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ON THE NORMALITY OF SCHUBERT VARIETIES:
REMAINING CASES IN POSITIVE CHARACTERISTIC

by Thomas J. HAINES, João LOURENÇO and Timo RICHARZ

Abstract. – We study the geometry of equicharacteristic partial affine flag varieties associated to
tamely ramified groups G, with particular attention to the characteristic p > 0 setting. We prove that
when p divides the order of the fundamental group �1.Gder/, most Schubert varieties attached to G
are not normal, and we provide a criterion for when normality holds. Apart from this, we show, on the
one hand, that loop groups of semisimple groups satisfying p j #�1.Gder/ are not reduced, and on
the other hand, that their integral realizations are ind-flat. Our methods allow us to classify all tamely
ramified Pappas-Zhu local models of Hodge type which are normal.

Résumé. – Nous étudions la géométrie des variétés de drapeaux affines partielles associées à des
groupes G modérément ramifiés, avec un accent particulier sur le cadre de la caractéristique p > 0.
On démontre que, lorsque p divise l’ordre du groupe fondamental �1.Gder/, la plupart des variétés
de Schubert ne sont pas normales et nous fournissons une condition nécessaire et suffisante pour que
cela se produise. De plus, nous montrons, d’une part, que les groupes de lacets de groupes semisimples
satisfaisant p j #�1.Gder/ ne sont pas réduits, et d’autre part, que leurs réalisations intégrales sont
ind-plates. Nos méthodes nous permettent de classifier tous les modèles locaux de type Hodge au sens
de Pappas-Zhu qui sont normaux.

1. Introduction

Partial affine flag varieties are important objects in arithmetic algebraic geometry for
their intimate relation to local models of Shimura varieties and moduli stacks of shtukas.
They first appeared extensively in the realm of Kac-Moody theory by means of (integral)
representation theory of Kac-Moody algebras. They were later reinterpreted via the theory
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896 T. J. HAINES, J. LOURENÇO AND T. RICHARZ

of affine Grassmannians as parametrizing torsors under parahoric group schemes over the
formal disk equipped with a trivialization over the punctured one.

In the works of Faltings [19], Pappas-Rapoport [53], Zhu [71] and Pappas-Zhu [55], the
authors establish several geometric properties of affine flag varieties, such as normality of
Schubert varieties or reducedness of the special fiber of local models, under the following
working hypothesis: the reductive group G over the non-archimedean local base field is
tamely ramified, and the residue characteristic p > 0 does not divide the order of �1.Gder/,
that is, the simply connected cover Gsc ! Gder of the derived subgroup of G is an étale
isogeny. The first type of restriction has been substantially lifted in the work of Levin [43] for
Weil-restricted groups, and in [47] for absolutely almost simple, wildly ramified groups. The
second type of restriction is dealt with in this paper, whose main finding can be summarized
as follows: LetF D k..t// be the Laurent series field in the formal variable t with algebraically
closed residue field k of characteristic p > 0. LetG be a tamely ramified connected reductive
F -group, f a facet of its Bruhat-Tits building and a an alcove containing f in its closure.
For each class w 2 W=Wf in the Iwahori-Weyl group quotient, let Sw D Sw.a; f/ be the
associated Schubert variety in the partial affine flag variety FlG;f . Note thatW=Wf is always
a (countable) infinite set when G is nontrivial.

Theorem 1.1 (Prop. 2.1, Thm. 2.5, Prop. 6.5, App. D). – Assume G is absolutely almost
simple (in particular, semisimple). If p divides #�1.G/, then only finitely many Schubert
varieties Sw , w 2 W=Wf in the partial affine flag variety FlG;f are normal. The non-normal
Schubert varieties are geometrically unibranch and regular in codimension 1, but do not satisfy
the (S2) property, do not have rational singularities, and are neither Cohen-Macaulay, nor
weakly normal, nor Frobenius split.

The existence of non-normal Schubert varieties in bad residue characteristics was first
observed by the second named author. This came as a total surprise to us as these seem to be
the very first examples of non-normal Schubert varieties in the literature. The easiest such
example occurs for the quasi-minuscule Schubert variety inside the affine Grassmannian
for G D PGL2 in residue characteristic p D 2: the complete local ring at the singular point
is isomorphic to the k-algebra

kŒŒx; y; v; w��=.vw C x2y2; v2 C x3y;w2 C xy3; xw C yv/:

This is a surface singularity which is not weakly normal. Its (weak) normalization morphism
identifies with the inclusion map of the subalgebra of kŒŒx; y; z��=.z2 C xy/ generated
by x; y; v D xz;w D yz (see Appendix B).

The reason why non-normal Schubert varieties must exist can be summarized in a few
lines. Up to translation by a suitable element in G.F / which stabilizes a, we may assume
that Sw lies in the neutral component of FlG;f . By [53, Prop. 6.6], the reduction of the neutral
component identifies with that ofGder, so for this discussion we may assume thatG D Gder is
semisimple. Then one has a map

(1.1) Ssc;w D Ssc;w.a; f/ �! Sw.a; f/ D Sw
where Ssc;w is the Schubert variety for w inside FlGsc;f andGsc ! G is the simply connected
cover. The Schubert variety Ssc;w is known to be normal by [53, Thm. 8.4], and the map (1.1)
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NORMALITY OF SCHUBERT VARIETIES 897

can be shown to be finite, birational and a universal homeomorphism by using Demazure
resolutions. In other words, the map (1.1) is the (weak) normalization morphism of Sw ,
just as in the example of the quasi-minuscule Schubert variety above. But the affine flag
variety FlGsc;f is reduced as an ind-scheme by [53, Thm. 6.1], that is, equals the colimit of its
Schubert varieties. If all Schubert varieties in FlG;f were normal, then these two facts would
imply the map FlGsc;f ! FlG;f is a monomorphism. By looking at tangent spaces, this is
clearly not true as soon as the kernel of Gsc ! G is non-étale, or equivalently, as soon as
p divides #�1.G/. We should however stress that the above reasoning only shows that there
are infinitely many non-normal Schubert varieties in FlG;f when p divides #�1.G/.

For the rest of this introduction, we let G denote an arbitrary tamely ramified connected
reductive F -group. Exploiting tangent spaces a bit further, we show that the normality
of Sw is equivalent to the injectivity of the induced map TeSsc;w ! TeSw on tangent spaces,
which yields the following key observation:

Lemma 1.2 (Cor. 2.2). – Letw 2 W=Wf . If Sw is normal, then Sv is normal for all v � w.

In order to give an effective normality criterion, we are led to a deeper study of tangent
spaces of Schubert varieties for simply connected groups. In this, we recast in Section 4 results
of Kumar [41], Mathieu [50], Ramanathan [58] and Polo [56] in the following fashion.

We lift our whole setting to the Witt vectors W.k/ as in [53, §§7–9], and denote by
S sc;w � FlGsc;f the lift to W.k/ of Ssc;w � FlGsc;f which comes equipped with a section
eW SpecW.k/! S sc;w given by the base point. Given any equivariant ample line bundle L
on FlGsc;f , we obtain the Kac-Moody action of TeFlGsc;f on the vector space �.FlGsc;f ;L/

_

dual to �.FlGsc;f ;L/; see Section 5.3.

Theorem 1.3 (Lem. 5.9). – Assume w 2 Waff. For any W.k/-algebra R, the R-valued
tangent space

TeS sc;w.R/ D HomW.k/.e
��Ssc;w=W.k/; R/

identifies with the submodule of TeFlGsc;f.R/ consisting of those X such that X‚_L lies in the
subspace �.S sc;w ;L/_˝R, where‚L 2 �.FlGsc;f ;L/ is the usual theta divisor attached to L,
and‚_L 2 �.FlGsc;f ;L/

_ is the vector that sends‚L to 1 and the remaining weight spaces to 0.

This formula can in principle be used to determine whether a given Schubert variety is
normal or not (see Corollary 5.12). We also think that it is of independent interest to have a
good source for this material (some of which was known before in related contexts), and that
having a Witt-vector framework which links to characteristic zero settings would potentially
help in a future classification of all normal Schubert varieties when p j #�1.Gder/.

It is not clear to us whether tangent spaces of Schubert varieties can be computed
in a characteristic-independent way determined by the characteristic 0 description, see
Remark 4.4 which comments on the argument in [56, Cor. 4.1].

The key to Theorem 1.1 is to show that the tangent spaces of quasi-minuscule Schu-
bert varieties in twisted affine Grassmannians for absolutely special vertices in character-
istic p > 0 are big enough, see Proposition 6.1. Thanks to some elementary observations
(see Lemmas 5.5 and 5.6) the calculation can be reduced to characteristic 0where we identify
the tangent spaces with those at minimal nilpotent orbits, see Appendix C. This uses the
exponential map and representation-theoretic methods. For split groups, this relation to
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898 T. J. HAINES, J. LOURENÇO AND T. RICHARZ

minimal nilpotent orbits is well known [48, §2.10]. For twisted groups, our method extends
the method from [28, §8] and requires a fine analysis of twisted root systems. As a conse-
quence, quasi-minuscule Schubert varieties are never normal if p j #�1.Gder/. From here
we use our key observation in Lemma 1.2 along with combinatorial methods to finish the
proof of Theorem 1.1. In particular, we reprove in Proposition 6.3 some recent results from
[6, Thm. 4.1] for split groups and also extend these to the case of twisted groups.

Let us mention two other contributions of this paper to the understanding of the geometry
of affine flag varieties: reducedness and ind-flatness. As we stated earlier, simply connected
affine flag varieties are reduced and a similar result holds for all semisimple groups G such
that p ∤ #�1.G/ by [53, Thm. 6.1]. But affine flag varieties of non-semisimple reductive
groups are non-reduced. In [53, Rem. 6.4], it is indicated that the affine flag variety for PGL2
in characteristic 2 is non-reduced. The result below generalizes this.

Theorem 1.4 (Prop. 7.7, Prop. 7.10). – The partial affine flag variety FlG;f is reduced if
and only if G is semisimple and p ∤ #�1.G/.

We give two different proofs of this result. IfG is split, we use the module of distributions,
that is, higher differential operators of FlG;f supported at the origin e, and we prove that
the homomorphism Dist.FlGsc;f ; e/ ! Dist.FlG;f ; e/ is not surjective in bad character-
istic, implying non-reducedness, by essentially analyzing the effect of the multiplication-
by-p map on Grassmannians. If G is tamely ramified, we factor the homomorphism
ResF=F pGsc ! ResF=F pG of pseudo-reductive groups as an epimorphism to a pseudo-
reductive groupG and a closed immersion whose image is strictly smaller than ResF=F pG—
this works under the hypothesis that G is semisimple and p divides #�1.G/. Then we use
the recently developed Bruhat-Tits theory for pseudo-reductive groups from [46] to prove
that FlG;f ! FlResF=FpG;f D FlG;f is a closed immersion, but not an isomorphism, for
Lie-algebraic reasons.

Another natural question concerns the behavior of the integral realizations FlG;f of the
affine flag varieties over the Witt vectors (or just affine Grassmannians of split groups over
the integers). We are able to show:

Theorem 1.5 (Prop. 3.4, Prop. 8.8, Prop. 8.9). – The ind-scheme FlG;f is ind-flat
over W.k/. It is reduced if and only if G is semisimple. In general, the reduced locus .FlG;f/red

coincides with the union of the integral Schubert varieties Sw D Sw.a; f/, w 2 W=Wf .
Furthermore, for fixed w 2 W=Wf , the following are equivalent:

1. The Schubert variety Sw over k is normal;

2. its integral realization Sw over W.k/ is normal;

3. the special fiber Sw ˝ k is reduced, hence equals Sw .

The proof of ind-flatness relies on computing the formal completion of the affine flag
variety along the identity section, similarly to Faltings’ work [19]. For this, we compare
the affine flag variety to its flat closure and it suffices, as both are ind-Noetherian, to
show that their functors restricted to strictly Henselian Artinian local rings coincide, see
Lemma 8.6. This can be achieved by translating with the positive loop group and represen-
tative W.k/-sections Pw of the Iwahori-Weyl group, so that those rings are supported at the
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identity section. Here we employ the fake open cell to reduce the ind-flatness to the cases
of tori and unipotent groups where it is easy to check. The determination of the reduced
locus is an immediate consequence because partial affine flag varieties for semisimple groups
in characteristic 0 are reduced. Finally, the equivalent conditions characterizing normal
Schubert varieties are easily deduced by standard methods, see Proposition 3.4. We also
refer the reader to Appendix B for the calculation of an integral Schubert variety whose
reduction to characteristic 2 is not reduced.

Theorem 1.5 is strongly connected with the theory of local models as follows. Let
F temporarily denote a discretely valued, complete field of characteristic 0 with ring of inte-
gersOF and algebraically closed residue field k of characteristic p > 0, G a tamely ramified
reductive F -group and S a maximal F -split torus of G. For each facet f in the appartment
A .G; S; F / associated with S of the Bruhat-Tits building B.G; F /, we know by [10] that
there exists a canonical smooth, affine group OF -scheme Gf with connected fibers whose
generic fiber equalsG and whoseOF -valued points fix f. Additionally, Pappas-Zhu [55] have
constructed a smooth, affine, geometrically connected group scheme Gf over OF Œt � lifting
Gf along the specialization OF Œt � ! OF , sending t to a preferred choice of uniformizer
$ 2 OF , see [55, Thm. 4.1]. We note that the construction of this group scheme for split
groups is easy and that the essential difficulty lies in its construction for twisted groups,
see [51, Exam. 3.3]. This group scheme is then used together with the Beilinson-Drinfeld
affine Grassmannian [5] to construct so-called Pappas-Zhu local models M DM.G; f�g;Gf/
where f�g is a geometric conjugacy class of cocharacters of G. Recall that the reduced
special fiber of a PZ local model is always given by the admissible locus A.G; f�g;Gf/ ([30,
Thm. 6.12]), that is, by a certain explicit union of Schubert varieties in the partial affine flag
variety over k.

Corollary 1.6 (Cor. 9.2). – Assume p divides the order of �1.Gder/.

1. If every Schubert variety in the admissible locusA.G; f�g;Gf/ is normal, thenM is normal
and its special fiber is reduced. This is the case when N� is minuscule for the échelonnage
roots and f contains a special vertex in its closure.

2. If any Schubert variety inside the admissible locusA.G; f�g;Gf/ is not normal, then M is
not normal and its special fiber is not reduced.

For details on part (1) we refer to Proposition 9.1 below and [31, Thm. 2.1, Rem. 2.2].
Here N� is the image of a representative of the conjugacy class f�g under the projection
to inertia coinvariants X�.T / ! X�.T /I . For (2), suppose one of the Schubert varieties
inside A.G; f�g;Gf/ is not normal. Then the irreducible component containing this Schu-
bert variety is not normal as well by our key observation in Lemma 1.2. By comparing the
Pappas-Zhu local model with its normalization (which is the Pappas-Zhu local model of
some z-extension of G), we see that the special fiber cannot be reduced: compute global
sections of line bundles and compare with the generic fiber by flatness. Hence, the Pappas-
Zhu local model itself is not normal and its special fiber is not reduced, see also [31,
Rem. 2.4]. In fact, this nuisance appears even if we assume that f�g is minuscule but N� is
sufficiently large for the échelonnage root system (which is possible if the ramification degree
ofG is sufficiently large). More concretely, we give examples with restriction of scalars along
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900 T. J. HAINES, J. LOURENÇO AND T. RICHARZ

ramified extensions or for unitary groups along ramified extensions, see Examples 9.3
and 9.4.

Finally, we use Corollary 1.6 to classify in Proposition 9.7 all tamely ramified PZ local
models of Hodge type which are normal. We refer to Section 9 for the definition of Hodge
and of abelian type, and we emphasize that in that section our groups are defined over a
discretely valued complete field of characteristic 0 with algebraically closed residue field of
characteristic p > 0.

Proposition 1.7 (Prop. 9.7). – Let .G; f�g/ be of abelian type with a Hodge central lift
.G1; f�1g/, and let M1 be the PZ local model attached to .G1; f�1g;Gf;1/. Then the following
properties hold:

1. If p > 2 or Gad has no D-factors, then M1 is normal.

2. If p D 2 and .Gad; f�adg/ is simple of type DH
n , n � 5, then M1 is non-normal for all

sufficiently large N�.

3. If p D 2 and .Gad; f�adg/ is simple of type DR
2mC1, m � 2, then M1 is normal.

4. If p D 2 and .Gad; f�adg/ is simple of type DR
2m, m � 2, and N� is sufficiently large, then

M1 is normal if and only if G1;der D G1;sc.

These realizations are viewed via a Hodge embedding as flat closed subschemes of ordi-
nary partial affine flag varieties for GLn, as was done in [38]. The upshot is that, for .G; f�g/
of abelian type, the Hodge embedding can always be arranged to give normal PZ local
models except in Case (2.). Also note that a Hodge embedding induces a corresponding
closed immersion of the normalized local models only if M1 is normal, but that the corre-
sponding morphism of topological spaces is always a closed immersion.

1.1. Leitfaden (How to read this paper)

Assume char.k/ j #�1.Gder/. Readers who are mainly interested in the existence and
abundance of non-normal Schubert varieties in FlG;f should start with Proposition 2.1,
which gives an elementary criterion for normality in terms of the tangent spaces, and which,
together with its immediate corollaries, quickly shows that “most” Schubert varieties in FlG;f
are non-normal, once we know there is at least one non-normal Schubert variety (see the
proof of Theorem 2.5). The existence of a non-normal Schubert variety is explained in the
introduction, and an alternative argument can be found in Remark 5.13. Theorem 2.5 shows
more precisely that when G is absolutely almost simple, then FlG;f contains only finitely
many normal Schubert varieties. Appendix D proves the equivalence of geometric properties
asserted in Proposition 2.1; the key new ingredient is the proof that all Schubert varieties
are regular in codimension 1. Appendix B works out the equations for the quasi-minuscule
Schubert variety in the already non-trivial case of G D PGL2. This and the above can be
read independently of the rest of the paper.

Our second, more effective, criterion for normality of Schubert varieties is Corollary 5.12,
and this is used to develop an upper bound on the finite set of normal Schubert varieties
attached to absolutely almost simple tamely ramified k..t//-groups G in Proposition 6.5.
The latter relies on Proposition 6.1 and its corollary which shows that the quasi-minuscule
Schubert variety in an absolutely special affine Grassmannian is non-normal. Much of
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Sections 3-5 feeds into these propositions. Corollary 5.12 expresses the criterion in terms of
negative loop groups and tangent spaces. It is essential for the proof of Proposition 6.1 to
develop both of these directions over the p-typical Witt vectors W DW.k/. More precisely,
we construct a smooth, affine group scheme Gf with connected fibers over WŒŒt �� lifting
any parahoric group schemes Gf over kŒŒt �� (see Lemma 3.1). Their associated Schubert
varieties Sw and partial affine flag varieties FlG;f over W are constructed in Section 3;
(these lifts and Section 5 crucially reduce Proposition 6.1 to the characteristic 0 setting).
The negative loop group L��W Gf is defined in Equation (3.12) and its isomorphism with the
“big open cell” in FlG;f is proved in Corollary 3.9. With the goal of making Corollary 5.12
applicable, Lemma 5.7 (resp., Lemma 5.9) gives an explicit description of TeFlGsc;f (resp. of
its subspace TeS sc;w ). The latter relies on the comparison with Kac-Moody flag varieties
over W (Proposition 4.5) and an extension of the tangent space description in that setting
(Corollary 4.3) due to Kumar and Polo. Corollary 4.3 rests in turn on Theorem 4.2, which
gives the equations cutting out Schubert varieties under a projective embedding and in one
another, extending results of Ramanathan and Mathieu; Appendix A provides the tech-
nical ingredients of Frobenius splittings for ind-schemes. The cases of non-split groups in
Proposition 6.1 rely on root-theoretic computations for minimal nilpotent orbits done in
Appendix C. Finally, combinatorial results (Proposition 6.3, Proposition 6.4) complete the
proof of Proposition 6.5.

The remainder of the paper concerns reducedness, ind-flatness, and applications to
Pappas-Zhu local models. The criterion for reducedness of LG is proved in Proposition 7.7
(forG split) and in Proposition 7.10 (in general), and this is independent of the other results
in this paper. Similarly independent, the ind-flatness result is proved in Proposition 8.8 (for
GrG;Z attached to Chevalley groups G over Z) and in Proposition 8.9 (for FlG;f attached
to Gf over W). Finally, Section 9 deals with applications to local models of Shimura varieties.
Corollary 9.2 makes the connection between properties of local models and the Schubert
varieties in their special fibers, and Proposition 9.7 gives a classification of Pappas-Zhu local
models of Hodge type which are normal. Here we do assume background knowledge from
the literature on local models.
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1.3. Conventions on ind-schemes

We recall some basic results on ind-schemes, see [63, §1] for details. An ind-scheme is a
functor X WAffSchop

! Sets from the category of affine schemes such that there exists a
presentation as functorsX D colimXi where fXigi2I is a filtered system of schemesXi with
transition maps being closed immersions. Maps of ind-schemes are natural transformations
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of functors. We denote by IndSch the category of ind-schemes which is locally small (i.e., the
Hom classes are sets). It contains the category of schemes as a full subcategory, is closed
under fiber products and has Spec.Z/ as final object. We identify AffSchop with the category
of rings whenever convenient. Note that every ind-scheme defines an fpqc sheaf on the
category of affine schemes. Moreover, if X D colimi Xi , Y D colimj Yj where each Xi is
quasi-compact, then

HomIndSch.X; Y / D colimi limj HomSch.Xi ; Yj /:

If S is a scheme, then an S -ind-schemeX is an ind-schemeX together with a map of functors
X ! S . If S D Spec.R/ is affine, we also use the term R-ind-scheme.

2. A normality criterion

Let k be an algebraically closed field, and let F D k..t// denote the Laurent series field.
LetG be a (connected) reductiveF -group which splits over a tamely ramified extension ofF .

Let f � B.G; F / be a facet in the Bruhat-Tits building, and denote by Gf the associated
parahoricOF -group scheme. The loop groupLG (resp.LCGf ) is the functor on the category
of k-algebras R defined by LG.R/ D G.R..t/// (resp. LCGf.R/ D Gf.RŒŒt ��/). Then
LCGf � LG is a subgroup functor, and the twisted affine flag variety is the étale quotient

FlG;f
def
D LG=LCGf ;

which is representable by an ind-projective k-ind-scheme. When G is understood, we will
often abbreviate by writing Flf in place of FlG;f .

Let S � G be a maximal F -split torus whose apartment A D A .G; S; F / contains f. We
fix an alcove a � A which contains f in its closure. Fixing also a special vertex 0 in the closure
of a, we may identify A with the vector spaceX�.S/R, and, following Bruhat-Tits, we obtain
an action of the Iwahori-Weyl group W D W.G; S; F / on A and thus an isomorphism
W

�
! Waff ⋊ �a where Waff denotes the affine Weyl group and where �a is the subgroup

of W preserving a. These basic notions related to Iwahori-Weyl groups can be found, for
example, in [54, 61]. The left LCGa-orbits inside Flf are enumerated by the quotient W=Wf ,
whereWf � Waff is the subgroup of the affine Weyl group generated by the reflections fixing f.
For each class w 2 W=Wf , we define the Schubert variety

Sw D Sw.a; f/ � FlG;f

as the reducedLCGa-orbit closure of Pw�ewhere e 2 FlG;f.k/ is the base point and Pw 2 LG.k/
is any representative of the class w. Then Sw is a projective k-variety. The choice of a equips
the quotientW=Wf with a length function l D l.a; f/ and a Bruhat partial order� satisfying
dim.Sw/ D l.w/, and Sv � Sw if and only if v � w for v;w 2 W=Wf , see [60, Prop. 2.8].

Let �WGsc ! Gder � G be the simply connected cover. Let T be the centralizer
of S in G (a maximal torus by Steinberg’s theorem) and let Tder WD T \ Gder. Then
Ssc WD �

�1.S/ı � ��1.Tder/
ı DW Tsc is a maximalF -split torus contained in a maximal torus

of the group Gsc. This induces a map on apartments A .Gsc; Ssc; F / ! A .G; S; F / under
which the facets correspond bijectively to each other. We denote the preimage of f by the
same letter. The map Gsc ! G extends to a map on parahoric group schemes Gsc;f ! Gf ,
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and hence to a map on twisted partial affine flag varieties FlGsc;f ! FlıG;f onto the neutral
component. We are interested in comparing their Schubert varieties.

The natural map on Iwahori-Weyl groups

Wsc D W.Gsc; Ssc; F / �! W.G; S; F / D W

is injective and its image identifies with the affine Weyl group Waff compatibly with the
subgroup Wf . Thus, for each class w 2 Waff=Wf we get a map of projective k-varieties

(2.1) Ssc;w D Ssc;w.a; f/ �! Sw.a; f/ D Sw :

Proposition 2.1. – For each classw 2 Waff=Wf , the following statements are equivalent:

1. The Schubert variety Sw is normal (resp. weakly normal, resp. .S2/, resp. Cohen-
Macaulay, resp. Frobenius split if char.k/ > 0).

2. The map (2.1) is an isomorphism.

3. The map (2.1) induces an injective map on tangent spaces at the base points.

Proof. – We will establish the equivalence of the geometric properties listed in (1) in
Appendix D. It remains to show the following implications:

(1))(2): The map (2.1) is a finite birational universal homeomorphism by [31, Prop. 3.5],
and thus is an isomorphism whenever Sw is normal.

(2))(1): Since G splits over a tamely ramified extension of F , the Schubert variety
Ssc;w � FlGsc;f is normal by [53, Thm. 0.2], and so is Sw whenever (2.1) is an isomorphism.

(2))(3): This is trivial.
(3))(2): The locus in Ssc;w , where (2.1) is an isomorphism, is non-empty, open and

LCGsc;a-invariant. Thus, it suffices to show that the map of local rings at the base points

O WD OSw ;e �! OSsc;w ;e DW Osc

is an isomorphism. Here e denotes the base point of both FlGsc;f and FlG;f . As (2.1) is a
finite birational map between integral schemes, the map O ,! Osc is a finite ring extension
which induces an isomorphism on fraction fields. Since we are assuming that the map (2.1)
induces an injection on tangent spaces at the base points, we know that it is unramified at
the base points by [1, 0B2G] so that mOsc D msc for the maximal ideals. An application of
Nakayama’s Lemma [1, 00DV (6)] to the finite map O ,! Osc (both viewed as O-modules)
shows that this map is surjective as well. This finishes the proof of the proposition.

Corollary 2.2. – Let w 2 Waff=Wf . If Sw is normal, then Sv is normal for all v � w.

Proof. – This is immediate from Proposition 2.1 (3).

Let us also record the following two useful results. We have an isomorphism W
�
! Waff ⋊�a,

where �a is the subgroup of W preserving a, see Section 6.1. The properties of Schubert
varieties indexed by W reduce to those indexed by Waff, as follows: for any w 2 Waff and
� 2 �a, there is an isomorphism

Sw� .a; f/ Š Sw.a; �f/;

where �f is the image of f under the action of � on facets in the boundary of a.

Proposition 2.3. – Let w 2 Waff and � 2 �a. The following are equivalent:
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1. Sw��.a; a/ is normal for all � 2 Wf ;

2. Sw��0.a; a/ is normal for �0 2 Wf such that w��0 is right f-maximal;

3. Sw� .a; f/ is normal.

Proof. – By the above discussion, we immediately reduce to the case � D e. The impli-
cation (1))(2) is obvious, and the opposite implication follows from Corollary 2.2. For
(2),(3) we use the fact that the inverse image of Sw.a; f/ under the smooth surjective
morphism Fla ! Flf is the Schubert variety Sw�0.a; a/. We conclude by observing that
normality is local for the smooth topology, see [1, Tag 034F].

Lemma 2.4. – Let � 2 �a. For each class w 2 Waff=Wf , the .a; f/-Schubert variety
Sw � FlG;f is normal (resp. smooth) if and only if the .a; �f/-Schubert variety S�w��1 � FlG;�f
is normal (resp. smooth).

Proof. – First note that the class of P� � Pw � P��1 inside Waff=W�f is well-defined where
P�; Pw 2 LG.k/ are any representatives. Thus, the .a; �f/-Schubert variety S�w��1 is well-
defined. Further, the isomorphism LG ! LG; g 7! P�g P��1 descends to an isomorphism
FlG;f ! FlG;�f mapping the .a; f/-Schubert variety Sw isomorphically onto the .a; �f/-Schu-
bert variety S�w��1 . This proves the lemma.

Let us state one of the main results of the paper. In this paper, a group will be termed
absolutely almost simple if its absolute Dynkin diagram is connected, and it will be called
absolutely simple if it is absolutely almost simple and adjoint.

Theorem 2.5. – Suppose G is an absolutely almost simple, semisimple group such that its
simply connected cover is a non-étale isogeny. Then FlG;f contains only finitely many Schubert
varieties which are normal.

Proof. – We already stated above that if p divides #�1.Gder/, then there is at least one
non-normal Schubert variety Sw in FlG;f . Corollary 2.2 then implies there are infinitely many
elements w 2 W=Wf such that Sw is not normal. In fact, as pointed out by a referee, we can
go further and deduce already that there are only finitely many w 2 W=Wf such that Sw is
normal. Indeed, to show this, we can reduce to f D a and w 2 Waff, and show that given an
elementw 2 Waff, all but finitely many elements v 2 Waff satisfyw � v. For each s 2 Saff, the
parabolic subgroup of Waff generated by Saffnfsg is finite, so there is an integer Ls such that
all reduced words in the alphabet Saffnfsg have length < Ls . Therefore any reduced word of
length � Ls in the alphabet Saff contains the letter s. Write w as a reduced word s1 � � � sq .
Then any reduced word v in the alphabet Saff of length � Ls1 C � � � CLsq contains the word
w, in the sense that v � w in the Bruhat order.

The argument above does not give any explicit indication of how largew must be in order
that Sw is necessarily non-normal. In Section 6, we give explicit examples of non-normal Sw
for each absolutely almost simple group G such that p divides #�1.Gder/. Additionally, we
use the intervening material as well as the appendices to give an explicit upper bound (in the
Bruhat order) on the elements w 2 W=Wf such that Sw is normal (see Proposition 6.5).

Notice that we can easily find semisimple groups which are not absolutely almost simple
whose affine flag varieties contain infinitely many normal Schubert varieties. However, it
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is still true that the great majority of them are not normal: indeed, as soon as all of their
projections to the partial affine flag variety of the adjoint factors of G have sufficiently large
dimension, then the Schubert varieties are not normal.

3. Tame liftings and negative loop groups

In this section, we explain how to lift Schubert varieties from characteristic p > 0 to
characteristic 0, and set the stage for the calculation of tangent spaces.

3.1. Tame liftings of groups

Let k be an algebraically closed field, and letF D k..t// denote the Laurent series field. Let
G be an absolutely almost simple, tamely ramified reductiveF -group, and assume thatG has
the same splitting field as its simply connected group (equivalently, as its adjoint group).
We follow the presentation in [53, §7], but we no longer assume that G is simply connected.
Let F 0=F be the tamely ramified splitting field of G. The extension F 0=F is a cyclic Galois
extension of degree e D 1, e D 2 or e D 3, cf. [53, §7]. We fix a uniformizer u 2 F 0 such
that ue D t , and a generator � for the group h�i D Gal.F 0=F /. We have �u D � � u where
� is a primitive e-th root of unity.

Fix a Chevalley group H over Z together with an isomorphism G ˝F F
0 D H ˝Z F

0

compatible with pinnings on both sides. The pinning for G over F is denoted .G;B; T;X/,
and for H over Z it is denoted .H;BH ; TH ; XH /. Here T � G is the centralizer of the
maximal F -split torus S as above, and X (similarly XH ) denotes the sum of a choice of
root vectors in the Lie algebra of G corresponding to the simple roots � D �.G;B; T /

for .G;B; T /. Recall that we fixed an alcove a � A .G; S; F / containing a facet f in its
closure.

The automorphism id˝� ofG˝F F 0 induces an automorphism � onH˝ZF
0 which can

be written in the form � D �0 ˝ � where �0 2 Aut.X�.TH /;�H ; X�.TH /;�_H / is viewed as
an order e automorphism ofH . Here�H (resp.�_H ) denotes the simple roots (resp. coroots)
for .H;BH ; TH /. Explicitly, we have G D ResF 0=F .HF 0/� . There are identifications of
buildings B.G; F / D B.ResF 0=F .HF 0/; F /� D B.HF 0 ; F 0/� (see [57, 29]). We fixed a
facet f � B.G; F /, which corresponds to � -stable facet in B.HF 0 ; F 0/, also denoted f. The
parahoric group scheme can now be written in the form

(3.1) Gf D .ReskŒŒu��=kŒŒt��Hf/
�;ı;

where Hf is the parahoric group scheme associated with the � -stable facet f � B.HF 0 ; F 0/.
Here .-/ı denotes the fiberwise neutral component which only plays a role if G is not simply
connected.

This leads to the identifications of loop groups

(3.2) LG D .LHk..u///
� and LCGf D .LCHf/

�;ı;

where we refer to the discussion below (3.5) for the second equality.
We now lift (3.1) and (3.2) to the Witt vectors. For this, assume that k is of character-

istic p > 0, and denote by W D W.k/ the ring of p-typical Witt vectors together with the
natural map W! k. Let K D Frac.W/ be the field of fractions. Following the arguments in
[53, §7] (for Iwahori group schemes), or [55, §4.2.2 (a)], we have the ‘parahoric group scheme’

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



906 T. J. HAINES, J. LOURENÇO AND T. RICHARZ

Hf over the ring WŒŒu�� such that Hf ˝ kŒŒu�� D Hf . The group Hf is by construction ‘hori-
zontal along the W-direction’, so that Hf ˝ KŒŒu�� is an Iwahori group scheme of the same
type as Hf (but now the residue field K is of characteristic zero). Note that Hf ˝W..u// D
H ˝Z W..u//. Further, the automorphism � lifts to the automorphism � WWŒŒu�� ! WŒŒu��,
u 7! Œ���uwhere Œ-� denotes the Teichmüller lift. Again we have the automorphism � D �0˝�

on ResWŒŒu��=WŒŒt��.Hf/ so that we can define the fiberwise neutral component (cf. [SGA 3, VIB ,
§3] for general base schemes)

(3.3) Gf
def
D .ResWŒŒu��=WŒŒt��Hf/

�;ı:

By [SGA3, VIB , Thm. 3.10], this is a smooth WŒŒt ��-group scheme with connected fibers such
that Gf ˝WŒŒt�� kŒŒt �� D Gf , and Lemma 3.1 below shows that it is affine as well. We define
G WD Gf ˝WŒŒt��W..t//, andH WD Hf ˝WŒŒu��W..u// D H ˝ZW..u//. We have by base change

(3.4) G D .ResW..u//=W..t//H/
� ;

and since W..u//=W..t// is étale the latter is a reductive group scheme over W..t// (with
connected fibers).

Lemma 3.1. – The WŒŒt ��-group scheme Gf is a Bruhat-Tits group scheme for G in the
sense (1) of [55, Thm. 4.1]. In particular, it is smooth and affine with connected fibers.

Proof. – If G D H is split, then by construction Gf D Hf is such a Bruhat-Tits
group scheme, cf. [55, §4.2.2 (a)]. This is the first step in showing that (3.3) agrees with the
construction in [55, p. 180, middle] in general: starting from G, we may follow [55, §4.2]
and construct the group scheme analogous to the one Pappas-Zhu denote as G� D .G0�/

ı,
where G0� is defined on the bottom of p. 187. We observe the following: if we start from
G#
f WD Gf ˝WŒŒt��;t 7!p W, which is a parahoric group scheme in mixed characteristic, and

apply the construction of Pappas-Zhu [55, Thm. 4.1] to it, then we recover the group
scheme Gf . We use along the way that there is a canonical identification

G#
f ˝W KŒp

1
e � D H ˝Z KŒp

1
e �

coming from (3.3) or (3.4), that is, under Gal.F 0=F / D Gal.KŒp 1e �=K/ the Galois actions
on the group ResWŒŒu��=WŒŒt��.Hf/ induced from Gf resp. G#

f agree.

We define the loop groups as the functor on the category of W-algebras R given
by LWG.R/ D G.R..t/// (resp. LCWGf.R/ D Gf.RŒŒt ��/), and LWH.R/ D H.R..u///

(resp. LCWHf.R/ D Hf.RŒŒu��/). This leads to the identifications

(3.5) LWG D .LWH/
� and LCWGf D .LCWHf/

�;ı:

For the second equality, we note that LCW.ResWŒŒu��=WŒŒt��Hf/
� D .LCWHf/

� which is a
countably infinite successive extension of the � -fixed points of

ResWŒŒu��=WŒŒt��Hf ˝WŒŒt��;t 7!0 W

by vector groups which only depend on a neighborhood of the unit section and so are the
same for LCWGf , cf. [64, Prop. A.4.9, (A.4.11)]. Since vector groups are fiberwise connected,

(1) As in [55, Thm. 4.1], the reductive group scheme G is defined over WŒt; t�1�. It is more convenient for us to
consider the base change along WŒt; t�1�!W..t//.
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we obtain the desired equality using that taking fiberwise connected components commutes
with base change, cf. [SGA 3, VIB , Prop. 3.3].

Corollary 3.2. – As group ind-schemesLWG˝Wk D LG compatible with the subgroup
schemes LCWGf ˝W k D LCGf .

Proof. – This is immediate from (3.5) and (3.2).

3.2. Tame liftings of Schubert varieties

Being ind-schemes, the loop groups (3.5) define fpqc (in particular étale) sheaves on the
category AffSch=W of affine W-schemes.

Lemma 3.3. – The étale quotient FlG;f WD LWG=L
C
WGf is an fpqc sheaf on AffSch=W

which is represented by an ind-projective W-ind-scheme. There is an identification

FlG;f ˝W k D FlG;f :

Proof. – The proof is the same as in [64, Lem. 5.3.2 (i)]: Let T 0 ! T be a faithfully
flat map in AffSch=W. Let T 0  P 0 ! LWG be an object in FlG;f.T

0/ together with a
descent datum along T 0 ! T . By effectivity of descent for affine schemes [1, 0244], the
torsor T 0  P 0 descends to a fpqc-locally trivial torsor T  P represented by affine
schemes. The map P 0 ! LWG descends as well because every ind-scheme is an fpqc-sheaf.
By [64, Prop. A.4.9, Exam. A.4.12 iii.(a)] every fpqc-locally trivial LCWGf -torsor is étale-
locally trivial. Thus, T  P ! LWG is an object of FlG;f.T /. Now the representability
of FlG;f is a special case of [55, Prop. 6.5] in view of Lemma 3.1. Finally, the displayed formula
is immediate from Corollary 3.2 noting that sheafification commutes with fiber products.

We can also provide something close to a lift of Schubert varieties. First, it is well known
that the Iwahori-Weyl group not only does not depend on p but it admits an integral
realization (see [47, Prop. 3.4.1]). Indeed, we have a canonical isomorphism:

N.W.k/..t///=T .W.k/ŒŒt ��/
�
�! N.k..t///=T .kŒŒt ��/ D W;

where N is the normalizer of S in G and its underlined counterpart is its canonical lift to a
closed subgroup of G. For any representative Pw 2 N.W.k/..t/// of w 2 W=Wf , we denote
by Sw D Sw.a; f/ the scheme-theoretic image of the morphismLCGa ! FlG;f ; g 7! g � Pw �e.

Proposition 3.4. – For any w 2 W=Wf , the W.k/-scheme Sw D Sw.a; f/ is projective,
integral, geometrically unibranch and flat over the base. The following are equivalent: the
map Sw ! Sw ˝ k is an isomorphism; Sw ˝ k is reduced; Sw is normal.

The latter properties hold whenever p ∤ #�1.Gder/ and only very rarely otherwise.

Proof. – We may and do assume that w 2 Waff. Projectivity follows from the existence
of Demazure resolutions (see [53, Eq. (9.18)]), whereas being integral and flat over the base
follows from the similar properties for the smooth finite type quotients of the positive loop
group LCGa. For the remaining claims, we consider the morphism

(3.6) S sc;w D S sc;w.a; f/ �! Sw.a; f/ D Sw :
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As for Ssc;w ! Sw , this can be shown to be finite, birational, and a universal homeomor-
phism (see [31, pf. of Prop. 3.5]). Moreover, we know that S sc;w is geometrically normal
over W.k/ and that its special fiber is nothing more than Ssc;w , by [53, §9]. Hence Sw is at
least geometrically unibranch.

Suppose now that Sw is normal. The scheme Sw is reduced, hence has a normalization,
which can be identified with the canonical morphism cWS sc;w ! Sw from (3.6). The
canonical closed immersion Sw ! Sw ˝ k fits into a commutative diagram

Ssc;w
a //

o

��

Sw� _

��
S sc;w ˝ k

b // Sw ˝ k:

The map a is an isomorphism since Sw is normal, hence b is a closed immersion. The map c is
therefore fiberwise a closed immersion and a homeomorphism, hence is by Nakayama’s
lemma a closed immersion of reduced schemes. It follows that c is an isomorphism, and then
the diagram shows that Sw D Sw ˝ k.

On the other hand, if Sw˝k D Sw ; equivalently, the special fiber Sw˝k is reduced, then
we have an equality

dimkH
ı.Sw ;LN / D dimkH

ı.Ssc;w ;LN /
for any ample line bundle L on Sw and N > 0 sufficiently large, by transporting the claim
to the generic fiber using flatness. This implies that the map Ssc;w ! Sw is an isomorphism
and thus Sw is normal, so that we are done.

Remark 3.5. – Assume Sw is normal, so that, as above, Sw is normal. In this case, one
can show more generally that the formation of Sw is compatible with arbitrary base change,
in the following sense. Let Z be any W.k/-scheme. Then Sw;Z WD Sw �Spec.W.k// Z is equal
to the scheme theoretic image of the map

(3.7) LCWGf;Z �! FlG;f;Z ; b 7! b � Pw � eZ ;

where eZ denotes the base point in FlG;f;Z WD FlG;f �Spec.W.k// Z. The main ingredient in
the essential case of f D a is the fact that, if �w W D Qw ! Sw is the Demazure resolution,
the formation of �w;�OD Qw commutes with arbitrary base change, cf. [19], [22, Lem. 3.13,
Prop. 3.15 ff.].

3.3. Negative loop groups

We continue with the same notation and assumptions. The base point 0 2 A .H; TH ; F
0/

defined by H ˝Z OF 0 is invariant under the Galois group, and defines a special point also
denoted 0 2 A .G; S; F / (because by construction �0 preserves the pinning .G;B; T;X/).
After conjugation by an element in Waff, we may assume that the alcove a contains 0 in its
closure, and lies in the chamber defined by the Borel BH .

We adapt the notion of the negative loop group from [11, §3.6] to our set-up as follows: the
IwahoriHa corresponds now to the Borel subgroupBH � H , more precisely,Ha is the Néron
blow up (resp. dilatation) ofH˝ZOF 0 inB˝Zk, cf. [51, Exam. 3.3]. We letBop

H D TH⋉U op
H

denote the opposite Borel subgroup. The negative loop group is the functor on the category
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of W-algebras R given by L�WH.R/ WD H.RŒu
�1�/. We define L��W H WD ker.L�WH ! HW/,

u�1 7! 0, and further we define strictly negative loop group

L��W Ha WD L
��
W H ⋊ U op

H;W;

which is a subgroup ind-scheme of the ind-affine ind-scheme LWH over W. Finally, for the
facet f contained in the closure of a, we define the strictly negative loop group

(3.8) L��W Hf
def
D

\
w2WH;f

w
�
L��W Ha

�
;

where WH;f denotes the subgroup of the affine Weyl group WH;aff corresponding to the
unique facet containing f � A .H; TH ; F

0/; see the beginning of Section 2. As H is split,
each element w 2 WH;aff has a representative in Pw 2 H.W..u///. We set

w
�
L��W Ha

�
WD Pw �

�
L��W Ha

�
� Pw�1 � LWH;

and the intersection (3.8) is taken inside LWH . The strictly negative loop group has the
following key property.

Lemma 3.6. – The mapL��W Hf ! LWH=L
C
WHf , h

� 7! h� �e is representable by a quasi-
compact open immersion.

Proof. – Equivalently, we have to show that the multiplication map

L��W Hf � L
C
WHf ! LWH(3.9)

is a quasi-compact open immersion (to check the equivalence we use thatLCWHf ! Spec.W/
is fpqc, and that quasi-compact immersions are of effective fpqc descent [1, 02JR, 0246]).

This in turn is equivalent to being representable in schemes by a finitely presented étale
monomorphism (see [23, Thm. 17.9.1]). This was already known in the case f D 0 (see [30,
pf. of Lem. 3.1]) or working over a field (see [11, pf. of Prop. 3.7.1]).

The representability follows by writing the morphism as a composition of a closed immer-
sion

L��W Hf � L
C
WHf ! LWH � L

C
WHf

followed by the group multiplication

LWH � L
C
WHf ! LWH

which is representable, because the functorLCWHf also is. For finite presentedness, we simply
observe that both L��W Hf and LWH=L

C
WHf are of ind-finite type.

Next we show that the map is a monomorphism, that is, that the finite type W-group
subscheme

L��W Hf \ L
C
WHf

of LWH equals its unit section. We can do this in two different ways: either check it on
both fibers, see [11, Prop. 3.7.1], which implies that the defining ideal is p-divisible and
p-power torsion, hence trivial; or we check that its field valued points are trivial, again by
[11, Prop. 3.7.1], and that its Lie algebra with coefficients in any W-algebra R vanishes.

Actually, we are going to show more generally that we have a triangular decomposition

LieL��W Hf ˚ LieLCWHf D LieLWH:
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This can be easily calculated using our choice of pinning (especially if f D a or 0); comp. [11,
Prop. 3.6.4]. Alternatively, we can observe that we have equalities

LieLCWHf D
X

w2WH;f

w
�
LieLCWHa

�
(3.10)

LieL��W Hf D
\

w2WH;f

w
�
LieL��W Ha

�
(3.11)

almost by definition. This reduces the decomposition to the case f D a, where it is clear.
Indeed, for the purposes of reducing general facets to alcoves, we can further decom-
pose into TH -weights and the intersections of LieLWUa for any root subgroup Ua with
a WH;f -conjugate of LieLCWHa (respectively, LieL��W Ha) are totally ordered by inclusion,
so their sum (respectively, intersection) equals one of them (respectively, its complement),
comp. [11, Prop. 3.6.4]. Note that formation of the Lie algebra commutes with (completed)
base change for all functors under consideration. Finally, it is enough to remark that this
decomposition implies étaleness of the original map, via translating back to the origin (here
we must use that all functors are formally smooth).

Remark 3.7. – We could have also argued via a bundle interpretation as in [30, Lem. 3.1]
by constructing an appropriate opposite parahoric group scheme over WŒt�1�. This is done
in [47, Def. 4.2.8, Cor. 4.2.11].

We now want to descend the result.

Lemma 3.8. – The subgroup ind-scheme L��W Hf � LWHf is � -invariant.

Proof. – As the base point 0 is � -invariant, one finds that the subgroup L��W H is
� -invariant. The � -invariance of the alcove a � A .H; TH ; F

0/ implies that the opposite
unipotent radical U op

H;W is � -invariant. Note that � acts on U op
H;W through the automor-

phism �0. The lemma follows from the Definition (3.8) using the � -invariance of f.

We define the twisted strictly negative loop group as

(3.12) L��W Gf
def
D .L��W Hf/

�;ı:

Corollary 3.9. – The mapL��W Gf ! LWG=L
C
WGf D FlG;f ,g

� 7! g��e is representable
by a quasi-compact open immersion.

Proof. – As in the proof of Lemma 3.6, it is enough to show that the multiplication
map L��W Gf �W LCWGf ! LWG is a quasi-compact open immersion. There is a Cartesian
diagram

L��W Hf �W LCWHf LWH

.L��W Hf/
� �W .LCWHf/

� .LWH/
� ;

where the horizontal maps are given by multiplication, and the vertical maps are the canon-
ical closed immersions. As the top arrow is an open immersion by Lemma 3.6, the bottom
arrow is an open immersion as well. The corollary now follows from (3.5), (3.12) by passing
to neutral components.
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4. Kac-Moody flag varieties and projective embeddings

In this subsection, we aim at generalizing Ramanathan’s methods [58] via Frobenius
splitting to gather information on the homogeneous ideals that define Kac-Moody Schubert
varieties inside projective spaces or their Schubert overvarieties. We will also follow the
treatment of Mathieu and use some ideas of [50]. An important result for us is Corollary 4.3
which gives a formula for the tangent spaces of Schubert varieties in arbitrary characteristic.
All Kac-Moody algebras below are assumed to be symmetrizable.

Let us start by recalling the definition of a (symmetrizable) Kac-Moody algebra. These are
(mostly infinite-dimensional) Lie algebras g over C associated to symmetrizable generalized
Cartan matrices, i.e., finite integer-valued square matrices A D .aij / with ai i D 2 and
aij � 0, i ¤ j , which become symmetric after multiplication by an invertible diagonal
matrix, see [36, §1.1]. To that end, one starts with the notion of a realization .h;…;…_/ of
the given generalized Cartan matrix, consisting of a finite dimensional C-vector space h, a
linearly independent set of roots ˛i 2 h_, i D 1; : : : ; n and coroots hi WD ˛_i 2 h such
that h˛_i ; j̨ i D aij and dim h D n C corankA, see [36, §1.1]. Then, we extend the abelian
Lie algebra h to a Kac-Moody algebra g by freely adding generators ei , fi for each positive
simple root ˛i and then by imposing the relations: Œh; ei � D ˛i .h/ei , Œh; fi � D �˛i .h/fi ,
Œei ; fj � D ıijhi , ad�aijC1.ei /.ej / D 0 and similarly for fi , fj , cf. [49, p. 16–17].

We have root and coroot lattices Q D
Pn
iD1 Z˛i � h_, Q_ D

Pn
iD1 Z˛_i � h. It turns

out that g factors into a sum of weight spaces

g D
M
˛2ˆ[0

g˛

for the adjoint action of h. Here ˆ � Q denotes the root system of g, for which the ˛i form
a basis (see [36, Thm. 1.2] for these assertions). It admits a natural partition into real roots,
that is, those that are conjugate to a positive simple root under the Weyl group, and imaginary
roots, i.e., the rest of them. Note that there is a triangular decomposition g D nC ˚ h˚ n�,
where nC, resp. n� denotes the sum of all positive resp. negative weight spaces; we denote
by bC the positive Borel subalgebra. Finally, we fix once and for all a weight lattice P � h_

and a coweight lattice P_ � h given by taking Z-duals, such that there are inclusions of
abelian groups Q � P and Q_ � P_ such that the latter is saturated (that is, with flat
cokernel), compare also with [49, p. 16].

Consider the category O of finitely generated g-modules which decompose into h-weight
spaces and whose finitely generated nC-submodules have finite dimension as vector spaces.
We have a highest weight module V.�/ with maximal dominant weight � 2 P for the
Bruhat order. This arises as the unique irreducible quotient of the universal Verma module
U.g/˝U.bC/ C�. The extremal weights of V.�/ are the conjugates w� of the highest weight
under the Weyl group action and they have multiplicity 1. Demazure modules are the cyclic
bC-modules generated by V.�/w�.

In order to study arithmetic related to Kac-Moody algebras and groups, Tits introduced
a Z-form UZ.g/ of the universal enveloping algebra and a fortiori a Z-form gZ of the Lie
algebra. In [49] and [50], Mathieu uses this to define a certain ind-affine Z-group ind-scheme
G whose Hopf algebra of distributions supported at the origin (also known as the hyper-
algebra) is given by the completion bUZ.g/ of UZ.g/ for the obvious descending filtration

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



912 T. J. HAINES, J. LOURENÇO AND T. RICHARZ

(compare with [50, Lem. 2, Lem. 3]). It comes equipped with a canonical maximal split
torus T corresponding to hZ, as well as a positive Borel subgroupBC D T⋉UC containing
it. Let us mention thatBC is an affine, non-finitely presented, flat, closed subgroup scheme
ofG with underlying hyperalgebra given bybUZ.bC/. The fppf quotient F WD G=BC is repre-
sentable by a reduced ind-projective Z-ind-scheme. It is known as Mathieu’s flag variety
associated to the Kac-Moody algebra g (together with the rest of the chosen data). Given
an admissible set J � I of positive simple roots (i.e., such that the subgroup WJ gener-
ated by the corresponding reflections is finite), we can associate to it a standard parabolic
subgroup PCJ D LJ ⋉ UCJ containing BC as a closed subgroup scheme. We have a partial
flag variety FJ WD G=PCJ , which is still representable by an ind-projective Z-ind-scheme.
For each w 2 W=WJ , we may consider the Schubert variety Sw;J � FJ obtained as the
scheme-theoretic image of the orbit map BC ! FJ ; b 7! b � Pw � e, where e 2 FJ .Z/ is the
base point and Pw 2 G.Z/ some representative of the class w. It is a fundamental theorem of
Mathieu [49] and Littelmann [44] that the Sw;J are geometrically normal over Z, i.e., the
structural map Sw ! Spec.Z/ is a normal morphism in the sense of [1, 038Z].

Next we are going to introduce the negative (resp., strictly negative) parabolic subgroups P�J
(resp.U�J ), seemingly a novelty in the literature: in [50, p. 45], Mathieu mentions that P�J is
not defined. We will define P�J and U�J using Gm-actions on G. We refer the reader to [62]
or [15, §2.1] for basic facts on Gm-actions. We will freely use the notation XC (resp. X�,
resp.Xı) as in [62] (and [29, Section 2] for ind-schemes) to denote the attractor (resp. repeller,
resp. fixed point) ind-scheme of an ind-scheme X over Z equipped with Gm-action. We use
similar notation applied to functors which are not known to be ind-schemes. (We empha-
size that the superscripts C;� already appear in connection with subgroups generated by
positive or negative affine root groups. We hope that this will not cause confusion: we will
eventually show that the different superscript meanings are compatible with each other.)

Let us defineP�J and U�J . Fix any dominant �WGm;Z ! T, which is J -regular, i.e., whose
composition with the positive simple roots ˛ in J (resp. I nJ ) is zero (resp. strictly positive).
As a functor, P�J is given by the repeller locus of � acting via conjugation on G, whereas
its unipotent radical U�J is the strict repeller, i.e., the fiber over the identity section of the
map P�J ! Gı given by evaluation at t D 1, where Gı denotes the sub-functor of
fixed points for the Gm-action. Note that Gı � P�J and we have a semi-direct product
decomposition P�J D G

ı ⋉ U�J of group functors.

Lemma 4.1. – The negative unipotent subgroup U�J is representable by an ind-affine closed
subgroup ind-scheme ofG of ind-finite presentation, which does not depend on the choice of the
dominant, J -regular cocharacter �. The multiplication morphism U�J � P

C

J ! G is a quasi-
compact open immersion.

Proof. – We consider the Gm-action on FJ induced by �. The action is Zariski locally
linearizable in the sense of [62, Thm. 1.8] and [30, Thm. 2.1] for ind-schemes (implying
representability of attractors, repellers and fixed points). We consider the ind-closed embed-
ding FJ ! P.V .�/Z/, where � is an integral dominant J -regular weight; comp. Theorem 4.2
below. The embedding is Gm-equivariant when equipping P.V .�/Z/ with the linear action
induced by the adjoint action of Gm via � on the Weyl module V.�/Z given as the
image of UZ.g/ ˝UZ.bC/ Z� in V.�/ (for suitable integral structures). So any ind-affine
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Gm-stable open cover of P.V .�/Z/ yields one of FJ . Moreover, we observe that the identity
section e 2 FJ .Z/ is scheme-theoretically an isolated fixed point because the same is true
in P.V .�/Z/, as is seen by considering the action of the dominant, J -regular cocharacter �
on the line spanned by the highest weight space in V.�/Z. So the fiber V of F�J ! F

ı
J over

the identity section e is equal to the open non-vanishing locus of the section v_
�
2 �.FJ ;L/

killing all the non-highest weight spaces, where L is the pullback of the line bundle O.1/
on P.V .�/Z/; comp. also Corollary 4.3 below.

We return to the ind-affine group scheme G. It has a Gm-stable presentation by affine
schemes Gw;J , which are PCJ -torsors over Sw;J , so [62, Lem. 1.9] applies to show that
U�J � P

�
J � G are representable by closed immersions. We haveGı � LJ and we claim that

Gı D LJ . We verify the equality first at the level of k-valued points, where k is any field: by
the Bruhat decomposition, any g 2 Gı.k/ lies in some double cosetPCJ .k/ PwP

C

J .k/ with the
lift Pw normalizing T. As PCJ � G

C we deduce that Pw 2 GC.k/. The resulting morphism

(4.1) � Pw��1 D .�w��1/ Pw W Gm;k ! G

takes values in the closed subscheme T Pw and extends to A1
k
D Gm;k [ f0g because

Pw 2 GC. On the other hand, �w��1 extends to A1
k

exactly when it is trivial, which
happens when w 2 WJ by regularity of �. This shows that g 2 PCJ .k/ D LJ .k/⋉ U

C

J .k/,
which in turn implies g 2 LJ .k/, since the UCJ .k/-factor contracts to the identity. This shows
Gı.k/ D LJ .k/ as desired. In particular, the natural mapGı ! FJ factors throughV. Since
the scheme-theoretic fixed points of the Gm-stable open neighborhoodV of e 2 FJ coincide
with the origin section e, it follows that Gı � PCJ , the fiber of G ! FJ above e. But
PCJ D LJ ⋉ UCJ and the limit when t D 0 of the attractive UCJ is the identity, so this implies
Gı D LJ , and thus P�J D LJ ⋉ U�J .

Before proceeding, we calculate the k-valued points of U�J for any field k. Set G D G.k/,
P˙J D P

˙
J .k/, LJ D LJ .k/, U

˙
J D U

˙
J .k/, U˛ D U˛.k/ for real roots ˛. Then the Birkhoff

decomposition [65, Prop. 3.16] reads

(4.2) G D
G

w2WJ nW=WJ

Q�J PwP
C

J ;

whereQ�J � P
�
J is the subgroup generated byLJ and theU˛ with ˛ being J -negative. (Here

a J -positive real root is a positive real root in which at least one simple root ˛i in InJ appears
with positive multiplicity; a J -negative real root is the negative of a J -positive real root.) We
claim P�J D Q�J . Indeed, if P�J were different from Q�J , then it would intersect PwPCJ with
Pw … LJ . But this is impossible as P�J maps to the contracting open V, whose unique fixed

point is the identity. In particular, U�J is generated by the U˛ for all J -negative real roots
˛. Also, using the existence of Zariski local sections of G ! FJ , see [50, Lemme 7], we get
that FJ .k/ D G=PCJ , and hence (4.2) implies that U�J maps bijectively to V.k/. Indeed, an
element of the form y Pwe 2 G=PCJ with y D ul 2 P�J D U

�
J LJ can only contract to e under

the Gm-action if w 2 WJ , and then y Pwe D ue.

Finally, in order to show thatU�J�P
C

J ! G is a quasi-compact open immersion, it suffices
to see thatU�J ! V is an isomorphism. Since we already know from the paragraph above that
it is a universally bijective monomorphism, it is enough to show thatU�J ! V is representable
by a smooth morphism. Let PCJ .n/ � P

C

J be the subgroup generated by the root groups
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associated with J -positive roots of height at least n 2 N. The Gm-equivariant map of ind-
schemesG=PCJ .n/! FJ is affine (in fact a torsor for a finite-type group scheme overZ, since
J is admissible), so the source has a Zariski locally linearizable Gm-action. We see using (4.2)
that the injection P�J ! .G=UCJ /

�.k/ is bijective using the following steps. First, note that
the pre-image of V.k/ Š U�J along .G=UCJ /.k/ D G=UCJ ! FJ .k/ D G=PCJ coincides
exactly with P�J D U�J LJ . Second, we observe that P�J � .G=UCJ /

�.k/ and the latter is
stable under left multiplication by P�J . Third, we notice .G=UCJ /

�.k/ maps to V.k/ ' U�J ,
because otherwise (4.2) implies that .G=UCJ /

� would have non-empty intersection with the
Gm-stable closed subscheme PwLJ ofG=UCJ forw … WJ , whereas PwLJ has empty fixed points,
because it does not meet LJ D Gı when regarded as a subscheme of G.

Using the above, we see .G=PCJ .n//
� ! .G=UCJ /

� is universally bijective because the fiber
of G=PCJ .n/ ! G=U

C

J over the identity equals UCJ =P
C

J .n/ and intersects trivially with the
repeller; in other words, because P�J ! P

�
JU
C

J =P
C

J .n/ \ .G=P
C

J .n//
� is an isomorphism.

By [30, Lem. 2.2], the morphism .G=PCJ .n//
� ! .G=UCJ /

� is also smooth, thus necessarily
étale (as the geometric fibers are singletons), so it must be an isomorphism by [1, Tag 025G].
We claim that this yields an isomorphism P�J Š .G=UCJ /

� in the limit. For this, we pass
to Gm-stable scheme presentations of the ind-schemes. So we consider the closed subscheme
Gw � G obtained as pullback of Sw � FJ along the projection G ! FJ . We have
isomorphisms

G�w Š lim
n�1

.Gw=P
C

J .n//
�
Š .Gw=U

C

J /
�;

where the second follows from the previous identification for fixed n (so all transition maps
are isomorphisms), and the first from the fact that Gw Š limn�1Gw=P

C

J .n/ [50, Lem. 3]
and that attractors commute with cofiltered limits of schemes along affine maps. Indeed,
passing to an affine cover, the claimed commutation follows from the induced Z-gradings
commuting with filtered colimits of rings. Taking now colimits for varying w, we get the
claimed isomorphism P�J Š .G=UCJ /

�, so the projection P�J ! V is representable by a
smooth surjection. This finishes the proof of the lemma.

For each J -regular dominant weight �, we may consider the line bundle L.�/ WD G�
P
C

J

Z��
obtained from the natural PCJ -bundle G ! FJ via the character �� of PCJ (compare with
[49] and [50], which use the opposite sign convention). This is a very ample line bundle on FJ
and we have a natural identification between�.FJ ;L.�//_ WD colimw2W=WJ �.Sw;J ;L.�//

_

and the canonical Z-form V.�/Z of the highest weight module: indeed, at each finite step,
the submodule �.Sw;J ;L.�//_ is identified with the integral Demazure module Vw.�/Z,
see [49, Thm. 5].

Finally, we recall that these constructions exhaust after linearization the Picard group
of FJ , by virtue of the isomorphism PJ =PI ' Pic.FJ /, where PJ D f� 2 P j�.˛_j / D 08j 2 J g
(see [49, Prop. 28]).

The following result goes back originally to [58] in the case of classical flag varieties, by
using the relatively new at the time method of Frobenius splitting. Credit is also due to
Mathieu for showing the existence of an ind-splitting of the diagonal of the flag variety (see
[50, Prop. 1]). We are pretty convinced that Littelmann’s path model also yields the same type
of results, see [44].
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Theorem 4.2 (Ramanathan, Mathieu). – Given an ample line bundle L ofSw , the corre-
sponding morphismSw ! P.�.Sw ;L_// is a closed immersion defined by quadrics. Moreover,
the closed immersion Su ! Sw , u � w is linearly defined with respect to L.

Here we allow w D1 to get the entire partial affine flag variety S1 D FJ .

Proof. – The statement refers to the behavior of the graded algebra �.Sw ;L�/ and its
graded module �.Su;L�/ as in Definition A.5. By upper semicontinuity, it suffices to base
change to any positive characteristic p field k. Since every ample line bundle onSw extends
toS1, we are reduced to showing, by Proposition A.4 and Proposition A.6, that the compat-
ibly ind-split Su � Sw � S1 satisfy: the diagonal �S1 is compatibly ind-split with S21;
the partial mixed diagonals�S1 �S1,S1��S1 ,Sw ��S1 andSu��S1 are simul-
taneously compatibly ind-split withS31. We may and do assume J D ; by pushing forward
the splitting along the obvious projection.

For this, we need the convoluted flag varieties S Q�n1 WD S1 Q� : : : Q�S1 D G �
BC � � � �BC F.

Note that herein we have convoluted Schubert varietiesSw1;:::;wn WD Sw1 Q� : : : Q�Swn which
are all compatibly Frobenius split, as one can observe by using appropriate Demazure reso-
lutions (see [50, Lem. 9, Lem. 10]). In particular, under the natural isomorphismS Q�n1 Š S

n
1

given by .m1; : : : ; mn/, where mi denotes the product of the first i coordinates, the diagonal
�S1 is identified with S1;1 (compare with [50, Prop. 1]), and the partial mixed diagonals
�S1�S1, resp.S1��S1 , resp.Sw��S1 , resp.Su��S1 are identified withS1;1;1,
resp. S1;1;1, resp. Sw;1;1, resp. Su;1;1.

The following corollary gives an explicit formula describing the tangent space, which goes
back to work of Kumar [41] in characteristic 0, and Polo [56] for classical flag varieties.

Corollary 4.3 (Kumar, Polo). – Let k be a field of arbitrary characteristic. Let � be any
fixed J -regular dominant weight, with associated ample line bundle L WD L.�/. The k-vector
space TeSw;J ˝ k consists of all X 2 TeFJ ˝ k such that Xv� 2 Vw.�/k .

Proof. – We start by noticing that U�J becomes naturally identified with the distinguished
open subsetDC.v_� / � FJ associated with the dual section v_

�
2 �.FlJ ;L/ killing all weight

spaces different from V.�/� D kv�. Indeed, this is a consequence of [41, Lem. 8.3].

By Theorem 4.2, the closed immersion U�w;J WD Sw;J \ U
�
J ! U�J is defined by the

coefficients '� , where � 2 �.FJ ;L/ ˝ k runs over all vectors perpendicular to Vw.�/k
and '�.u/ D �.uv�/ (see also [56, Prop. 3.1]). Given a tangent vector X 2 TeFJ ˝ k D

TeU
�
J ˝ k, one can check that it lies in TeSw;J ˝ k if and only if the associated distribution

of kŒU�J � WD lim
 �

kŒU�w0;J � kills all the '� designated above. Representing X by a kŒ"�-valued
point u of U�J , we get

'�.u/ D �.uv�/ D " �.Xv�/:

The right side is obviously zero for all � if Xv� 2 Vw.�/k and the converse follows from the
isomorphism Vw.�/

_
k
D �.FJ ;L/˝ k=Vw.�/

?
k

. This proves our description of the tangent
space (compare our argument with Polo’s [56, Thm. 3.2]).
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Remark 4.4. – Polo claims in [56, Cor. 4.1] that the dimension of TeSw;J ˝ k does not
depend on p D char k. He invokes the fact that TeU�J has a natural Z-model given by n�J;Z,
whereas the integral model Vw.�/Z of Vw.�/k is a direct summand of the model V.�/Z
for V.�/k . Now the independence of p of the tangent space dimension is equivalent to the
flatness of the cokernel of n�J;Z ! V.�/Z=Vw.�/Z, X 7! Xv�, or equivalently the saturated-
ness of its image. An argument for this is missing in the proof of [56, Cor. 4.1]. It would be
interesting to clarify this point. This result has at least been invoked in [41, Rem. 8.10] by
Kumar in order to generalize his smoothness criterion to positive characteristic.

Assume g is an affine Kac-Moody algebra, that is, the corank of the corresponding
generalized Cartan matrix is equal to 1. These are classified by affine Dynkin diagrams and
admit very explicit realizations as some mildly modified loop algebras or their fixpoints under
order 2 or 3 automorphisms, see [36, §7–8]. More explicitly, the quotient of ŒgC; gC� by its non-
trivial center (this is a phenomenon particular to infinite-dimensional Kac-Moody algebras)
can be identified with the graded Lie algebra of the group scheme LWG ˝ C constructed
in (3.4) for a given embedding K D FracW ,! C, where G is the only simply connected
absolutely almost simple semisimple group over k..t// having the same affine Dynkin diagram
as g. Under this correspondence, the Borel subalgebra b is mapped to the Lie algebra of Ga
and every standard parabolic pJ to the Lie algebra of GfJ

for some facet fJ in the boundary
of a. We also pick the usual weight latticeP in the Cartan subalgebra h. We have the following
important comparison result, which can be found in [53, §9.h] in a weaker form (see also [72,
§2.5] for an exposition).

Proposition 4.5. – Let k be an algebraically closed field of positive characteristic with
ring of Witt vectors W DW.k/. There are natural isomorphisms

PCJ ˝W Š L̂CWGfJ
⋊Grot

m and G˝W Š L̂WG ⋊Grot
m ;

inducing an equivariant isomorphismFJ˝W Š FlG;fJ compatible withU�J˝W�e Š L
��
W GfJ

�e.

Here the hat loop groups are the central extensions of the respective loop groups by Gm

given by parametrizing pairs .g; ˛/ of group elementsg and isomorphisms˛Wg�O.1/ Š O.1/,
whereO.1/ is the generator of Pic.FlG;0/, see [47, Eqn. (4.3.29)]. In fact, in place of a gener-
ator, we may use any line bundle of a partial affine flag variety with central charge 1. The
rotation Gm is induced by automorphisms of the formal disk RŒŒu�� (as opposed to RŒŒt ��).

Idea of proof. – First of all, we construct the isomorphism PCJ ˝W Š L̂CWGfJ
⋊ Grot

m .
This essentially amounts to verifying that their algebras of distributions match (see either
[53, §8.d] or [47, Thm. A.2.4]).

Next we identify the Kac-Moody setting Demazure varietiesD Qw with those denoted D Qw
above, in the natural way, induced by the twisted product decomposition in terms of
parabolics for the left side and jet groups for the right side. By means of a topological
argument, we can now get an equivariant identification Sw Š Sw.a; a/ (see [49, Lem. 32,
Lem. 33] and compare them to the references in the previous paragraph). This yields the
desired equivariant identification of full flag varieties F˝W Š FlG;a, as both are geometri-
cally reduced over W, and then of the partial counterparts by taking quotients.
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Now we deduce G˝W Š L̂WG ⋊Grot
m . Consider theBC-bundle Gw over Sw obtained

as the affine hull with respect to Sw of the canonical BC-bundle over the Demazure
variety D Qw , see [49, Ch. XI]. Here, the affine hull of a morphism f WY ! X is the factor-
ization Y ! Specf�OY ! X , where the middle object is the relative spectrum of the
quasi-coherent OX -algebra f�OY . By the universal property of the relative affine hull, we

get a BC ˝Z W Š L̂CWGa ⋊Grot
mW-equivariant morphism towards the preimage of Sw.a; a/

in L̂WG⋊Grot
m;W, which then must be an isomorphism. Taking direct limits now recovers the

isomorphism G˝W Š L̂WG ⋊Grot
m;W.

Finally let us prove U�J ˝ W Š L��W GfJ
inside LWG. First we note that U�J ˝ W lies

in L̂WG by naturality of strict repellers, because any J -regular dominant coweight � has
positive image in Grot

m . Recall from the proof of Lemma 4.1 that U�J .�/ is generated by the
J -negative real root subgroups, and thus U�J .�/ maps into L��W GfJ

.�/ for any algebraically

closed field � which is a W-algebra. Now the composition U�J ˝W � L̂WG ! LWG is a
(representable) quasi-compact monomorphism of reduced ind-schemes. Since L��W GfJ

is a
closed sub-ind-scheme of LWG, we obtain a map pWU�J ˝W ! L��W GfJ

which is a quasi-
compact monomorphism. Now consider the commutative diagram of ind-schemes

L̂WG U�J ˝W FJ ˝W

LWG L��W GfJ
FlG;J :

closed open

closed open

smooth q p Š

The right square implies thatp is an open immersion. Since q�1.U�J˝W/ D U
�
J˝W�G

cent
m;W is

closed in L̂WG, fppf (or smooth) descent for closed immersions implies that p is a closed
immersion as well. Since U�J ˝W is non-empty and L��W GfJ

is connected, the map p is an
isomorphism.

Remark 4.6. – The above picture extends to the integers Z (in other words, to the wildly
ramified cases) by work of the second-named author, resting on complicated group-theoretic
constructions described in [47, §3, App.].

Remark 4.7. – For any algebraically closed field k which is a W-algebra, we can iden-
tify U�J .k/ Š L��W GfJ

.k/ inside LWG.k/, by means of a combinatorial argument. For this,
recall that U�J .k/ is generated by the J -negative real root subgroups it contains. The fact
that L��W GfJ

.k/ shares the same generation property is more or less implicit, though seem-
ingly never explicitly proved, in Kac-Moody theory (compare with [68, App. 2] and [70, §1.3,
§4]); we will give a proof, for general J , for completeness. First of all, assume that J D ;,
so that fJ D a is an alcove. Let S be a maximal k..t//-split torus of G whose corresponding
apartment contains a, and note that L�WGa.k/ D S.k/ ⋉ L��W Ga.k/ fits into an adequate
Birkhoff decomposition by [33, Prop. 1.1] which we can compare with the induced Birkhoff

decomposition on LWG coming from (4.2) for the Kac-Moody group in the case J D ;
(this is legitimate because the two groups differ by at most Gm-factors in the maximal torus).
Write g 2 L��W Ga.k/ as u Pwb with u 2 U�

;
and b 2 LCWGa.k/; we see that w D 1 and b lies

in L��W Ga.k/\L
C
WGa.k/ D 1 (recall Corollary 3.9). This proves L��W Ga.k/ D U

�
;

, hence the
generation result for the left hand side. In general, the subgroupU�

;
is the semi-direct product
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ofU�J and the group generated by all negative real root groups contained inLJ � LCWGfJ
.k/,

so the inclusionL��W GfJ
.k/ � U�

;
and the triviality of the intersectionLCWGfJ

\L��W GfJ
force

the desired equality L��W GfJ
.k/ D U�J .

Remark 4.8. – If we transport the Gm-action on G given by a J -regular dominant
weight to LG, we can almost immediately deduce that LCGfJ

is the attractor locus and
L��W GfJ

is the strict repeller locus. Suffice it to say that our proof of Lemma 4.1 was heavily
inspired by the dynamical method of [15, §2.1] and should be regarded as an infinite-
dimensional generalization thereof.

5. Tangent spaces at base points

Here we combine the results from Sections 3–4 to give an effective criterion for the
normality of Schubert varieties in Section 5.4. With a view toward a future classification
of all non-normal Schubert varieties, we state our results over the ring of p-typical Witt
vectors, which provides a possibly useful link between the characteristic p and character-
istic 0 settings.

5.1. Preliminaries on tangent spaces

We start with some general properties of tangent spaces of (ind)-schemes over a general
base equipped with a section.

Definition 5.1. – Let S be a scheme and X be a sheaf of sets on the category
of S -schemes equipped with x 2 X.S/. The tangent space TxX of X at x is the sheaf
which associates an S -scheme T to the pre-image p�1" .xT / of xT 2 X.T / induced by x
along the map p" W X.T Œ"�/! X.T /. Here by definition T Œ"� D T �SpecZŒ"� where "2 D 0.

IfX is representable by a scheme, our tangent space coincides with the (implicit) definition
of Demazure-Gabriel (see [17, II, §4, Cor. 3.3]):

Proposition 5.2. – Let X ! S be a scheme endowed with a section xWS ! X . For
any S -scheme T , there is a natural bijection of sets TxX.T / D HomOT .x

�
T�XT =T ;OT /. In

particular, TxX.T / has a natural structure of a �.T;OT /-module.

Proof. – Since S is an arbitrary scheme, we reduce to the case S D T . To give
f 2 TxX.S/, i.e., a morphism f WSŒ"� ! X compatible with x, is the same as to give
an S -derivation d WOX ! x�OS : since jSŒ"�j D jS j on topological spaces, such an f is the
same as a morphism of sheaves of rings f #WOX ! x�OSŒ"� D x�OS ˚ "x�OS . The compat-
ibility with x implies f # D x# C "df and it is easily verified that df 2 DerS .OX ; x�OS / is
an S -derivation. We thus get natural bijections

TxX.S/ D DerS .OX ; x�OS / D HomOX .�X=S ; x�OS / D HomOS .x
��X=S ;OS /;

where the second identification is [1, 01UR], and the last identification is the adjunction.

Hence, if T D Spec.R/ is an affine scheme, then TxX.R/ is anR-module by the preceding
proposition.
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Corollary 5.3. – LetR be a ring and i W .X; x/! .Y; y/ be a monomorphism of pointed
R-schemes. Then the induced homomorphism i�WTxX.R/! TyY.R/ ofR-modules is injective.
If i is an open immersion, then this homomorphism is bijective.

Proof. – This is immediate from the definition, and the fact that monomorphisms are
formally unramified, and open immersions are formally étale (see [23, Prop. 17.1.3.(i)]),
combined with the exact sequence i��Y=R ! �X=R ! �X=Y ! 0.

Corollary 5.4. – If X D colimXi is a strict pointed ind-scheme over R, then
TxX D colimTxXi (here TxXi WD 0 if x 62 Xi .R/) is an R-module independent of the
chosen presentation as a strict ind-scheme.

Proof. – This is immediate from Corollary 5.3.

It is worth noting that the tangent space does not commute with base change in general,
whereby we mean the equality TxX.R/˝R R0 ! TxX.R

0/ for all R-algebras R0, but we still
have the following:

Lemma 5.5. – Maintain the notation of Proposition 5.2, and suppose moreover thatX ! S

is of finite type and that T D SpecR is a Dedekind scheme. Then, for all R-algebras R0, the
canonical homomorphism TxX.R/˝R R

0 ! TxX.R
0/ is injective. Moreover, it is bijective for

all R-algebras R0 if and only if x��X=R is torsion-free.

Proof. – We may assume S D T and hence that X ! S is of finite presentation. After
localizing, we can write x��X=R D Rn ˚ M where M is a (finitely generated) torsion
module, cf. [1, 01V3]. Let X 0 WD XR0 with induced section denoted x0. Since x0��X 0=R0 D
R0n ˚ .M ˝R R

0/ by [1, 01UV], we get

TxX.R
0/ D HomR0.x

0��1X 0=R0 ; R
0/ D R0n ˚HomR0.M ˝R R

0; R0/:

Using HomR.M;R/ D 0 (becauseR is torsion-free), the lemma follows. This also shows that
bijectivity is equivalent to HomR.M;R

0/ D 0 for all R-algebras R0, which in turn amounts
to asking M D 0 by Nakayama’s lemma.

Lemma 5.6. – Suppose i W .X; x/! .Y; y/ is a closed immersion of pointed ind-schemes of
ind-finite type over a Dedekind ring R. Then the cokernel of i�WTxX.R/ ! TyY.R/ is a flat
R-module.

Proof. – By Corollary 5.4, we may and do assume that X and Y are finite-type schemes.
After localization, we may also assume thatR is a discrete valuation ring with uniformizer � .
Assume there is a v 2 TyY.R/ n TxX.R/ such that �v 2 TxX.R/. By Corollary 5.3 and
Lemma 5.5, we have injections

TxX.R/=�TxX.R/ � TxX.R=�R/ � TyY.R=�R/:

Since �v D 0 in TyY.R=�R/, we get �v 2 �TxX.R/, i.e., the existence of somew 2 TxX.R/
such that �w D �v. As TyY.R/ D HomR.y

��1
Y=R

; R/ is free of finite rank (so in
particular R-torsion free) by the proof of Lemma 5.5, we reach a contradiction. This proves
the lemma.
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5.2. Tangent spaces of affine flag varieties

Let us give a description of the tangent space of the affine flag variety. We proceed with
the assumptions and notations of Section 3, except that we will henceforth often abbreviate
L��W G, etc, by omitting the subscript W and writing L��G, etc. In what follows, h (respec-
tively L��h, respectively uop

H ) denotes the Lie algebra ofH (respectively L��H , respectively
U

op
H ) taken over W.k/.

Lemma 5.7. – For the tangent space at the base point e 2 FlG;f.R/ with values in a
W.k/-algebra R, one has as R-modules

TeFlG;f.R/ D TeL
��Gf.R/ D

 \
w2WH;f

w
�
.L��h/˚ u

op
H

�
˝R

!�
:

This is a free R-module and its formation commutes with arbitrary base change.

Proof. – By Corollary 3.9, the mapL��Gf ! FlG;f ; g 7! g �e is representable by a quasi-
compact open immersion. This immediately implies

TeFlG;f.R/ D TeL
��Gf.R/ D Te.L

��Hf/
� .R/:

Using that Te.-/ commutes with taking fixed points .-/� and intersections, the corollary
follows from Definition (3.8).

Next we observe that the R-module TeFlG;f.R/ is projective, as the � -averaging map
furnishes a retraction to its inclusion in the free module\

w2WH;f

w
�
.L��h/˚ u

op
H

�
˝R:

(Note that the order of � (which is e) is a unit in W.k/, hence in R as well.) A similar
argument shows that the tangent space is compatible with base change, i.e., the natural
map TeFlG;f.W.k//˝ R! TeFlG;f.R/ is an isomorphism for all W.k/-algebras R (use the
� -averaging retraction applied to the obvious equality in the split case). Hence it suffices to
observe thatTeFlG;f.W.k// is free, which follows from Kaplansky’s theorem, becauseW.k/ is
local.

Example 5.8. – Assume that f D 0 is the base point of A .G; S; F / which is an abso-
lutely special vertex. Recall that absolutely special vertices exist for all quasi-split groups by
[28, Lem. 5.2]. In this case, L��Gf D .L��H/�;ı so that we obtain

TeFlG;f.R/ D .L
��h˝R/� D

M
i�1

�
h˝RŒu�i �

��
:

(Here RŒu�i � is just notation meaning the R-span of the monomial u�i .)
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5.3. Tangent spaces of Schubert varieties

Within this subsection, we additionally assume G to be simply connected. By Proposi-
tion 4.5, there is a canonical isomorphism of W-ind-schemes FlG;f Š FJ ˝ W inducing
isomorphisms of integral Schubert varieties Sw Š Sw ˝W for all w 2 W=Wf . Given any
ample line bundle L on FlG;f , it admits a unique equivariant action of dLG, which in partic-
ular naturally acts on �.FlG;f ;L/_ WD colimw �.Sw ;L/_. Restricting this action to L��Gf
and taking the tangent spaces at base points, we obtain the action of TeFlG;f on�.FlG;f ;L/_.
Under the isomorphisms in Proposition 4.5, this is nothing but the Kac-Moody action used
in Corollary 4.3.

Lemma 5.9. – The R-valued tangent space TeSw.R/ identifies with the submodule
of TeFlG;f.R/ consisting of thoseX such thatX‚_L lies in �.Sw ;L/_, where‚L 2 �.FlG;f ;L/
is the usual theta divisor attached to L with support given by the complement of L��Gf � e and
‚_L denotes the unique element in the dual weight space sending the theta divisor to 1 and all
other weight spaces to 0.

Proof. – Now that we have defined a general notion of tangent spaces for any ring R,
we can repeat the proof of Corollary 4.3 for arbitrary R, using the isomorphism
U�J ˝W � e Š L��Gf � e from Proposition 4.5.

5.4. Application to the normality criterion

Let us now turn to our effective criterion for normality, namely Corollary 5.12 below. Let
G be a tamely ramified, absolutely almost simple, semisimple F -group which has the same
splitting field as its simply connected coverGsc ! G. The set-up of Section 3 applies to both
groups Gsc, G and we use it to determine the kernel of the map FlGsc;f ! FlG;f on tangent
spaces at the base points, cf. Corollary 5.12.

We proceed with the notation of Section 3. The map Hsc ! H on Chevalley groups
extends to a map on parahoric kŒŒu��-group schemes Hsc;f ! Hf . This induces a map on
strictly negative loop groupsL��Hsc;f ! L��Hf over k, and hence a map on twisted strictly
negative loop groups

(5.1) L��Gsc;f ! L��Gf :

(In this subsection, we abbreviate the functorL��
k

, which has the meaning analogous toL��W ,
by L��.) We want to determine the kernel of (5.1). There is a central extension of flat affine
Z-group schemes

1! ZH ! Hsc ! H ! 1;

where ZH is a suitable �0-invariant subgroup of the center of Hsc. Then ZH is a finite flat
Z-group scheme of multiplicative type which is étale over Z.p/ if and only if p ∤ #ZH D #�1.G/.

Definition 5.10. – Let Z be the kernel of Gsc ! G. The strictly negative loop group
for Z over k is the subgroup functor of LGsc defined as

L��Z
def
D .L��ZH /

�;ı
� .LHsc/

�
D LGsc:

Note that L��Z is representable by a closed subgroup ind-scheme of LGsc.
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Lemma 5.11. – There is a short exact sequence of group functors

1! L��Z ! L��Gsc;f ! L��Gf :

Proof. – Clearly, there is a short exact sequence 1 ! L��ZH ! L��Hsc ! L��H .
Using that U op

Hsc
D U

op
H for the opposite unipotent radicals and that WHsc;f D WH;f in (3.8),

we obtain a short exact sequence

1! L��ZH ! L��Hsc;f ! L��Hf :

The lemma now follows from Definition (3.8) by passing to � -invariants (which is left exact)
and by taking neutral components.

By Corollary 5.7, we obtain a k-vector subspace

TeL
��Z � TeL

��Gsc;f D TeFlGsc;f ;

where e 2 FlGsc;f.k/ denotes the base point. Recall from (2.1) that there is a map of Schubert
varieties Ssc;w D Ssc;w.a; f/! Sw.a; f/ D Sw for each w 2 Waff=Wf .

Corollary 5.12. – For each class w 2 Waff=Wf , the following are equivalent:

1. The Schubert variety Sw � FlG;f is normal.

2. One has
.TeL

��Z/ \ .TeSsc;w/ D 0

as k-vector subspaces of TeFlGsc;f .

Proof. – By Proposition 2.1, part (1) is equivalent to ker.TeSsc;w ! TeSw/ D 0 where e
denotes the base point of both FlGsc;f and FlG;f . Lemma 5.11 implies that there is an exact
sequence of k-vector spaces

0! TeL
��Z ! TeL

��Gsc;f ! TeL
��Gf ;

so that ker.TeSsc;w ! TeSw/ D .TeL
��Z/ \ .TeSsc;w/. This proves the corollary.

Remark 5.13. – By [53, Thm. 0.2], the ind-scheme FlGsc;f is reduced so that
FlGsc;f D colimw Ssc;w is a presentation. Thus, Corollary 5.12 shows that, if L��Z is
non-trivial, there are infinitely many .a; f/-Schubert varieties inside FlG;f which are not
normal, hence not weakly normal, not Frobenius split and not Cohen-Macaulay.

6. Towards a classification of normal Schubert varieties

Let k be an algebraically closed field of characteristic p > 0, and let G be a tamely
ramified, absolutely simple group over F D k..t//. Examining the tables in [8, Ch. VI,
Planche IX] and [67, §4], here is the list of all such pairs .G; p/ such that p j #�1.G/. Split
groups:

— type An, n � 1 and p jnC 1;

— type Bn, n � 2 and p D 2;

— type Cn, n � 2 and p D 2;

— type Dn, n � 3 and p D 2;
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— type E6 and p D 3;

— type E7 and p D 2.

The split groups E8, F4 and G2 have connection index 1, and hence are excluded from the
list. Twisted groups:

— type B-Cn, n � 3 and p j 2n, p 6D 2 (even unitary);

— type C -BCn, n � 1 and p j 2nC 1 (odd unitary);

— type F I4 and p D 3 (ramified E6);

— type GI2 and p D 2 (ramified triality).

The twisted orthogonal groups C -Bn, n � 2 are excluded by our tamely ramified hypothesis.

The methods developed in the preceding paragraphs allow us to give a quantitative
criterion for the normality of Schubert varieties in general partial affine flag varieties, see
Propositions 6.4 and 6.5. The key input is the computation of the tangent spaces of quasi-
minuscule Schubert varieties in twisted affine Grassmannians for absolutely special vertices
in Section 6.1. In Section 6.3 we discuss the example of PGL2 in characteristic 2 which is
much easier. In general the classification of all finitely many normal Schubert varieties in
the flag variety for each pair .G; p/ in the above list seems to be a challenging problem, see
Section 6.2 for some further discussion.

6.1. Absolutely special vertices

We proceed with the assumptions and notations of Section 5.4. In particular,G is a tamely
ramified, absolutely almost simple, semisimple F -group which has the same splitting field as
its simply connected cover Gsc ! G.

We further assume f D 0 is the fixed absolutely special vertex in A .G; S; F /. Our aim is
to give an effective criterion for the normality of .a; 0/-Schubert varieties inside the neutral
component of the twisted affine Grassmannian Gr WD FlG;0. For this, we study the tangent
spaces of .a; 0/-Schubert varieties inside Grsc WD FlGsc;0. The LCGsc;a-orbits inside Grsc

are enumerated by the set Waff=W0 D X�.Tsc/I , the coinvariants under the Galois group
I WD Gal.F 0=F / where F 0=F is the splitting field. For each N� 2 X�.Tsc/I , we denote
by Ssc; N� � Grsc the corresponding .a; 0/-Schubert variety. In view of Corollary 5.12 we have
to determine exactly those N� 2 X�.Tsc/I such that .TeL��Z/ \ .TeSsc; N�/ D 0 inside

(6.1) TeGrsc D
M
i�1

�
hscŒu

�i �
��
;

cf. Example 5.8 (in particular note that hscŒu
�i � is just our notation for u�ihsc). Our

normality criterion rests on the following key calculation.

Proposition 6.1. – Let N� 2 X�.Tsc/I be the unique B-dominant, quasi-minuscule
element. Then

TeSsc; N� �
�
hscŒu

�1�
��

as k-vector subspaces of (6.1), and equality holds if char.k/ D 0.
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Proof. – For the proof of this inclusion, we may and do assume char.k/ D 0 by
Lemmas 5.5 and 5.6 combined with Proposition 3.4, all applied to the normal Schubert
variety S sc; N�. The equality follows then from our work with minimal nilpotent orbits in
Appendix C, which extends previous results of [48, §2.9] and [28, §8]. (Note that N� D �_,
where � is the highest root in the échelonnage root system for G; see [27] and Section 6.2.)
For convenience of the reader, let us just note that the inclusion TeSsc; N� �

�
hscŒu

�1�
��

is much simpler—and this is all we will need to prove the important Corollary 6.2 below.
Indeed, the intersection of both sides is certainly non-trivial, as we see by looking at the
.a; 0/-Schubert variety Sw for the affine simple reflection w D s0. Moreover, both tangent
spaces carry an action by the split groupH �0

sc . Now we use that the right side is an irreducible
H
�0
sc -module: this is obvious in the split case, because we get the adjoint representation; in

the twisted case, it is proved in Proposition C.1, Proposition C.2 and [28, Lem. 8.4].

Corollary 6.2. – If p j #�1.G/, then the quasi-minuscule Schubert variety inside GrG is
not normal.

Proof. – Let zH denote the Lie algebra over k of the kernel ZH of Hsc ! H ; cf.
Section 5.4. Note zH is nonzero since ZH is not étale over k by assumption. Combining
Proposition 6.1 with Corollary 5.12 (2), it is enough to show that the subspace
.zH Œu

�1�/� � .hscŒu
�1�/� is non-trivial. If G is split, so that � acts trivially, then zH Œu�1� is

clearly non-trivial. If G is non-split, we go through the possible types for H listed in the
beginning of Section 6. First for simplicity assumeG, and henceH , is adjoint, so thatZH is
the center of Hsc and zH is the center of hsc, that is, the kernel of the adjoint representation,
see [14, Prop. 3.3.8 ff.]. If H is of type An, then zH is spanned by the element

nX
iD1

i˛_i :

Then we notice the congruence n C 1 � i � �i modulo p and use that ˛_i 7! ˛_nC1�i
and u�1 7! �u�1 under � . If H is of type D4, then �0 permutes the roots as follows:
˛1 7! ˛3 7! ˛4 7! ˛1, ˛2 7! ˛2. It follows that zH contains in characteristic p D 2 the
element

˛_1 C �
�1˛_3 C �

�2˛_4 ;

which becomes � -invariant after multiplying by u�1. Here � is a primitive 3rd root of unity
in the notation of Section 3.1. To check the containment, multiply the Cartan matrix by
the column vector .1; 0; ��1; ��2/ and show that the sum of the entries in each row vanishes
modulo 2. Finally in the E6 type, a similar argument in characteristic p D 3 shows that zH
contains

˛_1 C 2˛
_
3 � 2˛

_
5 � ˛

_
6 :

To show that this element becomes � -invariant after multiplying by u�1 use that ˛_1 $ ˛_6 ,
˛_3 $ ˛_5 and u�1 7! �u�1 under � . This proves the corollary in the adjoint case.

To handle the general non-split cases where H is of type An, note that zH 6D 0 must be
the entire 1-dimensional center of hsc. In type E6, the groupZH is a non-trivial subgroup of
the center ZHsc D m3 of Hsc, hence equal, so that G must be adjoint in this case. If H is of
typeD4, then the center ofHsc isZHsc D m2�m2, with Lie algebra zHsc D k˚k. The order 3
automorphism �0 preserves ZHsc and acts on zHsc (up to choice of basis) by e1 7! e1 C e2,
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e2 7! e1. Now if 1 ⊊ ZH ⊊ ZHsc were �0-invariant and non-étale, then ZH Š m2 (use
Cartier duality), and hence �0 acts trivially onZH (since Aut.m2/ Š 1). In this case �0 would
fix a vector in zHsc D k˚k, a contradiction. It follows that onlyZH D ZHsc occurs so thatG
must be adjoint in this case as well. This proves the corollary.

Using the absolutely (2) special vertex 0 2 Na, we identify A D A .G; S; F / with X�.T /I;R,
where I D Gal. NF=F /. Recall that the Iwahori-Weyl group W acts by affine linear transfor-
mations on A . We use the Bruhat-Tits convention: t 2 T .F / acts by translation by��T .t/ (3),
where �T WT .F /↠ X�.T /I is the Kottwitz homomorphism constructed in [39, §7]. Following
[27, Prop. 13, Lem. 14], we get isomorphisms

W
�
! Waff ⋊�a Š X�.T /I ⋊W0;

where �a is the subgroup of W preserving a, where the map NormGT .F /! X�.T /I ⋊W0
extends �T WT .F / ↠ X�.T /I . In particular, we have the group embedding X�.T /I ,! W

denoted � 7! t� where t� is characterized by the property �T .t�/ D � (if T is split,
t� D �.t/ mod ker.�T /). According to the Bruhat-Tits convention, the element t� , and
hence �, acts on A by translation by the image of �� in X�.T /I;R. We may view Waff as the
Coxeter group generated by the reflections through the walls of a. Using the isomorphism,
we transport the Bruhat order on Waff ⋊ �a to one on W ; this induces the Bruhat order
on W=W0. Our choice of embedding X�.T /I ,! W induces a well-defined bijection of
sets X�.T /I

�
! W=W0, and we consider the transported Bruhat order on X�.T /I . We are

going to need the following combinatorial description of the Bruhat order onX�.T /I , which
can be found in [6, Thm. 2.5] for split groups.

Recall (cf. [27]) that Waff D Waff.†/ for the échelonnage roots † D †.G; S; F /; these
have the property that the hyperplanes annihilated by the affine roots ˆaf.G; S; F / of Tits
[67, §1.6] are in bijection with those annihilated by the affine functionals of the form ˇ C n

forˇ 2 †, n 2 Z. LetQ_ D ZŒ†_� be the échelonnage coroot lattice; it may be identified with
X�.Tsc/I . In what follows, all finite and affine roots mentioned will be échelonnage (affine)
roots. Let CC be the Weyl chamber in A which contains a and has apex 0. We say a finite
root ˇ (resp., affine root ˇCn) is positive (and write ˇ > 0, resp.,ˇCn > 0) if it takes positive
values onCC (resp., a). Recall thatWaff is the Coxeter group generated by the reflections sˇCn
in the simple positive affine roots ˇ C n.

Proposition 6.3 (Besson-Hong). – Given two coweights �;� 2 X�.T /I , the inequality
� � � holds if and only if �� � 2 Q_ and there is a sequence of coweights �i 2 X�.T /I such
that �0 D �, �r D � and satisfying the following: there is a positive root ˛i such that either
�iC1 D �i � k˛

_
i with 0 � k � h˛i ; �i i or �iC1 D �i C k˛_i with 0 � k < �h˛i ; �i i.

It was already well-known that, if � and� lie in a common Weyl chamber, then the Bruhat
order described above coincides with the usual dominance partial order with respect to the
given Weyl chamber (cf. [59, Lem. 3.8, Prop. 3.5], [6, Thm. 4.1]).

(2) For this discussion, any special vertex will do.
(3) More precisely, it acts by the image of this element inX�.T /I;R; recallX�.T /I might have torsion.
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Proof. – By definition � � � if and only if t� � t� in the Bruhat order on W=W0. Let
w� 2 W be the minimal length element in t�W0. The Bruhat order onW=W0 is generated by
the following relation between w�0 ; w� for pairs of distinct elements �; �0 2 X�.T /I : there is
an affine reflection sˇCn with ˇ C n positive such that

w�0 > sˇCnw�0

in the Bruhat order on W , and sˇCnw�0W0 D w�W0; (when this happens we write
w�0W0 > sˇCnw�0W0). This is the same as saying that sˇCn.��0/ D ��, and the point��0C0
and the alcove a are on opposite sides of the affine hyperplaneHˇCn, that is,�hˇ; �0iCn < 0.

Therefore, t� < t� if and only if � � � 2 Q_ and there exists a sequence of reflections
si D sˇiCni , (0 � i � r � 1; ˇi C ni > 0), such that as elements in X�.T /I;R
we have ��0 D ��, ��r D �� D sr�1 � � � s0.��/, and where, for each i � 0, if
��i WD si�1 � � � s0.��0/, then �hˇi ; �i iC ni < 0. Of course, we may assume �0; : : : ; �r has
no repetitions.

By definition ��iC1 D si .��i /, that is,

��iC1 D ��i �
�
hˇi ;��i i C ni

�
ˇ_i :

Because ˇi C ni is a positive affine root, we have ni � 0 and ni D 0) ˇi > 0.

(1) If ˇi > 0 then ni � 0 and �iC1 D �i � kˇ
_
i where k D hˇi ; �i i � ni . Note

that 0 < k � hˇi ; �i i. Set ˛i D ˇi .

(2) If ˇi < 0 then ni � 1, and �iC1 D �i C k.�ˇi /
_, where k D hˇi ; �i i � ni . Note

that 0 < k < �h�ˇi ; �i i. Set ˛i D �ˇi .

Conversely, given the positive root ˛i and integer k satisfying the given restrictions, we may
define the positive affine root ˇi C ni using (1) or (2), for which we have �hˇi ; �i i C ni < 0.

In the following we apply this to uniformly bound the subset of normal Schubert varieties
for absolutely almost simple semisimple groups such that p j #�1.G/, that is, for those
semisimple groups G such that Gsc ! G is a non-étale isogeny.

Proposition 6.4. – LetG be an absolutely almost simple semisimple group whose simply
connected cover is a non-étale isogeny. Then the set of � 2 Q_ such that S� is normal is finite.
More precisely, it is contained in the finite complement of all � 2 Q_ such that � � �2�_,
where � denotes the highest root for the échelonnage root system †.G; S; F /.

Proof. – We start by observing that�2�_ is bigger than �_. Indeed,�h�;�2�_i D 4 and
thus �_ D �2�_ C 3�_ is less than �2�_ for the partial Bruhat order, see Proposition 6.3.
By Corollary 2.2 combined with Corollary 6.2, this gives the proposition as soon as we know
that the complement of f� 2 Q_ j � � �2�_g in Q_ is finite.

Suppose C1 and C2 are two adjacent closed Weyl chambers such that C1 lies in a minimal
gallery connecting the dominant Weyl chamber to C2. Then there is a positive root ˛ such
that the wall of the reflection s˛ bounds C1 and C2, in such a way that C1 lies on the
nonnegative side with respect to ˛. In particular, if � 2 C1, then s˛� 2 C2 and the inequality
s˛� � � holds, again by Proposition 6.3, as h˛; �i � 0.
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Let Q_C denote the dominant elements in the coroot lattice Q_. The above argu-
ment reduces us to considering only antidominant �, that is, to showing that the set
f� 2 Q_C j � � � ��0g is finite for any fixed �0 2 Q_C. We will show the equivalent state-
ment that f� 2 Q_C j � � �0g is finite. Dominance ensures we may write � D

P
ni˛
_
i and

�0 D
P
n0;i˛

_
i , where ni ; n0;i � 0 for all i . Writing � D

P
ni˛
_
i and �0 D

P
ni;0˛

_
i , it is

enough to prove that for all j , nj � 2r maxifn0;igwhenever � 6� �0, where r is the number of
nodes of the Dynkin diagram for†.G; S; F /. In this case, by Proposition 6.3 there is some i
such that ni < n0;i . For j ¤ i , set rij D �h˛i ; ˛_j i 2 Z. Assuming j̨ is adjacent to ˛i in
the Dynkin diagram, rij � 1. By the dominance of �, we see that 2ni � rijnj � h˛i ; �i � 0,
which implies nj � 2ni < 2maxifn0;ig. Repeating this argument shows nj � 2r maxifn0;ig
for all j because the Dynkin diagram for †.G; S; F / is connected.

6.2. General facets

Here we keep virtually all notation introduced in the previous section, in particular we
require G to be absolutely almost simple, but we no longer assume that f D 0. We rather
assume that f and 0 are subfacets of the dominant base alcove a. For any � 2 X�.T /I ,
let w� (resp.w�) denote the maximal (resp. minimal) length element in t�W0. Let � be the
highest échelonnage root of G. Then N� D �_ is the unique quasi-minuscule coweight for
the échelonnage root system†.G; S; F /. Fix any regular antidominant element ı 2 X�.T /I
such that ı � �_ in the Bruhat order on X�.T /I .

Proposition 6.5. – Let � 2 �a. All but finitely many elements of the form x� 2 Waff�=Wf
satisfy x� � wı��_� in the Bruhat order on W=Wf , and for any such element Sx� .a; f/ is not
normal if Gsc ! G is a non-étale isogeny.

Note that this proposition proves Theorem 2.5.

Proof. – We can immediately reduce to the case � D 1. Since ı is regular antidominant,
we see easily that wı��_ > wı � w�

_

in the Bruhat order on Waff. Indeed, since ı is regular
antidominant we have tı D wı (it is known that l.tıw/ D l.tı/�l.w/; 8w 2 W0, by e.g., [34,
Prop. 1.23]). The element t��

_

s� 2 W acts on A .G; S; F / by the simple affine reflection s0,
and so tıs0.a/ D tı��

_

s� .a/ is separated by a wall of type s0 from tı.a/, with tı.a/ closer to
the base alcove (remember that tı acts by translation by the regular dominant vector�ı). So
l.tıs0/ D l.tı/C 1. It follows that tıs0 D wı��_ , and from this that wı < wıs0 D wı��_ .
Finally, observe that ı � �_ is equivalent to wı � w�_ , which is equivalent to wı � w�

_

.

Since S�_.a; 0/ is not normal (when Gsc ! G is non-étale), we deduce that Sw�_ .a; a/ is
not normal, hence also Sx.a; a/ is not normal whenever x � wı��_ in the Bruhat order
on Waff.

Finally we prove that all but finitely many x 2 Waff satisfy x � wı��_ . By the proof of
Proposition 6.4, all but at most finitely many � 2 Q_ satisfy w� � wı��_ . For any w 2 W0
and any such �, we have t�w � wı��_ . We are done.
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6.3. The example of PGL2

Our methods allow us to give a complete classification of normal Schubert varieties
for PGL2 in characteristic 2. In this subsection, let k be a field of characteristic 2.

Lemma 6.6. – The quasi-minuscule Schubert variety inside the affine Grassmannian
for PGL2 is not normal. More precisely, an open affine neighborhood of the base point is
isomorphic to the spectrum of the k-algebra

kŒx; y; v; w�=.vw C x2y2; v2 C x3y;w2 C xy3; xw C yv/:

Proof. – Since 2 divides #�1.PGL2/ D 2, the non-normality is a special case of Corol-
lary 6.2. It remains to prove the displayed formula for the coordinate ring. By putting
v D xz, w D yz, this k-algebra identifies with the subalgebra of kŒx; y; z�=.z2 C xy/

generated by x; y; xz; yz. Now the lemma follows from the calculations in Appendix B, see
Corollary B.2.

Let Fl WD FlPGL2;a be the affine flag variety. For eachw in the Iwahori-Weyl groupW , we
denote by Sw � Fl the associated .a; a/-Schubert variety.

Corollary 6.7. – For w 2 W , the Schubert variety Sw is normal if and only if
dim.Sw/ � 2 in which case it is smooth.

Proof. – After possibly multiplying w 2 W with an element in the stabilizer of a, we
may and do assume that w 2 Waff, i.e., Sw lies in the neutral component of Fl. The affine
Weyl group Waff is the free group with generators s0; s1 and relations s20 D s21 D 1. Here
s0 is the simple affine reflection, and s1 the simple finite reflection. Consider the projection
� WFl! Gr WD GrPGL2 , a smooth proper morphism of relative dimension 1. Let S� � Gr
be the quasi-minuscule Schubert variety, which is not normal by Lemma 6.6. Hence, the
Schubert variety ��1.S�/ D Sw , w D s1s0s1 is not normal. By Corollary 2.2, all other
Schubert varieties Sv with v � w are not normal as well. In particular, all Schubert varieties
with dim.Sw/ � 4 are not normal. If dim.Sw/ � 1, i.e., either w D 1, or w D s0, or
w D s1, then Sw is clearly smooth, hence normal. In order to treat the remaining cases where
dim.Sw/ D 2 or dim.Sw/ D 3, we observe that the .a; a/-Schubert variety Sw is normal
(resp. smooth) if and only if the .a; a/-Schubert variety S�w��1 is normal (resp. smooth)
where � 2 W is the non-trivial element in the stabilizer of a, see Lemma 2.4. We have
�w��1 D s1s0 forw D s0s1 and �w��1 D s0s1s0 forw D s1s0s1. Hence, both 3-dimensional
Schubert varieties are not normal as argued above. One of the 2-dimensional Schubert
varieties is the preimage in Fl of the translated to the neutral component minuscule Schubert
variety in Gr. Hence, both 2-dimensional Schubert varieties are smooth. This proves the
corollary.

Corollary 6.8. – A Schubert variety in the affine Grassmannian for PGL2 in character-
istic 2 is normal if and only if it is at most 1-dimensional, in which case it is already smooth.

Proof. – This is immediate from Corollary 6.7 by considering the smooth projection of
relative dimension 1 from the affine flag variety.
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6.4. Some remarks on the classification

Our methods from Section 6.1 do not apply to the case of special, but not absolutely
special vertices. This is only an issue in the case of odd unitary groups of type C -BCn,
n � 1 with p j 2nC 1. In this case, there are up to Gad.F /-conjugation two types of special
vertices, where exactly one of them is absolutely special, see [28, §5]. Here separate methods
seem to be required to calculate the tangent space of the quasi-minuscule Schubert variety
in the corresponding twisted affine Grassmannian. Furthermore, we note that the normality
criterion obtained in Proposition 6.4 is not effective. Indeed, this can be seen already in the
case of PGL2 in characteristic 2 by comparing with the classification in Corollary 6.7. In
principle, Corollary 5.12 (2) together with the tangent space formula of Kumar and Polo
(Corollary 4.3) gives an effective way of classifying all normal Schubert varieties. Here the
main difficulty is the determination of the affine Demazure modules. The case of, say, PGL3
in characteristic 3 already seems quite involved.

7. Reducedness

In [53, Thm. 6.1], the authors show that loop groups (equivalently, their partial affine flag
varieties) attached to semisimple groups G over a field k are reduced under the hypothesis
char.k/ ∤ #�1.G/. We show in Proposition 7.7 (split case) and Proposition 7.10 (twisted case)
that this hypothesis is necessary.

7.1. The split case

Throughout this subsection, let k be an arbitrary field and G a connected split reductive
group over k. We are going to use the notion of distributions, which should be regarded as
higher order differential operators. For the theory of distributions for (group) schemes we
refer to [17, II, §4] and [35, §7].

Definition 7.1. – Let .X; x/, x 2 X.k/ be a pointed k-ind-scheme. The space of
distributions Dist.X; x/ is the k-vector space obtained as the filtered colimit of the k-vector
space duals of all Artinian closed subschemes of X supported at x.

We record some basic properties.

Lemma 7.2. – Let .X; x/, .Y; y/ be pointed k-ind-schemes, and let f W .Y; y/ ! .X; x/ be
a map of pointed k-ind-schemes.

1. If .X; x/ D colim.Xi ; x/ is any presentation, then Dist.X; x/ D colim Dist.Xi ; x/ with
injective transition maps. Further, each Dist.Xi ; x/ only depends on the formal spectrum
Spf.OXi ;x/ viewed as an ind-scheme.

2. The map f induces a map .df /y WDist.Y; y/! Dist.X; x/.

3. There is a natural map Dist.X; x/ ˝k Dist.Y; y/ ! Dist.X �k Y; .x; y// which is an
isomorphism if both X , Y are ind-(locally Noetherian) over k.
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Proof. – Part (1) is immediate because the transition maps Xi ! Xj are closed immer-
sions. Part (2) and (3) follow from (1) and the case of schemes in [35, I, §7.2 & §7.4]. Note
that loc. cit. is over more general base rings, and that the assumptions are satisfied for locally
Noetherian schemes over fields.

In particular, for any pointed k-ind-scheme .X; x/ which is ind-(locally Noetherian),
e.g., of ind-(finite type), the space of distributions Dist.X; x/ is a cocommutative counital
k-coalgebra whose coalgebra structure is induced from the diagonal X ! X �k X and
Lemma 7.2 (3), cf. [35, I, §7.4 (3)] for details. If X is a k-group ind-scheme –possibly of ind-
(infinite type)– then we define

(7.1) Dist.X/
def
D Dist.X; 1/;

where 1 2 X.k/ denotes the neutral section. In this case, the action morphism X �k X ! X

(combined with Lemma 7.2) induces on Dist.X/ the structure of an associative k-algebra
under the convolution of distributions, cf. [35, I, §7.7] for details.

For the next lemma recall that a quasi-compact morphism of schemes is called scheme-
theoretically dominant if its scheme theoretic image [1, 01R5] is equal to its target.

Lemma 7.3. – Let f W .Y; y/ ! .X; x/ be a quasi-compact, scheme-theoretically domi-
nant morphism of locally Noetherian pointed k-schemes. Then the induced homomorphism
.df /y WDist.Y; y/! Dist.X; x/ is surjective.

Proof. – Since f is quasi-compact and scheme-theoretically dominant, the induced
map OX;x ! OY;y on local rings is injective, cf. [1, 01R8 (1), (2)]. Also note that the
map .df /y only depends on the induced map on completed local rings OOX;x ! OOY;y ,
which is injective as well. By Krull’s intersection theorem, the decreasing sequence of
ideals f Omny \ OOX;xgn�1 has zero intersection, and hence by Chevalley’s lemma [12, Lem. 7]

defines a cofinal family of Artinian closed subschemes of Spec. OOX;x/ supported at x. This
implies the lemma.

Remark 7.4. – Another interesting example (cf. also [35, I, §7.6]) to which Lemma 7.3
applies is the case of a map f W .Y; y/ ! .X; x/ of locally Noetherian pointed k-schemes
which is flat at y. Indeed, then the induced map OX;x ! OY;y is faithfully flat, and hence
injective, that is, the map on spectra is scheme-theoretically dense. Also we find it instructive
to check Lemma 7.3 “by hand” in the special cases of the normalization of the cusp, and the
(relative) Frobenius morphism in strictly positive characteristic, say, of the affine line.

The previous lemma will be used to show that GrG for adjoint non-(simply connected)
groups is non-reduced in bad characteristics by noticing that the k-vector space of the
distributions of its reduction is strictly smaller. The following lemma shows that this space
can be easily computed at “infinite level”. For later use we formulate this lemma in more
generality.

Lemma 7.5. – Let G be a Chevalley group scheme over Z. Let T � G be a split, maximal
torus over Z, and let B˙ D T ⋉U˙ be Borel subgroups in G over Z such that BC \B� D T .
Then the multiplication map on strictly negative loop groups

(7.2) L��U� �Z L
��T �Z L

��UC ! GrG ; .u�; t; uC/ 7! u� � t � uC � e
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is formally étale (when viewed as a map of ind-schemes). The source of this map is called the
fake open cell. This construction is compatible with arbitrary base change S ! Spec.Z/, e.g.,
for S D Spec.k/ a field.

Proof. – The morphismU��T �UC ! G given by multiplication is an open immersion
[14, Thm. 5.1.13], and in particular formally étale [1, 04FF]. Passing to negative loop groups
(and using that theL�-construction commutes with products), this immediately implies that
the top horizontal map

L�U� � L�T � L�UC L�G

L��U� � L��T � L��UC L��G

is formally étale. Here the vertical maps are the natural inclusions, and one checks that the
diagram is Cartesian. Hence, the lower horizontal arrow is formally étale as well.

Remark 7.6. – By the same reasoning, the induced map on loop groups
LU� � LT � LUC ! LG is formally étale as well.

Lemma 7.5 implies that every Artinian local ring supported at the base point in GrG
uniquely factors through the fake open cell. We obtain the following proposition which
improves on [53, Thm. 6.1] in the case of split groups.

Proposition 7.7. – LetG be a split reductive group over a field k. Then the following are
equivalent:

1. The ind-scheme LG is reduced (and then even geometrically reduced).

2. The ind-scheme GrG is reduced (and then even geometrically reduced).

3. The group G is semisimple, and char.k/ ∤ #�1.G/.

Proof. – We first show the equivalence of (1) and (2). Recall that the quotient map
LG ! GrG is a (right) LCG-torsor in the étale topology. Thus, the ind-scheme LG is
étale locally isomorphic to GrG �k LCG. If LG is reduced, then GrG is reduced because
LCG ! Spec.k/ is flat [1, 06QM]. Conversely, if GrG is reduced, then LG is reduced
because LCG is geometrically reduced [1, 035Z]. This finishes the equivalence of (1) and
(2). Concerning geometrically reducedness, we note that if GrG is reduced, then it admits a
presentation by Schubert varieties. As Schubert varieties are geometrically reduced, because
scheme-theoretic closure commutes with flat base change, it follows that GrG is reduced if
and only if GrG is geometrically reduced. Since the equivalence of (1) and (2) is valid for
any field, this also implies that LG is reduced if and only if LG is geometrically reduced.

It remains to show the equivalence of (2) and (3) for which we may (and do) assume
that k is algebraically closed. If (3) holds, then (2) holds by [53, Thm. 6.1]. Conversely, if
(2) holds, i.e., if GrG is reduced, then G is semisimple by [53, Prop. 6.5]. It remains to show
that p WD char.k/ does not divide �1.G/. We may (and do) assume that p > 0 is strictly
positive. Let Gsc ! G be the simply connected covering. Fix T � G, and denote by Tsc

its preimage in Gsc. Let GrıG denote the neutral connected component of GrG . Then the
induced map on Schubert varieties GrGsc;�� ! GrG;��, � 2 X�.Tsc/ is dominant, and
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hence scheme-theoretically dominant (because the target is reduced by definition). As both
ind-schemes GrGsc , GrıG are reduced, they admit presentations by Schubert varieties indexed
by dominant � 2 X�.Tsc/. Thus, Lemma 7.3 (combined with Lemma 7.2 (1) for the passage
to ind-schemes) implies that the map

(7.3) Dist.GrGsc ; e/ �! Dist.GrG ; e/

is surjective where e denotes the base point. This map is calculated using Lemma 7.5 as
follows. Let B˙ D T ⋉ U˙ be Borel subgroups in G such that BC \ B� D T . Then
B˙sc D Tsc ⋉ U˙ are Borel subgroups in Gsc. By Lemma 7.5 (combined with Lemma 7.2 (3)
for the compatibility with products), the surjectivity of (7.3) implies the surjectivity of

(7.4) Dist.L��Tsc/ �! Dist.L��T /:

Here we use the principle that a tensor product of linear operators on possibly infinite
dimensional vector spaces is surjective if and only if each linear operator is surjective.

To make the connection with n WD #�1.G/, recall that the kernel Z of Gsc ! G is a
finite k-group scheme of order n. Clearly, the subgroup Z is contained in Tsc (in fact in any
maximal torus) which shows Z D ker.Tsc ! T /. We claim that the surjectivity of (7.4)
implies that p ∤ n. We need to analyze the map Tsc ! T more carefully. Let r WD dim.Tsc/ D

dim.T / denote the rank of the k-tori. Since k is algebraically closed, passing to cocharacter
lattices induces an equivalence between k-tori of rank r , and finite free Z-modules of rank r .
Hence, the elementary divisor theorem implies that there exist isomorphismsGrm;k ' Tsc and
T ' Grm;k such that the composite

(7.5) Grm;k ' Tsc �! T ' Grm;k
is given by .�1; : : : ; �r / 7! .�

n1
1 ; : : : ; �

nr
r / for positive integers n1 � � � � � nr � 1. We

necessarily have n D n1 � � �nr . Hence, the claim p ∤ n is equivalent to the claim p ∤ ni ,
i D 1; : : : ; r . Since (7.5) splits as a product of maps, we can apply Lemma 7.2 (3) to see that
the surjectivity of (7.4) implies the surjectivity of each map

(7.6) Dist.L��Gm;k/ �! Dist.L��Gm;k/;

which is induced from Gm;k ! Gm;k , � 7! �ni for i D 1; : : : ; r . Finally, Lemma 7.8 below
implies p ∤ ni which finishes the proof of the proposition.

Lemma 7.8. – Let k be a field of characteristicp > 0. Let n � 1 be an integer, and consider
the morphism of k-group schemes Gm;k ! Gm;k , � 7! �n given by taking the n-th power. If
the induced morphism Dist.L��Gm;k/! Dist.L��Gm;k/ is surjective, then p ∤ n.

Proof. – We immediately reduce to the case where n is a prime number. For a k-algebraR,
the n-th power map on L��Gm;k.R/ is given by

(7.7) 1C
P
i�1aiu

�i 7!
�
1C

P
i�1aiu

�i
�n
;

where all ai 2 R are nilpotent, and almost all ai are zero. The nilpotency of the ai shows
that there is a presentation L��Gm;k D colimi�1 Spec

�
kŒa1; : : : ; ai �=.a

i
1; : : : ; a

i
i /
�

where
ai are viewed as formal variables. In these coordinates, we have a canonical identification
Dist.L��Gm;k/ D Dist.AN

k
; f0g/ where AN

k
D Spec.kŒfaigi2N�/ is the infinite-dimensional

affine space. Hence, a distribution is a k-linear map ıW kŒfaigi2N� ! k supported at only
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finitely many monomials. We see that the space of distributions has a basis given by ır such
that r D .ri /i2N is a sequence of positive integers where almost all ri are zero. Here ır
takes the value 1 on the monomial Fi2Na

ri
i and the value 0 on all other monomials (by

convention ı.0;0;:::/ D 0). We need to write down the map (7.7) in the basis Dist.L��Gm;k/ D

spankfır j r 2 .Z�0/Ng. Suppose n D p in which case we have to show that the induced map
on the spaces of distributions is not surjective. Since k has characteristic p > 0, the formula
in (7.7) becomes �

1C
P
i�1aiu

�i
�p
D 1C

P
i�1a

p
i u
�ip:

This means that the map on spaces of distributions is induced from ır 7! ıp?r where
p ? r 2 .Z�0/N is the zero vector (hence ıp?r D 0), unless p j ri for all entries in r D .ri /i2N
in which case the i -th entry in p ? r is given by

.p ? r/i D

(
ri=p
p

if p j i ;

0 else.

Since p � 2 the distribution ı.1;0;0;:::/ does not lie in the image of this map.

Remark 7.9. – In fact, the converse to Lemma 7.8 holds as well, i.e., for an integer n � 1
prime to p the map Gm;k ! Gm;k , � 7! �n induces a surjection on spaces of distributions.
Indeed, one reduces to the case where n 6D p is a prime number. Then it follows from an
explicit calculation –which we omit– similarly as in the proof of Lemma 7.8, or alternatively
using affine Grassmannians as follows. Consider the canonical map GrSLn ! GrPGLn

on affine Grassmannians, both of which are reduced by Proposition 7.7. Hence, as in (7.3)
this induces a surjection on spaces of distributions. Following the proof of Proposition 7.7
further, we see that in (7.5) the elementary divisors n1 � � � � � nr � 1 (here r D n) are
necessarily given by n1 D n and ni D 1, i � 2 because n is a prime number. Now the
surjectivity of the map in (7.6) gives the desired result.

7.2. Reducedness in the twisted case

Here we give a different proof of nonreducedness of loop groups of tamely ramified
semisimple groups G such that p divides the order of the fundamental group. The idea
consists basically in observing that Weil restriction along purely inseparable extensions
preserves loop groups and Grassmannians, but not flat and non-étale isogenies.

Proposition 7.10. – Let k be a perfect field of characteristicp > 0, and letG be a tamely
ramified reductive group over F D k..t//. For its loop group LG to be reduced, it is necessary
and sufficient that G be semisimple and the order of �1.G/ prime to p.

Proof. – By work of Pappas-Rapoport [53, Thm. 6.1, Prop. 6.5], we only need to show
thatLG is non-reduced wheneverG is semisimple and the order of the kernelZ of its simply
connected cover map Gsc ! G is divisible by p > 0. Also, we may and do assume by étale
descent that k is algebraically closed. As explained before the statement, we will consider the
strictly smaller closed subgroupG WD ResF=F pGsc=ResF=F pZ of ResF=F pG, as observed in
[15, Exam. A.7.9]. Note that Bruhat-Tits theory is available for G as well as for ResF=F pG
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by [46], their buildings being isomorphic to the building of G over F . We claim that the
canonical morphism

Gf ! ResO=OpGf
between parahoric group schemes, which exists by having equivariantly identified their build-
ings and applying [10, Prop. 1.7.6], is a locally closed immersion and its flat closure defines
a normal smooth subgroup scheme whose quotient is representable by a quasi-affine group
scheme, see [2, Thm. 4A].

Let S be a maximal F -split torus of G, let Ssc be its unique lift to a maximal F -split
torus of Gsc and let S be the image of Ssc in G. We denote by T (resp. Tsc, resp. T ) the
Cartan subgroups of G (resp. Gsc, resp. G) obtained as centralizers of S (resp. Ssc, resp. S ).
Arguing with big cells as in [10, §1.2.13, §1.2.14], our claim about the canonical morphism
of parahoric groups schemes will follow, once we establish that the map of connected Néron
models

T ! ResO=OpT

of the Cartan subgroups is a locally closed immersion.

Assume first that T is split. By using the elementary divisor theorem as in (7.5) above,
we may assume T D Gm D Tsc are 1-dimensional and Z D mn. If n is prime to p, then
T D ResF=F pT and the claim is trivial. On the other hand, if n is divisible by p, then
T D Gm � ResF=F pGm D ResF=F pT and the claim is clear as well.

In general, letK=F be a tamely ramified finite Galois extension with group � splitting Tsc

and T , and note that Kp=F p is a (pseudo-)splitting field for T with Galois group naturally
isomorphic to �. Let T (resp. T , resp. TOK , resp. T Op

K
) denote the connected lft Néron

models for T (resp.T , resp.T ˝F K, resp.T ˝F p Kp). (We warn the reader that in general
TOK ¤ T ˝O OK , resp. T Op

K
¤ T ˝Op OpK .) Then we have locally closed immersions

T ,! ResOK=OTOK ;

T ,! ResOp
K
=OpT Op

K
;

extending the natural generic homomorphisms. Indeed, the maps exist by the universal
property of connected Néron models. Moreover, their scheme-theoretic images are smooth
by identifying them with the smooth �-invariants of the right hand sides, see [18] and
compare also to [53, Lem. 6.7], where we use the tameness hypothesis p ∤ #�. Due
to [7, Prop. 10.1.4], the resulting morphisms must be locally closed immersions. Taking
restrictions of scalars along O=Op of the first map, and along OpK=O

p of the split case
morphism T Op

K
,! ResOK=OpKTOK , we deduce the general claim.

As a consequence of the group-theoretic facts just established, we derive that

GrıGf
! GrıResO=OpGf Š GrıGf

is a closed immersion. Indeed, if we let G1f denote the flat closure of Gf inside ResO=OpGf (see
the definition of flat closure in �8:1 below), then the morphism

GrG1f
! GrGf
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is a quasi-compact immersion by [73, Prop. 1.2.6], which must be closed, as source and target
are ind-projective by [46, Thm. 5.2]. Finally, we have to show that the Galois cover

GrGf ! GrG1f

with group G1f .Op/=Gf.Op/ induces an isomorphism between neutral components, which
can be checked at the level of k-points. In other words, we must show that every element
of G.Op/ stabilizing f which does not lie in the parahoric subgroup (i.e., “the connected
stabilizer”) maps to a connected component of the affine Grassmannian different from that
of the identity. In the case of reductive groups, this is the main result of [27], stating that
parahorics are the intersection of the stabilizers with the kernel of the Kottwitz map �G . For
pseudo-reductive groups, this was proved in [46, Prop. 3.9, Thm. 5.2].

IfLG were reduced, then the closed immersion GrıGf
! GrıGf would have to be an isomor-

phism, because GrıGsc;f ! GrıGf is a universal homeomorphism. In particular, their Lie alge-
bras would be the same and via the uniformization GrGf D LG=L

CGf (similarly for G), this
would imply that the F -vector space LieG is the (non-direct) sum of the F p-subspace LieG
and the O-lattice LieGf . But, the dimension of G is strictly smaller than that of ResF=F pG
by construction, so this is obviously a contradiction.

Remark 7.11. – One would hope that a similar statement holds beyond the tamely
ramified case, but one cannot control the Néron models with the same ease. On the other
hand, if one tried to classify reducedness of the loop group for the more general class of
pseudo-reductive groups, the above argument suggests this could be very difficult.

8. Ind-flatness

In this section G will denote a Chevalley group scheme over Z. Our aim is to prove in
Proposition 8.8 that its affine Grassmannian GrG;Z (equivalently, its loop group) is ind-flat
over Z in the sense of Definition 8.1. In Proposition 8.9 we explain how to generalize our
proof to include the case of tamely ramified twisted groups.

8.1. Preliminaries on ind-flatness

Recall our conventions on ind-schemes, see Section 1.3.

Definition 8.1. – Let S be a scheme. An S -ind-schemeX is called ind-flat if there exists
a presentation X D colimXi where Xi are flat S -schemes via the map Xi � X ! S .

Now let R be a Dedekind ring with fraction field K. For an R-scheme X , the flat
closureXfl is the scheme theoretic image of the inclusionXK � X . SinceXK � X is a quasi-
compact map, the scheme theoretic image commutes with localization [1, 01R8], and the
closed immersion Xfl ,! X is an isomorphism on generic fibers. Then the scheme X is flat
overR if and only if the mapXfl ,! X is an isomorphism if and only ifOX isR-torsion-free.
If 'WX ! Y is a map of R-schemes, then there is a map 'flWXfl ! Y fl with 'K D .'fl/K .

Lemma 8.2. – Let R be a Dedekind ring with fraction fieldK. For an R-ind-scheme X the
following conditions are equivalent:
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1. X is ind-flat;

2. for every presentationX D colimXi , the map colimXfl
i ,! colimXi is an isomorphism;

3. every ind-(closed immersion) Y ,! X which induces YK Š XK is an isomorphism.

Proof. – The implications (3)) (2)) (1) are immediate, and we prove (1)) (3).
LetX D colimXi be a flat presentation. Let Y ,! X be an ind-(closed immersion) which

induces YK Š XK . For each i , the induced map Y \Xi ,! Xi is an ind-(closed immersion)
which induces .Y \Xi /K Š .Xi /K . We want to show that Y \Xi Š Xi . Replacing X by Xi ,
we may assume thatX is a flatR-scheme. CoveringX by open affine schemes, we may further
assume thatX is affine, hence quasi-compact. Now let Y D colimYj be any presentation. We
will show that Yj Š X for j >> 0. As YK Š XK on generic fibers and XK is quasi-compact,
there is a j with XK ,! Yj;K so that Yj;K Š XK (see Section 1.3). As Yj ,! X is a closed
immersion and X is R-flat, we must have Yj Š X .

Definition 8.3. – For an ind-scheme X D colimi Xi , the flat closure Xfl is the ind-
scheme Xfl D colimi X

fl
i .

In view of Lemma 8.2, the ind-(closed immersion) Xfl � X is well-defined independently
of the choice of a presentation. Also a map of R-ind-schemes X ! Y induces a map
Xfl ! Y fl on the flat closures.

8.2. Ind-flatness of affine Grassmannians

The starting point is the following lemma.

Lemma 8.4. – Let H be a smooth, affine group scheme over Z.

1. The positive loop group LCH ! Spec.Z/ is a flat, affine group scheme.

2. IfH is split unipotent or a split torus, then both the loop groupLH and the strictly negative
loop group L��H are ind-flat over Z.

Proof. – For (1), let LCi H , i � 0, be the smooth, affine Z-group scheme defined by
the functor LCi H.R/ D H

�
RŒu�=.uiC1/

�
for a ring R. Then fLCi H gi�0 naturally forms

an inverse system, and the canonical map LCH ! limi�0L
C

i H is an isomorphism. This
implies (1).

For (2), observe that the map

(8.1) L��H �Z L
CH ! LH; .h�; hC/ 7! h� � hC;

is representable by an open immersion. Since LCH is faithfully flat by (1), the ind-flatness
of L��H follows from the one for LH . Now letH be a split unipotent group scheme. Then
H ' AnZ as schemes for some n � 0. Since the formation of loop spaces commutes with
products, it is enough to show thatLA1Z is ind-flat. This is immediate from the identification,
which is functorial in the ring R,

LA1Z.R/ D R..u// D colim
i>>�1

Fj�iA
1
Z.R/;

given by mapping a Laurent series
P
aiu

i to the vector .ai /. Next letH be a split torus. Then
H ' Gnm;Z as (group) schemes for some n � 0, and we reduce to the case T D Gm;Z. In
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this case, the map (8.1) is surjective and hence an isomorphism. We see that the ind-flatness
of LGm;Z is equivalent to the one of L��Gm;Z. For the latter we note that for any ring R,

L��Gm;Z.R/ D
�
1C u�1RŒu�1�

��
D

˚
1C

P
i�1 aiu

�i j ai 2 R nilpotent
	
;

so that L��Gm;Z ' colimi�1 Spec
�
ZŒa1; : : : ; ai �=.ai1; : : : ; aii /

�
. This is clearly ind-flat.

Recall that G denotes a Chevalley group scheme over Z.

Corollary 8.5. – Let T � G be a split, maximal torus over Z, and let B˙ D T ⋉U˙ be
Borel subgroups in G such that BC \ B� D T . Then the fake open cell (cf. Lemma 7.5)

L��U� �Z L
��T �Z L

��UC ! Spec.Z/

is ind-flat.

Proof. – Since U˙ are split unipotent and T is a split torus, this is immediate from
Lemma 8.4 (2).

The ind-flatness of the affine Grassmannian is deduced from Corollary 8.5 using the
following observation due to Faltings [19, Proof of Cor. 11].

Lemma 8.6. – Let Y ,! X be an ind-(closed immersion) of ind-(locally Noetherian) ind-
schemes. If for every local Artinian ring R the induced map

(8.2) Y.R/! X.R/

is bijective, then Y ,! X is an isomorphism.

Proof. – By Yoneda’s lemma, we may viewX , Y as set-valued (contravariant) functors on
the category of Noetherian, affine schemes. For any such T , the induced map Y.T /! X.T /

is clearly injective, and we need to show the surjectivity. This can be checked after base change
Y �X T ! T as our assumptions are stable under base change. We reduce to the case where
X D T is a Noetherian (affine) scheme. Write Y D colimi Yi as a filtered colimit of closed
subschemes of X . We claim that this sequence stabilizes with value X .

Let Ii � OX be the ideal sheaf defining Yi . Since the index set I is filtered, it is enough to
show the existence of an index i with Ii D 0. For this we note that Ii D 0 if and only if the
annihilator ideal sheaf AnnOX .Ii / is equal to OX , or equivalently if the closed subscheme
Zi � X defined by AnnOX .Ii / is empty. For i � j , we have

Yi � Yj ” Ii � Ij H) AnnOX .Ii / � AnnOX .Ij / ” Zi � Zj :

Since X is noetherian and the set I is filtered, there is an i0 2 I such that Zi0 is a minimum,
i.e., Zi0 � Zi for all i 2 I . Now suppose for the sake of contradiction that Zi0 ¤ ;.

Now let � 2 Zi0 be a generic point of an irreducible component. It remains to find
an index i1 > i0 such that � … Zi1 . The property defining � means that the closed
subscheme defined by AnnOX .Ii0/� D AnnOX;�.Ii0;�/ in Spec.OX;�/ is supported at the
closed point m�, where m� � OX;� denotes the maximal ideal. Since OX;� is Noetherian,
this is equivalent to the existence of some integer N >> 0 such that

m� � AnnOX;�.Ii0;�/ � m
N
� :

Hence, Ii0;� is a finitely generated module over the Artinian ring OX;�=mN� , and therefore
Artinian itself. Since our index set is filtered, we can choose i1 > i0 such that Ii1;� is the
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minimum among the set fIj;�gj�i0 . Now (8.2) applied to the Artinian ringsOX;�=mn�, n � 1,

shows that Yi1.OX;�=mn�/
�
! X.OX;�=mn�/, that is, every homomorphism OX;� ! OX;�=mn�

factors uniquely through OX;� ! OX;�=Ii1;�. But then Ii1;� �
T
n�0m

n
�, so that Ii1;� D 0

by Krull’s intersection theorem. This implies that � … Zi1 . This finishes the proof of the
lemma.

Remark 8.7. – The proof of Lemma 8.6 shows that condition (8.2) can be weakened.
Namely, it is enough to use local Artinian rings which are strictly Henselian. Indeed, in the
last part of the proof it is enough to show Ii1; N� D 0 where N� ! � is a geometric point and
Ii1; N� denotes the stalk on the étale site.

Proposition 8.8. – The affine Grassmannian GrG;Z is an ind-flat ind-scheme over Z. In
particular, the ind-scheme GrG;Z is reduced if and only if G is semisimple.

Proof. – Let Grfl
G;Z � GrG;Z be the flat closure, cf. Definition 8.3. By Lemma 8.6

and Remark 8.7, it is enough to show that every local Artinian, strictly Henselian point
gW Spec.R/! GrG;Z factors through Grfl

G;Z. Let k be the residue field of R, and denote
by NgW Spec.k/ ! GrG;Z the reduction of g. Fix a split maximal torus T � G over Z,
and B˙ D T ⋉ U˙ as in Corollary 8.5. By the Cartan decomposition GrG.k/ DF
�2X�.T /

LCG.k/�u� �e (use that k is separably closed) (4), we can write Ng as a product Nh�u� �e
for some Nh 2 LCG.k/, � 2 X�.T /. By formal smoothness of LCG ! Spec.Z/, we can lift
Nh to an R-valued point hW Spec.R/ ! LCG. Since LCG ! Spec.Z/ is flat and LT ! Z is
ind-flat by Lemma 8.4, the inclusion Grfl

G;Z � GrG;Z is invariant under the left action
of LCG and LT . Replacing g by u�� � h�1 � g, we may therefore assume that g is supported
at the base point. Then g factors through the fake open cell L��U� � L��T � L��UC by
Lemma 7.5. Since this is ind-flat by Corollary 8.5, the map (7.2) factors through Grfl

G;Z. This
shows Grfl

G;Z D GrG;Z.

For the second assertion, note that GrG;Q is reduced if and only ifG is semisimple, see [53,
Thm. 6.1, Prop. 6.5]. Hence, GrG;Z is not reduced wheneverG is not semisimple. Conversely,
if G is semisimple, then taking the flat closure of any reduced presentation of GrG;Q gives a
reduced presentation of Grfl

G;Z D GrG;Z.

This finishes the proof of the proposition.

We now briefly generalize this to the parahoric group schemes over WŒŒt �� constructed
previously.

Proposition 8.9. – Let G be a tamely ramified reductive k..t//-group. The affine flag
variety FlG;f is an ind-flat ind-scheme over W. In particular, the ind-scheme FlG;f is reduced
if and only if G is semisimple.

(4) Alternatively, the reader can note that for tamely ramified groups, with the help of our big cell results and with
the rationality results of decompositions in [27], we know the Cartan decomposition holds for any field k which is
a W-algebra, so Remark 8.7 is not really needed, even in the proof for the generalization proved in Proposition 8.9.
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Proof. – Without loss of generality, we may and do assume that f D 0 is an absolutely
special vertex. We follow the reasoning of Proposition 8.8: after translating, it suffices to
show that, for every Artinian W-algebraR, everyR-valued point ofL��G0 supported at the
identity lies in the ind-flat closure, see Lemma 8.6. Such points uniquely lift to the strictly
negative loop group attached to the twisted open cell

C0 D U�0 � T � U
C
0 WD .ResWŒu�1�=WŒt�1� U

�
H � TH � U

C

H /
�;ı

becauseL��C0 ! L��G0 is formally étale. Hence, it suffices to see thatL��C0 ! Spec.Z/ is
ind-flat. The unipotent part of C0 is identified, as a scheme, with a product of restric-
tions of scalars of affine spaces, so its associated strictly negative loop group is ind-flat
over Z, compare with the argument in Lemma 8.4 (2). As for the connected Néron
model T , we choose a smooth surjection T 1 ! T from the connected Néron model
T 1 of an induced torus T1; see [53, Lem. 6.7] for the surjectivity assertion. We claim that
L��T 1.R/! L��T .R/ is surjective for every Artinian W-algebra R. Since both functors
are formally smooth, this reduces, by lifting across square zero nilpotent thickenings, to
the surjectivity of Lie algebras LieL��T 1 ! LieL��T viewed as W-modules. The latter
is the map underlying the map of WŒt�1�-modules Lie T 1 ! Lie T which is surjective by
smoothness of T 1 ! T . As in Lemma 8.4 (2), it is easy to see that L��T 1 ! Spec.Z/ is
ind-flat because T1 is an induced torus. This implies the ind-flatness of L��T ! Spec.Z/,
again using Lemma 8.6. The final assertion on reducedness follows as in the proof of
Proposition 8.8.

9. Consequences for Pappas-Zhu local models

We discuss some consequences of our findings for the theory of local models in cases where
p divides the order of �1.Gder/.

In this final section, let F be a discretely valued, complete field of characteristic 0 with
algebraically closed residue field k of characteristic p > 0. We fix a triple .G; f�g;Gf/ where
G is a tamely ramified reductive F -group, f�g a conjugacy class of geometric cocharacters
defined over a finite extension E=F , and Gf is a parahoric OF -group scheme with generic
fiberG. This notation seems to have first appeared in the survey article of Pappas-Rapoport-
Smithling, see [54], and first been termed LM triple by He-Pappas-Rapoport in [32, §2.1] (but
always under the assumption that f�g is minuscule). Pappas-Zhu [55] construct from the data
.G; f�g;Gf/ the Pappas-Zhu local model

M D M.G; f�g;Gf/;

which is a flat, projective OE -scheme equipped with a left action of a smooth affine
group scheme. Recall that the construction of M requires the construction of a parahoric
OF Œt �-group scheme Gf in the sense of [55, Thm. 4.1] which lifts Gf along the specialization
t 7! $ for some fixed uniformizer $ 2 OF . In particular, M depends a priori on certain
auxiliary choices, but it is shown in [32, Thm. 2.7] that M actually depends, up to equivariant
isomorphism, only on the data .G; f�g;Gf/. The generic fiberM˝E is naturally the Schubert
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variety in the affine Grassmannian of G=F associated with the class f�g. The special fiber is
equidimensional, but not irreducible in general, and is equipped with a closed embedding

(9.1) M˝ k ,! FlG[;f[ :

The pair .G[; f[/ is an equal characteristic analogue over a local function field F [ D k..t//

of the pair .G; f/, see [55] (see also [28]).

More precisely, fix a maximal F -split torus S whose apartment A .G; S; F / contains the
facet f. Its centralizer T is a maximal torus sinceG is quasi-split by Steinberg’s theorem. We
also have the corresponding data S [ � T [ inside the equal characteristic analogueG[. There
is an identification of apartments A WD A .G; S; F / D A .G[; S [; F [/ compatible with the
action of the Iwahori Weyl groups W WD W.G; S; F / D W.G[; S [; F [/ under which f D f[.
Then under (9.1) the reduced locus of M˝k identifies by [30, Thm. 6.12] with the admissible
locus

A.G; f�g;Gf/
def
D

[
w

Sw.f; f/;

where the union is taken over the finitely many elements w of the admissible set WfAdm.f�g/Wf
inW , and where Sw.f; f/ denotes the Schubert variety arising from a Gf -orbit in FlG[;f using
f D f[. Here Adm.f�g/ is the so-called �-admissible set, and can be given a purely combina-
torial definition; see e.g., [54, 26]. The following result is an application of Proposition 2.3,
which is used in [31, Rem. 2.2].

Proposition 9.1. – Let a � A be an alcove whose closure contains f. Suppose
f�g � X�.T / has the property that Sv.a; a/ is normal for all (equivalently, for the maximal
elements) v 2 Adm.f�g/Wf . Then all .f; f/-Schubert varieties in A.G; f�g;Gf/ are normal. In
particular, this last conclusion holds when N� 2 X�.T /I is minuscule for the échelonnage roots
and the closure of f contains a special vertex.

Proof. – Let v 2 WfAdm.f�g/Wf ; to prove the first assertion we need to show
thatSv.f; f/ is normal. By Corollary 2.2, we may assume v is left f-maximal, so thatSv.f; f/ D
Sv.a; f/ and so we only need to consider .a; f/-Schubert varieties. By [26, Thm. 1.3], we have
WfAdm.f�g/Wf D Adm.f�g/Wf , so we may reduce ourselves to proving that Sv.a; f/ is
normal for any v 2 Adm.f�g/Wf . By Proposition 2.3, it is enough to prove that Sv�.a; a/ is
normal for all � 2 Wf . But these are normal by assumption.

For the second assertion, choose a special vertex 0 2 Nf. Since N� is minuscule, the Schubert
variety S N�.a; 0/ is smooth, and hence so is its preimage under Fla ! Fl0. This is itself a
Schubert variety Sv0.a; a/ indexed by the unique longest element v0 2 W0Adm.f�g/W0, a set
which contains Adm.f�g/Wf ; thanks again to Proposition 2.3 the latter set indexes normal
Schubert varieties, and then we are done by the first assertion.

As an application we obtain Corollary 1.6 from the introduction:

Corollary 9.2. – Assume p divides the order of �1.Gder/.

1. If every Schubert variety in the admissible locusA.G; f�g;Gf/ is normal, thenM is normal
and its special fiber is reduced. This is the case when N� is minuscule for the échelonnage
roots and f contains a special vertex in its closure.
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2. If any Schubert variety inside the admissible locusA.G; f�g;Gf/ is not normal, then M is
not normal and its special fiber is not reduced.

Proof. – Part (1) is immediate from Proposition 9.1 and [31, Thm. 2.1]. For (2), suppose
one of the Schubert varieties insideA.G; f�g;Gf/ is not normal. Then the irreducible compo-
nent containing this Schubert variety is not normal as well by Corollary 2.2. The normaliza-
tion morphism

(9.2) pW QM �!M

identifies by [31, Cor. 2.3, Cor. 2.5] with the map from the Pappas-Zhu local model of
some z-extension of G. In particular, (9.2) is a finite, birational, universal homeomorphism
and an isomorphism on generic fibers; recall that M ˝ E is a Schubert variety in char-
acteristic 0. This already shows that M is not normal, see [31, Rem. 2.4]. It remains to
show that the special fiber M ˝ k is not reduced. Arguing by contradiction let us assume
that M˝ k is reduced. For any line bundle L on M, this implies the injectivity of the canon-
ical mapH ı.M˝k;L/! H ı. QM˝k;L/. Furthermore, if L is ample andN > 0 sufficiently
large, then there is an equality

dimkH
ı.M˝ k;LN / D dimkH

ı. QM˝ k;LN /

by transporting the claim to the generic fiber using flatness. Hence, we get an isomorphism
of vector spacesH ı.M˝k;LN / Š H ı. QM˝k;LN /, and thus (9.2) must be an isomorphism
on special fibers. We arrive at the desired contradiction since the irreducible components
of QM˝ k are normal by [31, Cor. 2.5] for example.

Let us give two concrete examples of badly behaved PZ local models. The obvious class
of examples arises from Weil restrictions of scalars along ramified extensions:

Example 9.3. – Let F 0=F be a totally ramified extension of 2-adic fields of odd
degree e � 1. Consider the Weil restriction of scalars G D ResF 0=F .PGL2/, and let f�g be
the unique (nonzero) minuscule conjugacy class defined over F . As parahoric subgroup we
take the pointwise fixer of the standard lattice O2F 0 , that is, the associated parahoric group
scheme is G D ResOF 0=OF .PGL2/. It corresponds to an absolutely special vertex 0, and
hence the special fiber of the PZ local model is irreducible. Its underlying reduced subscheme
is the unique e-dimensional .0; 0/-Schubert variety in the affine Grassmannian for PGL2
in characteristic 2. If e � 2 this Schubert variety is not normal by our classification in
Corollary 6.8. Hence, the special fiber of the PZ local model is not reduced in this case by
Corollary 9.2 (2).

We remark that if we drop the tameness assumption and take e D 2, then F 0=F is wildly
ramified and we can invoke [43] to define the local models. Again the special fiber of such
a local model is not reduced because the corresponding Schubert variety is not normal, as
follows immediately from Corollary 6.2. Indeed, the corresponding Schubert variety is the
quasi-minuscule one for the group PGL2 (although it is more natural to think of it as a
Schubert variety attached to the standard pseudo-reductive group Resk..u//=k..t//PGL2 where
u2 D t , compare this to the approach of [47, 45]).

A less obvious example is given by ramified unitary groups. In this case, the underlying
group is even absolutely simple:
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Example 9.4. – Let F 0=F be a totally ramified quadratic extension of 3-adic fields. Let
G D PU3.F

0=F / be the adjoint, quasi-split unitary group associated with the Hermitian
form x1 Nx3 C x2 Nx2 C x3 Nx1 on F 03. Let f�g be the minuscule conjugacy class corresponding
to the coweight .1; 0; 0/. As parahoric subgroup we take the pointwise fixer of the standard
latticeO3F 0 which corresponds to an absolutely special vertex 0 of the building, see [28, §7]. In
this case, the special fiber is again irreducible and its underlying reduced locus is the unique
2-dimensional Schubert variety in the twisted affine Grassmannian for PU3.F

0=F / in char-
acteristic 3, that is, the quasi-minuscule one. This Schubert variety is not normal by Corol-
lary 6.2 so that the special fiber of the PZ local model is not reduced by Corollary 9.2 (2).

Next we comment on the behavior of PZ local models relatively to central extensions. The
adjoint quotient .G; f�g/! .Gad; f�adg/ induces a natural morphism

ad�WM!Mad ˝OEad
OE ;

whereEad is the reflex field of .Gad; f�adg/ and Mad WDM.Gad; f�adg;Gf;ad/. This is a (fiber-
wise) birational universal homeomorphism, but not always an isomorphism. We are now
going to look at the category consisting of all LM triples centrally lifting .Gad; f�adg;Gf;ad/,
endowed with the obvious morphisms. It admits fiber products and we use this to study the
variation of the PZ local models along central lifts.

Proposition 9.5. – Let .Gi ; f�ig;Gi;f/, i D 1; 2, be two LM central lifts of
.Gad; f�adg;Gf;ad/ and denote by .G3; f�3g;G3;f/ their fiber product. For i D 1; 2; 3, let
Mi be the PZ local model for .Gi ; f�ig;Gi;f/, and denote by adi;�WMi ! Mad ˝OEad

OEi
the induced map. If p ∤ #�1.G1;der/

#�1.G3;der/
, then the rational map ad2;� ı ad�11;� extends to an actual

morphism of schemes over OE3 .

Proof. – Recall that, by construction of parahoric OF Œt �-group schemes extensions, the
natural maps G3;f ! Gi;f can be extended to G

3;f ! G
i;f inducing morphisms

(9.3) M3 !Mi ˝OEi OE3
for i D 1; 2 overMad˝OEad

OE3 . Each map (9.3) is finite birational between integral schemes.
We claim that the map (9.3) for i D 1 is an isomorphism, which implies the proposition. By
the argument of Proposition 2.1, it suffices to show that the induced maps on tangent spaces
at closed points of the special fibers are injective. Now, observe that the reduced neutral
component of the Beilinson-Drinfeld Grassmannian attached to G

i;f is contained in the
Beilinson-Drinfeld Grassmannian of G

i;f;der, since this is true at the level of the generic fibers
(which are classical affine Grassmannians), compatibly with the map (9.3). In particular, by
translating closed points in the special fibers of the local models, it suffices to check that

FlG[
3;derf

! FlG[
1;derf

is formally étale. This is true under the assumption p ∤ #�1.G1;der/

#�1.G3;der/
, because G[3;der ! G[1;der

has an étale kernel, comp. [53, 6.a].

For defining canonical integral models of Shimura varieties of abelian type, under the
assumptions of tame ramification and p > 2, Kisin-Pappas need to approach local models
in terms of embeddings, see [38, §2.3, §3.2].
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Definition 9.6. – The tuple .G; f�g/ is called of abelian type if there is a central lift
.G1; f�1g/ of .Gad; f�adg/ endowed with a closed embedding �1WG1 ! GLn, n � 1 such
that f�1 ı �1g D f$_d g, where $_

d
denotes the d -th minuscule coweight of GLn for some

1 � d � n � 1. The central lift .G1; f�1g/ is also called of Hodge type.

First note that every Shimura datum of abelian type in the sense of [16] (see also [37])
gives rise to a tuple of abelian type as above. Further, our definition coincides with the one
given in [45, II, §3.11], but appears to differ from that of [32, §2.7] in the following way. Let
us, for simplicity, assume that Gad contains no F -simple factor over which f�adg becomes
trivial. Then the classification of Hodge embeddings due to Deligne, see [16, 1.3.8, table
1.3.9] (compare with [37, Lem. 3.4.13] and [38, Lem. 4.6.22]) implies that �1 is minuscule (as
required in [32, §2.7]). The main difference here is not requiring the existence of an isogeny
G1;der ! Gder because we want our class to be stable under central lifts.

Next we note that since G is assumed to be tamely ramified, we can arrange for G1 to
be tamely ramified as well. So the canonical maps G ! Gad  G1 extend to maps
of OF Œt �-group schemes Gf ! Gf;ad  Gf;1, and hence to maps of PZ local models
M!Mad  M1 defined over the ring of integers of the compositum E �E1 where E1 is the
reflex field of f�1g. Also note that adding the center of GLn to our central lift G1 changes
neither the condition on �1 nor the PZ local model M1 in view of Proposition 9.5.

The importance of our central lift of Hodge type is that �1 extends by [38, Prop. 1.3.3] to
a(n) (not necessarily closed) immersion of parahoric group schemes

Gf;1 ! GLn;

which is heavily based on work of Landvogt (beware that [38] use the notation Gx for the
fixer group scheme of x and reserve Gıx for its parahoric neutral component). Then the same
authors construct in [38, Prop. 2.3.7] a uniquely determined closed embedding:

M1 ,!Mlat;

where we setMlat WDM.GLn; f$_d g;GLn/˝OE1 . We remark that the symplectic embeddings
used in the given reference and the hypothesis p ∤ #�1.G1;der/ are unnecessary, the former
pertaining to later applications to Shimura varieties and the latter to ensure normality ofM1.
Here we will give a closer look at the possibilities for the geometry of this scheme, analyzing
all possible cases.

Proposition 9.7. – Let .G1; f�1g/ be a central lift of Hodge type as above and let M1 be
the PZ local model attached to the corresponding LM triple. Then the following properties hold:

1. If p > 2 or Gad has no D-factors, then M1 is always normal and only depends
on .G; f�g;Gf/ up to extending scalars.

2. If p D 2 and .Gad; f�adg/ is MF -simple of type DH
n , n � 5, then M1 only depends

on .G; f�g;Gf/ up to base change, but will be non-normal for sufficiently large N�.

3. If p D 2 and .Gad; f�adg/ is MF -simple of typeDR
2mC1,m � 2, then M1 is always normal

and only depends on .G; f�g;Gf/ up to base change.

4. If p D 2 and .Gad; f�adg/ is MF -simple of type DR
2m, m � 2, then we can always

choose .G1; f�1g;Gf;1/ and �1 such that M1 is normal. For sufficiently large N�, we can
simultaneously choose .G2; f�2g;Gf;2/ and �2, such that M2 is non-normal.
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Proof. – By Corollary 9.2 it suffices to examine the normality of Schubert varieties in
the special fiber of M1 and for this we need to understand when p divides the order of Z,
the kernel of Gsc ! G1;der. Inspecting Deligne’s table, see [16, table 1.3.9], we see that Z is
always a multiplicative 2-group and trivial ifGsc has noD-factors. This gives (1). For simple
orthogonal adjoint groups, the pullback of �1 to Gsc D ResF 0=F Spin2n is the restriction
of scalars of one of the three minuscule representations of Spin2n, that is, the two half-spin
irreducible factors of the faithful spin representation of Spin2n and the pulled back vector
representation of SO2n. Moreover, our inspection of [16, table 1.3.9] reveals that we can only
use the vector representation forDH

n and the half-spins forDR
n . In (2), the kernelZ is a certain

2-group independent of the choice of a Hodge lift. For (3),Z is always trivial because the half-
spin representations are faithful if n D 2mC 1 is odd. For (4), we can choose our Hodge lift
such that �1 restricts to the faithful spin representation (= sum of the two half-spins), but
we can also choose some other Hodge lift with �2 restricting to an half-spin representation,
whose kernel is a non-trivial 2-group.

Remark 9.8. – Concerning integral models of Shimura varieties of abelian type, it
seems that the hypothesis p ∤ #�1.Gder/ in [38, Thm. 0.4] can be removed, as long as one
replaces the PZ local model in the statement by its (weak) normalization. For the p D 2,DH

case with N� large, the proposition seems to indicate some additional work might be needed
in order to construct such integral models, so as to circumvent the fact that the Hodge
embedding defines a non-normal orbit closure.

Remark 9.9. – Let us comment on the relation with the Scholze-Weinstein conjecture
[66, Conj. 21.4.1]. The BdR-affine Grassmannian GrdR

Gf ! O}F is an ind-proper v-sheaf. The
conjecture states that for f�g minuscule, the f�g-bounded sub-v-sheaf GrdR

Gf ;f�g ! O}E is
representable by a unique flat projectiveOE -model with reduced special fiber of the variety of
type f�g-parabolics, called the local model. This conjecture is proven in [32, 45] for many cases
with .G; f�g/ of abelian type, and in [3, Theorem 1.1] for general reductive groupsG, relying
on [20, Theorem 1.3] for the reducedness of special fibers in some cases of wildly ramified
groups G. The local model singled out by the conjecture is the weak normalization QM of M
and coincides with the PZ local model of some z-extension, simply the local model in the
sense of [32, §2.6].

Appendix A

Frobenius ind-splitting

Fix a field k of characteristic p > 0. Here we revisit the notion of Frobenius splittings and
prove several basic lemmas regarding this technique in the realm of ind-schemes over k.

Definition A.1. – A k-scheme X is said to be (Frobenius) split if the morphism
of OX -modules OX ! F�OX admits a section s, where F denotes the absolute Frobenius
morphism. A closed subscheme Y of X is said to be compatibly split if the splitting of X
descends to that of Y . Finally, we say that an ind-scheme X is ind-split (resp. compatibly
ind-split with an ind-closed sub-ind-scheme) if it admits a presentation X D colimXi
(resp. as well as Y D colimYi ) by simultaneously compatibly split schemes.
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Lemma A.2. – Given a collectionXi of simultaneously compatibly ind-split ind-closed sub-
ind-schemes ofX , finite intersections and finite unions are also simultaneously compatibly split.

Proof. – This is known in the case of schemes ([9, Prop. 1.2.1]), and it generalizes to that
of ind-schemes by taking appropriate presentations.

Thanks to [4, (3.7)] or [5, 7.11.3], we have a good notion of sheaves of modules on
ind-schemes X D colimXi , namely obtained as a family of compatible OXi -modules
in the obvious way. For an ind-proper ind-scheme X over k equipped with a coherent
OX -module M arising from coherent OXi -modules Mi , we define Hn.X;M/ WD limHn.Xi ;Mi /

for n � 0. This definition is sensible as the cohomology groups are finite-dimensional and
thus Rnlim vanishes for n > 0.

Lemma A.3. – Let Y � X be a closed immersion of compatibly ind-split ind-proper ind-
schemes over k. If L is an ample line bundle on X , then H ı.X;L/ ! H ı.Y;L/ is surjective
and H>0.X;L/ D H>0.Y;L/ D 0. Additionally, if Y � X is a closed immersion, then
H 1.X; IY ˝ L/ D 0 where IY denotes the ideal sheaf defining Y .

Proof. – At finite level, this is just [9, Thm. 1.2.8] and it follows in general by taking
projective limits.

The next results study the implications of certain splittings for the graded algebra
H ı.X;L�/, going back to Ramanathan [58], but we mostly follow the treatment of [9, §1.5].

Proposition A.4. – Let Y � X be a closed immersion of compatibly ind-split ind-
proper ind-schemes over k, and assume that the diagonal �X is compatibly ind-split with
X � X . Given an ample line bundle L on X , the graded k-algebra H ı.Y;L�/ is generated by
its degree one elements, and L defines an ind-closed immersion of Y into P.H ı.Y;L/_/ where
H ı.Y;L/_ WD colimH ı.Yi ;L/_.

Proof. – Observe that due to the previous lemma and our hypothesis, we get surjectivity
of the map H ı.X;Ln/ ˝ H ı.X;L/ ! H ı.X;LnC1/ which implies the claim as long as
Y D X , by induction on n. If Y is not necessarily equal to X , we still have an epimorphism
H ı.X;Ln/ ! H ı.Y;Ln/. The projective embedding is given by taking the colimit of the
resulting closed immersions for a compatibly split presentation.

Let us recall some terminology regarding commutative graded algebras and modules
(compare with [9, Def. 1.5.5]).

Definition A.5. – A commutative Z�0-graded k-algebra A� is called quadratic if
A0 D k, if it is generated by A1 and if the kernelK� of the induced surjection S�A1 ! A� is
generated by K2. An A�-graded module M� is said to be quadratic if it is generated by M0

and the kernel K� of M0 ˝ A� !M� is generated by K1.

The next result subsumes [58, Prop. 2.7, Prop. 2.19] and is the ind-scheme version of [9,
Prop. 1.5.8].
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Proposition A.6. – LetZ � Y � X be closed immersions of simultaneously compatible
ind-split ind-proper ind-schemes and L be an ample line bundle on X . Suppose moreover
that�X2 �X ,X ��X2 , Y ��X2 andZ��X2 are simultaneously compatibly ind-split inX3.
Then H ı.Y;L�/ is a quadratic graded algebra and H ı.Z;L�/ is a quadratic graded module
over H ı.Y;L�/.

In geometric terms, this tells us that the projective embeddings ofZ, Y andX determined
by L are given by quadratic homogeneous polynomials and the transition morphisms are
defined by linear ones.

Proof. – If we intersect the given ind-schemes with X � �X2 , the conditions of Propo-
sition A.4 are satisfied and hence the graded algebras in the statement are generated by its
degree 1 elements. To show that A� WD H ı.X;L�/ is quadratic, we consider the Mayer-
Vietoris short exact sequence 0! I�

X2
�X[X��

X2
! I�

X2
�X ˚ IX��

X2
! I�

X3
! 0,

where the ideals of definition are with respect to X3, and we tensor it with Ln1 ⊠ Ln2 ⊠ Ln3
for some integers n1; n2; n3 � 1. Let Kn1;n2;n3 be the kernel of An1 ˝ An2 ˝ An3 ! An1Cn2Cn3 ,
and analogously for Kn1;n2 and Kn2;n3 , respectively. By taking cohomology, we arrive
at surjectivity of the map Kn1;n2 ˝ An3 ˚ An1 ˝ Kn2;n3 ! Kn1;n2;n3 by the proof of
[9, Prop. 1.5.8], which implies that A� is quadratic by [9, Lem. 1.5.7]. In order to show
that B� WD H ı.Y;L�/ and C� WD H ı.Z;L�/ are quadratic algebras, we repeat the same
strategy with the couple .�X2 � X; Y � �X2/ which intersects in �Y 3 and use surjectivity
of the transition maps A� ! B� ! C� to derive the same formulae for B� and C�. By [9,
Rmk. 1.5.6 (iii)] every transition map defines a graded quadratic module structure.

Appendix B

The quasi-minuscule Schubert scheme for PGL2

Let Ssc (resp. Sad) be the quasi-minuscule Schubert variety in the affine Grassmannian
GrSL2 (resp. GrPGL2 ) over Z. Let L��SL2 (resp. L��PGL2) be the strictly negative loop
group (see Section 3.3) which defines an ind-affine open neighborhood of the base point
in GrSL2 (resp. GrPGL2 ). The canonical map GrSL2 ! GrPGL2 induces a scheme theoreti-
cally surjective morphism Ssc ! Sad, and hence a morphism

SpecA WD L��SL2 \ Ssc ! L��PGL2 \ Sad DW SpecB;

which identifies B with an integral subdomain of A. The aim of this section is to prove the
following result.

Proposition B.1. – There is an isomorphism A Š ZŒx; y; z�=.z2C xy/ under which B is
the subring generated by the elements x; y; 2z; xz; yz.

Corollary B.2. – The ringB˝F2 is not reduced. Its reduction identifies with the subring
of A˝ F2 Š F2Œx; y; z�=.z2 C xy/ generated by x; y; xz; yz.
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Proof. – The element u D 2z is not 0 in B ˝ F2 because z 62 B. But its square
u2 D 4z2 D �4xy is 0 in B ˝ F2 because x; y 2 B. This shows that B ˝ F2 is not
reduced. Clearly, the image of B ˝ F2 ! A ˝ F2 Š F2Œx; y; z�=.z2 C xy/ is the subring
generated by x; y; xz; yz. The kernel of this map is nilpotent because the spectra of all rings
are irreducible of Krull dimension 2. Hence, the ring .B ˝ F2/red identifies with the desired
subring of the integral domain F2Œx; y; z�=.z2 C xy/.

This corollary shows that the special fiber Sad ˝ F2 is not reduced. More precisely, the
reduction .Sad ˝ F2/red is the quasi-minuscule Schubert variety for PGL2 over F2, but the
inclusion .Sad ˝ F2/red � Sad ˝ F2 is strict.

To prove Proposition B.1, we first calculate the ring A. For this, we consider the Lie
algebra sl2 of SL2 over Z. The nilpotent cone n in sl2 is the closed subscheme of matrices
whose determinant is zero. We choose the isomorphism A3Z Š sl2 given by the map

.x; y; z/ 7!

 
z x

y �z

!
;

so that fz2 C xy D 0g Š n as schemes over Z.

Lemma B.3. – Let e 2 GrSL2.Z/ denote the base point. The map n ! GrSL2 ,
X 7! .1C t�1X/ � e induces an isomorphism n Š L��SL2 \ Ssc, that is, an isomorphism
ZŒx; y; z�=.z2 C xy/ Š A on coordinate rings.

Proof. – The map n! L��SL2,X 7! 1C t�1X is well-defined and a closed immersion.
It induces an isomorphism onto the closed subscheme .L��SL2/Œ�1;1� of L��SL2 of all
matrices M D 1 C t�1M1 C t

�2M2 C : : : such that Mi D 0 and .M�1/i D 0 for i � 2.
We now regard L��SL2 via the map g 7! g � e as an open sub-ind-scheme of GrSL2 , see [19,
Lem. 2] (cf. Lemma 3.6). It remains to showL��SL2\Ssc D .L

��SL2/Œ�1;1� as subschemes
of GrSL2 .

Recall the lattice interpretation of the affine Grassmannian, see [19, p. 42] (cf. [21, p. 697]).
For any ring R, the R-valued points of GrSL2 are given by RŒŒt ��-lattices ƒ � R..t//2

such that detƒ D RŒŒt �� in R..t//. We denote by ƒ0;R D RŒŒt ��2 the standard lattice
which corresponds to the base point. Let GrSL2;Œ�1;1� denote the closed subscheme of GrSL2

of RŒŒt ��-lattices ƒ such that tƒ0;R � ƒ � t�1ƒ0;R. A direct computation on R-valued
points shows .L��SL2/Œ�1;1� D L��SL2 \ GrSL2;Œ�1;1�. Recall that Ssc is defined as the
scheme theoretic closure of the orbit map LCSL2 ! GrSL2 , g 7! g �

�
t 0
0 t�1

�
� e. We see that

Ssc � GrSL2;Œ�1;1�, and hence that L��SL2 \ Ssc is a closed subscheme of .L��SL2/Œ�1;1�.
Since both are integral of Krull dimension 2C dimZ D 3, they must be equal.

In order to calculate the subring B of A Š ZŒx; y; z�=.z2 C xy/, we consider the adjoint
representation of SL2: The map g 7! .x 7! gxg�1/ induces a morphism of Z-group
schemes SL2 ! GL.sl2/ D GL3 given by

(B.1) AdW

 
a b

c d

!
7!

0BB@1C 2bc �ac bd

�2ab a2 �b2

2cd �c2 d2

1CCA ;
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where we use the ordered basis
�
1 0
0 �1

�
,
�
0 1
0 0

�
,
�
0 0
1 0

�
of sl2. This map induces a closed

immersion PGL2 ,! SL3 of reductive Z-group schemes, and hence a closed immersion
GrPGL2 ,! GrSL3 of affine Grassmannians over Z. Therefore, the image of Sad in GrSL3

identifies with the scheme theoretic image of Ssc under AdWGrSL2 ! GrSL3 .

Proof of Proposition B.1. – We identifyA D ZŒx; y; z�=.z2Cxy/ under the isomorphism
of Lemma B.3. Combining this with (B.1) gives

AdW

 
1C t�1z t�1x

t�1y 1 � t�1z

!
7!

0BB@ 1C 2t�2xy �.1C t�1z/t�1y t�1x.1 � t�1z/

�2.1C t�1z/t�1x .1C t�1z/2 �t�2x2

2t�1y.1 � t�1z/ �t�2y2 .1 � t�1z/2

1CCA :
As this formula holds on R-valued points, the ring B is precisely the subring of A generated
by the monomials in x; y; z appearing as coefficients of t i for i D �1;�2. An inspection of
this matrix using z2C xy D 0 and Z� D ˙1 shows that B D ZŒx; y; 2z; xz; yz� as a subring
of A.

Appendix C

Minimal nilpotent orbits in twisted affine Grassmannians

Fix an algebraically closed field k of characteristic 0. Let H be a simply connected or
adjoint simple k-group of type An (n � 2), Dn (n � 4), or E6 endowed with a pinning
.H; TH ; BH ; XH /. Let �0 be the canonical involution of Aut.H; TH ; BH ; XH / induced by the
non-trivial involution of the Dynkin diagram of ˆ.H; TH / (5). Let M WD H �0 be the affine
k-group deduced from H by taking �0-fixed points. It is smooth of finite type, connected,
reductive, simple, simply connected or adjoint by [24, Prop. 4.1] (see also [28, Prop. A.1]).
Moreover, it carries a natural pinning .M; TM ; BM ; XM / where the middle entries are given
by fixed points under the involution and XM D XH . The root systemˆ.M; TM / is the set of
non-divisible elements in the image of ˆ.H; TH / under the natural restriction morphism:

X�.TH /˝ R! X�.TM /˝ R Š .X�.TH /˝ R/�0 ;

the latter of which will often be identified with .X�.TH / ˝ R/�0 via the obvious averaging
map.

Let k..t// be the Laurent series field over k and consider its quadratic Galois extension
k..u// with u D t1=2. The restriction of scalars Resk..u//=k..t//Hk..u// admits the involution
� WD �0 ˝ � where � stands for the Galois involution of k..u//=k..t//. Its fixed points
G WD .Resk..u//=k..t//Hk..u///� form a reductive, quasi-split group equipped with a natural
pinning .G; TG ; BG ; XG/, see [55, §2] or [47, §2.1-2.2]. We have an obvious absolutely special
parahoric model of G given by the same formula after replacing k..u//=k..t// by kŒŒu��=kŒŒt ��.
We will still denote this kŒŒt ��-group byG. It is important to note as well that at a combinato-
rial level, the groupsG andM are not so far from one another, in the sense thatˆ.M; TM / is
the set of non-divisible roots of the relative root system ˆ.G; SG/ via the obvious identifica-
tion X�.SG/˝ R D X�.TM /˝ R.

(5) ForH of typeD4, there are 3 possible choices of involution, and we pick the one fixing ˛1. Note that since these
involutions are all conjugate, other choices lead to isomorphic group-theoretic data.
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Our goal is to establish a link between certain nilpotent orbits of M (not necessarily for
the adjoint representation) and certain Schubert varieties of GrG . Note that the classification
of simply connected tamely ramified reductive groups would force us to consider the case
where �0 is either the identity or has order 3 (for theD4 root system and associated triality).
However, the material of this section has already been treated in [48, §2.10] and [28, §8] in
those additional cases.

C.1. Minimal nilpotent orbits of the M -module g�1

Let h ˝ kŒu; u�1� be the algebraic loop algebra of h with the obvious action of � by �0
on the left and Galois conjugation on the right. We let g denote the � -invariants of this
Kac-Moody algebra—this is a graded version of LieG. The action preserves moreover the
obvious u-grading and we write g�1 WD hŒu�1�� . This is acted upon by M in the evident
manner and we are going to analyze the structure of this representation as well as some of
its nilpotent orbits. In the following, we denote byˆM;< the short roots ofˆM WD ˆ.M; TM /
and by �M;< the unique dominant short root of ˆM .

Proposition C.1. – Suppose that ˆG WD ˆ.G; SG/ is reduced or, equivalently, that
ˆH WD ˆ.H; TH / is not of type A2m. The following properties hold:

1. The M -module g�1 is irreducible and quasi-minuscule, that is, its highest weight
equals �M;<.

2. Let v 2 g�1 be any non-zero weight vector. Then the orbit closure Omin WD M � v inside
the affine space g�1 is independent of v and contains the origin. It satisfies the following
dimension formula

dim Omin D 2C #fa 2 ˆM W aC �M;< 2 ˆM;<g

and its tangent space T0Omin at the origin is identified with g�1.

Proof. – The null weight space of our representation equals tG;�1 WD tH Œu�1�� which has
dimension equal to the cardinality of�M;<, that is, the subset of short positive simple roots.
This can be seen by writing down its basis

(C.1) u�1h˛ � u
�1h�0.˛/;

where ˛ 2 �H is not �0-invariant and h˛ D Œe˛; e�˛� is the canonical coroot element induced
by the choice of the non-zero root vectors e˛ belonging to a Chevalley-Steinberg basis of h
extending the components ofXH . Similarly, we see that the only nonzero weights are (short)
roots of the form ˛C�0.˛/

2
with ˛ 2 ˆH . Indeed, their weight spaces are 1-dimensional

spanned by
u�1e˛ � u

�1e�0.˛/;

see [10, 4.1.3] and compare with [47, §2.1] for more explanations and references. The reduced-
ness hypothesis is crucial here to ensure that �0.e˛/ D e�0.˛/ for all roots ˛ 2 ˆH . Since all
the roots in ˆH have the same length, it follows that the short roots ˆM;< are those of the
form ˛C�0.˛/

2
for non-�0-invariant roots ˛ 2 ˆH , and the unique dominant short root �M;< is

thus the highest weight of the representation g�1. Since all the weight spaces with non-zero
weight are 1-dimensional, g�1 is the sum of the quasi-minuscule representation of M , plus
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possibly a trivial representation with some multiplicity m. But it is known that the weight-
zero space in the quasi-minuscule representation of M has dimension #�M;<, and thus it
follows that m D 0. This completes the proof of (1).

Now we consider the minimal (6) nilpotent orbit Omin D M � v. Since all non-zero
weight vectors are extremal by (1) and these are conjugate under the M -action, the orbit
closure Omin is independent of the choice of the non-zero weight vector v. Further, it is
called nilpotent because v belongs to the nullcone of g�1. In other words, v is an unstable
point in the sense of geometric invariant theory, as one can find a cocharacter � of M such
that

lim
t!0

�.t/ � v D 0

by the Hilbert-Mumford criterion. This also proves 0 2 Omin. So the tangent space T0Omin,
being an M -submodule of g�1, must be the entire space by irreducibility.

As for computing the dimension, we need to subtract from dimM the dimension of the
stabilizer ZM .v/ of v which is preserved under conjugation by TM . This can be done at the
level of Lie algebras and then zm.v/ actually decomposes into its intersection with weight
spaces for the TM -action. Obviously, zm.v/\ tM is a hyperplane in tM and hence its cokernel
contributes once to the dimension of the minimal nilpotent orbit. Now we need to count
roots a 2 ˆM such that ea annihilates v. Choosing v to be a highest weight vector, it certainly
suffices to have a 62 ��M;< C .ˆM;< [ f0g/.

Suppose, on the other hand, that a C �M;< 2 ˆM;< [ f0g. If a D ��M;< and if we write
�M;< D

 C�0. /
2

, then v D u�1e � u
�1e�0. / and e��M;< � v is a non-zero multiple of the

averaged coroot element (C.1) for ˛ D  , using that f ; �0. /g form a perpendicular orbit
pair. If a C �M;< is a short root of M , then we can write a D ˛C�0.˛/

2
without necessarily

having ˛ ¤ �0.˛/ and we claim that we can arrange ˛ C  2 ˆH up to replacing ˛ by its
�0-conjugate. Otherwise, the bracket Œea; e�M;< � would have to vanish while simultaneously
generating the root space of aC �M;<. Now if ˛ ¤ �0.˛/ then ea WD e˛ C e�0.˛/ and we see
that ea � v ¤ 0 because after expanding we get a non-zero multiple of e˛C 2 C�Œe˛; e �,
which cannot be canceled out since aC�M;< is short and hence �0.˛C / ¤ ˛C and also
since ˛ ¤ �0.˛/. If ˛ D �0.˛/ then ea WD e˛ and similarly Œea; u�1.e � e�0. //� ¤ 0. This
yields the dimension formula. (7)

We treat separately the case when ˆG is non-reduced, thus of type BCn, for reasons that
will become clear to the reader in a moment. We let �G be the highest root of ˆG (notice
that it must always be divisible). Recall that �0-invariant roots of ˆH do not induce roots
in ˆM , but only divisible roots of ˆG . Under the non-reducedness assumption on ˆG , the
short roots ofˆM consist of averages of non-orthogonal �0-orbit pairs of roots, whereas long
roots are the averages of the orthogonal pairs.

Proposition C.2. – Suppose that ˆG is non-reduced or, equivalently, that ˆH is of
type A2n. The following properties hold:

(6) To actually know that this is the smallest nilpotent orbit of g�1 as happens for the adjoint representation, we
would need an analogue of the Jacobson-Morozov theorem.
(7) Alternatively, we could have used that the Kac-Moody roots a and �M;<�ı of the Kac-Moody algebra g, where
ı is the minimal positive imaginary root, constitute a prenilpotent pair of real roots in the sense of Tits [69, §3.2],
so their bracket is non-trivial.
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1. The M -module g�1 is irreducible of highest weight �G .

2. Let v 2 g�1 be any extremal weight vector. Then the closed orbit Omin WD M � v inside
the affine space g�1 is independent of v and contains the origin. It satisfies the following
dimension formula

dim Omin D 1C #fa 2 ˆM W aC �G 2 ˆM g

and its tangent space T0Omin at the origin is identified with g�1.

Proof. – We start by producing a reasonable basis of g�1, in the very same spirit of the
previous proposition. The null weight space is still tG;�1 WD tH Œu�1�� , it has dimension #�M
spanned by the basis

u�1.h˛ � h�0.˛//

for any orbit pair f˛; �0.˛/g regardless of their orthogonality behavior. All roots a D ˛C�0.˛/
2

of ˆM are multiplicity one weights with weight vectors given by

va D u
�1.e˛ � e�0.˛//;

where we use a Chevalley-Steinberg basis which must necessarily satisfy the property
�0.e˛/ D "˛e�0.˛/, with "˛ 2 f˙1g being a fixed sign. Here "˛ D 1 if ˛ ¤ �0.˛/ and "˛ D �1
otherwise.

This shows already that g�1 is not quasi-minuscule, as ˆM is not simply-laced, but we
also have extremal vectors of weight a D ˛ C �0.˛/ 2 ˆGnˆM for all non-orthogonal
non-singleton orbit pairs f˛; �0.˛/g, equivalently, all �0-invariant roots a of ˆH . Indeed,
these extremal weight spaces are spanned by va D u�1ea, which are fixed by � , because
�0.ea/ D �ea.

Therefore we conclude that g�1 contains the highest weight module attached to �G .
Moreover, since every non-zero weight has multiplicity one, belonging to the highest weight
module by saturatedness, the only other possible summand would be the trivial representa-
tion. However, it is easy to see that for each a 2 �M , Œe�˛Ce��0.˛/; va� D �u

�1.h˛�h�0.˛//,
whence irreducibility of g�1. Indeed, this shows that the entire zero weight space tH Œu�1�� is
contained in the module with highest weight �G .

As for the remaining assertions on Omin WD M � v�G , we can argue in the same manner
as in the reduced case. Let us take care of the combinatorics. We need to study roots a
in ˆM such that a C �G 2 ˆG [ f0g and examine whether eav�G ¤ 0. Since �G … ˆM
and a C �G cannot be divisible, we can replace ˆG [ f0g by ˆM . Write a D ˛C�0.˛/

2

and note that we can arrange ˛ C �G 2 ˆH just as in the proof of Proposition C.1.
Then Œe˛ C e�0.˛/; u

�1e�G � is a non-zero multiple of u�1.e˛C�G / plus a non-zero multiple
of u�1.e�0.˛/C�G /, and cancelation cannot occur since ˛ ¤ �0.˛/.

C.2. Quasi-minuscule Schubert variety of GrG

Recall that [25, Thm. 6.1] describes the échelonnage root and coroot systemsˆ M†, resp.ˆ_
M†

for G, in terms of the �0-action on ˆH , resp. on ˆ_H . We obtain

ˆ M† D N
0
�0

�
ˆH

�
;
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where the modified norm is defined as in [25, §3]. Dually, we get

ˆ_
M†
D res�0

�
ˆ_H

�
;

which is given by taking �0-averages and excluding the resulting divisible coroots. We note
that parallel to the above, ˆM D res�0.ˆH /.

We are particularly interested in the unique quasi-minuscule coweight  _ of ˆ_
M†
. This

is obtained from the highest orbit pair f _; �0. /_g, the highest orbit pair of ˆ_H with
average _ of the shortest possible length. In other words, f _; �0. /_g is the set of coroots
of f ; �0. /g, the highest non-singleton orbit pair in ˆH if ˆG is reduced and the highest
non-orthogonal non-singleton orbit pair otherwise (so  carries the same meaning as in the
previous section). Indeed, in the reduced case,  C �0. / is the highest long root, hence
the highest root of N 0�0.ˆH / D ˆ M†. So . C �0. //_ D

 _C�0. /
_

2
D  _ is the quasi-

minuscule coroot for ˆ M† (recall  and �0. / are perpendicular). In the non-reduced case,
2. C�0. // is the highest long root, hence the highest root ofˆ M†, and a calculation shows
the quasi-minuscule coroot is again expressed as  _, compare with [25, Lem. 3.2].

We have the following important lemma:

Lemma C.3. – The quasi-minuscule Schubert variety SG; _ and the minimal nilpotent
orbit Omin for g�1 have the same dimension.

Proof. – This amounts to establishing the combinatorial identity

h2�H ;  
_
i D

(
2C #fa 2 ˆM W aC �M;< 2 ˆM;<g if ˆG is reducedI

1C #fa 2 ˆM W aC �G 2 ˆM g else:

Let us first assume ˆG is reduced. Consider the two types of roots in ˆH;C: ˇ with
ˇ ? �0.ˇ/ and  such that  D �0./. Write b WD ˇC�0.ˇ/

2
and c WD  for the corresponding

positive roots in ˆM ; note that b 2 ˆM;< is a short root and c 2 ˆM;> a long root. Since
�_M WD .�M;</

_ D  _ C �0. /
_ we have identities

hb; �_M i D hˇ; 
_
i C h�0.ˇ/;  

_
i(C.2)

hc; �_M i D 2h;  
_
i:(C.3)

We claim that (C.2) (resp. (C.3)) takes values in f0; 1g, if ˇ … f ; �0. /g (resp. f0; 2g). To
see this recall that the root ˇ C �0.ˇ/ (resp.  ) of N 0�0.ˆH / D ˆ M† is not proportional to
the highest root  C �0. / of ˆ M†, so by [8, VI.1.8, Prop. 25], we obtain hˇ C �0.ˇ/;  _i
(resp. h;  _i) belongs to f0; 1g.

Next we observe that hb; �_M i D 1 if and only if �bC �M;< 2 ˆM;<, when ˇ … f ; �0. /g
(resp. hc; �_M i D 2 if and only if �c C �M;< 2 ˆM;<). (Note that all roots a D �b
(resp. a D �c) appearing in the desired formula are necessarily negative.) If hb; �_M i D 1,
then s�M;<.b/ D b��M;< 2 ˆM;<. If hc; �_M i D 2, then c and s�M;<.c/ D c�2�M;< are both
long roots, so c � �M;< is a short root. Conversely, if b (resp. c) and �M;< are perpendicular,
their difference is longer than �M;< so in particular is not a short root.

Finally, note that, under the bijection between � -orbits in ˆH and elements of ˆG , our
previous considerations imply by a counting argument that h2�H ;  _i equals the right side of
the combinatorial identity. Indeed, the missing case b D �M;< provides the extra summand 2
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in the right side of the identity, whereas positive roots (beware the sign changes) cannot sum
with �M;< to a short root by maximality.

Now consider the case where ˆG is not reduced of type BCn so that ˆH is of type A2n.
As much as we could probably give a combinatorial proof, it is quite simple to verify that the
right side equals 2n by inspecting [8, Ch. VI, Planches II-III], whereas a calculation reveals
that h2�H ;  _i D 2n as well.

We have a natural morphism of reduced (ind)-schemes expW nH;�1 ! L��H induced
by the exponential map of Lie algebras, where nH;�1 is the set of nilpotent matrices in h�1.

For SLn, this can be written as the usual exponential u�1X 7!
P1
iD0

.u�1X/i

iŠ
, and it follows

that the above morphism is a closed immersion. Moreover, it is � -equivariant, so we also
obtain a closed immersion on fixed points

expW nG;�1 �! L��G;

where nG;�1 WD n�H;�1. We have the following generalization of [28, Thm. 8.1, Prop. 8.6]:

Proposition C.4. – The morphism expW nG;�1 ! L��G restricts to an isomorphism
Omin Š L

��G \ SG; _ .

Proof. – Once we show that the image of any extremal weight vector lies in the quasi-
minuscule Schubert cell, the result follows immediately from Lemma C.3. Indeed, we would
have a closed immersion between two varieties of the same dimension, so it has to be an
isomorphism.

Now for the factorization claim, we must once again divide our approach depending on
the reducedness of ˆG . Let us first treat the reduced case. We observe that the exponential
of v�M;< is by definition x .u�1/x�0. /.�u

�1/. But this product of commuting elements
comes from an isogeny SL2�SL2 ! H onto the root group attached to the orbit f ; �0. /g
of commuting roots. Notice that the element xa.˙u�1/ of GrSL2 belongs to the a_-Schubert
cell. Hence, by naturality, we get that exp.v�M;</ is sent to the Schubert cell of GrH associated

with  _ C �0. /_. But this is exactly the image of t _ 2 TG.k..t/// in TH .k..u///=TH .ŒŒu��/
under the Kottwitz map, see [39, (7.3.2)].

Finally, suppose that ˆG is non-reduced. We have the extremal weight vector v�G of g�1,
whose exponential equals x C�0. /.u

�1/. This element lies again in the Schubert cell of GrH
attached to . C �0. //_ D  _ C �0. /_, so we are done again by [39, (7.3.2)].

Appendix D

Equivalence of geometric properties

Proposition D.1. – An .a; f/-Schubert varietySw ,w 2 W=Wf is normal if and only if it is
weakly normal (resp. (S2), resp. Cohen-Macaulay, resp. Frobenius split if char.k/ > 0, resp., it
has rational singularities).
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Proof. – Recall from [53, Prop. 9.7] that the normalization QSw ! Sw is a universal
homeomorphism, and that QSw is Cohen-Macaulay, Frobenius split if char.k/ > 0, and has
rational singularities. Therefore ‘normal’ implies each of those properties. This also handles
the equivalence of ‘normal’ with ‘weakly normal’. To show that ‘Frobenius split’ implies
‘normal’, we invoke [52, Lem. 1]: if Y ! X is a proper surjective morphism of irreducible
k-schemes with connected fibers such that Y is normal and X is Frobenius split, then X is
normal. We apply this to the Demazure resolution D. Qw/ ! Sw attached to any reduced
decomposition Qw of w.

If Sw has rational singularities in the sense of [53, Prop. 9.7], then we know thanks to
[40, Rem. 9.2] that Sw is Cohen-Macaulay and normal. Also, in general Cohen-Macaulay
(resp.S2) and regularity in codimension 1 imply normality.

Thus, for the equivalence of ‘normal’ with the remaining properties it suffices to prove the
following result.

Lemma D.2. – Every Schubert variety Sw is regular in codimension 1.

Proof. – We may assume f D a and w 2 Waff. Let e be the base point in FlG;a. We
abbreviate by letting UC D LCGa and U� D L��Ga. Setting xy WD xyx�1, we define for
any x 2 Waff the groups UCx D

xU� \ UC and U�x D U� \ x�1UC, so that xU�x D U
C
x .

Since the open Schubert cell in Sw is a smooth orbit under UC D LCGa, we are reduced
to checking regularity in an open neighborhood of the point w0e associated to Schubert
varieties Sw0 � Sw of codimension 1. Write w D usv as a partial reduced word with s being
a simple reflection, such that w0 D uv is still a partial reduced word.

For any x, the Schubert variety Sx has an open neighborhood of xe of the form UCx xe.
This follows from properties of the negative loop groups (Corollary 3.9; see also [47, Eqn.
(4.2.24)]). Let � WD. Qw/ ! Sw be the partial Demazure resolution attached with the partial
reduced decomposition Qw D .u; s; v/. Therefore, we get an open neighborhood in D. Qw/
around .u; 1; v/ which is isomorphic to

O WD UCu u � U
�
s � U

C
v v Š U

C
u �

uU�s �
uUCv uv:

Moving uv to the left, we identify this with

uv �v
�1

U�u �
v�1U�s � U

�
v :

Using that uv and sv are partial reduced words, we see that each group factor lies inU�, and
thus under the product morphism � , this maps into uvU� \ Sw .

We claim that �jO is a monomorphism. By the root group decomposition lemma [47,
Prop. 4.2.6], it is enough to show that the terms of the above product share no affine roots
in common. Comparing the first two terms, this follows from u < us. Comparing the third
term with either of the others, it follows because vU�v D UCv involves only positive affine
roots.

Now the morphism �jO WO ! uvU� \ Sw is a finite type monomorphism, hence is
unramified [1, Tag 06ND]. This implies that �jO induces an isomorphism OD. Qw/;.u;1;v/ Š OSw ;uv,
and hence that Sw is regular at uv, as follows: the map � is birational by general proper-
ties of Demazure resolutions. Its restriction �jO is quasi-finite, and so factors as an open
immersion followed by a finite morphism by Zariski’s Main Theorem. Hence, the map on
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local rings is finite, birational and unramified. An application of Nakayama’s lemma as in
the proof of (3))(2) of Proposition 2.1 shows that it must be an isomorphism.

Remark D.3. – For Schubert varieties attached to finite Weyl groups, a direct proof
of Lemma D.2 (not relying on normality) was already known by e.g., [42, Thm. A.12.1.10],
whose proof proceeds by descending induction on l.w/ and does not extend to the affine
case. While this paper was undergoing revision, a referee pointed us to [13, Cor. 3.3], which
similarly handles arbitrary Kac-Moody groups and does not imply Lemma D.2 when char.k/
divides #�1.Gder/.
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