which are locally diffeomorphic to
foliations by lines, under the hypothesis that i∗CηF is not identically zero; see
Theorems 4.1 and 4.2.
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2. Bott’s partial connection

2.1. Local expression. — Suppose in this section that F is transverse to the
fibration x = cte. Consider the form ω0 = dy − λ(x, y)dx defining the semi-
holomorphic foliation F . Note that

dω0 = ∂λ

∂y
dx ∧ dy + ∂λ

∂x̄
dx ∧ dx̄+ ∂λ

∂ȳ
dx ∧ dȳ

=
(
∂λ

∂y
dx

)
∧ ω0 +

(
∂λ

∂ȳ
dx

)
∧ ω0,

and that for any function f , if ω = fω0, then

dω =
(
df

f
+ ∂λ

∂y
dx

)
∧ ω +

(
f2

|f |2
∂λ

∂ȳ
dx

)
∧ ω.

If not for the factor f2

|f |2 , the 1-form η := ∂λ
∂ȳ dx would be well defined modulo

some multiples of ω and ω and would define a (1, 0)-form on the leaves of F .
Since this factor is of modulus 1, the metric on the leaves |η|2 = iη∧η depends
only on the foliation F . We will write this 1-form ηF when the defining form ω
is clear or irrelevant and call it the antiholomorphic part of Bott’s connection.

The two following lemmas are immediate.

Lemma 2.1. — The foliation F is holomorphic if and only if ηF = 0; it is
holomorphic at order 1 along a leaf L if and only if i∗LηF = 0.

Lemma 2.2. — If Φ is a holomorphic germ of diffeomorphism around the ori-
gin, if η and η̃ are the antiholomorphic parts of Bott’s connection applied to ω
and Φ∗ω, respectively, then η̃ = Φ∗η.

2.2. Tangential behavior. — Let us study more explicitly the coefficient ∂λ
∂y in

the form ηF . First, let us introduce the differential operator

∂F := ∂

∂x
+ λ

∂

∂y
.

We check that for every function f : C2 → C, the integrability of F guarantees
∂F∂Ff = ∂F∂Ff , so we can introduce the real operator

∆F = ∂F∂F .

Explicitly, we have ∆Ff = ∆xf + |λ|2∆yf + λ
∂2f
∂x̄∂y + λ̄

∂2f
∂x∂ȳ . This operator

corresponds to the Laplacian in restriction to the leaves of F ; indeed, if {y = 0}
is a leaf of F , then we have ∆F = ∆x on this leaf.

Put

a := ∂λ

∂y
, b := ∂λ

∂y
.
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The operator ∂F does not commute with ∂
∂y (nor with ∂

∂ȳ ); more precisely, we
have {

∂Fa+ b̄b = 0
∂Fb+ āb = 0.

Introduce β = log(b) = β1 + iβ2, so that the second equation writes

ā = −∂Fβ,

and the first equation gives {
∆Fβ1 = exp(2β1)
∆Fβ2 = 0.(3)

As we can see in [7, Thm 6.2 (a)], this equation gives:

Lemma 2.3. — The metric |ηF |2 on the leaves is of curvature -4 whenever it
is not zero.

Equation (3) will imply that b is very regular along the leaves; in fact, we
can prove this directly using the point of view of holomorphic motions. Denote
as before ϕx the holonomy transport of F between fibers of {x = cte}; the
antiholomorphic part of Bott’s connection is given by

∂λ

∂ȳ
(x, y) = ∂2ϕ

∂x∂y

(
x, ϕ−1

x (y)
) ∂ϕ−1

x

∂ȳ
(y) + ∂2ϕ

∂x∂ȳ

(
x, ϕ−1

x (y)
) ∂ϕ−1

x

∂y
(y).

In restriction to a leaf {y = 0}, we can approximate ϕx by its linear part:
ϕx(y) = lx(y) +O(|y|2) = u(x)y+ v(x)ȳ+O(|y|2), where u and v are holomor-
phic functions of the parameter x. Note that

l−1
x (y) = u

|u|2 − |v|2
y − v

|u|2 − |v|2
ȳ.

Thus, we get in first-order approximation

λ(x, y) = u′(x) uy − vȳ
|u|2 − |v|2

+ v′(x) uȳ − v̄y
|u|2 − |v|2

+O(|y|2),

and
∂λ

∂ȳ
(x, 0) = uv′ − u′v

|u|2 − |v|2
(x).

In particular, we can see that the border of the leaf {y = 0} is given by the
real analytic curve {|u|2 = |v|2}; we can also deduce the following.

Lemma 2.4. — On a leaf of F , the set of points x where b(x) = 0 is either dis-
crete or the whole leaf. Moreover, if x is an isolated zero of b, then ∂b

∂x̄ (x) = 0.
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2.3. Global setting. — In this section, S is a complex surface and F a smooth
semiholomorphic foliation on S; we fix a covering S = ∪Ui, local coordinates
(xi, yi) with F transverse to the fibration xi = cte, and a (1, 0)-form ωi =
fi · (dyi − λidxi) defining F on each Ui.

The form ηF depends on the choice of the representant ωi of F , but as we
have seen in Section 2.1, it is a section of a line bundle T 1,0F ⊗ L where the
transition functions of L are C∞ functions of modulus 1. Putting together
lemmas 2.1, 2.2, 2.3, and 2.4, we obtain the following:

Proposition 2.5. — The metric |ηF |2 is intrinsically defined as a metric on
the leaves of F . On each leaf, this metric is either identically zero or only has
isolated zeroes. If it is not identically zero, then it has curvature -4 away from
its zeroes.

The following corollary and Theorem 2.7 were already consequences of [7]
and [10].

Corollary 2.6. — Let S be a complex surface with a smooth holomorphic
fibration π towards an elliptic curve. Then every smooth semiholomorphic fo-
liation transverse to π is holomorphic.

Theorem 2.7. — Suppose S is a neighborhood of an elliptic curve C, and
there exists a singular C∞ foliation H by compact Levi-flat hypersurfaces such
that C is invariant by H, the foliation H is smooth outside C, and every leaf
of H is the border of a neighborhood of C. Suppose, moreover, that for every
sequence of points pn ∈ S with pn → p∞ ∈ C and such that the sequence Tpn

H
has a limit H∞, then Tp∞C ⊂ H∞.

Then H is tangent to a holomorphic foliation.

Proof. — The field of complex directions F = T 1,0H is integrable, so F is
a semiholomorphic foliation. Under the hypotheses, for every local fibration
{xi = cte} transverse to C on an open set Ui ⊂ S, this fibration is also
transverse to H in a neighborhood of C ∩ Ui. Thus, it is transverse to the
foliation F , which implies in particular that F is smooth in a neighborhood
of C.

When |ηF |2 is not identically zero, it is a metric of curvature −4, so we only
need to prove that every leaf of F is uniformized by C. Choose a Kähler form
ω on S so that we can compute the curvature of the leaves using ω. Consider a
smooth C∞ foliation G transverse to F . For any base point p0 ∈ C, if we denote
by G0 the leaf of G passing through p0, we get an application f : G0 × C̃ → S̃

following the leaves of F , where C̃ is the universal cover of C and S̃ that of S.
Consider the map f(y0, ·) : C ∩ Ui → L0 ∩ Ui on a small open set Ui, where
y0 ∈ G0 and L0 is the leaf of F passing through y0; by continuity of the metric
induced by ω on the leaves of F , this application is a quasi-isometry, and we
can choose constants of quasi-isometry that do not depend on y0. Since there
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are a finite number of these Ui, we see that f(y0, ·) is a quasi-isometry between
C̃ and the universal cover L̃ of the leaf L of F passing through y0, for any
y0 ∈ G0. We conclude that any leaf is uniformized by C as needed. �

Note that the proof is somewhat more general: we only need a smooth
semiholomorphic foliation whose leaves stay inside a neighborhood of C.

We will see in the explicit examples of Section 4.1 that for a semiholomorphic
foliation with a compact leaf, the normal and tangent bundles of this leaf are
closely related; in general, we can prove the following.

Theorem 2.8. — Suppose C is a compact leaf of genus g of a smooth semi-
holomorphic foliation F on a surface S, and i∗CηF 6≡ 0. Write n the number of
zeroes of the form i∗CηF , counted with multiplicity. Then C · C = 1− g + n

2 .

Note, in particular, that Camacho–Sad’s theorem is false for smooth semi-
holomorphic foliations.

Proof. — The approximation at first order along C of F is a smooth semi-
holomorphic foliation on the normal bundle of C in S. The proposition only
depends on this first-order approximation, so we can suppose that S is the
normal bundle of C.

Consider local charts (xi, yi) with

(xj , yj) = Φji(xi, yi) = (αji(xi), βji(xi)yi).

Consider local (1, 0)-forms ωi = dyi − λidxi defining F , and the corresponding
antiholomorphic parts of Bott’s connection ηi = ∂λi

∂yi
dxi. From Lemma 2.2 we

know that

i∗C(Φ∗jiηj) =
β2
ji

|βji|2
i∗Cηi.

Thus, if we write bi = ∂λi

∂yi
|C , we get

bj ◦ αji =
β2
ji

|βji|2α′ji
bi.

The cocycle |βji|−2 is real positive, so its sections do not vanish; the cocycle
βji defines the normal bundle and α′ji the tangent bundle. On the other hand,
we can see by Lemma 2.4 that bi is a C∞ function with holomorphic zeroes. It
follows that deg(Ω1

C ⊗N2) = n, where n is the number of zeroes of the section
b and, hence, the result. �

Example 2.9. — Consider a germ of surface (S,C) along a compact curve C of
genus g ≥ 2 and suppose there exists on S a smooth semiholomorphic foliation
F leaving C invariant with i∗CηF nowhere vanishing. From the theorem we
know that C · C = 1− g.
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Consider then two curves c1, c2 in S cutting C transversally at two points
p1 6= p2 and the ramified covering (S̃, C̃) of order 2 over (S,C) ramifying along
c1 and c2. The genus of C̃ is g̃ = 2g; its self-intersection is C̃ ·C̃ = 2−2g = 2−g̃,
so that deg(Ω1

C⊗N2
C) = (2g̃−2)+2(2−g̃) = 2. We can see from Lemma 2.2 that

i∗
C̃
η̃ does not vanish at points different from p1, p2, and a similar computation

shows that it admits simple zeroes at p1 and p2.

Note that, by [7, Lemma 5.1], the self-intersection C · C should always be
negative under the assumption i∗Cη 6≡ 0. With this in mind, the theorem above
seems incomplete, and for some reason, the form ηF cannot have an arbitrarily
high number of zeroes for C fixed. It is not clear what values are admissible
for C · C in [1 − g,−1], but to get an idea of this, it seems necessary to find
examples that are not ramified coverings.

Theorem 2.10. — Suppose that L is a leaf of F with compact adherence in S.
Suppose, moreover, that i∗CηF is not identically zero for any leaf C in the
adherence L. Then L is complete for the metric |ηF |2.

Proof. — Suppose i∗LηF is not identically zero. Then the set of points on L
for which the metric degenerates is discrete, and we want to prove that for
any geodesic γ : R+ → L that tends to the border of L, the length `(γ) :=∫∞

0 |η(γ′(t))|dt is infinite.
Since the adherence of L is compact, we can cover it by a finite number of

open sets Ui with ηi = bidxi on Ui. Remark first that for Ui small enough,
we can suppose that γ passes through an infinite number of these Ui. On each
leaf, the set of points where bi = 0 is discrete, so we can find an ε > 0 such that
Bi := {|bi| < ε} is relatively compact in Ui on each leaf. If γ passes an infinite
number of times through these Bi, then γ must make an infinite number of
times the path from within Bi to the border of Ui, and since |bi| ≥ ε on the
complement Ui \Bi, we must have `(γ) =∞.

Thus, we can suppose that γ only meets a finite number of these Bi. Then
after a finite time T > 0, the geodesic γ only stays in the regions |bi| ≥ ε. The
result follows easily. �

3. Semirank

3.1. Definitions. — We will define the semirank using the construction of jet
spaces; let us recall this construction in our setting. Consider a holomorphic
manifold X equipped with a holomorphic field of holomorphic 2-planes P.

We can consider the field of 2-planes P as a rank 2 subbundle of TX; letX ′ =
PP be the P1-bundle obtained by projectivizing the rank 2 linear bundle P.
Then X ′ comes with a fibration p : X ′ → X, a field of 3-planes p∗P, and a
field of 2-planes P ′ inside p∗P such that the value of P ′ at a point (x, λ) ∈ X ′
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is given by Ker(dv − λdu) ⊂ p∗P if (u, v) are linear variables on Px with λ
corresponding to the direction in the kernel of dv − λdu.

The manifold X ′ satisfies the property that every holomorphic curve C in
X tangent to P can be uniquely lifted to a curve C ′ in X ′ tangent to P ′ with
p(C ′) = C.

Beginning by (X0,P0) = (U, TU), we can apply this construction inductively
to obtain a sequence (Xn,Pn) of (n+ 2)-dimensional manifolds equipped with
holomorphic fields of 2-planes and fibrations pn : Xn → Xn−1 with fibers P1.
Consider πn : Xn → U the composition of the pn. By construction, each
holomorphic curve in U can be uniquely lifted to a curve in Xn tangent to Pn.

Now, suppose that F is a semiholomorphic foliation on U . It can be con-
sidered as a family of holomorphic curves with two real parameters; as such,
it can be lifted to each Xn as a family of curves tangent to Pn and defines on
each Xn a real four-dimensional submanifold Yn of Xn. Note that any point
p ∈ U around which F is smooth can be uniquely lifted to the point in Xn

corresponding to the lift of the leaf of F passing through p. By abuse of nota-
tion, we will still write p for this point whenever the foliation is clear from the
context.

Definition 3.1. — We define the semirank of a semiholomorphic foliation F
around a point p ∈ U as the lowest integer n such that the germ of Yn at p is
not Zariski-dense in Xn.

By convention, the semirank is infinite if there exists no such integer. Note
that holomorphic foliations correspond to semirank 1.

Proposition 3.2. — Suppose that F is of semirank n <∞ around a point p.
Then the Zariski closure Z of Yn in Xn is a hypersurface generically transverse
to the fibers of pn : Xn → Xn−1.

Proof. — Suppose on the contrary that Z is tangent to the fibration pn or
is not a hypersurface. Then Zn−1 := pn(Z) is a strict subvariety of Xn−1.
By construction, Zn−1 contains Yn−1; thus Yn−1 is not Zariski-dense in Xn−1,
contradicting the minimality of n. �

From this proposition, we see that TZ∩Pn defines a foliation by curves in Z
tangent to Pn, which can be projected to a holomorphic family of holomorphic
curves in U with n parameters containing the leaves of F . By construction,
this n-parameter holomorphic family of curves is uniquely determined by F .

Definition 3.3. — If F is of semirank n, the n-parameter holomorphic family
of curves given by the Zariski closure of Yn in Xn is called the system of curves
S defined by F . We will also say that F is tangent to S .

Example 3.4. — For the foliation Im(x)dy − Im(y)dx, the induced system of
curves is the set of complex affine lines.
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To put this system into equations, take some coordinates (x, y, λ1, . . . , λn)
of Xn centered around the point given by the leaf of F passing through the
origin, so that λk is the coordinate of the P1-fiber of Xk corresponding to the
direction dλk−1/dx. Since the Zariski closure Z of Yn is generically transverse
to the fibration pn, we can express it around a generic point as the graph of a
holomorphic application

λn = F (x, y, λ1, . . . , λn−1).

In this case, the system of curves is given by solutions of the differential equation

y(n) = F (x, y, y′, . . . , y(n−1)),

where a curve is written as a function y(x), and derivations are made with
respect to the variable x. Note that some points can behave singularly for the
system of curves, even if F is smooth. This happens exactly when Z is tangent
to the fibration pn : Xn → Xn−1. We say that the family S is smooth when
Z is smooth and transverse to the fibration pn.

Example 3.5. — The system of curves associated to the foliation Re(1 +
x2)dy − 2xRe(y)dx is the set of parabolas {y = ax2 + b}. The differential
equation satisfied by these curves is xy′′ = y′ so Z has equation xλ2 − λ1 = 0
and is not transverse to the vector field ∂

∂λ2
above x = 0.

The proof of the following proposition is an adaptation of [5, Chapitre I,
§I.4] in the context of semiholomorphic foliations.

Proposition 3.6. — Let F be a real-analytic semiholomorphic foliation. Then
the semirank of F is at most 2.

Proof. — Suppose that (x, y) are coordinates around the origin such that F
is nowhere vertical. Consider coordinates (x, y, λ1, λ2) of X2 where λi is a
coordinate of the P1-fiber of Xi. Let λ(x, y) be the slope of F . The variety Y2
satisfies the equations

λ1 = λ(x, y)

λ2 = ∂λ

∂x
(x, y) + λ(x, y)∂λ

∂y
(x, y).

Consider the four real parameters (x1, x2, v1, v2) with l = l1 + il2 for each
l = x, v and y(x, v) the solution of the equations

∂y

∂x
= λ(x, y)

∂y

∂x̄
= 0

y(0, v) = v
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and put

ϕ(x, v) = (x, y, λ(x, y), ∂xλ(x, y) + λ(x, y)∂yλ(x, y)),

where we wrote y = y(x, v) for short. Now note that ϕ is a parametrization
of Y2, and since λ satisfies equation (2), the antiholomorphic derivative ∂ϕ

∂x̄ is
zero.

Thus, ϕ is holomorphic in x and real analytic in v1, v2; as such, it can be
extended to a germ of holomorphic application ϕ : (x, v1, v2) → X2 defined in
a neighborhood V of (C×R×R, 0) in (C3, 0). Then ϕ(V ) is a complex three-
dimensional subvariety of X2 containing Y2, which concludes the proof. �

Remark that when F is a semiholomorphic foliation and L is a leaf of F ,
the first-order approximation of F along L is always real analytic and, thus,
holomorphic or of semirank 2. If its system of curves is locally given by λ′ =
F (x, y, λ), the first-order approximation is the limit of h∗tF when t tends to 0,
where ht is the dilatation ht(x, y) = (x, ty). The system of curves defined by
the first-order approximation is thus of the form λ′ = a1(x)y + a2(x)λ; it is of
order less than 3 in λ, so it is a projective structure. However, in general, this
projective structure will have singular points along L.

After these generalities, we will restrict ourselves to foliations of semirank 2.

3.2. Duality. — Suppose given a holomorphic family of curves S with 2 pa-
rameters in an open set U ⊂ C2, represented by the hypersurface Z ⊂ X2 and
suppose that Z is smooth and transverse to the fibration p2 : X2 → X1. We
will consider Z as a germ around the origin 0 ∈ X2. Write G the smooth holo-
morphic foliation of Z given by S and Ǔ the contraction of Z in the direction
G. The space Ǔ is a holomorphic surface parametrizing the curves of S ; we
call it the dual of the system of curves S .

This dual comes with a two-parameter family of curves; for each point z ∈ U ,
consider the P1-fiber Fz of X1 over z. Since Z is transverse to the fibration p2,
the preimages of the Fz on Z form a smooth foliation by curves Ǧ on Z. This
foliation is transverse to G, so that it is projected to a two-parameter family of
smooth curves on Ǔ .

This family is the dual family of S on Ǔ ; since U is the contraction of Z in
the direction Ǧ, we can see that G and Ǧ play symmetric roles on Z, so that
the bidual of S is S itself.

To any semiholomorphic foliation F tangent S , we can associate a real
surface SF ⊂ Ǔ by looking at its leaves as points in Ǔ (or equivalently, by pro-
jecting Y2 to Ǔ). Of course, F is holomorphic if and only if SF is a holomorphic
curve.

Most of the time, this duality is incomplete, in the sense that both U and Ǔ
are small open sets. One can expect that when either U or Ǔ are globally well
defined, the situation is much more rigid. For example, when the family S
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is a projective structure (meaning that through each point and each direction
passes a curve of S ), then Ǔ is a neighborhood of a P1 of self-intersection 1,
and the automorphism group of the family S is finite-dimensional; see [8] for
generic automorphisms and the Zusatz of [6, Satz 4] to see that automorphisms
are finitely determined.

Let us consider for one moment the most particular case: when S is the
family of affine lines. We can thus suppose that U = P2 and Ǔ = P̌2, but
the foliation is a priori only a foliation in the neighborhood of a point 0 ∈ P2.
Then SF is a germ of a real surface in P̌2, and we can use [15] to form its
dual ŠF ⊂ P2. In general, ŠF is the hypersurface given by the envelope of the
family of curves F . The construction of [15] is, in fact, very general; we can do
it for any system of curves S . In this case, the definition of the dual of a real
subvariety M ⊂ U is

M̌ = {L ∈ Ǔ | L intersects M at a point p with TpL+ TpM 6= C2}.

As stated above, the dual of a real surface is generically a real hypersurface.
More precisely, we can say the following:

Lemma 3.7. — Suppose that S is a smooth two-parameter system of curves
in U ⊂ C2, and S is a real surface in U . We have the following possibilities
for the dual Š:

1. Š is a point, and S is a complex curve in the family S .
2. Š is a complex curve, and S is also a complex curve.
3. Š is a real surface, in which case the intersection between curves of S

and the surface S define a real two-parameter family of curves SR on
S; when S is real analytic, S is the complexification of SR.

4. Š is a real hypersurface.

Proof. — The projection p2 : X2 → X1 induces a biholomorphism between the
germs (Z, 0) and (X1, 0) so we will work with X1. In particular, the families S

and Š give two smooth transverse foliations G and Ǧ on X1, and the contact
structure P1 is given by P1 = TG ⊕ T Ǧ. Consider also the two projections
p = p1 : X1 → U and p′ : X1 → Ǔ .

Now, as in [15], we define the lift p∗S ⊂ X1 of S as the set of those (z, λ) ∈
X1, where z is a coordinate in U and λ a coordinate of the fiber, such that
z ∈ S, and λ is the complex direction of a real tangent vector in TzS. Note
that Š = p′(p∗S). As discussed in [15, §4], the lift p∗S can be non-transverse
to the projection p′ so that Š can be a priori very singular, in which case we
could have difficulties defining the second lift p′∗Š. However, as soon as it is
well defined, we have the equality of germs p∗S = p′∗Š. In particular, if Š is a
point, then p∗S is a leaf of G, and S is a complex curve in the family S . We
can also see that when Š is a holomorphic curve, then p∗S is the holomorphic

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



452 O. THOM

Legendrian lift of Š, so that its projection S = p(p∗S) is also a holomorphic
curve.

When Š is a real surface that is not holomorphic, the lift p∗S is a real three-
dimensional subvariety of X1, which is everywhere non-transverse to both p
and p′. In particular, the fibers of p′ define a foliation by real curves GR on
p∗S. This foliation is generically transverse to the projection p, so p(GR) is
a foliation by real curves on S. By definition, the leaves of GR are included
in leaves of G, so that the leaves of the induced foliation on S are included
in curves of the system S . When S is real analytic, we can suppose modulo
biholomorphism that S = R2 around a generic point, and in this case, it is
clear that S is the complexification of SR. �

Note, however, that if F is a smooth semiholomorphic foliation in an open
set U , and SF is its dual surface, then the bidual ŠF will not intersect U . We
will explain this in more detail in the next section, but for now, let us study
some cases when ŠF does intersect U , which is very exceptional, as we can see
in the following result:

Proposition 3.8. — Let S be a smooth system of curves in an open set
U ⊂ C2 and F a semiholomorphic foliation tangent to S with a singular point
p ∈ U . If p is an isolated singular point, then F is the pencil of curves of
S passing through p; it is holomorphic and ŠF = {p}. Suppose p ∈ U is a
non-isolated singular point of F . Then the bidual ŠF is a real surface passing
through p, Sing(F) = ŠF , the system of curves S induces a real system of
curves SR on ŠF and when F is real analytic, S is the complexification of SR.

Proof. — Since F is a foliation, the real codimension of its singular set Σ is at
least 2. Consider a leaf L0 of F intersecting Σ at a point p0. By definition, F
has another leaf L1 intersecting L0 at p0. Since L0 and L1 are curves in S , and
S is smooth, their intersection at p0 is transversal, and any leaf L of F close
to L1 intersects L0 at a point p ∈ Σ close to p0. If this point p is always equal
to p0, then all of the leaves pass through {p0} and Σ = {p0}. In this case, we
can see that Σ̌ = SF is the holomorphic curve of the family Š corresponding
to p0, so that F is holomorphic.

Otherwise the set of these points p is a curve on Σ, and, in particular,
L ∩ Σ is a curve. We can say the same thing for all leaves, so that each leaf
L intersects Σ along a curve. Since the intersection points between leaves are
points, Σ cannot be a real curve, and it must be a real surface. Necessarily,
these intersections define a real two-parameter family of real curves on Σ, that
is, a real system of curves SR. In particular, there is an open set V in the real
tangent bundle TΣ such that for (p, v) ∈ V , there is a leaf L of F intersecting
Σ at p in the real direction v. By definition of the dual of Σ, we have Σ̌ = SF ,
and thus Σ = ŠF .
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Finally, note that the curves of the system SR are all contained in leaves
of F , so that the complexified of SR is a complex system of curves containing
all the leaves of F . Since F is not holomorphic, it must be equal to S . �

Proposition 3.9. — Let C be an elliptic curve and S a two-dimensional
neighborhood of C. Suppose there exists a smooth semiholomorphic foliation
F of semirank 2 in S admitting C as a leaf. Suppose also that the system of
curves S defined by F is smooth in the neighborhood of the curve C, and the
dual system Š is a projective structure. Then F is holomorphic.

Proof. — Consider the universal cover (U, C̃) of (S,C), equipped with the pull-
back semiholomorphic foliation, and the induced system of curves, which we
will still denote by F and S . If the dual system Š is a projective structure,
then the dual V ⊃ U of Ǔ contains a compact curve L ' P1; the curve L is the
compactification L = C̃ ∪ {∞}, the surface V is a neighborhood of L, we have
L · L = 1, and the system S extends naturally as a two-parameter family of
deformations of L.

It follows that any curve L′ ∈ S close to L intersects L at one point, so
that if the foliation F is smooth, then L′ ∩L ∈ L \ C̃ = {∞}. We can see that
F is exactly the pencil of curves L′ ∈ S , which intersect L at infinity, so that
it is, indeed, holomorphic. �

3.3. Complete local models. — As we saw in Theorem 2.10, in many interest-
ing cases, the leaves will be complete for the metric |ηF |2. It would then be
interesting to study local models of foliations F in open sets U ⊂ C2 such that
the leaves of F are complete.

Example 3.10. — Consider the foliation given by the 1-form ω = Im(x)dy −
Im(y)dx. This is, in fact, a singular foliation on the whole of P2(C). Its singular
set is equal to Sing(F) = P2(R). Each complex line L tangent to the foliation
is cut into two pieces by Sing(F), and each piece equipped with the metric |η|2
is equal to Poincaré’s half plane.

This example is, in fact, very special; as we saw in Proposition 3.8, it corre-
sponds to the case when the dual of ŠF is a real surface, which is a degenerate
case. In the rest of this section, we suppose that we are in the generic case
when ŠF is a real hypersurface.

By duality, the hypersurface ŠF is the envelope of the family of curves
parametrized by SF ; each leaf L of F intersects ŠF along a curve γ ⊂ L and
is tangent to ŠF along γ (see [15] for more details); it follows that the leaves
of F are tangent to ŠF , but we cannot extend them outside the curve γ or
different leaves will intersect L. This behavior should be the generic behavior
for complete models, even when the foliation is not of semirank 2.
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More precisely, consider an open set V ⊂ C2, a smooth two-parameter family
of curves S , and a germ of semiholomorphic foliation F along a leaf d0, tangent
to S and giving a germ of real surface (SF , d0) in the dual surface V̌ . Now
suppose that the family S can be extended to a smooth system still denoted
S on some open set U ⊃ V , and that the dual ŠF is a real hypersurface in
U that intersects d0 along a real curve. Inside the germ of surface (U, d0), the
hypersurface ŠF has an interior that can be considered the biggest domain of
definition of F , and each leaf of F cuts tangentially ŠF along a real curve. Note
that, using notations of Section 1.2, this real curve has equation {|u|2 = |v|2}, so
that a generic geodesic along a leaf that tends to ŠF has infinite length. Thus,
when the real curve ŠF∩d0 is compact, F can be extended to a semiholomorphic
foliation in the interior of ŠF whose leaves are complete. Conversely, note that
if leaves of F do not adhere to the hypersurface ŠF , then they are not complete.

Figure 3.1. The hypersurface H = ŠF is tangent to leaves of F

Definition 3.11. — We call a germ of a smooth non-degenerated local complete
model along a leaf L the triples (U, V,F), where V ⊂ U ⊂ C2 are germs of open
sets along L, F is a germ of smooth semiholomorphic foliation on V tangent to
a system of curves S , L∩V is a leaf of F , the system S can be extended to a
smooth system of curves on U , and the border H = ∂V is a germ of compact
hypersurface that satisfies H = ŠF as germs along L ∩H.

If a smooth semiholomorphic foliation tangent to a regular system of curves
on a global surface has complete leaves, then its universal covering is either
of the form described in Proposition 3.8 or is a smooth nondegenerate local
complete model along each leaf.
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4. Foliations tangent to projective structures

4.1. Examples of foliations by lines. — We try to construct some examples of
foliations F on germs of surfaces (S,C) around a hyperbolic compact complex
curve C, such that C is a leaf of F . To do so, we will take F locally modeled
on the foliation F0 given by the (1, 0)-form ω0 = Im(x)dy − Im(y)dx on P2(C)
around the leaf L0 = {y = 0}. Equivalently, we want to find a group G of germs
of diffeomorphisms of the surface P2(C) around an open set V0 ⊂ L0, such that
the quotient of V0 by G|V0 is diffeomorphic to C. Of course, if we want the
foliation F0 to give a foliation F on the quotient, the group G must send leaves
of F0 to leaves of F0. This means, in particular, that G must preserve the set
of affine lines in P2(C), so G is a subgroup of PSL3(C).

The group G must also preserve the singular set P2(R) of F0, so G ⊂
PSL3(R). Note that by the duality explained in Section 3.2, the fact for G
to preserve P2(R) is equivalent for its action on the dual P̌2(C) to preserve
the dual surface SF . This means exactly that G sends leaves of F0 to leaves
of F0, i.e., the group of automorphisms of F0 is PSL3(R). Write an element
M ∈ SL3(R) as

M =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
If we want M to stabilize L0, we must have a21 = a23 = 0, and M |L0 is given
in an affine coordinate x by

M |L0(x) = a11x+ a13

a31x+ a33
.

Hence the construction: take any Fuchsian subgroup G0 ⊂ PSL2(R) such
that the quotient of the half-plane H0 ⊂ L0 by G0 is a hyperbolic compact curve
C. Write a11(g), a13(g), a31(g), a33(g) as the coefficients of the elements g ∈ G0.
Choose any extension G of G0 to PSL3(R) (i.e., a22(g) = 1, and (a12(g), a32(g))
is a cocycle for the group G0); the most simple extension being, of course,
a12(g) = a32(g) = 0 and a22(g) = 1. Then the quotient of a neighborhood U of
H0 in P2(C) by G is a surface S containing a curve C quotient of H0, and the
foliation F0 descends to a smooth semiholomorphic foliation F on S having C
as a leaf.

Theorem 4.1. — Let C = H0/G0 be a compact curve of genus g ≥ 2, where
G0 ⊂ PSL2(R) is a Fuchsian subgroup. Let M denote the moduli space of
neighborhoods (S,C,F) of C in complex surfaces equipped with a smooth semi-
holomorphic foliation F locally diffeomorphic to Im(x)dy − Im(y)dx, modulo
biholomorphism. The construction explained above induces a bijection

M ' H1(G0,R2).
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Proof. — As we explained above, every example comes from a cocycle
Z1(G0,R2), so that we only need to prove that equivalence modulo biholo-
morphism for (S,C,F) corresponds to equivalence modulo coboundaries for
cocycles. We keep the notations above in this proof.

The holonomy of F in S defines a permutation of the leaves, which is exactly
the action of G on the dual surface SF ; in particular, from this point of view,
the holonomy is given by elements of PSL3(R). It follows that this holonomy is
well defined modulo conjugacy in PSL3(R); we can suppose that this conjugacy
fixes L0 and the group G0 = G|L0 . The action by conjugacy of the subgroup
of PSL3(R) fixing L0 and G0 is exactly the action of coboundaries on cocycles,
so that the theorem is proved. �

Note that, if we have coordinates [x : y : z] on P2, in the affine chart z = 1
the action of the group given by the zero cocycle writes as

M(x, y) =
(
a11x+ a13

a31x+ a33
,

y

a31x+ a33

)
=: (α(x), β(x)y).

The tangent bundle of the leaf L0 = {y = 0} will be given by α′(x) =
a11a33−a13a31
(a31x+a33)2 , and its normal bundle by β(x). We see here explicitly that the

tangent bundle and the normal bundle are closely related, as stated in Theorem
2.8.

Note also that the cocycles only intervene at higher order.

4.2. Generic foliations by lines. —

Theorem 4.2. — Consider a real-analytic semiholomorphic foliation by lines
F defined in an open set U ⊂ P2(C) neighborhood of the leaf L0. Suppose that
there is a subgroup G < PSL3(C) stabilizing F and L0, such that the restriction
to L0 is injective, G|L0 is a Fuchsian group, and the quotient of L0 by G is a
compact Riemann surface of genus g ≥ 2.

Suppose, moreover, that F is not holomorphic at first order along L0, i.e.,
i∗L0

ηF 6≡ 0. Then F is biholomorphic to the foliation given by the (1, 0)-form
Im(x)dy − Im(y)dx.

The foliation F defines a real surface S = SF in P̌2, and the action of G on
the dual space P̌2, denoted by Ǧ < PSL3(C) stabilizes S. Since G stabilizes a
line L0, the group Ǧ stabilizes a point p0. If g ∈ G is hyperbolic in restriction
to L0, then its action ϕ ∈ PSL3(C) on P̌2 is such that dp0ϕ is hyperbolic.
Most real surfaces do not have a lot of symmetries in PSL3(C); we begin by
examining those having one hyperbolic symmetry.

Lemma 4.3. — Let (S, p0) ⊂ P̌2 be a smooth germ of real-analytic surface
such that Tp0S is not complex. Suppose that ϕ ∈ PSL3(C) stabilizes S and
dp0ϕ is hyperbolic. Then either S is a real affine plane or S is equipped with a
real codimension 1 foliation whose leaves are invariant by ϕ. Moreover, these
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leaves are intersections between S and real affine planes passing through p0; the
foliation has exactly two separatrices at p0, and they are tangent to eigenvectors
of dp0ϕ.

Proof. — Since ϕ(p0) = p0, we can write ϕ in some coordinates

ϕ =

a11 a12 0
a21 a22 0
a31 a32 1

 ∈ GL3(C).

Now, the differential dp0ϕ =
[
a11 a12
a21 a22

]
is hyperbolic and, thus, diagonalizable:

dp0ϕ ∼
[
λ 0
0 µ

]
, for example with |λ| > |µ|. By hypothesis, Tp0S is not a

complex direction, so there is a conjugacy ψ with ψ ∈ PSL3(C) fixing p0, such
that Tp0ψ(S) = p0 + R2. This implies dp0(ψϕψ−1)(R2) = R2, and since λ and
µ are not complex conjugates, we see that λ and µ are real.

There are two cases to examine: either ϕ is diagonalizable and in some
coordinates,

ϕ =

λ 0 0
0 µ 0
0 0 1

 ,
or

ϕ =

λ 0 0
0 1 0
0 1 1

 .
In both cases, if we consider coordinates (x, y) centered at p0 with d0ϕ(x, y) =
(λx, µy), if we write x = x1 + ix2, y = y1 + iy2, then for any equations of the
tangent plane Tp0S {

l11x1 + l12x2 + l13y1 + l14y2 = 0
l21x1 + l22x2 + l23y1 + l24y2 = 0,

by the equation dϕ(Tp0S) = Tp0S, we get{
(λ/µ− 1)(l11x1 + l12x2) = 0
(µ/λ− 1)(l23y1 + l24y2) = 0.

We deduce that when Tp0S is not complex, it has equations {x2/x1 = tan(α1),
y2/y1 = tan(α2)} for some constants α1, α2 ∈ S1. The application (x, y, z) 7→
(e−iα1x, y, z) stabilizes ϕ, so we can suppose that α1 = 0 in both cases. In the
diagonalizable case, we can also suppose that α2 = 0.

Suppose now that we are in the diagonalizable case; in some coordinates
(x, y) centered at p0, we have ϕ(x, y) = (λx, µy). Note first that the real
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functions x2/x1 and y2/y1 are stable by ϕ and induce real foliations by invariant
curves on S whenever they are not constant on S. We can write S as a graph{

x2 = x1f1(x1, y1)
y2 = y1f2(x1, y1).

The functions f1, f2 are unique, and since S is stable by ϕ, we get for every
x1, y1, {

f1(x1, y1) = f1(λx1, µy1)
f2(x1, y1) = f2(λx1, µy1).

There are two cases: either the diffeomorphism ϕ|R2 has a nonconstant real-
analytic first integral or not. In the first case, every first integral is of the form
f(xp1y

q
1) for some integers p, q, so that the two foliations induced by x2/x1 and

y2/y1 on S are, in fact, equal. This means that every leaf of this common
foliation is a component of the intersection between S and a real affine plane
{x2 = tan(θ)x1, y2 = tan(α)y1}. Note that, since this foliation has a first
integral xp1y

q
1, it has two separatrices at p0, and the complexification of the

tangents at p0 of these separatrices are the eigenvectors of ϕ corresponding
to λ and µ. In the second case, every first integral is constant, so that S is
included in a real affine plane {x2 = tan(θ)x1, y2 = tan(α)y1}.

In the nondiagonalizable case, ϕ can be expressed in some coordinates (x, y)
centered at p0 as

ϕ(x, y) =
(

λx

1 + y
,

y

1 + y

)
.

In the coordinates (z, w) = (x/y, 1/y), this expression becomes ϕ(z, w) =
(λz,w+ 1). As before, we notice that the functions z2/z1 and w2 are invariant
by ϕ.

The tangent plane to S can be parametrized by (s, t) ∈ R2 7→ (x, y) =
(s, teiα2), so that in a neighborhood of p0, S is close to the surface parametrized
by (z, w) = (se−iα2/t, e−iα2/t). In particular, if α2 6= ±π/2, in a neighborhood
of p0, we can write S \ {p0} as a graph{

z2 = z1f1(z1, w1)
w2 = f2(z1, w1).

As in the diagonalizable case, the functions fi are unique, and S is stabilized
by ϕ, so we get {

f1(z1, w1) = f1(λz1, w1 + 1)
f2(z1, w1) = f2(λz1, w1 + 1).

The local first integrals of ϕ|R2 are all of the form f(z1exp(−w1log(λ))). Note
that z1exp(−w1log(λ)) = (x/y)exp(−log(λ)/y), so that these first integrals are
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not real analytic at (x, y) = (0, 0). It follows that z2/z1 and w2 are constant
on S. Since [x : y : 1] = [z : 1 : w], these equations, indeed, define real affine
subspaces.

If α2 is equal to ±π/2, we can write S as a graph{
z1 = z2f1(z2, w2)
w1 = f2(z2, w2),

and we get {
f1(z2, w2) = f1(λz2, w2)
f2(z2, w2) = f2(λz2, w2)− 1.

From the second equation we get that f2|{z2=0} = ∞ so that in fact α2 6=
±π/2. �

Proof of Theorem 4.2. — Aiming at a contradiction, we suppose in this proof
that the dual surface S is not contained in any affine real plane. The group G|L0

is generated by 2g hyperbolic elements hi, and two different hi have different
pairs of fixed points on the border ∂L0. These fixed points are the eigenvectors
of the differentials dp0ϕi of the actions of hi on P̌2.

Consider three among them: ϕ1, ϕ2, ϕ3. The foliations defined by them on
S have different separatrices, so they are different. Thus, by a generic point
p ∈ S pass three curves contained in real affine planes also passing through p0.
Consider the projection π : (P2(C), p0)\{p0} → P3(R). Since S is not contained
in any real plane, the space π(S) is a surface; and we just saw that through a
generic point p ∈ π(S) pass three different affine lines contained in π(S). By
[9, §16.5], this implies that π(S) is a real affine plane, so that S is contained in
a real affine hyperplane H. This hyperplane H is obviously unique, so that it
is stable by dp0ϕ for each ϕ ∈ G. It follows that the unique complex direction
tangent to H is stable by each dp0ϕ, and that all of the elements of G share
an eigenvector. This is obviously not possible for the fundamental group of a
smooth compact curve. �

In the proof of this result, the hypothesis of real analyticity is only used
in Lemma 4.3 to show that when two real functions on S are invariant by an
automorphism ϕ, they must define the same foliation. This result is false in
the C∞ context. Indeed, consider a diffeomorphism ϕ(x1, y1) = (λx1, µy1) with
for example λ > 1 > µ > 0 and λpµq = 1 for some integers p, q ∈ N∗.

Write l = log(λ),m = log(µ) and consider the functions r = xpyq and
θ = 1

m−l log
(
y
x

)
. Then r◦ϕ = r and θ◦ϕ = θ+1; the foliation {r = cte} is stable

by ϕ, has two separatrices Lx = {y = 0}, Ly = {x = 0}, and these separatrices
cut the plane R2 into four invariant quadrants R2 \ (Lx ∪ Ly) =

⋃
Qi.

If f is a function defined in a quadrant Qi that is invariant by ϕ, its re-
striction to a curve {r = c} is periodic in θ, and we can develop it in Fourier
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series:
f |Qi

(r, θ) =
∑
n∈Z

c(i)n (r)einθ.

We know by Fourier theory that f |Qi
is C∞ if and only if |c(i)n (r)| = o(nk) for

each k ∈ N. The question is then to find those tuples (f1, f2, f3, f4) that can
be glued to a C∞ function f on R2. Note here that if |c(i)n (r)| = o(rk) for each
i, n, k, we can, indeed, glue the functions fi to a function f : when (x, y) tends
to one of the separatrices Lx or Ly, a quick computation shows that all the
derivatives ∂k1+k2fi

∂xk1∂yk2 tend to zero.
This shows that there are, indeed, germs of real surfaces invariant by an

automorphism ϕ, which contradict Lemma 4.3 in the C∞ context.

4.3. Another example. — We can try to find other examples of semiholomor-
phic foliations whose leaves are curves of a projective structure. In general,
projective structures could have isolated symmetries, so we will only consider
symmetries that are exponentials of infinitesimal automorphisms, as studied in
[8, §6.2]. The only groups of infinitesimal automorphisms that can give rise
to a compact curve of genus g ≥ 2 are sl2(C) and sl3(C). The only projective
structure (modulo biholomorphisms) having a symmetry group sl3(C) is the
family of lines in P2, which we already considered. As for sl2(C), it only occurs
as infinitesimal symmetries for the structure S whose curves have equations
y = y(x) in a neighborhood U of the origin with

y′′ = (xy′ − y)3.

However, the action of the group is the linear action of G = SL2(C), so it fixes
a point. Thus, we cannot build an example of neighborhood of a compact curve
of genus g ≥ 2 from this structure.

Consider then the dual family Š of curves of this projective structure; it
is defined in the surface S0 described in [8, §5.4]. Recall that S0 is a double
cover of P1 × P1 along the diagonal ∆, and the dual family Š corresponds
to graphs of Möbius functions tangent to ∆. The curves in Š are rational
curves of self-intersection 1 in S0. In the following, we will consider S0 as a
neighborhood of the curve L0 corresponding to ∆. Since this family is the dual
of S , it also has symmetry group Ǧ = SL2(C); in U the automorphism group
fixed the origin 0 ∈ U , so that the action of Ǧ on S0 stabilizes the curve L0
and acts as Möbius transforms on it.

In some coordinates (x, y), a curve L in Š has the equation

y = a(x− x0)√
1 + a2(x− x0)

,(4)

where the two parameters x0 and a correspond respectively to the point of
intersection between L and L0 and to the slope of L at this point.
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Now consider the real plane {(x0, a) ∈ R2} ⊂ U , which corresponds to a
semiholomorphic foliation F in S0 whose leaves are precisely those curves for
which a and x0 are real. We can check that when a and x0 are real, we can
recover x0 from the system of two real equations (4) by eliminating a. Indeed,
we find the quadratic equation

0 = Im(y2)x2
0 − 2Im(x̄y2)x0 +

[
Im(x)|y2|2 + Im(x̄2y2)

]
,

which we can solve to obtain

x0 =
Im(x̄y2)− |y|2Im(x)

√
1− Im(y2)

Im(x)

Im(y2) =: f(x, y).

In particular, the real function f is constant along the leaves of F , so that
its level hypersurfaces are Levi-flat hypersurfaces foliated by leaves of F . We
deduce that the field of complex directions T (1,0)F is the unique complex di-
rection contained in Ker(df), so that it is the kernel of the (1, 0)-form ∂f . We
can compute

∂f

∂x
= −ȳ

2iIm(y2)
√

1− Im(y2)
Im(x)

[
ȳ

√
1− Im(y2)

Im(x) + y

(
1− Im(y2)

2Im(x)

)]
,

∂f

∂y
= ȳ

2iIm(y2)2
√

1− Im(y2)
Im(x)

×

[
2Im(x)|y|2

√
1− Im(y2)

Im(x) +
(
2Im(x)Re(y2)− ȳ2Im(y2)

)]
.

Alternatively, we can express the slope λ = dy/dx as

λ = Im(y2)
2Im(x)

ȳ
√

1− Im(y2)
Im(x) + y

(
1− Im(y2)

2Im(x)

)
|y|2
√

1− Im(y2)
Im(x) +

(
Re(y2)− ȳ2 Im(y2)

2Im(x)

) .
The surface S0 is defined over R and is the complexified of the real-analytic

surface SR obtained as the closure of {(x, y) ∈ R2} in S0. As before, L0 \ SR
is the union of two hyperbolic planes; consider one of them H0 ⊂ L0 and a
small neighborhood V ⊂ S0 of H0. One can check that if V is small enough, F
is smooth in V , and that its automorphism group is SL2(R) acting as Möbius
transformations on H0.

We conclude that for any compact curve C of genus g ≥ 2 there is exactly one
example (up to biholomorphism) of a surface (S,C) equipped with a smooth
semiholomorphic foliation F coming from the construction above. Remember
that the construction above only gives those examples that come in a family;
there might be exceptional examples coming from automorphisms that are not
exponentials of infinitesimal automorphisms.
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