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GEOMETRIC GENERATION
OF THE WRAPPED FUKAYA CATEGORY

OF WEINSTEIN MANIFOLDS AND SECTORS

by Baptiste CHANTRAINE, Georgios DIMITROGLOU
RIZELL, Paolo GHIGGINI and Roman GOLOVKO

Abstract. – We prove that the wrapped Fukaya category of any 2n-dimensional Weinstein
manifold (or, more generally, Weinstein sector)W is generated by the unstable manifolds of the index n
critical points of its Liouville vector field. Our proof is geometric in nature, relying on a surgery
formula for Floer cohomology and the fairly simple observation that Floer cohomology vanishes for
Lagrangian submanifolds that can be disjoined from the isotropic skeleton of the Weinstein manifold.
Note that we do not need any additional assumptions on this skeleton. By applying our generation
result to the diagonal in the product W �W , we obtain as a corollary that the open-closed map from
the Hochschild homology of the wrapped Fukaya category of W to its symplectic cohomology is an
isomorphism, proving a conjecture of Seidel. We work mainly in the “linear setup” for the wrapped
Fukaya category, but we also extend the proofs to the “quadratic” and “localisation” setup. This is
necessary for dealing with Weinstein sectors and for the applications.

Résumé. – Nous démontrons que la catégorie de Fukaya enroulée d’une variété (ou plus géné-
ralement d’un secteur) de Weinstein W de dimension 2n est engendrée par les variétés instables des
points critiques d’indice n de son champ de Liouville. Notre preuve, de nature géométrique, repose
sur une formule pour la cohomologie de Floer d’une chirurgie et sur l’observation relativement simple
que la cohomologie de Floer d’une lagrangienne disjointe du squelette isotrope de la variété de Wein-
stein s’annule (aucune condition supplémentaire n’est demandée au squelette). En appliquant le critère
d’engendrement au produit W � W nous obtenons en corollaire que l’application ouverte-fermée de
l’homologie de Hochschild de la catégorie de Fukaya enroulée deW vers sa cohomologie symplectique
est un isomorphisme, prouvant une conjecture de Seidel. Nous travaillons principalement avec la dé-
finition « linéaire » de la catégorie de Fukaya enroulée mais nous étendons les preuves aux définitions
« quadratique » et « par localisation ». Ces modifications sont nécessaires pour traiter les secteurs de
Weinstein et pour certaines applications.

1. Introduction

The wrapped Fukaya category is an A1-category associated to any Liouville manifold.
Its objects are exact Lagrangian submanifolds which are either compact or cylindrical at
infinity, possibly equipped with extra structure, the morphism spaces are wrapped Floer
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2 B. CHANTRAINE, G. DIMITROGLOU RIZELL, P. GHIGGINI AND R. GOLOVKO

chain complexes, and the A1 operations are defined by counting perturbed holomorphic
polygons with Lagrangian boundary conditions. Wrapped Floer cohomology was defined by
A. Abbondandolo and M. Schwarz [1], at least for cotangent fibers, but the general definition
and the chain level construction needed to define an A1-category are due to M. Abouzaid
and P. Seidel [4]. The definition of the wrapped Fukaya category was further extended to the
relative case by Z. Sylvan, who introduced the notions of stop and partially wrapped Fukaya
category in [39], and by S. Ganatra, J. Pardon and V. Shende, who later introduced the similar
notion of Liouville sector in [23].

In this article we study the wrapped Fukaya category of Weinstein manifolds and sectors.
In the absolute case our main result is the following.

Theorem 1.1. – If .W; �; f/ is a 2n-dimensional Weinstein manifold of finite type, then
its wrapped Fukaya category WF.W; �/ is generated by the Lagrangian cocore planes of the
index n critical points of f.

In the relative case (i.e., for sectors) our main result is the following. We refer to Section 2.3
for the definition of the terminology used in the statement.

Theorem 1.2. – The wrapped Fukaya category of the Weinstein sector .S; �; f/ is gener-
ated by the Lagrangian cocore planes of its completion .W; �W ; fW / and by the spreading of the
Lagrangian cocore planes of its belt .F; �F ; fF /.

Remark 1.3. – Exact Lagrangian submanifolds are often enriched with some extra
structure: Spin structures, grading or local systems. We ignore them for simplicity, but the
same arguments carry over also when that extra structure is considered.

Generators of the wrapped Fukaya category are known in many particular cases. We will
not try to give a comprehensive overview of the history of this recent but active subject
because we would not be able to make justice to everybody who has contributed to it.
However, it is important to mention that F. Bourgeois, T. Ekholm and Y. Eliashberg in
[9] sketch a proof that the Lagrangian cocore disks split-generate the wrapped Fukaya
category of a Weinstein manifold of finite type. Split-generation is a weaker notion than
generation, which is sufficient for most applications, but not for all; see for example [28].
Moreover, Bourgeois, Ekholm and Eliashberg’s proposed proof relies on their Legendrian
surgery formula, whose analytic details are not complete (see [15] for recent development in
that direction).

Most generation results so far, including that of Bourgeois, Ekholm and Eliashberg, rely
on Abouzaid’s split-generation criterion [2]. On the contrary, our proof is more direct and
similar in spirit to Seidel’s proof in [37] that the Lagrangian thimbles generate the Fukaya-
Seidel category of a Lefschetz fibration or to Biran and Cornea’s cone decomposition of
Arnol’d type Lagrangian cobordisms [7]. Theorems 1.1 and 1.2 have been proved indepen-
dently also by Ganatra, Pardon and Shende in [24, Theorem 1.10].

A product of Weinstein manifolds is a Weinstein manifold. Therefore, by applying
Theorem 1.1 to the diagonal in a twisted product, and using results of S. Ganatra [22] and
Y. Gao [25], we obtain the following result.
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THE WRAPPED FUKAYA CATEGORY OF WEINSTEIN SECTORS 3

Corollary 1.4. – Let .W; �; f/ be a Weinstein manifold of finite type. Let D be the full
A1 subcategory ofWF.W; �/ whose objects are the Lagrangian cocore planes. Then the open-
closed map

(1) OC W HH�.D;D/! SH�.W /

is an isomorphism.

In Equation (1) HH� denotes Hochschild homology, SH� denotes symplectic coho-
mology and OC is the open-closed map defined in [2]. Corollary 1.4 in particular proves
that

(2) OC W HH�.WF.W; �/;WF.W; �//! SH�.W /

is an isomorphism. This proves a conjecture of Seidel in [38] for Weinstein manifolds of
finite type. Note that a proof of this conjecture, assuming the Legendrian surgery formula
of Bourgeois, Ekholm and Eliashberg was given by S. Ganatra and M. Maydanskiy in the
appendix of [9].

The above result implies in particular that Abouzaid’s generation criterion [2] is satisfied
for the subcategory consisting of the cocore planes of a Weinstein manifold, from which
one can conclude that the cocores split-generate the wrapped Fukaya category. In the exact
setting under consideration this of course follows a fortiori from Theorem 1.1, but there
are extensions of the Fukaya category in which this generation criterion has nontrivial
implications. Notably, this is the case for the version of the wrapped Fukaya category for
monotone Lagrangians, as we proceed to explain.

The wrapped Fukaya category as well as symplectic cohomology were defined in the
monotone symplectic setting in [35] using coefficients in the Novikov field. When this
construction is applied to exact Lagrangians in an exact symplectic manifold, a change of
variables x 7! t�A.x/x, where A.x/ is the action of the generator x and t is the formal
Novikov parameter, allows for an identification of the Floer complexes and the open-closed
map with the original complexes and map tensored with the Novikov field. The general-
ization of Abouzaid’s generation criterion to the monotone setting established in [35] thus
shows that

Corollary 1.5. – The wrapped Fukaya category of monotone Lagrangian submanifolds
of a Weinstein manifold which are unobstructed in the strong sense (i.e., with �0 D 0, where
�0 is the number of Maslov index two holomorphic disks passing through a generic point) is
split-generated by the Lagrangian cocore planes of the Weinstein manifold.

Remark 1.6. – The strategy employed in the proof of Theorem 1.1 for showing gener-
ation fails for non-exact Lagrangian submanifolds in two crucial steps: in Section 7 and
Section 8. First, there are well known examples of unobstructed monotone Lagrangian
submanifolds in a Weinstein manifold which are Floer homologically nontrivial even if they
are disjoint from the skeleton. Second, our treatment of Lagrangian surgeries requires that
we lift the Lagrangian submanifolds in W to Legendrian submanifolds of W � R, and this
is possible only for exact Lagrangian submanifolds. It is unclear to us whether it is true
that the cocores generate (and not merely split-generate) the �0 D 0 part of the monotone
wrapped Fukaya category.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



4 B. CHANTRAINE, G. DIMITROGLOU RIZELL, P. GHIGGINI AND R. GOLOVKO

1.1. Comparison of setups

There are three “setups” in which the wrapped Fukaya category is defined: the “linear
setup,” where the Floer equations are perturbed by Hamiltonian functions with linear
growth at infinity and the wrapped Floer chain complexes are defined as homotopy colimits
over Hamitonians with higher and higher slope, the “quadratic setting,” where the Floer
equations are perturbed by Hamiltonian functions with quadratic growth at infinity, and the
“localisation setting,” where the Floer equations are unperturbed and the wrapped Fukaya
category is defined by a categorical construction called localisation. The linear setup was
introduced by Abouzaid and Seidel in [4] and the quadratic setup by Abouzaid in [2]. The
latter is used also in Sylvan’s definition of the partially wrapped Fukaya category and in the
work of Ganatra [22] and Gao [25] which we use in the proof of Corollary 1.4. The localisa-
tion setup is used in [23] because the linear and quadratic setups are not available on sectors
for technical reasons. All three setups are expected to produce equivalent A1 categories on
Liouville manifolds. We chose to work in the linear setup for the proof of Theorem 1.1, but
our proof can be adapted fairly easily to the other setups. Moreover these extensions are
necessary to prove Theorem 1.2 and Corollary 1.4. We will describe the small modifications
we need in the localisation setup in Section 10 and those we need in the quadratic setup in
Section 11.

1.2. Strategy of the proof of Theorem 1.1

The strategy of the proof of Theorem 1.1 is the following. Given a cylindrical Lagrangian
submanifoldL, by a compactly supported Hamiltonian isotopy we make it transverse to the
stable manifolds of the Liouville flow. Thus, for dimensional reasons, it will be disjoint from
the stable manifolds of the critical points of index less than n and will intersect the stable
manifolds of the critical points of index n in finitely many points a1; : : : ; ak . For each ai we
consider a Lagrangian plane Dai passing through ai , transverse both to L and to the stable
manifold, and Hamiltonian isotopic to the unstable manifold of the same critical point. We
assume that the Lagrangian planes are all pairwise disjoint. The unstable manifolds of the
index n critical points are what we call the Lagrangian cocore planes.

At each ai we perform a Lagrangian surgery between L and Dai so that the resulting
Lagrangian L is disjoint from the skeleton of W . Since L will be in general immersed, we
have to develop a version of wrapped Floer cohomology for immersed Lagrangian subman-
ifolds. To do that we borrow heavily from the construction of Legendrian contact coho-
mology in [18]. In particular our wrapped Floer cohomology between immersed Lagrangian
submanifolds uses augmentations of the Chekanov-Eliashberg algebras of the Legendrian
lifts as bounding cochains. A priori there is no reason why such a bounding cochain should
exist for L, but it turns out that we can define it inductively provided that Da1 ; : : : ;Dak are
isotoped in a suitable way. A large part of the technical work in this paper is devoted to the
proof of this claim.

Then we prove a correspondence between twisted complexes in the wrapped Fukaya cate-
gory and Lagrangian surgeries by realizing a Lagrangian surgery as a Lagrangian cobordism
between the Legendrian lifts and applying the Floer theory for Lagrangian cobordisms we
defined in [10]. This result can have an independent interest. Then we can conclude that L is
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THE WRAPPED FUKAYA CATEGORY OF WEINSTEIN SECTORS 5

isomorphic, in an appropriated triangulated completion of the wrapped Fukaya category, to
a twisted complex L built from L;Da1 ; : : : ;Dak .

Finally, we prove that the wrapped Floer cohomology of L with any other cylindrical
Lagrangian is trivial. This is done by a fairly simple action argument based on the fact that
the Liouville flow displaces L from any compact set because L is disjoint from the skeleton
ofW . Then the twisted complex L is a trivial object, and therefore some simple homological
algebra shows that L is isomorphic to a twisted complex built from Da1 ; : : : ;Dak .

This article is organized as follows. In Section 2 we recall some generalities about Wein-
stein manifolds and sectors. In Section 3 we recall the definition and the basic properties of
Legendrian contact cohomology. In Sections 4 and 5 we define the version of Floer coho-
mology for Lagrangian immersions that we will use in the rest of the article. Despite their
length, these sections contain mostly routine verifications and can be skipped by the readers
who are willing to accept that such a theory exists. In Section 6 we define wrapped Floer
cohomology for Lagrangian immersions using the constructions of the previous two sections.
In Section 7 we prove that an immersed Lagrangian submanifold which is disjoint from the
skeleton is Floer homologically trivial. In Section 8 we prove that Lagrangian surgeries corre-
spond to twisted complexes in the wrapped Fukaya category. In Section 9 we finish the proof
of Theorem 1.1 and in particular we construct the bounding cochain for L. In Section 10
we prove Theorem 1.2. We briefly recall the construction of the wrapped Fukaya category
for sectors in the localisation setup from [23] and show how all previous arguments adapt in
this setting. Finally, in Section 11 we prove the isomorphism between Hochschild homology
and symplectic cohomology. This requires that we adapt the proof of Theorem 1.1 to the
quadratic setting.
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6 B. CHANTRAINE, G. DIMITROGLOU RIZELL, P. GHIGGINI AND R. GOLOVKO

2. Geometric setup

In this section we revise some elementary symplectic geometry with the purpose of fixing
notation and conventions.

2.1. Liouville manifolds

Let .W; �/ be a Liouville manifold of finite type, from now on called simply a Liouville
manifold. This means that d� is a symplectic form, the Liouville vector field L defined by
the equation

�Ld� D �

is complete and, for some R0 < 0, there exists a proper smooth function rW W ! ŒR0;C1/

such that, for w 2 W ,

(i) dwr.Lw/ > 0 if r.w/ > R0, and

(ii) d rw.Lw/ D 1 if r.w/ � R0 C 1.

In particular, R0 is the unique critical value of r, which is of course highly nondegenerate,
and every other level set is a contact type hypersurface.

We use the function r to define some useful subsets of W .

Definition 2.1. – For every R 2 ŒR0;C1/ we denote WR D r
�1.ŒR0; R�/,

W e
R D W n int.WR/ and VR D r�1.R/.

The subsets W e
R will be called the ends of W . The Liouville flow of .W; �/ induces an

identification

(3) .ŒR0 C 1;C1/ � V; e
r˛/ Š .W e

R0C1
; �/;

where V D V0 and ˛ is the pull-back of � to V0. More precisely, if � denotes the flow of the
Liouville vector field, the identification (3) is given by .r; v/ 7! �r .v/. Let � D ker˛ be the
contact structure defined by ˛. Every VR, for R > R0, is contactomorphic to .V; �/. Under
the identification (3), the function r, restricted to W e

R0C1
, corresponds to the projection

to ŒR0 C 1;C1/ in the sense that the following diagram commutes

.ŒR0 C 1;C1/ � V
� //

))

W e
R0C1

r

xx
ŒR0 C 1;C1/:

Remark 2.2. – The choice of R0 in the definition of r is purely arbitrary because the
Liouville flow is complete. In fact, for every map rW W ! ŒR0;C1/ as above and for
any R00 < R0 there is a map r0W W ! ŒR00;C1/ satisfying (i) and (ii), which moreover
coincides with r on r�1.ŒR0 C 1;C1//.
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THE WRAPPED FUKAYA CATEGORY OF WEINSTEIN SECTORS 7

A diffeomorphism  W W ! W is an exact symplectomorphism if  �� D �Cdq for some
function qW W ! R. Flows of Hamiltonian vector fields are, of course, the main source of
exact symplectomorphisms. Given a functionH W Œ�t�; tC��W ! R, where t˙ � 0 and are
allowed to be infinite, we define the Hamiltonian vector field XH by

�XH d� D �dH:

Here dH denotes the differential in the directions tangent toW , and therefore XH is a time-
dependent vector field on W .

We spell out the change in the Liouville form induced by a Hamiltonian flow because it
is a computation that will be needed repeatedly.

Lemma 2.3. – Let H W Œ�t�; tC� � W ! R be a Hamiltonian function and 't its
Hamiltonian flow. Then, for all t 2 Œt�; tC�, we have '�t � D � C dqt , where

qt D

Z t

0

.�H� C �.XH� // ı '�d�:

Proof. – We compute

'�t � � � D

Z t

0

d

d�
.'���/d� D

Z t

0

'�� .LXH� �/d�

D

Z t

0

'�� .�XH� d� C d�XH� �/d� D

Z t

0

'�� .�dH� C d.�.XH� ///d�:

2.2. Weinstein manifolds

In this article we will be concerned mostly with Weinstein manifolds of finite type. We
recall their definition, referring to [12] for further details.

Definition 2.4. – A Weinstein manifold .W; �; f/ consists of:

(i) an even dimensional smooth manifold W without boundary,

(ii) a one-form � on W such that d� is a symplectic form and the Liouville vector field L
associated to � is complete, and

(iii) a proper Morse function fW W ! R bounded from below such that L is a pseudogra-
dient of f in the sense of [12, Equation (9.9)]: i.e.,

d f.L/ � ı.kLk2 C kd fk2/;

where ı > 0 and the norms are computed with respect to some Riemannian metric
on W .

The function f is called a Lyapunov function (for L).

If f has finitely many critical points, then .W; �; f/ is a Weinstein manifold of finite type.
From now on, Weinstein manifold will always mean Weinstein manifold of finite type.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



8 B. CHANTRAINE, G. DIMITROGLOU RIZELL, P. GHIGGINI AND R. GOLOVKO

Given a regular valueM of f the compact manifold ff �M g is called a Weinstein domain.
Any Weinstein domain can be completed to a Weinstein manifold in a canonical way by
adding half a symplectisation of the contact boundary.

By Condition (iii) in Definition 2.4, the zeroes of L coincide with the critical points of f.
IfW has dimension 2n, the critical points of f have index at most n. For each critical point p
of f of index n, there is a stable manifold �p and an unstable manifold Dp which are both
exact Lagrangian submanifolds. We will call the unstable manifolds�p of the critical points
of index n the Lagrangian cocore planes.

Definition 2.5. – Let W0 � W be a Weinstein domain containing all critical points
of f. The Lagrangian skeleton of .W; �; f/ is the attractor of the negative flow of the Liouville
vector field on the compact part of W , i.e.,

W sk
WD

\
t>0

��t .W0/;

where � denotes the flow of the Liouville vector field L. Alternatively,W sk can be defined as
the union of unstable manifolds of all critical points of f.

The stable manifolds of the index n critical points form the top dimensional stratum of
the Lagrangian skeleton.

A Morse function gives rise to a handle decomposition. In the case of a Weinstein mani-
fold .W; �; f/, the handle decomposition induced by f is compatible with the symplectic struc-
ture and is called the Weinstein handle decomposition of .W; �; f/. By the combination of [12,
Lemma 12.18] and [12, Corollary 12.21] we can assume that L is Morse-Smale. This implies
that we can assume that handles of higher index are attached after handles of lower index.
The deformation makingLMorse-Smale can be performed without changing the symplectic
form d� and so that the unstable manifolds corresponding to the critical points of index n
before and after such a deformation are Hamiltonian isotopic.

We will denote the union of the handles of index strictly less than n by W sc. This will be
called the subcritical subdomain of W . By construction, @W sc is a contact type hypersurface
in W .

We choose rW W ! ŒR0;C1/; and we homotope the Weinstein structure so that

WR0 D W
sc
[H1 [ � � � [Hl ;

where H1; : : : ;Hl all are standard Weinstein handles corresponding to the critical points
p1; : : : ; pl of f of Morse index n; see [40] for the description of the standard model, and [12,
Section 12.5] for how to produce the Weinstein homotopy.

Remark 2.6. – We could easily modify f so that it agrees with r on W e
0 . However, this

will not be necessary.

The core of the Weinstein handleHi is the Lagrangian disk Ci D �pi \Hi . Let DıT �Ci
denote the disk cotangent bundle of Ci of radius ı > 0. By the Weinstein neighborhood
theorem, there is a symplectic identification Hi Š DıT

�Ci for some ı. However, the
restriction of � to Hi does not correspond to the restriction of the canonical Liouville form
to DıT �Ci .
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THE WRAPPED FUKAYA CATEGORY OF WEINSTEIN SECTORS 9

2.3. Weinstein sectors

In this section we introduce Weinstein sectors. These will be particular cases of Liouville
sectors as defined in [23] characterized, roughly speaking, by retracting over a Lagrangian
skeleton with boundary. In Section 2.4 below we will then show that any Weinstein pair as
introduced in [19, Section 2] can be completed to a Weinstein sector.

Definition 2.7. – A Weinstein sector .S; �; I; f/ consists of:

1. an even dimensional smooth manifold with boundary S ;

2. a one-form � on S such that d� is a symplectic form and the associated Liouville vector
field L is complete and everywhere tangent to @S ;

3. a smooth function I W @S ! R which satisfies

(a) dI.L/ D ˛I for some function ˛W @S ! RC which is constant outside a
compact set and

(b) dI.C / > 0, where C is a tangent vector field on @S such that �Cd� j@S D 0 and
d�.C;N / > 0 for an outward pointing normal vector field N ;

4. a proper Morse function fW S ! R bounded from below having finitely many critical
points, such that L is a pseudogradient of f and satisfying moreover

(a) d f.C / > 0 on fI > 0g and d f.C / < 0 on fI < 0g,

(b) the Hessian of a critical point of f on @S evaluates negatively on the normal
direction N , and

(c) there is a constant c 2 R whose sublevel set satisfies ff � cg � S n @S and
contains all interior critical points of f.

For simplicity we will often drop part of the data from the notation. We will always assume
that S is a Weinstein sector of finite type, i.e., that f has only finitely many critical points.
A Weinstein sector is a particular case of an exact Liouville sector in the sense of [23].

Example 2.8. – After perturbing the canonical Liouville form, the cotangent bundle of
a smooth manifold Q with boundary admits the structure of a Weinstein sector.

To a Weinstein sector .S; �; I; f/ we can associate two Weinstein manifolds in a canonical
way up to deformation: the completion and the belt. The completion of S is the Weinstein
manifold .W; �W ; fW / obtained by completing the Weinstein domain W0 D ff � cg, which
contains all interior critical points of f. The belt of S is the Weinstein manifold .F; �F ; fF /
where F D I�1.0/, �F D � jF

(1) and fF D fjF . To show that the belt is actually a Weinstein
manifold it is enough to observe that d�F is a symplectic form because F is transverse to the
vector field C , and that the Liouville vector field L is tangent to F because dI.L/ D ˛I , and
therefore the Liouville vector field of �F is LF D LjF .

Let � 2 R be a number such that all critical points of f are contained in ff � �g. We
denote S0 D ff � �g and F0 D F \ S0 D ffF � �g. By Condition (4a) of Definition 2.7, the
boundary @S0 is a contact manifold with convex boundary with dividing set @F0. Moreover
S n S0 can be identified with a half symplectisation. Thus, given R0 � 0, we can define a

(1) We abuse the notation by denoting the pull back by the inclusion as a restriction.
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function rW S ! ŒR0;C1/ satisfying the properties analogous to those in Section 2.1. We
then write SRW eqqr�1ŒR0; R� and SeR D S n int.SR/.

Definition 2.9. – Let � be the flow of L. The skeleton S sk � S of a Weinstein
sector .S; �; f/ is given by

S sk
W eqq

\
t>0

��t .S0/:

Remark 2.10. – LetW and F be the completion and the belt, respectively, of the Wein-
stein sector S . To understand the skeleton S sk it is useful to note the following:

1. critical points of f on @S are also critical points of fj@S and vice versa,

2. any critical point p 2 @S of f lies inside fI D 0g D F and is also a critical point of fF ,

3. the Morse indices of the two functions satisfy the relation

indf.p/ D indfF .p/C 1;

4. the skeleton satisfies S sk \ @S D F sk.

The top stratum of the skeleton of .S; �; f/ is given by the union of the stable manifolds of
the critical points of f of index n, where 2n is the dimension of S . Those are of two types: the
stable manifolds�p where p is an interior critical point of f, which are also stable manifolds
for fW in the completion, and the stable manifolds ‚p where p is a boundary critical point
of f, for which �0p D ‚p \ @S is the stable manifold of p for fF in F .

Thus the Weinstein sector S can be obtained by attaching Weinstein handles, corre-
sponding to the critical points of f in the interior of @S , and Weinstein half-handles,
corresponding to the critical points of f in the boundary @S . We denote by S sc the subcrit-
ical part of S , i.e., the union of the handles and half-handles of index less than n (where
2n is the dimension of S ), by fHig the critical handle corresponding to �i and by fH0j g the
half-handle corresponding to ‚j . Finally we also choose the function rW S ! ŒR0;1/ as in
Section 2.1 which furthermore satisfies

SR0 D S
sc
[H1 [ � � � [Hl [H01 [ � � � [H0l 0

and modify the Liouville form � so that H1; : : : ;Hl ;H01; : : : ;H0l 0 are standard Weinstein
handles.

It follows from the symplectic standard neighborhood theorem that a collar neighbor-
hood of @S is symplectomorphic to

.F � T �.�2�; 0�; d�F C dp ^ dq/:

Definition 2.11. – Let S be a Weinstein sector and let L be a Lagrangian submanifold
of its belt F . The spreading of L is

spr.L/ D L � T ���.�2�; 0� � F � T
�.�2�; 0/ � S:

Remark 2.12. – The spreading of L depends on the choice of symplectic standard
neighborhood of the collar. However, given two different choices, the corresponding spread-
ings are Lagrangian isotopic. Furthermore, if L is exact in F , then spr.L/ is exact in S , and
thus two different spreadings are Hamiltonian isotopic.
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Example 2.13. – When the Weinstein sector is the cotangent bundle of a manifold with
boundary, the spreading of a cotangent fiber of T �@Q is simply a cotangent fiber of T �Q.

The proof of the following lemma is immediate.

Lemma 2.14. – The cocore planes of the index n half-handles of S are the spreading of the
cocore planes of the corresponding index n � 1 handles of F .

2.4. Going from a Weinstein pair to a Weinstein sector

In this section we describe how to associate a Weinstein sector to a Weinstein pair. We
recall the definition of Weinstein pair, originally introduced in [19].

Definition 2.15. – A Weinstein pair .W0; F0/ is a pair of Weinstein domains .W0; �0; f0/
and .F0; �F ; fF / together with a codimension one Liouville embedding of F0 into @W0.

We denote the completions of .W0; �0; f0/ and .F0; �F ; fF / by .W; �0; f0/ and .F; �F ; fF /
respectively. Let F1 � F be a Weinstein domain retracting on F0. If F1 is close enough to F0,
the symplectic standard neighborhood theorem provides us with a Liouville embedding

(4) ..1 � 3�; 1� � Œ�3ı; 3ı� � F1; sduC s�F / ,! .W0; �0/:

Here s and u are coordinates on the first and second factors, respectively, and we require
that the preimage of @W0 is fs D 1g and F1 � @W0 is identified with f.1; 0; x/ W x 2 F1g. We
denote by U the image of the embedding (4). After deforming f0 we may assume that it is of
the form f0.s; u; x/ D s in the same coordinates.

Let LF be the Liouville vector field of .F; �F /. We choose a smooth function
rF W F ! ŒR0;C1/, R0 � 0, such that

— F0 D r
�1
F .ŒR0; 0�/,

— d rF .LF / > 0 holds inside r�1F .R0;C1/, and

— d rF .LF / D 1 holds inside r�1F .R0 C 1;C1/.

For simplicity of notation we also assume that

— F1 D r
�1
F .ŒR0; 1�/,

where F1 denotes the manifold appearing in Formula (4). This condition is apparently a
loss of generality because it cannot be satisfied for every Liouville form on F . However, the
general case can be treated with minimal changes.

Consider the smooth function

r W Œ�3ı; 3ı� � F1 ! R;

r.u; x/W eqq2 �
� u
3ı

�2
� rF .x/ � c

for some small number c > 0:

Lemma 2.16. – There exists a Weinstein domain eW0 � W containing all critical points
of f0 and which intersects some collar neighborhood of W0 containing U precisely in the subset

CW eqqfs � r.u; x/g � U :
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The goal is now to deform the Liouville form �0 on

S0W eqqW0 \ eW0
to obtain a Liouville form � so that the completion of .S0; �/ is the sought Weinstein sector.
The deformation will be performed inside C. Given a smooth function �W Œ1 � 3�; 1� ! R
such that:

— �.s/ D 0 for s 2 Œ1 � 3�; 1 � 2��,

— �.s/ D 2s � 1 for s 2 Œ1 � �; 1�, and

— �0.s/ � 0 for s 2 Œ1 � 3�; 1�,

we define a Liouville form �U on U by

�U D s.duC �F / � d.�.s/u/:

The proof of the following lemma is a simple computation.

Lemma 2.17. – Let �W Œ1� 3�; 1�! R be a smooth function such that the Liouville vector
field LU corresponding to the Liouville form �U on U is equal to

LU D .s � �.s//@s C �0.s/u@u C
�.s/

s
LF :

We define the Liouville form � on S0 as � jC D �U and � jS0nC
D �0. By Lemma 2.17 the

Liouville vector field L of � is transverse to @S0 n @W0 and is equal to

.1 � s/@s C 2u@u C
2s � 1

s
LF

in a neighborhood of @S0 n @W0; in particular it is tangent to @S0 n @W0. Thus we can
complete .S0; �/ to .S; �/ by adding a half-symplectisation of @S0 n int.@W0/. We define a
function I W @S ! R by setting I D u on @S0 \ @W0 and extending it to @S so that dI.L/ D
2I everywhere. It is easy to check that .S; �; I / is an exact Liouville sector.

A Lyapunov function fW S0 ! RC for L can be obtained by interpolating between f0
on S0nC and u2�.s�1/2CfFCC on C\fs 2 Œ1��; 1�g for sufficiently largeC . The Lyapunov
function f can then be extended to a Lyapunov function fW S ! RC in a straightforward way.
The easy verification that .S; �; I; f/ is a Weinstein sector is left to the reader.

2.5. Exact Lagrangian immersions with cylindrical end

Definition 2.18. – Let .W; �/ be a 2n-dimensional Liouville manifold. An exact
Lagrangian immersion with cylindrical end (or, alternately, an immersed exact Lagrangian
submanifold with cylindrical end) is an immersion �W L! W such that:

1. L is an n-dimensional manifold and � is a proper immersion which is an embedding
outside finitely many points,

2. ��� D df for some function f W L! R, called the potential of .L; �/, and

3. the image of � is tangent to the Liouville vector field of .W; �/ outside a compact set
of L.
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In the rest of the article, immersed exact Lagrangian submanifold will always mean
immersed exact Lagrangian submanifold with cylindrical end. Note that L is allowed to be
compact, and in that case Condition (3) is empty: a closed immersed Lagrangian submani-
fold is a particular case of immersed Lagrangian submanifolds with cylindrical ends. With
an abuse of notation, we will often write L either for the pair .L; �/ or for the image �.L/.

Example 2.19. – Let .W; �; f/ be a Weinstein manifold. The Lagrangian cocore
planes Dp introduced in Section 2.2 are Lagrangian submanifolds with cylindrical ends.

Properness of � and Condition (3) imply that for every immersed exact Lagrangian
submanifold with cylindrical end �W L ! W there is R > 0 sufficiently large such
that �.L/ \W e

R corresponds to ŒR;C1/ �ƒ under the identification

.W e
R; �/ Š .ŒR;C1/ � V; e

r˛/;

whereƒ is a Legendrian submanifold of .V; �/. Then we say thatL is cylindrical overƒ. Here
ƒ can be empty (if L is compact) or disconnected.

There are different natural notions of equivalence between immersed exact Lagrangian
submanifolds. The strongest one is Hamiltonian isotopy.

Definition 2.20. – Two exact Legendrian immersions .L; �0/ and .L; �1/ with cylin-
drical ends are Hamiltonian isotopic if there exists a function H W Œ0; 1� � W ! R with
Hamiltonian flow 't such that �1 D '1 ı �0, and moreover �t D 't ı �0 has cylindrical ends
for all t 2 Œ0; 1�.

Remark 2.21. – If f0W L! R is the potential of .L; �0/, by Lemma 2.3 we can choose

(5) f1 D f0 C

Z 1

0

.�H� C �.XH� // ı '�d�

as potential for .L; �1/.

The weakest one is exact Lagrangian regular homotopy.

Definition 2.22. – Two exact Legendrian immersions .L; �0/ and .L; �1/ with cylin-
drical ends are exact Lagrangian regular homotopic if there exists a smooth path of immer-
sions �t W L ! W for t 2 Œ0; 1� such that .L; �t / is an exact Lagrangian immersion with
cylindrical ends for every t 2 Œ0; 1�.

We recall that any exact regular homotopy �t W L ! W can be generated by a local
Hamiltonian defined on L in the following sense.

Lemma 2.23. – An exact regular Lagrangian homotopy �t induces a smooth family of
functionsGt W L! R determined uniquely, up to a constant depending on t , by the requirement
that the equation

��t .d�.�; Xt // D dGt

be satisfied, whereXt W L! T W is the vector field along the immersion that generates �t . When
�t has compact support, then dGt has compact support as well.

Conversely, any Hamiltonian Gt W L! R generates an exact Lagrangian isotopy �t W L! .W; �/

for any initial choice of exact immersion � D �0:
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Remark 2.24. – If �t is generated by an ambient Hamiltonian isotopy, then H extends
to a single-valued Hamiltonian on W itself. However, this is not necessarily the case for an
arbitrary exact Lagrangian regular homotopy.

The limitations of our approach to define Floer cohomology for exact Lagrangian immer-
sions require that we work with a restricted class of exact immersed Lagrangian submani-
folds.

Definition 2.25. – We say that a Lagrangian immersion .L; �/ is nice if the singularities
of �.L/ are all transverse double points, and for every double point p the values of the
potential at the two points in the preimage of p are distinct. Then, given a double point p,
we will denote ��1.p/ D fpC; p�g, where f .pC/ > f .p�/.

Remark 2.26. – If L is not connected, we can shift the potential on different connected
components by independent constants. If ��1.p/ is contained in a connected component
of L, then f .pC/ � f .p�/ is still well defined. However, if the points in ��1.p/ belong to
different connected components, the choice of pC and p� in ��1.p/, and f .pC/ � f .p�/,
depend of the choice of potential. For technical reasons related to our definition of Floer
cohomology, it seems useful, although unnatural, to consider the potential (up to shift by an
overall constant) as part of the data of an exact Lagrangian immersion.

For nice immersed exact Lagrangian submanifolds we define a stronger form of exact
Lagrangian regular homotopy.

Definition 2.27. – Let .L; �0/ and .L; �1/ be nice exact Lagrangian immersed subman-
ifolds with cylindrical ends. An exact Lagrangian regular homotopy .L; �t / is a safe isotopy
if .L; �t / is nice for every t 2 Œ0; 1�.

Niceness can always be achieved after a C 1-small exact Lagrangian regular homotopy. In
the rest of this article exact Lagrangian immersions will always be assumed nice.

2.6. Contactisation and Legendrian lifts

We define a contact manifold .M; ˇ/, where M D W � R, with a coordinate z on R, and
ˇ D dzC� . We call .M; ˇ/ the contactisation of .W; �/. A Hamiltonian isotopy 't W W ! W

which is generated by a Hamiltonian function H W Œ0; 1� �W ! R lifts to a contact isotopy
 Ct W M !M such that

 Ct .x; z/ D . t .x/; z � qt .x//;

where qt W W ! R is the function defined in Lemma 2.3.
An immersed exact Lagrangian .L; �/ with potential f W L ! R uniquely defines a

Legendrian immersion

�CW L! W � R; �C.x/ D .�.x/;�f .x//:

Moreover �C is an embedding when .L; �/ is nice. We denote the image of �C byLC and call it
the Legendrian lift ofL. Yet, any Legendrian submanifold of .M; ˇ/ projects to an immersed
Lagrangian in W . This projection is called the Lagrangian projection of the Legendrian
submanifold.
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Double points of L correspond to Reeb chords of LC, and the action (i.e., length) of the
Reeb chord projecting to a double point p is f .pC/ � f .p�/. If L is connected, different
potentials induce Legendrian lifts which are contact isotopic by a translation in the z-direc-
tion. In particular, the action of Reeb chords is independent of the lift. But, if L is discon-
nected, different potentials can induce non-contactomorphic Legendrian lifts and the action
of Reeb chords between different connected components depends on the potential.

3. Legendrian contact cohomology

In this section we provide an overview of Legendrian contact cohomology. We recall the
notion of augmentation and explain how it is used to define bilinearized Legendrian contact
cohomology.

3.1. The Chekanov-Eliashberg algebra

In view of the correspondence between Legendrian submanifolds of .M; ˇ/ and exact
Lagrangian immersions in .W; �/, Floer cohomology for Lagrangian immersions will be
a variation on the theme of Legendrian contact cohomology. The latter was proposed by
Eliashberg and Hofer and later defined rigorously by Chekanov, combinatorially, in R3 with
its standard contact structure in [11], and by Ekholm, Etnyre and Sullivan, analytically, in
the contactisation of any Liouville manifold in [18]. In this subsection we summarize the
analytical definition.

For d > 0, let eRdC1 D ConfdC1.@D2/ be the space of parametrized disks with
d C 1 punctures on the boundary. The automorphism group Aut.D2/ acts on eRdC1 and its
quotient is the Deligne-Mumford moduli space RdC1. Given ζ D .�0; : : : ; �d / 2 eRdC1, we
will denote

�ζ D D
2
n f�0; : : : ; �d g:

Following [37], near every puncture �i we will define positive and negative universal striplike
ends with coordinates .�Ci ; �

C

i / 2 .0;C1/ � Œ0; 1� and .��i ; �
�
i / 2 .�1; 0/ � Œ0; 1�

respectively. We will assume that ��i D ��
C

i and ��i D 1 � �
C

i .

Remark 3.1. – Putting both positive and negative strip-like ends near each puncture
will be useful for comparing wrapped Floer cohomology and contact cohomology, which
use different conventions for positive and negative punctures.

Definition 3.2. – Let .V; ˛/ be a contact manifold with contact structure � and Reeb
vector field R. An almost complex structure J on R � V is cylindrical if

1. J is invariant under translations in R,

2. J.@r / D R, where r is the coordinate in R,

3. J.�/ � �, and J j� is compatible with d˛j� .

Definition 3.3. – An almost complex structure J on a Liouville manifoldW is compat-
ible with � if it is compatible with d� and, outside a compact set, corresponds to a cylindrical
almost complex structure under the identification (3). We denote by J .�/ the set of almost
complex structures on W which are compatible with � .
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It is well known that J .�/ is a contractible space.
Given an exact Lagrangian immersion .L; �/ in W , we will consider almost complex

structures J on W which satisfy the following

(�) J is compatible with � , integrable in a neighborhood of the double points of .L; �/, and
for which L moreover is real-analytic near the double points.

We will denote the set of double points of .L; �/ by D.
Let uW �ζ ! W be a J -holomorphic map with boundary in L. If u has finite area and

no puncture at which the lift of uj@�ζ
to L has a continuous extension, then lim

z!�i

u.z/ D pi

for some pi 2 D. Since the boundary of u switches branch near pi , the following dichotomy
thus makes sense:

Definition 3.4. – We say that �i is a positive puncture at pi if

lim
�
C

i
!C1

.��1 ı u/.�Ci ; 0/ D p
C

i

and that �i is a negative puncture at pi if

lim
��
i
!�1

.��1 ı u/.��i ; 0/ D p
C

i :

Let L be an immersed exact Lagrangian. If p1; : : : ; pd are double points of L (possibly
with repetitions), we denote by eNL.p0Ip1; : : : ; pd IJ / the set of pairs .ζ; u/ where:

1. ζ 2 eRdC1 and uW �ζ ! W is a J -holomorphic map,

2. u.@�ζ/ � L, and

3. �0 is a positive puncture at p0 and �i , for i D 1; : : : ; d , is a negative puncture at pi .

The group Aut.D2/ acts on eNL.p0Ip1; : : : ; pd IJ / by reparametrisations; the quotient is the
moduli spaceNL.p0Ip1; : : : ; pd IJ /. Note that the set p1; : : : ; pd can be empty. In this case,
the elements of the moduli spaces N.p0IJ / are called teardrops.

Given u 2 eNL.p0Ip1; : : : ; pd IJ /, let Du be the linearisation of the Cauchy-Riemann
operator at u. By standard Fredholm theory,Du is a Fredholm operator with index ind.Du/.
We define the index of u as

ind.u/ D ind.Du/C d � 2:

It is locally constant, and we denote by NkL.p0Ip1; : : : ; pd IJ / the subset of

NL.p0Ip1; : : : ; pd IJ /

consisting of classes of maps u with ind.u/ D k.
The following proposition is a version of [18, Proposition 2.3]:

Proposition 3.5. – For a generic J satisfying the condition (�), the moduli space

NkL.p0Ip1; : : : ; pd IJ /

is a transversely cut out manifold of dimension k. In particular, if k < 0 it is empty; if k D 0 it is
compact, and therefore consists of a finite number of points; and if k D 1, it can be compactified
in the sense of Gromov, see [18, Section 2.2].
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The boundary of the compactification of the moduli space N1L.p0Ip1; : : : ; pd IJ / is

(6)
G
q2D

G
0�i<j�d

N0L.p0Ip1; : : : ; pi ; q; pjC1; : : : ; pd IJ / �N
0
L.qIpiC1; : : : ; pj IJ /:

If L is spin, the moduli spaces are orientable and a choice of spin structure induces a coherent
orientation of the moduli spaces; see [17].

Definition 3.6. – We say that an almost complex structure J on W is L-regular if it
satisfies .�/ for L and all moduli spaces NL.p0Ip1; : : : ; pd IJ / are transversely cut out.

To a Legendrian submanifold LC of .M; ˇ/ we can associate a differential graded
algebra .A; d/ called the Chekanov-Eliashberg algebra (or Legendrian contact cohomology
algebra) of LC. As an algebra, A is the free unital noncommutative algebra generated by the
double points of the Lagrangian projection L or, equivalently, by the Reeb chords of LC.
The grading takes values in Z=2Z and is simply given by the self-intersection of the double
points. If 2c1.W / D 0 and the Maslov class of LC vanishes, it can be lifted to an integer
valued grading by the Conley-Zehnder index. We will not make explicit use of the integer
grading, and therefore we will not describe it further, referring the interested reader to [18,
Section 2.2] instead.

The differential d is defined on the generators as:

d.p0/ D
X
d�0

X
p1;:::;pd

#N0L.p0Ip1; : : : ; pnIJ /p1 � � �pd :

According to [18, Proposition 2.6], the Chekanov-Eliashberg algebra is a Legendrian
invariant:

Theorem 3.7 ([18]). – If LC0 and LC1 are Legendrian-isotopic Legendrian submanifolds
of .M; ˇ/, then their Chekanov-Eliashberg algebras .A0; d0/ and .A1; d1/ are stable tame
isomorphic.

The definition of stable tame isomorphism of DGAs was introduced by Chekanov in [11],
and then discussed by Ekholm, Etnyre and Sullivan in [18]. We will not use it in this article
but note that on the homological level a stable tame isomorphism induces an isomorphism.

3.2. Bilinearized Legendrian contact cohomology

Differential graded algebras are difficult objects to manipulate, and therefore Chekanov
introduced a linearisation procedure. The starting point of this procedure is the existence of
an augmentation.

Definition 3.8. – LetA be a differential graded algebra over a commutative ring F. An
augmentation of A is a unital differential graded algebra morphism "W A! F.

Let LC0 and LC1 be Legendrian submanifolds of .M; ˇ/ with Lagrangian projections L0
and L1 with potentials f0 and f1 respectively. We recall that the potential is the negative of
the z coordinate. We will assume thatLC0 andLC1 are chord generic, which means in this case
that LC0 \ L

C
1 D ; and all singularities of L0 [ L1 are transverse double points.
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Let A0 and A1 be the Chekanov-Eliashberg algebras of LC0 and LC1 respectively.
Let "0W A0 ! F and "1W A1 ! F be augmentations. Now we describe the construction of
the bilinearized Legendrian contact cohomology complex LCC"0;"1.L

C
0 ; L

C
1 IJ /.

First, we introduce some notation. We denote by Di the set of double points of Li (for
i D 1; 2) and by C the intersection points of L0 and L1 such that f0.q/ < f1.q/. Double
points in Di correspond to Reeb chords of LCi , and double points in C correspond to
Reeb chords from LC1 to LC0 (note the order!). We define the exact immersed Lagrangian
L D L0 [ L1 and, for p0 D .p01 ; : : : ; p

0
l0
/ 2 D

l0
0 , p1 D .p11 ; : : : ; p

1
l1
/ 2 D

l1
1 and q˙ 2 C, we

denote

NiL.qCI p0; q�; p1IJ / WD NiL.qCIp01 ; : : : ; p0l0 ; q�; p
1
1 ; : : : ; p

1
l1
IJ /;

where J is an L-regular almost complex structure. If "i is an augmentation of Ai , we denote
"i .pi / WD "i .pi1/ � � � "i .pili /.

As an F-module, LCC"0;"1.L
C
0 ; L

C
1 IJ / is freely generated by the set C and the differential

of a generator q� 2 C is defined as

(7) @"0;"1.q�/ D
X
qC2C

X
l0;l12N

X
pi2Dli

i

#N0L.qCI p0; q�; p1IJ /"0.p0/"1.p1/qC:

The bilinearized Legendrian contact cohomology LCH"0;"1.L
C
0 ; L

C
1 / is the homology of this

complex. The set of isomorphism classes of bilinearized Legendrian contact cohomology
groups is independent of the choice of J and is a Legendrian isotopy invariant by the
adaptation of Chekanov’s argument from [11] due to the first author and Bourgeois [8].

4. Floer cohomology for exact Lagrangian immersions

In this section we define a version of Floer cohomology for exact Lagrangian immersions.
Recall that our exact Lagrangian immersions are equipped with choices of potentials making
their Legendrian lifts embedded. This is not new material; similar or even more general
accounts can be found, for example, in [5], [6] and [31].

4.1. Cylindrical Hamiltonians

Definition 4.1. – Let W be a Liouville manifold. A Hamiltonian function
H W Œ0; 1� �W ! R is cylindrical if there is a function hW RC ! R such thatH.t; w/ D h.er.w//
outside a compact set of W .

The following example describes the behavior of the Hamiltonian vector field of a cylin-
drical Hamiltonian in an end of W , after taking into account the identification (3).

Example 4.2. – Let .V; ˛/ be a contact manifold with Reeb vector field R and let
.R � V; d.er˛// be its symplectisation. Given a smooth function hW RC ! R, we define
the autonomous Hamiltonian H W R � V ! R by H.r; v/ D h.er /. Then the Hamiltonian
vector field of H is

XH .r; v/ D h
0.er /R.r; v/:
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Let .L0; �0/ and .L1; �1/ be two immersed exact Lagrangian submanifolds of W with
cylindrical ends over Legendrian submanifolds ƒ0 and ƒ1 of .V; ˛/. Given a cylindrical
Hamiltonian H W Œ0; 1� � W ! R, we denote by CH—or simply C when there is no risk of
confusion— the set of Hamiltonian chords xW Œ0; 1� ! W of H such that x.0/ 2 L0 and
x.1/ 2 L1. If 't denotes the Hamiltonian flow ofH , then CH is in bijection with '1.L0/\L1.

Definition 4.3. – A cylindrical Hamiltonian H W Œ0; 1� � W ! R, with Hamiltonian
flow 't , is compatible with L0 and L1 if

(i) no starting point or endpoint of a chord x 2 CH is a double point of .L0; �0/ or .L1; �1/,

(ii) '1.L0/ intersects L1 transversely,

(iii) for � large enough h0.�/ D � is constant, and

(iv) all time-one Hamiltonian chords from L0 to L1 are contained in a compact region.

Condition (iv) is equivalent to asking that � should not be the length of a Reeb chord
from ƒ0 to ƒ1.

Remark 4.4. – If cylindrical Hamiltonian H is compatible with L0 and L1, then CH is
a finite set.

4.2. Obstructions

If one tries to define Floer cohomology for immersed Lagrangian submanifolds by
extending the usual definition naively, one runs into the problem that the “differential”
might not square to zero because of the bubbling of teardrops in one-dimensional families
of Floer strips. Thus, if .L; �/ is an immersed Lagrangian submanifold and J is L-regular,
we define a map d0W D ! Z by

d0.p/ D #N0L.pIJ /

and extend it by linearity to the free module generated by D. The map d0 is called the
obstruction of .L; �/. If d0 D 0 we say that .L; �/ is uncurved.

Typically, asking that an immersed Lagrangian submanifold be uncurved is too much, and
a weaker condition will ensure that Floer cohomology can be defined. We observe that d0 is
a component of the Chekanov-Eliashberg algebra of the Legendrian lift of L, and make the
following definition.

Definition 4.5. – Let .L; �/ be an immersed exact Lagrangian submanifold. The
obstruction algebra .D; d/ of .L; �/—or of .L; �; J / when the almost complex structure is not
clear from the context—is the Chekanov-Eliashberg algebra of the Legendrian lift LC.

If L is connected, its obstruction algebra .D; d/ does not depend on the potential. On
the other hand, if L is disconnected, the potential differences at the double points of L
involving different connected components, and therefore what holomorphic curves are
counted in .D; d/, depend on the choice of the potential.

Definition 4.6. – An exact immersed Lagrangian .L; �/ is unobstructed if .D; d/ admits
an augmentation.
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Unobstructedness does not depend on the choice of L-regular almost complex structure
and is invariant under general Legendrian isotopies as a consequence of Theorem 3.7 (this
fact will not be needed). However, we will need the invariance statement from the following
proposition.

Proposition 4.7. – If L0 and L1 are safe isotopic exact Lagrangian immersions, and
J0 and J1 are L0-regular and L1-regular almost complex structures respectively, then the
obstruction algebras .D0; d0/ of L0 and .D1; d1/ of L1 are isomorphic. In particular, there is a
bijection between the augmentations of .D0; d0/ and the augmentations of .D1; d1/.

Proof. – The safe isotopy between L0 and L1 induces a Legendrian isotopy between the
Legendrian lifts LC0 and LC1 without birth or death of Reeb chords. By [18, Proposition 2.6]
the Chekanov-Eliashberg algebras ofLC0 andLC1 are stably tame isomorphic, and moreover
stabilization occurs only at the birth or death of a Reeb chord.

Proposition 4.7 is the main reason why we have made the choice of distinguishing between
the obstruction algebra of a Lagrangian immersion and the Chekanov-Eliashberg algebra
of its Legendrian lift. In fact Legendrian submanifolds are more naturally considered up to
Legendrian isotopy. However, in this article we will consider immersed Lagrangian subman-
ifolds only up to the weaker notion of safe isotopy.

4.3. The differential

We denote by Z the strip R � Œ0; 1� with coordinates .s; t/.
Let eRl0jl1 Š Confl0.R/ � Confl1.R/ be the set of pairs .ζ0; ζ1/ such that

ζ0 D f�01 ; : : : ; �
0
l0
g � R � f0g and ζ1 D f�1

l1
; : : : ; �11g � R � f1g. We assume that the

s-coordinates of �ij are increasing in j for �0j and decreasing for �1j . We define

Zζ0;ζ1 WD Z n f�
0
1 ; : : : ; �

0
l0
; �11 ; : : : ; �

1
l1
g:

The group Aut.Z/ D R acts on eRl0jl1 .
In the rest of this section we will assume that H is compatible with .L0; �0/ and .L1; �1/.

We will consider a time-dependent almost complex structure J� on W which satisfies the
following

(��) (i) Jt is compatible with � for all t ,

(ii) Jt D J0 for t 2 Œ0; 1=4� in a neighborhood of the double points of L0 and
Jt D J1 for t 2 Œ3=4; 1� in a neighborhood of the double points of L1,

(iii) J0 satisfies (�) for L0 and J1 satisfies (�) for L1.

Condition (ii) is necessary to ensure that J� is independent of the coordinate ��i;j in some
neighborhoods of the boundary punctures �ij , so that we can apply standard analytical
results.

For the same reason we fix once and for all a nondecreasing function �W R! Œ0; 1� such
that

�.t/ D

(
0 for t 2 Œ0; 1=4�;

1 for t 2 Œ3=4; 1�
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and �0.t/ � 3 for all t . It is easy to see that, if 't is the Hamiltonian flow of a Hamilto-
nian function H , then '�.t/ is the Hamiltonian flow of the Hamiltonian function H 0 such
that H 0.t; w/ D �0.t/H.�.t/; w/. We will use �0 to cut off the Hamiltonian vector field in
the Floer equation to ensure that it has the right invariance properties in the strip-like ends
corresponding to the boundary punctures �ij .

Given Hamiltonian chords xC; x� 2 C and self-intersections p01 ; : : : ; p
0
l0

of L0 and
p11 ; : : : ; p

1
l1

of L1 we define the moduli spaceeML0;L1.p
1
1 ; : : : ; p

1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

of triples .ζ0; ζ1; u/ such that

— .ζ0; ζ1/ 2 eRl0jl1 and uW Zζ0;ζ1 ! W is a map satisfying the Floer equation

(8)
@u

@s
C Jt

�
@u

@t
� �0.t/XH .�.t/; u/

�
D 0;

— lim
s!˙1

u.s; t/ D x˙.�.t// uniformly in t ,

— u.s; 0/ 2 L0 for all .s; 0/ 2 Zζ0;Z
ζ1

,

— u.s; 1/ 2 L1 for all .s; 1/ 2 Zζ0;Z
ζ1

,

— lim
z!� i

j

u.z/ D pij , and

— �ij is a negative puncture at pij for i D 0; 1 and j D 1; : : : ; li .

The group Aut.Z/ D R acts on eML0;L1.p
1
1 ; : : : ; p

1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/ by

reparametrisations. We will denote the quotient by

ML0;L1.p
1
1 ; : : : ; p

1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/:

For u 2 eML0;L1.p
1
1 ; : : : ; p

1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/, we denote by Fu the linearisation

of the Floer operator

F.u/ D
@u

@s
C Jt

�
@u

@t
� �0.t/XH .�.t/; u/

�
at u. By standard Fredholm theory, Fu is a Fredholm operator with index ind.Fu/. We define

ind.u/ D ind.Fu/C l0 C l1:

The index is locally constant, and we denote by

Mk
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

the subset ofML0;L1.p
1
1 ; : : : ; p

1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/ consisting of classes of maps u

with index ind.u/ D k.
Observe that similar construction for closed, exact, graded, immersed Lagrangian

submanifolds was considered by Alston and Bao in [6], where the regularity statement
appears in [6, Proposition 5.2] and compactness is discussed in [6, Section 4]. In addition,
the corresponding statement in the case of Legendrian contact cohomology in P � R was
proven by Ekholm, Etnyre and Sullivan, see [18, Proposition 2.3]. The following proposition
translates those compactness and regularity statements to the settings under consideration.
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Proposition 4.8. – For a generic time-dependent almost complex structure J� satis-
fying (��), for which moreover J0 is L0-regular and J1 is L1-regular, the moduli space

Mk
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

is a transversely cut-out manifold of dimension k � 1. If k D 1 it is compact, and therefore
consists of a finite number of points. If k D 2 it can be compactified in the sense of Gromov-
Floer.

The boundary of the compactification of the one-dimensional moduli space

M2
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

is G
y2CH

G
0�hi�li

M1
L0;L1

.p1h1C1; : : : ; p
1
l1
; y; p01 ; : : : ; p

0
h0
; xCIH;J�/(9)

�M1
L0;L1

.p11 ; : : : ; p
1
h1
; x�; p

0
h0C1

; : : : ; p0l0 ; yIH;J�/G
q2D1

G
0�i�j�l1

M1
L0;L1

.p11 ; : : : ; p
1
i ; q; p

1
jC1; : : : ; p

1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

�N0L1.qIp
1
iC1; : : : ; p

1
j IJ1/G

q2D0

G
0�i�j�l0

M1
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
i ; q; p

0
jC1; : : : ; p

0
l0
; xCIH;J�/

�N0L0.qIp
0
iC1; : : : ; p

0
j IJ0/:

If both L0 and L1 are spin the moduli spaces are orientable, and a choice of spin structure
on each Lagrangian submanifold induces a coherent orientation on the moduli spaces.

Remark 4.9. – We use different conventions for the index of maps involved in the defini-
tion of the obstruction algebra and for maps involved in the definition of Floer cohomology.
Unfortunately this can cause some confusion, but it is necessary to remain consistent with
the standard conventions in the literature.

Definition 4.10. – We say that a time-dependent almost complex structure J� onW is
.L0; L1/-regular if it satisfies (��) for L0 and L1 and all moduli spaces

Mk
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

are transversely cut out.

Note that, strictly speaking, the condition of being .L0; L1/-regular depends also on the
Hamiltonian, even if we have decided to suppress it from the notation.

Suppose that the obstruction algebrasD0 andD1 admit augmentations "0 and "1 respec-
tively. To simplify the notation we write pi D .pi1; : : : ; pili /,

Mk
L0;L1

.p1; x�; p0; xCIH;J�/ DMk
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH;J�/

and "i .pi / D "i .p11/ � � � "i .pili / for i D 0; 1. We also introduce the weighted count

m.p1; x�; p0; xC/ D #M0
L0;L1

.p1; x�; p0; xCIH;J�/"0.p0/"1.p1/:
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Then we define the Floer complex over the commutative ring F

CF..L0; "0/; .L1; "1/IH;J�/ D
M
x2C

Fx;

with differential

@W CF..L0; "0/; .L1; "1/IH;J�/! CF..L0; "0/; .L1; "1/IH;J�/;

defined on the generators by

(10) @xC D
X

x�2CH

X
l0;l12N

X
pi2Dli

i

m.p1; x�; p0; xC/x�:

The algebraic interpretation of the Gromov-Floer compactification of the one-dimensional
moduli spaces in Proposition 4.8 is that @2 D 0.

We will denote the homology by HF..L0; "0/; .L1; "1/IH/. The suppression of J� from
the notation is justified by Subsection 5.1.

4.4. Comparison with bilinearized Legendrian contact cohomology

In this subsection we compare the Lagrangian Floer cohomology of a pair of immersed
exact Lagrangian submanifolds with the bilinearized Legendrian contact cohomology of a
particular Legendrian lift of theirs.

Let L0 and L1 be exact Lagrangian immersions, H W Œ0; 1� � W ! R a Hamiltonian
function compatible with L0 and L1 with Hamiltonian flow 't , and J� an .L0; L1/-regular
almost complex structure. We will introduce the “backward” isotopy ' t D '1 ı '

�1
t ; where

'1 ı '
�1
t ı '

�1
1 can be generated by the Hamiltonian �H.t; '�1t ı '

�1
1 /:

Given an almost complex structure J� and an arbitrary path �t of symplectomorphisms,
we denote by ��J� the almost complex structure defined as ��Jt D d��.t/ ı Jt ı d��1�.t/. The
time rescaling by � ensures that ��J� satisfies (��) for �1.L0/ and L1 if and only if J� does
for L0 and L1.

Lemma 4.11. – Denote by 0 the constantly zero function on W and set

q˙ D x˙.1/ 2 '1.L0/ \ L1;

regarded as Hamiltonian chords of 0. There is a bijection

'�W ML0;L1.p1; x�; p0; xCIH;J�/!M'1.L0/;L1.p
1; q�; '1.p0/; qCI 0; '�J�/

defined by .'�u/.s; t/ D ' t .u.s; t//, and moreover J� is .L0; L1/-regular if and only if '�J� is
.'1.L0/; L1/-regular.

Proof. – Since

@v

@s
.s; t/ D d' t

�
@u

@s
.s; t/

�
and

@v

@t
.s; t/ D d' t

�
@u

@t
.s; t/ � �0.t/X.�.t/; u.s; t//

�
;

u satisfies the Floer equation with Hamiltonian H if and only if '�u satisfies the Floer
equation with Hamiltonian 0. The map '� is invertible because ' t is for each t . Finally, we
observe that d' intertwines the linearized Floer operators at u and v.
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Given two Legendrian submanifolds ƒ0 and ƒ1 in .W � R; dz C �/ D .M; ˇ/, we say
that ƒ0 is above ƒ1 if the z-coordinate of any point of ƒ0 is larger than the z-coordinate of
any point of ƒ1.

Lemma 4.12. – Let L0 and L1 be immersed exact Lagrangian submanifolds of .W; �/ and
H a cylindrical Hamiltonian compatible with L0 and L1. We denote by 't the Hamiltonian
flow of H and eL0 D '1.L0/. We choose Legendrian lifts of eL0 and L1 to Legendrian
submanifolds eLC0 and LC1 of .M; ˇ/ such that eLC0 is above LC1 . If eJ is an L-regular almost
complex structure onW forL D eL0[L1, let J� D .'�1t /�eJ . For every pair of augmentations "0
and "1 of the obstruction algebras of .L0; J0/ and .L1; J1/ respectively, there is an isomorphism
of complexes

CF..L0; "0/; .L1; "1/IH;J�/ Š LCCe"0;"1.eLC0 ; LC1 I eJ /;
wheree"0 D "0 ı '�11 is an augmentation of the obstruction algebra of .eL0; eJ /.

Proof. – By Lemma 4.11 there is an isomorphism of complexes

CF..L0; "0/; .L1; "1/IH;J�/ Š CF..eL0;e"0/; .L1; "1/I 0; eJ /:
By definition the obstruction algebras of eL0 and L1 are isomorphic to the Chekanov-
Eliashberg algebras of eLC0 and LC1 . As the chain complexes CF..eL0;e"0/; .L1; "1/I 0; eJ /
and LCCe"0;"1.eLC0 ; LC1 I eJ / are both generated by intersection points between eL0 and L1 it
remains only to match the differentials.

For any i D 1; : : : ; d and ζ D f�0; : : : ; �d g 2 eRd there is a biholomorphism�ζ Š Zζ0;ζ1 ,

where ζ0 D f�1; : : : ; �i�1g, ζ
1
D f�iC1; : : : ; �d g, �i is mapped to s D C1 and �0 is mapped

to s D �1. Such biholomorphisms induce bijections between the moduli spaces defining
the boundary of CF..eL0;e"0/; .L1; "1/I 0; eJ / and the moduli spaces defining the boundary
of LCCe"0;"1.eLC0 ; LC1 I eJ /.
4.5. Products

After the work done for the differential, the higher order products can be easily defined.
For simplicity, in this section we will consider immersed exact Lagrangian submani-
folds L0; : : : ; Ld which are pairwise transverse and cylindrical over chord generic Legen-
drian submanifolds. Thus the generators of the Floer complexes will be intersection points,
which we will assume to be disjoint from the double points. The routine modifications
needed to introduce Hamiltonian functions into the picture are left to the reader.

Given d � 2 and li � 0 for i D 0; : : : ; d we defineeRl0j���jld D Confl0C���CldCdC1.@D2/

where dC1 points �m0 ; : : : ; �
m
d

(ordered counterclockwise) are labeled as mixed and the other
ones �ij , with i D 0; : : : ; d and j D 1; : : : ; li (ordered counterclockwise and contained in the
sector from �mi to �miC1) are labeled as pure. Given ζ 2 eRl0j���jld , we denote �ζ D D2 n ζ.
For i D 0; : : : ; d let @i�ζ be the subset of @�ζ whose closure in @D2 is the counterclockwise
arc from �mi to �miC1.

We will consider also a (generic) domain dependent almost complex structure J� such that
every Jz , z 2 �ζ satisfies (�), and moreover is of the form (��) at the strip-like ends of the
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mixed punctures and is constant in a neighborhood of the arcs @i�ζ outside those strip-like
ends.

Finally we define the moduli spaces ML0;:::;Ld .pd ; x0; p0; x1; : : : ; pd�1; xd IJ�/ of
pairs .u; ζ/ (up to action of Aut.D2/), where:

— ζ 2 eRl0j���jld and uW �� ! W satisfies duC J� ı du ı i D 0,

— u.@i�ζ/ � Li ,

— lim
z!�m

i

u.z/ D xi ,

— lim
z!� i

j

u.z/ D pij , and

— pij is a negative puncture at �ij for i D 0; : : : ; d and j D 1; : : : ; li .

As usual, we denote byM0
L0;:::;Ld

.pd ; x0; p0; x1; : : : ; pd�1; xd IJ�/ the zero-dimensional part
of the moduli spaces.

If "0; : : : ; "d are augmentations for the corresponding Lagrangian immersions, we define
the weighted count

m.pd ; x0; p0; x1; : : : ; pd�1; xd / D #M0
L0;:::;Ld

.pd ; x0; p0; x1; : : : ; pd�1; xd IJ�/"0.p0/ � � � "d .pd /

and define a product

(11) �d W CF.Ld�1; Ld /˝ � � � ˝ CF.L0; L1/! CF.L0; Ld /;

where we wrote CF.Li ; Lj / instead of CF..Li ; "i /; .Lj ; "j // for brevity sake, via the formula

�d .x1; : : : ; xd / D
X

x02L0\Ld

X
li�0

X
pi
j
2D

li
i

m.pd ; x0; p0; x1; : : : ; pd�1; xd /x0:

Remark 4.13. – The operations �d satisfy the A1 relations.

The following lemma will be useful in Section 8. It is a straightforward corollary of
the existence of pseudoholomorphic triangles supplied by Corollary 4.18 below. The only
point where we need to take some care is due to the fact that the Weinstein neighborhood
considered is immersed.

Lemma 4.14. – Let .L; �/ be an exact Lagrangian immersion. We extend � to a symplectic
immersion ��W .DıT �L; dq ^ dp/ ! .W; d�/. Let .L; �0/ be safe isotopic to .L; �/ and,
moreover, assume that

there exists a sufficiently C 1-small Morse function gW L ! R with local minima ei , all
whose critical points are disjoint from the double points of L; such that �0 D �� ı dg, and

outside some compact subset, L0 is obtained by a small perturbation of L by the negative
Reeb flow.
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We will denote L D .L; �/ and L0 D .L; �0/. Then, if L admits an augmentation " and "0 is the
corresponding augmentation of L0, for every cylindrical exact Lagrangian submanifold T such
that ��1� .T / is a union of cotangent disk fibers, the map

�2.e; �/W CF.T; .L; "//! CF.T; .L0; "0//;

e WD
X
i

ei 2 CF..L; "/; .L0; "0//;

is an isomorphism of complexes for a suitable almost complex structure on W as in Corol-
lary 4.18.

In the case where L is closed and embedded, the element e is always a cycle which is
nontrivial in homology as was shown by Floer (it is identified with the minimum class in
the Morse cohomology of L). In general the following holds.

Lemma 4.15. – Under the hypotheses of Lemma 4.14, the element

e 2 CF..L; "/; .L0; "0//

is a cycle. Furthermore, e is a boundary if and only if CF.T; .L; "// D 0 for every Lagrangian T .

Proof. – The assumption that the augmentation "0 is identified canonically with the
augmentation " implies that e is a cycle by the count of pseudoholomorphic disks with a
negative puncture at e supplied by Lemma 4.17.

Assume that @E D e. The last property is then an algebraic consequence of the Leibniz
rule @�2.E; x/ D �2.@E; x/ in the case where @x D 0, combined with the fact that �2.e; �/ is
a quasi-isomorphism as established by the previous lemma.

Later it will be useful to switch perspectives slightly, and instead of with the chain e, work
with an augmentation induced by that chain. In general, given .L0; "0/, .L1; "1/ and a chain
c 2 CF..L0; "0/; .L0; "1//we can consider Legendrian liftsLC0 andLC1 such thatLC0 is above
LC1 and the unital algebra morphism "c W A.L

C
0 [ L

C
1 /! F uniquely determined

"c.x/W eqq

(
"i .x/; if x 2 A.Li /;

hc; xi; if x 2 L0 \ L1;

where h�; �i is the coefficient of x in c.

Lemma 4.16. – The element

c 2 CF..L0; "0/; .L1; "1/I 0; J /

is a cycle if and only if

"c W A.L
C
0 [ L

C
1 /! F

is an augmentation, where the almost complex structure J has been used to define the latter
algebra as well, and the Legendrian lifts have been chosen so that no Reeb chord starts on LC0
and ends on LC1 .
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Proof. – Note that the Floer complex under consideration has a differential which counts
J -pseudoholomorphic strips, and that the obstruction algebra has a differential counting
pseudoholomorphic disks with at least one boundary puncture. Identifying the appropriate
counts of disks, the statement can be seen to follow by pure algebra, together with the
fact that the differential of the DGA counts punctured pseudoholomorphic disks, and thus
respects the filtration induced by the different components. The crucial property that is
needed here is that, under the assumptions made on the Legendrian lifts, the differential of
the Chekanov-Eliashberg algebra applied to a mixed chord is a sum of words, each of which
contains precisely one mixed chord.

4.6. Existence of triangles

In this section we prove an existence result for small pseudoholomorphic triangles with
boundary on an exact Lagrangian cobordism and a small push-off. The existence of these
triangles can be deduced as a consequence of the fact that the wrapped Fukaya category is
homologically unital. Here we take a more direct approach based upon the adiabatic limit of
pseudoholomorphic disks on a Lagrangian and its push-off from [16]; when the latter push-
off becomes sufficiently small, these disks converge to pseudoholomorphic disks on the single
Lagrangian with gradient-flow lines attached (called generalized pseudoholomorphic disks in
the same paper).

LetL � W be an exact immersed Lagrangian submanifold with cylindrical end. We recall
that, as usual, we assume that every immersed Lagrangian submanifold is nice. Consider
the Hamiltonian push-off L�f , which we require to be again an exact immersed Lagrangian
submanifold with cylindrical end, which is identified with the graph of d.�f / for a Morse
function f W L! R inside a Weinstein neighborhood .T �

ı
L;�d.pdq//↬ .W; d�/ of L. We

further assume that df .L/ > 0 outside a compact subset. (The assumption that the push-off

is cylindrical at infinity does of course impose additional constraints on the precise behavior
of the Morse function outside a compact subset.)

Now consider a Legendrian lift LC [LC
�f

for which .L�f /C is above LC. For � > 0 suffi-
ciently small, it is the case that L [ L�f again has only transverse double points. Moreover,
the Reeb chords on the Legendrian lift can be classified as follows, using the notation from
[16, Section 3.1]:

— Reeb chords Q.L/ Š Q.L�f / on the lifts of L and L�f respectively, which stand in a
canonical bijection;

— Reeb chords C being in a canonical bijection with the critical points of f ; and

— two setsQ andP of Reeb chords fromL toL�f , each in canonical bijection withQ.L/,
and where the length of any Reeb chord in Q (resp. P) is greater (resp. smaller) than
the one of the corresponding chord in Q.L/.

See the aforementioned reference for more details, as well as Figure 1.

Lemma 4.17 ([16]). – For a suitable generic Riemannian metric g on L for which .f; g/
constitutes a Morse-Smale pair and associated almost complex structure, which can be made to
coincide with an arbitrary cylindrical almost complex structure outside a compact subset, there
is a bijection between the set of pseudoholomorphic disks which have
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c

qce maxpc

c0

L�f
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x x

LC

.L�f /
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y z

c

c0

qc
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Figure 1. The small triangles on the two-copy living near gradient flow-lines
of �rf shown in red. The upper copy with respect to the z-coordinate is shown
in blue, while the lower copy is in black. The contact form used here is dz � ydx.

boundary on LC [ LC
�f

and precisely one positive puncture,

at least one negative puncture at a local minimum e 2 C of f , and

form a moduli space of expected dimension zero,

and the set of negative gradient flow-lines on .L; g/ that connect either the starting point or the
end point of a Reeb chord c 2 Q.L/ with the local minimum e, together with the set of negative
gradient flow-lines that connect some critical point of index one with e.

More precisely, each such pseudoholomorphic disk lives in a small neighborhood of the
aforementioned flow-line. In the first case, it is a triangle with a positive puncture at the Reeb
chord qc 2 Q corresponding to c, and its additional negative punctures at e and either c (for
the flow-line from the starting point of c) or c0 (for the flow-line from the endpoint of c); see
Figure 1. In the second case, it is a Floer strip corresponding to the negative gradient flow-line
connecting the saddle point and the local minimum.

Proof. – This is an immediate application of Parts (3) and (4) of [16, Theorem 5.5].
A generalized pseudoholomorphic disk with a negative puncture at a local minimum can
be rigid only if it is a flow-line connecting a saddle point to the minimum, or consists of a
constant pseudoholomorphic disk located at one of the Reeb chords at c 2 Q.L/ together
with a flow-line from that double point to the local minimum. The aforementioned result
gives a bijection between such generalized pseudoholomorphic disks and pseudoholomor-
phic strips and triangles on the two-copy.

Now consider an auxiliary exact immersed Lagrangian L0 intersecting L [ L�f trans-
versely. For � > 0 sufficiently small there is a bijection between the intersection pointsL\L0

and L�f \ L0:

Corollary 4.18. – For a suitable Morse-Smale pair .f; g/ and almost complex structure
as in Lemma 4.17 there is a unique rigid and transversely cut out pseudoholomorphic triangle
with corners at e 2 L\L�f , c 2 L\L0, and the corresponding double point c0 2 L�f \L0 for
any connected gradient flow-line from c 2 L \ L0 to the local minimum e 2 C. The triangle is
moreover contained inside a small neighborhood of the same flow-line.
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Proof. – We need to apply Lemma 4.17 in the case whenLC is taken to be the Legendrian
lift .L[L0/C, where .L0/C is aboveLC, and the push-off is taken to be .L[L0/C�F for a Morse
function F W L [ L0 ! R that restricts to f on L.

5. Continuation maps

In this section we analyze what happens to the Floer cohomology when we change J , H
(in some suitable way) or move the Lagrangian submanifolds by a compactly supported safe
exact isotopy.

5.1. Changing the almost complex structure

Following [18] (see also [20]) we will use the bifurcation method to prove invariance of
Floer cohomology for Lagrangian intersection under change of almost complex structure.
It seems, in fact, that the more usual continuation method is not well suited to describe how
the obstruction algebras change when the almost complex structure changes.

Let us fix Lagrangian immersions .L0; �0/ and .L1; �1/ and a cylindrical Hamiltonian H
compatible with L0 and L1. For a generic one-parameter family of time-dependent almost
complex structure J �� parametrized by an interval Œı�; ıC� such that

— the extrema J ı�� and J ıC� are .L0; L1/-compatible, and

— J ı� satisfies (��) for all ı 2 Œı�; ıC�

we define the parametrized moduli spaces

Mk
L0;L1

.p1; x�; p0; xCIH;J �� /

consisting of pairs .ı; u/ such that ı 2 Œı�; ıC� and

u 2Mk
L0;L1

.p1; x�; p0; xCIH;J ı� /:

Using the zero-dimensional parametrized moduli spaces, we will define a continuation
map

‡J �� W LCC..L0; "C0 /; .L1; "
C
1 /IH;J

ıC
� /! LCC..L0; "�0 /; .L1; "

�
1 /IH;J

ı�
� /:

Proposition 5.1. – For a generic one-parameter family J �� of time-dependent almost
complex structures as above, the parametrized moduli space

Mk
L0;L1

.q1; y�; q0; yCIH;J �� /

is a transversely cut-out manifold of dimension k. If k D 0 it is compact, and therefore consists
of a finite number of points. If k D 1 it can be compactified in the sense of Gromov-Floer.

If both L0 and L1 are spin, the moduli spaces are orientable, and a choice of spin structure
on each Lagrangian submanifold induces a coherent orientation on the parametrized moduli
spaces.

In the following lemma we look more closely at the structure of the zero-dimensional
parametrized moduli spaces. The analogous statement in the setting of Lagrangian Floer
homology (for Lagrangian submanifolds) appears in [20, Section 3]. In the case of Legen-
drian contact cohomology, the corresponding construction appears in [18, Section 2.4].
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Lemma 5.2. – For a generic J �� there is a finite set� � .ı�; ıC/ such that for ı 2 � exactly
one of the following cases holds:

(i) there is a unique nonempty moduli space N�1L0 .q
0
0 I q

0
1 ; : : : ; q

0
d
IJ ı0 / and all other moduli

spaces are transversely cut out,

(ii) there is a unique nonempty moduli space N�1L1 .q
1
0 I q

1
1 ; : : : ; q

1
d
IJ ı1 / and all other moduli

spaces are transversely cut out, or

(iii) there is a unique nonempty moduli space M0
L0;L1

.q1; y�; q0; yCIH;J ı� / and all other
moduli spaces are transversely cut out,

while for every ı 2 Œı�; ıC� n� the moduli spaces of negative virtual dimension are empty.

(Of course, the self-intersection points qij appearing in the three cases above have nothing
to do with each other.) Note that the lemma does not claim that J ı� is .L0; L1/-regular
for ı 62 �: for example, if ı is a critical value of the projection

M1
L0;L1

.q1; y�; q0; yCIH;J �� /! Œı�; ıC�;

then J ı� is not .L0; L1/-regular, but ı 62 �.

Remark 5.3. – If � D ;, then the Floer chain complexes

CF..L0; "0/; .L1; "1/IH;J ı�� / and CF..L0; "0/; .L1; "1/IH;J
ıC
� /

are isomorphic. In fact the one-dimensional parametrized moduli spaces have boundary
points only at J ı�� and J ıC� , and this implies that the algebraic count of elements of the zero-
dimensional moduli spaces is the same for J ı�� and J ıC� .

Next we describe what happens when we cross ı 2 � of type (i) or (ii). Since the cases are
symmetric, we will describe only (i) and assume, without loss of generality, that ı D 0.

Lemma 5.4. – Suppose that � D f0g and that the unique nontransversely cut out moduli
space for J 0� is N�1L0 .q

0
0 I q

0
1 ; : : : ; q

0
d
IJ 00 /. Then for ı > 0 the differentials of

CF..L0; "�0 /; .L1; "
�
1 /IH;J

�ı
� / and CF..L0; "C0 /; .L1; "

C
1 /IH;J

ı
� /

are equal.

Proof. – We adapt the cobordism method of [17] (see also [18]). Given a positive Morse
function f W R! Rwith local minima at˙1 satisfying f .1/ D f .�1/ D 1, a local maximum
at 0 and no other critical point, we define exact Lagrangian immersionse�i W R � Li !
T �R �W following [17, Subsection 4.3.2]. We denote eLi the image ofe�i .

Let .r; �/ be the canonical coordinates on T �R. We consder the Hamiltonian functioneH W Œ0; 1� � T �R �W ! R

such that eH.t; r; �; w/ D H.t; w/. Then its Hamiltonian vector field XfH is tangent
to f.r; �/g � W for all .r; �/ 2 T �R. Each double point q of Li gives rise to three double
points qŒ�1�; qŒ0�; qŒC1� of eLi and each Hamiltonian chord x from L0 to L1 gives rise to
three Hamiltonian chords xŒ�1�, xŒ�1�; xŒC1� from eL0 to eL1.

Let eJ� be the (time dependent) almost complex structure on T �R � W such that
on T.r;�;w/ Š R2 ˚ TwW it is given by j0 ˚ J

˛ı.r/
� where j0 is the standard almost
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complex structure on R2 and ˛ı W R ! Œ�ı; ı� is as in Equation (4.9) of [17] for ı small.
Proposition 4.7 provides isomorphisms

Yi W .D
�
i ; d
�
i /! .DCi ; d

C

i /

such that "�i D "Ci ı Yi . Those isomorphisms are the ones constructed in [17, Subsec-
tion 4.4.3] and denoted by  there. Let eDi be the obstruction algebra of eLi and definee"i W eDi ! F as 8̂̂<̂

:̂
e"i .qŒ�1�/ D "�.q/;e"i .qŒ0�/ D 0;e"i .qŒC1�/ D "C.q/

for every double point q of Li . From the structure of the differential of the Chekanov-
Eliashberg algebras of eLi described in [17, Subsection 4.4.3] it follows thate"i is an augmen-
tation of eDi , and therefore the Floer chain complex CF..eL0;e"0/; .eL1;e"1/I eH; eJ�/ is well
defined.

Lemmas 4.14, 4.15, 4.18 and 4.19 of [17] have direct counterparts for Floer solutions
because the projection of a solution of the Floer equation with Hamiltonian eH to T �R is
a holomorphic map. This implies that the differentiale@ on CF..eL0;e"0/; .eL1;e"1/I eH; eJ�/ has
the following form

(12)

8̂̂̂<̂
ˆ̂:
e@.xŒ�1�/ D .@�x/Œ�1�;e@.xŒ0�/ D xŒC1� � xŒ�1�C P

y2CH
ayyŒ0�;e@.xŒC1�/ D .@Cx/ŒC1�;

where @˙ denotes the differentials of CF..L0; "˙0 /; .L1; "
˙
1 /IH;J

˙ı
� /. The crucial point here

is that no chord yŒ˙1� contributes to e@.xŒ0�/ if y ¤ x. This is a consequence of the
assumption that there is no Floer strip of index 0 for J �� and of the Hamiltonian version of
[17, Lemma 4.19]. Frome@2 D 0 it is easy to see that @C D @�.

Now we analyze how the complex changes when we cross ı 2 � of type (iii).

Lemma 5.5. – Suppose that � D fı0g and that the unique nontransversely cut out moduli
space for J ı0� isM0

L0;L1
.q1; y�; q0; yCIH;J ı� /. Then the map

‡J �� W CF..L0; "0/; .L1; "1/IH;J
ıC
� /! CF..L0; "0/; .L1; "1/IH;J ı�� /

defined as

‡J �� .x/ D

(
x if x ¤ yC;

yC C #M0
L0;L1

.q1; y�; q0; yCIH;J �� /"0.q0/"1.q1/y� if x D yC

is an isomorphism of complexes.

Proof. – The proof is the same as in [20]. However, the proof in [20] holds only in the case
of Z2-coefficients. For more general coefficients, we rely on the discussion in [17, 18].

Given a generic homotopy J �� , we split it into pieces containing only one point of � and
compose the maps obtained in Lemma 5.4 and 5.5.
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5.2. Changing the Hamiltonian

In this section we will keep the almost complex structure fixed. Let H� and HC be
time-dependent cylindrical Hamiltonian functions which are compatible with immersed
Lagrangian submanifolds L0 and L1. From a one-parameter family of cylindrical Hamilto-
nians Hs such that

(i) Hs D H� for s � 0,

(ii) Hs D HC for all s � 0, and

(iii) @sh0s.e
r.w// � 0 if r.w/ is sufficiently large,

we will define a continuation map

ˆHs W CF..L0; "0/; .L1; "1/IHC/! CF..L0; "0/; .L1; "1/IH�/:

Given a time-dependent almost complex structure J�, an H�-Hamiltonian chord
x�, an HC-Hamiltonian chord xC and double points p0 D .p01 ; : : : ; p

0
l0
/ of L0 and

p1 D .p11 ; : : : ; p1l1/ of L1, we define the moduli spaces

ML0;L1.p1; x�; p0; xCIHs; J�/

as the set of triples .ζ0; ζ1; u/ such that:

— .ζ0; ζ1/ 2 eRl0jl1 and uW Zζ0;ζ1 ! W is a map satisfying the Floer equation

(13)
@u

@s
C Jt

�
@u

@t
� �0.t/XHs .�.t/; u/

�
D 0;

— lim
s!˙1

u.s; t/ D x˙.�.t//,

— u.s; 0/ 2 L0 for all .s; 0/ 2 Zζ0;ζ1 ,

— u.s; 1/ 2 L1 for all .s; 1/ 2 Zζ0;ζ1 , and

— each �ij is a negative puncture at pij for i D 0; 1 and j D 1; : : : ; li .

Note the only difference between Equation (13) and Equation (8) is that we made XHs
depend on s in Equation (13). For this reason there is no action of Aut.Z/ on the moduli
spacesML0;L1.p1; x�; p0; xCIHs; J�/.

Let Fu be the linearisation at u of the Floer operator with s-dependent Hamiltonian. We
define

ind.u/ D ind.Fu/C l0 C l1;

and defineMk
L0;L1

.p0; x�; p1; xCIHs; J�/ as the subset of

ML0;L1.p1; x�; p0; xCIHs; J�/

consisting of the maps u with ind.u/ D k.

The following statement is analogous to the statement in Morse theory, [20, Section 3].
A similar boundary degeneration statement in the case of Legendrian contact cohomology
appears in [18, Section 2.4].
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Proposition 5.6. – Given Hs , for a generic time-dependent almost complex structure J�
satisfying (��) with respect to both HC and H� , the moduli spaceMk

L0;L1
.p1; x�; p0; xCIHs; J�/

is a transversely cut-out manifold of dimension k. If k D 0 it is compact, and therefore consists
of a finite set of points. If k D 1 it can be compactified in the sense of Gromov-Floer.

If both L0 and L1 are spin, the choice of a spin structure on each induces a coherent
orientation of the moduli space (see [17]).

We denote C� the set of Hamiltonian chords ofH� and CC the set of Hamiltonian chords
of HC. We also introduce the weighted count

m.p1; x�; p0; xCIHs/ D #M0
L0;L1

.p1; x�; p0; xCIHs; J�/"0.p0/"1.p1/:

Given xC 2 CC, we define the continuation map

(14) ˆHs .xC/ D
X
x�2C�

X
l0;l12N

X
pi2Dli

i

m.p1; x�; p0; xCIHs/x�:

The Gromov-Floer compactification of the one-dimensional moduli spaces implies the
following lemma.

Lemma 5.7. – The map ˆHs is a chain map.

We denote by

ˆ�H�;HC W HF..L0; "0/; .L1; "1/IHC/! HF..L0; "0/; .L1; "1/IH�/

the map induced in homology byˆHs—soon it will be apparent that the notation is justified.
As it happens in the more standard Floer cohomology for Lagrangian submanifolds, the
continuation maps satisfy the following properties.

Lemma 5.8. – 1. Up to homotopy, ˆHs depends only on the endpoints HC and H�
of Hs ,

2. ˆ�H;H is the identity for every H , and

3. ˆ�H�;H ıˆ
�
H;HC

D ˆ�H�;HC .

Sketch of proof. – In order to prove (1.), we follow the standard procedure for defining
chain homotopies in Floer theory; see [20] for more details. Given a homotopyH ı

s , ı 2 Œ0; 1�,
between s-dependent Hamiltonian functions H 0

s and H 1
s with H ı

s � H� for s � 0 and
H ı
s � HC for s � 0, we define the parametrized moduli spacesMk

L0;L1
.p1; x�; p0; xCIH �s ; J�/

of pairs .ı; u/ such that ı 2 Œ0; 1� and u 2 Mk
L0;L1

.p1; x�; p0; xCIH ı
s ; J�/. We define the

weighted count

m.p1; x�; p0; xCIH �s / D #M�1L0;L1.p
1; x�; p0; xCIH �s ; J�/"0.p0/"1.p1/:

Then the chain homotopy

KW CF..L0; "0/; .L1; "1/IHC; J�/! CF..L0; "0/; .L1; "1/IH�; J�/

between ˆH0s and ˆH1s is defined as

K.xC/ D
X
x�2C�

X
l0;l12N

X
pi2Dli

i

m.p1; x�; p0; xCIH �s /x�:
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In order to prove (2.) we can choose Hs � H : then the moduli space

M0
L0;L1

.p0; x�; p1; xCIHs; J�/

consists of constant strips.

We fix s-dependent Hamiltonian functions HCs and H�s such that HCs D HC for s � 1
and HCs D H for s � 0, and H�s D H for s � 0 and H�s D H� for s � �1. In order to
prove (3.) we introduce the family of Hamiltonian functions

HR
s D

(
HCs�R for s � 0; and

HsCR for s � 0

with R > 0. By (1.), ˆHRs induces ˆ�HC;H� for all R. For R� 0 there is an identification

M0
L0;L1

.p11 ; : : : ; p
1
l1
; x�; p

0
1 ; : : : ; p

0
l0
; xCIH

R
s ; J�/(15)

Š

G
x2CH

G
0�hi�li

M0
L0;L1

.p1h1C1; : : : ; p
1
l1
; x; p01 ; : : : ; p

0
h0
; xCIH

C
s ; J�/

�M0
L0;L1

.p11 ; : : : ; p
1
h1
; x�; p

0
1Ch0

; : : : ; p0l0 ; xIH
�
s ; J�/;

which follows from standard compactness and gluing techniques, once we know that, for
any R0 > 0, there is R0 such that, for all R � R0, if

.ζ0; ζ1; u/ 2M0
L0;L1

.p1; x�; p0; xCIHR
s ; J�/;

then �ij 62 Œ�R
0; R0� for i D 0; 1 and j D 1; : : : ; li .

This follows from a simple compactness argument: if there is R0 and a sequence Rn with

.ζ0n; ζ
1
n; un/ 2M

0
L0;L1

.p1; x�; p0; xCIHRn
s ; J�/

and for every n there is some �ij 2 Œ�R
0; R0�, then the limit for n ! 1 has one level which

is a solution of a Floer equation with s-invariant data and at least one boundary puncture.
For index reasons this level must have index zero, but it cannot be constant because of the
boundary puncture. This is a contradiction.

With Lemma 5.8 at hand, we can prove the following invariance property in the usual
formal way.

Corollary 5.9. – IfH0 andH1 are cylindrical Hamiltonian functions which are compat-
ible with L0 and L1 and such that h00.r.w// D h01.r.w// for w outside of a compact set, then
the continuation map

ˆ�H0;H1 W HF..L0; "0/; .L1; "1/IH0/! HF..L0; "0/; .L1; "1/IH1/

is an isomorphism.
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5.3. Compactly supported safe isotopies

Let  t W W ! W be a compactly supported smooth isotopy such that �t D  t ı �1W L1 ! W

is a safe isotopy. By Lemma 2.23 there exists a local Hamiltonian Gt defined on L1 which
generates the �t and for which dGt has compact support. (Recall that Gt may not extend to
a single-valued function on W .)

In the following we will make the further assumption that the path

. t /�J1 D d t ı J1 ı d 
�1
t ; t 2 Œ0; 1�;

consists of compatible almost complex structures. This will cause no restriction, since we only
need the case when  t is equal to the Liouville flow, which is conformally symplectic.

Remark 5.10. – In the following manner more general safe isotopies can be considered.
Since it is possible to present any smooth isotopy as a concatenation of C 2-small isotopies,
it then suffices to carry out the constructions here for each step separately. Namely, since
tameness is an open condition, sufficiently C 2-small isotopies may be assumed to preserve
any given tame almost complex structure. Further control near the double points can then be
obtained by assuming that t actually is conformally symplectic there, which can be assumed
without loss of generality.

Denote by L01 D  1 ı �1.L1/ the image. By the usual abuse of notation, we will write L01
or  1.L1/ instead of .L1;  1 ı �/. From now on we will assume that the Hamiltonian H is
compatible both with L0 and L1 and with L0 and L01.

The obstruction algebras D1 of .L1; J1/ and D01 of .L01; . 1/�J1/ are tautologically
isomorphic because  1 matches the generators and the holomorphic curves contributing
to the differentials, and therefore any augmentation "1 of D1 corresponds to an augmenta-
tion "01 of D01.

We fix time-dependent almost complex structures JC� and J�� such that

— J˙t D J0 for t 2 Œ0; 1=4�,

— JCt D J1 and J�t D . 1/�J1 for t 2 Œ3=4; 1�,

— JC� is .L0; L1/-regular and J�� is .L0; L01/-regular.

Given augmentations "0 for L0 and "1 for L1, we will define a chain map

‰G W CF..L0; "0/; .L1; "1/IH;JC� /! CF..L0; "0/; .L01; "
0
1/IH;J

�
� /

using a Floer equation with moving boundary conditions. The presence of self-intersection
points of L1 makes the construction of the moduli spaces more subtle than in the usual case
because, in order to have strip-like ends, we need to make the moving boundary conditions
constant near the boundary punctures, and therefore domain dependent.

Recall the sets

Confn.R/ D f.�1; : : : ; �n/ 2 Rnj �1 < � � � < �ng and

Conf
n
.R/ D f.�1; : : : ; �n/ 2 Rnj �1 � � � � � �ng:

(Note that this is not how configuration spaces are usually compactified.) Given n 2 N, we
denote n D f1; : : : ; ng and for m < n we denote hom.n;m/ the set of nondecreasing
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and surjective function �W n ! m. Every � 2 hom.n;m/ induces an embedding
��W Conf

m
.R/! Conf

n
.R/ defined by

��.�1; : : : ; �m/ D .��.1/; : : : ; ��.m//:

The boundary of Conf
n
.R/ is a stratified space with dimension m stratumG

�2hom.n;m/

��.Confm.R//:

The embeddings � defined above extend to diffeomorphisms

�
�
W Conf

m
.R/ � Rn�mC ! Conf

n
.R/

such that

.�01; : : : ; �
0
n/ D �

�
..�1; : : : ; �m/; .�1; : : : ; �n�m//

if

�0i D ��.i/ C

i��.i/X
kD0

�k ;

where �0 D 0 for the sake of the formula.

Lemma 5.11. – Fix ı > 0. There is a family of constants �n > 0 and smooth functions

�nW Conf
n
.R/ � R! Œ0; 1�

such that, denoting by s the coordinate in the second factor,

1. �n.�1; : : : ; �n; s/ D 0 for s > �n,

2. �n.�1; : : : ; �n; s/ D 1 for s < ��n,

3. @s�n.�1; : : : ; �n; s/ 2 Œ�2; 0� for all .�1; : : : ; �n; s/ 2 Conf
n
.R/ � R,

4. @s�n.�1; : : : ; �n; s/ D 0 if js � �i j � ı
2

for some i D 1; : : : ; n, and

5. �n ı �� D �m for all m < n and all � 2 hom.n;m/.

Proof. – We can construct the sequences �n and �n inductively over n using the fact that
the set of functions satisfying (1)–(4) is convex.

Given ζ D .�1; : : : ; �n/ 2 Confn.R/, we define �ζW R! Œ0; 1� by �ζ.s/ D �n.�1; : : : ; �n; s/.

Lemma 5.12. – For every n, there is a contractible set of smooth maps

QJnW Conf
n
.R/ �Z ! J .�/

such that

1. QJn.ζ; s; t/ D JCt if s > �n C 1,

2. QJn.ζ; s; t/ D J�t if s < ��n � 1,

3. QJn.ζ; s; t/ D J0 if t 2 Œ0; 1=4�,

4. QJn.ζ; s; t/ D d �ζ.s/ ı J1 ı d 
�1
�ζ.s/

if t 2 Œ3=4; 1�, and

5. for all � 2 hom.n; n � 1/, QJn.��.ζ/; s; t/ D QJn�1.ζ; s; t/.
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Proof. – We build QJn inductively on n. At each step, the map QJ is determined in the
complement of Confn.R/� Œ��n� 1; �nC 1�� Œ1=4; 3=4�. We can extend it to Conf

n
.R/�Z

because J .�/ is contractible.

Given ζ 2 Confn.R/, we will denote by QJζ the s� and t -dependent almost complex
structure obtained by restricting QJ to fζg�Z. Given .ζ0; ζ1/ 2 eRl0jl1 , we will not distinguish
between �1j 2 R�f1g and its s-coordinate, and by this abuse of notation, to .ζ0; ζ1/ 2 eRl0jl1
we will associate �ζ1 and QJζ1 . For simplicity, the s- and t -dependence of QJζ1 will be omitted
in writing the Floer equation.

Consider the sets

CH D fxW Œ0; 1�! W W x.0/ 2 L0; x.1/ 2 L1; Px.t/ D XH .x.t//g;

C0H D fxW Œ0; 1�! W W x.0/ 2 L0; x.1/ 2 L
0
1; Px.t/ D XH .x.t//g:

Definition 5.13. – Given xC 2 CH , x� 2 C0H , and pi 2 Dli
i for i D 0; 1 and li � 0 we

define the moduli space

ML0;L1.p1; x�; p0; xCIH;G; QJ ; �/

as the set of triples .ζ0; ζ1; u/ such that:

— .ζ0; ζ1/ 2 Rl0jl1 and uW Zζ0;ζ1 ! W satisfies the Floer equation

(16)
@u

@s
C QJζ1

�
@u

@t
� �0.t/XH .�.t/; u/

�
D 0;

— lim
s!˙1

u.s; t/ D x˙.�.t//,

— u.s; 0/ 2 L0 for all .s; 0/ 2 Zζ0;ζ1 ,

— u.s; 1/ 2  �
ζ1
.s/.L1/ for all .s; 1/ 2 Zζ0;ζ1 , and

— each �0j is a negative puncture at p0j and each �1j is a negative puncture at  �
ζ1
.�1
j
/.L1/.

(Recall that  t W W ! W here is a smooth isotopy satisfying the assumptions made in the
beginning of this section, whose restriction to L1 in particular is the compactly supported
safe isotopy generated by GW R�L! R:) We denote byMk

L0;L1
.p1; x�; p0; xCIH;G; QJ ; �/

the set of triples .ζ0; ζ1; u/ where ind.u/ D k.

Proposition 5.14. – For a generic QJ as in Lemma 5.12, the moduli space

Mk
L0;L1

.p1; x�; p0; xCIH;G; QJ ; �/

is a transversely cut out manifold of dimension k. If k D 0, it is compact, and therefore consists
of a finite set of points. If k D 1, it admits a compactification in the Gromov-Floer sense.

If L0 and L1 are spin, a choice of a spin structure on each induces a coherent orientation of
the moduli space (see [17]).
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Definition 5.15. – We define the weighted count

m.p1; x�; p0; xCIH;G/ D #M0
L0;L1

.p1; x�; p0; xCIH;G; QJ ; �/"0.p0/"1.p1/

and then we define ‰G as

‰G.xC/ D
X

x�2CH

X
l0;l12N

X
pi2Dli

i

m.p1; x�; p0; xCIH;G/x�:

Remark 5.16. – The word p1 consists of double points living on the different Lagrangian
immersions  �

ζ1
.�1
j
/.L1/: However, when using the pushed forward almost complex

structures . �
ζ1
.�1
j
//�J1; their obstruction algebras all become canonically identified

with .A.L1/; d/ defined using J1. This motivates our abuse of notation "1 for an augmenta-
tion induced by these canonical identifications.

A consideration of Proposition 5.14 together with a count of solutions of index �1 which
arise in a one-parametric family of moduli spaces implies the following:

Lemma 5.17. – The map ‰G is a chain map. Moreover, up to chain homotopy, it does not
depend on the choice of � and on the homotopy class of  t relative to the endpoints.

Lemma 5.18. – Let G0; G1W L1 ! R be local Hamiltonian functions generating the safe
isotopies  0t ı �1 and  1t ı  

0
1 ı �1 respectively, and let G2W L1 ! R be a local Hamiltonian

function generating

 2t D

(
 12t for t 2 Œ0; 1=2�;

 22t�1 ı  
1
1 for t 2 Œ1=2; 1�:

Then ‰G2 is chain homotopic to ‰G0 ı‰G1 .

The proof of Lemma 5.18 is analogous to the proof of Lemma 5.8.

Corollary 5.19. – If GW R � L ! R satisfies dGt D 0 outside a compact subset
of .0; 1/ � L, then the map ‰G induces an isomorphism in homology.

If NJC� is one .L0; L1/-regular almost complex structure and NJ�� is another
.L0;  1.L1//-regular almost complex structure, instead of repeating the construction of QJ
with NJ˙� as starting point, we prefer to consider QJ assigned once and for all to the triple
.L0; L1; G/ and define the continuation map

CF..L0; "0/; .L1; "1/IH; NJC� /! CF..L0; "0/; .L01; "1/IH; NJ
�
� /

as the composition ‡� ı‰G ı ‡C, where

‡CW CF..L0; "0/; .L1; "1/IH; NJC� /! CF..L0; "0/; .L1; "1/IH;JC� /;

‡�W CF..L0; "0/; .L01; "
0
1/IH;J

�
� /! CF..L0; "0/; .L01; "

0
1/IH;

NJ�� /

are the maps defined in Section 5.1.
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5.4. Continuation maps for almost complex structures and Hamiltonian functions commute

Let Hs be a homotopy from H� to HC as in Section 5.2 and J �� a homotopy from J�1�
to JC1� as in Section 5.1. For simplicity we will denote

CF.H˙; J˙� / D CF..L0; "˙0 /; .L1; "
˙
1 /IH˙; J

˙1
� /:

If "Ci D "
�
i ıYi , we have defined continuation maps

‡˙W CF.H˙; JC� /! CF.H˙; J�� /;

ˆ˙W CF.HC; J˙� /! CF.H�; J˙� /

and now we will to prove that they are compatible in the following sense.

Proposition 5.20. – The diagram

(17) CF.HC; JC� /
ˆC //

‡C

��

CF.H�; JC� /

‡�

��
CF.HC; J�� / ˆ�

// CF.H�; J�� /

commutes up to homotopy.

Proposition 5.20 will be proved by applying the bifurcation method to the definition of
the continuation maps ˆ˙: i.e., we will study the parametrized moduli spaces

M0
L0;L1

.p1; x�; p0; xCIHs; J �� /

consisting of pairs .ı; u/ such that ı 2 Œ0; 1� and u 2 M0
L0;L1

.p1; x�; p0; xCIHs; J ı� /. For a
generic homotopy J �� , these parametrized moduli spaces are transversely cut out manifolds
of dimension one. As before, there is a finite set � of bifurcation points such that, for all
ı 2 �, there is a unique nonempty moduli space of one of the following types:

(i) N�1L0 .q
0
0 I q

0
1 ; : : : ; q

0
d
IJ ı0 / or N�1L1 .q

1
0 I q

1
1 ; : : : ; q

1
d
IJ ı1 /,

(ii) M0
L0;L1

.q1; y�; q0; yCIH�; J ı� / orM0
L0;L1

.q1; y�; q0; yCIHC; J ı� /,

(iii) M�1L0;L1.q
1; y�; q0; yCIHs; J ı� /.

To these moduli spaces correspond four types of boundary configuration for the compactifi-
cation of the one-dimensional parametrized moduli spacesM0

L0;L1
.p1; x�; p0; xCIHs; J �� /,

which we write schematically as:

(i) N�1L0 .J
ı
0 / �M

0.Hs; J
ı
� / or N�1L1 .J

ı
1 / �M

0.Hs; J
ı
� /,

(ii) M0.H�; J
ı
� / �M

0.Hs; J
ı
� / orM0.Hs; J

ı
� / �M

0.HC; J
ı
� /,

(iii) M1.H�; J
ı
� / �M

�1.Hs; J
ı
� / orM�1.Hs; J ı� / �M

1.HC; J
ı
� /,

(iii)0 N0L0.J
ı
0 / �M

�1.Hs; J
ı
� / or N0L1.J

ı
1 / �M

�1.Hs; J
ı
� /.

There is also one fifth type of boundary configuration:

(iv) M0.Hs; J
�1
� / orM0.Hs; J

1
� /.
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In order to prove Proposition 5.20 we split the homotopy J �� into pieces, each of which
contains only one element of �, and we prove that for each piece the corresponding
diagram (17) commutes up to homotopy. Putting all pieces together, we will obtain the
result. We rescale each piece of homotopy so that it is parametrized by Œ�1; 1� and the
bifurcation point is ı D 0.

Lemma 5.21. – Let � D f0g be of type (i). Then Diagram (17) commutes.

Proof. – We have proved in Lemma 5.4 that‡˙ are the identity maps. Here we will prove
that, under the hypothesis of the lemma, ˆC D ˆ�. We use the same construction, and the
same notation, as in the proof of Lemma 5.4.

The homotopy of Hamiltonians Hs on W induces a homotopy of Hamiltonians eHs
on T �R �W . LetêW CF..eL0;e�0/; .eL1;e"1/I eHC; eJ�/! CF..eL0;e�0/; .eL1;e"1/I eH�; eJ�/
be the continuation map associated to the homotopy eHs .

Solutions of the Floer equation perturbed by eHs are still holomorphic when projected
to T �R, and therefore the counterpart of Lemmas 4.14 and 4.19 of [17] gives that, for
� D �1; 0;C1, ê.xŒ��/ is a linear combination of chords yŒ��. The statement for � D 0 is
a consequence of the assumption that there is no Floer strip for eHs of index �1. (Unlike in
the proof of Lemma 5.4 we do not have the two strips between from xŒ0� to xŒ˙1� because in
the definition of ê we consider solutions of index zero.) Thene@ı ê D êıe@ and Equation 12
give ˆC D ˆ�.

Lemma 5.22. – Let � D f0g be of type (ii). Then Diagram (17) commutes.

Proof. – We assume, without loss of generality, that the moduli space of negative formal
dimension is

M0
L1;L1

.q1; y�; q0; yCIHC; J 0� /:
By Lemma 5.5 the continuation maps for the change of almost complex structure are
‡� D Id and

‡C.x/ D

(
x if x ¤ yC;

yC C #M0
L0;L1

.q1; y�; q0; yCIHC; J ı� /"0.q0/"1.q1/y� if x D yC:

The structure of the compactification of one-dimensional parametrized moduli spaces
implies that

#M0.q1p1; x�;p0q0; yCIHs; J 1� / � #M0.q1p1; x�; p0q0; yCIHs; J�1� /

D #M0.q1; y�; q0; yCIHC; J 0� /#M0.p1; x�; p0; y�IHs; J 0� /;

while the cardinality of all other moduli spaces remains unchanged. This implies that
Diagram (17) commutes.

We have dropped the Lagrangian labels from the notation in order to keep the formulas
compact. We will do the same in the proofs of the following lemma.

Lemma 5.23. – Let � D f0g be of type (iii). Then Diagram (17) commutes up to
homotopy.
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Proof. – LetM�1L0;L1.q
1; y�; q0; yCIHs; J 0� / be the nonempty moduli space of negative

formal dimension. In this case ‡˙ D Id and we define a linear map

KW CF.HC; JC1� /! CF.H�; J�1� /

by

K.x/ D

(
0 if x ¤ yC;

#M�1L0;L1.q
1; y�; q0; yCIHs; J 0� /"0.q0/"1.q1/y� if x D yC:

The structure of the boundary of the compactification of the one-dimensional parametrized
moduli spaces implies that

#M0.q1p1; x�;p0q0; yCIHs; J 1� / � #M0.q1p1; x�; p0q0; yCIHs; J�1� /

D #M�1.q1; y�; q0; yCIHs; J 0� /#M1.p1; x�; p0; y�IH�; J 0� /; and

#M0.p1q1; y�;q0p0; xCIHs; J 1� / � #M0.p1q1; y�; q0p0; xCIHs; J�1� /

D #M�1.q1; y�; q0; yCIHs; J 0� /#M1.p1; yC; p0; xCIHC; J 0� /:

From this it follows that ˆC �ˆ� D @K CK@.

The degenerations of type (iii)0 are canceled algebraically by the augmentations, and
therefore we obtain the commutativity of the diagram (17) for a generic homotopy J �� .

Now we compare the continuation mapsˆ for the change of Hamiltonian and the contin-
uation maps ‰ for compactly supported safe isotopies of L1. Let GW R�L1 ! R be a local
Hamiltonian function satisfying dGt D 0 outside a compact subset of .0; 1/ � L1 which
generates the safe isotopy  t ı �1; and denote L01 D  1.L1/. If HC and H� are two Hamil-
tonian functions which are compatible both with L0 and L1 and with L0 and L01, then we
have continuation maps

‰˙G W CF..L0; "0/; .L1; "1/IH˙; JC� /! CF..L0; "0/; .L01; "
0
1/IH˙; J

�
� /

and continuation maps

ˆ W CF..L0; "0/; .L1; "1/IHC; JC� /! CF..L0; "0/; .L1; "1/IH�; JC� /;

ˆ0 W CF..L0; "0/; .L01; "
0
1/IHC; J

�
� /! CF..L0; "0/; .L01; "

0
1/IH�; J

�
� /

induced by a homotopy of Hamiltonians Hs with Hs D HC for s � 1 and Hs D H�
for s � �1.

Lemma 5.24. – The diagram

CF..L0; "0/; .L1; "1/IHC; JC� /
ˆ //

‰
C

G

��

CF..L0; "0/; .L1; "1/IH�; JC� /

‰
C

G

��
CF..L0; "0/; .L01; "

0
1/IHC; J

�
� /

ˆ0 // CF..L0; "0/; .L01; "
0
1/IH�; J

�
� /

commutes up to homotopy.
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Sketch of proof. – For R 2 R we define HR
s D Hs�R. We define the moduli spaces

Mk
L0;L1

.p1; x�; p0; xCIHR
s ; G;

QJ ; �/ as in Definition 5.13 by replacing the Hamiltonian H
by the s-dependent Hamiltonian HR

s . Counting pairs .R; u/ where R 2 R and

u 2M�1L0;L1.p
1; x�; p0; xCIHR

s ; G;
QJ ; �/;

weighted by the augmentations, we obtain a homotopy between ‰�G ıˆ and ˆ0 ı‰CG .

6. Wrapped Floer cohomology for exact Lagrangian immersions

In this section we define wrapped Floer cohomology for unobstructed immersed exact
Lagrangian submanifolds. With the preparation of the previous sections in place, the defi-
nition is not different from the usual one for Lagrangian submanifolds.

6.1. Wrapped Floer cohomology as direct limit

We start by defining wrapped Floer cohomology as a direct limit. This point of view
will be useful in the vanishing theorem of the following section. A sketch of the chain level
construction, following [4], will be given in the next subsection.

Let .L0; �0/ and .L1; �1/ be immersed exact Lagrangian submanifolds with augmentations
"0 and "1 respectively. We assume that all intersection points between L0 and L1 are trans-
verse, L0 and L1 are cylindrical over Legendrian submanifolds ƒ0 and ƒ1 respectively, and
all Reeb chords between ƒ0 and ƒ1 are nondegenerate.

For every � 2 R we denote by h�W RC ! R the function

(18) h�.�/ D

(
0 if � 2 .0; 1�;

�� � � if � � 1:

We smooth h� inside the interval Œ4=5; 6=5� (or any sufficiently small neighborhood of 1
independent of �) and, by abuse of notation, we still denote the resulting function by h�.
We assume also that the resulting smooth function satisfies h00.�/ � 0 for all � 2 RC. We
define time-independent cylindrical Hamiltonians H�W W ! R by

(19) H�.w/ D h�.e
r.w//:

Hamiltonian functions of this form will be called wrapping Hamiltonian functions.

We fix a sequence of positive real number �n such that lim
n!C1

�n D C1 and, for any n,

�n is not the length of a Reeb chord from ƒ0 to ƒ1. The set of .L0; L1/-regular almost
complex structures for every H�n is dense, and we pick an element J�.

By Subsection 5.2, for every m � n there are continuation maps

ˆ�n;�m W HF..L0; "0/; .L1; "1/IH�n ; J�/! HF..L0; "0/; .L1; "1/IH�m ; J�/

forming a direct system.

Definition 6.1. – The wrapped Floer cohomology of .L0; "0/ and .L1; "1/ is defined as

(20) HW..L0; "0/; .L1; "1/IJ�/ D lim
�!

HF..L0; "0/; .L1; "1/IH�n ; J�/:
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Wrapped Floer cohomology is well defined, in the sense that it is independent of the
choice of the almost complex structure J�, and of the smoothing of the piecewise linear
functions H�n and of the sequence �n. Invariance of the almost complex structure follows
from Proposition 5.20. Invariance of the smoothing of H�n follows from Lemma 5.8 and
Corollary 5.9. Finally, if �0n ! C1 is another sequence such that no �0n is not the length
of a Reeb chord from ƒ0 to ƒ1, we can make both �n and �0n subsequences of a diverging
sequence �00n and standard properties of the direct limit give canonical isomorphisms

lim
�!

HF..L0; "0/; .L1; "1/IH�00n ; J�/ Š lim
�!

HF..L0; "0/; .L1; "1/IH�n ; J�/

Š lim
�!

HF..L0; "0/; .L1; "1/IH�0n ; J�/:

Therefore HW..L0; "0/; .L1; "1// does not depend on the sequence �n up to isomorphism. It
can also be proved that it is invariant under safe isotopies, but we will need, and prove, only
invariance under compactly supported ones.

Lemma 6.2. – LetGW R�L1 ! R be a local Hamiltonian function which satisfiesdGt D 0
outside a compact subset of .0; 1/�L1 and let t ı�1 be the exact regular homotopy it generates,
which is assumed to be a safe isotopy. IfL01 D  1.L1/, J

0
� is an .L0; L01/-regular almost complex

structure and "01 is the augmentation for L01 with respect to J 0� corresponding to "1, then there
is an isomorphism

HW..L0; "0/; .L1; "1/IJ�/ Š HW..L0; "0/; .L
0
1; "
0
1/IJ

0
�/:

Proof. – It is enough to observe that, for every n, the isomorphisms

CF..L0; "0/; .L1; "1/IH�n ; J�/ Š CF..L0; "0/; .L01; "
0
1/IH�n ; J

0
�/

defined in Subsection 5.3 commute with the continuation maps ˆ�n;�m and therefore define
isomorphisms of direct systems. This follows from Lemma 5.24 and Proposition 5.20.

6.2. A sketch of the chain level construction

Here we recall very briefly the definition of the wrapped Floer complex and theA1-oper-
ations. Since Lagrangian immersions will appear only in an intermediate step of the proof
of the main theorem, we will not try to make them objects of an enlarged wrapped Fukaya
category. Presumably this can be done as in the embedded case, but we have not checked the
details of the construction of the necessary coherent Hamiltonian perturbations.

Let L0 and L1 be exact Lagrangian immersions which intersect transversely and are
cylindrical over chord generic Legendrian submanifolds. We fix a wrapping Hamiltonian
H � 0 as in Equation (18) such that, for every w 2 N, the Hamiltonian wH is compatible
with L0 and L1 (in the sense of Definition 4.3). We also fix an .L0; L1/-regular almost
complex structure J�.

Let "0 and "1 be augmentations of the obstruction algebras of .L0; J0/ and .L1; J1/

respectively. Following [4] we define the wrapped Floer chain complex as theFŒq�=.q2/-module

(21) CW..L0; "0/; .L1; "1/IJ�/ D

1M
wD0

CF..L0; "0/; .L1; "1/IwH; J�/Œq�
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with a differential �1 such that, on x C yq 2 CF..L0; "0/; .L1; "1/IwH; J�/Œq�, it is defined
as

�1.x C yq/ D @x C y Cˆw.y/C .@y/q;

where

ˆw W CF..L0; "0/; .L1; "1/IwH; J�/! CF..L0; "0/; .L1; "1/I .w C 1/H; J�/

is the continuation map for the change of Hamiltonian defined in Subsection 5.2.

Remark 6.3. – The endomorphism �q (denoted @q in [4]) defined as

�q.x C yq/ D y

is a chain map. However, its action in homology is trivial.

Remark 6.4. – The direct sum (21) starts from w D 1 in [4]. It is equivalent to start
fromw D 0, when possible, by [4, Lemma 3.11]. The homology of CW..L0; "0/; .L1; "1/IJ�/

is isomorphic to HW..L0; "0/; .L1; "1// defined as the direct limit in Equation (20) by [4,
Lemma 3.12].

The A1-operations between wrapped Floer complexes are defined by counting pseu-
doholomorphic polygons with carefully constructed Hamiltonian perturbations. In the
immersed case, those polygons will be allowed to have boundary punctures at double points
and, as usual, must be counted with a weight coming from the augmentations. The only
thing we need to know about the operations between wrapped Floer cohomology groups is
that the component

�d W CF.Ld�1; Ld /˝ � � � ˝ CF.L0; L1/! CF.L0; Ld /

of the operation

�dWF W CW.Ld�1; Ld /˝ � � � ˝ CW.L0; L1/! CW.L0; Ld /

coincides with the operation �d defined in Equation (11). For simplicity of notation we have
dropped the augmentations from the above formulas.

7. A trivial triviality result

An exact Lagrangian embedding with cylindrical ends which is disjoint from the
skeleton is known to have vanishing wrapped Floer cohomology. This was proven in
[13, Theorem 9.11(b)] but also follows from e.g., [4, Section 5.1]. Note that the statement
is false in the more general case when the Lagrangian is only assumed to be monotone.
In this section we extend this classical vanishing result to our setting of exact Lagrangian
immersions.
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7.1. Action and energy

In this subsection we define an action for double points of immersed exact Lagrangian
submanifolds and for Hamiltonian chords and prove action estimates for various continu-
ation maps. Let p 2 W be a double point of a Lagrangian immersion .L; �/ with poten-
tial f . We recall that there are points p˙ 2 L characterized by ��1.p/ D fpC; p�g and
f .pC/ > f .p�/. We define the action of p as

a.p/ D f .pC/ � f .p�/:

If L is disconnected and p is in the intersection between the images of two connected
components, then a.p/ depends on the choice of the potential function f , otherwise it is
independent of it.

Given a holomorphic map .ζ; u/ 2 eNL.p0Ip1; : : : ; pd IJ /, Stokes’s theorem immediately
yields Z

�ζ

u�d� D a.p0/ �

dX
iD1

a.pi /:

Since
R
�ζ
u�d� > 0 for a nonconstant J -holomorphic map, ifeNL.p0Ip1; : : : ; pd IJ / ¤ ;;

we obtain

(22) a.p0/ �

dX
iD1

a.pi / > 0:

Given two Lagrangian submanifoldsL0 andL1 with potentials f0 and f1 and a Hamilto-
nian functionH , we define the action of a Hamiltonian chord xW Œ0; 1�! W from L0 to L1
as

(23) A.x/ D
Z 1

0

x�� �

Z 1

0

H.x.t//dt C f0.x.0// � f1.x.1//:

Note that this is the negative of the action used in [34].

Example 7.1. – LetH W W ! R be a cylindrical Hamiltonian such that H.w/ D h.er.w//,
where hW RC ! R. Then a Hamiltonian chord xW Œ0; 1�! W from L0 to L1 is contained in
a level set r�1.r/ and has action

(24) A.x/ D h0.er /er � h.er /C f0.x.0// � f1.x.1//:

The following lemma, which we prove in the more general case of the moduli spaces of
Floer solutions with an s-dependent Hamiltonian, applies equally to the particular case of
moduli spaces used in the definition of the Floer differential. We introduce the following
notation. Given a set A and a function f W A! R, we denote kf kC1 WD sup

a2A

maxff .a/; 0g.

Lemma 7.2. – Let Hs W R � Œ0; 1� � W ! R be an s-dependent cylindrical Hamiltonian
function satisfying conditions (i), (ii), and (iii) of Subsection 5.2. We make the simplifying
assumption that @sHs � 0 if s 62 Œ�1; 1�. IfML0;L1.p1; x�; p0; xCIHs; J�/ ¤ ;, then

(25) A.x�/ � A.xC/C 6k@sHskC1:
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Note that Equation (25) is far from being sharp, but there will be no need for a sharper
estimate.

Proof. – Let .u; ζ0; ζ1/ 2 ML0;L1.p1; x�; p0; xCIHs; J�/. Then, in a metric on u�T W
induced by d� and J�,Z C1

�1

Z 1

0

j@suj
2dtds D

Z C1
�1

Z 1

0

d�.@su; @tu � �
0.t/XHs .�.t/; u//dtds

D

Z
Z

ζ0;ζ1

u�d� �

Z C1
�1

Z 1

0

�0.t/dHs.�.t/@su/dtds:

Using Stokes’s theorem we obtainZ
Z

ζ0;ζ1

u�d� D f1.x�.1// � f1.xC.1// � f0.x�.0//C f0.xC.0// �

1X
iD0

liX
jD1

a.pij /:

Using the equality @s.Hs ı u/ D .@sHs/ ı uC dHs.@su/ we obtainZ C1
�1

Z 1

0

�0.t/dHs.�.t/; .@su//dtds

D

Z C1
�1

Z 1

0

�0.t/@s.Hs.�.t/; u.s; t///dtds �

Z C1
�1

Z 1

0

�0.t/.@sHs/.�.t/; u.s; t//dtds:

We can computeZ C1
�1

Z 1

0

�0.t/@s.Hs.�.t/; u.s; t///dtds

D

Z 1

0

�0.t/HC.�.t/; xC.�.t///dt �

Z 1

0

�0.t/H�.�.t/; x�.�.t///dt

D

Z 1

0

HC.t; xC.t//dt �

Z 1

0

H�.t; x�.t//dt:

Thus, rearranging the equalities, we have

A.xC/ �A.x�/ D
Z C1
�1

Z 1

0

j@suj
2dtds C

1X
iD0

liX
jD1

a.pij / �

Z C1
�1

Z 1

0

�0.t/@sHs.�.t/u.s; t//dsdt:

Finally, we estimateZ C1
�1

Z 1

0

�0.t/.@sHs/.�.t/; u.s; t//dtds � 6k@sHsk
C
1

and obtain Equation (25).

Corollary 7.3. – The differential in CF.L0; L1IH;J�/decreases the action. If @sHs � 0,
then the continuation map ˆHs also decreases the action.

Now we turn our attention to the continuation map ‰G defined in Subsection 5.3. Let
GW R � L1 ! R be a local Hamiltonian function such that dGt D 0 outside a compact
subset of .0; 1/ � L1 and let  t ı �1 be the compactly supported exact regular homotopy it
generates. Now assume that  t is a safe isotopy. Denote, as usual, L01 D  1.L1/.

First we make the following remark about a special type of safe isotopy and the action of
the image of the double points.
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Remark 7.4. – Let .L; �/ be an exact Lagrangian immersion and t W W ! W a smooth
isotopy. If  �t � D e

c.t/� , then

1.  t .L/ is a safe isotopy, and

2. if p is a double point of .L; �/, then  t .p/ is a double point of .L; t ı �/ whose action
satisfies a.p/ D ec.t/a. t .p//.

Given a Hamiltonian functionH W Œ0; 1��W ! R which is compatible both with L0 and
L1, as well as with L0 and L01, let CH be the set of Hamiltonian chords of H from L0 to L1
and let C0H be the set of Hamiltonian chords of H from L0 to L01.

Observe that any safe Lagrangian isotopy from L1 to L01 induces a continuous family of
potentials f s1 : Fixing a choice of local Hamiltonian GW R � L1 ! R generating the safe
isotopy makes the potential f 01 on L01 determined by the choice of potential f1 on L1 via a
computation as in the proof of Lemma 2.3.

Lemma 7.5. – For every chordsx� 2 C0H andxC 2 CH and for every sets of self-intersection
points p0 D .p01 ; : : : ; p0l0/ of L0 and p1 D .p11 ; : : : ; p1l1/ of L1, if

ML0;L1.p1; x�; p0; xCIH;G; QJ ; �/ ¤ ;;

then
A.x�/ � A.xC/C 2�kGk1;

where kGk1 is the supremum norm of G and � � 0 is the measure of the subset fs 2 Rg for
which Gs W L! R is not constantly zero.

Proof. – Consider .ζ0; ζ1; u/ 2 ML0;L1.p1; x�; p0; xCIH;G; QJ ; �/. Observe that the
map uW Zζ0;ζ1 ! W extends to a continuous map uW Z ! W . We have:Z C1

�1

Z 1

0

j@suj
2dtds D

Z
Z

du�� �

Z 1

0

�Z C1
�1

�
@

@s
.H ı u/

�
ds

�
dt

D

Z
Z

u�d� �

Z 1

0

H.xC.t//dt C

Z 1

0

H.x�.t//dt:

We denote by ui W R! W , for i D 0; 1, the continuous and piecewise smooth maps
ui .s/ D u.s; i/ and use Stokes theorem:Z

Z

u�d� D

Z 1

0

x�C� �

Z 1

0

x��� C

Z
R
u�0� �

Z
R
u�1�:

Let f0 and f1 be the potentials of L0 and L1 respectively, and Qf1 the potential of  1.L1/.
The map u0 takes values in L0, and thereforeZ

R
u�0� D f0.xC.0// �

l0X
jD1

a.p0j / � f0.x�.0//:

We are left with the problem of estimating
R
R u
�
1� , which is slightly more complicated

here because u1.s/ 2  �
ζ1
.s/.L1/. We will denote  �s W eqq �

ζ1
.s/. Recall that  �s is a

smooth isotopy inducing a safe isotopy of L1 generated by the local Hamiltonian func-
tion G�.s; w/ D �0

ζ1
.s/G.�ζ1.s/; w/; w 2 L1:
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We use the following trick. ConsiderW �R�R with the Liouville form‚W eqq� C �d� ,
where � is the coordinate of the first copy of R and � is the coordinate in the second copy.
The notation here conflicts with the use of .�; �/ as coordinates in the strip-like ends near the
boundary punctures, but this will not cause confusion.

Consider the symplectic suspension

†W eqqf.x; s; t/ 2 W � R2I x 2  �s .y/; y 2 L1; t D �G
�.s; y/g

of the isotopy  �s .L1/; which is an exact Lagrangian immersion. This should be seen as a
corrected version of the trace of the isotopy, in order to make it Lagrangian.

Lift u1W R! W to Qu1W R! W � R � R by defining

Qu1.s/ D .u1.s/; s;�G
�.s; u1.s/// 2 †;

and where u1 is the lift of u1 to L which is smooth away from the punctures.
Using the computation in the proof of Lemma 2.3, together with the Lagrangian condi-

tion satisfied by †; we obtainZ C1
�1

eu�1 ‚ D f 01.xC.1// � l1X
jD1

a.p1j / � f1.x�.1//;

as well as
u�1 � �eu�1 ‚ D G�.s; u1.s//d�:

Observe that we here abuse notation, and use a.p1j / > 0 for the action computed with respect
to the induced potential function on  �s .L1/ for the corresponding value of s 2 R:

Since k�0
ζ1
k1 � 2, we finally obtain

A.x�/ � A.xC/C 2�kGk1;

where � � 0 is as required.

7.2. Pushing up

In this subsection we prove the following proposition.

Proposition 7.6. – Let .L0; �0/ and .L1; �1/ be exact Lagrangian immersions in a Liou-
ville manifold .W; �/ and let J� be an .L0; L1/-regular almost complex structure. If the Liouville
flow of .W; �/ displaces L1 from any compact set, then, for all pair of augmentations "0 and "1
of the obstruction algebras of .L0; J0/ and .L1; J1/ respectively,

HW..L0; "0/; .L1; "1/; J�/ D 0:

We postpone the proof to after a couple of lemmas. Given ƒ > � > 0 and L > 0, we
define a function h�;ƒ;RW RC ! R such that

(26) h�;ƒ;R.�/ D

8̂̂<̂
:̂
0 for � � 1;

�� � � for � 2 Œ1; eR�;

ƒ� � .ƒ � �/eR � � for � � eR:

See Figure 2 for the graph of h�;ƒ;R.
The function h�;ƒ;R has two corners: one at .1; 0/ and one at .eR; �eR � �/. We

smooth h�;ƒ;R in a small neighborhood of these corners so that the new function (which
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�

1 eR

�eR � �

h0
�;ƒ;R

.�/ � ƒ

h0
�;ƒ;R

.�/ � �

h�;ƒ;R.�/

Figure 2. The graph of h�;ƒ;R

we still denote by h�;ƒ;R) satisfies h00
�;ƒ;R

.�/ � 0 for all �. We define the (time independent)

cylindrical Hamiltonian H�;ƒ;RW W ! R by H�;ƒ;R.w/ D h�;ƒ;R.e
r.w//. We make the

assumption that there is no Hamiltonian time-1 chord fromL0 toL1 on @Wr when r satisfies
either h0

�;ƒ;R
.er / D � or h�;ƒ;R.er / D ƒ. This is equivalent to assuming that there is no

Reeb chord from ƒ0 to ƒ1 of length either � or ƒ.
We assume, without loss of generality, that L0 and L1 intersect transversely, that

Li \W
e
1 is a cylinder over a Legendrian submanifold ƒi and that all Reeb chords from ƒ0

to ƒ1 are nondegenerate. Then we have three types of chords:

— constant chords, i.e., intersection points between L0 and L1, which are contained
in W0,

— chords coming from smoothing the corner of h�;ƒ;R at .1; 0/, which are concentrated
around @W1, and

— chords coming from smoothing the corner of h�;ƒ;R at .eR; �eR � �/, which are
concentrated around @WR.

Constant chords and chords coming from smoothing the first corner will be called type I
chords, while chords coming from smoothing the second corner will be called type II
chords. We say that a chord of Hƒ;�;L appears at slope s if it is contained in @Wr for r such
that h0

ƒ;�;L
.er / D s. By abuse of terminology, we will consider the intersection points

between L0 and L1 as chords appearing at slope zero.

Lemma 7.7. – Given� > 0, there existsC > 0 such that, for everyƒ > � and everyR � C ,
every chord of type II of H�;ƒ;R has larger action than any chord of type I.

Proof. – If x is a Hamiltonian chord contained in @Wr , then the action of x is

(27) A.x/ D h0�;ƒ;R.e
r /er � h�;ƒ;R.e

r /C f0.x.0// � f1.x.1//:

Observe that jf0.x.0// � f1.x.1//j is uniformly bounded because f0 and f1 are locally
constant outside a compact set. The Hamiltonian chords of type I appear at slope �� < �

and near @W0, and therefore r in Equation (27) is close to zero. Then, there is a constant C�,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



50 B. CHANTRAINE, G. DIMITROGLOU RIZELL, P. GHIGGINI AND R. GOLOVKO

depending on f0, f1 and the smoothing procedure at the first corner such that, if x is a chord
of type I, then A.x/ � �� C C�.

On the other hand, if x is a chord of type II, then it appears at slope �C > � and around
r D R. Then there is a constant CC, depending on f0, f1 and the smoothing procedure at
the second corner such that A.x/ � eR�C � �eR C � � CC D eR.�C � �/C � � CC. The
lemma follows from �C � � > 0 and the fact that chords arise at a discrete set of slopes.

From now on we will always take R � C . The consequence of Lemma 7.7 is that the
chords of type I generate a subcomplex of

CF..L0; "0/; .L1; "1/IH�;ƒ;R; J�/;

which we will denote by CFI ..L0; "0/; .L1; "1/IH�;ƒ;R; J�/. The main ingredient in the proof
of Proposition 7.6 is the following lemma.

Lemma 7.8. – If the Liouville flow of .W; �/ displaces L1 from any compact set, then the
inclusion map

CFI ..L0; "0/; .L1; "1/IH�;ƒ;R; J�/ ,! CF..L0; "0/; .L1; "1/IH�;ƒ;R; J�/

is trivial in homology whenever ƒ� 0 is sufficiently large.

Proof. – The Liouville flow applied toL1 gives rise to a compactly supported safe isotopy
from L1 to L01; and is generated by the time-dependent local Hamiltonian GW R � L ! R
for which dGt D 0 outside a compact subset of .0; 1/ � L! R; see Lemma 2.23. Since the
Liouville form is conformally symplectic, it actually preserves the space of compatible almost
complex structures which are cylindrical at infinity.

We will choose to apply the Liouville flow so thatL01 � f� � e
Rg; recall that this is possible

by our assumptions.
The continuation map

‰G W CF..L0; "0/; .L1; "1/IH�;ƒ;R; J�/! CF..L0; "0/; .L01; "
0
1/IH�;ƒ;R; J

0
�/

defined in Subsection 5.3 induces an isomorphism in homology if J 0� is an .L0; L01/-regular
almost complex structure such that J 00 D J0 and J 01 D . 1/�J1, and "01 is the augmentation
of the obstruction algebra of .L01; J

0
1/ defined by "01 D "1 ı  

�1
1 .

By Lemma 7.5, there is a constant C , independent of ƒ, such that ‰G.x/ is a linear
combination of chords of action at most C whenever x is a chord from L0 to L1 of type I.

On the other hand, CF..L0; "0/; .L01; "1/IH�;ƒ;R/ is generated by Hamiltonian chords x
of action

A.x/ � .ƒ � �/eR C �C f0.x.0// � f 01.x.1//:
Here we have used L01 � f� � e

Rg; together with the particular form of H�;ƒ;R in the same
subset. This implies that, for ƒ large enough, ‰G.x/ D 0 for all chords x of type I .

Proof of Proposition 7.6. – For every � and ƒ there are continuation maps

ˆ
.1/

�;ƒ
W CF..L0; "0/; .L1; "1/IH�; J�/! CF..L0; "0/; .L1; "1/IH�;ƒ;R; J�/;

ˆ
.2/

�;ƒ
W CF..L0; "0/; .L1; "1/IH�;ƒ;R/! CF..L0; "0/; .L1; "1/IHƒ; J�/ and

ˆ�;ƒW CF..L0; "0/; .L1; "1/IH�; J�/! CF..L0; "0/; .L1; "1/IHƒ; J�/
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such that there is a chain homotopy between ˆ�;ƒ and ˆ.2/
�;ƒ
ıˆ

.1/

�;ƒ
.

We can assume that ˆ�;ƒ, ˆ.1/
�;ƒ

and ˆ.2/
�;ƒ

are defined using s-dependent Hamiltonians
H�s (� D ;; .1/; .2/) such that @sH�s � 0, and therefore they decrease the action. Hence, the
image of ˆ.1/

�;ƒ
is contained in

CFI ..L0; "0/; .L1; "1/IH�;ƒ;R; J�/

(here we use Lemma 7.7) and therefore it follows from Lemma 7.8 that ˆ�;ƒ D 0 in
homology. By the definition of wrapped Floer cohomology as a direct limit, this implies that

HW..L0; "0/; .L1; "1/; J�/ D 0:

8. Floer cohomology and Lagrangian surgery

Lalonde and Sikorav in [27] and then Polterovich in [33] defined a surgery operation
on Lagrangian submanifolds. It is expected that Lagrangian surgery should correspond to
a twisted complex (i.e., an iterated mapping cone) in the Fukaya category. Results in this
direction have been proved by Seidel in [36], Fukaya, Oh, Ohta and Ono in [21] and by Biran
and Cornea in [7]. After a first version of this article had appeared, Palmer and Woodward
gave a more comprehensive treatment of Lagrangian surgery in [32]. Our goal in this section
is to establish Proposition 8.16, which provides us with a result along these lines in the
generality that we need.

The difficult point in handling the Lagrangian surgery from the Floer theoretic perspective
is that, except in very favorable situations, the Lagrangian submanifolds produced are not
well behaved from the point-of-view of pseudoholomorphic disks. In our situation, we turn
out to be lucky, since only surgeries that preserve exactness are needed. Nevertheless, there
still is a complication stemming from the fact that the resulting Lagrangian is only immersed
(as opposed to embedded). This is the main reason for the extra work needed, and here we
rely on the theory developed in the previous sections.

The bounding cochains that we will consider in this exact immersed setting are those
corresponding to augmentations of the corresponding obstruction algebras introduced in
Section 4.2. This turns out to be a very useful perspective, since it enables us to apply
techniques from Legendrian contact cohomology in order to study them.

8.1. The Cthulhu complex

In this subsection we recall, and slightly generalize, the definition of Floer cohomology
for Lagrangian cobordisms we defined in [10].

Definition 8.1. – Given cylindrical exact Lagrangian immersionsLC andL� in .W; �/
which coincide outside a compact set, an exact Lagrangian cobordism † from LC� to LCC is
a properly embedded submanifold

† � .R �M;d.etˇ// D .R �W � R; d.et .dz C �///

such that, for C and R sufficiently large,

1. † \ .�1;�C � �W � R D .�1;�C � � LC� ,

2. † \ ŒC;C1/ �W � R D ŒC;C1/ � LCC,
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3. † \ .R � W e
R � R/ is tangent to both @s and the lift of the Liouville vector field L

of .W; �/, and

4. es˛j† D dh for a function hW †! R which is constant on † \ .�1;�C � �W � R.

The intersection
† \ .R �W e

R � R/ D R � .LC
˙
\ .W e

R � R//
defined in (3) is called the lateral end of †.

The surgery cobordism †.a1; : : : ; ak/ that we will define in the next subsection clearly
satisfies all these properties when L.a1; : : : ; ak/ is connected.

Given two exact Lagrangian cobordisms †0 and †1 from .L0�/
C to .L0C/

C and from .L1�/
C

to .L1C/
C with augmentations "0� and "1� of .L0�/

C and .L1�/
C respectively, we define the

Cthulhu complex Cth"0�;"1�.†
0; †1/ which, as an F-module, splits as a direct sum

Cth"0�;"1�.†
0; †1/ D LCC"0

C
;"1
C
..L0C/

C; .L1C/
C/˚ CF"0�;"1�.†

0; †1/˚ LCC"0�;"1�..L
0
�/
C; .L1�/

C/;

where "iC is the augmentation of A..LiC/
C/ induced by "i� and †i , and CF"0�;"1�.†

0; †1/ is
the F-module freely generated by the intersection points †0 \ †1, which we assume to be
transverse. Furthermore, we assume thatL0

˙
\L1
˙
\W e

R D ;;which is not a restriction since
the ends are cylinders over Legendrian submanifolds.

The differential on the Cthulhu complex can be written as a matrix

d"0�;"1� D

0BB@dCC dC0 dC�0 d00 d0�

0 d�0 d��

1CCA ;
where dCC and d�� are the differentials of LCC"0

C
;"1
C
..L0C/

C; .L1C/
C/ and

LCC"0�;"1�..L
0
�/
C; .L1�/

C/ respectively, and the other maps are defined by counting J -holo-
morphic disks in R � M with boundary on †0 [ †1 and boundary punctures asymptotic
to Reeb chords from .L1

˙
/C to .L0

˙
/C and intersection points between †0 and †1. See [10,

Section 6] for the detailed definition. The cobordisms considered in [10] have the property
that †i \ Œ�C;C ��M is compact for every C > 0, while here we consider cobordisms with
a lateral end. The theory developed in [10] can be extended to the present situation thanks
to the following maximum principle.

Lemma 8.2. – Let J and eJ be almost complex structures on R�W e
R �R andW e

R, respec-
tively, each cylindrical inside the respective symplectisation R � W e

R and half-symplectisation
W e
R for some R > 0. We moreover require that the canonical projection

.R �W e
R � R; J /! .W e

R;
eJ /

is holomorphic. Then every J -holomorphic map uW �! R �W � R with

� D D2 n f�0; : : : ; �d g where .�0; : : : ; �d / 2 ConfdC1.@D2/,

u.@�/ � †0 [†1; and

u maps some neighborhood of the punctures f�0; : : : ; �d g into R �WR � R;

has its entire image contained inside R �WR � R.
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Proof. – By the assumptions the image of the curve uju�1.R�W e
R
�R/ under the canonical

projection
.R �W e

R � R; J /! .W e
R;
eJ /

is compact with boundary on R � @W e
R � R. The statement is now a consequence of the

maximum principle for pseudoholomorphic curves inside W e
R Š ŒR;C1/ � V which

— satisfy a cylindrical boundary condition, and

— are pseudoholomorphic for a cylindrical almost complex structure.

Namely, by e.g., [26, Lemma 5.5], the symplectisation coordinate rW W e
R ! ŒR;C1/

restricted to such a curve cannot have a local maximum.

With Lemma 8.2 at hand, the arguments of [10] go through, and therefore we have the
following result.

Theorem 8.3 ([10]). – The map d"0�;"1� is a differential and the Cthulhu complex

.Cth"0�;"1�.†
0; †1/; d"0�;"1�/

is acyclic.

The consequence of interest for us is the following.

Corollary 8.4. – If †0 \†1 D ;, then the map

dC�W LCC"0�;"1�..L
0
�/
C; .L1�/

C/! LCC"0
C
;"1
C
..L0C/

C; .L1C/
C/

is a quasi-isomorphism.

Proof. – If †0 \†1 D ;, the Cthulhu differential simplifies as follows:

d"0�;"1� D

0BB@dCC 0 dC�0 0 0

0 0 d��

1CCA
and thus the Cthulhu complex becomes the cone of dC�. Since it is acyclic, it follows
that dC� is a quasi-isomorphism.

8.2. The surgery cobordism

In this subsection we describe the Lagrangian surgery of [27] and [33] from the Legendrian
viewpoint. In particular, we interpret it as a Lagrangian cobordism between the Legendrian
lifts of the Lagrangian submanifolds before and after the surgery. We refer to [14] for more
details.

We first describe the local model for Lagrangian surgery. Given �; ı > 0, we consider the
open subset

V�;ı WD fjqj < �; jpj < 2ı; z 2 Rg
of J 1.Rn/. Given � > 0, we denote by ƒC

�;ı;�
the (disconnected) Legendrian submanifold

of V�;ı given by the two sheets

f.q;˙df�;ı;� .jqj/;˙f�;ı;� .jqj// W jqj < �g;
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where

f�;ı;� .s/ D
ı

2�
s2 C

�

2
:

This is a Legendrian submanifold with a single Reeb chord of length �. Note that ƒC
�;ı;�

is

described by the generating family FC
�;ı;�
W Rn � R! R given by

FC
�;ı;�

.q; �/ D
�3

3
� gC.jqj/�;

where

gC.s/ D

�
3

2
f�;ı;� .s/

� 2
3

:

Note that gC is smooth because gC.s/ > 0 holds for every s. Let g� W RC ! R be a
function such that

(i) g�.s/ D
�
3
2
f�;ı;� .s/

� 2
3 for s > 3�=4,

(ii) g�.s/ < 0 for s < �=2, and

(iii) 0 < .g�/0.s/ < 2 ı�
ı�C�

.

Note that Condition (iii) can be achieved if � < 7ı�
16

. The Legendrian submanifold ƒ�
�;ı;�

of Vı;� generated by

F ��;ı;� .q; �/ D
�3

3
� g�.jqj/�

coincides with ƒC
�;ı;�

near jqj D � and has no Reeb chords (see Figure 3). Note that
indeed ƒ�

�;ı;�
� Vı;� because Condition (iii) ensures that the p-coordinates of ƒ�

�;ı;�
, given

by
@F�
�;ı;�

@pi
along critical values of F.q; �/, are smaller than 2ı.

ƒ�
�;ı;�

� V�;ı

ƒC
�;ı;�

� V�;ı

Figure 3. The front projections of ƒC and ƒ�

On Figure 4 we see the front and Lagrangian projections of the one-dimensional version
of ƒC and ƒ�.

Let L be an exact Lagrangian immersion in .W; �/ with double points a1; : : : ; ak , and let
LC be a Legendrian lift of L. The double points of L lift to Reeb chords of LC which we will
denote with the same name by an abuse of notation.
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ƒC ƒ�

Figure 4. Front (top) and Lagrangian (bottom) projections of the Lagrangian surgery

Definition 8.5. – A set of Reeb chords fa1; : : : ; akg on LC is called contractible if, for
all i D 1; : : : ; k, there is a neighborhood Ui of the Reeb chord ai in the contactisation
.M; ˇ/ of .W; �/ and a strict contactomorphism .Ui ;Ui \ LC/ Š .V�i ;ıi ; ƒ1�i ;ıi ;�i / for

numbers �i ; ıi ; �i satisfying �i <
7ıi�i
16

.

Remark 8.6. – This is a restrictive assumption because, in general, the lengths of the
chords a1; : : : ; ak cannot be modified independently. An example when this is possible, and
which will be the case in our main theorem, is when LC is a link with k C 1 components,
all ai are mixed chords, and each component contains either the starting point or the end
point of at least one of the ai . In this situation we can indeed modify the Legendrian link
by Legendrian isotopies of each of his components so that its Lagrangian projection is
unchanged and all the previous conditions on the neighborhoods are satisfied. (Note that
this might not be an isotopy of the Legendrian link.)

In the following we assume that fa1; : : : ; akg is a set of contractible Reeb chords onLC. We
denote by LC.a1; : : : ; ak/ the Legendrian submanifold of .M; ˇ/ obtained by replacing each
of theƒC

�i ;ıi ;�i
by the correspondingƒ�

�i ;ıi ;�i
and byL.a1; : : : ; ak/ the Lagrangian projection

of LC.a1; : : : ; ak/. Observe that here we need to make use of the identifications with the
standard model, which exists by the contractibility condition.

Then L.a1; : : : ; ak/ is an exact Lagrangian immersion in .W; �/ which is the result of
Lagrangian surgery on L along the self-intersection points a1; : : : ; ak . It is evident from the
construction that L.a1; : : : ; ak/ coincides with L outside a neighborhood of the ai ’s and has
k self-intersection points removed. The latter fact follows from the fact that since �i can be
chosen arbitrarily small, no Reeb chords are created when going from ƒC

�i ;ıi ;�i
to ƒ�

�i ;ıi ;�i
.

Next we construct an exact Lagrangian cobordism †.a1; : : : ; ak/ in the symplectisation
of .M; ˇ/ with L at the positive end and L.a1; : : : ; ak/ at the negative end. Fix T > 0 and
choose a function GW .0; �/ � RC ! R such that:

— G.t; s/ D g�.s/ for t < 1=T ,

— G.t; s/ D gC.s/ for t > T ,

— @G
@t
.t; s/ � 0 with strict inequality at s D 0, and
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— G.t; s/ D gC.s/ D g�.s/ for s > 3�=4.

We consider the Lagrangian submanifold of T �.RC�Bn.�// described by the generating
family

F.t; q; �/ D t �

�
�3

3
CG.t; jqj/�

�
;

which is mapped by the symplectomorphism T �.RC � Bn.�// Š R � J 1.Bn.�// to a
Lagrangian cobordism†�;ı;� in the symplectisation of .M; ˇ/ fromƒ�

�k ;ık ;�k
at the negative

end toƒC
�k ;ık ;�k

at the positive end. Self-intersections of†�;ı;� are given by the critical points
of the function

�F .t; q; �1; �2/ D F.t; q; �1/ � F.t; q; �2/

with non-zero critical value, and such points do not exist because of the third condition onG.
Thus this cobordism is embedded.

In the trivial cobordism R�LC we replace R�.Ui\LC/with†�i ;ıi ;�i , for all i D 1; : : : ; k,
to get a cobordism †.a1; : : : ; ak/ from LC.a1; : : : ; ak/ at the negative end to LC at the
positive end.

8.3. Effect of surgery on Floer cohomology

In this subsection we use †.a1; : : : ; ak/ and our Floer theory for Lagrangian cobor-
disms to relate the Floer cohomology of L with the Floer homology of L.a1; : : : ; ak/. The
Lagrangian cobordism †.a1; : : : ; ak/ induces a dga morphism

ˆ†W A.LC/! A.LC.a1; : : : ; ak//:

If follows from [14, Theorem 1.1] that, for a suitable almost complex structure on the cobor-
dism that has been obtained by perturbing an arbitrary cylindrical almost complex structure,
we have

ˆ†.ai / D 1 for i D 1; : : : ; k;(28)

ˆ†.c/ D c C w if c ¤ ai ;

where w is a linear combination of products c1 � � � cm with

a.c1/C � � � C a.cm/ < a.c/:

Lemma 8.7. – If "W A.LC/! F is an augmentation such that ".ai / D 1 for i D 1; : : : ; k,
then there is an augmentation "W A.LC.a1; : : : ; ak//! F such that " D " ıˆ†.

Proof. – Let I be the bilateral ideal generated by ai � 1; : : : ; ak � 1: then " induces an
augmentation

"W A.LC/=I! F:
By Equation (28)ˆ† is surjective and its kernel is I. Surjectivity is proved by a sort of Gauss
elimination using the action filtration. Then there is an isomorphism between A.LC/=I
and A.LC.a1; : : : ; ak//, and therefore the augmentation "W A.LC/=I ! F induces an
augmentation on A.LC.a1; : : : ; ak//, which we still denote by ".

The construction of " is not explicit because the isomorphism A.LC/=I Š A.LC.a1; : : : ; ak//
is not explicit.
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Proposition 8.8. – For any immersed cylindrical exact Lagrangian submanifold T � W
with augmentation "0 there is a quasi-isomorphism

LCC"0;".TC;LC.a1; : : : ; ak//
'
�! LCC"0;".TC;LC/;

under the assumption that the augmentations " and " are as in Lemma 8.7.

Proof. – We denote by †T the trivial cobordism †T D R � TC � R �M . Recall that
the surgery cobordism goes from LC.a1; : : : ; ak/ to LC. Since the surgery is localized to a
neighborhood of the intersection points a1; : : : ; ak , by a Hamiltonian isotopy we can assume
that

†T \†.a1; : : : ; ak/ D ;:

Then Corollary 8.4 implies that the map dC� in the Cthulhu differential for the cobor-
disms †T and †.a1; : : : ; ak/ is a quasi-isomorphism.

Lemma 8.9. – Let L0 be an immersed exact Lagrangian submanifold with an augmenta-
tion "0 and let LC; .L0/C be Legendrian lifts such that LC is above .L0/C. When Lemma 8.7 is
applied to an augmentation

"c W A.LC [ .L0/C/! F
induced by the cycle

c 2 CF..L; "/; .L0; "0//
as in Lemma 4.16, then the push-forward of the augmentation under the DGA morphism denoted
by

"c D "c W A.LC.a1; : : : ; ak/ [ .L0/C/! F
is induced by a cycle

c 2 CF..L.a1; : : : ; ak/; "/; .L0; "0//;
which moreover is mapped to c under the quasi-isomorphism from Proposition 8.8 .

Proof. – There is no Reeb chord starting on either LC or LC.a1; : : : ; ak/ and ending
on .L0/C, so the pushed-forward augmentation is automatically of the form "c . Lemma 4.16
then implies that c is a cycle.

The last statement is an algebraic consequence of the fact that the disks counted by the
DGA morphism ˆ† induced by the surgery cobordism can be identified with the disks
counted by the quasi-isomorphism from Proposition 8.8.

Now assume thatL0 is a push off ofL as constructed in Lemma 4.14, and let e 2 CF.L;L0/
be the “unit” defined by the sum of the local minima ei of the Morse function on the
connected components of L; i.e., e D

P
ei .

Corollary 8.10. – The cycle

e 2 LCC";"0.LC.a1; : : : ; ak/; .L0/C/

provided by Lemma 8.9 (which is mapped to e under the quasi-isomorphism by Proposition 8.8)
satisfies the property that

�2.e; �/W CF.T; .L.a1; : : : ; ak/; "//! CF.T; .L0; "0//

is a quasi-isomorphism for any exact Lagrangian submanifold T with cylindrical end.
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Proof. – Consider the Legendrian liftLC D LC[.L0/C such thatLC is above .L0/C. Then
the liftLC.a1; : : : ; ak/ D LC.a1; : : : ; ak/[.L0/C is specified uniquely by the requirement that
it coincides with the first lift outside a compact subset.

Recall that e is closed by Lemma 4.15 and by Lemma 4.16 there is thus an induced
augmentation "e of A.LC/. Recall that this augmentation coincides with " and "0 when
restricted to the generators on the components LC and .L0/C; respectively, while "e.ei / D 1
holds for any chord corresponding to a local minimum while "e.c/ D 0 for every other chord
c between LC and .L0/C.

Applying Proposition 8.8 to the Legendrian LC.a1; : : : ; ak/ obtained by surgery on L,
yields a quasi-isomorphism

LCC"e .T
C;LC.a1; : : : ; ak//

Š
�! LCC"e .T

C;LC/:

(Here we use that "e D "e by Lemma 8.9.) The complex on the right-hand side is acyclic by
Lemma 4.14, and hence so is the complex on the left-hand side. The sought statement is now
a consequence of the straight-forward algebraic fact that the complex

LCC"e .T
C;LC.a1; : : : ; ak//

is equal to the mapping cone of

�2.e; �/W CF.T; .L.a1; : : : ; ak/; "//! CF.T; .L0; "0//:

8.4. Twisted complexes

The aim of this section is to relate the geometric notion of Lagrangian surgery to the
algebraic notion of twisted complex in the wrapped Fukaya category. We first recall the
definition of a twisted complex in an A1-category.

Given a unital A1-category A, we describe the category TwA of twisted complexes
overA and recall its basic properties. We introduce the following notation: given a number d
of matrices Ai with coefficients in the morphism spaces of an A1-algebra, we denote
by �dA.Ad ; : : : ; A1/ the matrix whose entries are obtained by applying �dA to the entries of
the formal product of the Ai ’s.

Definition 8.11. – A twisted complex over A is given by the following data:

— a finite collection of objects L0; : : : ; Lk of A for some k,

— integers �i for i D 0; : : : ; k, and

— a matrix X D .xij /0�i;j�k such that xij 2 homA.Li ; Lj / and xij D 0 if i � j , which
satisfies the Maurer-Cartan equation

kX
dD1

�dA.X; : : : ; X„ ƒ‚ …
d times

/ D 0:

The integers �i are degree shifts and are part of the definition only if the morphism
spaces homA.Li ; Lj / are graded, and otherwise are suppressed.

Given two twisted complexes L D .fLig; f�ig; X/ and L0 D .fL0ig; f�
0
ig; X

0/ we define

homTwA.L;L
0/ WD

M
i;j

homA.Li ; Lj /Œ�i � �
0
j �
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and, given d C 1 twisted complexes L0; : : : ;Ld , we define A1 operations

�dTwAW homTwA.Ld�1;Ld /˝ � � � ˝ homTwA.L0;L1/! homTwA.L0;Ld /

by
(29)
�dTwA.qd ; : : : ; q1/ D

X
k1;:::;kd�0

�
k1C���CkdCd
A .Xd ; : : : ; Xd„ ƒ‚ …

kd

; qd ; Xd�1; : : : ; X1; q1; X0 : : : ; X0„ ƒ‚ …
k0

/:

It is shown in [37, Section (3l)] that the set of twisted complexes with operations �dTwA
constitutes an A1-category TwA which contains A as a full subcategory. Furthermore it is
shown in [37, Lemma 3.32 and Lemma 3.33] that TwA is the triangulated envelope ofA and
thus H 0 Tw.A/ is the derived category of A.

Definition 8.12. – We say that a collection of objects L1; : : : ; Lk of A generates A if
and only if any object L of A is quasi-isomorphic in TwA to a twisted complex built from
the object Li ’s.

Lemma 8.13. – If there is a twisted complex L built from L0; : : : ; Lk such that, for every
object T ofA we haveH homTwA.T;L/ D 0, thenL0 is quasi-isomorphic in TwA to a twisted
complex built from L1; : : : ; Lk .

Proof. – This follows from the iterated cone description of twisted complexes from [37,
Lemma 3.32]. More precisely, from the definition of twisted complexes, for any object T we
have that homA.T; L0/ is a quotient complex of homTwA.T;L/ by the twisted complex L0

built from L starting at L1 (i.e., “chopping” out L0 from the twisted complex L), and thus
those three objects fit in an exact triangle. The vanishing of H homTwA.T;L/ implies then
that

H homA.T; L0/ Š H homTwA.T;L
0/:

The result follows now because the map from L0 to L0, which is given by the maps .x0j /, is
a map of twisted complexes.

We now relate twisted complexes in the wrapped Fukaya category with certain augmenta-
tions of the Chekanov-Eliashberg algebra of the Legendrian lift of the involved Lagrangian
submanifolds.

Remark 8.14. – In the following lemma we will make a slight abuse of notation by
building twisted complexes from immersed exact Lagrangian submanifolds: to our knowl-
edge, the wrapped Fukaya category has not yet been extended to include also exact immersed
Lagrangian submanifolds. However, since the statements and proofs only concern trans-
versely intersecting Lagrangian submanifolds, there are no additional subtleties arising
when considering the A1 operations. In other words, we only consider morphisms between
different objects in the category. We can thus think of twisted complexes in the “Fukaya
pre-category”. Of course if all Lagrangian submanifolds Li involved are embedded, the
statements make sense also in the ordinary wrapped Fukaya category.
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Lemma 8.15. – Let .Li ; �i /, for i D 0; : : : ; k, be unobstructed exact immersed Lagrangian
submanifolds which are assumed to be equipped with fixed potentials fi .

We denote L D L1 [ � � � [ Lk and LC its Legendrian lift determined by the given potentials.
We assume that LC is embedded.

If "W A.LC/! F is an augmentation such that:

1. ".p/ D "i .p/ for every pure chord p of LCi , and

2. ".a/ D 0 for every mixed chord a from LCi to LCj such that i > j ,

we define

xij WD

8<:
P

a2Li\Lj

".a/a if i < j;

0 if i � j;

and X D .xij /0�i;j�k ; where the double point a is considered as an element in the summand
with wrapping parameter w D 0 (see Section 6.2). Then (ignoring the degrees for simplicity)
the pair L D .f.Li ; "i /g; X/ is a twisted complex in the wrapped Fukaya category. Moreover,
for any test Lagrangian submanifold T ,

H homTwWF .T;L/ D HW.T; .L; "//:

Proof. – Denote by "0 the augmentation of A.Li / which vanishes on the mixed chords,
while taking the value "i on the generators living on the component Li . Recall the chain
model for wrapped Floer complex described in Subsection 6.2, where the homotopy direct
limit CW..L; "0/; .L; "0/IJ�/ is an infinite direct sum starting with the term having a wrap-
ping parameter w D 0; i.e., the complex

CF..L; "0/; .L; "0/I 0; J�/˚ CF..L; "0/; .L; "0/I 0; J�/q:

The bounding cochainX can be identified to a sum of elements in the leftmost summand by
definition.

Note that L, of course, is only immersed. However, in the case where it consists of a
union of embeddings, it still represents an object in the twisted complexes of the ordinary
wrapped Fukaya category; namely, it is the “direct sum” of the Lagrangian submanifoldsLi ;
i D 1; : : : ; m.

First we prove thatX satisfies the Maurer-Cartan equation. The Maurer-Cartan equation
involves a count of holomorphic polygons in moduli spaces

M0
L0;:::;Ld

.pd ; a0; p1; a1; : : : ; pd�1; ad IJ /

as in Section 4.5. On the other hand, the equation " ı d D 0 counts holomorphic
polygons in the moduli spaces N0L.a0I p1; a1; : : : ; ad ; pd /, which are the subset of the
previous moduli spaces consisting of those holomorphic polygons which satisfy the
extra requirement that the intersection points a1; : : : ; ad should be negative punctures
(in the sense of Definition 3.4). Condition (2) in the definition of " however implies
that #M0

L0;:::;Ld
.pd ; a0; p1; a1; : : : ; pd�1; ad IJ / is multiplied by a nonzero coefficient only if

a1; : : : ; ad are negative punctures. This proves that X satisfies the Maurer-Cartan equation.
For the second part, note that the differential in homTwWF .T;L/ counts the same holo-

morphic polygons (with Hamiltonian perturbations) as the differential in CW.T; .L; "//
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because the Maurer-Cartan element X involves only elements in the Floer complexes
defined with wrapping parameter w D 0; and hence vanishing Hamiltonian term.

The previous lemma together with Proposition 8.8 implies the following result, which is
the main result of this section:

Proposition 8.16. – Let .L1; "1/; : : : ; .Lm; "m/ be unobstructed immersed exact
Lagrangian submanifolds with preferred choices of potentials fi , and let a1; : : : ; ak be a
set of intersection points lifting to contractible Reeb chords on the induced Legendrian lift LC;
where L WD L1[� � �[Lm. Assume that there is an augmentation " of the Chekanov-Eliashberg
algebra of LC such that:

(1) ".c/ D "i .c/ if c is a double point of Li ,

(2) ".ai / D 1 for i D 1; : : : ; k, and

(3) ".q/ D 0 if q 2 Li \ Lj is an intersection point, with i > j; at which fi .q/ > fj .q/

(i.e., q corresponds to a Reeb chord from LCi to LCj ).

Then for any other exact Lagrangian submanifold T there is a quasi-isomorphism

CW.T; .L.a1; : : : ; ak/; "// Š hom.T;L/;

with " induced by " as in Lemma 8.7, and where L is a twisted complex built from the Li with
i D 1; : : : ; m.

Remark 8.17. – Conditions (2) and (3) of Proposition 8.16 imply that if ak is an inter-
section point between different Lagrangians Li and Lj for i < j , then fi .ak/ < fj .ak/.
Conditions (1) and (2) of Proposition 8.16 imply that if ak is a self-intersection point of Li ,
then augmentation "i evaluates to 1 on ak .

Proof of Proposition 8.16. – We consider the twisted complex L built from Li , i D 1; : : : ; m,
that is constructed by an application of Lemma 8.15 with the augmentation ". In other
words, the twisted complex is defined using the Maurer-Cartan element

X WD a1 C � � � C ak 2 CF..L; "0/; .L; "0/I 0; J�/ � CW..L; "0/; .L; "0/IJ�/

living in the summand with wrapping parameter w D 0: The quasi-isomorphism

hom.T;L/ Š CW.T; .L; "//

is then a consequence of the same lemma.

What remains is constructing a quasi-isomorphism

CW.T; .L.a1; : : : ; ak/; "// Š hom.T;L/

for all test Lagrangian submanifolds T . This is done by considering the twisted complex
corresponding to the cone of the “unit” e from Corollary 8.10. We proceed to give the details.

Let L0 be the push-off of L1 [ � � � [ Lm as considered in Lemma 4.14.

Consider the cycle e 2 CW..L.a1; : : : ; ak/; "/; .L0; "0// supplied by Corollary 8.10. As
above, e is an element in the summand

CF..L.a1; : : : ; ak/; "/; .L0; "0/I 0; J�/ � CW..L.a1; : : : ; ak/; "/; .L0; "0//IJ�/
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with wrapping parameter w D 0. Then�
f.L.a1; : : : ; ak/; "/; .L0; "0/g; e

�
is a twisted complex L0 corresponding to the cone of �2.e; �/: The last part of Corollary 8.10
combined with Lemma 8.13 then establishes the sought quasi-isomorphism. Indeed, every
summand

CF.T; .L; "e/Iw �H;J�/ � CW.T; .L; "e/IJ�/
in the homotopy direct limit which computes the homology of the cone is acyclic by Corol-
lary 8.10. (Here L D L.a1; : : : ; ak/ [ L0 as in the proof of the latter corollary.)

Here we remind the reader that the components of L.a1; : : : ; ak/ typically are only
immersed, as opposed to embedded. The statement that

CW.T; .L.a1; : : : ; ak/; "// Š hom.T;L/

is hence established on the level of twisted complexes on the pre-category level; cf. Remark 8.14.

9. Generating the Wrapped Fukaya category

In this section we prove Theorem 1.1.

9.1. Geometric preparation

Before proving the main theorems we need some geometric preparation which will be used
in the technical work of Section 9.3. Recall that the Liouville form � has been modified in
order to make .H1[ � � � [Hl ; �; f/ into a union of standard critical Weinstein handles. After
adding the differential of a function supported in a small neighborhood ofH1[� � �[Hl ; we
change the Liouville form once again so that the symplectomorphism between .Hi ; d�/ and
.DıT

�Ci ; dp^dq/maps the new Liouville form �c to pdq. We make the modification so that
the new Liouville vector fieldLc is still positively transverse to @W0, has no zeros outsideW0,
and so that the new and old Lagrangian skeleta coincide. (On the other hand Lc is no longer
a pseudo-gradient vector field for f, but this will not impair the proof of Theorem 1.1.) Note
that the above identification maps the core of a handle to the zero section and the cocore
into a cotangent fiber. Further, we perform the construction of the new Liouville form so
that the corresponding Liouville vector field is still everywhere tangent to Di : The reason
for changing � to �c is to simplify the arguments of Subsection 9.3.

The set of cylindrical exact Lagrangian submanifolds of .W; �/ coincides with that
of .W; �c/ and the wrapped Floer cohomology between any two such Lagrangian subman-
ifolds is unaffected by the modification of � by the invariance properties of wrapped Floer
homology; see [4, Section 5]. This means thatWF.W; �/ is quasi-equivalent toWF.W; �c/.

With a new Liouville vector field we will choose a new function rW W ! ŒR0;C1/

satisfying Conditions (i) and (ii) of Section 2.1 for R0 � 0 such that, on @W0, the old and
new r coincide. From now on, rwill always be defined using the new Liouville vector fieldLc .
Later in the proof of Proposition 9.3, we will modify r so that the new R0 � 0 becomes
sufficiently small, while keeping r fixed outside a compact subset.
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Let  t be the Liouville flow of .W; �c/ and letbHi WD[
t�0

 t .Hi /:

It follows that bHi � W are pairwise disjoint, embedded codimension zero manifolds.
Moreover, there are exact symplectomorphisms

.bHi ; �c/ Š .T �Ci ; pdq/
with the standard symplectic cotangent bundles.

Recall Conditions (i) and (ii) from Subsection 2.1.
In particular, r�1.R0/ D W sc [H1 [ � � � [Hl ; while rjr�1ŒR0C1;C1/

is a symplectisation

coordinate induced by the hypersurface r�1.R0C1/ of contact type. In the following we make
the further assumption that

(30) r�1.R0 C 1/ \ bHi D S�r0T �Ci
for some r0 > 0; where the latter radius-r0 spherical cotangent bundle is induced by the flat
metric on Ci . This means that

(31) r.p; q/ D log kpk � log r0 CR0 C 1; kpk � r0;

holds in the above canonical coordinates.
Given a point a 2 Ci (for some i D 1; : : : ; l), we denote by Da the Lagrangian plane

which satisfies Da \ Ci D fag while being everywhere tangent to the Liouville vector field.
In particular, Da \ Hi corresponds to the cotangent fiber DıT �a Ci � DıT

�Ci under the
identification Hi Š DıT �Ci .

Lemma 9.1. – For every i D 1; : : : ; l and a 2 Ci , the Lagrangian plane Da is isotopic
to Di by a cylindrical Hamiltonian isotopy.

Proof. – Recall that .bHi ; �c/ is isomorphic to .T �Ci ; pdq/ as a Liouville manifold and
Da and Di correspond to two cotangent fibers. Therefore they are clearly isotopic by a
cylindrical Hamiltonian isotopy.

In particular, Da and Di are isomorphic objects in the wrapped Fukaya category when
a 2 Ci .

The next lemma is immediate.

Lemma 9.2. – Let L � W be a cylindrical exact Lagrangian submanifold. Then, up to
a (compactly supported) Hamiltonian isotopy, we can assume that L \ .C1 [ � � � [ Cl / D
fa1; : : : ; akg, the intersections are transverse and L \W sc D ;.

Now we are going to normalize the intersections between L and the planes Dai . For
every ai we choose the natural symplectomorphism between a neighborhood

Dai � .bHi ; �c/ Š .T �Ci ; pdq/
of Dai Š T �aiCi and .D�T �Dai ;�d Qp ^ d Qq/ for some � > 0 small, where . Qp; Qq/ are the
canonical coordinates on T �Dai . It is clearly possible to make this identification so that

(32) r. Qp; Qq/ D log kQqk � log r0 CR0 C 1; kQqk � r0;
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is satisfied.

We redefine r as in Remark 2.2, without deforming it outside a compact subset. After
making R0 � 0 sufficiently small in this manner, we may assume that:

— R0 C k C 3 � 0,

— L \WR0CkC3 is the union of k disjoint disks with centers at a1; : : : ; ak , and

— the connected component of L \ WR0CkC3 containing ai is identified inside
Dai Š D�T �Dai with the graph of the differential of a function gai W Dai ! R
for i D 1; : : : ; k.

Then we modify L by a compactly supported Hamiltonian isotopy so that it satisfies the
following properties:

(L1) The connected component of L \ WR0CkC3 containing ai is contained inside the
Weinstein neighborhood

Dai \WR0CkC3 Š D�T
�.Dai \ fkQqk � e

kC2r0g/;

where it is described by the graph of the differential of a function

gai W Dai \ fkQqk � e
kC2r0g ! R

with a nondegenerate minimum at ai and no other critical points,

(L2) the connected components ofL\WR0CkC3nWR0CkC2 are cylinders which are disjoint
from all the cocores Dai ; moreover, these cylinders are tangent to the Liouville vector
field Lc in the same subset; and

(L3) kgai kC2 � �
0 for i D 1; : : : ; k and �0 > 0 small which will be specified in Lemma 9.4.

Conditions (L1)–(L3) provide sufficient control of the intersections ofL and the Lagrangian
skeleton. Later in Lemma 9.4 we will use this in order to perform a deformation of the
immersed Lagrangian submanifold

L [Da1 [ � � � [Dak

by Hamiltonian isotopies applied to the different components Dai . The goal is to obtain
an exact Lagrangian immersion admitting a suitable augmentation; the corresponding
bounding cochain (see Lemma 8.15) will then give us the twisted complex which exhibits L
as an object built out of the different Dai .

9.2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 assuming the results of Section 9.3. The result is a
corollary of the following proposition.

Proposition 9.3. – LetL � W be an exact Lagrangian submanifold with cylindrical end.
If L \ W sk D L \ .C1 [ � � � [ Cl / D fa1; : : : ; akg and the intersections are transverse, then
L is isomorphic in TwWF.W; �/ to a twisted complex built from the objects Da1 ; : : : ;Dak .
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Proof. – We assume that L satisfies Conditions (L1), (L2) and (L3) from the previous
section. Then by Lemma 9.4 combined with Lemma 9.5 there exist Lagrangian planes
Dw
a1
; : : : ;Dw

ak
satisfying the following properties. First Dw

ai
is Hamiltonian isotopic to Dai

(possibly after re-indexing the a1; : : : ; ak) by a cylindrical Hamiltonian isotopy supported
in W nWR0Ci . Second, for an appropriate Legendrian lift LC of L D L [Dw

a1
[ � � � [Dw

ak

to .W � R; � C dz/ such that the intersection point ai lifts to a Reeb chord from .Dw
ai
/C

to LC of length � > 0 for i D 1; : : : ; k—see Lemma 9.4 for more details—there exists an
augmentation "W A.LC/! F for which

1. ".ai / D 1 for i D 1; : : : ; k, and

2. ".d/ D 0 if d is a chord from LC to .Dw
ai
/C for i D 1; : : : ; k, or a chord from .Dw

ai
/C

to .Dw
aj
/C with i > j .

Moreover, using Property (L3) above for �0 > 0 sufficiently small, it follows that the Reeb
chords ai all are contractible (cf. Definition 8.5).

By Proposition 8.16 the augmentation " induces a twisted complex L built from
L1 D D

w
a1
; : : : ; Lk D D

w
ak

, LkC1 D L; for which

hom.T;L/ Š CW.T; .L.a1; : : : ; ak/; "//:

The right-hand side is an acyclic complex by Proposition 7.6. Using this acyclicity, Propo-
sition 8.16 implies that L is quasi-isomorphic to a twisted complex built from the different
Dw
ai
Š Dai (this last isomorphism follows from the invariance properties for wrapped Floer

cohomology under cylindrical Hamiltonian isotopy; see e.g., [4, Section 5]).

We can therefore complete the proof of Theorem 1.1:

Proof of Theorem 1.1. – Lemma 9.2 and Proposition 9.3 imply that L is isomorphic to
a twisted complex built out of the Lagrangian planes Dai . Lemma 9.1 and the fact that
Hamiltonian isotopies generated by cylindrical Hamiltonians induce isomorphisms in the
wrapped Fukaya category (see e.g., [4, Section 5]) imply that each Dai is isomorphic to one
of the cocores of W .

9.3. Constructing the augmentation

We start by assuming that the modifications from Section 9.1 have been performed, so that
in particular (L1)–(L3) are satisfied. When considering potentials in this subsection, recall
that we have modified the Liouville form from � to �c .

Let f W L! R be a potential function for L. We order the intersection points a1; : : : ; ak
such that

f .ak/ � � � � � f .a1/:

The Morse function gai W Dai \ fQq � ekC2r0g ! R from (L1) can be assumed to be
sufficiently small by (L3), so that df is almost zero inside L \WR0CkC1:

We fix functions hi W RC ! R such that

hi .�/ D

(
0; if � � R0 C i;

��CR0 C i C
1
2
; if � � R0 C i C 1;
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�

R0 C i R0 C i C 1

Figure 5. The graph of hi

and h00i .�/ � 0 for all � 2 RC. Then we define the cylindrical Hamiltonians H i W W ! R,
i D 1; : : : ; k, by

H i .w/ D hi .e
r.w//:

The graph of hi appears in Figure 5.

We will denote by �it the flow of the Hamiltonian vector field of H i . Given Ti 2 R, we
denote Dw

ai
D �iTi

.Dai /.

We fix � > 0, and on each Lagrangian plane Dai we choose the potential func-
tion fi W Dai ! R such that

fi D f .ai /C �:

Note that the functions fi indeed are constant, since the Liouville vector field is tangent to
the planes Dai . Let f wi W D

w
ai
! R be the potential function on Dw

ai
induced by fi using

Equation (5).

We denote by L D L [ Dw
a1
[ � � � [ Dw

ak
, which we regard as an exact Lagrangian

immersion, and by LC the Legendrian lift of L to .W �R; �Cdz/ defined using the potential
functions f; f w1 ; : : : ; f

w
k

. Note that an intersection point d 2 Dw
ai
\ Dw

aj
lifts to a chord

starting onDw
ai

and ending onDw
aj

if and only if f wi .d/ > f
w
j .d/, and similarly if one of the

two disks is replaced by L and its potential is replaced by f .

Lemma 9.4. – There exist real numbers 0 < Tk < � � � < T1 and �; �0 > 0 such that, if L
satisfies (L1) (L3), then each chord of LC is of one of the following types:

1. type a: the chords ai , going from .Dw
ai
/C to LC for i D 1; : : : ; k, of length �,

2. type b: chords bmij consisting of all other chords from .Dw
ai
/C to LC for 1 � i < j � k

and 1 � m � m0.i; j / for some m0.i; j /,

3. type c: chords cmij from .Dw
ai
/C to .Dw

aj
/C for 1 � i < j � k and 1 � r � m0.i; j /, and

4. “order-reversing” type: chords fromLC to .Dw
ai
/C for i D 1; : : : ; k or chords from .Dw

ai
/C

to .Dw
aj
/C for i D 1; : : : ; k and i > j .
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p

L

Dwaj

W sk

Dwai

Dwai�1

bmij
cmij

aj

er0Cj

er0Cj�1

0

Figure 6. A schematic picture of the wrapping and of the small triangle with
i < j . (Also cf. Equation (31) combined with Figure 5.)

(see Figure 6). Moreover, for every i < j andm, there exists a unique rigid and transversely cut
out pseudoholomorphic triangle in W having boundary on L[Dw

ai
[Dw

aj
; a positive puncture

at bmij ; and negative punctures at aj and cmij , in the order following the boundary orientation.
(Positivity and negativity is determined by our choice of Legendrian lift.)

Note that the set fcmij g could be empty for some i; j . In that case, we say thatm0.i; j / D 0.

Proof. – Recall that Properties (L1)–(L3) from Subsection 9.1 have been made to hold;
in particularL\WR0CkC2 consists of a k number of disks which may be assumed to be close
to the disks Dai , i D 1; : : : ; k.

The proof of the lemma at hand is easier to see if one starts by Hamiltonian isotoping L
to make it coincide with Da1 [ � � � [ Dak inside WR0CkC2. (Thus, we can argue about the
intersection points of the deformations Dw

ai
and Daj , as opposed to the intersection points

ofDw
ai

and the different parts ofL.) By Property (L2) it suffices to deformL in such a way that
it becomes the graph dgai for a function satisfying gai � 0 inside the subsetsDai\WR0CkC2.
Note that, in the case where L andDaj \WR0CkC2 coincide, the intersection points bmij and
cmij coincide as well.

First, we observe that L;Dw
a1
; : : : ;Dw

ak
are embedded exact Lagrangian submanifolds,

and therefore there is no Reeb chord either from LC to LC or from .Dw
ai
/C to .Dw

ai
/C for

any i D 1; : : : ; k.

From Equation (5), the potential of Dw
ai

is

f wi D f .ai /C � C Ti .h
0
i .e
r/er � hi .e

r//:
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Note that the quantity Ti .h0i .e
r /er � hi .e

r // is nonincreasing in r because h00i � 0. Therefore
f wi satisfies

f wi .w/ D f .ai /C � if w 2 Dw
ai
\WR0Ci ;

f wi .w/ 2 Œf .ai /C � � Ti .R0 C i C
1
2
/; f .ai /C �� if w 2 Dw

ai
\ .WR0CiC1 nWR0Ci /;

f wi .w/ D f .ai /C � � Ti .R0 C i C
1
2
/ if w 2 Dw

ai
\W e

R0CiC1
:

Note that Dw
ai
\ WR0Ci D Dai \ WR0Ci and that Dw

ai
\ W e

R0CiC1
is a cylinder over a

Legendrian submanifold.
We choose positive numbers 0 < Tk < � � � < T1 such that

1. f .a1/C � � T1.R0 C 1C 1
2
/ < � � � < f .ak/C � � Tk.R0 C k C

1
2
/,

2. f .ai /C � � Ti .R0 C i C 1
2
/ < min

L
f for all i D 1; : : : ; k,

3. there are no intersection points between L;Da1 ; : : : ;Dak ;D
w
a1
; : : :Dw

ak
in their cylin-

drical parts, and

4. at every intersection point between L;Da1 ; : : : ;Dak ;D
w
a1
; : : :Dw

ak
the respective

potential functions are different, except for intersection points p 2 L \ Dw
ai

where
H i .p/ D hi .e

r/ D 0.

The last two conditions are achieved by choosing T1; : : : ; Tk generically.
We observe that, for any point c 2 Dw

ai
\ Daj and any i; j D 1; : : : ; k, the quantity

a.c/ D jf wi .c/ � fj .c/j is independent of �. Then we choose � > 0 sufficiently small so that

� < minfa.c/ W c 2 Dw
ai
\Daj and a.c/ ¤ 0 for i; j D 1; : : : ; kg:

This implies that, for all c 2 Dw
ai
\Daj such that a.c/ ¤ 0, the signs of f wi .c/ � fj .c/ and

of f wi .c/ � f .c/ are equal. (Recall that f D fj � � holds there by construction.)
Consider the set of points cmij 2 D

w
ai
\Daj with positive action difference

0 < f wi .c
m
ij / � fj .c

m
ij / D f

w
i .c

m
ij / � .f .aj /C �/:

(Herem is an index distinguishing the various points with the required property.) Then i < j
and cmij 2 WR0CiC1 nWR0Ci ; in particular cmij 2 D

w
ai
\Dw

aj
. See Figure 7.

The intersection points bmij now coincide with cmij , but seen as intersections of L D Daj
andDw

ai
. We now perturb L back to make it coincide with the graph of dgai of a sufficiently

small Morse function gai near each Dai having a unique critical point consisting of a
global minimum. Recall that this global minimum corresponds to the intersection point
ai 2 L \Dai .

We can make the Morse function satisfy kgai kC2 � �0 for �0 > 0 sufficiently small. In
particular, this means that each intersection point cmij still corresponds to a unique intersec-
tion point bmij 2 D

w
ai
\ L, such that moreover f wi .b

m
ij / � f .b

m
ij / > 0 is satisfied. Conversely,

any intersection point d 2 Dw
ai
\ L with f wi .d/ � f .d/ > 0 is either ai or one of the bmij .

This is the case because the only intersection point in Dw
ai
\ L \ WR0Ci is ai and for any

intersection point d 2 Dw
ai
\ L \W e

R0CiC1
we must have f wi .d/ � f .d/ < 0.

The existence of the triangle follows now by applying Corollary 4.18 to L [ Dw
ai
[ Dw

aj

intersected with the subset WR0Cj � W . Note that, inside this Liouville subdomain, our
deformed LagrangianL is given as the graph of the differential of a small Morse function gaj
onDaj (using a Weinstein neighborhood of the latter); hence the lemma indeed applies. Here
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f .a1/C �

f .a2/C �

f .a3/C �

f .a1/C � � T1.R0 C
3
2 /

f .a2/C � � T2.R0 C
5
2 /

f .a3/C � � T3.R0 C
7
2 /

R0 R0 C 1 R0 C 2 R0 C 3 R0 C 4

f1

f2

f3

Figure 7. The profiles of f wi

the monotonicity property for the symplectic area of a pseudoholomorphic disk can be used
in order to deduce that the triangles of interest can be a priori confined to the same Liouville
subdomain.

The triangle provided by the previous lemma is the stepping stone in the inductive
construction of an augmentation for A.LC/.

Lemma 9.5. – The Chekanov-Eliashberg algebra .A.LC/; d/ of LC admits an augmenta-
tion

"W A.LC/! F
such that ".ai / D 1 for all i D 1; : : : ; k. Moreover, this augmentation vanishes on the order
reversing chords.

Proof. – Set Li WD Dw
ai

and LkC1 WD L. recall that each of the Li is embedded, and
therefore there is no Reeb chord fromLCi to itself for any i . Thus all Reeb chords go between
different connected components of LC and are as described in Lemma 9.4.

The bilateral ideal of A.L/ generated by the order reversing chords is preserved by the
differential, and therefore the quotient algebra, which we will denote by A!, inherits a
differential d!. We can identify A! with the subalgebra of A generated by the chords of
type a, b and c, and d! to the portion of the differential of A.L/ involving only generators
of A!.

On A! we define a filtration of algebras

(33) Z D A!kC1 � A
!
k � � � � � A

!
0 D A

!;

where A!i is generated by all chords as; bmsj ; c
m
sj with s � i .
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Given a chord c of LC, we denote its action by a.c/. The differential d! preserves the
action filtration on A! (and on all its subalgebras). We assume that

(i) the actions of all chords bmij and cmij are pairwise distinct and,

(ii) for all i; j;m, the actions a.bmij / and a.cmij / are close enough that, whenever

a.cm�i�j�/ < a.c
m
ij / < a.c

mC
iCjC

/, we also have a.cm�i�j�/ < a.b
m
ij / < a.c

mC
iCjC

/.

The first is a generic assumption, and the second is achieved by choosing �0 > 0 sufficiently
small in Lemma 9.4.

For each fixed i we define a total order on the pairs .j;m/ by declaring that .h; l/ �i .j;m/
if a.cl

ih
/ < a.cmij /. When the index i is clear from the context, we will simply write �.

We know that d!ai D 0 for action reasons and hd!bmij ; aj c
m
ij i D 1 by the last part

of Lemma 9.4. Combining this partial information on the differential d! and the assump-
tions (i) and (ii) above with the action filtration, we obtain the following structure for the
differential:

d!ai D 0;

d!bmij D ˛
m
j ai C

X
.h;l/�i .j;m/

ˇmhjl b
l
ih C aj c

m
ij C

X
.l;h/�i .j;m/

whmlj c
l
ih;

d!cmij D
X

.l;h/�i .j;m/

ewhmlj clih
with ˛mj ; ˇ

mh
jl
2 Z and whm

lj
; ewhm

lj
2 A!iC1.

Then the filtration (33) is preserved by d!. We want to define an augmentation "W A! !
Z such that ".ai / D 1 for all i D 1; : : : ; k working by induction on i .

For i D k C 1, there is nothing to prove since A!
kC1
D Z.

Suppose now we have defined an augmentation "W A!iC1 ! Z. We will extend it to an
augmentation "W A!i ! Z by an inductive argument over the action of the chords cmij . For
this reason in the following discussion i will be fixed.

We define ".ai / D 1 and ".bmij / D 0 for all j andm. To define " on cmij we work inductively
with respect to the order � induced by the action. Suppose that we have defined ".cl

ih
/ for

all ch
il

such that .h; l/ � .j;m/. Then we can achieve ".d!bmij / D 0 by prescribing an
appropriate value to

".cmij / D ".aj c
m
ij /;

since the values of " on all other chords appearing in the expression of d!bmij already have
been determined.

Now we have defined " on all generators of A!i and, by construction, ".d!d/ D 0

for every chord d in A!i except possibly for the chords cmij . We will prove that in fact
".d!cmij / D 0 holds as well, and thus show that " is an augmentation on A!i . Once again
we will argue by induction on the action of the chords cmij .

If .j;m/ is the minimal element for the order �, then d!cmij D 0 and therefore
".d!ckij / D 0. Suppose now that we have verified that ".d!cl

ih
/ D 0 for all .h; l/ � .j;m/.

From d!.d!bmij / D 0 and ".d!.aj cmij // D ".d
!cmij / we obtain

".d!cmij /C
X

.h;l/�.j;m/

ˇmhjl ".d
!blih/C

X
.l;h/�.j;m/

".d!.whmlj c
l
ih// D 0:
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We have ".d!bl
ih
/ D 0 by construction and ".d!.whm

lj
cl
ih
// D 0 by the induction hypothesis.

From this we conclude that ".d!cmij / D 0.
Finally we simply precompose " with the projection A.L/! A! and obtain an augmen-

tation of A.L/ satisfying the required conditions.

10. Generation of the Wrapped Fukaya category of Weinstein sectors.

In this section we prove Theorem 1.2. We recall that the “linear setup,” introduced by
Abouzaid and Seidel in [4] and used in the proof of Theorem 1.1, is not available for sectors;
instead, Ganatra, Pardon and Shende in [23] define the wrapped Fukaya category of a Liou-
ville sector by a localisation procedure. However, the strategy of the proof of Theorem 1.1
applies to the “localisation setup” as well, with only minor modifications of some technical
details. The goal of this section is to explain those modifications, which in most cases will
be simplifications. Before proceeding, we recall that the proof of Theorem 1.1 had four main
steps:

1. an extension of the construction of wrapped Floer cohomology to certain exact
immersed Lagrangian submanifolds,

2. triviality of wrapped Floer cohomology for immersed exact Lagrangian submanifolds
which are disjoint from the skeleton (“trivial triviality”),

3. identification of certain twisted complexes in the wrapped Fukaya category with
Lagrangian surgeries, and

4. construction of the bounding cochain after a suitable modification of the Lagrangian
cocores.

10.1. The wrapped Fukaya category for sectors

In this subsection we recall briefly the definition of the wrapped Floer cohomology and the
wrapped Fukaya category for sectors following [23] and show that our construction of the
wrapped Floer cohomology of an exact immersed Lagrangian submanifold can be carried
over to this setting.

Given � > 0 we, denote C0�<<� D fx C iy 2 C W 0 � x < �g. If .S; �; I / is a Liouville
sector, by [23, Proposition 2.24] there is an identification

(34) .Nbd.@S/; �/ Š
�
F � C0�<<�; �F C

1

2
.xdy � ydx/C df

�
;

where f W F � C0�<<� ! R satisfies the following properties:

— the support of f is contained in F0 �C0�<<� for some Liouville domain F0 � F , and

— f coincides with f˙1W F ! R for jyj � 0.

We denote � W Nbd.@S/! C0�<<� the projection induced by the identification (34).
We will consider almost complex structures J on S which are cylindrical with respect to

the Liouville vector field L of � and make the projection � holomorphic (where, of course,
we endow C with its standard complex structure). It is easy to see that this choice of almost
complex structures constrains the holomorphic curves with boundary in int.S/ so that they
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stay away from the boundary @S ; see [23, Lemma 2.41]. Thus, if L0; L1 are two transversely
intersecting exact Lagrangian submanifolds with cylindrical ends, the Floer chain complex
with zero Hamiltonian CF.L0; L1/ is defined.

Let L� D fLtgt2I be an isotopy of exact Lagrangian submanifolds which are cylindrical
at infinity over Legendrian submanifolds ƒt in the contact manifold .V; ˛/ which is the
boundary at infinity of .S; �; I /. Let Xt be a vector field along Lt directing the isotopy. We
can choose this vector field so that, where the isotopy is cylindrical, it is the lift of a vector
field along ƒt which we denote by X1t . We say that the Lagrangian isotopy is positive if
˛.X1t / � 0 everywhere. We say that the isotopy is small if its trace

S
t2I

ƒt is embedded. This

implies that Legendrian links ƒ0 [ƒt are embedded and thus Legendrian isotopic to each
other for all t 2 I n f0g.

Following [23, Subsection 3.3], to any positive isotopy L� of exact Lagrangian subman-
ifolds with cylindrical ends, we associate a continuation element c.L�/ 2 HF.L1; L0/ as
follows. If the isotopy is small, there is a map H�.L0/! HF.L1; L0/, and we define c.L�/
as the image of the unit in H�.L0/ under this map. If L� is not small, then we decompose it
into a concatenation of small isotopies and define c.L�/ as the composition (by the triangle
product) of the continuation elements of the small isotopies. Then, for any Lagrangian
submanifold K which is transverse with both L0 and L1, we define the continuation map

(35) HF.L0; K/
Œ�2.�;c.L�//�
��������! HF.L1; K/:

See [23, Lemma 3.26] for the properties of the continuation element.

Given a Lagrangian submanifold L with cylindrical end, following [23, Subsection 3.4]
we consider its wrapping category .L ! �/C, which is the category whose objects are
isotopies of Lagrangian submanifolds �W L ! Lw and morphisms from .�W L ! Lw/ to
.�0W L! Lw

0

/ are homotopy classes of positive isotopies W Lw ! Lw
0

such that �# D �0.

With all this in place, wrapped Floer cohomology is defined as

(36) HW.L;K/ D lim
�!

.L!Lw/C

HF.Lw ; K/;

where the maps in the direct system are the continuation maps defined above.

Now suppose that K is immersed and " is an augmentation of its obstruction algebra.
Then CF.L; .K; �// is defined as in Section 4, as long as we use the trivial HamiltonianH D 0

in the definition—being in a Liouville sector makes no difference in any other aspect of the
construction. The definition of HW.L; .W; "// is then the same as in Equation (36) using the
product �2 defined in Section 4.5.

Remark 10.1. – This definition is sufficient for our needs because in the proof of
Theorem 1.2 we only need wrapped Floer cohomology with immersed Lagrangian subman-
ifolds in the right entry. However, it is possible to extend the definition to the case of immersed
Lagrangian submanifolds on the left by identifying augmentations of L with augmentations
of Lw and defining the continuation element for small isotopies using Lemmas 4.14 and
4.15. Note that these lemmas are stated for Floer cohomology with trivial Hamiltonian, and
therefore they extend immediately to Liouville sectors.
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Now we sketch the construction of the wrapped Fukaya category following [23, Subsec-
tion 3.5]. We recall that we do not need to extend the definition so that it includes immersed
Lagrangian submanifolds, even if it would probably not be too difficult. We fix a countable
set I of exact Lagrangian submanifolds with cylindrical ends so that any cylindrical Hamil-
tonian isotopy class has at least one representative and, for every L 2 I , we fix a cofinal
sequence L D L.0/ ! L.1/ ! � � � in .L ! �/C. We denote by O the set of all these
Lagrangian submanifolds. We assume that we have chosen the elements inO so that all finite
subsets fLi11 ; : : : ; L

ik
k
gwith i1 < � � � < ik consist of mutually transverse Lagrangian subman-

ifolds.
We make O into a strictly unital A1-category by defining

homO.L
.i/; K.j // D

8̂̂<̂
:̂

CF.L.i/; K.j // if i > j;

Z if L.i/ D K.j /;

0 otherwise:

If i > j , the continuation element of the positive isotopy L.j / ! L.i/ belongs to
H homO.L

.i/; L.j // D HF.L.i/; L.j //. We will write L.i/ > K.j / if i > j .
We denote by C the set of all closed morphisms of O which represent a continuation

element. Thus we define the wrapped Fukaya category of .S; �; I / as WF.S; �/ D OC�1 ,
where OC�1 is the A1-category obtained by dividing O by all cones of morphisms in C :
i.e., OC�1 has the same objects as O and its morphisms are defined as the morphisms of the
image of O in the quotient of the triangulated closure of O by its full subcategory of cones
of elements of C . This construction has the effect of turning all elements of C into quasi-
isomorphisms. See [23, Subsection 3.1], and in particular Definition 3.1 therein, for a precise
definition of the localisation of an A1-category. In the following lemma we summarize the
properties of the localisation that we will need.

Lemma 10.2. – The categories O and WF.S; �/ are related as follows:

1. WF.S; �/ and O have the same objects,

2. H.homWF .L;K// Š HW.L;K/,

3. the category WF.S; �/ is independent of all choices up to quasi-equivalence, and

4. The localisation functor O!WF.S; �/ is the identity on objects and has trivial higher
order terms (i.e., it matchesA1 operations on the nose). Moreover, when homO.L;K/ D

CF.L;K/, it induces the natural map HF.L;K/! HW.L;K/.

Proof. – (1) follows from the definition of localisation. (2) is the statement of [23,
Lemma 3.37]. (3) is the statement of [23, Proposition 3.39]. (4) follows from the definition
of A1-products in A1-quotients; see [30, Corollary 2.4].

10.2. Trivial triviality

In this section we prove Proposition 7.6 for sectors. The proof is the same as in Section 7.2
except for few details which must be adjusted because we need to use geometric wrapping of
the Lagrangian submanifolds instead of Hamiltonian perturbations of the Floer equation
and the continuation maps from Equation (35) instead of those from Subsection 5.2.
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For Liouville sectors we need to modify the definition of a cylindrical Hamiltonian in
order to have a complete flow. To that aim, the crucial notion is that of a coconvex set.

Definition 10.3. – LetX be a vector field on a manifold V . We say that a subsetN � V
is coconvex (for X) if every finite time trajectory of the flow of X with initial and final point
in V nN is contained in V nN .

The following lemma is a rewording of [23, Proposition 2.34].

Lemma 10.4. – Given a contact manifold .V; ˛/ with convex boundary, it is possible to find
a function gW V ! R�0 such that

1. g > 0 outside the boundary @V and g � 1 outside a collar neighborhood @V � Œ0; ı/ on
which ˛ D dt C ˇ where ˇ is a one-form on @V ,

2. g D t2G on @V � Œ0; ı/, where G > 0 and t is the coordinate of Œ0; ı/, and

3. there is a collar neighborhood N of @V , contained in @V � Œ0; ı/, which is coconvex for
the contact Hamiltonian Xg of g.

Note that Xg vanishes along @V . It is called a cut off Reeb vector field in [23] because it
is the Reeb vector field of the contact form g�1˛ on int.V /. From now on we will assume
that g and N are fixed once and for all for the contact manifold .V; ˛/ arising as boundary
at infinity of .S; �; I /. We will also extend g to the complement of a compact set of S so that
it is invariant under the Liouville flow.

Definition 10.5. – Let S be a Liouville sector. A Hamiltonian function
H W Œ0; 1� � S ! R is cylindrical if there is a function hW RC ! R such that H.t; w/ D
g.w/h.er.w// outside a compact set of S .

The definition of cylindrical Hamiltonian compatible with two immersed exact Lagrangian
submanifolds in the case of sectors is the same as Definition 4.3. Condition (iv) in the latter
definition becomes equivalent to asking that � should not be the length of a chord of the cut
off Reeb vector field. In this section, cylindrical Hamiltonian will be used to define positive
Hamiltonian isotopies of Lagrangian submanifolds and not to deform the Floer equation.

We say that an exact Lagrangian submanifold of S (possibly immersed) is safe if it is
cylindrical over a Legendrian submanifold contained in V nN . SinceN is strictly contained
in an invariant neighborhood of @V , every cylindrical exact Lagrangian submanifold of S is
Hamiltonian isotopic to one which is safe by a cylindrical Hamiltonian isotopy. We will
assume that all Lagrangian submanifolds with cylindrical end are safe unless we explicitly
state the contrary.

Fix an exact Lagrangian submanifoldL in S with cylindrical end. Given �;ƒ;R 2 R such
that 0 < � � ƒ and 0 < R, let h�;ƒ;R be the function defined in Equation (26) and consider
the cylindrical HamiltonianH�;ƒ;R induced by h�;ƒ;R as in Definition 10.5. Note that, when
ƒ D �, we obtain the Hamiltonian functionH� induced by the function h� of Equation (18)
independently of R. We denote by L�;ƒ;R� D fL

�;ƒ;R
t gt2R the positive Hamiltonian isotopy

generated by H�;ƒ;R such that L�;ƒ;R0 D L. When ƒ D � we write L�� instead.

Lemma 10.6. – Let �n !C1 be an increasing sequence. Then the Lagrangian submani-
folds L�n1 form a cofinal collection in .L! �/C.
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Proof. – Since the Hamiltonian H� is autonomous, for every � 2 R we have L��1 D L�� .
The family fL�t gt�0 is cofinal by [23, Lemma 3.30] because the Hamiltonian vector field
of H� in the cylindrical end of S is the lift of a (strictly) positive multiple of the Reeb vector
field of the contact form g�1˛.

LetK be an immersed exact Lagrangian submanifold with cylindrical end, and let " be an
augmentation of the obstruction algebra ofK. Often we will drop " from the notation: even
if the Floer complex depends on it, the arguments in this subsection do not. Given � < ƒ,
we call the intersection points in L�;ƒ;R1 \K \ r�1..�1; R=2// intersection points of type I
and the intersection points in L�;ƒ;R1 \ K \ r�1..R=2;C1/ intersection points of type II.
They correspond to the Hamiltonian chords of type I or II in Subsection 7.2. We denote
by CFI .L�;ƒ;R1 ; K/ the subcomplex of CF.L�;ƒ;R1 ; K/ generated by the intersection points
of type I. The following lemma is the equivalent of Lemma 7.8 in this context.

Lemma 10.7. – If the Liouville flow of .S; �/ displaces K from every compact set, then
the inclusion CFI .L�;ƒ;R1 ; K/ ,! CF.L�;ƒ;R1 ; K/ is trivial in homology when ƒ and R are
sufficiently large.

Sketch of proof. – The proof is the same as that of Lemma 7.8, whose main ingredi-
ents are Equation (27), which computes the action of the generators of the Floer complex,
and Lemma 7.5 which estimates the action shift of the continuation maps for compactly
supported safe isotopies from Subsection 5.3. Both ingredients are still available for Liouville
sectors: in fact intersection points between L�;ƒ;R1 and K are in bijection with Hamiltonian
chords of H�;ƒ;R and the action of an intersection point is the same as the action of the
corresponding chord by Equation (5) and Equation (23). Thus (27) still gives bounds on the
action of the generators of CF.L�;ƒ;R1 ; K/, after taking into account the fact that the extra
factor involving g coming from Definition 10.5 is uniformly bounded because L�;ƒ;R1 and
K are safe.

Moreover, the definition of the continuation maps for compactly supported safe isotopies
from Subsection 5.3 and the proof of Lemma 7.5 do not depend on the Hamiltonian defor-
mation in the Floer equation and therefore, setting H � 0 in the Floer equations, they hold
also for sectors.

Now we can finish the proof of the equivalent of Proposition 7.6 for sectors.

Proposition 10.8. – Let .S; �; I / be a Liouville sector and let K and L be exact
Lagrangian submanifolds of S with cylindrical ends. We allow K to be immersed, and in that
case we assume its obstruction algebra admits an augmentation ". If the Liouville flow of .S; �/
displaces K from every compact set of S , then HW.L; .K; "// D 0.

Proof. – For any fixed � < ƒ there is a natural homotopy class of positive isotopies L�1
fromL�1 toLƒ1 . We need to show that, forƒ large enough with respect to �, the continuation
map associated to this class is trivial.
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We represent this class by a concatenation of positive isotopies L�;�;R1 from L�1 to L�;ƒ;R1

and L�;ƒ;R1 from L
�;ƒ;R
1 to Lƒ1 which lead to continuation maps

Œ�2.�; c�;�;R/�W HF.L�1 ; K/! HF.L�;ƒ;R1 ; K/

Œ�2.�; c�;ƒ;R/�W HF.L�;ƒ;R1 ; K/! HF.Lƒ1 ; K/:

To prove the proposition, it is sufficient to prove that, for any fixed �. Œ�2.�; c�;�;R/� is trivial
if ƒ and R are large enough.

It follows from [23, Lemma 3.27] and the definition ofH�;ƒ;R that the map�2.�; c.L�;�;R1 //

is the natural inclusion CF.L�1 ; K/ � CF.L�;ƒ;R1 ; K/ whose image is the subcomplex
CFI .L�;ƒ;R1 ; K/. Thus, the triviality of Œ�2.�; c.L�;�;R1 /� follows from Lemma 10.7.

Remark 10.9. – In view of Remark 10.1, we expect Proposition 10.8 to hold also when
L is immersed, as long as its obstruction algebra admits an augmentation. However, we
haven’t checked the details.

10.3. Twisted complexes

In this subsection we extend to sectors the results of Section 8 identifying certain
Lagrangian surgeries with twisted complexes.

The first step is to observe that the constructions in Subsecton 8.1 can be extended to
Lagrangian cobordisms in the symplectisation of the contactisation of a Liouville sector. In
fact, we can work with almost complex structures on R� S �R satisfying the hypothesis of
Lemma 8.2 and such that the projectionR�S�R! S is holomorphic nearR�@S�R. Then,
by [23, Lemma 2.14], the holomorphic curves appearing in the definition of the Cthulhu
complex do not approach R � @S � R.

In Subsection 8.3 we work only with Floer complexes with trivial Hamiltonian, and
therefore the results of that subsection extend to Liouville sectors without effort. Moreover,
some contortions which were needed to apply those results in the linear setup are no longer
necessary in the localisation setup. Let L1; : : : ; Lm be exact Lagrangian submanifolds with
cylindrical ends and denote L D L1 [ � � � [Lm. Unlike in Section 8, here we do not need to
consider the case of immersed Li .

We recall some notation from Section 8. Given a set of intersection points fa1; : : : ; akg
which corresponds to a set of contractible chords (see Definition 8.5) for a Legendrian
lift LC of L to the contactisation of S , we denote by L.a1; : : : ; ak/ the result of Lagrangian
surgery performed on a1; : : : ; ak as explained in 8.2. If LC admits an augmentation " such
that ".ai / D 1 for i D 1; : : : ; k, then by Lemmas 8.7 and 8.8 there exists an augmentation "

of L.a1; : : : ; ak/C such that, for any exact Lagrangian submanifold T with cylindrical ends,
there is an isomorphism

(37) ˆ�W HF.T; .L.a1; : : : ; ak/; "//
Š
�! HF.T; .L; "//:
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Moreover, this isomorphism preserves the triangle products in the sense that, given two exact
Lagrangian submanifolds T0 and T1, the diagram

HF.T0; .L.a1; : : : ; ak/; "//˝HF.T1; T0/
Œ�2� //

ˆ˝Id
��

HF.T1; .L.a1; : : : ; ak/; "//

ˆ

��
HF.T0; .L; "//˝HF.T1; T0/

Œ�2� // HF.T1; .L; "//

commutes. This is a particular case of [29, Theorem 2]. Then the isomorphisms (37) induce
isomomorphisms

(38) HW.T; .L.a1; : : : ; ak/; "// Š HW.T; .L; "//

for every exact Lagrangian submanifold T with cylindrical ends.

Assume that ".q/ D 0 for all Reeb chord from LCi to LCj with i > j . We add enough
objects toO so that L1; : : : ; Lm are objects ofO and Lm > � � � > L1. By Lemma 10.2(3) this
operation does not change WF.S; �/ up to quasi-equivalence.

Then X D .xij /0�i;j�m 2
L
0�i;j�m homO.Lj ; Li / defined as

xij D

8<:
P

a2Li\Lj

".a/a if i < j

0 if i � j

satisfies the Maurer-Cartan equation in O by the same argument as in the proof of
Lemma 8.15 and our choice of ordering of the objects L1; : : : ; Lm. Thus X satisfies the
Maurer-Cartan equation also inWF.S; �/ by Lemma 10.2(4). We denote by L D .fLig; X/
the corresponding twisted complex both in O and in WF.S; �/. For any object T of O
with T > Lm there is a tautological identification of chain complexes homTwO.T;L/ D

CF.T; .L; "// which, moreover, respects the triangle products; this follows from a direct
comparison of the holomorphic polygons counted by the differentials on the left and on
the right as in the proof of Lemma 8.15. Thus the isomorphisms are compatible with the
multiplication by continuation elements and in the limit we obtain a map

HW.T; .L; "//! H homTwWF .T;L/;

which is an isomorphism by [23, Lemma 3.37] and a simple spectral sequence argument.
We can summarize these results in the following lemma, which is the analogue of Proposi-
tion 8.16 in the context of sectors.

Lemma 10.10. – LetL1; : : : ; Lm; be embedded exact Lagrangian submanifolds with cylin-
drical ends. If there exist a Legendrian lift LC of L D L1 [ � � � [ Lm, an augmentation " of
the Chekanov-Eliashberg algebra of LC and a set of contractible Reeb chord fa1; : : : ; akg such
that:

(1) ".ai / D 1 for i D 1; : : : ; k, and

(2) ".q/ D 0 if q is a Reeb chord from LCi to LCj ,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



78 B. CHANTRAINE, G. DIMITROGLOU RIZELL, P. GHIGGINI AND R. GOLOVKO

then there exist a twisted complex L built from L1; : : : ; Lm and an augmentation " of the
Chekanov-Eliashberg algebra of L.a1; : : : ; ak/C such that, for any other exact Lagrangian
submanifold with cylindrical end T there is an isomorphism

HW.T; .L.a1; : : : ; ak/; "// Š H homWF .T;L/:

10.4. Construction of the augmentation

In this section we finish the proof of Theorem 1.2. Let .S; �; I; f/ be a Weinstein sector.
We modify � so that it coincides with the standard Liouville form on the handles Hi and
half-handles H0i .

We denote @CH0i Š SıT
�Hi . The Reeb vector field on @CHi induced by the canonical

Liouville form is the cogeodesic flow ofHi for the flat metric, and therefore @CH0i \ @W has
a coconvex collar. This is an important observation, because it allows us to choose, once and
for all, g and a corresponding coconvex collarN for @V as in Definition 10.3 on the contact
manifold .V; ˛/ which is the boundary at infinity of .S; �; I; f/ such that g � 1 onH0i nN for
all Weinstein half-handles H0i .

As in Section 9, we isotope L so that it is disjoint from the subcritical part of S sk and
intersects the cores of the critical Weinstein handles and half-handles transversely in a finite
number of points ai ; : : : ; ak , and for each point ai we consider the cocore planeDai passing
through it. The wrapping of the cocore planes taking place in the proof of Lemma 9.4 is the
point where the proof requires a little more work than the case of a Weinstein manifold.

We define the Hamiltonian functions H i of Lemma 9.4 to be H i .w/ D g.w/hi .e
r.w//

and denote by Dw
ai

the image of Dai under the Hamiltonian flow of H i for a sufficiently
large time. The flow can push Dw

ai
close to @W , and therefore we can no longer assume

that the wrapped planes Dw
ai

are safe. However, L and the planes Dai were safe, and there-
fore all intersection points of type a, b, and c (defined in Lemma 9.4) between L and the
planesDw

a1
; : : : ;Dw

ak
correspond to Hamiltonian chords contained in the complement ofN

because the Hamiltonian vector field of H i is a negative multiple of the cut off Reeb vector
field outside a compact set. Since g D 1 outside N , the energy estimates of Subsection 9.3
still hold in the case of sectors, and that allows us to construct an augmentation " for a
suitable Legendrian lift LC of L D L [Dw

ai
[ � � � [Dw

ak
as in Lemma 9.5. At this point the

proof of Theorem 1.2 proceeds in the same way as the proof of Theorem 1.1.

11. Hochschild homology and symplectic cohomology

In this section we use the work of Ganatra [22] and Gao [25] to derive Corollary 1.4 from
Theorem 1.1. Since Ganatra and Gao work in the quadratic setup of the wrapped Fukaya
category, we must extend the proof of Theorem 1.1 to that setup first.
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11.1. Wrapped Floer cohomology in the quadratic setup

On the level of complexes, wrapped Floer cohomology in the quadratic setup is in some
sense the simplest one to define; in this case the wrapped Floer complex CW.L0; L1/ is the
Floer complex CF.L0; L1IH/ for a quadratic Hamiltonian H W W ! R; by which we mean
thatH D C �e2r is satisfied outside some compact subset ofW for some constantC > 0:This
construction of the wrapped Floer complexes can be generalized to the case where L1 has
transverse double points in the same manner as in the linear case, by using the obstruction
algebra.

In the following we assume that all Lagrangians are cylindrical inside the noncompact
cylindrical end W e

R�1 � W for some R � R0. Denote by  t W .W; �/ ! .W; e�t�/ the
Liouville flow of .W; �/ and recall that r ı  t D rC t in W e

R�1 and hence  t .W e
r / D W e

rCt

for all r � R � 1.

11.2. Trivial triviality

In this subsection we prove Proposition 7.6, i.e., “trivial triviality,” in the quadratic setting.
In fact, since the quadratic wrapped Floer cohomology complex does not involve continua-
tion maps, the proof becomes even simpler here.

Assume that L1 � W is disjoint from the skeleton, and thus that  t .L1/ is a safe
exact isotopy that displaces L1 from any given compact subset. The Liouville flow  t is
conformally symplectic with the conformal factor et ; i.e., . t /�d� D et � d� . Since L1 is
cylindrical outside a compact subset, the aforementioned safe exact isotopy is generated by
a locally defined Hamiltonian function Gt which satisfies the following action estimate.

Lemma 11.1. – The locally defined generating Hamiltonian Gt W  t .L1/ ! R from
Section 7 is of the form Gt D e

t �G0 ı 
�t for a function G0W W ! R which vanishes outside

a compact set, and thus satisifes the bound kGtk1 � CL1e
t for some constant CL1 that only

depends onL1: In particular, the Hamiltonian isotopy whose image ofL1 at time t D 1 is equal
to  t .L1/ can be generated by a compactly supported eGt that satisfies keGtk1 � tCL1et .

The conformal symplectic property implies that the primitive of � satisfies � jT t .L1/
D

etd.f1 ı t / for the primitive f1W L1 ! R of � jTL1
that vanishes in the cylindrical end. The

formula for the action of the Reeb chords (23), in particular cf. (24) in the example thereafter
applied with h.x/ D x2, now readily implies that:

Lemma 11.2. – The generators of CF.L0;  t .L1/IH/ have action bounded from below
by C 0L1e

2t for some constant C 0L1 > 0 whenever t � 0 is sufficiently large.

A construction using moving boundary conditions (as in Section 5.3) yields quasi-
isomorphisms

‰Gt W CF.L0; L1IH/! CF.L0;  t .L1/IH/:

By an action estimate (cf. Lemma 7.5) in conjunction with the above two lemmas, any
subcomplex of W CF.L0; L1IH/ that is spanned by the generators below some given action
level is contained in the kernel of ‰Gt whenever t � 0 is taken sufficiently large. In
conclusion, we obtain our sought result:
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Proposition 11.3. – If  t .L1/ displaces L1 from any given compact subset, then
HW.L0; L1/ D 0.

11.3. Twisted complexes and surgery formula

In order to obtain the surgery formula in Proposition 8.16 in the quadratic setting one
needs to take additional care. The reason is that, since the products and higher A1-oper-
ations in this case are defined using a trick that involves rescaling by the Liouville flow, it
is a priori not so clear how to relate these operations to operations defined by counts of
ordinary pseudoholomorphic polygons, as in the differential of the Chekanov-Eliashberg
algebra. (Recall that our surgery formula is proven by identifying bounding cochains with
augmentations for the Chekanov-Eliashberg algebra of an exact Lagrangian immersion.)
Our solution to this problem is to amend the construction of the A1-structure to yield
a quasi-isomorphic version, for which the compact part of the Weinstein manifold is left
invariant by the rescaling (while in the cylindrical end we still apply the Liouville flow, as
is necessary for compactness issues). The upshot is that the new A1-structure is given by
counts of ordinary pseudoholomorphic disks (together with small Hamiltonian perturba-
tions) inside the compact part.

Here we show how to modify the definition of the A1-operations of the wrapped Fukaya
category in a way that allows us to apply our strategy for proving the surgery formula. It
will follow that the cones constructed can be quasi-isomorphically identified with cones in
the original formulation of the quadratic wrapped Fukaya category, which is sufficient for
establishing the generation result.

In order to modify the definition of the A1-operations we begin by constructing a family
 s;t W W ! W of diffeomorphisms parametrized by t � 0 and s 2 Œ0; 1� that satisfies the
following:

—  s;t jWR�1
D  st inside WR�1;

—  s;t j@Wr
D  .sC.1�s/ˇ.r//t for any r 2 ŒR � 1;R�; and

—  s;t jW e
R

D  t for any r � R,

where ˇ.r/ is a smooth cut off function that satisfies

— ˇ.r/ D 0 near r D R � 1;

— ˇ.r/ D 1 near r D R; and

— @rˇ.r/ � 0:

The above flow  s;t is a conformal symplectomorphism only when s D 1, in which
case  1;t D  t is the Liouville flow. For general values of s it is the case that  s;t is a
conformal symplectomorphism only outside a compact subset. Notwithstanding, it is the
case that:

Lemma 11.4. – 1. If L is an exact Lagrangian immersion that is cylindrical inside W e
R�1,

it follows that L� WD  �1s.�/;t.�/.L/ is a safe exact isotopy, which moreover is fixed setwise
inside W e

R�1;
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2. Any compatible almost complex structure Jt which is cylindrical insideW e
R�1Cst satisfies

the property that  �s;tJt is a compatible almost complex structure which is cylindrical
inside W e

R and, moreover, equal to Jt inside W e
R�1Cst ; and

3. Conjugation  �1s0;t0 ı '
H
t ı  s0;t0 with the diffeomorphism  s0;t0 induces a bijective

correspondance between Hamiltonian isotopies of W generated by Hamiltonians which
depend only on r inside W e

R�1Cs0t0
and Hamiltonian isotopies of W generated by

Hamiltonians which only depend on r inside W e
R�1: More precisely, if the former Hamil-

tonian is given by H W W ! R then the latter is given by .fs0;t0 � H/ ı  s0;t0 for a
smooth function fs0;t0 W W ! R>0 which only depends on r inside W e

R�1Cs0t0
; while

fs0;t0 jWR�1Cs0t0
� e�s0t0 :

Remark 11.5. – The function fs0;t0 W W ! R>0 in Part (3) of the previous lemma
can be determined as follows. First note that f1;t � e�t , while for general s 2 Œ0; 1�

the equality fs;t � e�t still holds outside a compact subset. Inside W e
R�1Cs0t0

the simple
ordinary differential equation

e�r@r..fs0;t0.r/ �H/ ı  s0;t0/ D .e
�r@rH.r// ı  s0;t0

then determines fs;t :

By the properties described in Lemma 11.4, it follows that we can use  s0;t for any
fixed s0 instead of the Liouville flow  t in Abouzaid’s construction of the wrapped Fukaya
category [3]. We illustrate this in the case of the product �2. One first defines a morphism

CF.L1; L2IH;Jt /˝ CF.L0; L1IH;Jt /
(39)

! CF
�
. s0;log2/

�1.L0/; . s0;log2/
�1.L2/I .fs0;log2 �H/ ı  s0;log2;  

�
s0;log2Jt

�
for any fixed s0 2 Œ0; 1� that is defined by a count of three-punctured disks with a suitable
moving boundary condition, and where

fs0;log2W W ! R>0
is the function from Part (2) of Lemma 11.4. (In particular,

fs0;log2 � e
� log2

holds outside a compact subset.)

Remark 11.6. – The fact that .fs0;logw.r/ �H/ ı  s0;logw coincides with 1
w
e2.tClogw/ D we2t

outside a compact subset is crucial for the maximum principle (and thus compactness prop-
erties) of the Floer curves involved in the definition of the morphism of Equation (39).

It is immediate that an analogous version of [3, Lemma 3.4] now also holds in the present
setting, giving rise to a canonical identification between the Floer complexes

CF
�
. s0;log2/

�1.L0/; . s0;log2/
�1.L2/I .fs0;log2 �H/ ı  s0;log2;  

�
s0;log2Jt

�
and

CF.L1; L2IH;Jt /:

In this manner we obtain the operation �2: The general case follows similarly, by an adap-
tation of the construction [3] based upon  s0;t :
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Finally, to compare the A1 structures defined by different values of the parameter
s0 2 Œ0; 1�, one can use [37]. Here Part (1) of Lemma 11.4 is crucial. Also, note that the
family .fs0;logw �H/ ı  s0;logw of Hamiltonians is independent of the parameter s0 outside
a compact subset for any fixed value of w.

Finally, since the intersection points of type a; b; c of Lemma 9.4 belong to the region
where we have turned off the rescaling by the Liouville flow, the construction of the augmen-
tation in Lemma 9.5 remains unchanged. From this point, the proof of Theorem 1.1 in the
quadratic setup procedes as in the linear setup.

11.4. Proof of Corollary 1.4

The proof of Corollary 1.4 is based on Theorem 1.1 and the following trivial observation.
If .W; �; f/ is a Weinstein manifold and �i W W �W ! W , for i D 1; 2, are the projections to
the factors, we consider the Weinstein manifold .W �W;��1 ���

�
2 �; fı�1Cfı�2/. Note that

the sign in the Liouville form has been chosen so that the diagonal � � W �W is an exact
Lagrangian submanifold with cylindrical end. The following lemma is a direct consequence
of the definition.

Lemma 11.7. – The Weinstein manifold .W �W;��1 ���
�
2 �; fı�1Cfı�2/ has a Weinstein

handle decomposition for which the Lagrangian cocores are precisely the products of the cocores
Di �Dj , where Di denotes a Lagrangian cocore in the Weinstein decomposition of .W; �; f/:

Let W2 be the version of the wrapped Fukaya category for the product Liouville mani-
fold .W �W;��1 � ��

�
2 �/ defined in [22], where the wrapping is performed by a split Hamil-

tonian. If B is a full subcategory ofWF.W; �/, we denote by B2 the full subcategory ofW2

whose objects are products of objects in B. Then [22, Proposition 14.1] implies the following.

Proposition 11.8. – If � is generated by B2 in W2, then the map

(40) ŒOC�W HHn��.B;B/! SH�.W /

has the unit in the symplectic cohomology in its image.

Proof of Corollary 1.4. – Let .W; �; f/ be a Weinstein manifold and letD be the collection
of the Lagrangian cocore disks of W . Then, by Lemma 11.7 and Theorem 1.1 the collec-
tionD2 of products of cocore disks ofW generatesWF.W �W;��1 ����2 �/ and so, in partic-
ular, generates the diagonal�. By [25, Theorem 1.1] the categoryWF.W �W;��1 ����2 �/ is
equivalent to the category W2 defined above, and therefore the collection D2 generates the
diagonal also in W2. Thus Proposition11.8 implies that the image of the open-closed map
(40) contains the unit and therefore Corollary 1.4 follows from [22, Theorem 1.1].
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