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TRANSIENCE IN LAW FOR SYMMETRIC RANDOM WALKS
IN INFINITE MEASURE

by Timothée Bénard

Abstract. — We consider a random walk on a second countable locally compact
topological space endowed with an invariant Radon measure. We show that if the
walk is symmetric and if every subset that is invariant by the walk has zero or infinite
measure, then one has escape of mass for almost every starting point. We then apply
this result in the context of homogeneous random walks on infinite volume spaces and
deduce a converse to the Eskin–Margulis recurrence theorem.

Résumé (Transience en loi des marches aléatoires symétriques en mesure infinie). —
On considère une marche aléatoire sur un espace topologique localement compact à
base dénombrable muni d’une mesure de Radon invariante. On montre que si la marche
est symétrique et si tout sous-ensemble invariant par la marche est de mesure nulle ou
infinie, alors il y a fuite de masse pour presque tout point de départ. Nous appliquons
ensuite ce résultat dans le contexte des marches aléatoires homogènes en volume infini,
et déduisons une réciproque au théorème de récurrence d’Eskin-Margulis.

1. Introduction

The starting point of this text is an article published by Eskin and Margulis
in 2004, which studies the recurrence properties of random walks on homo-
geneous spaces [11]. The space in question is a quotient G/Λ, where G is a
real Lie group and Λ ⊆ G a discrete subgroup. Given a probability measure
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20 T. BÉNARD

µ on G, we can define a random walk on G/Λ with transitional probability
measures (µ ∗ δx)x∈G/Λ. In more concrete terms, a random step starting at a
point x ∈ G/Λ is performed by choosing an element g ∈ G randomly with law
µ and letting it act on x. The two authors ask about the position of the walk
at time n for large values of n. They manage to show a surprising result: if G is
a simple real algebraic group, if Λ has finite covolume in G, and if the support
of µ is compact and generates a Zariski-dense subgroup of G, then for every
starting point x ∈ G/Λ, the n-th step distribution of the walk µ∗n ∗ δx does
not escape at infinity. More precisely, all the weak-∗ limits of (µ∗n ∗ δx)n≥0
have mass 1. One says that there is no escape of mass. This reminds us of the
behavior of the unipotent flow as highlighted by Dani and Margulis in [8, 13],
proving that the trajectories of a unipotent flow on G/Λ spend most of their
time inside compact sets. Eskin–Margulis’ result is actually the starting point
of a fruitful analogy with Ratner theorems, which led to the classification of
stationary probability measures on X thanks to the work of Benoist and Quint
[3, 4], followed by Eskin and Lindenstrauss [10].

This paper asks the question of a converse to Eskin–Margulis theorem.
Is the absence of mass escape characteristic of random walks on
homogeneous spaces of finite volume, or could it also happen for
walks in infinite volume?

Let us illustrate the question with an example. Consider S a hyperbolic surface
of the form

Such a surface is made of blocks (Bi)i≥0 glued together along geodesic circles
(in red) of respective length (λi)i≥1 ∈ RN∗

>0. Each block comes with a pants
decomposition, whose internal boundary components (in blue) are assumed
to have length 1. We consider a (discretized) Brownian motion on (the unit
tangent bundle of) S starting from B0. If all the λi’s are equal, the walk looks
like the nearest neighbor random walk on N, so we expect escape of mass.
On the other hand, in the degenerate case where some λi is equal to 0, the
walk evolves in a finite volume space so there is no mass escape by the Eskin–
Margulis theorem, or more simply ergodic considerations in this case. Now,
we may wonder what happens in intermediate situations where the sequence
(λi)i≥1 is positive but allowed to go to zero extremely fast. We will see that
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TRANSIENCE IN LAW FOR SYMMETRIC WALKS 21

the n-th step distribution of the walk always escapes at infinity, regardless of
the choice of (λi)i≥1 ∈ RN∗

>0 (Theorem 1.2).
In Section 2, we establish escape of mass in a very general framework, which

does not rely on the algebraic setting mentioned previously. The measure µ is
assumed to be symmetric, i.e., invariant under the inversion map g 7→ g−1.

Theorem 1.1. — Let X be a locally compact second countable topological space
equipped with a Radon measure λ, let Γ be a locally compact second countable
group acting continuously on X and preserving the measure λ, and let µ be a
probability measure on Γ whose support generates Γ as a closed group.

If the probability measure µ is symmetric and if every measurable Γ-invariant
subset of X has zero or infinite λ-measure, then for λ-almost every starting
point x ∈ X, one has the weak-∗ convergence:

µ∗n ∗ δx −−−−−→
n→+∞

0.

To put it in a nutshell, a symmetric random walk on a measured space with-
out finite volume invariant subset is transient in law for almost every starting
point. This result can be seen as an analogue in infinite measure of equidistri-
bution results for random walks in finite measure obtained independently by
Rota [16] and Oseledets [15].

In our statement, a measurable subset A ⊆ X is considered as Γ-invariant if
for every g ∈ Γ, λ(gA∆A) = 0. We will see later an equivalent characterization
in terms of the Markov operator of the walk (Lemma 2.4).

Note also that the condition of symmetry on µ plays a role. Let (X,λ) be
a locally compact space with an infinite Radon measure and endowed with a
conservative ergodic measure-preserving Z-action. If µ = δ1 is the Dirac mass
at 1 ∈ Z, then for λ-almost every x ∈ X, the sequence (n.x)n≥0 comes back
close to x infinitely often, so µ∗n ∗ δx = δn.x cannot weakly converge to 0.

Without symmetry assumption on µ, the proof of Theorem 1.1 still yields
convergence to 0 in Cesàro-averages.

In Section 3, we use Theorem 1.1 to address our original question concerning
the escape of mass of homogeneous walks on infinite volume spaces. We obtain
the following result.

Theorem 1.2. — Let G be a semisimple connected real Lie group with finite
center, Λ ⊆ G a discrete subgroup of infinite covolume in G, and µ a probability
measure on G whose support generates a group with unbounded projections in
the noncompact factors of G.

Then for almost every x ∈ G/Λ, one has the weak-∗ convergence:

1
n

n−1∑
k=0

µ∗k ∗ δx −−−−−→
n→+∞

0.(1)
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22 T. BÉNARD

Moreover, if the probability measure µ is symmetric, then the convergence
can be strengthened:

µ∗n ∗ δx −−−−−→
n→+∞

0.(2)

Note that convergence (1) is sufficient to ensure that Eskin–Margulis’ ob-
servations cannot occur when the quotient G/Λ has infinite measure. Indeed,
for almost every x ∈ G/Λ, we obtain the existence of an extraction σ : N→ N
such that

µ∗σ(n) ∗ δx −−−−−→
n→+∞

0.

Theorem 1.2 describes the asymptotic behavior of the probabilities of posi-
tion for almost every starting point x ∈ G/Λ. One may not hope for transience
in law for every starting point as it is possible that the orbit Γ.x is finite.

To conclude this introduction, we emphasize that our paper focuses on the
behavior in law of a random walk on G/Λ. A related natural theme of study is
the behavior of the walk trajectories for which analogous notions of recurrence
or transience exist. Although our conclusions support the idea that walks in
infinite volume are always transient in law (the mass escapes), the picture
becomes mixed when it comes to considering walk trajectories. Indeed, as
observed in [7] or [2], pointwise recurrence or transience also depends on the
nature of the ambient space.

2. A general result of transience in law

This section is dedicated to the proof of Theorem 1.1. The proof results from
a combination of the Dunford–Schwartz theorem [9] and Akcoglu–Sucheston’s
pointwise convergence of alternating sequences [1]. The latter guarantees that
for λ-almost every x ∈ X, the sequence of probability measures (µ∗n ∗ qµ∗n ∗
δx)n≥0 weak-∗ converges toward a finite measure and is based on Rota and
Oseledets’ original idea to express this alternating sequence in terms of reversed
martingales [16, 15]. We give a shorter proof than the one in [1]. Although our
proof follows very closely the one of Rota [16] who considered walks on finite
volume spaces, we use a different formalism that may be useful to illustrate the
technique of “equidistribution of fibers” contained in the work of Benoist–Quint
[4] (see also [5]).

2.1. Backwards martingales. — We first present a convergence theorem for
backwards martingales on a σ-finite measured space. It will play a crucial role
in the proof of the convergence of back-and-forths (2.2).

First, let us recall the definition of conditional expectation.

Definition (Conditional expectation). — Let (Ω,F) be a measurable space,
Q a sub-σ-algebra of F , and m a positive measure on (Ω,F) whose restriction
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m|Q is σ-finite. Then, for every function f ∈ L1(Ω,F ,m), there exists a unique
function f ′ ∈ L1(Ω,Q,m) such that for all Q-measurable subset A ∈ Q, one
has m(f 1A) = m(f ′ 1A). We denote this function by Em(f |Q).

We have the following [12, page 533] (see also [6]).

Theorem 2.1 (Convergence of backwards martingales). — Let (Ω,F ,m) be
a measured space, (Qn)n≥0 a decreasing sequence of sub-σ-algebras of F such
that for all n ≥ 0, the restriction m|Qn

is σ-finite. Then, for any function
f ∈ L1(Ω,F ,m), there exists ψ ∈ L1(Ω,F ,m) such that we have the almost
sure convergence:

Em(f |Qn) −−−−−→
n→+∞

ψ m-a.e.

Remark. If the measure m is σ-finite with respect to the tail-algebra Q∞ :=⋂
n≥0Qn, then Theorem 2.1 can be deduced from the probabilistic case (by

restriction to Q∞-measurable domains of finite measure), and we can certify
that ψ = Em(f |Q∞). On the opposite extreme, if every Q∞-measurable subset
of Ω has m-measure 0 or +∞, then, the integrability of ψ implies that ψ =
0. The general picture is a direct sum of these two contrasting situations as
Ω = Ωσ q Ω∞ where Ωσ is a countable union of Q∞-measurable sets of finite
measure, and the restricted measure m|Ω∞ takes only the values 0 or +∞ on
Q∞ (see [12], footnote of page 533).

2.2. Convergence of back-and-forths. — We now state and show Theorem 2.2
about the convergence of back-and-forths of the µ-random walk on X. We
denote by qµ := i∗µ the image of µ under the inversion map i : Γ→ Γ, g 7→ g−1.

Theorem 2.2 (Convergence of back-and-forths [1]). — Let X be a locally com-
pact second countable topological space equipped with a Radon measure λ, let
Γ be a locally compact second countable group acting continuously on X and
preserving the measure λ, and let µ be a probability measure on Γ.

There exists a family (νx)x∈X of finite measures on X such that for λ-almost
every x ∈ X, one has the weak-∗ convergence:

(µ∗n ∗ qµ∗n) ∗ δx −−−−−→
n→+∞

νx.

Proof. — The following proof is inspired by [16] and [4]. Denote

B := ΓN∗ , β := µN∗ , T : B → B, (bi)i≥1 7→ (bi+1)i≥1

the one-sided shift. One introduces a σ-finite fibered dynamical system
(BX , βX , TX) setting
• BX := B ×X
• βX := β ⊗ λ ∈MRad(B ×X)
• TX : BX → BX , (b, x) 7→ (Tb, b−1

1 x).
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24 T. BÉNARD

Let B and X denote the Borel σ-algebras of B and X. The Borel σ-algebra
of BX is then the product algebra B⊗X . For all n ≥ 0, define the sub-σ-algebra
of the n-fibers of TX by setting

Qn := (TX)−n(B ⊗ X ).

It is a sub-σ-algebra of B ⊗ X such that for all c ∈ BX , the smallest Qn-
measurable subset of BX containing c is the n-fiber (TX)−n(TX)n(c). The
restriction βX|Qn

is a σ-finite measure because βX is σ-finite with respect to the
σ-algebra B ⊗ X and is preserved by TX .

As a first step, we will fix a continuous function with compact support
f ∈ C0

c (X) and show that the sequence ((µ∗n ∗ qµ∗n ∗ δx)(f))n≥0 converges in
R for λ-almost every x. To this end, we express (µ∗n ∗ qµ∗n ∗ δx)(f) using a
conditional expectation and we apply Theorem 2.1. Denote

f̃ : BX → R, (b, x) 7→ f(x), ϕn := EβX (f̃ |Qn) ∈ L1(BX ,Qn).

We first give an explicit formula for the function ϕn. Intuitively, given a
point c = (b, x) ∈ BX , the value ϕn(c) stands for the mean value of f̃ on the
smallest Qn-measurable subset of BX containing c. By definition, this subset
is the n-fiber going through c and is identified with the product Γn under the
bijection

hn,c : Γn → (TX)−n(TX)n(c),
a = (a1, . . . , an) 7→ (aTnb, a1 . . . anb

−1
n . . . b−1

1 .x).

The following lemma asserts that ϕn(c) is nothing else than the mean value of
f̃ on (TX)−n(TX)n(c) ≡ Γn with respect to the measure µ⊗n.

Lemma 2.3. — Let n ≥ 0. For βX-almost every (b, x) ∈ BX , one has

ϕn(b, x) =
∫

Γn

f(a1 . . . anb
−1
n . . . b−1

1 x) dµ⊗n(a).

Proof. — This result is extracted from [4] (Lemma 3.3). We recall the proof.
Up to considering separately the positive and negative parts of f , one may as-
sume f ≥ 0. Denote by ϕ′n : BX → [0,+∞] the map defined by the right-hand
side of the above equation. We show that it coincides almost everywhere with
ϕn by proving that it also satisfies the axioms for the conditional expectation
characterizing ϕn.

As the value ϕ′n at a point c ∈ BX only depends on (TX)n(c), the map ϕ′n is
Qn-measurable. It remains to show that for every A ∈ Qn, one has the equality
βX(1Af̃) = βX(1Aϕ′n). Writing A as A = (TX)−n(E) where E ∈ B ⊗ X and
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remembering that the measure λ is preserved by Γ, one computes that:

βX(1Aϕ′n) =
∫
B×X×Γn

1A(b, x)f(a1 . . . anb
−1
n . . . b−1

1 x) dµ⊗n(a)dβ(b)dλ(x)

=
∫
B×X×Γn

1E(Tnb, b−1
n . . . b−1

1 x)f(a1 . . . anb
−1
n . . . b−1

1 x) dµ⊗n(a)dβ(b)dλ(x)

=
∫
B×X×Γn

1E(Tnb, x)f(a1 . . . anx) dµ⊗n(a)dβ(b)dλ(x)

=
∫
B×X

1E(Tnb, x)f(b1 . . . bnx) dβ(b)dλ(x)

=
∫
B×X

1E(Tnb, b−1
n . . . b−1

1 x)f(x) dβ(b)dλ(x)

= βX(1Af̃)
which concludes the proof of Lemma 2.3. �

Theorem 2.3 implies that for λ-almost every x ∈ X,∫
B

ϕn(b, x) dβ(b) = (µ∗n ∗ qµ∗n ∗ δx)(f).(∗∗)

However, Theorem 2.1 on convergence of backwards martingales asserts that
the sequence of conditional expectations (ϕn)n≥0 converges βX -almost-surely.
Noticing that ‖ϕn‖∞ ≤ ‖f‖∞, the dominated convergence theorem and equa-
tion (∗∗) imply that for λ-almost every x ∈ X, the sequence

((µ∗n ∗ qµ∗n ∗ δx)(f))n≥0

has a limit in R.
We deduce from the previous paragraph that for λ-almost every x ∈ X,

the sequence of probability measures (µ∗n ∗ qµ∗n ∗ δx)n≥0 has a weak-∗ limit
(which is a measure on X whose mass is less or equal to 1, and possibly null).
It is, indeed, a standard argument, which uses the separability of the space
of continuous functions with compact support on X equipped with the supre-
mum norm (C0

c (X), ‖.‖∞) and the representation of non-negative linear forms
on C0

c (X) by Radon measures (Riesz theorem). This concludes the proof of
Theorem 2.2. �

2.3. Proof of Theorem 1.1. — We now prove Theorem 1.1, stating that a sym-
metric random walk on a measured space without finite volume invariant subset
is almost everywhere transient in law. The proof will use the Markov operator
Pµ attached to µ. It acts on the set of non-negative measurable functions on
X via the formula

Pµϕ(x) :=
∫
G

ϕ(gx) dµ(g)

and can be extended as a contraction on the spaces Lp(X,λ) for p ∈ [1,∞].
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26 T. BÉNARD

Recall from the Introduction that a measurable subset A ⊆ X is Γ-invariant
if for all g ∈ Γ, one has λ(A∆gA) = 0. This condition can be rephrased in
terms of the Markov operator:

Lemma 2.4. — A measurable subset A ⊆ X is Γ-invariant if and only if

Pµ1A = 1A λ-a.e.

Proof. — The point is to show that Pµ-invariance implies Γ-invariance. Let
A be a measurable subset such that Pµ1A = 1A λ-a.e. The assumption on
A means that for λ-almost every x ∈ X, µ-almost every g ∈ G, one has
1A(gx) = 1A(x). Fubini theorem then implies that for µ-almost every g ∈ Γ,
one has λ(A∆gA) = 0. The subgroup D ⊆ Γ generated by such elements g is
dense in Γ and leaves the set A λ-a.e.-invariant. So we just need to check that
the λ-a.e.-invariance is preserved by taking limits. Let g ∈ Γ, (gn) ∈ DN such
that gn → g, let ϕ ∈ C0

c (X). By dominated convergence,∫
gnA

ϕdλ−
∫
gA

ϕdλ =
∫
A

ϕ(gn.)− ϕ(g.) dλ −−−−−→
n→+∞

0.

We deduce that
∫
A
ϕdλ =

∫
gA
ϕdλ. As this is true for every ϕ ∈ C0

c (X), one
concludes that λ(A∆gA) = 0. �

We can now conclude.

Proof of Theorem 1.1. — It is enough to show that for λ-almost every x ∈ X,
one has the convergence µ∗2n ∗ δx → 0. According to Theorem 2.2 and the
symmetry of µ, the sequence (µ∗2n ∗ δx)n≥0 converges to a finite measure, so
it is enough to check the following convergence in average: for λ-almost every
x ∈ X,

1
n

n−1∑
k=0

µ∗n ∗ δx −→ 0.

As announced in the preceding remark, we show this last convergence without
using the assumption of symmetry on µ. We need to check that for every non-
negative continuous function with compact support ϕ ∈ C0

c (X)+,

1
n

n−1∑
k=0

P kµϕ −→ 0 λ-a.e.,

where Pµ denotes the Markov operator of the walk.
The Dunford–Schwartz ergodic theorem [9, 14] implies that the sequence

of functions ( 1
n

∑n−1
k=0 P

k
µϕ)n≥1 converges almost-surely to some function ψ :

X → R+. As the functions P kµϕ are uniformly bounded in L2(X,λ), Fatou
lemma implies that ψ ∈ L2(X,λ). Furthermore, the function ϕ being bounded,
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TRANSIENCE IN LAW FOR SYMMETRIC WALKS 27

the dominated convergence theorem applied to the probability space (Γ, µ) gives
the Pµ-invariance

Pµψ = ψ λ-a.e.
We now infer that ψ is Γ-invariant, meaning that for g ∈ Γ, one has the

equality ψ ◦ g = ψ λ-a.e. on X. To this end, observe that the Pµ-invariance of
ψ expresses ψ as a barycenter of translates ψ ◦ g:∫

Γ
ψ ◦ g dµ(g) = ψ λ-a.e.

However, the functions ψ ◦ g all are in L2(X,λ) and have the same norm as
ψ. The strict convexity of balls in a Hilbert space then gives for µ-almost
every g ∈ Γ, the equality ψ ◦ g = ψ λ-almost everywhere. As the support of µ
generates Γ as a closed subgroup, we infer as in Lemma 2.4 that for all g ∈ Γ,
one has ψ ◦ g = ψ λ-a.e., which is the Γ-invariance announced above.

The Γ-invariance of ψ implies that for every constant c > 0, the set {ψ > c} is
Γ-invariant, so has zero or infinite λ-measure by hypothesis. As ψ2 is integrable,
we must have λ{ψ > c} = 0. Finally, we get that ψ = 0 λ-almost everywhere,
which finishes the proof.

�

3. Application to homogeneous walks on infinite volume spaces

This section is dedicated to the proof of Theorem 1.2. We let G be a semisim-
ple connected real Lie group with finite center, Λ ⊆ G a discrete subgroup of
infinite covolume in G, and Γ ⊆ G a closed subgroup.

Let us recall the notion of factors of G used in this section.

Definition. — Denote by g the Lie algebra of G. It can be uniquely de-
composed as a direct sum of simple ideals: g = g1 ⊕ · · · ⊕ gs. The fac-
tors of G are the immersed connected subgroups G1, . . . , Gs of G whose Lie
algebras are g1, . . . , gs. They are closed in G and commute mutually: for
i 6= j ∈ {1, . . . , s} and gi ∈ Gi, gj ∈ Gj one has gigj = gjgi. Lastly, the prod-
uct map π : G1×· · ·×Gs → G, (g1, . . . , gs) 7→ g1 . . . gs is a morphism of groups
which is onto and has a finite kernel.

We make the assumption that Γ has unbounded projections in the noncom-
pact factors of G, which means that the projection of π−1(Γ) ⊆ G1 × · · · ×Gs
in any Gi is unbounded if Gi is noncompact.

Theorem 1.2 expresses escape of mass for a walk on G/Λ induced by a
probability measure µ whose supports generate a dense subgroup of Γ. We will
obtain it as a consequence of Theorem 1.1 together with its comment about the
nonsymmetric case. To apply them, we need to check the assumption that every
subset of G/Λ that is invariant by the walk has zero or infinite Haar measure.
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28 T. BÉNARD

This would be obvious if the action of Γ on G/Λ were ergodic. However, this
is not always the case, even when Γ and Λ are Zariski-dense in G.

Example. — Denote by D the Poincaré disk, setG = PSL2(R) ≡ Isom+(D) ≡
T 1D and consider a Schottky subgroup S0 ⊆ G whose limit set L0 on the
boundary of D is contained under four geodesic arcs, which are disjoint and
small enough. Set Γ = Λ = S0. For some nonzero measure subset of unit
vectors x ∈ T 1D, the set xΛ ∩ ∂D = xL0 does not intersect the limit set L0
of Γ. Given such an x and looking in the quotient space, the orbital map
Λ → Γ\G, g 7→ Γxg is proper, so its image cannot be dense. Thus, the right
action of Λ on Γ\G is not ergodic or, equivalently, the left action of Γ on G/Λ
is not ergodic.

The absence of finite volume invariant subspaces will be a consequence of
the Howe–Moore theorem [17, Theorem 2.2.20], which we now recall.

Theorem (Howe–Moore). — Let G be a semisimple connected real Lie group
with finite center, and π a continuous morphism from G to the unitary group
of a separable Hilbert space (H, 〈., .〉). Assume that every noncompact factor
Gi of G has a trivial set of fixed points, i.e., HGi := {x ∈ H, Gi.x = x} is {0}.

Then for every v, w ∈ H, one has
〈π(g).v, w〉 −−−→

g→∞
0.

In the statement, the unitary group U(H) is endowed with the strong op-
erator topology, and the notation g → ∞ means that g leaves every compact
subset of G.

The Howe–Moore theorem implies a lemma of rigidity.

Lemma 3.1. — Assume that G has no compact factor. Let (H, ρ) be a unitary
representation of G on a separable Hilbert space.

If HG = {0} then HΓ = {0}.

Proof. — Denote by G1, . . . , Gs the factors of G. Up to pulling back the rep-
resentation of G by the product map π : G1 × · · · × Gs → G, (g1, . . . , gs) 7→
g1 . . . gs, one may suppose that G = G1 × · · · ×Gs.

Assume s = 2. The hypothesis HG = {0} implies that HG1 ∩ HG2 = {0}.
Thus, we can decompose

H = HG1 ⊕HG2 ⊕H′,

where H′ is the orthogonal of HG1 ⊕ HG2 in H. Moreover, each subspace is
invariant by G. Let v ∈ H be a Γ-invariant vector. Decompose v as v =
v1 + v2 + v′ with vi ∈ HGi , v′ ∈ H′. The representation of G on H leads to
a unitary representation of G2 on HG1 , and the Γ invariance of v implies that
v1 is invariant under p2(Γ), the projection of Γ on the factor G2. As p2(Γ) is
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unbounded in G2, one can apply the Howe–Moore theorem to obtain v1 = 0.
In the same way, v2 = 0. Thus, v = v′ ∈ H′. The representations of G1 and G2
induced by G on H′ have no nontrivial fixed point. Hence, we can apply the
Howe–Moore theorem one more time to infer that v′ = 0. Finally, HΓ = {0}.

For the general case where s ≥ 1, argue by induction on s using the previous
method and the decomposition of H as HG1×···×Gs−1 ⊕HGs ⊕H′. �

We deduce that for a group G with no compact factor, the action of Γ on
G/Λ does not have finite volume invariant subspaces.

Lemma 3.2. — Assume that G has no compact factor. Then every Γ-invariant
subset of G/Λ has a zero or infinite Haar-measure.

Proof. — Argue by contradiction assuming that there exists a Γ-invariant sub-
set A ⊆ G/Λ such that λ(A) ∈ (0,+∞) for some G-invariant Radon measure λ
on G/Λ. Consider the regular unitary representation of G on L2(G/Λ), given
by the formula g.f = f(g−1.). The characteristic function 1A ∈ L2(G/Λ) is a
nonzero fixed point for the action of Γ. As G has no compact factor, Theo-
rem 3.1 and the assumption on Γ imply that there exists a nonzero fixed point
ϕ ∈ L2(G/Λ) for the action of G. Such a function is λ-a.e. constant, implying
that λ has finite mass. Absurd. �

We can now conclude with the

Proof of Theorem 1.2. — Assume first that the group G has no compact fac-
tor. If the probability measure µ is symmetric, then convergence (2) comes
from Lemma 3.2 and Theorem 1.1. If there is no assumption of symmetry,
we still get the convergence in Cesàro average (1) via the remark following
Theorem 1.1.

We now explain how to reduce Theorem 1.2 to the case where G has no
compact factor. Denote by G1, . . . , Gs the factors of G, and π the induced
finite cover of G, i.e., π : G1 × · · · × Gs → G, (g1, . . . , gs) 7→ g1 . . . gs. There
exists a probability measure µ̃ on Πs

i=1Gi whose support is π−1(suppµ) and
such that the µ̃-walk on Πs

i=1Gi/π
−1(Λ) lifts the µ-walk on G/Λ. It is enough

to show escape of mass for this µ̃-walk. Denote by G1, . . . , Gk the noncompact
factors of G and p : Πs

i=1Gi → Πk
i=1Gi, (gi)i≤s 7→ (gi)i≤k the projection on their

product (notice that k ≥ 1, otherwise G would not have a discrete subgroup
of infinite covolume). Then the projection p(π−1(Λ)) is a discrete subgroup
of infinite covolume in Πk

i=1Gi. It is enough to prove escape of mass for the
projection p∗µ̃ on Πk

i=1Gi. Note that this probability measure generates a
group with unbounded projections in the Gi’s for i = 1, . . . , k. Hence, we have
reduced Theorem 1.2 to the case of a group with no compact factor, which
finishes the proof. �
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