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COXETER POLYTOPES AND BENJAMINI–SCHRAMM
CONVERGENCE

by Jean Raimbault

Abstract. — We observe that a large part of the volume of a hyperbolic polyhedron
is taken by a tubular neighbourhood of its boundary and use this to give a new proof
for the finiteness of arithmetic maximal reflection groups following a recent work with
M. Fra̧czyk and S. Hurtado. We also study in more depth the case of polygons in the
hyperbolic plane.

Résumé (Polytopes de Coxeter et convergence de Benjamini–Schramm). — En par-
tant de l’observation qu’au moins une proportion fixée du volume d’un polytope hy-
perbolique est concentrée dans un voisinage tubulaire de son bord, nous donnons une
nouvelle démonstration de la finitude des groupes de réflexion arithmétiques, à la suite
d’un travail en commun avec M. Fra̧czyk and S. Hurtado. Nous effectuons aussi une
étude plus poussée de ce phénomène dans le cas des polygones du plan hyperbolique.

Let X be a space of constant curvature, which is either a hyperbolic space
Hd, a Euclidean space Rd or a sphere Sd. An hyperplane in X is a one-lower-
dimensional complete totally geodesic subspace, and a polytope is a bounded
(or in the case of Hd, finite-volume) region delimited by a finite number of
hyperplanes. A polytope in X is said to be Coxeter if the dihedral angles
between its faces are each of the form π/m for some m ≥ 2. For Coxeter
polytopes in Rd or Sd there is a well-known, complete and very intelligible
classification of Coxeter polytopes by Coxeter diagrams. On the other hand,
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34 J. RAIMBAULT

Coxeter polytopes in Hd have a very different behaviour and are still quite
mysterious. In the sequel, we will thus only be concerned with X = Hd. We
will study Coxeter polytopes from a metric viewpoint and establish some results
about their shapes when the volume tends to infinity, especially when d = 2.
A general survey on Coxeter groups in hyperbolic space is given in [13]; a more
recent one is given in [3], which focuses on arithmetic aspects.

Let P be a Coxeter polytope in Hd and let ΓP be the subgroup of Isom(Hd)
generated by reflections in the faces of P . This is a discrete subgroup act-
ing on X with fundamental domain P , by the Poincaré polyhedron theorem.
Moreover, P is identified with the Hd-orbifold given by ΓP \Hd, by endowing
each face of P with the local orbifold structure given by its pointwise stabiliser
(the group generated by reflections in the maximal faces that contain it). For
R > 0, the R-thin part of P is given by

P≤R = {x ∈ P : ∃γ ∈ ΓP , d(x, γx) ≤ R/2, }
and it corresponds to the R-thin part of the orbifold. An easy exercise shows
that P≤R is equal to the set of points in P that are at distance at most R/2 from
the boundary. The first result in this note is the following, which is essentially
a consequence of the hyperbolic isoperimetric inequality as we prove in 1 below.

Theorem 1. — For every d ≥ 2, there exists a constant C(d) such that for
every Coxeter polytope P of finite volume in Hd, we have

vol(P≤2) ≥ C(d) vol(P ).

In a joint work with M. Fra̧czyk and S. Hurtado [6] it was proven that
vol(M≤R) = o(volM) uniformly for M a congruence arithmetic orbifold quo-
tient of a given symmetric space. From this together with Theorem 1 we can
quite easily deduce the following result, which was originally proved by Nikulin
and Agol–Belolipetsky–Storm–Whyte ([11, 2], respectively). In fact, the in-
spiration for this note was provided by a recent work of Fisher–Hurtado [5],
where they use a lower-level part of [6]1 to give a new proof of Nikulin and
Agol–Belolipetsky–Storm–Whyte’s result.

Corollary 2. — For any d there are at most finitely many arithmetic maxi-
mal reflection groups in PO(d, 1).

Proof. — Let ΓPn be a sequence of pairwise non-conjugated maximal Coxeter
arithmetic lattices, that is Pn is a finite-volume Coxeter polyhedron in Hd and
vol(Pn) → +∞. Let Γn be the congruence closure of ΓPn

. Theorem D in [6]
states that if vol(Γn\Hd)→ +∞ then, putting Mn = Γn\Hd, we have that for
any R > 0, limn→+∞

vol(Mn)≤R

volMn
= 0. Since Pn is a finite (orbifold) cover of Mn

1. Namely the “arithmetic Margulis lemma”, Theorem 3.1 in loc. cit., which is an essential
ingredient in the proof of Theorem D in loc. cit.
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COXETER POLYTOPES AND BENJAMINI–SCHRAMM CONVERGENCE 35

and the ratio vol(·)≤R

vol is decreasing in finite covers, this would contradict the
fact that vol(Pn)≤2 ≥ C(d) vol(Pn) if we knew that vol(Γn\Hd)→ +∞.

So, to deduce the corollary we need only prove that vol(Γn\Hd) → +∞.
This is the case if the adjoint trace fields of ΓPn

are not of bounded degree. On
the other hand, if these trace fields have bounded degree then by [2, Lemma
6.2] and standard arguments (see, e.g. Lemma 5.4 in loc. cit.) we have that
[Γn : ΓPn

] is bounded, so that vol(Γn\Hd)� vol(Pn) goes to infinity. �

It is also well known that cofinite reflection groups cannot exist in large
dimensions [12, 8], so we may as well say that there are only finitely many
congruence (or maximal arithmetic) hyperbolic reflection groups.

In the case of polygons in H2, we can say more. Let G = Isom(Hd) =
PO(d, 1) and let µP be the G-invariant measure on the Chabauty space SubG of
G supported on the conjugacy class of ΓP . We will use the notion of Benjamini–
Schramm convergence introduced in [1, Sections 2-3]; this is the notion of
convergence induced by the topology of weak convergence of measures on SubG.
In this language, Theorem 1 implies that the trivial subgroup is not a limit point
of the measures µP . When d = 2 we can prove the following result, which is
much more precise than Theorem 1.

Theorem 3. — If µ belongs to the closure (in topology of weak convergence of
measures on SubG) of the set of all µP for P a finite-volume Coxeter polygon
in H2, then µ-almost every subgroup is non-trivial and generated by reflections.

This seems likely to be true in higher dimensions as well, though our very
elementary proof does not seem to immediately extend to this setting. Finally,
note that any subgroup of Isom(Hd) generated by reflections is, in fact, gener-
ated by the reflections in the side of a Coxeter polytope (possibly with infinitely
many faces), which is a well-known fact2

Organisation. — The proof of Theorem 1 is very short and given in Section 1.
The rest of the article is dedicated to the proof of Theorem 3; first we collect a
few useful facts on the geometry of hyperbolic Coxeter polygons in Section 2,
and use them in Section 3 to prove that a Benjamini–Schramm limit of Coxeter
polygons is almost surely non-trivial. Independently, we prove in Section 4 that
the set of groups generated by reflections is closed in the Chabauty topology
and deduce that a Benjamini–Schramm limit of Coxeter polygons is almost
surely generated by reflections.

1. Proof of Theorem 1

Fix d ≥ 2. Let P be a Coxeter polytope in Hd. We will denote by Fi, i ∈ I
the (d− 1)-faces of P .

2. This is stated at the beginning of [13], and the proof is more or less obvious.
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36 J. RAIMBAULT

Now let

U = {x ∈ P : d(x, ∂P ) ≤ 1}

and

P ′ = {x ∈ P : d(x, ∂P ) ≥ 1}.

We have U ⊂ P≤2 since every point of U is moved by at most 2 by a reflection
in a face of P (as previously noted, it is clear that, in fact, U = P≤2).

For x ∈ Fi, let νx be the vector normal to Fi pointing inside P ; note that
d(Fi, expx(νx)) = 1, for all x ∈ Fi. Let Wi ⊂ Fi defined by

Wi = {x ∈ Fi : expx(νx) ∈ P ′, ∀ j 6= i d(Fj , expx(νx)) > 1}

and let

F ′i = {expx(νx) : x ∈Wi}.

Then the F ′i are disjoint open subsets of ∂P ′, and their complement S =
∂P ′ \

⋃
i∈I F

′
i is of measure 0 (with respect to the (d− 1)-dimensional measure

on ∂P ′) as it is equal to the set of points in ∂P ′ at distance 1 from at least two
of the Fi.

For y ∈ F ′i , let ν′y be the vector orthogonal to F ′i pointing outside P ′; then
the map

E : [0, 1]× ∂P ′ \ S → Hd, (t, y) 7→ expy(tν′y)(1)

has its image inside U . Since the local geometry of the submanifolds F ′i of Hd
depends only on d, we see that the Jacobian of E is uniformly bounded away
from 0 (we prove this in detail in 1.1 at the end of the section); let ε(d) > 0 be
a lower bound. Moreover, the sets E([0, 1]× F ′i ) are pairwise disjoint (since a
point in E([0, 1]× F ′i ) is at distance ≤ 1 from exactly one face of ∂P , which is
Fi, and at distance > 1 of all others). It follows that

vold (E([0, 1]× ∂P ′ \ S)) ≥ ε(d) · 1 · vold−1(∂P ′ \ S) = ε(d) vold−1(∂P ′),

so that vol(U) ≥ ε(d) vold−1(∂P ′). We finish the proof of the theorem with the
following chain of inequalities:

vold(P ) = vold(U) + vold(P ′)
≤ vold(U) + vold−1(∂P ′)
≤
(
1 + ε(d)−1) vold(U)

≤ C(d) vold(P≤2).

where the second inequality follows from the isoperimetric inequality for hy-
perbolic space [7, Proposition 6.6], which implies that vold(P ′) ≤ vold−1(∂P ′).
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COXETER POLYTOPES AND BENJAMINI–SCHRAMM CONVERGENCE 37

1.1. Exponential map on equidistant sets. — Let H be a geodesic hyperplane
in Hd and H ′ a connected component of {x ∈ Hd : d(x,H) = 1}. Let
E : [0, 1] × H ′ → Hd be the map defined as in (1). Since all hyperplanes
and their equidistant sets are related by isometries, and exponential maps are
equivariant with respect to those, our claim will follow if we prove that the Ja-
cobian det(DE(x, t)) is uniformly bounded away from 0 for x ∈ H ′, t ∈ [0, 1].

The group Isom(H) acts transitively on H ′, and the map E is equivari-
ant with respect to this action. It follows that we need only to prove that
det(DE(t, x)) is uniformly bounded away from 0 for a fixed x and t ∈ [0, 1].
This is immediate by compacity, since DE(t, x) is invertible for all t ∈ R.

2. Lemmas on Coxeter polygons

We collect here some preliminary facts about Coxeter polygons in H2, and
give complete proofs for all of them; though they are likely well known it seems
more convenient to give their (short) proofs than locate sufficiently precise
references for them. First we have a consequence of the collar/Margulis lemma.

Lemma 2.1. — There exists η > 0 such that if P is a Coxeter polygon in H2

then:
1. if an edge of P has length ≤ η, then its adjacent angles are right angles;
2. no two adjacent edges of P have both length ≤ η;
3. any two non-consecutive vertices of P are at distance at least η.

Proof. — Let Γ = ΓP be the discrete subgroup generated by the reflections σe
in the sides e of P . Let δ be the constant given by the collar/Margulis lemma
for H2, so that for any x ∈ H2, we have that

Γx := 〈γ ∈ Γ : d(x, γx) ≤ δ〉

is virtually cyclic. So if e2 is an edge of P with length ≤ δ/2 and e1, e3 the
adjacent edges of P , then the subgroup generated by σei is virtually cyclic
(as each of σei

moves any vertex of e of less than δ). On the other hand,
discrete virtually cyclic subgroups of PGL2(R) cannot contain an element of
finite order other than 2 (such a subgroup contains an hyperbolic isometry and
any finite-order element in the group must preserve the two endpoints of its
axis), and as this subgroup contains the rotations about the vertices of e2, the
angles between e1, e1 and e2, e3 must be right angles. This proves part 1 for
any η ≤ δ/2.

We now prove part 2 for any η ≤ δ/4. Assume that there are two consecutive
edges with lengths less than η, i.e. three consecutive vertices x1, x2, x3 such
that d(x1, x2), d(x2, x3) ≤ η. Then if σi, 1 ≤ i ≤ 4 are the reflections in the
sides containing the xj , each xj is at distance less than 2η of the axis of each
σi so d(xj , σixj) < 4η ≤ δ. By the Collar Lemma it follows that the subgroup
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38 J. RAIMBAULT

generated by the reflections σi must be virtually cyclic. On the other hand,
it contains three rotations whose centres (namely x1, x2, x3) are not colinear,
which is impossible if it is virtually cyclic.

To prove the last point let v, w be two non-consecutive edges of P and let e′
be the common perpendicular between v and w. Since P is a Coxeter polygon
the sum of the angles of P at v and w is at most π, so there are two edges e1, e2
of P on the same side of e′ such that the sum of the angles between e′ and
e1, e2 is at most π/2. Let β, γ be these angles. Since the hyperbolic triangle
with angles π/4, β, γ has an area at least π/4, at least one of its edges is of
length ≥ d where d is the smallest diameter of a hyperbolic disc of area ≥ π/4.
Either it is the side length a opposite to the angle π/4, or we can assume
that it is the side length b opposite to the angle β, and, in this case, we have
sinh(a) = 2

√
2 sinh(b)
sin(β) ≥ 2

√
2 sinh(r). In any case, we get that the side adjacent

to the angles β, γ in this triangle has length bounded below by a constant a0
independent of β, γ. It follows that if v, w are at distance less than a0, then the
half-lines supported by e1, e2 must intersect in H2. It follows that the subgroup
generated by the reflections in the edges of P adjacent to v, w contain at least
three rotations with non-aligned centre, so by Margulis lemma we must have
d(v, w) ≥ δ/2. This proves that 3 holds for any η ≤ min(δ/2, a0). �

Next, we will need the following lemma on the area of hyperbolic triangles.

Lemma 2.2. — For any `0, there exists a constant A > 0 such that any hy-
perbolic triangle with edges of length at least `0 and angles at most π/2 has an
area at least A.

Proof. — Let a, b, c be the edge lengths of such a triangle T and define

s = a+ b+ c

2 , sa = s− a, sb = s− b, sc = s− c.

The hyperbolic Heron formula [10, Theorem 1.1(i)] states that

sin(Area(T )) =
√

sinh(s) sinh(sa) sinh(sb) sinh(sc)
4 cosh(a/2) cosh(b/2) cosh(c/2) .

Using the hyperbolic cosine law it follows from our hypotheses on T that there
exists a constant `1 > 0 (independent of a, b, c) such that s, sa, sb, ac ≥ `1.
It follows that we have sinh(sa) � esa and similarly for the other terms. As
sa + sb + sc = 2s we get that

sinh(s) sinh(sa) sinh(sb) sinh(sc)� e3s.

Similarly,

cosh(a/2) cosh(b/2) cosh(c/2)� es,
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COXETER POLYTOPES AND BENJAMINI–SCHRAMM CONVERGENCE 39

so in the end

Area(T ) ≥ sin(Area(T ))� es/2,

which finishes the proof. �

Finally, we will use the following lemma.

Lemma 2.3. — Let ε > 0. There exists a constant η′ > 0 such that for any
Coxeter polygon P in H2 and any R there exists a polygon P ′ such that

1. P ′ has no edge length smaller than η′;
2. Area(P ′≤R)

AreaP ′ ≤ 2 Area(P≤R)
AreaP .

Proof. — We construct P ′ as follows: let v1, . . . , vm be a cyclic ordering of the
vertices of P . Let η be the constant from Lemma 2.1, and 0 < α < 1/2 (to
be determined later). For each pair (vi, vi+1) of adjacent vertices such that
d(vi, vi+1) ≤ α · η, we remove the vertex vi+1 from P , that is, if i1, . . . , ik
are those indices such that d(vij , vij+1) ≤ α · η, we take P ′ to be the polygon
spanned by the vi, i 6∈ {i1, . . . , ik}. Since d(vij+1, vij+2) > η by Lemma 2.1, it
follows from the triangle inequality that d(vij , vij+2) > (1− α)η > αη, and so
P ′ satisfies condition 1 for any η′ ≤ αη.

We now prove that P ′ satisfies condition 2 for sufficiently small α. First
we estimate the area of each removed triangle. To do this let i such that
d(vi, vi+1) < αη; we want to estimate the area of the triangle Ti spanned by
vi, vi+1, vi+2. Let γ be its angle at vi, c = d(vi+1, vi+2), a = d(vi, vi+2); by the
hyperbolic sine law we have that sinh(a) = sinh(c)

sin(γ) . We compute that

sin(γ) ≥ sinh(a− η)
sinh(a)

≥ sinh(a)− η cosh(a)
sinh(a) ≥ 1− u · α,

where u > 0 on the last line depends only on η. It follows that γ ≥ π
2 − u

′ · α,
and finally that

Area(Ti) ≤ u′ · α,(2)

for some u′ independent of P, α.
Now the triangle Si spanned by vi−1, vi, vi+2 has all its edge lengths at

least η, by Lemma 2.1. Its angles are at most π/2 since it is inscribed in the
Coxeter polygon P . So by Lemma 2.2 we have that Area(Si) ≥ A. By (2) this
implies that Area(Ti) = O(Area(Si)α) uniformly in i, P , and as Area(P ′) =
Area(P )−

∑k
l=1 Area(Til) it follows that

Area(P ′) = (1−O(α)) Area(P ).
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40 J. RAIMBAULT

On the other hand, we have that P ′≤R is contained in the αη-neighbourhood of
P≤R so that

Area((P ′)≤R ≤ (1 +O(α)) Area(P≤R).

From these two inequalities it follows that
Area((P ′)≤R)

Area(P ′) ≤ (1 +O(α))Area(P≤R)
Area(P ) ,

which finishes the proof by taking η′ = αη for α small enough (independently
of P,R). �

3. Non-triviality of BS-limits of polygons

In this section, we give the proof of the first part of Theorem 3 that a
Benjamini–Schramm limit of a sequence of Coxeter polygons is almost surely
non-trivial. We will prove that for any sequence Pn of Coxeter polygons in H2,
we have

lim
R→+∞

lim
n→+∞

Area ((Pn)≥R)
volPn

= 0,(3)

from which the first statement follows immediately.
Let P ′n be the polygons obtained from the Pn by applying Lemma 2.3; it

follows from the condition (1) that it suffices to prove (3) for the P ′n. Note that
in any triangulation3 of P ′n all angles are at most π/2 (they are smaller than
those of the Pn, and the latter are of the form π/k, k ≥ 2), and by using point
(3) of Lemma 2.1 in addition we see that all edges in the triangulation have
length at least η, so by Lemma 2.2 we have a uniform lower bound for all areas
of triangles occurring in any triangulation of any P ′n.

We triangulate P ′n as follows: we choose a vertex, and as long as possible
add an edge between the current vertex and the second-to-next one (clockwise).
See Figure 3.1 for an illustration.

The tree Tn dual to this triangulation, rooted at the last triangle, has radius
at most log2(n)+1 by [9, Proposition 2.1]. Moreover, the distance of the closest
leaf to this triangle is at least log2(n)− 1 as well4.

Let S > 0. Let (Tn)≤S be the set of vertices in Tn, which are at distance
at most S from ∂Tn

5. Then Tn \ (Tn)≤S is contained in the ball of radius
log2(n) + 1−S since every leaf is at a distance of at most log2(n) + 1 from the

3. By this we mean a decomposition of a polygon into triangles whose vertices are vertices
of the polygon.

4. This can easily be seen by observing that these functions are monotonic, and for a
2k-gon they are equal to log2(n) ± 1 (it would be more natural in this case to centre at the
edge between the last two triangles).

5. For us, the boundary of a finite tree is its set of leaves.
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(a) n = 19 (b) n = 24

Figure 3.1. Triangulations of ideal n-gons and their dual tree

root. It follows that |Tn \ (Tn)≤S | ≤ 2log2(n)+1−S = O(2−S |Tn| since |Tn| = n.
So we have

|(Tn)≤S | ≥ (1−O(2−S))|Tn|.(4)

On the other hand, if x ∈ P ′n lies in a triangle corresponding to a triangle
t ∈ (Tn)≤S , then we may construct a path c as follows: let t = t0; choose a
side of t0 closest to x such that the corresponding edge of Tn points away from
the root, and let c0 be the geodesic from x to this side. If the side lies on the
boundary let c = c0; otherwise let t1 be the triangle on the other side, let x1 be
the foot of c0 on the side t0∩ t1 and iterate the construction until the boundary
is reached, say in l steps, and let c be the concatenation of c0, . . . , cl, where ci
is the path obtained at the (i+1)th step. As t ∈ (Tn)≤S and the edges (ti, ti+1)
point away from the root we must have that l ≤ S + 1. Moreover, the length
of each ci is at most log(3) since H2 is log(3)/2-hyperbolic (which implies that
in any geodesic triangle any point lies at distance at most ≤ log(3) from any
union of two edges; see, for instance, [4, Section 6.1]) so at each step at least
one of the two edges pointing away from the root is at distance ≤ log(3)/2 from
the foot of ci. It follows that c has a length of at most (S + 1) log(3), and we
conclude that x is at a distance of at most log(3) · (S + 1) from the boundary.
From this and (4), we deduce that at least (1−O(2−S))|Tn| triangles of Tn lie
entirely in (P ′n)≤R, for S = R/ log(3). If A is a lower bound for the area of
triangles in Tn (which is independent of n by the remarks above), we thus have
that

Area(P ′n) ≥ (1−O(2−R)A.
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42 J. RAIMBAULT

On the other hand, we have that

Area(P ′n \ (P ′n)≤R) ≤ π · 2log2(n)+1−S ,

so that
Area((P ′n)≤R) ≥ (1−O(2−R)) Area(P ′n),

from which (3) follows immediately.

4. Chabauty limits of Coxeter polygons

In this section, we prove the following result, which immediately implies the
second part of Theorem 3 since limits of discrete invariant random subgroups
are themselves supported on discrete subgroups (as follows from [1, Proposition
2.2, Theorem 2.9]).

Proposition 4.1. — The set of discrete groups generated by reflections is
closed in the Chabauty space of discrete subgroups of PO(2, 1).

This will follow from the next lemma.

Lemma 4.2. — Let P be a Coxeter polygon in H2, S the set of reflections in
its faces and Γ = ΓP = 〈S〉. If w ∈ Γ and T is the subset of S containing all
elements occurring in a minimal expression for w as a word in the elements of
S, then d(x,wx) ≥ d(x, sx), for all s ∈ T .

Proof. — Assume that s ∈ S occurs in a minimal expression for w; then x
and wx are separated by a hyperplane that is Γ-equivalent to the hyperplane
Ws supporting the side of P corresponding to s. Thus, we need only show the
following statement: the smallest distance between two points in the orbit Γ ·x
separated by Ws is realised by (x, sx).

In turn, this is implied by the statement that the closest point to x on a
Γ-translate ofWs is its projection onWs. If this were not the case, there would
be a billiard trajectory in P starting at x and ending on Ws shorter than the
segment from x orthogonal to Ws. This is impossible: indeed, there is no
trajectory from x to Ws at all that is shorter than this segment. This finishes
the proof. �

Proof of Proposition 4.1. — Let H be a discrete Chabauty limit of a sequence
Γn of Coxeter groups in H2. Since H is discrete, it follows from the Kazhdan–
Margulis theorem that there exists ε > 0 such that, by conjugating the Γn, we
may assume there is a point o ∈ H2 that maps to the ε-thick part of Γn\H2 for
every n. Let Pn be the Coxeter polygon of Γn containing o.

Fix a g ∈ H: we want to prove that g is a product of reflections in H.
We know that g is a limit of a sequence gn ∈ Γn. The distances d(o, gno) are
uniformly bounded, say d(o, gno) ≤ R for all n, and it follows that the word
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length of gn in the reflections in the sides of Pn must be bounded, say by some
l ∈ N (since there are uniformly finitely many points in the orbit Γn · o at
a distance of at most R from o by a packing argument). By Lemma 4.2 it
follows that we have gn = si1,n · · · siln ,n

, where si,n are reflections in the sides
of Pn such that d(o, si,no) ≤ R and ln ≤ l for all n. We can thus pass to a
subsequence and assume that the sequences si,n, 1 ≤ i ≤ l are convergent.
The limits are reflections belonging to H, and g can be written as a product of
them. �
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