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TOPOLOGICALLY STABLE LINEAR OPERATORS

by K. Lee, C.A. Morales & N. Nguyen

Abstract. — In this study, we establish the equivalence of topological, structural,
and strong structural stability for invertible linear operators on finite-dimensional Ba-
nach spaces. Furthermore, we demonstrate that every strongly structurally stable
bilateral weighted shift also exhibits topological stability. As a consequence, there
exist topologically stable operators that are not hyperbolic.

Résumé (Opérateurs linéaires topologiquement stables). — Dans cette étude, nous
établissons l’équivalence entre la stabilité topologique, structurelle et la forte stabi-
lité structurelle pour les opérateurs linéaires inversibles sur des espaces de Banach de
dimension finie. De plus, nous démontrons que chaque décalage pondéré bilatéral for-
tement structurellement stable présente une stabilité topologique. Par conséquent, il
existe des opérateurs topologiquement stables qui ne sont pas hyperboliques.
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648 K. LEE, C.A. MORALES & N. NGUYEN

1. Introduction

This paper was driven by two main motivations. The first one revolves
around the concept of structural stability, introduced by Andronov and Pon-
tryagin [1], which has been extensively explored by numerous authors. Notable
results include Peixoto’s theorem concerning structurally stable flows on sur-
faces [21], Anosov’s theorem [2] on the structural stability of U-systems (nowa-
days referred to as Anosov systems), Palis’s theorem on the structural stability
of Morse–Smale systems in higher dimensions [19], the structural stability of
Axiom A systems with strong transversality condition proposed by Palis and
Smale [20], and the solutions to the C1-stability conjectures by Mañé [17] (for
diffeomorphisms) and Hayashi [9] (for flows).

The second motivation centers on topological stability, introduced by Wal-
ters [27]. Here, remarkable results include Nitecki’s theorem concerning the
topological stability of Axiom A diffeomorphisms with a strong transversality
condition [18], Walters’s stability theorem on the topological stability of expan-
sive homeomorphisms with the shadowing property in compact metric spaces,
Thomas’s stability theorem for flows [25], and the Chung and Lee stability
theorem for finitely generated group actions [6].

The literature has explored the comparison between these two concepts. For
instance, the C1 stability conjecture and Nitecki’s result [18] imply that every
C1 structurally stable diffeomorphism of a closed manifold is topologically sta-
ble. Although examples of topologically stable diffeomorphisms that are not
structurally stable can be found, they are all topologically conjugated to struc-
turally stable ones. Hurley [12] conjectured that this is always the case. For
circle homeomorphisms, Yano [29] has proved it, and it is known that every
smooth topologically stable flow on a closed surface is topologically equivalent
to a Morse–Smale one [7]. In the case of diffeomorphisms of closed manifolds,
Hurley [11] established that the combination of topological and structural sta-
bility is equivalent to the Axiom A property along with the strong transver-
sality condition. Finally, it is worth mentioning that the structural stability
of Anosov diffeomorphisms [2] follows as a consequence of Walters’s stability
theorem [14].

In this paper, we aim to compare these two significant concepts in the con-
text of bounded linear operators on Banach spaces. While structural stable
linear operators have been extensively studied by many authors over the last
decades, topological stability has not received as much attention in the linear
dynamics literature. Our objective is to demonstrate that both topological and
structural stability are equivalent for invertible operators on finite-dimensional
Banach spaces. Notably, in finite dimensions, these concepts are also equivalent
to another crucial notion in linear dynamics, namely hyperbolicity. Addition-
ally, we establish that every strongly structurally stable bilateral weighted shift
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TOPOLOGICALLY STABLE LINEAR OPERATORS 649

exhibits topological stability. Consequently, topologically stable operators that
are not hyperbolic do, indeed, exist. Let us state our results in a precise way.

Hereafter X will be a (complex) Banach space. We say that W : X → X is
Lipschitz if there is K > 0 such that

‖W (x)−W (y)‖ ≤ K‖x− y‖, ∀x, y ∈ X.

The infimum of those K’s is the Lipschitz constant denoted by Lip(W ). Given
r : X → X we define

‖r‖∞ = sup
x∈X
‖r(x)‖.

This is a norm except that it may take ∞ value (and so it is an ∞-norm).
Denote by idX the identity map of X.

Definition 1.1. — An invertible bounded linear operator of a Banach space
L : X → X is:
• Structurally stable if there is δ > 0 such that for any Lipschitz continuous
map g : X → X satisfying

‖L− g‖∞ < δ and Lip(L− g) < δ.

There is a homeomorphism h : X → X such that

L ◦ h = h ◦ g.

• Strongly structurally stable if for every ε > 0 there is δ > 0 such that for
any Lipschitz continuous map g : X → X satisfying

‖L− g‖∞ < δ and Lip(L− g) < δ,

there is a homeomorphism h : X → X such that

‖h− idX‖∞ < ε and L ◦ h = h ◦ g.

• Topologically stable if for every ε > 0 there is δ > 0 such that for any
homeomorphism g : X → X with

‖L− g‖∞ < δ,

there is a continuous h : X → X such that

‖h− idX‖∞ < ε and L ◦ h = h ◦ g.

The notion of a structurally stable operator is due to Palis and Pugh [13,
5]. Topological stability for operators can be derived from strong structural
stability by allowing arbitrary C0-perturbation and weakening the resulting
conjugacy. Every strongly structurally stable operator is structurally stable.
The converse is unknown as far as we know.

We will prove that these definitions are equivalent on finite-dimensional Ba-
nach spaces. More precisely, we have the following result.
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650 K. LEE, C.A. MORALES & N. NGUYEN

Theorem 1.2. — The following properties are equivalent for every invertible
operator of a finite-dimensional Banach space L : X → X:

1. L is structurally stable.
2. L is strongly structurally stable.
3. L is topologically stable.

(It is worth mentioning that all these equivalent conditions are equivalent
to the hyperbolicity of L).

The Hurley conjecture [12] motivates us to ask if this theorem holds for
general Banach spaces. We can also ask if Hurley result [11] holds for linear
operators as well. More precisely, if an invertible bounded linear operator of a
Banach space is hyperbolic if and only if it is both topologically and structurally
stable.

Now, we compare topological and strongly structural stable operators in
another important case: bilateral weighted shifts.

Fix p ∈ [1,∞) and let X = lp(Z) be the set of complex number sequences
ξ = (ξi)i∈Z such that ∑

i∈Z
|ξi|p <∞.

This is a Banach space if equipped with the norm

‖ξ‖ = (
∑
i∈Z
|ξi|p)

1
p .

Given n ∈ Z we define ei ∈ X by (en)i = 1 (if i = n) or 0 (otherwise). Then,
we have

ξ =
∑
i∈Z

ξiei, ∀ξ ∈ X.

Choose a sequence of complex numbers (wi)i∈Z such that

0 < inf
i∈Z
|wi| ≤ sup

i∈Z
|wi| <∞.(1)

Then, Bw : X → X defined by

Bw(ξ) =
∑
i∈Z

wi+1ξi+1ei, ∀ξ ∈ X,

is an invertible bounded linear operator of X. It is called a bilateral weighted
shift. Based on [4] and [3] we shall prove the following result.

Theorem 1.3. — Every strongly structurally stable weighted shift is topologi-
cally stable.
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2. Proof of the theorems

The proof is based on four lemmas. The first one (which seems to be well
known) is motivated by Theorem 1.8, p. 39 in [10]. Given a Banach space X,
x ∈ X and a ≥ 0 we denote by B[x, a] the closed a-ball centered at x ∈ X.

Lemma 2.1. — For every finite-dimensional Banach space X and γ > 0 there
is ρ > 0 such that if h : X → X is continuous and ‖h − idX‖∞ < ρ, then
B[0, γ] ⊂ h(X).

Proof. — Since all Banach spaces of the same (finite) dimension are linearly
homeomorphic, we can assume that X = Rn with the Euclidean norm, for some
n ∈ N. Fix γ > 0. Denote B = B[0, 2γ] and ∂B the boundary of B.

Choose ρ > 0 small enough such that for every z ∈ B[0, ρ], every x ∈ ∂B
and y ∈ X with ‖x−y‖ < ρ it is true that the line traced from z to y intersects
∂B at some point u with ‖u− x‖ < 4γ.

Suppose by contradiction that there is h : X → X continuous such that

‖h− idX‖∞ < ρ and B[0, γ] 6⊂ h(X).

Choose z ∈ B[0, γ] \ h(X). Define H : B → ∂B by H(x) = u, where u is as
above with y = h(x). Then, H is continuous, and because ‖h(x) − x‖ < 4γ
(∀x ∈ ∂B), we also have H(x) 6= −x for every x ∈ ∂B. From this, we can
construct a homotopy from H|∂B : ∂B → ∂B to id∂B through the minimal
circle arc in ∂B from H(x) to x. This would imply that ∂B is a retract of B
contradicting Brouwer’s fixed point theorem. �

This proof does not work in infinite dimension since Brouwer’s fixed point
theorem fails in such a case [15].

On the other hand, a well-known theorem of Hartman [23] asserts that every
structurally stable operator of a finite-dimensional Banach space is hyperbolic
(and conversely). Our second lemma proves the same but replacing structural
by topological stability.

Lemma 2.2. — Every topologically stable operator of a finite-dimensional Ba-
nach space is hyperbolic.

Proof. — Recall that a homeomorphism of a metric space f : Y → Y is ex-
pansive [26] if there is e > 0 such that if x, y ∈ Y and d(fn(x), fn(y)) ≤ e for
every n ∈ Z, then x = y. For invertible bounded linear operators S : X → X
to be expansive is equivalent to the property that

sup
n∈Z
‖Sn(y)‖ <∞ ⇐⇒ y = 0.(2)

(See [4]).
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Now, let L : X → X be a topologically stable operator of a finite-dimensional
Banach space. Suppose that L is not hyperbolic. Then, there are x ∈ X and
λ ∈ C such that ‖x‖ = |λ| = 1 and L(x) = λx.

By Lemma 2.1 there is 0 < ε < 1
8 such that every continuous map with

‖h− idX‖∞ < ε satisfies
B[0, 2] ⊂ h(X).(3)

For this ε we take δ from the topological stability of L. By Lemma 1 in [5]
(say) we can also assume that L + ϕ : X → X is a homeomorphism for every
ϕ : X → X with max{‖ϕ‖∞, Lip(ϕ)} < δ.

Since dim(X) <∞, the hyperbolic operators are dense in the set of invertible
operators with respect to the operator norm (see p. 937 in [23]). Then, there
is a hyperbolic operator S : X → X such that

‖S − L‖ < δ

8 .

On the other hand, by (the proof of) Lemma 7 in [4], there is ϕ : X → X such
that

ϕ(y) = S(y)− L(y) (∀y ∈ B[0, 1 + ε]),

Lip(ϕ) < 3δ
8 and ‖ϕ(y)‖ ≤ δ

4 (∀y ∈ X).

Define
g = L+ ϕ.

Then, g : X → X is a homeomorphism with ‖L− g‖∞ < δ. So, by topological
stability, there is h : X → X continuous such that

‖h− idX‖∞ < ε and L ◦ h = h ◦ g.

Denote by OL(x) = {Ln(x) : n ∈ Z} the orbit of x under L and by B the
closure of B ⊂ X. Since ‖h− idX‖∞ < ε, the choice of ε implies that h satisfies
(3). Since ‖Ln(x)‖ = |λn| = 1 for all n ∈ Z, OL(x) ⊂ B[0, 1] thus (3) yields

OL(x) ⊂ h(X).
Define

Λ = h−1(OL(x)).

Given y ∈ Λ, we have h(y) ∈ OL(x) so ‖h(y)‖ = 1 thus
‖y‖ ≤ ‖h(y)‖+ ‖y − h(y)‖+ ‖h(y)‖ ≤ 1 + ‖h− idX‖∞ < 1 + ε

proving
Λ ⊂ B[0, 1 + ε].

It follows that g(y) = L(y) + ϕ(y) = S(y) for all y ∈ Λ.
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On the other hand, we can check that Λ is invariant for g, so gn(y) ∈ Λ and,
thus, gn(y) = Sn(y) for all y ∈ Λ and n ∈ Z. Now, x ∈ OL(x), so x ∈ h(X),
and, thus, there is y∗ ∈ X such that x = h(y∗), whence y∗ ∈ Λ. It follows that

Ln(x) = Ln(h(y∗)) = h(gn(y∗)) = h(Sn(y∗)), ∀n ∈ Z.

But S is hyperbolic (hence expansive), so by (2) one has either y∗ = 0 or
‖Sn(y∗)‖ → ∞ when n→∞ or n→ −∞, ∀y ∈ Λ. If y∗ = 0, then Sn(y∗) = 0
for all n ∈ Z and, thus,

lim
n→∞

Ln(x) = h(0).

Since ‖h(0)‖ = ‖h(0) − 0‖ ≤ ε < 1
8 and ‖Ln(x)‖ = 1 for every n ∈ Z, we get

a contradiction. The second case is also absurd since Λ is a compact (hence
bounded) invariant set of g, Sn(y∗) = gn(y∗) for all n ∈ Z. This completes the
proof. �

It is also known that every hyperbolic operator of a Banach space is struc-
turally stable (this is Palis–Pugh extension [13, 5] of the Hartman theorem
[8]). Our third lemma proves the same but replacing structural by topological
stability. A sketch of the proof of this lemma in Rn was given by Robbin [22].

Lemma 2.3. — Every hyperbolic operator of a Banach space is topologically
stable.

Proof. — Let L : X → X be a hyperbolic operator of a Banach space. Then,
L is uniformly expansive in the linear sense, i.e. there is N ∈ N such that
max{‖LN (x)‖, ‖L−N (x)‖} ≥ 2 for all x ∈ X with ‖x‖ = 1 (see, for instance,
Theorem 1 in [4]).

Next recall that a homeomorphism of a metric space f : Y → Y is uniformly
expansive if there is e > 0 such that for every ε > 0 there is N ∈ N such that
if x, y ∈ Y and d(fn(x), fn(y)) ≤ e for all −N ≤ n ≤ N , and then d(x, y) ≤ ε.
This is not exactly the original definition (by Sears [24]) but an equivalent one
(see Lemma 1 in [16]).

Since L is uniformly expansive in the linear sense, L is uniformly expansive
by Lemma 3 in [16]. On the other hand, every uniformly expansive homeomor-
phism with the shadowing property of a metric space is topologically stable
(this is implicit in Walters [28] and explicit in Theorem 5 of [16]). Since L
is hyperbolic, L also has the shadowing property, and then L is topologically
stable. This ends the proof. �

Combining Lemma 2.2 and Lemma 2.3 we obtain the following corollary
proving the Hartman theorem [23] for topologically stable operators.

Corollary 2.4. — An invertible linear operator of a finite-dimensional Ba-
nach space is topologically stable if and only if it is hyperbolic.

Our last lemma is based on the proof of Theorem 9 in [4].
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Lemma 2.5. — Let w = (wi)i∈Z be a sequence of complex numbers satisfying
(1). If

lim
n→∞

sup
k∈N
|w−k · · ·w−k−n|

1
n < 1 < lim

n→∞
inf
k∈N
|wk · · ·wk+n|

1
n ,

then the bilateral shift Bw is topologically stable.

Proof. — As in p. 971 of [4], by Lemma 19 in [4], there are s ∈ (0, 1) and
β > 1 such that

|w−jw−j−1 · · ·w−j−k+1| ≤ βsk and 1
|wjwj+1 · · ·wj+k−1|

≤ βsk,(4)

∀j, k ∈ N. Now fix ε > 0 and define

δ = 1− s
β

ε.

Let g : lp(Z)→ lp(Z) be a homeomorphism such that
‖Bw − g‖∞ < δ.

Define α = Bw − g. Hence ‖α‖∞ < δ. Denote by {αl : lp(Z) → C}l∈Z the
coordinates of α. Define the sequence of maps

{vi : lp(Z)→ C}i∈Z

by v0 = 0,

vi =
i−1∑
j=0

αj ◦ g(i−j−1)

wj+1 · · ·wi
and v−i = −

i∑
j=1

w−i+1 · · ·w−jα−j ◦ g(−i+j−1),

∀i ∈ N.
The argument in p. 972 of [4] shows that the map v : lp(Z)→ lp(Z) defined

by
v(ξ)i = vi(ξ), (∀ξ ∈ lp(Z))

is continuous. And the argument on p. 973 of [4] shows
v ◦ g −Bw ◦ v = −α.

This implies
Bw ◦ h = h ◦ g with h = idX + v.

Since v is continuous, h is also. Finally, by rearranging the series defining v as
on p. 11 of [4], one gets

‖v‖∞ ≤
β

1− s‖α‖∞.

Then

‖v‖∞ ≤
β

1− s‖Bw − g‖∞ <
β

1− s ·
1− s
β

ε = ε,
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and so ‖h− idX‖∞ = ‖v‖∞ < ε. Therefore, Bw is topologically stable, and we
are done. �

From this lemma we have the following example.

Example 2.6. — There are topologically stable operators that are not hyper-
bolic.

Proof. — Every bilateral weighted shift Bw as in Lemma 1 is topologically
stable but not hyperbolic (by Theorem 9 in [4]). �

Proof of Theorem 1.2. — The equivalence between topological and structural
stability for invertible linear operators on finite-dimensional Banach spaces
follows from Corollary 2.4 and the Hartman theorem [23]. The one between
structural and strong structural stability in finite dimensions is well known. �

Proof of Theorem 1.3. — LetBw be a bilateral weighted shift with w satisfying
(1). If Bw is strongly structurally stable, then Bayart Theorem [3] and Theorem
18 in [4] imply that one of the following properties hold:
(A) limn→∞ supk∈Z |wkwk+1 · · ·wk+n|

1
n < 1;

(B) limn→∞ infk∈Z |wkwk+1 · · ·wk+n|
1
n > 1;

(C)

lim
n→∞

sup
k∈N
|w−k · · ·w−k−n|

1
n < 1 < lim

n→∞
inf
k∈N
|wk · · ·wk+n|

1
n .

Properties (A) and (B) imply that Bw is hyperbolic (p. 976 in [4]) and so
topologically stable by Lemma 2.3. Then, we are done since (C) implies that
Bw is topologically stable (by Lemma 2.5). �

The comparison between topologically stable and structurally stable opera-
tors can be extended using Theorem 6 in [4]. According to this theorem, any
structurally stable (resp. positively) expansive operator in a Banach space also
qualifies as uniformly expansive (resp. hyperbolic). Moreover, applying the
arguments presented in [4], we can demonstrate that every topologically stable
(resp. positively) expansive operator in a Banach space is uniformly expansive
(resp. hyperbolic).
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