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THEOREM ON COMPACT MANIFOLDS

by Pierre Brun, Rafik Imekraz & Guillaume Poly

Abstract. — We study the convergence of Gaussian random series of radial/zonal
eigenfunctions of the Laplace–Beltrami operator (on the Euclidean space and on the
round sphere). More precisely, we obtain a simple, necessary and sufficient condition
of almost sure uniform convergence (we thus complete an analysis of Ayache and
Tzvetkov). In dimension 2, our strategy turns out to be linked with Hölder regularities.
As a by-product, we also prove a Hölder version of the Paley–Zygmund theorem on a
boundaryless Riemannian compact manifold.
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444 P. BRUN, R. IMEKRAZ & G. POLY

Résumé (Fonctions propres zonales aléatoires et version höldérienne du théorème de
Paley–Zygmund sur les variétés compactes). — Nous étudions la convergence de séries
aléatoires gaussiennes de fonctions propres radiales/zonales de l’opérateur de Laplace-
Beltrami (sur l’espace euclidien ou sur la sphère usuelle). Plus précisément, nous ob-
tenons une condition nécessaire et suffisante simple de convergence uniforme (presque
sûre), ce qui nous permet de compléter une analyse de Ayache et Tzvetkov. En dimen-
sion deux, notre stratégie s’avère liée à la régularité höldérienne. Par conséquent, nous
prouvons une version höldérienne d’un théorème de Paley-Zygmund sur une variété
riemannienne compacte sans bord.

1. Introduction

LetM be a Riemannian manifold (we shall state more precise assumptions
in the sequel) and let us consider a sequence (φk)k∈N of L2(M) made of eigen-
functions of a fixed operator (for instance, a Laplace–Beltrami operator). The
present paper makes a contribution in the research area where the following
question is of interest: once a Banach space B of functions onM is fixed, can
we give a necessary and sufficient condition on a sequence of coefficients (ck)k∈N
such that the Gaussian random series

∑
gk(ω)ckφk almost surely converges in

B (here, (gk)k∈N is a standard i.i.d. Gaussian N (0, 1) sequence of random vari-
ables defined on an abstract probability space Ω)? Actually, such a question
is too general, and we shall give a satisfactory solution in two particular cases,
which we shall motivate in the present Introduction.

We prefer to refer to the Introduction of [32, 24] for more details about the
history of such questions for M being the torus or a compact group, or the
Introduction of [20] forM being a manifold. Here, however, we shortly recall
the main contributions. One could separate the results into two directions.
Analysis on groups. — The story began with the paper of Paley and Zyg-
mund [36], who gave a solution for random linear combinations1 ∑

k∈N
±ckeikx.

Actually, for any fixed p ∈ [2,+∞), such a random series belongs, with prob-
ability 1, to Lp(−π, π) if and only if (ck) belongs to `2(N). It is now known
that considering random signs ± (namely i.i.d. Rademacher random variables)
instead of Gaussian random variables leads to the same results2. The case
p = +∞ is much more delicate. One of the best “simple sufficient conditions”
is given3 by a result of Salem and Zygmund [37, page 291]∑

k≥2

1
k
√

ln(k)

√∑
n≥k

|cn|2 < +∞

1. Here, we prefer to choose an index set equaling N instead of the natural choice Z for
consistency with the sequel of the article.

2. This equivalence has been proved by Marcus and Pisier.
3. Actually, such a condition may become necessary under some assumptions (see [31]).
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that actually sharpens the Paley–Zygmund condition; there is γ > 1 satisfying∑
k≥2
|ck|2 lnγ(k) < +∞.

In order to obtain a condition that is sufficient and necessary on the sequence of
(ck) in the case p = +∞, one needs to combine two arguments: the theorem of
Dudley [10] that proves that an abstract condition, called the entropy condition,
is sufficient, and then the theorem of Fernique that proves that the entropy
condition is necessary (by exploiting the stationarity of Gaussian processes; see
[11, pages 89–94]). Finally, the book [32] contains the complete solution for
M being a compact group for adequate random series. We also refer to [28,
Chapter 13] or [29, Chapters 3 and 6] for much more detail on this aspect.
Analysis for elliptic operators. — The story continues with the papers of
Ayache–Tzvetkov [3] and Tzvetkov [38] by replacing the trigonometric functions
eikx with eigenfunctions of a Laplace operator. Let us explain the contribu-
tion of Ayache and Tzvetkov with a few details; let us denote by (Zd,Dir

n )n≥1
the sequence of the radial eigenfunctions of the Laplace operator on the closed
unit ball Bd(0, 1) of Rd with Dirichlet conditions for d ≥ 2 (see (1) for the
exact definition). Ayache and Tzvetkov proved that, in contrast to the trigono-
metric case, for any sequence of coefficients (cn)n∈N? , there is an exponent4

pc ∈ [2,+∞] (depending on (cn)) such that

p < pc ⇒
∑
n≥1

gn(ω)cnZd,Dir
n almost surely converges in Lp(Bd(0, 1)),

p > pc ⇒
∑
n≥1

gn(ω)cnZd,Dir
n almost surely diverges in Lp(Bd(0, 1)).

In [3, Theorem 4], it is proved that pc = 2d
d−2 in the specific case cn ' 1

n . Then,
in [14] Grivaux obtained a simple formula giving pc for any arbitrary sequence
of coefficients (cn) ∈ `2(N?). Actually, the issue behind such considerations is
to decide whether or not the Gaussian random series

∑
gn(ω)cnZd,Dir

n almost
surely converges in Lp(Bd(0, 1)). For any finite exponent p > 2d

d−1 , a complete
solution is given in [18] for zonal eigenfunctions5 on the sphere Sd for d ≥ 2.
In [18], the finiteness of p is very important because of interpolation arguments.

4. Actually, the inequality pc ≥ 2d
d−1 holds because the eigenfunctions Zd,Dir

n are uniformly
bounded in Lp(Bd(0, 1)) for p < 2d

d−1 (we refer to [3] for explanations or the inequality in
[18, page 266, line (2)]).

5. Actually, it is known that the zonal eigenfunctions on Sd have, in some sense, a similar
behavior than that of the radial eigenfunctions Zd,Dir

n , which play a sort of canonical model
of eigenfunctions that concentrate around a point (see [3, page 4428, remark d)], and this
point of view will also be clarified in Section 2.
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446 P. BRUN, R. IMEKRAZ & G. POLY

We note that a common ingredient in all the works [3, 14, 18] is the concentra-
tion of the radial (or zonal) eigenfunctions. We also refer to [22] for the analysis
of radial eigenfunctions of the harmonic oscillator −∆ + |x|2 on L2(Rd).
First contribution of the paper. — The first contribution of the present paper
is to find a necessary and sufficient condition for p = +∞ in the zonal/radial
framework studied by Ayache and Tzvetkov in [3]. Let us briefly recall the two
examples of functions we have in mind.
• The sequence of radial eigenfunctions of the Laplace operator −∆Dir on
the Euclidean closed ball Bd(0, 1) = {x ∈ Rd, |x| ≤ 1} (for d ≥ 2) with
Dirichlet conditions. Then the sequence of radial eigenfunctions Zd,Dir

n

is given by

Zd,Dir
n (x) = cd,n

J d
2−1(λd,n|x|)

|x| d2−1
, ∀x ∈ Rd, ∀n ∈ N?,(1)

in which λd,n is the n-th zero the Bessel function J d
2−1. We have λd,n ' n

and cd,n '
√
n for n → +∞ (see [3, page 4431]). The functions Zd,Dir

n

concentrate around the origin (see (22)) and satisfy the eigenfunction
equation

−∆Zd,Dir
n = λ2

d,nZ
d,Dir
n .

• The second example is the sequence of zonal eigenfunctions of the round
sphere Sd ⊂ Rd+1, for d ≥ 2, with respect to the Laplace–Beltrami
operator −∆. It is usual to consider the zonal eigenfunctions around
a point, for instance P = (1, 0, . . . , 0). With such a formalism, the
sequence of zonal eigenfunctions, denoted here by ZSd

n can be defined via
the orthogonal Jacobi polynomials (or also Gegenbauer polynomials)

ZSd
n (x) = c′d,nP

( d2−1, d2−1)
n (x1), ∀x = (x1, . . . , xd+1) ∈ Sd,(2)

in which c′d,n '
√
n (for n→ +∞) and ‖ZSd

n ‖L2(Sd) = 1. We also have

−∆ZSd
n = n(n+ d− 1)ZSd

n .(3)

Furthermore, ZSd
n concentrates around the point P but also around the

point −P thanks to the formula P ( d2−1, d2−1)
n (−x) = (−1)nP ( d2−1, d2−1)

n (x).
It is known that these models are very similar (for instance, via their Lp bounds)
and more precisely that the first example is more or less a sort of canonical
model (see Section 2). Let us, moreover, fix a sequence (gn)n≥1 of i.i.d. Gauss-
ian random variables N (0, 1). We shall prove the following result whose main
contribution is the proof of the implication i) ⇒ ii).
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Theorem 1.1. — We assume the dimension d fulfills d ≥ 2. For simplicity,
let us write Zdn : M → R one of the previous two models (Zd,Dir

n or ZSd
n ) for

whichM is understood as the corresponding manifold of dimension d (Bd(0, 1)
or Sd). Let us fix a sequence (cn)n≥1 of coefficients, then the following three
statements are equivalent.

i) The series
∑
n≥1
|cn|2nd−1 is convergent.

ii) With probability 1, the Gaussian random series
∑
n≥1

gn(ω)cnZdn uniformly

converges onM.
iii) With probability 1, the Gaussian random series

∑
n≥1

gn(ω)cnZdn weakly

converges in the following sense to a function fG,ω, which belongs to
L∞(M),

∀ψ ∈ C∞(M)
∫
M

( N∑
n=1

gn(ω)cnZdn(x)
)
ψ(x)dx −−−−−→

N→+∞

∫
M
fG,ω(x)ψ(x)dx.

Let us make a few comments on the previous result.
• Theorem 1.1 remains true by replacing the sequence (gn) with a sequence

(εn) of i.i.d. Rademacher random variables. Actually, if ii) holds true,
then the famous contraction principle6 shows that the Rademacher ran-
dom series

∑
n≥1

εn(ω)cnZdn almost surely uniformly converges onM and,

thus, almost surely weakly converges in a similar sense to the assertion
iii). And it turns out that the proof of iii) ⇒ i) developed in Section 16
would be totally similar in the Rademacher case.

• Let us explain why the condition in i) is the best one that we could
expect. For simplicity, let us call P a point of concentration of each
Zdn (even if P is the origin for the model Zdn = Zd,Dir

n ). Due to such a
concentration, we may expect that the behavior of the Gaussian random
series

∑
n≥1

gn(ω)cnZdn is merely relevant at P , namely if the Gaussian

numerical random series
∑
n≥1

gn(ω)cnZdn(P ) is convergent. But, it is a

basic fact that, for any complex sequence (an)n≥1, the Gaussian random
series

∑
gn(ω)an is almost surely convergent if and only if

∑
n≥1
|an|2 <

+∞. As a consequence, the implication ii) ⇒ i) is obvious since we
have7 Zdn(P ) ' n d−1

2 . The implication iii)⇒ i) is not difficult either (see
Section 16) from a probabilistic point of view (though the proof needs
a few basic facts of semi-classical analysis and heat kernel theory).

6. See, for instance, [30, page 137, Th IV.4], [28, page 99, Lem 4.5] or [32, page 45, Th 4.9].
We also refer to a result of Hoffman–Jorgensen as stated in [22, Theorem 5.2].

7. See (21) below.
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• However, the previous geometric intuition turns out to be misleading
in dimension d = 3 from a deterministic point of view. Actually, a
result of Hardy and Littlewood (see Appendix A) allows us to construct
a sequence of coefficients (cn)n≥1 fulfilling the following statements for
the zonal eigenfunctions on S3:
a) We have

∑
n≥1
|cn|2n2 < +∞ (more generally, for any s < 3

2 the series∑
n≥1
|cn|2n2s converges8).

b) The sequence
∑
cnZ

S3

n (P ) is convergent (for the point P =
(1, 0, 0, 0) ∈ S3).

c) The zonal function
∑
n≥1

cnZ
S3

n is not continuous at P (and, hence,

the series
∑
n≥1

cnZ
S3

n does not uniformly converge on S3).

In other words, by considering random coefficients, Theorem 1.1 ensures
that the Hardy–Littlewood case is completely exceptional, and the geo-
metric intuition about concentration around P takes over.

• Let us now give a quite unexpected interpretation of Theorem 1.1 via
Sobolev embeddings. Remembering that the sequences of zonal eigen-
functions ZSd

n are orthogonal in L2(Sd), the assertion i) of Theorem 1.1
means that the function

∑
n≥1

cnZ
Sd
n belongs to the Sobolev space

H
d−1

2 (Sd). For the compact manifold Sd, Theorem 1.1 states the equiv-
alence of the following two assertions9.
i′) With probability 1, the Gaussian random series

∑
n≥1

gn(ω)cnZSd
n

converges in H d−1
2 (Sd).

ii) With probability 1, the Gaussian random series
∑
n≥1

gn(ω)cnZSd
n

uniformly converges on Sd.
Clearly, such an equivalence is a probabilistic improvement of the sharp
Sobolev embedding

Hs(Sd) ⊂ C0(Sd), ∀s > d

2 .(4)

Not only can the regularity exponent s be probabilistically decreased to
d−1

2 , but we obtain an equivalence.
At this point of the Introduction, we shortly explain a few ideas of the proof of
Theorem 1.1. After a reduction via a canonical model (see Section 2), we are

8. Although we merely need to reach s = 1 for our purpose, we note that condition c) and
the Sobolev embedding (4) imply that we cannot set s strictly larger than 3

2 .
9. One could also consider assertions with Rademacher random variables; see, for instance,

[24, page 30, Theorem 2].
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led to study the almost sure uniform convergence for t ∈ [0,+∞) of Gaussian
random series of the form∑

n≥1
gn(ω)λ

d−1
2

n cnW (λnt) with W (t) =
J d

2−1(t)

t
d
2−1

,(5)

and in which λn is a positive and increasing sequence of numbers satisfying a
gap condition like the following one for a suitable positive constant C ≥ 1:

∀n ∈ N?
1
C
≤ λn+1 − λn ≤ C.(6)

For d ≥ 4, the conclusion will essentially come by making an Abel transfor-
mation on (5) and exploiting that the function W is of bounded variations on
[0,+∞).

For d = 3 and d = 2, the functionW in (5) is no longer of bounded variations,
and we must use other reasonings.

For d = 3, the term W (t) equals
√

2
π

sin(t)
t and the problem is thus reduced

to studying the almost sure differentiability at t = 0 of the Gaussian random
series ∑

n≥1
gn(ω)cn sin(λnt).

Among a few probabilistic arguments, we shall use an estimate of Paley and
Wiener generalizing the Plancherel theorem (see (36)) and the fact that any
function in the Sobolev space H1(R) is almost everywhere differentiable on R.

For d = 2, the proof of Theorem 1.1 developed here is much more longer
than those of the cases d ≥ 3 and d = 4. Actually, even if one could simplify
the strategy for d = 2, the machinery that we develop is also useful to prove
Theorem 1.2 below. Firstly, the Gaussian random series in (5) equals∑

n≥1
gn(ω)

√
λncnJ0(λnt).(7)

Then, a model of Gaussian series that should be understood before (7) is, for
instance, ∑

n≥1
gn(ω)cn

sin(λnt)√
t

with
∑
n≥1
|cn|2n < +∞.(8)

In some sense, we will show that (7) is equal to a sum of a trigonometric model
like (8) and a bounded variation perturbation like the case d ≥ 4 (for more
details, see (44) and (48)). It remains to show that a Gaussian random series
like (8) almost surely uniformly converges for t ∈ [0,+∞), or equivalently that
the following Gaussian random series is pointwise 1

2 -Hölder at t = 0:∑
n≥1

gn(ω)cn sin(λnt).(9)
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Plot of t 7→
√
tJ0(t)

Figure 1.1. The standard Bessel asymptotic
√
tJ0(t) =√

2√
π

cos
(
t− π

4
)

+O
( 1
t

)
for t→ +∞ suggests a behavior like a

trigonometric function.

To get such a pointwise Hölder regularity, we shall generalize in an optimal
way a result of Kreit and Nicolay [26, Theorem 14] (see the precise statement
Proposition 9.2, which is of self-interest). To use our Proposition 9.2, we will
need two ingredients:
• An elementary probabilistic result (via the concentration of measure)
giving a sufficient condition for the boundedness of a sequence of Gauss-
ian processes (see Proposition 8.1).

• A proof of the almost sure continuity of (9). Here, we stress that the
sequence (λn) is merely assumed to satisfy the gap estimate (6). In
particular, despite the fact that we want to reach the uniform conver-
gence of (8) on [0,+∞), it is hopeless to get the continuity of (9) via
the uniform convergence on the whole half-closed interval [0,+∞) (we
refer to (96), quoting the seminal work of Meyer [33]). In our proof, we
shall obtain almost sure bounds on

∣∣∣ ∑
n≥1

gn(ω)cn sin(λnt)
∣∣∣ on compact

subsets of [0,+∞) via the Dudley theorem (see Proposition 15.1).
Second contribution of the paper. — Actually, our probabilistic arguments
may also be applied to another problem with a few additional arguments. We
shall denote byM a boundaryless compact Riemannian manifold of dimension
d ≥ 2. We denote by (φk)k∈N a Hilbert basis of L2(M) made of eigenfunctions
of the Laplace–Beltrami operator ∆:

∆φk = −µ2
kφk, 0 = µ0 < µ1 ≤ µ2 ≤ · · · → +∞.(10)
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Let us recall the notations of [20, page 752]. For any K > 0 and any n ∈ N?,
we define the spectral subspace of L2(M):

E(Kn−K,Kn] = Span{φk, µk ∈ (Kn−K,Kn]}.

This spectral subspace is a good analogue of an eigenspace but on a gen-
eral compact manifold10. We now define the multidimensional random series
adapted to our framework. Let Un : Ω → Rdim(E(Kn−K,Kn]) be a uniform ran-
dom vector on the usual Euclidean sphere of Rdim(E(Kn−K,Kn]) and let (gn,k)n,k
be a double sequence of i.i.d. Gaussian random variables N (0, 1); we define for
any f =

∑
n≥1

fn ∈ L2(M) with fn ∈ E(Kn−K,Kn] the following random series

fω :=
∑
n≥1

fωn(11)

with

fωn = ‖fn‖L2(M)
∑

µk∈(Kn−K,Kn]

Un,k(ω)φk,

and

fG,ω :=
∑
n≥1

fG,ωn(12)

with

fG,ωn =
‖fn‖L2(M)√

dim(E(Kn−K,Kn])
∑

µk∈(Kn−K,Kn]

gn,k(ω)φk.

The random series
∑
fωn and

∑
fG,ωn are multidimensional analogues of the

Rademacher and Gaussian random series. Although not presented in the pre-
vious form, such random series implicitly appear in the papers [5, 6] of Burq and
Lebeau. In some sense, the previous random series translate the heuristic idea
consisting in applying to the deterministic series

∑
fn an infinite sequence of

linear random perturbations that stabilize the sequence of spectral subspaces
(E(Kn−K,Kn])n≥1. In particular, a consequence of the analysis of Burq and
Lebeau is a manifold version of the Paley–Zygmund theorem: with probabil-
ity 1, the random functions fω and fG,ω belong to

⋂
p∈[2,+∞)

Lp(M). In order to

reach the case p = +∞, we refer to [19, Theorem 2.1] for a simple sufficient con-
dition, but the general necessary and sufficient condition on the sequence (fn)
is given by [20, Theorem 1]. In particular, for any N ∈ N?, an equivalence11 of

10. Such considerations are more or less unavoidable because it is known that, for generic
compact Riemannian manifolds, the eigenspaces of the Laplace–Beltrami operator are of
dimension 1 (see [39]).

11. with constants independent of N ∈ N?.
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Salem–Zygmund type holds true12:

E
[

sup
x∈M

∣∣∣ N∑
n=1

fωn (x)
∣∣∣] ' N∑

p=1

1
p
√

ln(p+ 1)

( N∑
n=p
‖fn‖2L2(M)

) 1
2
.

A simple consequence of that equivalence will be used at the end of our study.
For any two integers N2 ≥ N1 � 1, we get√

ln(N1)
( N2∑
n=N1

‖fn‖2L2(M)

) 1
2
. E

[
sup
x∈M

∣∣∣ N2∑
n=N1

fωn (x)
∣∣∣]

.
√

ln(N2)
( N2∑
n=N1

‖fn‖2L2(M)

) 1
2
.

(13)

Such an inequality is a sort of manifold version of a two-sided inequality known
for the torus (see [29, page 259]), and the case N1 = N2 has been proved by
Burq and Lebeau (see [5, page 930, Th 5]).

In order to state our second contribution, we need to set a last notation; for
any α ∈ (0, 1), we denote by C0,α(M) the Banach space of functions f :M→ C
that satisfy a Hölder condition of order α:

sup
x 6=y

|f(x)− f(y)|
δg(x, y)α < +∞,(14)

in which δg stands for the Riemannian distance ofM.

Theorem 1.2. — There is K0 > 0 depending only on the Riemannian struc-
ture of M such that for any K ≥ K0 and any sequence (fn)n≥1 satisfying
fn ∈ E(Kn−K,Kn], the following statements are equivalent:

i) There exists C > 0 such that the following bounds hold for j � 1:
2j+1−1∑
n=2j

‖fn‖2L2(M) ≤
C

j22αj .(15)

ii) The sum of the Gaussian random series
∑
n≥1

fG,ωn almost surely belongs

to C0,α(M).
iii) The sum of the random series

∑
n≥1

fωn almost surely belongs to C0,α(M).

Our proofs also allow us to give a necessary and sufficient condition for the
convergence in C0,α(M) of the partial sums of the random series

∑
n≥1

fG,ωn and∑
n≥1

fωn (see Remarks 18.1, 19.1 and 20.1).

12. More precisely, the parameter K > 0 is chosen large enough but fixed once and for all
(see [20, Theorem 1]).
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The previous theorem should be compared to [24, page 89, Theorem 3 and
Proposition], which deals with sufficient or necessary conditions (not both)
to get the Hölder regularity of random Fourier series on the torus. But the
previous theorem has no satisfactory analogue for d = 1. For instance, one
may show the following two facts with lacunary series (see Appendix B):
• With probability 1, the Gaussian random series

∑
j∈N

gj(ω)
2αj e

i2jx does not

belong to C0,α(T).
• With probability 1, the Rademacher random series

∑
j∈N

εj(ω)
2αj e

i2jx belongs

to C0,α(T).
Let us now comment on Theorem 1.2 and its interpretation for Sobolev em-
beddings (we refer to [5, 6, 38, 19] for more about probabilistic Sobolev em-
beddings). We recall the following Sobolev embedding for any α ∈ (0, 1):

Hα+ d
2 (M) ⊂ C0,α(M).

Such an embedding is well known for Rd instead of a boundaryless compact
manifoldM (see [2, page 82, Prop 1.4]) and can be proved forM by working
on local charts. We now claim that Theorem 1.2 implies a probabilistic gain
of almost d

2 derivatives in the following sense (see [19, top of page 2734] for a
similar gain for the spaces L∞(M) and BMO(M)).

Corollary 1.3. — Let K > 0 and (fn)n≥1 be as in Theorem 1.2; we consider
fωn in (11). For any α ∈ (0, 1) and any η > 0, if

∑
n≥1

fn belongs to the Sobolev

space Hα+η(M), then the random function
∑
n≥1

fωn almost surely belongs to

C0,α(M).

Proof. — Actually, we get a much stronger inequality than (15):
2j+1−1∑
n=2j

‖fn‖2L2(M) ≤
1

22j(α+η)

2j+1−1∑
n=2j

n2(α+η)‖fn‖2L2(M)

≤ C

22j(α+η)

∥∥∥∑
n≥1

fn

∥∥∥2

Hα+η(M)
. �

Organization of the paper. — In Section 2, we explain how the sense i) ⇒
ii) of Theorem 1.1 is a consequence of the analysis of a canonical model of
zonal/radial eigenfuntions. For this canonical model, we state Theorem 2.1.
The difficult part of Theorem 2.1 is also its implication i) ⇒ ii) and will be
developed in the next sections.

In Section 3, we present a few elementary results about Abel summations
for Gaussian random series (the main probabilistic ingredient is indeed the use
of the Lévy’s inequalities).
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In Section 4, we explain how the case d = 4 is an immediate consequence of
Section 3 and of well-known asymptotics of Bessel functions.

Section 5 is devoted to the proof of the case d = 3.
In Section 6, we state and prove a result in the spirit of the “closed graph

theorem” in order to get quantitative bounds for Gaussian processes. This part
is elementary upon using integrability properties of Gaussian processes. The
idea is simply that we may get boundedness from continuity in some special
cases.

Section 7 shows how the case d = 2 can be reduced to a probabilistic result
about pointwise Hölder regularity of aperiodic trigonometric sums (namely
Proposition 7.1).

Section 8 studies a consequence of the concentration measure phenomenon in
order to obtain the almost sure boundedness of a family of Gaussian processes
(such a result will be used for the proof of Proposition 7.1 and Theorem 1.2).

Section 9 contains the statements of two results about Hölder regularities in
the language of the Littlewood–Paley theory:

• The first one is Proposition 9.2 and gives a necessary and sufficient condi-
tion to get the pointwise Hölder regularity on Rd (this is an improvement
of a sufficient condition previously proved by Kreit and Nicolay). The
proof is developed in Sections 10, 11 and 12.
• The second one is Proposition 9.3, which is more or less known, and
gives a necessary and sufficient condition to get the global Hölder regu-
larity on a boundaryless Riemannian compact manifold and, moreover,
shows that the semi-classical multipliers of the Laplace–Beltrami oper-
ator behave well with respect to the global Hölder norm (these results
are proved in Sections 13 and 14).

Section 15 contains, as announced in Section 7, the final argument of Theorem
2.1 (in particular, we prove Proposition 7.1). In other words, as explained in
Section 2, we finally get the sense i) ⇒ ii) of Theorem 1.1.

Section 16 is devoted to showing the sense iii)⇒ i) of Theorem 1.1. Since the
sense ii) ⇒ iii) of Theorem 1.1 is immediate, the proof of our first contribution
will be completely finished.

In Sections 17, 18, 19 and 20, we prove our second contribution stated in
Theorem 1.2, namely the Hölder version of the Paley–Zygmund theorem on
compact manifolds.

Appendix A explains why a result of Hardy and Littlewood implies, for
d = 3, that there is no deterministic analogue of Theorem 1.1.

Finally, Appendix B contains a few complements of classical random trigono-
metric sums with respect to the global Hölder norm on the unidimensional
torus T.
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2. The canonical model of zonal eigenfunctions

Let us consider the usual Laplace operator ∆ on Rd for d ≥ 2. For any
ξ ∈ R2 whose Euclidean norm |ξ| equals 1, we have −∆ei〈ξ,·〉 = ei〈ξ,·〉. If one
looks for an eigenfunction that is invariant under the action of all isometries
around the origin, it is thus natural to consider the following function averaged
over the unit sphere Sd−1 of Rd:

x ∈ Rd 7→
∫
Sd−1

ei〈ξ,x〉dσd−1(ξ) = (2π) d2 ×
J d

2−1(|x|)

|x| d2−1
(16)

in which σd−1 is the surface measure of Sd−1 and J d
2−1 is the usual Bessel

function.
Here is our canonical model: we fix a sequence of positive numbers (λn)n≥1

satisfying for some constant C ≥ 1 and any n ≥ 1 the following estimates
1
C
≤ λn+1 − λn ≤ C.(17)

and we define for any x ∈ Rd

Zd,can
n (x) =

√
λn ×

J d
2−1(λn|x|)

|x| d2−1
= λ

d−1
2

n

J d
2−1(λn|x|)

|λnx|
d
2−1

.(18)

As announced in the Introduction, the Dirichlet model Zd,Dir
n is of that form13

once we restrict the analysis on the unit ball of Rd. Actually, the gap assump-
tion (17) is a consequence of McMahon’s asymptotic expansions for large zeros
of the Bessel functions (see [34, page 236]).

In order to motivate the factor λ
d−1

2
n in (18), let us recall the following

property14 of the Bessel functions:

lim
T→+∞

1
T

∫ T

0
tJ d

2−1(t)2dt = 1
π
,

from which we immediately get, by a compactness argument, that there exists
a constant Cd > 1 satisfying

T ≥ 1 ⇒
√
T

Cd
≤

√∫ T

0
tJ d

2−1(t)2dt ≤ Cd
√
T .

Let (Kn) be a sequence of positive numbers and set T = Knλn in the foregoing
facts. The factors

√
λn and λ

d−1
2

n are made to ensure the following normalization

13. Actually, if we set ‖Zd,Dir
n ‖L2(Bd(0,1)) = 1, then we have Zd,Dir

n = βn,dZ
d,can
n with

lim
n→+∞

βn,d =
√
π√

Vol(Sd−1)
thanks to (19) with the choice Kn = 1 and λn → +∞.

14. Such a limit can be seen as a consequence of the asymptotics Jν(t) =
√

2√
πt

(cos(t −
νπ
2 −

π
4 ) +O( 1

t
)) for t→ +∞.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



456 P. BRUN, R. IMEKRAZ & G. POLY

conditions (coming from a simple change of variables):

lim
Knλn→+∞

‖Zd,can
n ‖L2(Bd(0,Kn))√

Kn

=
√

Vol(Sd−1)√
π

,(19)

Knλn ≥ 1 ⇒
√
Kn

Cd
≤ ‖Zd,can

n ‖L2(Bd(0,Kn)) ≤ Cd
√
Kn.(20)

Actually, the bounds (20) are essentially included in the proof of [3, Lemma
2.4]. By homogeneity and by using (16), we have

−∆Zd,can
n = λ2

nZ
d,can
n .

Note that we also have

Zd,can
n (0) = λ

d−1
2

n

Γ(d2 )2 d2−1
,(21)

and that (16) implies
‖Zd,can

n ‖L∞(Rd) ≤ Zd,can
n (0).

The classical bound J d
2−1(t) = O

(
1√
t

)
for t→ +∞ shows that Zd,can

n concen-

trates15 on the ball B
(

0, 1
λn

)
in the following sense:

|x| ≥ 1
λn

⇒ |Zd,can
n (x)| ≤ C

|x| d−1
2
.(22)

In the sequel of the paper, the following result will be proved.

Theorem 2.1. — For any integer d ≥ 2 and any sequence of coefficients
(cn)n≥1, the following assertions are equivalent:

i) The series
∑
n≥1
|cn|2nd−1 is convergent.

ii) With probability 1, the Gaussian random series
∑
n≥1

gn(ω)cnZd,can
n uni-

formly converges on Rd.
iii) With probability 1, the Gaussian random series

∑
n≥1

gn(ω)cnZd,can
n uni-

formly converges on a neighborhood of 0 ∈ Rd.

Note that the implication ii) ⇒ iii) is obvious. And the implication iii) ⇒
i) is easy thanks to (21) and the asymptotic λn ' n. So it remains to give a
proof of the implication i) ⇒ ii).

Also note that Theorem 2.1 implies the implication i) ⇒ ii) of Theorem 1.1
for the radial eigenfunctions Zd,Dir

n on the unit ball of Rd. We can also deduce
the conclusion for the zonal eigenfunctions ZSd

n of the spheres, but we need to
combine Theorem 2.1 with a result of Frenzen and Wong, namely “Hilb’s type

15. See [18, line (93)] for similar estimates for zonal eigenfunctions on the sphere Sd.
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asymptotic” (2), giving the asymptotic of Jacobi polynomials involving Bessel
functions and, thus, supporting the idea of the universality of the canonical
model (18).

Corollary 2.2. — For any integer d ≥ 2 and any sequence of coefficients
(cn)n≥1, the following two statements are equivalent

i) The series
∑
n≥1
|cn|2nd−1 is convergent.

ii) With probability 1, the Gaussian random series
∑
n≥1

gn(ω)cnZSd
n uni-

formly converges on Sd.

Proof. — The implication ii)⇒ i) is obvious since ZSd
n (1, 0, . . . , 0) ' n d−1

2 . Let
us show the converse implication i)⇒ ii). Due to formula (2), we have to prove
that the following Gaussian random series uniformly converges for t ∈ [0, π]:∑

n≥1
gn(ω)cnc′d,nP

( d2−1, d2−1)
n (cos(t)),(23)

in which we recall the asymptotic c′d,n '
√
n.

Step 1. We claim that there is no loss to reduce the analysis to [0, π2 ]. Indeed,
for any t ∈ [π2 , π] we may write

P
( d2−1, d2−1)
n (cos(t)) = P

( d2−1, d2−1)
n (− cos(π − t))

= (−1)nP ( d2−1, d2−1)
n (cos(π − t)).

Since ((−1)ngn)n≥1 is a sequence of i.i.d. Gaussian random variables N (0, 1),
the almost sure uniform convergence on [0, π2 ] implies the almost sure uniform
convergence on [π2 , π].

Step 2. We choose λn = n+ d−1
2 for the canonical model (hence, (17) is true).

Thanks to [13, pages 980 and 994 with m = 1 and A0 = 1], the following
asymptotic is uniform on [0, π2 ] for n→ +∞:

P
( d2−1, d2−1)
n (cos(t)) =

Γ
(
n+ d

2
)

n!
2 d2−1

sin d
2−1(t)

√
t

sin(t)

[
J d

2−1(λnt)

λ
d
2−1
n

+ t
d
2−1O

( 1
λn

)](24)

= 2 d2−1
(

t

sin(t)

) d−1
2 Γ

(
n+ d

2
)

n!
J d

2−1(λnt)

(λnt)
d
2−1

+O
(
n
d
2−2).

Let us plug this asymptotic into (23). Remembering c′d,n '
√
n, one sees

that the contribution of the remainder is a Gaussian series of the form∑
gn(ω)cnn

d−3
2 un(t) with |un(t)| ≤ C. But the series

∑
cnn

d−3
2 is absolutely

convergent thanks to i) and the Cauchy–Schwarz inequality. As a consequence,
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theGaussian randomseries
∑
gn(ω)cnn

d−3
2 un(t) converges inL1(Ω, C0([0, π/2]))

and thus16 almost surely uniformly converges on [0, π2 ].
Step 3. Let us now see the contribution of the principal part of (2). Theorem 2.1

and (18) ensure thealmost sureuniformconvergence of
∑
gn(ω)cnλ

d−1
2

n

J d
2−1(λnt)

(λnt)
d
2−1

.
The contraction principle on random series (see the proof of [28, page 98, Th
4.4]) and the equivalence

c′d,n
Γ
(
n+ d

2
)

n! '
√
nn

d
2−1 ' λ

d−1
2

n

ensure the almost sure uniform convergence of
∑
gn(ω)cnc′d,n

Γ
(
n+ d

2

)
n!

J d
2−1(λnt)

(λnt)
d
2−1

.

Since t ∈ [0, π2 ] 7→
(

t
sin(t)

) d−1
2 is a continuous and bounded function, we easily

conclude that (2) implies the almost sure uniform convergence of (23). �

3. Gaussian random series and bounded variation assumptions

We recall that a function W : [0,+∞)→ R is of bounded variation and we
write W ∈ BV , if the following condition holds true

‖W‖BV := sup
N∈N?

sup
0≤x0<···<xN

N∑
n=1
|W (xn)−W (xn−1)| < +∞.

In particular, if W : [0,+∞) → R is continuously differentiable and satisfies
W ′ ∈ L1(0,+∞), then W ∈ BV and

‖W‖BV =
∫ +∞

0
|W ′(x)|dx.(25)

In order to motivate the elementary tools we shall use, let us write a very
simple fact:

Fact. — If a series of real coefficients
∑
an is convergent then, for any W ∈

BV , the sequence of functions
∑
anW (λnt) is uniformly convergent for t ∈

[0,+∞).

Proof. — Note that W is bounded on [0,+∞) by ‖W‖BV + |W (0)|. We then
write the deterministic remainder Rn =

∑
k≥n

ak and make an Abel summation

16. This implication will be extensively used in the present paper; see, for instance, the proof
of Proposition 3.2.
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for any positive integers q > p:
q∑

n=p
anW (λnt) =

q∑
n=p

(Rn −Rn+1)W (λnt)

= RpW (λpt)−Rq+1W (λqt)

+
q∑

n=p+1
Rn(W (λnt)−W (λn−1t))

sup
t≥0

∣∣∣ q∑
n=p

anW (λnt)
∣∣∣ ≤ max

n≥p
|Rn| ×

(
2|W (0)|+ 3‖W‖BV

)
.

We achieve the proof of the fact thanks to the Cauchy convergence test. �

The previous proof directly gives Point i) of the following probabilistic ver-
sion.

Lemma 3.1. — Let us consider a functionW ∈ BV , a sequence of real numbers
(an)n≥1 ∈ `2(N?). Then the following statements hold true:

i) With probability 1, the Gaussian random series
∑
n≥1

gn(ω)anW (λnt) uni-

formly converges for t ∈ [0,+∞).
ii) Moreover, the following inequality holds17 true:

E
[

sup
t≥0

∣∣∣∑
n≥1

gn(ω)anW (λnt)
∣∣∣] ≤ 3(‖W‖BV + |W (0)|)×

(∑
n≥1
|an|2

)1/2
.

We see the previous lemma as an application of the following result for un =
an and I = [0,+∞). Here, we state a quite general result since Proposition 3.2
will also be used for the function W = 1(1,+∞) of bounded variation (see the
end of Section 7).

Proposition 3.2. — Let us consider a functionW : [0,+∞)→ R belonging to
BV and a sequence of bounded functions (un)n≥1 on an interval I ⊂ [0,+∞).
Then the following statements hold true

i) If the Gaussian random series
∑
n≥1

gn(ω)un(t) uniformly converges for

t ∈ I (with probability 1) then so does the Gaussian random series∑
n≥1

gn(ω)un(t)W (λnt) (with probability 1).

17. We refer to [28, top of page 33] for the justification of the measurability of the supre-
mum over the possibly uncountable set I.
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ii) Moreover, the following inequality holds true:

E
[

sup
t∈I

∣∣∣∑
n≥1

gn(ω)un(t)W (λnt)
∣∣∣]

≤ 3(‖W‖BV + |W (0)|)×E
[

sup
t∈I

∣∣∣∑
n≥1

gn(ω)un(t)
∣∣∣].

(26)

Proof. —
Step 1. Let us explain why the result is a consequence of the following estimates
for any N ∈ N?:

E
[

sup
t∈I

∣∣∣ N∑
n=1

gn(ω)un(t)W (λnt)
∣∣∣]

≤ 3(‖W‖BV + |W (0)|)×E
[

sup
t∈I

∣∣∣ N∑
n=1

gn(ω)un(t)
∣∣∣].

(27)

Let B(I) be the Banach space of the bounded functions on the interval I. For
point i), it is well known that the almost sure convergence of a Gaussian random
series in a Banach space, for instance B(I), is equivalent to the convergence in
L1(Ω, B(I)) (see [32, page 44, Th 4.7]). Combining this equivalence to (27),

we see that
N∑
n=1

gn(ω)un(t)W (λnt) is a Cauchy sequence in L1(Ω, B(I)) and,

thus, almost surely converges in B(I). Point i) is proved. We are thus allowed
to make N tend to +∞ in (27) so that we get the inequality (26) of Point ii).
Step 2. Let us now turn to the proof of (27). For any n ≥ 1, we define the

random remainder Rn =
N∑
k=n

gk(ω)uk(t) (with the convention RN+1 = 0) and

we use an Abel summation:
N∑
n=1

gn(ω)un(t)W (λnt) =
N∑
n=1

(Rn −Rn+1)W (λnt)

= R1W (λ1t) +
N∑
n=2

Rn(W (λnt)−W (λn−1t))

E
[∥∥∥ N∑

n=1
gn(ω)un(t)W (λnt)

∥∥∥
B(I)

]
≤ E[‖R1‖B(I)]× sup

t≥0
|W (t)|

+ E
[

max
2≤n≤N

‖Rn‖B(I)

]
× ‖W‖BV .
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Thanks to Lévy’s inequality (see [28, page 42, Proposition 2.3]), we have

E
[

max
2≤n≤N

‖Rn‖B(I)

]
≤ E

[
max

1≤n≤N
‖Rn‖B(I)

]
≤ 2E[‖R1‖B(I)].

The bound sup
t≥0
|W (t)| ≤ ‖W‖BV + |W (0)| allows us to get (27) as follows:

E
[∥∥∥ N∑

n=1
gn(ω)un(t)W (λnt)

∥∥∥
B(I)

]
≤ 3(‖W‖BV + |W (0)|)×E[‖R1‖B(I)].�

Here, we give a variant that we will use in Section 15.

Proposition 3.3. — Let B be a Banach space and consider a sequence (un)n≥1
in B such that the Gaussian random series

∑
n≥1

gn(ω)un almost surely converges

in B. Let us, moreover, consider an arbitrary countable set E and a double se-
quence (αk,n) with (k, n) ∈ E × N? satisfying, for a positive constant M , the
following estimate

sup
k∈E

(
|αk,1|+

∑
n≥1
|αk,n+1 − αk,n|

)
≤M.(28)

Then, for any k ∈ E, the Gaussian random series
∑
n≥1

αk,ngn(ω)un almost

surely converges in B, and the following inequality holds true for any T > 0:

P
(

sup
k∈E

∥∥∥∑
n≥1

αk,ngn(ω)un
∥∥∥
B
> MT

)
≤ 2P

(∥∥∥∑
n≥1

gn(ω)un
∥∥∥
B
≥ T

)
.(29)

Proof. — The first statement about theGaussian random series
∑
n≥1

αk,ngn(ω)un

comes from the qualitative contraction principle (see, for instance, [30, page
133, Th IV.1]) and the boundedness of each sequence (αk,n)n∈N? :

sup
n≥1
|αk,n| ≤M.

In order to prove the inequality (29), we set Rn,N = gn(ω)un+· · ·+gN (ω)uN for
any N ∈ N? and we repeat the Abel summation argument of Proposition 3.2:∥∥∥ N∑

n=1
αk,ngn(ω)un

∥∥∥
B

=
∥∥∥αk,1R1,N +

N∑
n=2

(αk,n − αk,n−1)Rn,N
∥∥∥
B

≤M max
1≤n≤N

‖Rn,N‖B .

The end of the proof is completely standard via Lévy’s inequality, but we give
details for the sake of completeness. Making N tend to +∞ and then taking
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the upper bound over k, we get

sup
k∈E

∥∥∥ +∞∑
n=1

αk,ngn(ω)un
∥∥∥
B
≤M sup

N∈N?
max

1≤n≤N
‖Rn,N‖B .

Then we obtain

P
(

sup
k∈E

∥∥∥∑
n≥1

αk,ngn(ω)un
∥∥∥
B
> MT

)
≤ P

(
sup
N∈N?

max
1≤n≤N

‖Rn,N‖B > T
)
.

We now rewrite the last upper bound as follows:

P
( ⋃
N∈N?

{
max

1≤n≤N
‖Rn,N‖B > T

})
= lim
N→+∞

P
(

max
1≤n≤N

‖Rn,N‖B > T
)
,

and Lévy’s inequality (see [28, page 42, Proposition 2.3]) shows that the last
limit is less than or equal to

2 lim
N→+∞

P
(
‖g1(ω)u1 + · · ·+ gN (ω)uN‖B > T

)
.

Fatou’s lemma allows us to bound the last term by

2P
(

lim
N→+∞

{‖g1(ω)u1 + · · ·+ gN (ω)uN‖B > T}
)

= 2P
( ⋂
n∈N?

⋃
N≥n

{‖g1(ω)u1 + · · ·+ gN (ω)uN‖B > T}
)
.

Since we have assumed that the Gaussian random series
∑
gn(ω)un almost

surely converges in B, the last term is less than or equal to

2P
(∥∥∥∑

n≥1
gn(ω)un

∥∥∥
B
≥ T

)
. �

4. Proof of Theorem 2.1 for d ≥ 4

Let (λn)n≥1 be a positive sequence satisfying the gap estimates (17). For
any d ≥ 4, let (Zd,can

n )n≥1 be the canonical model of eigenfunctions of ∆ on
Rd introduced in Section 2. As was already explained in Section 2, we merely
have to prove the implication i) ⇒ ii) of Theorem 2.1.

We set an = cnλ
d−1

2
n (which belongs to `2(N?)). Due to the definition (18) of

Zd,can
n , we have to study the following Gaussian random series for t ∈ [0,+∞):∑

n≥1
gn(ω)an

J d
2−1(λnt)

(λnt)
d
2−1

.

It is sufficient to apply Lemma 3.1 with W (t) = t−( d2−1)J d
2−1(t). In other

words, we have to check that W is of bounded variation on [0,+∞). We use
(25) and the following two points:
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• First of all, the origin is not a singularity of W . Indeed, W is smooth
on [0,+∞) since the following power series expansion holds:

W (t) =
+∞∑
p=0

(−1)p

p!Γ(p+ d
2 )

(
t

2

)2p 1
2 d2−1

.

• Let us now look at the behavior for t → +∞. We recall the known
bounds J d

2−1(t) = O
(

1√
t

)
and J ′d

2−1(t) = O
(

1√
t

)
(see [34, pages 228-

229]). We then get the asymptotic W ′(t) = O
(

1
t
d−1

2

)
for t→ +∞ that

shows that W ′ is integrable for d ≥ 4.

5. Proof of Theorem 2.1 for d = 3

We recall the identity J 1
2
(t) =

√
2
πt sin(t) and, hence, (18) gives

Z3,can
n (x) =

√
2
π

sin(λn|x|)
|x|

, ∀x ∈ R3.

As above, we merely have to prove the implication i) ⇒ ii) of Theorem 2.1.
We set an = cnλn for simplicity and, hence, (an)n≥1 ∈ `2(N?). The core of the
proof is the following proposition:

Proposition 5.1. — Let (λn)n≥1 be a positive sequence satisfying the gap
estimates (17) and let (an)n≥1 be a sequence belonging to `2(N?); then the
following Gaussian Fourier series

fω : R→ R

t 7→
∑
n≥1

gn(ω)an
λn

sin(λnt)

(30)

is almost surely continuous on R and differentiable at t = 0.

Before proving the last result, let us explain its consequence for the proof of
Theorem 2.1 (similarly to the case d ≥ 4, we note that the uniform convergence
holds on [0,+∞)).

Corollary 5.2. — With the same assumptions as those of Proposition 5.1,
with probability 1, the Gaussian random series

∑
n≥1

gn(ω)an sin(λnt)
λnt

uniformly

converges on R.

Proof. — By parity, we merely have to understand the uniform convergence on
[0,+∞). We note that the random function t 7→

∑
n≥1

gn(ω)an sin(λnt)
λnt

is almost

surely continuous on R thanks to Proposition 5.1 (the continuity at t = 0 comes
from the differentiability conclusion in Proposition 5.1). We then deduce the
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almost sure uniform convergence on [0, 1] thanks to the Itô-Nisio theorem (see
[29, page 238, Th II.2]). Let us now deal with [1,+∞) and let BC([1,+∞))
be the Banach space of the bounded and continuous functions on [1,+∞). We
have

∣∣ sin(λnt)
λnt

∣∣ ≤ 1
λn

for t ≥ 1. Since the series
∑ an

λn
is absolutely convergent,

we deduce that the Gaussian random series
∑
n≥1

gn(ω)an sin(λnt)
λnt

converges in

L1(Ω,BC([1,+∞)). As recalled in the proof of Proposition 3.2, one deduces
the almost sure uniform convergence on [1,+∞). �

Let us now prove Proposition 5.1.
The series

∑ an
λn

is absolutely convergent, and thus the Gaussian series
in (30) converges in L1(Ω,BC(R)) and so almost surely converges in BC(R).
Hence, the function fω, defined in (30), is continuous with probability 1. Let
us now prove the differentiability at t = 0. Let us denote (g̃n)n≥1 a sequence
of i.i.d. Gaussian variables N (0, 1), which are, moreover, independent of the
sequence (gn)n≥1 and set the following Gaussian function

f̃ω : R→ R

t 7→
∑
n≥1

g̃n(ω)an
λn

cos(λnt).

Since fω = 1
2 (fω+ f̃ω)+ 1

2 (fω− f̃ω), it is sufficient to study the differentiability
of each fω ± f̃ω. The main point is that the two Gaussian functions fω ± f̃ω
are actually stationary Gaussian processes on R: the covariance function on
R×R is clearly invariant by the translations (t, t′) 7→ (t+$, t′+$), whatever
$ ∈ R is, as shown by the simple computation for each % = ±1

E[(fω + %f̃ω)(t)(fω + %f̃ω)(t′)]

=
∑
n≥1

a2
n

λ2
n

(
sin(λnt) sin(λnt′) + %2 cos(λnt) cos(λnt′)

)
=
∑
n≥1

a2
n

λ2
n

cos
(
λn(t− t′)

)
.

For simplicity, we now use the following notations:

Fω(t) := fω(t) + f̃ω(t) =
+∞∑
n=1

Fωn (t)

with

Fωn (t) := an
λn

[gn(ω) sin(λnt) + g̃n(ω) cos(λnt)].
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We could invoke a general result by Cambanis (see [7, Theorem 5]), but we
shall give here a much more natural argument. We will prove that Fω is
differentiable at t = 0 (the case of fω − f̃ω is similar). Let us introduce the
following subsets of pairs (t, ω) ∈ [0, π]× Ω:

A1 :=
{

(t, ω) ∈ [0, π]× Ω such that the numerical series
+∞∑
n=1

Fωn (t+ h) converges for every h ∈ Q
}
,

A2 :=
⋂

ε∈Q+?

⋃
δ∈Q+?

⋂
|h′|∈]0,δ[∩Q
|h′′|∈]0,δ[∩Q

{∣∣∣ lim
N→+∞

N∑
n=1

Fωn (t+ h′)− Fωn (t)
h′

− Fωn (t+ h′′)− Fωn (t)
h′′

∣∣∣ ≤ ε}.
We note that A1 and A2 are measurable subsets of [0, π]×Ω. We conclude via
the following steps:
Step 1. The stationary properties of the Gaussian processes (Fωn )t∈R for each
n roughly mean that if a property almost surely holds for a specific t, then it
will also almost surely hold for t = 0. As a consequence, the following formula
is intuitively clear (see below (32) for a detailed proof):

∀t ∈ [0, π]
∫

Ω
1A1∩A2(t, ω)dP(ω) =

∫
Ω

1A1∩A2(0, ω)dP(ω).(31)

Before proving this formula, we note that (31) implies∫ π

0

(∫
Ω

1A1∩A2(t, ω)dP(ω)
)

dt = π

∫
Ω

1A1∩A2(0, ω)dP(ω)(32)

= πP((0, ω) ∈ A1 ∩ A2).

Let us now recall how to check (31) via the Sierpiński–Dynkin π-λ theorem.
Let us endow the set RN?×Q with its product measure space structure. In
particular, for any t ∈ [0, π], the map ω ∈ Ω 7→ (Fωn (t + h))n,h ∈ RN?×Q is
measurable. We recall that the σ-algebra of RN?×Q is generated by the set{

B =
∏

(n,h)

Bn,h, such that Bn,h is a Borel subset of R for any (n, h)

and Bn,h = R for all but a finite number of (n, h)
}
.

(33)
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We now remark that for any finite subset J × H ⊂ N × Q, by independence
(with respect to n) and stationarity (with respect to t), we get∫

Ω

( ∏
(n,h)∈J×H

1Bn,h(Fωn (t+ h))
)

dP(ω)

=
∏
n∈J

∫
Ω

( ∏
h∈H

1Bn,h(Fωn (t+ h))
)

dP(ω)

=
∏
n∈J

∫
Ω

( ∏
h∈H

1Bn,h(Fωn (h))
)

dP(ω)

=
∫

Ω

( ∏
(n,h)∈J×H

1Bn,h(Fωn (h))
)

dP(ω)

which means, for any elementary subset B as in (33), that the following formula
holds: ∫

Ω
1B
(

(Fωn (t+ h))(n,h)

)
dP(ω) =

∫
Ω

1B
(

(Fωn (h))(n,h)

)
dP(ω).(34)

By seeing the previous two terms as two measures of B on RN?×Q, we may
invoke18 the Sierpiński–Dynkin π-λ theorem to ensure that (34) still holds true
for any B in the σ-algebra of RN?×Q. Following the definitions of A1 and A2, we
leave the reader to check that the following two subsets belong to the σ-algebra
of the product space RN?×Q:

B1 =
⋂
h′∈Q

{
(xn,h) ∈ RN?×Q,

+∞∑
n=1

xn,h′ converges
}
,

B2 =
⋂

ε∈Q+?

⋃
δ∈Q+?

⋂
|h′|∈]0,δ[∩Q
|h′′|∈]0,δ[∩Q

{
(xn,h) ∈ RN?×Q,∣∣∣ lim
N→+∞

N∑
n=1

xn,h′ − xn,0
h′

− xn,h′′ − xn,0
h′′

∣∣∣ ≤ ε}.
For the particular choice B := B1 ∩ B2, the formula (34) is exactly (31).
Step 2. The convergence of the series

∑ an
λn

ensures that, with probability 1,
the series

∑
Fωn uniformly converges on R. As a consequence, the function

Fω =
+∞∑
n=1

Fωn satisfies the following equality in the sense of the theory of

distributions on R:

(Fω)′(t) =
∑
n≥1

an [gn(ω) cos(λnt)− g̃n(ω) sin(λnt)](35)

18. The π-system is the set in (33) and the λ-system is the set of B in the σ-algebra of
RN?×Q satisfying (34) and such that the functions inside (34) are measurable on Ω.
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with, moreover, the following condition (coming from the condition (an) ∈
`2(N?)): ∑

n≥1
|gn(ω)an|2 + |g̃n(ω)an|2 < +∞.

One may check via an adequate use of the Plancherel theorem the following
result about almost periodic functions (see the argument in [35, page 117, line
(31.08)] by Paley and Wiener or [23, page 371] by Ingham): under the gap
assumption (17), for any real number T � 1 and any integer N ≥ 1, the
following holds∫ T

−T

∣∣∣∣∣
N∑
n=1

an [gn(ω) cos(λnt)− g̃n(ω) sin(λnt)]

∣∣∣∣∣
2

dt

≤ C(T )
N∑
n=1
|gn(ω)an|2 + |g̃n(ω)an|2,

(36)

where C(T ) is independent of N . We infer that the series (35) converges in
L2(−T, T ) and, hence, (Fω)′ belongs to L2

loc(R) and so also to L1
loc(R). In other

words, with probability 1, the function t 7→ Fω(t) is, indeed, locally absolutely
continuous and is thus differentiable for almost every t.

Looking at the beginning of this step and at the definition of A1, we see
that for almost every ω ∈ Ω, we have the inclusion [0, π] × {ω} ⊂ A1. As a
consequence of the almost everywhere differentiability of Fω, for almost every
ω ∈ Ω, there is a subset Eω ⊂ [0, π] of full measure satisfying the inclusion
Eω × {ω} ⊂ A1 ∩ A2. Hence, we have∫

Ω

(∫ π

0
1A1∩A2(t, ω)dt

)
dP(ω) =

∫
Ω

(∫ π

0
1dt
)

dP(ω) = π.

Step 3. The equality (32) then becomes P((0, ω) ∈ A1 ∩ A2) = 1. For almost
every ω, we know that t 7→ Fω(t) is continuous. Then the density of ]0, δ[ ∩Q
in ]0, δ[ shows that, with probability 1 the pair (0, ω) belongs to⋂

ε∈Q+?

⋃
δ∈Q+?

⋂
0<|h′|<δ
0<|h′′|<δ

{∣∣∣Fω(t+ h′)− Fω(t)
h′

− Fω(t+ h′′)− Fω(t)
h′′

∣∣∣ ≤ ε}.
It is easy to see that the previous considerations lead to the differentiability of
Fω at t = 0 with probability 1.

6. From boundedness to continuity of Gaussian processes

In the proof of Corollary 5.2, we used the Itô–Nisio theorem in order to
get the uniform convergence of some Gaussian random series and the absolute
convergence of

∑ an
λn

for any (an) ∈ `2(N?) (since we recall the asymptotic
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λn ' n). For the case d = 2, the same argument would rather lead to consider-
ing series like

∑ an√
λn

, which clearly may be divergent for some (an) ∈ `2(N?).
We explain here another abstract argument that can be considered as a sort
of “closed graph theorem” for Gaussian processes and will be used in the next
section.

Proposition 6.1. — Let (un)n≥1 be a sequence of complex-valued continuous
functions on [0,+∞) satisfying the following two hypotheses.
(H1) The sequence of functions (un)n≥1 is pointwise bounded:

∀t ∈ [0,+∞) sup
n≥1
|un(t)| < +∞.

In particular, for any (an) ∈ `2(N?), the following Gaussian process
(Xt) is well defined:

Xt(ω) =
∑
n≥1

gn(ω)anun(t).(37)

(H2) For any (an) ∈ `2(N?), the Gaussian process (Xt) is bounded in the
following sense19: for any countable subset E ⊂ [0,+∞), the random
variable sup

t∈E
Xt is almost surely finite.

Then the following assertions are true:
i) With probability 1, the function t 7→ Xt is almost surely continuous on

[0,+∞).
ii) With probability 1, the Gaussian random series

∑
n≥1

gn(ω)anun uniformly

converges on [0,+∞).
iii) There exists C > 0 such that the bound

E
[

sup
t∈[0,+∞)

|Xt|
]
≤ C

(∑
n≥1
|an|2

)1/2

holds true.
iv) The sequence of functions (un)n≥1 is globally bounded:

sup
t∈[0,+∞)

sup
n≥1
|un(t)| < +∞.

The core of the proof is iii).

19. This statement is, indeed, one possible definition of a bounded Gaussian process.
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Step 1. We note that the Gaussian random variable Xt is well defined thanks to
the uniform boundedness of (un)n≥1. The well-known integrability properties
of Gaussian processes (see, for instance, [27, page 134, Th 7.1]) implies the
finiteness of the expectation E

[
sup
t∈E

Xt

]
for any countable subset E ⊂ [0,+∞).

Without loss of generality, we may assume 0 ∈ E . In particular, we also have
by symmetry

E
[

sup
t∈E
|Xt|

]
≤ E[|X0|] + E

[
sup

(s,t)∈E×E
|Xs −Xt|

]
= E[|X0|] + 2E

[
sup
t∈E

Xt

]
<∞.

(38)

We now define the following semi-norm on `2(N?) in which Xt is defined in
(37):

|||a||| := sup
E⊂[0,+∞)
E countable

E
[

sup
t∈E
|Xt|

]
.(39)

We claim that |||a||| is finite for the following reason: if (Ek)k≥1 is a sequence
of countable subsets of [0,+∞) such that lim

k→+∞
E
[

sup
t∈Ek
|Xt|

]
= |||a||| then, by

setting E =
⋃
k≥1
Ek, we get thanks to (38)

|||a||| ≤ E
[

sup
t∈E
|Xt|

]
< +∞.

Step 2. We claim that there is C > 0 such that

∀a ∈ `2(N?) |||a||| ≤ C‖a‖`2(N?).(40)

We now use an argument that can be interpreted as a probabilistic version of the
closed graph theorem (see [32, p 49]). Assume that there does not exist C > 0
satisfying (40). Then, for any M ∈ N?, there is sequence (aMn )n∈N? ∈ `2(N?)
such that

‖aM‖`2(N?) ≤ 2−M and 2M ≤ |||aM |||.(41)

We now consider a double sequence (gn,M ) of i.i.d. Gaussian random variables
and we define the Gaussian process

Xt(ω) :=
∑
n≥1

( ∑
M≥1

aMn gn,M (ω)
)
un(t).

We note that
( ∑
M≥1

aMn gn,M (ω)
)
n≥1

is a sequence of independent Gaussian

centered random variables with variance σ2
n :=

∑
M≥1

|aMn |2, which is finite since
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we may write ∑
n≥1

σ2
n =

∑
M≥1

‖aM‖2`2(N?) ≤
∑
M≥1

2−2M < +∞.

As a consequence, the Gaussian process (Xt) is well defined. Moreover, the
assumption (H2) applied to (σn)n≥1 ∈ `2(N?) shows that sup

t∈E
Xt is finite for

any countable subset E ⊂ [0,+∞). The analysis of Step 1 then proves

sup
E⊂[0,+∞)
E countable

E
[

sup
t∈E
|Xt|

]
< +∞.(42)

For any M0 ∈ N?, we define Xt,M0(ω) :=
∑
n≥1

aM0
n gn,M0(ω)un(t) and we decom-

pose

Xt = Xt,M0 + (Xt −Xt,M0).

Since Xt,M0 and (Xt −Xt,M0) are independent and centered, it is well known
that the following inequality holds true for any countable subset E ⊂ [0,+∞):

E
[

sup
t∈E
|Xt,M0 |

]
≤ E

[
sup
t∈E
|Xt|

]
.

For the convenience of the reader, let us give a few ideas on the proof of the
last inequality (see also Remark 15.2). By independence, the upper bound can
be written as (see [19, Appendix F] for more details):

E
[

sup
t∈E
|Xt|

]
= E

[
sup
t∈E

∣∣∣Xt,M0 + (Xt −Xt,M0)
∣∣∣]

= Eω1Eω2

[
sup
t∈E

∣∣∣Xt,M0(ω1) + (Xt(ω2)−Xt,M0(ω2))
∣∣∣].

The triangular inequality with respect to Eω2 gives us

E
[

sup
t∈E
|Xt|

]
≥ Eω1

[
sup
t∈E

∣∣∣Eω2

[
Xt,M0(ω1) + (Xt(ω2)−Xt,M0(ω2))

]∣∣∣]
= Eω1

[
sup
t∈E
|Xt,M0(ω1) + 0− 0|

]
= E

[
sup
t∈E
|Xt,M0 |

]
.

The expected inequality is thus proved. As a consequence, we obtain |||aM0 ||| ≤
|||(σn)n≥1||| < +∞ thanks to (39) and (42). This is a contradiction with (41)
by choosing M0 large enough.
Step 3. We now apply (40) for sequences (an)n≥1 with finite support. Since
each un is continuous, one may choose one dense subset E of [0,+∞) to get

E
[

sup
t∈[0,+∞)

∣∣∣∑
n≥1

gn(ω)anun(t)
∣∣∣] ≤ C(∑

n≥1
|an|2

) 1
2
.(43)
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Let us recall that BC([0,+∞)) denotes the Banach space of the bounded and
continuous functions on [0,+∞) (see the proof of Corollary 5.2). For the gen-
eral case, we do not assume (an) to be with finite support anymore. One
infers that the sequence of the partial sums of the Gaussian random series∑
n≥1

gn(ω)anun(t) converges in L1(Ω,BC([0,+∞))), and, hence, (43) still holds

true. In other words, iii) is proved.
Step 4. We then easily get ii) and i) by considering Cauchy sequences20 and iv)
by considering for (an) the elements of the canonical basis of `2(N?).

7. Proof of Theorem 2.1 for d = 2

The goal of this part is to explain how the following analogue of Propo-
sition 5.1 and Corollary 5.2 and some extra arguments allow for a proof of
Theorem 2.1 in the last case d = 2.

Proposition 7.1. — Let (an)n≥1 be a sequence in `2(N?); then, with probabil-
ity 1, the Gaussian random series

∑
n≥1

gn(ω)an sin(λnt)√
λn

and
∑
n≥1

gn(ω)an cos(λnt)−1√
λn

uniformly converge on any compact subset of [0,+∞), and their sums are point-
wise 1

2 -Hölder at t = 0 (see Definition 9.1 below); there almost surely exists
C > 0 satisfying

∀t ≥ 0

∣∣∣∣∣∣
∑
n≥1

gn(ω)an
sin(λnt)√

λn

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
n≥1

gn(ω)an
cos(λnt)− 1√

λn

∣∣∣∣∣∣ ≤ C√t.
Proof. — See Section 15. �

Corollary 7.2. — Let (an)n≥1 be a sequence in `2(N?); then, with probabil-
ity 1, the Gaussian random series∑

n≥1
gn(ω)an

sin(λnt)√
λnt

and
∑
n≥1

gn(ω)an
cos(λnt)− 1√

λnt

uniformly converge on [0,+∞) (in particular, their sums are almost surely
continuous on [0,+∞)).

Proof. — We apply Proposition 6.1 with the following two choices of un (in
which we note the additional factor

√
t):

u(1)
n (t) = sin(λnt)√

λnt
and u(2)

n (t) = cos(λnt)− 1√
λnt

,

20. See step 1 of Proposition 3.2.
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which are clearly continuous and uniformly bounded for t belonging to [0,+∞).
Hence, the hypothesis (H1) of Proposition 6.1 is fulfilled. The following two
associated Gaussian processes are, thus, well defined:

X
(1)
t :=

∑
n≥1

gn(ω)anu(1)
n (t) and X

(2)
t :=

∑
n≥1

gn(ω)anu(2)
n (t)

=
∑
n≥1

gn(ω)an
sin(λnt)√

λnt
=
∑
n≥1

gn(ω)an
cos(λnt)− 1√

λnt
.

In order to check the hypothesis (H2) of Proposition 6.1 we merely have to see
the conclusion of Proposition 7.1, which now directly reads:

∀t ≥ 0 |X(1)
t |+ |X

(2)
t | ≤ C.

In particular, for any countable subset E of [0,+∞), we have

∀t ∈ E |X(1)
t |+ |X

(2)
t | ≤ C.

Point ii) of the conclusion of Proposition 6.1 achieves the proof. �

As above, we merely focus on the implication i) ⇒ ii) of Theorem 2.1. In
other words, by setting an = cn

√
λn, we have to prove the following result.

Theorem 7.3. — For any sequence (an) ∈ `2(N?), with probability 1, the
Gaussian random series

∑
n≥1

gn(ω)anJ0(λn·) uniformly converges on [0,+∞).

We cannot directly apply Lemma 3.1 withW = J0 since J0 is not of bounded
variation on [0,+∞). The idea is to consider the following two random series
for t ∈ [0,+∞) separately:∑

n≥1
gn(ω)anJ0(λnt)1[0,1](λnt) and

∑
n≥1

gn(ω)anJ0(λnt)1(1,+∞)(λnt).(44)

The almost sure uniform convergence of the first random series on [0,+∞) is a
direct consequence of Lemma 3.1, once we note that the function t ∈ [0,+∞) 7→
J0(t)1[0,1](t) is of bounded variation.

We now focus on the second random series in (44). We need the simple but
crucial following property of the Bessel function J0.

Proposition 7.4. — There exists a differentiable function θ : [0,+∞[→ R
satisfying θ′ ∈ L1(0,+∞) and

∀t ≥ 1 J0(t) = sin(t) + cos(t)− 1√
πt

+ θ(t).(45)
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Proof. — It is sufficient to show the integrability on [1,+∞) of the derivative
of the following function:

∀t ≥ 1 ϕ(t) := J0(t)− sin(t) + cos(t)√
πt

.(46)

Then one may choose a function φ ∈ C∞([0,+∞),R) satisfying φ ≡ 0 on [0, 1
2 ]

and φ ≡ 1 on [1,+∞), so that θ(t) = φ(t)(ϕ(t) + 1√
πt

) will be convenient
for (45). The proof of the integrability of ϕ′ will need the following integral
representation for the Hankel function H1

0 (see [40, page 168, line (3)]) for any
t > 0:

J0(t) = Re(H1
0 (t)) = 1√

t
Re
(
ei(t−

π
4 )S(t)

)
(47)

with

S(t) =
√

2
π

∫ +∞

0

e−u√
1 + iu

2t

du√
u
,

in which 1√
1+ iu

2t
is understood as its principal value (with u

t > 0):

1√
1 + iu

2t

= 1(
1 + u2

4t2

) 1
4

exp
(
− i2 arctan

( u
2t

))

= 1√
2(1 + u2

4t2 ) 1
4

((
1 + 1√

1 + u2

4t2

) 1
2 − i

(
1− 1√

1 + u2

4t2

) 1
2
)
.

Note that the integral in (47) is absolutely convergent on (0,+∞), by bounding
by e−u√

u
, which leads to |S(t)| ≤

√
2√
π
. In the sequel, we need the more accurate

asymptotic coming from the exact formula (47):

S(t) =
√

2
π

∫ +∞

0

e−u√
u

(
1−

=O( u2t )︷ ︸︸ ︷
i

2

∫ u
2t

0

dα
(1 + iα)3/2

)
du =

√
2√
π

+O
(1
t

)
,

S′(t) = i
√

2
4π ×

1
t2

∫ +∞

0

e−u
√
u

(1 + iu
2t )3/2 du = O

( 1
t2

)
.
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We are then able to come back to (46):

J0(t) =
cos
(
t− π

4
)
Re(S(t))− sin

(
t− π

4
)
Im(S(t))

√
t

J ′0(t) =
− sin

(
t− π

4
)
Re(S(t))− cos

(
t− π

4
)
Im(S(t))

√
t

+O
( 1
t3/2

)
J ′0(t) =

−
√

2 sin
(
t− π

4
)

√
πt

+O
( 1
t3/2

)
ϕ′(t) = O

( 1
t3/2

)
. �

By looking at Proposition 7.4, we now to apply Proposition 3.2 for W =
1(1,+∞) ∈ BV and

un(t) = sin(λnt) + cos(λnt)− 1√
πλnt

+ θ(λnt) on I = [0,+∞).

So the almost sure uniform convergence on [0,+∞) of the second Gaussian ran-
dom series in (44) will be a consequence of the almost sure uniform convergence
on [0,+∞) of the following Gaussian random series∑

n≥1
gn(ω)an

(
sin(λnt) + cos(λnt)− 1√

πλnt
+ θ(λnt)

)
.(48)

Thanks to Lemma 3.1 and the conditions θ′ ∈ L1(0,+∞) and (an) ∈ `2(N?),
the Gaussian random series

∑
gn(ω)anθ(λnt) almost surely uniformly con-

verges on [0,+∞). Finally, the trigonometric part is dealt with thanks to
Corollary 7.2 (relying on the admitted Proposition 7.1). We get the conclusion
of Theorem 7.3 and, hence, of Theorem 2.1 for all d ≥ 2.

8. Boundedness of countable families of Gaussian processes

For each j ∈ N, let us denote by (Fωj (x))x∈M a centered Gaussian process
on a manifoldM (for instance,M = Rd orM being a boundaryless compact
manifold). We, moreover, denote by Mj a compact subset of M. We will
always make the following assumption:
(H-C) with probability 1, for any j ∈ N, the function x ∈M 7→ Fωj (x) ∈ R is

continuous.
In particular, (H-C) implies that the expectation E

[
sup
x∈Mj

|Fωj (x)|
]
does not

pose any measurability issue (by reducingMj to a countable subset).
We are interested in giving simple sufficient conditions for ensuring uniform

estimates like the following ones:
with probability 1 sup

j≥1
sup
x∈Mj

|Fωj (x)| < +∞.
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As is well known in the theory of Gaussian processes (see [28, Part 3.1]), the
following so-called weak variance is of interest:

σj = sup
x∈Mj

√
E[|Fωj (x)|2].(49)

Additionally to the above notations, let (ρj)j≥1 be a sequence of positive num-
bers. The tool that we shall use in the sequel is the following one (see converse
results in Proposition 8.3 and Lemma 8.4).

Proposition 8.1. — Assume (H-C) and the following two assertions:

i) There exists β > 0 such that the series
∑

exp
(
−β2 ρ2

j

2σ2
j

)
is convergent21.

ii) There exists C > 0 such that E
[

sup
x∈Mj

|Fωj (x)|
]
≤ Cρj holds true for

any j ∈ N.
Then we have

∃T > 0
∑
j∈N

P
(

sup
x∈Mj

|Fωj (x)| ≥ Tρj
)
< +∞.(50)

Moreover, with probability 1, we have

lim
j→+∞

( 1
ρj

sup
x∈Mj

|Fωj (x)|
)
≤ β + lim

j→+∞

1
ρj

E
[

sup
x∈Mj

|Fωj (x)|
]
.(51)

Finally, there almost surely exists Cω > 0 such that |Fωj (x)| ≤ Cωρj for any
j ∈ N and x ∈Mj.

Remark 8.2. — In some situations, the assumption i) may hold for any small
enough β > 0; for instance, if

∞∑
j=0

∣∣σj
ρj

∣∣p < +∞ for some p ∈ [1,+∞). If in

addition, we have lim
j→+∞

1
ρj

E
[

sup
x∈Mj

|Fωj (x)|
]

= 0, and then the conclusion of

Proposition 8.1 ensures that almost surely lim
j→+∞

1
ρj

sup
x∈Mj

|Fωj (x)| = 0.

Proof of Proposition 8.1. — We may assume that ρj = 1 for any j since there
is no loss in the proof provided that we replace Fωj with 1

ρj
Fωj . We shall use

the concentration of measure phenomenon for the Gaussian random vector Fωj
seen as a function from the probability space Ω to the Banach space C0(Mj)
of the continuous real-valued functions on the compact subset Mj (we refer
to, for instance, [28, page 53, Lemma 3.1]). Let Mj ∈ R+ be a median of
ω 7→ ‖Fωj ‖C0(Mj), namely a number satisfying

P
(
‖Fωj ‖C0(Mj) ≤Mj

)
≥ 1

2 and P
(
‖Fωj ‖C0(Mj) ≥Mj

)
≥ 1

2 .

21. We make the convention e−
1
0 = 0.
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Then the following concentration inequality holds true

P
(∣∣∣‖Fωj ‖C0(Mj) −Mj

∣∣∣ > t
)
≤ e−t

2/2σ2
j , ∀t > 0.(52)

By integration, we get∣∣∣E[‖Fωj ‖C0(Mj)

]
−Mj

∣∣∣ ≤ ∫ +∞

0
e−t

2/2σ2
j dt =

√
π√
2
σj .

Since the assumption i) means the convergence of the series
∑
e−β

2/2σ2
j for

some constant β > 0, it is clear that (σj) tends to 0+, and we immediately
have

lim
j→+∞

Mj = lim
j→+∞

E
[
‖Fωj ‖C0(Mj)

]
.(53)

In particular, the sequence of medians (Mj)j≥1 is bounded. Let us fix J ∈ N
and let us define

TJ = β + sup
j≥J

Mj .(54)

Again, (52) implies the following bound∑
j≥J

P
(
‖Fωj ‖C0(Mj) > TJ

)
≤
∑
j≥J

P
(
‖Fωj ‖C0(Mj) −Mj > TJ − sup

j≥J
Mj

)
≤
∑
j≥J

exp
(
− 1

2σ2
j

(TJ − sup
j≥J

Mj)2
)
,

and the last sum is finite thanks to the assumption i) and to the choice of TJ
in (54). We have thus proved (50) (for instance, for J = 0 and T = 2T0).
The inequality (51) is a quite direct consequence of the Borel–Cantelli lemma
since almost surely, for any J ∈ N and any j � 1 (depending on J), we have
‖Fωj ‖C0(Mj) ≤ β + sup

j≥J
Mj , and hence

lim
j→+∞

‖Fωj ‖C0(Mj) ≤ β + inf
J∈N

(
sup
j≥J

Mj

)
= β + lim

j→+∞
Mj .

We conclude with the equality (53). The proof of Proposition 8.1 is finished. �

Let us explain a short argument showing that Proposition 8.1 is essentially
sharp.

Proposition 8.3. — Assume (H-C) and the following two assertions:
• There almost surely exists Cω > 0 such that |Fωj (x)| ≤ Cωρj for any
j ∈ N and x ∈Mj.
• The Gaussian processes (Fωj )j∈N are independent.
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Then the following hold:

i) There exists β > 0 such that the series
∑

exp
(
−β2 ρ2

j

2σ2
j

)
is convergent.

ii) There exists C > 0 such that E
[

sup
x∈Mj

|Fωj (x)|
]
≤ Cρj holds true for

any j ∈ N.

We need the following lemma.

Lemma 8.4. — Let (Xj)j∈N be a sequence of random variables belonging to
L2(Ω) satisfying, for a suitable constant C ≥ 1; the following estimates for any
j ∈ N:

E[|Xj |2] ≤ CE[|Xj |]2.(55)

Then the following assertions are true:
i) If the sequence (Xj(ω)) is almost surely bounded, then the expectations

E[|Xj |] are bounded.
ii) If the sequence (Xj(ω)) almost surely converges to 0, then

lim
j→0

E[|Xj |] = 0.

Proof. — In the proof of [20, Proposition 23, ii) ⇒ iii)], we will replace the
dominated convergence theorem with Fatou’s lemma. The Paley–Zygmund
inequality and (55) imply for any j ∈ N

1
4C ≤ P

(
|Xj | ≥

1
2E[|Xj |]

)
.

Now choose J an infinite subset of N such that lim
j→+∞
j∈J

E[|Xj |] = lim
j→+∞

E[|Xj |].

Fatou’s lemma then gives
1

4C ≤ lim
j→+∞
j∈J

P
(
|Xj | ≥

1
2E[|Xj |]

)
≤ P

(
lim

j→+∞
j∈J

{
|Xj | ≥

1
2E[|Xj |]

})
≤ P

(
lim

j→+∞
|Xj | ≥

1
2 lim
j→+∞

E[|Xj |]
)
.

Then i) and ii) are a direct consequence of the last inequality. �

Proof of Proposition 8.3. — Without loss of generality, we can set ρj = 1 for
any j ∈ N as in the proof of Proposition 8.1. The previous lemma can be used
with Xj = sup

x∈Mj

|Fωj (x)| since (55) is satisfied thanks to the Gaussian version

of the Kahane–Khintchine inequalities (see [28, page 56, Cor 3.2] or [30, p 256,
Cor V.27]). So Lemma 8.4 shows the boundedness of the expectations of Xj .
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Let us now prove the existence of β > 0 such that
∑
j≥0

exp
(
− β2

2σ2
j

)
< +∞.

Due to the definition (49), for each j ∈ N, there exists xj ∈Mj satisfying

σ′j ≥
σj
2 with σ′j :=

√
E[|Fωj (xj)|].(56)

The assumptions of Proposition 8.3 ensure that the centered Gaussian random
variables Fωj (xj) are independent and may be bounded independently of j (with
probability 1). In other words, if (gj) is a sequence of i.i.d. N (0, 1)-Gaussian
random variables, then the sequence (σ′jgj)j≥1 is almost surely bounded. The
second Borel–Cantelli lemma shows that there is T ∈ N? such that the se-
ries

∑
j∈N

P(|σ′jgj | > T ) converges (otherwise, with probability 1, the sequence

(|σ′jgj(ω)|)j∈N goes beyond any T ∈ N?). Then (56) implies the conver-
gence of

∑
j∈N

P(|σjgj | > 2T ), and we conclude with the bound from below

P(|gj | > t) ≥ C exp(−ct2) for adequate constants22 C > 0 and c > 1
2 . �

9. Pointwise and global Hölder regularity via Littlewood–Paley decompositions

We denote by M a Riemannian manifold (M being compact or being Rd)
and by δg its Riemannian distance. We begin by recalling the notion of point-
wise Hölder regularity (see more about this notion in [1]).

Definition 9.1. — Let us consider α ∈ (0, 1) and x0 ∈ M. A function
f : M → C belongs to C0,α

x0
(M), the space of the pointwise Hölder functions

f :M→ C at x0 of order α, if there exists C > 0 such that the following holds
for any x ∈M:

|f(x)− f(x0)| ≤ Cδg(x, x0)α.

Let us set the following notations:

‖f‖C0,α
x0 (M) := |f(x0)|+ sup

x∈M\{x0}

|f(x)− f(x0)|
δg(x, x0)α , and

|||f |||C0,α
x0 (M) := sup

x∈M\{x0}
δg(x,x0)≤1

|f(x)− f(x0)|
δg(x, x0)α .

Note that the global α-Hölder norm can also be defined as

‖f‖C0,α(M) := sup
x0∈M

‖f‖C0,α
x0 (M) ' ‖f‖L∞(M) + sup

(x,x0)∈M2

x 6=x0

|f(x)− f(x0)|
δg(x, x0)α .

22. See the argument in the proof of [29, page 2, Proposition II.1].
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The following equivalence is easy to check:
1
4‖f‖C

0,α
x0 (M) ≤ |||f |||C0,α

x0 (M) + sup
x∈M

|f(x)|
(1 + δg(x, x0))α ≤ 2‖f‖C0,α

x0 (M).(57)

Moreover, the term |||f |||C0,α
x0 (M) can be understood via the following equiva-

lence23

1
2 |||f |||C

0,α
x0 (M) ≤ sup

j∈N

(
2αj sup

x∈M
δg(x,x0)≤2−j

|f(x)− f(x0)|
)
≤ |||f |||C0,α

x0 (M),

but it will be more useful to consider the following equivalence24

1
2 |||f |||C

0,α
x0 (M) ≤ sup

j∈N

(
2αj sup

(x,x′)∈M2

δg(x,x0)≤2−j

δg(x′,x0)≤2−j

|f(x)− f(x′)|
)
≤ 2|||f |||C0,α

x0 (M).(58)

Let us now study another equivalence via the Littlewood–Paley decomposi-
tion. Let Θ ∈ C∞c ([0,+∞),R) be a function such that Θ ≡ 1 near 0+. We also
consider the function θ ∈ C∞c (0,+∞) defined as follows

θ(λ) = Θ(λ)−Θ(4λ).(59)

The pair (Θ, θ) satisfies the Littlewood–Paley relation

∀λ ≥ 0 1 = Θ(λ) +
∑
j≥1

θ(2−2jλ).

We refer to (65) and (66) for reminders about the Fourier multipliers. Then for
any f ∈ C0(Rd) ∩ L∞(Rd) and any α ∈ (0, 1), the equivalence of the following
three statements is well known (see the statements and the proofs in [2, page 81,
Proposition 1.3] and [41, Th 7.16]):

i) The function f is globally α-Hölder.
ii) There exists C > 0 such that ‖f −Θ(−h2∆)f‖L∞(Rd) ≤ Chα holds for

any h ∈ (0, 1].
iii) There exists C > 0 such that ‖θ(−2−2j∆)f‖L∞(Rd) ≤ C2−jα holds for

any j ∈ N?.
We now need a pointwise analogue of the last equivalence in which we, more-
over, weaken the condition f ∈ L∞(Rd) by a condition of polynomial growth
like |f(x)| . (1+ |x|)α. The following result was inspired from a result of Kreit
and Nicolay (see [26, Theorem 14]) but states an equivalence (actually, in con-
trast to the result of Kreit and Nicolay, we do not need to assume f to belong

23. For the lower bound, we may consider the rings 2−(j+1) ≤ δg(x, x0) ≤ 2−j and use
the bound 2−αj = 2α2−α(j+1) ≤ 2δg(x, x0)α.

24. We just have to bound |f(x) − f(x′)| ≤ |f(x) − f(x0)| + |f(x′) − f(x0)| and use the
previous inequality.
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in C0,α′(Rd) for some α′ ∈ (0, α) and we do not need the operator Θ(−2−2k∆)
to be a convolution by a compactly supported function).

Proposition 9.2. — Let us fix α ∈ (0, 1) and x0 ∈ Rd. For any continuous
function f : Rd → C, the following equivalence holds true:

‖f‖C0,α
x0 (Rd) ' sup

x∈Rd

|f(x)|
(1 + |x− x0|)α

+ sup
j∈N

2αj
(

sup
k≥j
‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j))

)
,

(60)

with constants of equivalence independent of f and x0.

In particular, we note that the equivalence (60) implies that our results are
independent of the choice of the function Θ (actually, such an independence
should be completely expected for any result involving Littlewood–Paley de-
compositions).

In order to prove Theorem 1.2, we need the following global analogue result
on compact manifolds.

Proposition 9.3. — We assume thatM is a boundaryless compact Riemann-
ian manifold and let ∆ be its Laplace–Beltrami operator. For any α ∈ (0, 1)
and any f ∈ L2(M), the following qualitative equivalence is true

f ∈ C0,α(M) ⇔ sup
j≥1

2jα‖θ(−2−2j∆)f‖L∞(M) < +∞.(61)

Moreover, for any sequence (hj)j∈N of (0, 1] which tends to 0+, the following
quantitative equivalence holds:

‖f‖C0,α(M) ' sup
j∈N
‖Θ(−h2

j∆)f‖C0,α(M).(62)

10. Proof of Proposition 9.2, preliminary lemmas

The proof of Proposition 9.2 will be developed in the current section and in
Sections 11 and 12. Lemmas 10.1 and 10.2 are written for the clarity of the
exposition, but Lemma 10.3 is the main purpose of the current section.

For any ϑ ≥ 0, we define the space L∞x0,ϑ
(Rd) of measurable functions f :

Rd → C satisfying

‖f‖L∞
x0,ϑ

(Rd) := sup
x∈Rd

|f(x)|
(1 + |x− x0|)ϑ

< +∞.(63)

The vector space L∞x0,ϑ
(Rd) is, of course, independent of x0.
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We now recall a few formulas of Fourier analysis. For any Ψ in the Schwartz
class S(R), we use the following convention and inversion formula:

Ψ̂(ξ) =
∫
Rd
e−i〈x,ξ〉Ψ(x)dx and Ψ(x) =

∫
Rd
ei〈x,ξ〉Ψ̂(ξ) dξ

(2π)d .(64)

The semi-classical Fourier multiplier Ψ(hD) for any h ∈ (0, 1] is defined as
follows: for any Ψ ∈ S(Rd), any f ∈ L∞x0,ϑ

(Rd), any h ∈ (0, 1] and x ∈ Rd, we
have the convolution identity

(Ψ(hD)f)(x) =
∫
Rd
f(x− hy)Ψ̂(−y) dy

(2π)d .(65)

Such a formula25 shows that, for f ∈ S(Rd) and ξ ∈ Rd, we indeed have the
usual formula

∧

Ψ(hD)f(ξ) = Ψ(hξ)f̂(ξ).(66)

For any Φ ∈ S(Rd), we deduce the composition formula
Φ(hD) ◦Ψ(hD) = (ΦΨ)(hD).(67)

We, moreover, easily check the following formula for any ` ∈ {1, . . . , d}:( ∂

∂x`
{Ψ(hD)f}

)
(x) = 1

h
(Ψ`(hD)f)(x) with Ψ`(ξ) = iξ`Ψ(ξ).(68)

We will need the following lemmas.

Lemma 10.1. — Let us consider ϑ ∈ [0,+∞) and Ψ ∈ S(Rd); then for any
h ∈ (0, 1] and x0 ∈ Rd, the Fourier multipliers Ψ(hD) are uniformly bounded
on L∞x0,ϑ

(Rd) with respect to (x0, h):

sup
x0∈Rd

sup
0<h≤1

‖Ψ(hD)‖L∞
x0,ϑ

(Rd)→L∞
x0,ϑ

(Rd) < +∞.

Proof. — For any f ∈ L∞x0,ϑ
(Rd) and x ∈ Rd, the convolution identity allows

us to bound

|(Ψ(hD)f)(x)| ≤ ‖f‖L∞
x0,ϑ

(Rd)

∫
Rd

(1 + |x− x0 − hy|)ϑ|Ψ̂(−y)| dy
(2π)d

≤ ‖f‖L∞
x0,ϑ

(Rd)

∫
Rd

(1 + |x− x0|+ |y|)ϑ|Ψ̂(−y)| dy
(2π)d

≤ ‖f‖L∞
x0,ϑ

(Rd)(1 + |x− x0|)ϑ
∫
Rd

(1 + |y|)ϑ|Ψ̂(−y)| dy
(2π)d

where the last integral is finite because Ψ̂ belongs to the Schwartz space S(Rd).
�

25. The convergence of the integral is contained in the proof of Lemma 10.1.
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Lemma 10.2. — Let Ψ and g be two functions in S(Rd) and let us fix a function
f ∈ L∞ϑ,x0

(Rd) for some ϑ ≥ 0. If Ψ is real-valued, then the operator Ψ(D) is
self-adjoint in the following sense∫

Rd
(Ψ(D)f)(x)× g(x)dx =

∫
Rd
f(x)× (Ψ(D)g)(x)dx.(69)

Proof. — Formally, the result is expected via the relation (66). Here is, indeed,
a direct argument. Note that both functions on the two sides of (69) are
integrable because Lemma 10.1 ensures that Ψ(D)f belongs to L∞ϑ,x0

(Rd) and
because the standard Fourier analysis (via (65) or (66)) shows that Ψ(D)g
belongs to the Schwartz class S(Rd). We also remark that the formula Ψ̂(−y) =
Ψ̂(y) holds true because Ψ is real-valued. We then conclude with the Fubini
theorem, a change of variables and by reformulating (69) as∫

Rd×Rd
f(x− y)Ψ̂(−y)g(x) dxdy

(2π)d =
∫
Rd×Rd

f(x)g(x− y)Ψ̂(−y) dxdy
(2π)d .

We note that, on both sides, the considered functions are integrable on Rd×Rd.
�

Lemma 10.3. — Let us consider α ∈ (0, 1), ϑ ∈ [0,+∞) and x0 ∈ Rd. Let
Ψ and Φ be two functions in the Schwartz class on Rd and let us consider
f ∈ L∞x0,ϑ

(Rd) such that there is a constant M(f) ≥ 0 satisfying for any k ∈ N?

‖Ψ(2−kD)f‖L∞(B(x0,2−k)) ≤M(f)2−kα.(70)

Then there is a positive constant C (independent of k, x0 and f) such that for
any k ∈ N the following inequality holds true:

‖Φ(2−kD) ◦Ψ(2−kD)f‖L∞(B(x0,2−k)) ≤ C
(
‖f‖L∞

x0,ϑ
(Rd) +M(f)

)
2−kα.(71)

Proof. — For any g ∈ L∞x0,ϑ
(Rd) and any R ≥ 0, the following inequality is

obvious (see (63)):

‖g‖L∞(B(x0,R)) ≤ (1 +R)ϑ‖g‖L∞
x0,ϑ

(Rd).(72)

Moreover, Lemma 10.1 shows that the Fourier multipliers Φ(2−kD) and
Ψ(2−kD) are uniformly bounded (with respect to k and x0) on L∞x0,ϑ

(Rd).
Combining these two simple remarks leads to

‖Φ(2−kD) ◦Ψ(2−kD)f‖L∞(B(x0,2−k)) ≤ C‖f‖L∞
x0,ϑ

(Rd).
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As a consequence, it is sufficient to restrict the proof of (71) for k ≥ 2. Let us
note fk = Ψ(2−kD)f and let us use the convolution formula for any x ∈ Rd:(

Φ(2−kD) ◦Ψ(2−kD)f
)

(x) =
(

Φ(2−kD)fk
)

(x)

=
∫
Rd
fk

(
x− y

2k
)

Φ̂(−y) dy
(2π)d

so that we can bound (by using 2−k + 2K−k ≤ 21+K−k for any K ∈ N):∥∥∥Φ(2−kD) ◦Ψ(2−kD)f
∥∥∥
L∞(B(x0,2−k))

≤ ‖fk‖L∞(B(x0,21−k))

∫
|y|≤1

|Φ̂(−y)| dy
(2π)d

+
+∞∑
K=1
‖fk‖L∞(B(x0,21+K−k))

∫
2K−1≤|y|≤2K

|Φ̂(−y)| dy
(2π)d .

Since Φ̂ belongs to the Schwartz space, we can bound

|Φ̂(y)| ≤ C

(1 + |y|)1+d+ϑ+α ,

for a suitable constant C independent of (k,K, x0), and so we get (upon chang-
ing C)

∥∥∥Φ(2−kD) ◦Ψ(2−kD)f
∥∥∥
L∞(B(x0,2−k))

≤ C
+∞∑
K=0

‖fk‖L∞(B(x0,21+K−k))

2(1+ϑ+α)K .

We shall cut the last sum by separating the cases K ≥ k−1 and 0 ≤ K ≤ k−2.
Case K ≥ k − 1. Thanks to (72) and Lemma 10.1, we get for any R ≥ 0:

‖fk‖L∞(B(x0,R)) ≤ C(1 +R)ϑ‖f‖L∞
x0,ϑ

(Rd).

By bounding 1 +K − k ≤ 1 +K, we thus obtain

+∞∑
K=k−1

‖fk‖L∞(B(x0,21+K−k))

2(1+ϑ+α)K ≤ C‖f‖L∞
x0,ϑ

(Rd)

+∞∑
K=k−1

(1 + 21+K)ϑ

2(1+ϑ+α)K

≤ C
‖f‖L∞

x0,ϑ
(Rd)

2k(1+α) ,

which is much better than the bound O(2−kα) expected in (71).
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Case 0 ≤ K ≤ k−2. We consider the remaining terms thanks to the assumption
(70) and we shall see that the rate 2−kα is the good one:

k−2∑
K=0

‖fk‖L∞(B(x0,21+K−k))

2(1+ϑ+α)K ≤M(f)
k−2∑
K=0

2(1+K−k)α

2(1+ϑ+α)K

≤ M(f)
2kα

+∞∑
K=0

2α

2(1+ϑ)K

≤ M(f)
2kα

+∞∑
K=0

2
2K = 4M(f)

2kα . �

11. Proof of Proposition 9.2, part A

We will control the right-hand side of (60) by ‖f‖C0,α
x0 (Rd). Due to (57), we

merely have to show for any j ∈ N

sup
k≥j
‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j)) . 2−αj‖f‖C0,α

x0 (Rd).(73)

We write Θ(−2−2k∆)f = Θ̃(2−kD)f with Θ̃(ξ) = Θ(|ξ|2). Hence, (64) gives
us ∫

Rd

̂̃Θ(y) dy
(2π)d = Θ̃(0) = Θ(0) = 1.

Using the convolution expression (65) of Θ̃(2−kD)f , for any x ∈ B(x0, 2−j) we
get the following bound:

f(x)−
(

Θ(−2−2k∆)f
)

(x)

= f(x)− f(x0) +
∫
Rd

(
f(x0)− f

(
x− y

2k
))̂̃Θ(−y) dy

(2π)d∣∣f(x)−
(

Θ(−2−2k∆)f
)

(x)
∣∣∣

≤ ‖f‖C0,α
x0 (Rd)

(
|x− x0|α +

∫
Rd

∣∣∣x− x0 −
y

2k
∣∣∣α| ̂̃Θ(−y)| dy

(2π)d
)

≤ ‖f‖C0,α
x0 (Rd)

(
|x− x0|α +

∫
Rd

(|x− x0|α + 2−kα|y|α)| ̂̃Θ(−y)| dy
(2π)d

)
.

Since the Fourier transform of Θ̃ belongs to the Schwartz class, one may bound
|y|α ≤ 1 + |y| to see that there is a constant CΘ > 0 merely depending on Θ
such that the following holds:

‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j)) ≤ CΘ‖f‖C0,α
x0 (Rd)(2

−αj + 2−kα).

Such an estimate implies (73).
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12. Proof of Proposition 9.2, part B

We will control ‖f‖C0,α
x0 (Rd) by the right-hand side of (60). Thanks to (57),

we have to prove

|||f |||C0,α
x0 (Rd) . sup

x∈Rd

|f(x)|
(1 + |x− x0|)α

+ sup
j∈N

2αj
(

sup
k≥j
‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j))

)
.

(74)

Step 1. Let us briefly explain the strategy. Let us imagine that we are able
to prove that there is a constant C1(f) ≥ 0 such that for any j ∈ N, for any
functions ϕ ∈ C∞c (Rd) and ψ ∈ C∞c (Rd) with support in the ball B(x0, 2−j),
we have ∣∣∣∣∣

∫
B(x0,2−j)×B(x0,2−j)

(
f(x)− f(x′)

)
ϕ(x)ψ(x′)dxdx′

∣∣∣∣∣(75)

≤ C1(f)2−αj
∫
B(x0,2−j)

|ϕ(x)|dx
∫
B(x0,2−j)

|ψ(x′)|dx′.

Let us now see a consequence of such an assertion. For any (a, a′) inside the
product of balls B(x0, 2−j)×B(x0, 2−j), one can consider two approximations
of identity ϕn and ψn on Rd, which, respectively, tend to the Dirac measures δa
and δa′ . In particular, the sequence (ϕn⊗ψn)n is an approximation of identity
on Rd × Rd, which tends to δ(a,a′). Then, since f is assumed to be continuous
in Proposition 9.2, (75) would imply

|f(a)− f(a′)| ≤ C1(f)2−αj .

Hence, (58) would show
|||f |||C0,α

x0 (Rd) ≤ 2C1(f).(76)

In other words, our strategy is to show that we may choose in (75) a constant
C1(f), which is bounded by the right-hand side of (74).
Step 2. We now want to begin the proof of (75) for a suitable constant
C1(f) ≥ 0. Since the right-hand side of (74) may be assumed to be finite,
the function f belongs to the space L∞x0,α(Rd) introduced in (63). Let us divide
the Littlewood–Paley decomposition of f into two parts as follows. For any
p ∈ N, we may write thanks to (59):

f = Spf +Rpf with Spf = Θ(−∆)f +
p∑
k=1

θ(−2−2k∆)f = Θ(−2−2p∆)f.

(77)

We now explain why (75) will come from the following inequalities for any
p ≥ j and any (x, x′) ∈ B(x0, 2−j) × B(x0, 2−j) (for suitable constants C2(f)
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and C3(f)):

|(Spf − Sjf)(x)− (Spf − Sjf)(x′)| ≤ C2(f)2−αj ,(78)
|Sjf(x)− Sjf(x′)| ≤ C3(f)2−αj .(79)

Actually, by using the Fubini theorem and the self-adjointness of the Fourier
multiplier Sp (see Lemma 10.2 and the identity (77)), we obtain∫

B(x0,2−j)×B(x0,2−j)

(
Spf(x)− Spf(x′)

)
ϕ(x)ψ(x′)dxdx′(80)

=
∫
Rd×Rd

(
Spf(x)− Spf(x′)

)
ϕ(x)ψ(x′)dxdx′

=
∫
Rd

(
Spf(x)

)
ϕ(x)dx

∫
Rd
ψ(x′)dx′ −

∫
Rd
ϕ(x)

∫
Rd

(
Spf(x′)

)
ψ(x′)dx′

=
∫
Rd
f(x)Spϕ(x)dx

∫
Rd
ψ(x′)dx′ −

∫
Rd
ϕ(x)

∫
Rd
f(x′)Spψ(x′)dx′.(81)

Taking into account (79) and (78), we see that the integral (80) is bounded by

(C2(f) + C3(f))2−αj‖ϕ‖L1(Rd)‖ψ‖L1(Rd).

Since ϕ and ψ belong to the Schwartz class S(Rd), the following formulas (see
(77) and (66)),

Ŝpϕ(ξ) = Θ(2−2p|ξ|2)ϕ̂(ξ) and Ŝpψ(ξ) = Θ(2−2p|ξ|2)ψ̂(ξ),

easily show the convergences Spϕ → ϕ and Spψ → ψ in S(Rd) as p → +∞.
Remembering now that the bound |f(x)| . (1 + |x|)α holds true, we get the
convergences fSpϕ → fϕ and fSpψ → fψ in L1(Rd). By making p tend to
+∞ in the integrals (81), we obtain (75) for

C1(f) = C2(f) + C3(f).(82)

It finally remains to get suitable constants in (79) and (78).
Step 3, proof of (78). We write Spf − Sjf = (Spf − f) − (Sjf − f) and note
the equality f − Sp(f) = f −Θ(−2−2p∆)f thanks to (77). In other words, we
have for any j ∈ N and p ≥ j:

|(Spf − Sjf)(x)− (Spf − Sjf)(x′)| ≤ 4 sup
k≥j
‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j)).

Looking at (74), we get (78) for the choice

C2(f) = 4 sup
j∈N

2αj
(

sup
k≥j
‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j))

)
.(83)
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Step 4, proof of (79). Thanks to (77) and to the inequality |x−x′| ≤ |x−x0|+
|x′ − x0| ≤ 2

2j , we can bound |Sjf(x)− Sjf(x′)| by

|x− x′| sup
|y−x0|< 1

2j

(
‖∇{Θ(−∆)f}(y)‖+

j∑
k=1
‖∇{θ(−2−2k∆)f}(y)‖

)
(84)

= |x− x′| sup
|y−x0|< 1

2j

(√√√√ d∑
`=1

∣∣∣∣(∂{Θ(−∆)f}
∂y`

)
(y)
∣∣∣∣2

+
j∑

k=1

√√√√ d∑
`=1

∣∣∣∣(∂{θ(−2−2k∆)f}
∂y`

)
(y)
∣∣∣∣2
)

≤ 2
2j

d∑
`=1

(
sup

|y−x0|<1

∣∣∣∣(∂{Θ(−∆)f}
∂y`

)
(y)
∣∣∣∣

+
j∑

k=1
sup

|y−x0|< 1
2k

∣∣∣∣(∂{θ(−2−2k∆)f}
∂y`

)
(y)
∣∣∣∣
)
.

We then use (68) to write

∂{Θ(−∆)f}
∂y`

(y) =
(

Θ`(D)f
)

(y) with Θ`(ξ) = iξ`Θ(|ξ|2).

Since Θ` belongs to C∞c (Rd), we can apply Lemma 10.1 to get∥∥∥∥ ∂

∂y`
{Θ(−∆)f}

∥∥∥∥
L∞x0,α(Rd)

≤ C‖f‖L∞x0,α(Rd).

Then the bound (72) allows us to deal with the first term in the upper bound
(84): ∥∥∥∥ ∂

∂y`
{Θ(−∆)f}

∥∥∥∥
L∞(B(x0,1))

≤ 2α
∥∥∥∥ ∂

∂y`
{Θ(−∆)f}

∥∥∥∥
L∞x0,α(Rd)

≤ 2C‖f‖L∞x0,α(Rd).

(85)

Let us explain how other terms in (84) can be understood similarly. Actu-
ally, we need a sort of analogue of [25, Lemma 4.2] allowing us to bound∥∥ ∂
∂y`
{θ(−2−2k∆)f}

∥∥
L∞(B(x0,2−k)) in (84). We may factorize iξ`θ(|ξ|2) =

Φ(ξ)Ψ(ξ) with
• Ψ(ξ) = θ(|ξ|2).
• Φ : Rd → C a smooth compactly supported function that coincides with
ξ 7→ iξ` on the support of Ψ(ξ) = θ(|ξ|2).
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As a consequence of (68) for h = 2−k and of (67), we have

∂{θ(−2−2k∆)f}
∂y`

(y) = ∂{Ψ(hD)f}
∂y`

(y) =
(

2kΦ(2−kD) ◦Ψ(2−kD)f
)

(y).(86)

We now aim to apply Lemma 10.3, whose assumption consists of bounding
θ(−2−2k∆)f on the ball B(x0, 2−k) for any k ∈ N?. We write

θ(−2−2k∆)f = Skf − Sk−1f = (Skf − f)− (Sk−1f − f)
‖θ(−2−2k∆)f‖L∞(B(x0,2−k)) ≤ ‖(Skf − f)‖L∞(B(x0,2−k))

+ ‖(Sk−1f − f)‖L∞(B(x0,2−(k−1))).

In particular, we get

2kα‖θ(−2−2k∆)f‖L∞(B(x0,2−k)) ≤ 2kα‖(Skf − f)‖L∞(B(x0,2−k))

+ 2α2(k−1)α‖(Sk−1f − f)‖L∞(B(x0,2−(k−1)))

≤ 3 sup
j∈N

2jα‖Sjf − f‖L∞(B(x0,2−j))

≤ 3 sup
j∈N

2jα
(

sup
p≥j
‖Spf − f‖L∞(B(x0,2−j))

)
.

In other words, Ψ satisfies (70) with

M(f) = 3 sup
j∈N

2αj
(

sup
k≥j
‖f −Θ(−2−2k∆)f‖L∞(B(x0,2−j))

)
.(87)

Then (86) and Lemma 10.3 show∥∥∥ ∂

∂y`
{θ(−22k∆)f}

∥∥∥
L∞(B(x0,2−k))

≤ C
(
‖f‖L∞x0,α(Rd) +M(f)

)
2k−kα.

Combining the previous bound with (85) and (84), we see that |Sjf(x) −
Sjf(x′)| is less than or equal to (upon changing C)

2
2j

(
C‖f‖L∞x0,α(Rd) + C

(
‖f‖L∞x0,α(Rd) +M(f)

) j∑
k=1

2k−kα
)

≤ C

2j
(
‖f‖L∞x0,α(Rd) +M(f)

)(
1 +

j∑
k=1

2k−kα
)

≤ C

2j
(
‖f‖L∞x0,α(Rd) +M(f)

)
2j(1−α) = C

(
‖f‖L∞x0,α(Rd) +M(f)

)
2−jα.

This is exactly (79) with C3(f) = C
(
‖f‖L∞x0,α(Rd) +M(f)

)
.

Conclusion. — Thanks to (82), (83) and (87) we may conclude by plugging
C1(f) = C2(f) + C3(f) in (76) (the strategy explained in Step 1 is finally
realized).
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13. Proof of Proposition 9.3, part A

The core of the proof of Proposition 9.3 will be the following quantitative
equivalence:

‖f‖C0,α(M) ' ‖Θ(−∆)f‖L∞(M) + sup
j≥1

2jα‖θ(−2−2j∆)f‖L∞(M).(88)

The goal of the current section is to prove (61), which turns out to be a direct
consequence of (88) since Θ(−∆)f automatically belongs to L∞(M) (note that
Θ(−∆)f is a finite linear combination of eigenfunctions of ∆).

The sense . of (88) can be proved mutatis mutandis by following the proof
in [2, page 81, Proposition 1.3, ii)]. The mere additional ingredients are the
following:
• In order to work in a local chart, we have to keep in mind that the α-
Hölder regularity is, indeed, a local property, one may easily check that

for any finite open coverM =
N⋃
i=1

we have the equivalence

f ∈ C0,α(M) ⇔ sup
1≤i≤N

‖f|Vi‖C0,α(Vi) < +∞.

• A semi-classical Bernstein inequality holds true on M: for any ψ ∈
C∞c (R+,R), any f ∈ L∞(M) and any h ∈ (0, 1), we have

‖∇Ψ(−h2∆)f‖L∞(M) ≤
C

h
‖f‖L∞(M).

Such a semi-classical Bernstein inequality is known (we refer the reader
to [21, Theorem 2.2 and Section 8.4] and [12, Theorem 2.1] but also [19,
Theorem D.1] for similar bounds for other operators).

Let us now prove the sense & of (88). We shall use a strategy of the paper
[4] consisting in transferring a Littlewood–Paley theory on Rd to a compact
manifold (see also [19, Section 9] for use of that strategy for BMO). Such a
technique needs the semi-classical functional calculus of the Laplace–Beltrami
operator (we refer to [2, Chapter I] or [17, Chapter XVIII] for the theory of
pseudo-differential operators and the notations of the form ψj(x, hD) in the
next statement and proofs). Actually, [4, Proposition 2.1] implies the following
result for the semi-classical operators ψ(−h2∆).

Proposition 13.1. — Let us consider ψ ∈ C∞c ((0,+∞),R) being constant
near 0, let ρ : U ⊂ Rd → V ⊂ M be a local chart of M, let us fix χ1 and χ2
two functions in C∞c (V ) satisfying χ2 = 1 in a neighborhood of the support of
χ1. Then there exists a sequence of functions (ψk)k≥0 in C∞c (U×Rd) such that
for any integer N ∈ N?, for any h ∈ (0, 1], any σ ∈ [0, N ] and any f ∈ C∞(M),
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we have the bound∥∥∥(χ1ψ(−h2∆)f
)
◦ρ−

N−1∑
k=0

hkψk(x, hD)((χ2f)◦ρ)
∥∥∥
Hσ(Rd)

≤ CNhN−σ‖f‖L2(M),

where Hσ(Rd) stands for the usual Sobolev spaces. Moreover, the support of
ψk(x, ξ) is supported in the ring 1

C ≤ |ξ| ≤ C for a suitable constant C ≥ 1
independent of k.

To get the sense & of (88), we begin by fixing a function f ∈ C0,α(M).
The term Θ(−∆)f in (88) can be directly handled by using the continuity

of the operator Θ(−∆) : L∞(M)→ L∞(M) (see [4, Corollary 2.2]):

‖Θ(−∆)f‖L∞(M) ≤ C‖f‖L∞(M) ≤ C ′‖f‖C0,α(M).

Let us now focus on the terms θ(−2−2j∆)f in (88). By introducing a finite
open cover ofM, one sees that it is sufficient to prove that for any local chart
ρ : U ⊂ Rd → V ⊂M and any χ1 ∈ C∞c (V ) the following inequality holds true∥∥∥(χ1θ(−2−2j∆)f

)
◦ ρ
∥∥∥
L∞(U)

≤ C2−jα‖f‖C0,α(M).

Let χ2 ∈ C∞c (V ) be a function satisfying χ2 = 1 on a neighborhood of the
support of χ1. Let us, moreover, remember that θ has compact support in
(0,+∞). By using the notations of the semi-classical functional calculus given
by Proposition 13.1 for h = 2−j , the following equality holds true for any fixed
integer N ∈ N?:

(
χ1θ(−2−2j∆)f

)
◦ ρ =

N−1∑
k=0

2−kjψk(x, 2−jD)((χ2f) ◦ ρ) +Rj ,

in which the remainder Rj fulfills the bound ‖Rj‖HN−1(Rd) . 2−j‖f‖L2(M). If
one chooses N > 1 + d

2 , the usual Sobolev embedding HN−1(Rd) ⊂ L∞(Rd)
and the simple embedding C0,α(M) ⊂ L2(M) show

‖Rj‖L∞(Rd) . 2−j‖f‖C0,α(M) . 2−jα‖f‖C0,α(M).

The proof will be finished if one succeeds to show the bounds (for a fixed
k ∈ {0, . . . , N − 1}):

‖ψk(x, 2−jD)((χ2f) ◦ ρ)‖L∞(Rd) . 2−jα‖f‖C0,α(M).(89)

We note that the function (χ2f) ◦ ρ belongs to C0,α(Rd) and, thus, we have for
any ` ∈ N?:∥∥∥θ(−2−2`∆)

(
(χ2f) ◦ ρ

)∥∥∥
L∞(Rd)

. 2−`α‖(χ2f) ◦ ρ‖C0,α(Rd)

. 2−`α‖f‖C0,α(M)

(90)
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(this is a quantitative estimate coming from the proof of [2, page 81, Proposi-
tion 1.3], see the text below (59)). And hence the uniform convergence on Rd
of its Littlewood–Paley series holds:

(χ2f) ◦ ρ = Θ(−∆)
(
(χ2f) ◦ ρ)

)
+

+∞∑
`=1

θ(−2−2`∆)
(
(χ2f) ◦ ρ

)
.(91)

Since it is known that the pseudo-differential operator ψk(x, 2−jD) is bounded
on L∞(Rd) (see [19, line (9.6)]), we may write for any j ≥ 1

ψk(x, 2−jD)
(
(χ2f) ◦ ρ)

)
= ψk(x, 2−jD)Θ(−∆)

(
(χ2f) ◦ ρ)

)
+
∑
`≥1

ψk(x, 2−jD) ◦ θ(−2−2`∆)
(
(χ2f) ◦ ρ

)
.

Thanks to the last statement of Proposition 13.1, the support of ψk(x, 2−jξ)
is inside a ring of the form 1

C 2j ≤ |ξ| ≤ C2j . As a consequence, the symbol
ψk(x, 2−jξ) is controlled by 2−j for any semi-norm in the pseudo-differential
Hörmander class S1

1,0: for any (a, b) ∈ Nd × Nd, we have

sup
(x,ξ)∈Rd×Rd

(1 + |ξ|)−1+|b||∂ax∂bξ{ψk(x, 2−jξ)}| . 2−j .

Note also that the symbol of θ(−2−2`∆), namely θ(2−2`|ξ|2), has support in a
ring of the form 1

C 2` ≤ |ξ| ≤ C2` (because θ vanishes near 0). For the same
reason, we have

sup
(x,ξ)∈Rd×Rd

(1 + |ξ|)−1+|b||∂ax∂bξ{θ(2−2`|ξ|2)}| . 2−`.

The previous support conditions imply that one may find a fixed constant ν
large enough such that the support of the symbols ψk(x, 2−jξ) and θ(2−2`|ξ|2)
are disjoint, provided that |j−`| > ν is assumed. Following the same argument
as that of [19, pages 2760-2761] based on symbolic calculus, we may bound

‖ψk(x, 2−jD) ◦ θ(−2−2`∆)‖L2(Rd)→HN−1(Rd) . 2−j−`.

As a consequence, we get the following bounds (uniformly in j):∥∥∥ ∑
`≥1
|j−`|≥ν

ψk(x, 2−jD) ◦ θ(−2−2`∆)
(
(χ2f) ◦ ρ

)∥∥∥
HN−1(Rd)

.
+∞∑
`=1

2−j−`‖(χ2f) ◦ ρ‖L2(Rd)

. 2−j‖f‖L2(M)

. 2−j‖f‖C0,α(M).
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The same support argument gives the same following upper bound for the first
term of the Littlewood–Paley decomposition (91):∥∥∥ψk(x, 2−jD)Θ(−∆)

(
(χ2f) ◦ ρ

)∥∥∥
HN−1(Rd)

. 2−j‖f‖C0,α(M).

It remains to deal with the part |j − `| ≤ ν, which turns out to contain a finite
number of terms. Since k runs over a finite set, we may again use the uniform
boundedness on L∞(Rd) of each pseudo-differential operator ψk(x, 2−jD) to
get ∥∥∥ ∑

`≥1
|j−`|≤ν

ψk(x, 2−jD) ◦ θ(−2−2`∆)
(
(χ2f) ◦ ρ

)∥∥∥
L∞(Rd)

.
∑
`≥1
|j−`|≤ν

∥∥∥θ(−2−2`∆)
(
(χ2f) ◦ ρ

)∥∥∥
L∞(Rd)

.

Finally, (90) achieves the proof of the expected bounds (89).

14. Proof of Proposition 9.3, part B

It remains to prove the equivalence (62). We will still use the equivalence
(88) proved in the previous section.

Since Θ ≡ 1 near 0+ and since θ has compact support, we directly see that,
for an j ∈ N?, one may find ` ∈ N such that 2jh` is small enough so that the
following holds true:

∀λ ≥ 0 θ(2−2jλ)Θ(h2
`λ) = θ(2−2jλ).

As a consequence of the previous equality and of (88), we get

sup
j≥1

2jα‖θ(−2−2j∆)f‖L∞(M) ≤ sup
j≥1

sup
`∈N

2jα‖θ(−2−2j∆)Θ(−h2
`∆)f‖L∞(M)

≤ sup
`∈N

sup
j≥1

2jα‖θ(−2−2j∆)Θ(−h2
`∆)f‖L∞(M)

≤ C sup
`∈N
‖Θ(−h2

`∆)f‖C0,α(M).

Similarly, (88) and a factorization of the form Θ(−∆) = Θ(−∆)Θ(−h2
`∆)

imply

‖Θ(−∆)f‖L∞(M) ≤ C sup
`∈N
‖Θ(−h2

`∆)f‖C0,α(M).

So (88) gives

‖f‖C0,α(M) ≤ C sup
`∈N
‖Θ(−h2

`∆)f‖C0,α(M).
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Let us explain how to reverse this inequality. We use (88) to bound
sup

0<h≤1
‖Θ(−h2∆)f‖C0,α(M) by

sup
0<h≤1

‖Θ(−∆)Θ(−h2∆)f‖L∞(M)

+ sup
0<h≤1

sup
j≥1

2jα‖θ(−2−2j∆)Θ(−h2∆)f‖L∞(M).

We now remember the equalities

Θ(−∆)Θ(−h2∆) = Θ(−h2∆)Θ(−∆) and
θ(−2−2j∆)Θ(−h2∆) = Θ(−h2∆)θ(−2−2j∆)

and we invoke the uniform boundedness, with respect to h ∈ (0, 1], of the
operators Θ(−h2∆) from the space L∞(M) to itself (see [4, Corollary 2.2]).
We again use (88) for a last time to get the inequality

sup
0<h≤1

‖Θ(−h2∆)f‖C0,α(M) ≤ C‖f‖C0,α(M).

15. Proof of Proposition 7.1 and final step of Theorem 2.1

At this stage of the article, we recall that Proposition 7.1 had been admitted
for proving Theorem 2.1. The goal of this part is to complete this missing point,
namely to show, under the assumption (an)n≥1 ∈ `2(N?), that the function

fω : R→ C

t 7→
∑
n≥1

gn(ω) an√
λn
eiλnt

is almost surely given by a uniformly convergent series on compact subsets of
[0,+∞) (see Proposition 15.1 below) and is almost surely pointwise 1

2 -Hölder
at t = 0. For this last point, thanks to Proposition 9.2, we have to prove the
following:
• The random function fω is almost surely continuous on R (this is, of
course, a consequence of the uniform convergence on compact subsets;
see Proposition 15.1 below).
• The random function fω has a growth like |fω(t)| ≤ Cω

√
1 + |t| (see

Corollary 15.3).
• With probability 1, fω satisfies the following bounds:

sup
j∈N

√
2j
(

sup
k≥j
‖fω −Θ(−2−2k∆)fω‖L∞(−2−j ,2−j)

)
< +∞.(92)

The bounds (92) will be proved at the end of the current section. For all these
points, we need the next result.
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Proposition 15.1. — Let (an)n≥1 be a sequence in `2(N?) and let us fix an
exponent α ∈

(
0, 1

2
]
and an increasing positive sequence (λn) satisfying λn '

n. With probability 1, the Gaussian random series
∑
gn(ω) anλαn e

iλnt uniformly
converges on any compact subset of R. More precisely, for any K > 0, we have
the general bound

E
[

sup
|t|≤K

∣∣∣∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣] ≤ C(∑
n≥1

|an|2

λ2α
n

) 1
2 + CKα

(∑
n≥1
|an|2

) 1
2
.(93)

For any K � 1, we have

E
[

sup
|t|≤K

∣∣∣∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣] ≤ C√ln(K)
(∑
n≥1
|an|2

) 1
2
.(94)

The same conclusion obviously holds true for
∑
n≥1

gn(ω) anλαn e
−iλnt.

Remark 15.2. — We have not pursued the best bounds, but the last ones are
sufficient for our purpose. Actually, here are two simple but opposed examples
that show that improving the last bounds, at least for K → +∞, would need
more information:
• If the series

∑ an
λαn

is absolutely convergent, then the expectations in
Proposition 15.1 are directly bounded independently of K.
• Another interesting situation is the case λn =

√
n(n+ 1) for α = 1

2 .
Let us fix a real sequence (an) ∈ `2(N?) such that

∑
n≥1

|an|√
λn

= +∞ (for

instance, an = 1√
n ln(n+1) ). Then we claim that the left-hand side of (93)

cannot be bounded independently of K (in contrast with the proof of
Corollary 5.2). By considering the limit as K → +∞ and the imaginary
part, it is sufficient to explain the equality

E
[

sup
t∈Q

∣∣∣∑
n≥1

gn(ω) an√
λn

sin(λnt)
∣∣∣] = +∞.(95)

We write

SN (t, ω) =
N∑
n=1

gn(ω) an√
λn

sin(λnt) and

RN (t, ω) =
+∞∑

n=N+1
gn(ω) an√

λn
sin(λnt).
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Note the equality E[RN (t, ω)] = 0 and the independence of RN and SN
so that we can write26

E
[

sup
t∈Q
|SN (t, ω) +RN (t, ω)|

]
= Eω1Eω2

[
sup
t∈Q
|SN (t, ω1) +RN (t, ω2)|

]
≥ Eω1

[
sup
t∈Q

∣∣∣Eω2

[
SN (t, ω1) +RN (t, ω2)

]∣∣∣]
= Eω1

[
sup
t∈Q
|SN (t, ω1)|

]
.

Thanks to [33, page 5, Proposition 1] giving a Sidon property of the set
of the frequencies of the form λn =

√
n(n+ 1), we get

Eω1

[
sup
t∈Q
|SN (t, ω1)|

]
= Eω1

[
sup
t∈R
|SN (t, ω1)|

]
&

N∑
n=1

|an|√
λn
.(96)

We obtain (95) by making tend N → +∞.

We now give a simple corollary of Proposition 15.1 ensuring that the ex-
pected bound fω(t) .

√
1 + |t| is true.

Corollary 15.3. — With the same assumptions as those of Proposition 15.1,
with probability 1, for any ϑ > 0, there exists a constant C > 0 such that

∀t ∈ R
∣∣∣∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣ ≤ C(1 + |t|)ϑ.

Proof. — By choosing ϑ in the countable set Q+?, it is sufficient to deal with
one fixed exponent ϑ. We choose a number p strictly larger than 1

ϑ and we
write

E
[

sup
t∈R

∣∣∣ 1
(1 + |t|)ϑ

∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣p]
≤
∑
K∈N

E
[

sup
K≤|t|≤K+1

∣∣∣ 1
(1 + |t|)ϑ

∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣p]
≤
∑
K∈N

1
(1 +K)pϑE

[
sup

|t|≤K+1

∣∣∣∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣p].
We now combine (94) and the Gaussian version of the Kahane–Khintchine
inequalities (see [28, page 56, Cor 3.2] or [30, p 256, Cor V.27]) to get the
upper bound

Cp

(∑
n≥1
|an|2

) p
2 ∑
K∈N

(ln(K + 2))
p
2

(1 +K)pϑ < +∞.

26. The first equality can be proved by modifying the argument in [19, Appendix F].
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Then, the following inequality almost surely holds true

sup
t∈R

1
(1 + |t|)ϑ

∣∣∣ +∞∑
n=1

gn(ω) an
λαn
eiλnt

∣∣∣ < +∞. �

Proof of Proposition 15.1. — The proof is completely classical in the spirit of
[28, 32]. As it was already used, we note that the bound (93) easily implies
the convergence of

∑
gn(ω) anλαn e

iλnt in L1(Ω, C0([−K,K])) and thus the almost
sure uniform convergence on [−K,K]. By making K run over N?, we get the
almost sure uniform convergence on any compact subset of R.
Proof of (93). The Dudley theorem (see (38) and [28, page 346, Th 11.17] or
[32, page 10, Th 1.3]) allows us to get an upper bound with the entropy integral

E
[

sup
|t|≤K

∣∣∣∑
n≥1

gn(ω) an
λαn
eiλnt

∣∣∣](97)

= E
[

sup
|t|≤1

∣∣∣∑
n≥1

gn(ω) an
λαn
eiλnKt

∣∣∣]
≤ E

[∣∣∣∑
n≥1

gn(ω) an
λαn

∣∣∣]+ C

∫ +∞

0

√
ln(N(δ, ε))dε

≤ C
(∑
n≥1

|an|2

λ2α
n

) 1
2 + C

∫ +∞

0

√
ln(N(δ, ε))dε,

in which N(δ, ε) is the smallest number of open balls of radius ε recovering
[−1, 1] for the pseudo-distance

δ(s, t) = E
[∣∣∣∑
n≥1

gn(ω) an
λαn

(eiλnKs − eiλnKt)
∣∣∣2] 1

2

=

√√√√∑
n≥1

|an|2
λ2α
n

|eiλnKs − eiλnKt|2.

The asymptotic λn ' n immediately implies the following inequalities:

δ(s, t) ≤

√√√√∑
n≥1

|an|2
λ2α
n

min(λnK|s− t|, 2)2 ≤ C

√√√√∑
n≥1

|an|2
n2α min(nK|s− t|, 1)2

︸ ︷︷ ︸
:=δ′(s,t)

.

As a consequence, we have N(δ, ε) ≤ N(δ′, ε), and then∫ +∞

0

√
ln(N(δ, ε))dε ≤

∫ +∞

0

√
ln(N(δ′, ε))dε.(98)
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By applying [20, page 763, Corollary 7] with % = 1 and M = [−1, 1], we see
that the entropy integral of δ′ satisfies the following equivalence (with constants
independent of K and (an)):∫ +∞

0

√
ln(N(δ′, ε))dε '

∫ 1

0

Υ(2Kt)
t
√

ln(1/t)
dt

for Υ(t) =

√√√√∑
n≥1

|an|2
n2α min(nt, 1)2.

(99)

We now use the assumption (an) ∈ `2(N?) and the simple inequality
min(t, 1) ≤ tα to get

Υ(2Kt) ≤ 2α
(∑
n≥1
|an|2

)1/2
Kαtα(100)

∫ +∞

0

√
ln(N(δ′, ε))dε ≤ C

(∑
n≥1
|an|2

)1/2
Kα

∫ 1

0

1
t1−α

√
ln(1/t)

dt

≤ C
(∑
n≥1
|an|2

)1/2
Kα.

We then get the first general bound (93) thanks to (97) and (98).
Proof of (94). For K � 1, we have the trivial bound(∑

n≥1

|an|2

λ2α
n

) 1
2 ≤

√
ln(K)

(∑
n≥1
|an|2

) 1
2
.

Hence, by following the last proof (actually (97) and (99)), we merely have to
show the following bound for K � 1:∫ 1

0

Υ(2Kt)
t
√

ln(1/t)
dt ≤ C

√
ln(K)

(∑
n≥1
|an|2

) 1
2
.

We split the integral into two parts.
Integration on t ∈

[
0, 1

K

]
. We still use the bound (100) to get a term like

C
(∑
n≥1
|an|2

)1/2
Kα

∫ 1
K

0

1
t1−α

√
ln(1/t)

dt,

but for K ≥ 2, the previous term is directly bounded by

C
(∑
n≥1
|an|2

)1/2
Kα

∫ 1
K

0

1
t1−α

dt√
ln(2)

= C√
ln(2)α

(∑
n≥1
|an|2

)1/2
.
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Integration on t ∈
[ 1
K , 1

]
. This actually gives the principal contribution:∫ 1

1
K

Υ(2Kt)
t
√

ln(1/t)
dt ≤ ‖Υ‖∞

∫ 1

1
K

1
t
√

ln(1/t)
dt

≤ 2
(∑
n≥1

|an|2

n2α

)1/2√
ln(K)

≤ 2
(∑
n≥1
|an|2

)1/2√
ln(K).

The bound (94) is finally proved. �

In order to finish the proof of Proposition 7.1, it remains to show that the
bounds (92) hold with probability 1.
First part of the argument for (92). We fist explain that we can use Proposition
8.1 with the following objects:

ρj = 1√
2j
, Mj = [−2−j , 2−j ], Fωj (t) =

∑
λn≥2j

gn(ω) an√
λn
eiλnt.(101)

Note that the hypothesis (H-C) in Section 8 is fulfilled thanks to Proposi-
tion 15.1. Let us check the assumption i) of Proposition 8.1. We write

σj = sup
|t|≤2−j

√
E
[
|Fωj (t)|2

]
=

√√√√ ∑
λn≥2j

|an|2
λn

.

We claim that (
√

2jσj)j≥1 belongs to `2(N?):∑
j≥1

2jσ2
j =

∑
j≥1

∑
λn≥2j

2j |an|
2

λn
,

but since λn ' n (see the gap estimates (17)), there is j0 ∈ N such that∑
j≥j0

2jσ2
j ≤

∑
j≥j0

∑
n≥2j−j0

2j |an|
2

λn
=
∑
n≥1

|an|2

λn

∑
j0≤j≤j0+log2(n)

2j

≤ 21+j0
∑
n≥1

|an|2

λn
n '

∑
n≥1
|an|2 < +∞.

This fact immediately implies that the series∑
exp

(
−β2 ρ

2
j

2σ2
j

)
=
∑

exp
(
− β2

2j+1σ2
j

)
is convergent for any β > 0; in particular, we get the first assumption of
Proposition 8.1 (see Remark 8.2 with p = 2).
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For the assumption ii) of Proposition 8.1, we invoke (93) of Proposition 15.1
for K = 1

2j and α = 1
2 :

E
[

sup
t∈Mj

|Fωj (t)|
]
≤ C

( ∑
λn≥2j

|an|2

λn

) 1
2 + C√

2j
( ∑
λn≥2j

|an|2
) 1

2

≤ Cρj
(∑
n≥1
|an|2

) 1
2
.

Then the conclusion of Proposition 8.1 holds, and there is T > 0 (possibly
depending on the fixed sequence (an)) such that∑

j≥1
P
(

sup
|t|≤2−j

|Fωj (t)| ≥ T√
2j
)
< +∞.(102)

Second part of the argument for (92). We claim that there is a positive constant
M merely depending on the function Θ (see Section 9) such that, for any j ∈ N?,
we have

P
(

sup
k≥j
‖fω −Θ(−2−2k∆)fω‖L∞(−2−j ,2−j) >

MT√
2j
)

≤ 2P
(

sup
|t|≤2−j

|Fωj (t)| ≥ T√
2j
)
.

By looking at (101) and writing

fω −Θ(−2−2k∆)fω =
∑
λn≥2j

(1−Θ(22kλ2
n))gn(ω) an√

λn
eiλnt,

we see that the expected bound is actually a consequence of Proposition 3.3
for

B = L∞([−2−j , 2−j ],C), un(t) = an√
λn
eiλnt1[2j ,+∞)(λn),

E = [j,+∞) ∩ N, αk,n = 1−Θ(22kλ2
n),

M = 1 + ‖Θ‖L∞(0,+∞) + ‖Θ′‖L1(0,+∞),

in which this choice of M in (28) is motivated by (25). Thanks to (102), we
get ∑

j≥1
P
(

sup
k≥j
‖fω −Θ(−2−2k∆)fω‖L∞(−2−j ,2−j) ≥

MT√
2j
)
< +∞.

The Borel–Cantelli Lemma allows us to conclude that

sup
k≥j
‖fω −Θ(−2−2k∆)fω‖L∞(−2−j ,2−j)

is almost surely O(2−j/2). In other words, (92) is finally proved.
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16. Proof of Theorem 1.1, iii)⇒ i).

The zonal case on Sd. We first explain how to deal with the model of zonal eigen-
functions (ZSd

n )n≥1 on the sphere. Let us fix a function Θ ∈ C∞c ([0,+∞),R). All
the substantial arguments rely on the following property (see [4, Corollary 2.2])
for the semi-classical multipliers of the Laplace–Beltrami operator ∆ on Sd:

sup
0<h≤1

‖Θ(−h2∆)‖L∞(Sd)→L∞(Sd) < +∞.(103)

As a consequence of (103), the upper bound sup
h>0
‖Θ(−h2∆)fG,ω‖L∞(Sd) is al-

most surely finite. We now recall the spectral definition (following the notations
in (10)):

Θ(−h2∆)fG,ω =
∑
k∈N

(∫
M
fG,ω(x)φk(x)dx

)
Θ(h2µ2

k)φk.

We may choose a Hilbert basis (φk)k∈N of L2(Sd) that completes (ZSd
n )n≥1.

Then, the weak convergence assumed in the assertion iii) with ψ = ZSd
n , directly

shows the equality gn(ω)cn =
∫
M
fG,ω(x)ZSd

n (x)dx which, combined with (3),
implies the following finite sum

Θ(−h2∆)fG,ω =
+∞∑
n=1

gn(ω)cnΘ(h2n(n+ d− 1))ZSd
n .(104)

For instance, we may assume that Θ ≡ 1 on [0, 1] and that Θ vanishes on
[2,+∞). We now focus on the point of concentration P = (1, 0, . . . , 0) to get

sup
0<h≤1

∣∣∣ ∑
n∈N?

n(n+d−1)≤ 2
h2

gn(ω)cnΘ
(
h2n(n+ d− 1)

)
ZSd
n (P )

∣∣∣ < +∞.

Now we may use a result in the spirit of the Marcienkiewicz–Zygmund–Kahane
theorem (see [29, page 240, Th II.4]), but it is much simpler to use Lemma 8.4
(by considering a sequence, for instance hj = 2−j , which tends to 0+):

sup
j∈N

E
[∣∣∣ ∑

n∈N?
n(n+d−1)≤22j+1

gn(ω)cnΘ
(
2−2jn(n+ d− 1)

)
ZSd
n (P )

∣∣∣] < +∞,

or equivalently

sup
j∈N

∑
n∈N?

n(n+d−1)≤22j+1

|cn|2Θ
(
2−2jn(n+ d− 1)

)2|ZSd
n (P )|2 < +∞.
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Remembering the condition Θ ≡ 1 on [0, 1], we may restrict the previous sum
on the integers n satisfying n(n+d−1) ≤ 22j and hence Θ

(
2−2jn(n+d−1)

)
= 1.

By using the asymptotic ZSd
n (P ) '

√
nP

(
d
2−1, d2−1

)
n (1) ' n d−1

2 , we immediately
get the convergence of the series

∑
|cn|2nd−1.

The radial case on Rd. Since each Zd,Dir
n is smooth on the closed ball Bd(0, 1)

of Rd, we can try to use the same reasoning with the analogue of (104):

Θ(−h2∆Dir)fG,ω =
+∞∑
n=1

gn(ω)cnΘ(h2λ2
d,n)Zd,Dir

n ,

but we need the following analogue of (103):

sup
0<h≤1

‖Θ(−h2∆Dir)‖L∞(Bd(0,1))→L∞(Bd(0,1)) < +∞.(105)

The proof of (103), developed in [4], is of pseudo-differential nature and avoids
potential boundary problems. For boundary domains like the unit ball Bd(0, 1),
a proof via heat kernel seems to be easier. Actually, by combining [9, page 89,
Coro 3.2.8] and [8, Th 4.3], we see that the heat kernel operator of the Lapla-
cian operator −∆Dir with Dirichlet boundary conditions satisfies the following
estimates: for any ε > 0 and any complex number z ∈ C with positive real
part, we have

‖e−z∆Dir‖L∞(M)→L∞(M) ≤ Cε
( |z|

Re(z)

) d
2 +ε

.

Then (105) follows via a known argument involving an integral formula (see
the details in [21, lines (2.3) and (2.10)]).

17. Proof of Theorem 1.2, preliminaries about θ

Werecall thatwe have the freedom to choose any functionΘ ∈ C∞c ([0,+∞),R)
in Section 9 (under the condition Θ ≡ 1 near 0+). We claim that we can choose
a function Θ such that

θ(λ) := Θ(λ)−Θ(4λ)

fulfills the following properties:
• θ has support in [ 1

4 , 16] and is bounded by 1.
• θ ≥ 1

2 on [1, 4].
For the choice Θ given just below (see (106)), we get the plots shown in Fig-
ure 17.1.
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Plot of Θ Plot of θ

Figure 17.1.

We shall choose a function Θ with support in [0, 6], satisfying Θ(λ) = 1 for
λ ∈ [0, 2], which is decreasing on [2, 6] and which finally satisfies Θ(4) = 1

2 . For
instance, the following definition is convenient:

Θ(λ) = 1 for 0 ≤ λ ≤ 2,

Θ(λ) =

∫ 1

λ−4
2

exp
( −1

1− t2
)

dt∫ 1

−1
exp

( −1
1− t2

)
dt

for 2 < λ ≤ 6,

Θ(λ) = 0 for λ > 6.

(106)

Let us now explain the expected conditions on θ(λ) = Θ(λ)−Θ(4λ). It is clear
that θ has support in

[ 1
2 , 6
]
⊂ [ 1

4 , 16] and is bounded by 1. For the bound
θ ≥ 1

2 on [1, 4], we just write

λ ∈ [1, 2]⇒ θ(λ) = Θ(λ)−Θ(4)︸ ︷︷ ︸
≥Θ(2)−Θ(4)

+ Θ(4)−Θ(4λ)︸ ︷︷ ︸
≥0

≥ Θ(2)−Θ(4) = 1
2 ,

λ ∈ [2, 4]⇒ θ(λ) = Θ(λ) ≥ Θ(4) = 1
2 .

18. Proof of Theorem 1.2, i)⇒ ii)

We first check that the random series
∑
n≥1

fG,ωn is almost surely well defined

as an element of L2(M). Since the functions fG,ωn are orthogonal for different
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n, it is sufficient to check that the series
∑
n≥1
‖fG,ωn ‖2L2(M) is almost surely finite.

This is, indeed, a consequence of (12) and (15), which clearly give

E
[∑
n≥1
‖fG,ωn ‖2L2(M)

]
=
∑
n≥1
‖fn‖2L2(M) < +∞.

Let us now write fG,ω =
∑
n≥1

fG,ωn . As for the proof of Theorem 2.1, we shall

again use Proposition 8.1. Indeed, we choose the following parameters:

ρj = 1
2αj , Mj =M, Fωj (x) = θ

(−2−2j

K2 ∆
)
fG,ω.

Actually, if we succeed to check the assumptions of Proposition 8.1, then its
conclusion and the equivalence (61) will show that fG,ω almost surely belongs
to C0,α(M), namely the assertion ii) of Theorem 1.2.

In order to check that Fωj is a centered Gaussian process onM, we invoke
that θ is bounded with support in

[ 1
4 , 16

]
and use the following formula:

Fωj (x) =
∑
n≥1

‖fn‖L2(M)√
dim(E(Kn−K,Kn])

∑
µk∈(Kn−K,Kn]

2−jµk
K ∈[ 1

2 ,4]

θ
(2−2jµ2

k

K2

)
gn,k(ω)φk(x).

(107)

Since n actually runs over [2j−1, 2j+2] (the other terms are zero), the hypothesis
(H-C) is true.
Step 1. We have to check the assumption i) of Proposition 8.1 involving the
weak variance of Fωj . We have

E
[
|Fωj (x)|2

]
=
∑
n≥1

‖fn‖2L2(M)

dim(E(Kn−K,Kn])
∑

µk∈(Kn−K,Kn]
2−jµk
K ∈[ 1

2 ,4]

θ
(2−2jµ2

k

K2

)2
φk(x)2

≤
2j+2∑

n=2j−1

‖fn‖2L2(M)

dim(E(Kn−K,Kn])
∑

µk∈(Kn−K,Kn]

φk(x)2.

We now invoke a famous result about the spectral function on a boundaryless
compact Riemannian manifold due to Hörmander (see [16]), which was used by
Burq and Lebeau in [5, page 923]. For the exact form that we need, we refer to
[19, proof of Lemma 8.1] or [20, line (50)] and, hence, for a constant K0 large
enough, we have the following bound for any K ≥ K0:

sup
x∈M

E
[
|Fωj (x)|2

]
≤ C

2j+2∑
n=2j−1

‖fn‖2L2(M).
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For any j ∈ N?, the assumption (15) implies the following upper bound

sup
x∈M

E
[
|Fωj (x)|2

]
≤ C

j22αj .

The left-hand side equals σ2
j (see (49)). Since we have set ρj = 2−αj , we get

σj ≤ C√
j
ρj , which immediately implies the convergence of

∑
j≥1

exp
(
−β2 ρ2

j

2σ2
j

)
for any fixed constant β > 0.
Step 2. Let us now show that the assumption ii) of Proposition 8.1 is also true.
By using the identity (107) and the contraction principle (see the proof of [28,
page 98, Th 4.4]), we may get rid of θ as follows

E
[

sup
x∈M

|Fωj (x)|
]

≤ E
[

sup
x∈M

∣∣∣ 2j+2∑
n=2j−1

‖fn‖L2(M)√
dim(E(Kn−K,Kn])

∑
µk∈(Kn−K,Kn]

gn,k(ω)φk(x)
∣∣∣],

which means (see (12)):

E
[

sup
x∈M

|Fωj (x)|
]
≤ E

[
sup
x∈M

∣∣∣ 2j+2∑
n=2j−1

fG,ωn (x)
∣∣∣].

We now invoke [20, Theorem 3] to get the Gaussian analogue of the upper
bound in (13):

E
[

sup
x∈M

|Fωj (x)|
]
≤ C

2j+2∑
p=1

1
p
√

ln(p+ 1)

( 2j+2∑
n=max(p,2j−1)

‖fn‖2L2(M)

) 1
2

≤ C
√

ln(2j+2)×
( 2j+2∑
n=2j−1

‖fn‖2L2(M)

) 1
2
.

By using (15), we finally have checked the assumption ii) of Proposition 8.1:

E
[

sup
x∈M

|Fωj (x)|
]
≤ C

2αj .

Remark 18.1. — Instead of (15), let us assume the stronger assumption
2j+1−1∑
n=2j

‖fn‖2L2(M) = o
( 1
j2αj

)
.(108)

Then we claim that the partial sums of the Gaussian random series
∑
n≥1

fG,ωn

almost surely converge in C0,α(M). The proof needs a few modifications
of the previous argument. Actually, the last proof already shows that
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∑
n≥1

fG,ωn belongs to C0,α(M), and it remains to prove that the limit

lim
N→+∞

∥∥ +∞∑
n=N

fG,ωn

∥∥
C0,α(M) equals 0. It is known that it is sufficient to study the

subsequence of N = 2J as J → +∞ (see [30, page 132, Th III.5]). Thanks to
(88), we have to show that (108) implies the following limit with probability 1:

∥∥∥Θ
(−∆
K2

) +∞∑
n=2J

fG,ωn

∥∥∥
L∞(M)

+ sup
j≥1

2αj
∥∥∥θ(−2−2j∆

K2

) +∞∑
n=2J

fG,ωn

∥∥∥
L∞(M)

J→+∞−−−−−→ 0.

Note that the term involving Θ equals 0 for J � 1. Let us deal with the
term involving θ. The same support argument as above allows us to make the
following reduction

θ
(−2−2j∆

K2

) +∞∑
n=2J

fG,ωn = θ
(−2−2j∆

K2

) 2j+2∑
n=max(2J ,2j−1)

fG,ωn .

In particular, j is merely relevant for j ≥ J − 2. In order to get rid of θ,
we used the contraction principle in Step 2 above. But here we prefer to use
the uniform boundedness of the semi-classical multipliers θ

(−2−2j∆
K2

)
(see [4,

Corollary 2.2]). Hence, it is sufficient to prove (with probability 1):

sup
j≥J−2

2αj
∥∥∥ 2j+2∑
n=max(2J ,2j−1)

fG,ωn

∥∥∥
L∞(M)

J→+∞−−−−−→ 0.

By separating the cases j = J − 2 and j > J − 2, one checks that the previ-
ous limit would be a consequence of several uses of the following ones (with
probability 1):

2αj‖fG,ω2j ‖L∞(M)
j→+∞−−−−→ 0 and 2αj

∥∥∥ 2j+1∑
n=2j

fG,ωn

∥∥∥
L∞(M)

j→+∞−−−−→ 0.(109)

We can now repeat exactly the same computations as in Step 1 and Step 2
with the following Gaussian processes:

Fωj (x) := fG,ω2j (x) and F̃ωj (x) =
2j+1∑
n=2j

fG,ωn (x).
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For ρj = 2−αj , we similarly obtain that the analogue weak variances σj and σ̃j
are o

(
ρj√
j

)
and, hence, satisfy

∀β > 0
∑
j≥1

exp
(
−β2 ρ2

j

2σj2

)
+ exp

(
−β2 ρ2

j

2σ̃j2

)
< +∞,

but the computations of Step 2 and (108) now imply

E
[
2αj sup

x∈M

∣∣Fωj (x)
∣∣+ 2αj sup

x∈M

∣∣F̃ωj (x)
∣∣] j→+∞−−−−→ 0.

Finally, the conclusion (51) proves (109) (as explained in Remark 8.2).

19. Proof of Theorem 1.2, ii)⇒ iii)

This is not a surprising fact since it seems to be related to the contraction
principle already mentioned: for any sequence (un)n∈N in a Banach space B,
if the Gaussian random series

∑
n∈N

gn(ω)un almost surely converges in B, then

so does the Rademacher random series
∑
n∈N

εn(ω)un. For our purpose, a small

difficulty is the potential absence of convergence of the Gaussian random series∑
fG,ωn in C0,α(M). Let us explain how to overcome this issue thanks to the

characterization (62), whose main interest is to come back to finite random
sums.

We refer to the argument27 of [20, page 787, Step 1], which allows us to
show the following inequality for any N ∈ N? and any semi-norm28 S on the
vector space Span{φk, k ∈ N}:

√
2√
π

E
[
S
( N∑
n=1

fωn

)]
≤ E

[
S
( N∑
n=1

fG,ωn

)]
.(110)

We now fix an integer J ∈ N and we make the following choice for S:

S : f 7→ sup
0≤j≤J

∥∥∥Θ
(−2−2j

K2 ∆
)
f
∥∥∥
C0,α(M)

.

We note that fω =
∑
n≥1

fωn almost surely belongs to L2(M) (since ‖fωn ‖L2(M) =

‖fn‖L2(M), see (11)). Since we have constructed Θ to be in support in [0, 16]

27. The argument does not play any role in the Banach space C0,α(M). Actually, the
repeatedly used contraction principle can be written in a quite general framework (see [28,
page 98, Th 4.4]).

28. We note that S poses no issue of measurability because semi-norms are automatically
continuous on finite dimensional spaces and because (110) involves finite dimensions. More-
over, the proof of (110) needs that S is convex on any finite-dimensional vector subspace of
Span{φk, k ∈ N} and thus satisfies the Jensen inequality (instead of the Hölder inequality
used in [20, page 787, Step 1]).
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in Section 17, we deduce that the functions Θ
(−2−2j

K2 ∆
)
f , for j ∈ [0, J ], are

spectrally localized in [0,K2J+2] (with respect to
√
−∆) and do not involve

frequencies λ satisfying λ > K2J+2. Remembering that each fωn and fG,ωn is
spectrally localized in (Kn − K,Kn], we can choose N = 2J+2 in order to
transform the inequality (110) into the following one

√
2√
π

E
[

sup
0≤j≤J

∥∥∥Θ
(−2−2j

K2 ∆
)
fω
∥∥∥
C0,α(M)

]
≤ E

[
sup

0≤j≤J

∥∥∥Θ
(−2−2j

K2 ∆
)
fG,ω

∥∥∥
C0,α(M)

]
.

By making J tend to +∞, we get
√

2√
π

E
[

sup
j∈N

∥∥∥Θ
(−2−2j

K2 ∆
)
fω
∥∥∥
C0,α(M)

]
≤ E

[
sup
j∈N

∥∥∥Θ
(−2−2j

K2 ∆
)
fG,ω

∥∥∥
C0,α(M)

]
.

(111)

Let us show the finiteness of the upper bound. The assertion ii) of Theo-
rem 1.2 and the characterization (62) ensure that the sequence of functions
(Θ(− 2−2j

K2 ∆)fG,ω)j∈N is almost surely bounded in C0,α(M). We now reformu-
late this fact as the almost sure boundedness of a specific Gaussian process
(Uω(j, x, x′))N×E in which E is a dense countable subset of

{(x, x′) ∈M×M, x 6= x′}.

More precisely, due to the definition (14) of the Hölder condition, it is clear that
we may consider the following Gaussian process on the countable set N× E :

Uω(j, x, x′) := 1
δg(x, x′)α

(
Θ
(−2−2j

K2 ∆
)
fG,ω(x)−Θ

(−2−2j

K2 ∆
)
fG,ω(x′)

)
= 1
δg(x, x′)α

2j+2∑
n=1

‖fn‖L2(M)√
dim(E(Kn−K,Kn])

×
∑

Kn−K<µk≤Kn

gn,k(ω)Θ
(2−2jµ2

k

K2

)(
φk(x)− φk(x′)

)
.

As in the proof of Proposition 6.1, we again invoke the integrability properties
of Gaussian processes (see [27, page 134, Th 7.1]) to get

E
[

sup
N×E
|Uω(j, x, x′)|

]
< +∞.
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In other words, the right-hand side and so the left-hand side of (111) are finite.
We immediately infer that, with probability 1, we have

sup
j∈N

∥∥∥Θ
(−2−2j

K2 ∆
)
fω
∥∥∥
C0,α(M)

< +∞.

A last use of the characterization (62) shows that fω almost surely belongs to
C0,α(M). The implication ii) ⇒ iii) is completely proved.

Remark 19.1. — The formula (110) would easily show that if the partial sums
of the Gaussian random series

∑
n≥1

fG,ωn almost surely converge in C0,α(M), then

so do the partial sums of the random series
∑
n≥1

fωn .

20. Proof of Theorem 1.2, iii)⇒ i)

Let us write fω =
∑
n≥1

fωn , which belongs to C0,α(M) with probability 1, and

let us define29

Xj(ω) := 2αj
∥∥∥θ(−2−2j

K2 ∆
)
fω
∥∥∥
L∞(M)

.(112)

Thanks to Proposition 9.3 applied to λ 7→ θ
(
λ
K2

)
instead of θ, we know that

the sequence (Xj) is almost surely bounded. The goal of Step 1 will be to show
that the following bound almost surely holds:

sup
j∈N

E[|Xj |] < +∞.(113)

The goal of Step 2 will be to get (15) from (113).
Step 1. To get the bound (113), we will use Lemma 8.4, and it remains to check
(55). By exploiting that the support of θ is included in

[ 1
4 , 16

]
(see Section 17),

we may develop the following finite sum:

2αjθ
(−2−2j

K2 ∆
)
fω(x)

= 2αj
2j+2∑

n=2j−1

‖fn‖L2(M) ×
∑

µk∈(Kn−K,Kn]

θ
(2−2jµ2

k

K2

)
Un,k(ω)φk(x).

(114)

Let us explain why (55) is a simple consequence of the generalization of the
standard Kahane–Khintchine inequalities by Marcus and Pisier (see [32, line
(2.1) of page 81 and line (2.14) of page 91]). Let us focus on the definition
(11) of fωn . If one denotes by En : Ω → ODn(R) a random matrix with Dn =

29. As for (H-C) in Section 8, there is no issue in the measurability of Xj since x ∈M 7→
Fωj (x) ∈ C is continuous, and thus Xj may be reduced to a bound on a dense countable
subset ofM.
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dim(E(Kn−K,Kn]), whose distribution is the normalized Haar measure on the
orthogonal group ODn(R), we recall that the distribution of the first column
of En is exactly the uniform distribution of the unit sphere SDn−1 ⊂ RDn .
Hence, we may assume that the first column of En is exactly the random vector
Un = (Un,k) with µk ∈ (Kn−K,Kn] as in (11). The inequalities (55) will be
a direct consequence of the result of Marcus and Pisier once we will provide a
matrix Mn ∈MDn(L∞(M)) such that

tr(En(ω)Mn(x)) =
∑

µk∈(Kn−K,Kn]

θ
(2−2jµ2

k

K2

)
Un,k(ω)φk(x).(115)

It suffices to consider the matrix Mn(x) whose first row is exactly(
θ
( 2−2jµ2

k

K2

)
φk(x)

)
µk∈(Kn−K,Kn], and other coefficients are 0, so that the co-

efficients of En(ω)Mn(x) are given by

En(ω)Mn(x) =
(
θ
(2−2jµ2

k′

K2

)
Un,k(ω)φk′(x)

)
(k,k′)

.(116)

Step 2. It is time to exploit the condition θ ≥ 1
2 on [1, 4] (see Section 17), which

actually implies, for any integer n ∈ [1 + 2j , 2j+1] and any µk ∈ (Kn−K,Kn],
the inequality

θ
(2−2jµ2

k

K2

)
≥ 1

2 .

We now define the following matrix Tn ∈MDn(R) as follows:

n /∈ [1 + 2j , 2j+1] ⇒ Tn = 0,

n ∈ [1 + 2j , 2j+1] ⇒ Tn is diagonal with the Dn eigenvalues 1
θ
( 2−2jµ2

k

K2

) .
Due to the formula (116), for each integer n ∈ [1 + 2j , 2j+1], we have the
equality

tr(TnEn(ω)Mn(x)) =
∑

µk∈(Kn−K,Kn]

Un,k(ω)φk(x).

Note, moreover, that the norm operator of Tn in RDn (with its canonical Eu-
clidean structure) is bounded by 2. The formula (115) and the multidimen-
sional version of the contraction principle30 proved by Marcus and Pisier (see

30. In the book [32], the notation of the norm operator of Tn is written ‖Tn‖∞ (see page
78) and is used in the contraction principle.
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[32, page 82, Proposition 2.1, line (2.4)]) gives the inequalities

E
[

sup
x∈M

∣∣∣ 2j+1∑
n=1+2j

‖fn‖L2(M)
∑

µk∈(Kn−K,Kn]

Un,k(ω)φk(x)
∣∣∣]

= E
[

sup
x∈M

∣∣∣ 2j+2∑
n=2j−1

‖fn‖L2(M) tr
(
TnEn(ω)Mn(x)

)∣∣∣]

≤ 2E
[

sup
x∈M

∣∣∣ 2j+2∑
n=2j−1

‖fn‖L2(M) tr
(
En(ω)Mn(x)

)∣∣∣]

≤ 2E
[

sup
x∈M

∣∣∣ 2j+2∑
n=2j−1

‖fn‖L2(M)
∑

µk∈(Kn−K,Kn]

θ
(2−2jµ2

k

K2

)
Un,k(ω)φk(x)

∣∣∣].
Then (114) allows us to reformulate the last upper bound in order to get

E
[

sup
x∈M

∣∣∣ 2j+1∑
n=1+2j

‖fn‖L2(M)
∑

µk∈(Kn−K,Kn]

Un,k(ω)φk(x)
∣∣∣]

≤ 2E
[∥∥∥θ(−2−2j

K2 ∆
)
fω
∥∥∥
L∞(M)

]
.

Looking at (11), (112), and (113), we get

sup
j∈N

2αjE
[

sup
x∈M

∣∣∣ 2j+1∑
n=1+2j

fωn (x)
∣∣∣] < +∞.

Point i) of Theorem 1.2 is easily proved thanks to the lower bound in (13).

Remark 20.1. — Let us replace the assumption iii) with the stronger one: the

partial sums of the random series
+∞∑
n=1

fωn almost surely converge in C0,α(M).

We then claim that for j → +∞, we have
2j+1∑

n=1+2j
‖fn‖2L2(M) = o

( 1
j2αj

)
.(117)

To get such an asymptotic, we note that
∥∥∥ 2J+2∑
n=2J−1

fωn

∥∥∥
C0,α(M)

J→+∞−−−−−→ 0 with

probability 1. Thanks to (88), we infer the following almost sure limit:

2αJ
∥∥∥θ(−2−2J∆

K2

) 2J+2∑
n=2J−1

fωn

∥∥∥
L∞(M)

J→+∞−−−−−→ 0.
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We then can repeat the strategy of Step 1 (based on Lemma 8.4) and Step 2 to
get (117). Let us mention that we can replace in Step 1 the use of Lemma 8.4

with the following fact: the partial sums of the random series
+∞∑
n=1

fωn converge

in L1(Ω, C0,α(M)). Such a convergence can be seen via the formula (115) and
by invoking a result31 of Marcus and Pisier.

Appendix A. The deterministic case d = 3 via a result of Hardy and Littlewood

We recall that the sequence of Jacobi polynomials P ( 1
2 ,

1
2 )

n is, up to a mul-
tiplicative constant, Chebyshev polynomials of the second kind. Any x ∈ S3

can be written as x = (cos(θ), ?, ?, ?), where θ ∈ [0, π] stands for the geodesic
distance in S3 between x and the pole P = (1, 0, 0, 0). Then, one may express
the zonal eigenfunctions ZS3

n as follows:

ZS3

n (x) = c′3,nP
( 1

2 ,
1
2 )

n (cos(θ)) = κ
sin((n+ 1)θ)

sin(θ) ,

for a suitable universal constant κ > 0 ensuring
∫
S3
|ZS3

n (x)|2dx = 1. Note that

the pole P corresponds to θ = 0, and thus ZS3

n (P ) = κ(n+ 1).
In the proof of [15, page 256], Hardy and Littlewood constructed a real

sequence (an)n≥1 satisfying the following statements:
a) The asymptotic an = O

( ln(n)
n

)
holds.

b) The series
∑
an is convergent.

c) The limit lim
θ→0

∑
n≥1

an
sin(nθ)
nθ does not exist.

For n ≥ 1, we set cn = an+1
n+1 and, hence, we get the conditions a), b) and c)

written in the Introduction for the zonal function
∑
n≥1

cnZ
S3

n .

Appendix B. Hölder regularity of random trigonometric series on the torus

We just merely give a few complements of [24, page 89]. At the light of
Proposition 9.3, it is easy to see that for any α ∈ (0, 1) and any bounded
sequence (εn), the function

∑
j∈N

εj
2jα e

i2jx belongs to C0,α(T). However, we shall

see that the Gaussian random function x 7→
∑
j∈N

gj(ω)
2jα ei2

jx belongs to C0,α′(T),

for any α′ ∈ (0, α) but does not belong to C0,α(T). We, indeed, immediately
see that i) of Proposition B.1 below is false.

31. See the book [32], Theorem 2.14, page 92, and the definition of εi at page 75.
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For any sequence of coefficients (cn)n∈N and any j ∈ N, we use the following
notation:

sj =
( 2j+1−1∑

n=2j
|cn|2

)1/2
.(118)

We refer to Remark B.2 for explanations about the condition ii) below.

Proposition B.1. — For any α ∈ (0, 1) and any (cn)n∈N ∈ `2(N), the Gauss-
ian random function fG,ω : x 7→

∑
n∈N

gn(ω)cneinx defines an element of C0,α(T)

if and only if the following two assertions are fulfilled:

i) There exists β > 0 such that
∑
j∈N

exp
(
− β2

(2αjsj)2

)
< +∞.

ii) The numbers 2αjE
[

sup
x∈[−π,π]

∣∣∣ 2j+1−1∑
n=2j

gn(ω)cneinx
∣∣∣] are uniformly bounded

with respect to j ∈ N.

Remark B.2. — The expectations in Point ii) may appear to be abstract
(since the most general reformulation is given by the Dudley entropy integral).
Here, however, is a more concrete sufficient condition coming from a result of
Salem and Zygmund (see [32, pages 122–123]):

2αjE
[

sup
x∈[−π,π]

∣∣∣ 2j+1−1∑
n=2j

gn(ω)cneinx
∣∣∣](119)

= 2αjE
[

sup
x∈[−π,π]

∣∣∣ 2j∑
n=1

gn(ω)cn+2j−1e
inx
∣∣∣]

. 2αj
2j∑
p=1

1
p
√

ln(p+ 1)

( 2j+1−1∑
n=p+2j−1

|cn|2
)1/2

.

Moreover, if (|cn|) is non-increasing then a result of Marcus shows that (119)
is an equivalence (see [31] and [32, page 129, line (1.27) ]).

Proof of Proposition B.1. — Thanks to the Littlewood–Paley result given by
Proposition 9.3, we have to study whether or not the following condition holds
true with probability 1:

sup
j≥1

2jα‖θ(−2−2j∆)fG,ω‖L∞(T) <∞.(120)
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As in Section 17, we may assume that θ has support in
[ 1

4 , 16
]
, is bounded by

1 and satisfies θ ≥ 1
2 on [1, 4]. Hence, (120) becomes

sup
j≥1

2jα sup
|x|≤π

∣∣∣ 2j+2−1∑
n=2j−1+1

gn(ω)cnθ(2−2jn2)einx
∣∣∣ <∞.

Proof of the sufficiency of i) and ii). The strategy is totally similar to that used
in Section 18, consisting in using Proposition 8.1 with

ρj = 2−αj , M = [−π, π], Fωj (x) =
2j+2−1∑

n=2j−1+1

gn(ω)cnθ(2−2jn2)einx.(121)

If ii) holds true, then the contraction principle shows the hypothesis ii) of
Proposition 8.1 as follows:

E
[

sup
|x|≤π

|Fωj (x)|
]
≤ E

[
sup
|x|≤π

∣∣∣ 2j+2−1∑
n=2j−1

gn(ω)cneinx
∣∣∣]

≤
∑

a∈{−1,0,1}

E
[

sup
|x|≤π

∣∣∣ 2j+a+1−1∑
n=2j+a

gn(ω)cneinx
∣∣∣] = O

(
2−αj

)
.

Let us now assume i). By looking at (118), for any j ∈ N?, we see that the
weak variance (49) of Fωj satisfies σ2

j ≤ s2
j−1 + s2

j + s2
j+1 and, hence,

∀γ > 0 exp
(
−3γ
σ2
j

)
≤ exp

(
− γ

s2
j−1

)
+ exp

(
− γ

s2
j

)
+ exp

(
− γ

s2
j+1

)
.

We then get

∑
j∈N?

exp
(
−(
√

6β2α)2 ρ
2
j

2σ2
j

)
=
∑
j∈N?

exp
(
− β2

(2α(j−1))2 ×
3
σ2
j

)
≤

∑
a∈{−1,0,1}

∑
j∈N?

exp
(
− β2

(2α(j−1))2 ×
1

s2
j+a

)
.

We obtain the assumption i) of Proposition 8.1 by bounding j − 1 ≤ j + a:

∑
j∈N?

exp
(
−(
√

6β2α)2 ρ
2
j

2σ2
j

)
≤

∑
a∈{−1,0,1}

∑
j∈N?

exp
( −β2

(2α(j+a)sj+a)2

)
≤ 3

∑
j∈N

exp
( −β2

(2αjsj)2

)
< +∞.
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Proof of the necessity of i) and ii). We shall use the reverse result given by
Proposition 8.3. We assume that (2αjFωj )j∈N is almost surely bounded on
[−π, π]. But the same parameters as in (121) do not seem to be relevant
because the Gaussian processes (2αjFωj )j∈N? may not be independent. Let us
fix r ∈ {1, 2, 3}; we note that the Gaussian processes (2α(3j+3)Fω3j+r)j∈N are
independent. Hence, we can apply Proposition 8.3 with ρj = 2−α(3j+r) (instead
of 2−αj) and whose conclusion involves the weak variance of Fω3j+r and the
expectation E

[
sup
|x|≤π

|Fω3j+r(x)|
]
. For the weak variance, we may invoke the

inequality θ ≥ 1
2 on [1, 4] to get

σ2
j := sup

|x|≤π
E[|Fω3j+r(x)|2] =

−1+2(3j+r)+2∑
n=1+2(3j+r)−1

|cn|2|θ(2−2(3j+r)n2)|2

≥ 1
4

2(3j+r)+1−1∑
n=23j+r

|cn|2 = 1
4s

2
3j+r.

Hence, the conclusion of Proposition 8.3 ensures that the series∑
j∈N

exp
(
− β2

r

2(2α(3j+r)s3j+r)2

)
converges for a suitable constant βr > 0. This con-

vergence is true for any r ∈ {1, 2, 3}, and thus we get Point i) of Proposition
B.1 with β = 1√

2 max(β1, β2, β3).
To get Point ii), we shall use a last time the contraction principle (with the

condition θ ≥ 1
2 on [1, 4]) in the same spirit as in Step 2 in Section 20. We

define

n ∈ [23j+r, 2(3j+r)+1 − 1] ⇒ tn := 1
θ(2−2(3j+r)n2)

,

n /∈ [23j+r, 2(3j+r)+1 − 1] ⇒ tn := 0.

We note that tn is bounded by 2. Then we may come back to Fω3j+r given in
(121):

sup
j∈N

(
2α(3j+r)E

[
sup
|x|≤π

∣∣∣ 2(3j+r)+1−1∑
n=23j+r

gn(ω)cneinx
∣∣∣])

= sup
j∈N

(
2α(3j+r)E

[
sup
|x|≤π

∣∣∣ −1+2(3j+r)+2∑
n=1+2(3j+r)−1

gn(ω)tnθ(2−2(3j+r)n2)cneinx
∣∣∣])

≤ 2 sup
j∈N

(
2α(3j+r)E

[
sup
|x|≤π

|Fω3j+r(x)|
])

< +∞,

where the last bound comes from the conclusion of Proposition 8.3. As above,
this is true for any r ∈ {1, 2, 3}, and we obtain Point ii). �
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