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BRANCHING CAPACITY OF A RANDOM WALK RANGE

BY BRUNO SCHAPIRA

ABSTRACT. — We consider the branching capacity of the range of a simple random
walk on Z®, with d > 5 and show that it falls within the same universality class as the
volume and the capacity of the range of simple random walks and branching random
walks. To be more precise we prove a law of large numbers in dimension d > 6, with
a logarithmic correction in dimension 6 and identify the correct order of growth in
dimension 5. The main original part is the law of large numbers in dimension 6, for
which one needs a precise asymptotic of the non-intersection probability of an infinite
invariant critical tree-indexed walk with a two-sided simple random walk. The result is
analogous to the estimate proved by Lawler for the non-intersection probability of an
infinite random walk with a two-sided walk in dimension 4. While the general strategy
of Lawler’s proof still applies in this new setting, many steps require new ingredients.
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572 B. SCHAPIRA

RESUME (Capacité branchante de la trace d’une marche aléatoire). — Nous considé-
rons la capacité branchante de la trace d’une marche aléatoire simple dans Z¢, avec
d > 5. Nous montrons que cette fonctionnelle est dans la méme classe d’universalité
que le volume et la capacité de la trace d’une marche aléatoire simple ou d’une marche
branchante. Plus précisément nous montrons une loi des grands nombres en dimen-
sion d > 6, avec une correction logarithmique en dimension 6, and nous identifions
Pordre de grandeur de cette fonctionnelle en dimension 5. La partie la plus originale
de notre travail concerne la dimension 6, pour laquelle nous avons besoin de montrer
une asymptotique précise de la probabilité de non-intersection d’une marche aléatoire
indexée par un arbre critique invariant infini avec une marche aléatoire simple bi-
directionnelle. C’est I’analogue d’un résultat célebre de Lawler sur la probabilité de
non-intersection d’une marche aléatoire simple avec une marche bi-directionnelle en
dimension 4. L’idée générale de la preuve est la méme dans les deux cas, mais de
nombreuses étapes nécessitent de nouveaux ingrédients dans ce nouveau cadre.

1. Introduction

We start by recalling some important definitions and we then state our
main results. The branching capacity is defined here in terms of an offspring
distribution g on N, which is fixed in the whole paper and assumed to be
critical, in the sense that >, iu(i) = 1. We further assume that it has a finite
and positive variance o2. We write the size biased distribution of u as pgp,
which we recall is defined by pen(i) = iu(i), for all ¢ > 0.

We then consider 7 an infinite planar tree, introduced independently in [19]
and [4], which generalizes the one-sided version of Le Gall and Lin [16], and
which is defined as follows (here the offspring of every vertex are ordered from
left to right, and the root is at the bottom of the tree):

e The root produces i offspring with probability u(i — 1) for every i > 1.
The first offspring of the root is special, while the others, if they exist,
are normal.

e Special vertices produce offspring independently according to pg},, while
normal vertices produce offspring independently according to .

e One of the offspring of a special vertex is chosen at random to be a
special vertex, while the rest are normal ones.

Since p-trees are almost surely finite, because p is critical, and since special
vertices are guaranteed to have at least one offspring by definition of g, 7 has
a unique infinite path emanating from the root that we call spine; it contains
the root together with all the special vertices. We assign label 0 to the root.
We assign positive labels to the vertices to the right of the spine according to
depth first search from the root and we assign negative labels to the vertices
to the left of the spine and the spine vertices, as well according to depth first
search from infinity; see Figure 1.1. We call the vertices with negative labels
(including the spine vertices) the past of T and denote them 7_, while the
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 573

FIGURE 1.1. An infinite tree 7, with the spine in blue

vertices with non-negative labels are in the future of 7, and we denote them
T:. Note that the root does not have any offspring in the past of T.

Given z € Z%, we denote by (S%),e7 the random walk indexed by T, starting
from z, whose jump distribution is the uniform measure on the neighbors of
the origin, and denote its range in the past by

T®={S% ue T}

The equilibrium measure e4 of a finite set A C Z¢, with d > 5, has been
introduced by Zhu [18], and is defined by,

ealz) =P(T*NA=0).

Then the branching capacity of a finite set A is defined similarly to the usual
Newtonian capacity, namely

BCap(4) = Y _ ea().
r€A

Consider now (X,,),>0 an independent simple random walk on Z? (i.e., a
random walk whose law of increments is the uniform measure on the neighbors
of the origin), and define its range at time n as

Ry = {Xo,..., Xn).

Our main object of study in this paper is the branching capacity of the range
BCap(R,,), in dimension d > 5, and our goal is to show that it satisfies the
same universal asymptotic behavior as the volume [9] and the capacity [1, 2,
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574 B. SCHAPIRA

8, 10] of the range, with only a shift of the critical dimension of, respectively,
two and four units, which is here the dimension 6. Interestingly, the same
universal results have also been proved recently for the volume [15, 16] and the
capacity [4, 5] of a critical branching random walk, and of course it would be
of interest to see if they can also be extended to the branching capacity of a
branching random walk, but we leave this for a future work.

Our first result is a strong law of large numbers. The proof is entirely
similar to that for the usual Newtonian capacity, which dates back to Jain and
Orey [10], and is reproduced at the end of this paper for reader’s convenience
(to be more precise, the fact that the limiting constant is positive requires a
specific argument).

THEOREM 1.1. — Assume d > 7. There exists a constant cq > 0, such that
almost surely,

(1) lim BCap(Rn) = ¢q.
n—oo n

It is very likely that a central limit theorem, with the usual renormalization
in y/n, could be proved in dimension d > 8, following the same lines as in [1].
In dimension 7 it is expected that a logarithmic correction should appear in
the normalization, but this might be a much more challenging problem, as the
corresponding results in the simpler cases of the volume and the capacity of the
range of a random walk are already quite involved; see [11, 17], respectively.

The main contribution of this paper is the law of large numbers in dimension
6, which requires some more original work. We only present here a detailed
proof of the weak law (with a convergence in probability), but a strong law
(with an almost sure convergence) could be proved as well without much ad-
ditional work; see Remark 3.6 for more details. The main step is to obtain
the asymptotic of the expected branching capacity of the range. The general
strategy for this is the same as for the capacity of the range, in which case the
corresponding result follows from the estimates proved by Lawler [12] for the
non-intersection probability between one walk and another independent two-
sided walk in dimension 4; see [1, 8]. However, one serious issue that arises
when working with the tree-indexed walk is the lack of Markov property, which
in particular has the damaging consequence that there is no simple last exit
formula as one has for a simple random walk. This leads to some non-trivial
complications, which can fortunately be overtaken.

THEOREM 1.2. — Assume d = 6, and that p has a finite third moment. Then
one has the convergence in probability and in L?,
logn 273

lim - BCap(R,)

nsoo M T 2702
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 575

Of course, a natural question now would be to prove a central limit theorem,
as was done in [14, 2], respectively, for the volume and the capacity of the range.
We leave this for future work, as it would require some really new ingredients;
in particular one major issue would be to identify a simple expression for the
term

X(A, B) = BCap(A U B) — BCap(A) — BCap(B),

where A and B are arbitrary finite subsets of Z¢ and improve the bounds that
we have on the variance of BCap(R,,).

To conclude we provide bounds identifying the correct order of growth of
the expected branching capacity of the range in dimension 5. The upper bound
is easily obtained by using monotonicity of the branching capacity and known
bounds on the branching capacity of balls. The lower bound is more difficult,
and we rely here on a recent result of [3] showing a variational characterization
of the branching capacity. We also mention that an invariance principle is in
progress [6, 7].

PROPOSITION 1.3. — For d = 5, there exist positive constants c; and c;', such
that for alln > 1,

¢ -Vn <E[BCap(R,)] < cf - v/n.

REMARK 1.4. — We note that the proofs of all our results would extend imme-
diately to any symmetric finite range jump distribution both for the tree-indexed
walk and the walk (X,)n>0. It is even likely that one would only need a mo-
ment assumption, e.g., as in [6]. Concerning the random walk (X,)n>0, the
hypothesis of symmetric jump distribution could be relaxed to a centered jump
distribution.

The paper is organized as follows. In Section 2, we prove some preliminary
results that could be of general interest. In particular, we prove an analogous
version in the setting of branching random walks of a key equation discovered
by Lawler, relating some non-intersection events and a sum of Green’s function
along the positions of a random walk; see Lemma 2.7 and Corollary 2.8. We
also prove there some quantitative bounds on the speed of convergence toward
the branching capacity of a set A, of the (conveniently normalized) probability
to hit A for a tree-indexed walk, as the starting point goes to infinity; see
Proposition 2.6. Then Section 3 focuses on the case of dimension 6, and we
prove there Theorem 1.2, while short proofs of Theorem 1.1 and Proposition 1.3
are given in Section 4.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



576 B. SCHAPIRA

2. Preliminaries

2.1. Some additional notation. — We let ||z|| denote the Euclidean norm of
x € Z*%. For m > 0, we denote by B(0,m) the closed Euclidean ball of radius
m centered at the origin (intersected with Z9), and for a set A C Z?, we let
OA be the inner boundary of A consisting of points of A having at least one
neighbor outside A. We denote by |A| the size of a finite set A C Z%, and we
define the diameter of a finite set A as diam(A4) = 1+ max{||z —y|| : z,y € A}.

We use here the convention that a geometric random variable X with pa-
rameter p € (0,1) takes values in N and is such that for any k£ > 0, P(X =
k)=p(l—pF.

We denote by (X)x>0 the simple random walk indexed by the vertices of the
spine, equipped with its intrinsic labeling (i.e., the vertex on the spine at graph
distance k from the root has intrinsic label k). The law of a simple random
walk starting from x is denoted by P, while the corresponding expectation is
denoted by E,, and we abbreviate them in P and E, respectively, when the
walk starts from the origin. For n < m, we write the range of a random walk
(Xk)ken between times n and m as Rn,m| = {X,,..., Xm}.

The root of the tree T is denoted by 0.

Given two positive functions f and g, we write f < g, or sometimes also
f = 0(g), if there exists a constant C' > 0, such that f(z) < Cg(z) for all z,
and likewise write f 2 g, if ¢ < f. We write f = o(g) if f(x)/g(x) goes to 0 as
x goes to infinity, and f ~ g, when |f — g| = o(g).

2.2. Hitting probabilities. — We recall here some results from [18] on hitting
probabilities for a walk indexed by 7_, or by a critical random tree. We de-
note by 7. a p-Bienaymé-Galton-Watson tree, and by 77 the range of a walk
indexed by 7. starting from z.

PROPOSITION 2.1 ([18]). — Assume d > 5. There exists positive constants c
and C, such that for any finite set A containing the origin, and any x, with
ol = 2+ diam(A),

@) o e SETTNAZ0) <0 SR,
3) c-wgﬂp(ﬁﬂA#@)SC-W.

In fact, only the upper bounds will be used, but we also mention the lower
bounds for completeness.

2.3. An exact last passage formula. — Our tree-indexed random walks are not
Markovian, but nevertheless they satisfy a certain last passage formula, which
takes the following form.
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LEMMA 2.2 (Last passage formula). — For any x € Z%, d > 5, and any finite
set A CZ%, one has

IP(({J:}UT_I)OA;A@) - ZE[1{7?0A=@}-L+(y,x) ,

yeA
where
Li(y,x)= Y 1{SY=ua}.
ueT4
Proof. — The proof is an immediate application of the shift invariance of the

tree T, first identified by Le Gall and Lin for the one-sided version 73 of the
tree [15, 16], and generalized in [4, 19] to the full tree 7. More precisely,denote
by 7 the last time in the past when the walk visits A (which is almost surely
finite when d > 5 and A is finite, if the walk ever hits A), and for n € Z, denote
with a slight abuse of notation by S} the position of the walk S* at the vertex
with label n. Then by shift invariance,

P({z}uT2)nA£0) = ZZP — —n, 5%, =)

n=0yeA

= Z Z P(SZ,, =y, Sy, € A¢, for all m < —n)
n=0ycA

=3 Y P(SY=2,T'NA=0)
n=0yeA

:Z]E[l{ﬂﬂA:@}-£+(y7x)] O
yeA

2.4. Green’s functions. — Recall that the random walk Green’s function is

defined by
gle,y) = B[ > 1Xa = y}] = 90,y — ),
n>0

with (X,,)n>0 a simple random walk. We also let g(z) = ¢(0, z), and recall that
for d > 3, as ||z|| = oo (see [13]),

aq
(4) 9(2) ~ =
2|42
where
d_d _
aq = §F(§ — 1)7'(' d/2.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



578 B. SCHAPIRA

‘We now define

G(z) = > gl - 2)g().

€72

We shall need a few facts about this function. First, for any x,z € Z¢ (see,
e.g., [3]),

(5) P(z € T*) S G(z — ).

The next result gives the leading order term in the asymptotic behavior of G
at infinity.

LEMMA 2.3. — Assume d > 5. Then as ||z|| — oo,
Cd
G(z) ~ =
[lz[]4=*

. 2 —
with cq = ﬁ ST d/2.7(4 - 1).
Proof. — One has using (4) and rotational invariance, G(z) ~ cq-||2|*~¢, with

1 1
2
Cd:a’d'/ o _ dy7
e [y —ul4=2 lyll4=2

for any uw with |lu|]| = 1. Note that by integrating over the unit sphere S(0, 1),

we find
2
aj / 1 / 1
Cq = . — fdu dy
IS0, D) Jra [lyll*—2 ( son ly —ull?=2

Using next that z — ||y||*>~% is harmonic on R? \ {0}, we find that

_ {|y||2-d if lyl > 1

#/ o
IS0, )] Jsq,1y lly — ull42

and a change of variables in polar coordinates then yields

1 if |yl <1,

2m4/2 ! o 27?2 d—2

2 3—d 2

—g2. =5 d dr) = a2 )

= Tap) </ rar [ ) " T o)
which after simplifying gives the desired result. O

Finally, one should need the following gradient bound.

LEMMA 2.4. — Assume d > 5. One has for any z,h € Z2, with ||| < ||2]|/2,

G(z+h)=G(z) - (1 + O(M)).

121l
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Proof. — The result for the function g is already known; see, e.g., [13, Theorem
4.3.1], even for all h satisfying ||h|| < 2||z||. Injecting this in the definition of
G, we get for ||h] < ||z]|/2,

G(z+h) = Z g(z+h+u)g(u) = Z g(z —v)g(h+v)
u€zZd vEZD

= Y g+ ol

101> 3/2) 1Al o]

+ Z g(z —v)g(h+v)
[l <3/2) IRl

:Guy(1+od&%)+ > glz—v)g(h+v)

121l
loll<(3/2)lIAl

—0()- > glz—v)gv)
loll<(3/2) IRl
=6 (1+ o) + ognge - g(2))

121l

h

:G@y(1+oq|p). O
z

2.5. Variational characterization of the branching capacity. — We state here

a result from [3] that we shall use only in dimension 5 for proving the lower

bound in Proposition 1.3. It shows that the branching capacity is of the same

order as the inverse of an energy.

THEOREM 2.5 ([3]). — Assume d > 5. There exist positive constants ¢ and C,
such that for any nonempty finite set A C 7.2,

c
——  <inf g - : babilit A
BCap(4) = in {w,yEA G(z — y)v(z)v(y) : v probability measure on }
C
< —.
~ BCap(A)

In particular, the inverse of the middle term in the above display could
provide an alternative definition of the branching capacity, which would be
more intrinsic, in that it would not depend on a particular choice of critical
probability measure p. However, it is not clear if with this definition, the law
of large numbers would still hold in dimension 6; at least the proof given here
would break completely.

2.6. Quantitative bounds on hitting probability. — Our goal here is to prove
some quantitative bounds, given a finite set A C Z%, on the speed of conver-
gence toward BCap(A) of the probability that an infinite tree-indexed random

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



580 B. SCHAPIRA

walk starting from z hits A, as ||z|| — oo, when conveniently normalized. We
only state the result in dimension 6 for convenience, as we shall only need it in
this case, but analogous bounds could be proved in any dimension d > 5, with
the same arguments.

PROPOSITION 2.6. — Assume that p has a finite third moment. There exists
C > 0, such that for any finite set A C Z°, containing the origin, and any z,
satisfying ||z|| > 8 - diam(A),

P(TENA#D) o
‘G(w) -5 ~BCap(A)‘

diam(A)2/3 diam(A)*/*
<C- (BCap(A) . W | ‘W)

We mention that since a first version of this paper appeared on arxiv, a
result of the same flavor has been derived in [6] using another proof, as well as
similar bounds for critical tree-indexed walks.

Proof. — By Lemma 2.2 one has with the notation thereof,

P(TENA%D) = ZE[l{ﬂmAzw}-g+(y,x)].

yeA

If the two terms in the expectation above were independent, we would be done,
because one can observe that (see, e.g., [3]),

(6) E[L+ (3, )] = 5 Gle ) + Olg(e ~ v)),

and thus the result would follow directly from Lemma 2.4. The problem is, of
course, that they are not independent, and thus our goal will be to decorrelate
them as much as possible.

To this end, fix some y € A, as well as a tree indexed walk starting from y,
and define

¢ =inf{k>0: X € 0B(0,7)},

with 2diam(A4) < r < ||z||/2, to be fixed later, and where we recall that X
refers to the walk indexed by the spine of the tree 7. For 0 < a < b < oo, we
let F¥[a,b] and F?[a,b] denote the forests of trees, respectively, in the future
and the past of 7Y hanging off the spine at vertices with intrinsic label between
a and b. Then let

L (y,z) = Z 1{SY =z}, and L3 (y,2)= Z 1{SY = «}.

uG}—i [0,7¢] ue]:i [TY+1,00)
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One has for any y € A,
(M E[{TYNA=0}-Li(y.2)] =E[H{TYNA =0} L] (y,2)]
+E{1{7? NA=0}- Li(y,:c)].
We upper bound the first term using Lemma 2.4 as follows
E[{TYNA=0} £1(y.2)] <E[Lh(y.2)] S g(@) - Bl S gla) - 12,

using for the last inequality the well-known fact that for a simple random walk,
the expected time needed to reach B(0,r) is of order at most r2. The second
term on the right-hand side of (7), which is the dominant part, will be evaluated
using the independence of the forests before and after time 7Y, conditionally

on the position of X at this time. More precisely, we first note that
(8) E[m? NA=0}- ﬁi(y,m)}
—E[1{FY[0,7/]N A =0} L3 (y,2)]
—E[1{F[0,7Y] N A=0,F[r! +1,00) N A # 0} - £2(y,)|.

Considering the first term on the right-hand side, using (6) and Lemma 2.4,
we already get

E[L{F2(0,72)n A =0} - £2(y,)]

0.2

= ZG(@)- (1+ 0

L)) P(FY[0,7Y] N A = 0).

]
Moreover, by (2) one has (recall that the dimension is equal to 6 here),

BCap(4) _ diam(4)?

~ 2

r2 r

P(FY[rY,00)NA#0) S

In particular, by choosing r large enough, one can always ensure that the
probability on the left-hand side is smaller than 1/2. As a consequence,

(9) ]P(fg[O’T?]ﬂA:@):eA(y)-(1+0(M))_

r2

Altogether this gives

E[L{F2(0,79)n A =0} - £2(y,)]

o? r iam(A)?
= TG@) ealy)- {1+ O<W + w)}.

r
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582 B. SCHAPIRA

Now it remains to consider the second term in (8). By (9), one has

E[1{f§ 0,79 N A =0, FY[r¥,00) N A £ O} - ci(y,x)}

0 Sealy)- sup E[1{Tj NA#0)- .c+(z,x)].
z€0B(0,r)

We let rp = 2diam(A), and first upper bound the time spent at z after the
spine hits 0B(0,rg) if it ever happens. Using some independence and (6), we
get that for any z € 0B(0,r),

. > 9(2)
(11) E[1{r, < oo} £4(Xpz ,0)] 5 oy G,
with the notation g(s) = s=, for s > 0. It amounts next to upper bound the
time spent at x in the future before the spine hits 9B(0, r¢) under the event that
the past hits A. Denote by £.(u,x) the time spent at z by a walk indexed by
a u-Bienaymé—Galton—Watson tree with the root conditioned to have only one
child and starting from u. Let also £c(u, A) = >° 4 {c(u,y) be the time spent

in A by this walk. Consider now (ﬂgi) (u,x))iez and (ég)(u,A))iez sequences
of independent copies of these random variables. Finally, let (d—,d;) be two
random variables with joint distribution P(d_ = i,dy = j) = p(i +j + 1),
representing the number of offspring, respectively, in the past and the future
of a vertex on the spine, and set

d_ dy

() =Y 40w, A), and £F(u,2) = 00 (u, @),

i=1 i=1
‘We upper bound,
(12) Ly(z,x) <1{r} <oo}- L£i(X Z 0 (X, ),

0<n<7—z

where with a slight abuse of notation we assume that for different indices n
and k, £} (X, ) and £F (X, r) are independent. Similarly, and using the same
convention, a union bound gives

(13)  MTPNA#£0}<1{r], <oo}+ Y  1{l;(Xm A) >0}

1§7n<7’ﬁ0

Since p has a finite third moment, one has E[d_d;] < oo, and using further

that u has mean 1, we can see that E[{.(v,z)] < g(x — v), for any v € Z5.

Together with (3) and a union bound, we deduce “that for any n,m <7,

BCap(A)
[[ X [[*

7'07

E[1{£; (X, 4) > 0} £ (X, 0) | K] S gla— Xn) -
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 583

On the other hand, applying the Markov property and standard estimates for
hitting probabilities for the simple random walk, entail

B[1n < 7, < oo} () | Koo, K] S oo Ko L0,

Using now (11), (12) and (13), together with the last two displays, and denoting
by £(u) the time spent at u by the walk X, we get
E[1{Tj NA#D} Loy(z 1)

SE[( Y U6 (R ) > 0p 41, <oo}) - > £ (Kasw)]

1§m<7’f,0 0§n<‘rf,0

llwll lvll>ro

[lul|>ro

On the other hand, the Markov property gives that
E-[t(u)f(v)] < g(u—v) - (9(z —u) + g(z —v)).

and elementary computation then show that for any z € 9B(0,r),

E[{T2NA£0} L. (50)] € (G(””) ! ) -BCap(4) + :—ﬁ . G(x)

r2 ol
. G(x) 1
2
S diam(4)”- ( r2 * o - ||$||5)’

using that BCap(A) < diam(A)? for the last inequality. Injecting this in (10),
summing over y € A, and gathering all the estimates obtained so far yields

PTZNAZD) _ o 4 dam(A)”
e R R G i)
+0(lal- i)

Then taking 7 = (||z||-diam(A)2)/3, concludes the proof of the proposition. [

2.7. Lawler’s identity and first consequences. — We give here an analogous
version for the branching capacity of a wonderful identity discovered by Lawler
in the setting of Newtonian capacity; see, e.g., [12], and which was also used
successfully by Bai and Wan when they studied the capacity of a branching
random walk in the recent work [4].
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584 B. SCHAPIRA

For n > 1, let &, and ¢ be two independent geometric random variables
with parameter 1/n. Let (Xj)gez be a two-sided simple random walk starting
from the origin at time 0. Then for a < b € Z, define Rla,b] = {Xq,..., Xp},
and let

en :=1{0 ¢ R[1,£]}.

Now consider an infinite invariant tree 7 independent of the walk X, and let
A,, be the event

A, = {T—O HR[_ iufﬂ = @}

Write also, with the notation of Lemma 2.2,

3
Ln= Y L£:0X).

==&,
LEMMA 2.7. — Assume d > 5. Then for anyn > 1,
E[]-An enﬁn] =1.
Proof. — For m > 0, and a nearest neighbor path (x1,...,2,,), define the
event
B(m,xy,...,x,) ={& +&" = m, Xp_er = X_a +ax, for 1 <k <mj.

Let also for 0 < j < m,

B(m,j,z1,...,2m) = B(m,x1,...,2y) N {g'fL =5,§, =m -Jjk
Note that all these events have the same probability, and thus for any 0 <
Jsm,
P(B(m,z1,...,Tm))

m+1

]P’(B(m,j,xl, e ,mm)) =
Thus one can write, with zg = 0,

E[lAn cen - En}

= P(B(m,z1, ..., Tm)) ~—
- ¥ (B( S ))ZE[lAn'en'En

B(m7jax17"'7xm)j|

m=0 (zh“ ajm) =0
c- P(B(m7$17~~~axm)) - .
:Z Z m+ 1 Zl{xk#xj, forallk>]}
m=0 (3517“ zm) =0

x E[1{Tff N{0,21,...,2m} =0} (Z@(zj,xe))}
=0
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 585

S P(B ) S
:Z Z ( (m,xul , T ))Zzl{$k7§$j, for all k > j}-
m=0 (z1,...,Tm) m+ =0 j=0

X E[l{?’f-” N{0, 21,y zm} =0} - Ly (25, 20)

M

Z ]P’(B(m,xl,...,xm)) =1,

m=0 (xlyw-vﬂm,)

using Lemma 2.2 for the penultimate equality. O

We now provide some first consequences of this lemma. Define for n €
NU {oo},
& _ & -
(14) Up= > > di-g(X;,Xs), and Z,= > > di-1{X; =X},

==l >0 j=—g, >0

with d; the number of offspring in the future of the i-th vertex on the spine,
and where we recall (X;);>¢ is the walk indexed by the spine of 7. Let also

by =30- a 1{X; =0}.

COROLLARY 2.8. — Assume d > 5. Then for alln > 1,
E[La, - en (Un+a—22)] = 1.

Moreover, if d > 7, then

E[lAw ~eoo~(Uoo+€oo—Zoo)} —1.

Proof. — The idea for the first identity is to start from the equation given by
Lemma 2.7, and then condition with respect to the sigma-field

G, = 0((d¢)¢207 (Xi)izo0, (Xj)—gggjgg;)

The main observation is that conditionally on G,, the random variables L,
and 14, - e, are independent. Moreover, for each i, if we denote by 7; the tree
hanging off the spine in the future at its i-th vertex, to which we remove the
root, and then for any y € Z4,

IE[ 3 1{S. =y} Qn] =d; - (9(Xi,y) — H{X; = y}),
ueT;

since for a random walk indexed by a critical tree, starting from z, and condi-
tioned by the fact that the root of the tree has exactly one offspring, the mean

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



586 B. SCHAPIRA

number of visits to a site y is equal to g(z,y) — 1{x = y}, if we do not count
the starting point. Therefore, summing over i > 0, we get

(15) E[Ly|Gn] =ta+Y . > di-(9(Xi, X;) — 1{X; = X;}),

i=0 —¢, <j<g,

which already proves the first claim of the corollary.

For the second claim note that by definition almost surely the sequence
14, - ey, converges toward 14_ - €s, while (Up, + £y, — Zy, ) >0 converges toward
Uso oo —Zso. Moreover, for eachn > 1,0onehas 0 < 14 -eoo (Up+€n—2Zp) <
Uso + loo, and if d > 7, by (4) and Lemma 2.3,

Ellos +Us] S 9(0)+ Y glu—v)g(u)g(v) = g(0) + Y G(u)g(u) < oo.

Thus, the second claim follows from the first one and the dominated conver-
gence theorem. O

3. Proof of Theorem 1.2

We assume in the whole section that d = 6, and that p has a finite third
moment.

3.1. Concentration of the variable U,,. — We just state here our main esti-
mates concerning the mean and variance of the variable U,,. The proof is
postponed to Section 3.6, as it is a bit long and technical.

PRrROPOSITION 3.1. — One has as n — oo,
2702
E[Un] ~ Py logn, and Var(U,) = O(logn).
v

3.2. Rough bounds on the probability of the event .A,,. — We prove here some
rough upper bound on the probability of the event A,,, as well as on the event

B, ={T°NR[0,&]=0}.
LEMMA 3.2. — One has

P(An) S

~ logn

L and P@B) <

%
og]
: .

Proof. — Recall the definitions of U,, and Z, given in

—~~

14) and let

&0 ={I(Un - 2,) ~ EI(U, - Z,)]| 2 3V}
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 587

Note that in any dimension d > 5, and using that p has a finite third moment,

= > Y Eldindy] -P(Xi, =, X, = y) - P(X;, =2, X, = y)
z,y€ZL i1,i22>0
J1,J2€Z

(16) < Y g@)Pely—2)® <1,

z,y€Zd

and hence by Proposition 3.1 and Chebyshev’s inequality,

1
<
PEW) S o

Then using in addition Corollary 2.8, we get

(17) E[]'A'n, ’ en] g ]P)(gn) + E[]-An T€n ot 155]
o 1 +E[1An.en.(Un—Zn)]< 1
~ logn E[U,] ~ logn

We now want to remove e,, from the expectation on the left-hand side. Denote
by o the last visiting time of the origin by the walk (Xj)r>0. Let

A = {T0N (R[-€ =, 0] UR[o,0 +€7]) = 0}

Since the law of the walk X after time o is the law of a walk conditioned on
not returning to the origin after time 0, one has

P(A,) SPAY) +P(o+ & > &) SE[1a . -eym] +Po+E& 5 > &)

(17)
<

~

logn S logn’

where the last bound follows from basic estimates. Indeed, on the one hand,
P(oc > /n) < ZPXk—O Zk_3<*
k>\/n k>v/n
and on the other hand, by standard properties of geometric random variables,

P& > & — V) SP(E > n/*) + P(g), < 2n®/%) Snmt/A

Thus, so far we have proved the first inequality of the corollary. The second
one follows by Cauchy—Schwarz inequality. Indeed, using also the independence
between R|[0,£"] and R[—£,0], one deduces that

P(Bn)z < ]E[P(Bn | 7_1))2] = ]P)(An) U
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588 B. SCHAPIRA

3.3. Probability estimates of some non-intersection events. — Our main goal in
this section is to prove estimates on some non-intersection events, which are
simple consequences of Lemma 3.2. Denote by &, a geometric random variable
with parameter 1/n, independent of everything else, and for £ > 0, we denote
by z. the hitting point of 9B(0, 1/¢) by the walk X indexed by the spine of T,
starting from the origin. We start with the following estimate.

LEMMA 3.3. — For every € € (0,1), there exists a constant C(g) > 0, such
that for allm > 2,

C(e)

Togn

P(T2* AR, &) = 0) <

7

Proof. — Define for € € (0,1),
7. =inf{k > 0: X, € 0B(0,1/¢)},

where we recall that X is the random walk indexed by the spine of 79. In
particular, . = X~ , by definition. Now we let D, be the event that the path

X up to time 7. avoids R[0,&,] and that none of the vertices on the spine up
to time 7, has any normal offspring. Note that there exists a constant ¢(e) > 0,
such that for any « € 9B(0,1/¢) and any path ~ starting from the origin, for
which

P(X~ =z, R[0,&] =7, TP NR[0,&,] = 0) >0,

Te

one also has
P(De, )’Z’;E =7, R[O, gn] =7) > C(E) : ]P’()};s =, R[O’ gn] = '7)’
since in particular in this case, = cannot be disconnected from the origin within
B(0,1/¢) by the path . Then one has
> P(Tjs N R[ngn] = @7D5)
= > D PTTAR[0&] =0, X5 =2, R[0,&] =7,D:)

z€dB(0,1/e) "
>c(e) Y. Y P(TPNR0,&] =0, X- =2,R[0,£] =7)
z€0B(0,1/e) ¥
= c(e) - P(TZ* NR[0, 6] = 1),
using for the last equality the fact that after time 7. the tree-indexed walk is

independent of what it has done before this time. Then we conclude the proof
using Lemma 3.2. O
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 589

We now prove a second estimate. Recall the definitions of 7. given in the
proof of the previous lemma. Then denote by F°[0,7.] the forest consisting
of all the subtrees in the past of 7° hanging of the spine from vertices with
intrinsic label between 0 and 7.

LEMMA 3.4. — There exists a constant C > 0, such that for every ¢ € (0, 1),

limsup P(FY[0,7.] N R[0,&,] = 0) < ¢

i = Viog(1/2)

Proof. — Let & be a geometric random variable with parameter ¢, independent
of everything else. Note that for any n > 73,

P(¢ > &) <P(E. > e ) +P(6, <e7?) Se,
and, thus, one can always replace &, by & in the statement of the proposition.
Moreover, for any « € 9B(0,1/¢),
P(T* NR0,&] £ 0) < E[|T* N R0,

<Y Gl —u)-PlucR0,&]) Se.

~

YA

Therefore, for n large enough,
P(F2[0,7] NR[0,&x] = 0) SP(T2NR[0,&] = 0) +¢,

and then the result follows from Lemma 3.2. O

3.4. Asymptotic of the mean. — Here, we compute the leading order term in
the asymptotic of the expectation of the branching capacity of the range.

PROPOSITION 3.5. — One has
273 1
E[la, en] ~ ooy - )
[ An "€ ] 2702 logn
and
273 n
E[BCap(R,)| ~ —= - —.
[BCap(Ra)] 2702 logn

Proof. — Let us start with the first claim of the proposition. By Lemma 3.2
and (16), using also Cauchy—Schwarz inequality, one has

1
E[la, -en - Zy) <E[la, -e,]/? - E[Z2]Y/2 < o

Therefore, Corollary 2.8 gives

1
(18) ElAn-en-Un]:Ho(m).
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590 B. SCHAPIRA

Then letting U,, = U,, — E[U,,], and using Proposition 3.1, we get

1 E[la, -€n- Un} 1
E|ll4, -en| = - - @) ,
] = g s ogny?)
and it now amounts to bounding the second term on the right-hand side. For
€ >0, let

Y. = 1{|U, — E[U,]| > ¢ - E[U,]}.
One has
E[1l4, -en- |ﬁn|] <e-E[U,]-E[lu, -ex] +E[14, Yo |UnH7

and, again, it suffices to bound the second term on the right-hand side. By
Cauchy—Schwarz inequality and Proposition 3.1, we have

E[la, Yz |Un|] SE[ly, - Y]/ /logn.

Now define
&n _ -1 -
UF =3 "di - g(X;,X0), and U, = Y Y dig(X;, X))
7=0i>0 j=—£ 020
Let also
Y = U —EU;] > E[U;]}, and
Yo =1{|U, —E[U,]| ><-E[U,]}.
One has

E[la, - Yoo] <E[la, - Y]+ E[1a, - Y],

and it suffices to bound the term E[14, - Y.'], since the other term can be
handled by a similar argument. We further decompose it into two terms as

follows. Recall the definition of 7. from the proof of Lemma 3.3 and let

£, e £ o
U: =33 dig(X;, X)), and U;=Y Y di-g(X;, X).
§=014=0 J=04=7 11

Now set &/ = exp(—e~%) and define

/

1@1:1{\U5’_E[Ug] > S EU]), and

—

NN M

v2 =1{|0; - B[]

> -E[Un*]}.

One has
Ella, - Y <E[la, - Y1+ E[1y, - Y7).
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Moreover, letting y. = X~ | using independence, we can write

Tel /4
BlLa, Y] < B[V} 1{T% N R[-€,,0] = 0}]

- Y Y EMUE —al PR, =)
2€0B(0,1/¢") ycdB(0,4/¢")
-P(TY N R[~&,.0] = 0)

S Y Y EUE, - RE, -y
x€0B(0,1/e") ycdB(0,4/¢")
P(TY NR[-¢,,00 = 0)
=E[Y]]-P(T** N R[-¢,,0] = 0),

also using Harnack’s inequality at the third line; see, e.g., [13, Lemma 6.3.7].
Now the same argument as the one used for proving Proposition 3.1, see Re-
mark 3.8, shows that E[Y!] < .Additionally using Lemma 3.3, then yields

i< CEM
" E Y e2(logn)d/?
Similarly one has, with the notation from Lemma 3.4, and using this result,
B[1a, - V2] < B[V 1{F°[0, 7] N R[-¢., 0] = 0}
SEYZ] P(F2[0,7a | NR[-E,,0] = 0)
1 1 €
log(1/¢') €*logn logn’

~ g2Togn logn

E[14

<

Since this holds for all £ € (0,1), combining all the previous estimates proves
that
1 1
Ej1 *Cn| = 3
[ An € ] E[U,] +0(logn)

concluding the proof of the first part of the proposition, thanks again to Propo-
sition 3.1.
For the second part, we first use that

E[BCap(R ZIP’ (T°NR[~k,n— k] = 0,0 ¢ R[1,n — k]).
k=0
Then the lower bound follows from the first part, by writing

E[BCap(R,)] > n - P(T2NR[-n,n] = 0,0 ¢ R[1,n])
).

using for the last inequality that for a geometric random variable £ with param-
eter p, one has P(¢ < n) < p(n +1). For the upper bound we write similarly,

>n- E[]‘An(logn)Q : en(logn)ﬂ - 0(

logn
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592 B. SCHAPIRA

with n’ = n/(logn)?,
E[BCap(R,)] < 2n' + (n—2n') - P(T2 N R[-n',n'] = 0,0 ¢ R[1,n'])
).

using this time that for a geometric random variable £ with parameter p, one
has P(§ > n') < (1 —p)™. This concludes the proof of the proposition. O

< o' + (’I’L — Qn’) .]E[]_An/(logn)4 . en/(logn)4] — 0( logn

3.5. Conclusion. — We may now conclude the proof of the weak law of large
numbers in dimension 6.

Proof of Theorem 1.2. — To conclude the proof it suffices to show that
(19) Var(BCap(R,)) = o(E[BCap(R,)]?).

For this, one can follow verbatim the proof of Chang [8], which we briefly recall
for reader’s convenience. Note first that by Proposition 2.6, one has for any z
with ||z|| > 8n,

o2 P(TZ2NR,#0|Rn
2 BCap(R,) = =L G(;)é R Lok,
As a consequence,
o2 P(TZNR, #0
(20) 5 -E[BCap(R,)] = (g(z)#) + (9(%),

and with 77 an independent copy of T7Z,

ot P(TZNR, 40,72 NR, #0)
= E[BCap(R.)’] = EBE

where we use BCap(R,) < n + 1 to show that the error term is well O(1).
Next, we define
n =inf{k: X, € T?}, and 7 =inf{k: X, € T*}.
One has by symmetry,
(22) P(TZ* N Ry # 0, T2 N R, #0) < 2P(r, <75 < n).
Then by using the Markov property for the walk X, we get

(23) P(n<m<n)=E [1{71 <n} Px_ (TZAR0,n—7]#0 | 71)} .

(21)

+0O(1),

Letting k(n) = (02/2) - E[BCap(R,)], also using Lemma 2.4 and (20), one has
Px, (TPNRI0,n—7]#0|7) =G(z) k(n—7)+ O(?)

Injecting this in (23) and using (2) gives

(24)  P(ri <1 <n)=G(2) E[1{n <n}-k(n—7)]+ O(G(2)?).
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The final step is to show that conditionally on the event {r; < n}, the random
variable 71 /n converges in law to a uniform random variable in [0, 1], as n —
oo (uniformly in z with |z|| > n3). For this, one can write using (20) and
Proposition 3.5, that for any s € (0,1),
P(T?NRus #0)  k(ns) + O(1)
P(r < <n)= = =s5-(1 1)).
(nsns|n<n) =302 =0 ~ wmrom o)
Using this and (24), as well as (20) and Proposition 3.5, yields
P(r <1 <n)=G(2) - E[1{r < n}-k(n—1)] + O(G(2)?)
=G(2)* - k(n)? - (1 +0(1)) + O(G(2)),

and plugging this into (22) and (21) concludes the proof of (19) and, thus, the
proof of Theorem 1.2 as well. O

REMARK 3.6 (Sketch of proof of the strong law of large numbers). — We now
briefly explain how one can strengthen the weak law into a strong law of large
numbers. The main point is to obtain a quantitative bound on the second-
order term in the asymptotic expansion of the expected branching capacity of
the range. More precisely, one needs a bound of the form

273 n n
= : +0
2702 logn ((logn)1+5)’
for some 6 > 0. Indeed, once this is obtained, then a careful look at the previous
proof above reveals that this would yield a better bound on the variance, namely,
Var(BCap(R,)) ( 1 )
E[BCap(R,)]?  ‘(logn)®’
In turn, once such a bound is known, one can follow exactly the same proof as
in [2] to deduce almost sure convergence. Roughly, using a dyadic decomposi-
tion scheme, one can express the branching capacity of the range as a sum of
independent and (almost) identically distributed terms, plus a sum of so-called
crossed terms, whose mean is controlled. Hence, one has for any L > 1 a
decomposition of the form

(25) E[BCap(R,)]

2l 1 L 9t-2
BCap(R,) = Z BCap(R("H)) + Z Z V(REI REITLEY
=0 =1 j=0

where x (A, B) is defined in the Introduction, and RGY = Rljze, (5 4+ 1)5¢].
Here, as we take L of order loglogn, the main contribution comes from the
first sum, the second sum is shown to have a small mean, thanks to (25). As
a consequence, one can deduce almost sure convergence of 10% - BCap(R,)
along a subsequence of the form a, = exp(n'~%), for some & € (0,1), just
using Chebyshev’s inequality and the Borel-Cantelli lemma. Finally using that
Gpt1/an converges to 1 and monotonicity of the branching capacity, one can
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easily extend this convergence along a subsequence into an almost sure conver-
gence for the initial sequence.

Thus, the whole proof boils down to proving (25), for some § > 0. For this,
one can follow roughly the same strategy as in the proof of Proposition 3.5, but
with a different truncation of the variable U,". In fact, reproducing the same
first steps, one can see that the main problem is to prove a bound of the form

(26) B[La, - ¥,1] = O Ly

logn)?®
where Y, = 1{|U} — E[U]]| > (logn)%}. To this end, fiz some L > 0 and
define

£, L &n oo
VE=3"3"dig(X;, X)), and WE=3" 3" dig(X;, X)),
j=0i=0 Jj=0i=71r

where
= inf{k > 0: X;, € 9B(0,2")}.

Write also Y,} = 1{|[V.L —E[V,L]| > %(logn)%} and Y2 = 1{{WL —E[WE]| >
1(log n)10}, so that

E[l4, Y] <E[1a, -Y,] +E[14, V7]
Now a similar proof as the one of Proposition 3.1 can show that
Var(VE) <L, and Var(Wr) <logn,

and thus E[Y;'] < L/(logn)10, while E[Y,2] < (logn)~4/5. Therefore, a similar
argument as in the original proof can show that if L = /logn, then

E[1a, V7] <EQ{F0.7 o] NRI-E,. 0] = 0} - Y] < (logm) ™5,
and on the other hand, one can simply write
E[La, - ¥,] < P(A)"?-E[¥}]" < (logn) "5,
which give (26) as wanted. Actually, the last step is to show that one also has

2702

E[U,] = 53 -logn + O(4/logn),

but this is a more routine (yet slightly tedious) computation. For this, one
can follow the same argument as the one given in the next section, and use a
finer asymptotic of the function G, itself following from finer asymptotic of the
function g, which is well known; see, e.g., [13, Theorem 4.3.1].
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BRANCHING CAPACITY OF A RANDOM WALK RANGE 595

3.6. Proof of Proposition 3.1. — We start by a preliminary result. Let
(27) Gn= Y, GX;).

—€L<i<&;,
LEMMA 3.7. — One has

27
E[G,] ~ 3 -logn, and Var(G,) <logn.

Proof. — Let A= (1—1/n). One has by (4) and Lemma 2.3,
E[Gn] = G(0) +2) N -E[G(X))]
j=1

~2) ElG(X)~2 Y Glu)g(u) ~ 2csa6m / ~dr
i=1 lul<vm v
= cgagmlogn = 2773 logn,

and we now deal with the variance. For this, unfortunately it does not seem
possible to use an explicit computation as was done in dimension 4 by Lawler;
see the proof of [12, Proposition 3.4.1], since the function G is no longer har-
monic when d = 6. However, the heuristic argument given there still holds, and
we shall use it here. More precisely, the idea is that parts of the trajectories
of X between times 2° and 2°T! are almost independent for different i’s. In
order to formalize it, we introduce some more notation. First notice that by
symmetry it suffices to bound the variance of G, = Zi’;o G(Xy), where &, is
a geometric random variable with parameter 1/n, independent of the walk X.
Then for £ > 0, define B, = B(0,2¢71), and

Ty = inf{k >0: Xy € 8Bg}
Let also
v = > G(Xy), and Yi= > G(Xp),

TeNERn Sk<Te41NEn Te<k<Tei1

so that in particular,

Gi = f: v,
£=0

Recall that for a simple random walk, starting from 0By, the probability to hit
B(0,r), for some 7 < 2¢, is of order g(2¢)/g(r), where we use the convention
g(r) = r?=4. Tt follows that

(28) sup sup E,[Y?] < sup Z G(u)G(u+v)g(29)* < 1.
(20208 20 juf ol <2¢
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Thus, for any ¢ > 0, by the Markov property,

B < P62 70) - sup B,[Yi] S P&, > 7o)
2€OBy

and likewise

(29) E[(Y,)?] <P(&n > 7) - sup BulYP] SP(En > 7).
r€IBy
Moreover,
(30)
Var(G;h) ZVar Y(") +2 Z ( Y(”) Y] ,E[YZ(”)] ]E[YTSLH)D
>0 0<t<m

The first sum above is handled using (29), which shows that it is bounded by

SRV Y P&, > ) < logn.

£>0 £>0

It amounts now to bounding the second sum in (30). Define for y € B,, and
x € 0B,,,

Hp(y, 2) = Py(Xs,, = ).

It is known, see, e.g., [13, Proposition 6.4.4], that uniformly in y € By, with
f<m-—1,

(31) Hpn(y,x) = Hpn(0,2)(1+ O(2°™)).
Now define

1 1
L= 3 logy(n) — 2logy(logn), and M = 3 log,(n) — log,(logn),

where log,(a) = l?féz)’ for a > 0. Write for ¢,m > 0,

AP =EY" YW - ElY "] -E[y,)].

We first bound for ¢ < L and m > M, using the memoryless property of
geometric random variables,

B v < Y Y E[Y X, = )] Hulyo) - ElY)
y€33e+1 r€OBy
<EY™]- Y Huy(0,2)(1+ 02 M) B, [y,
x€OB
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and for m > M,

E[szzn)] = Z P(fn > TMDXTI\/I = l‘) : EI[Yn(@n)}

r€I0BM
r€EOBM rEOB

> Z Hy(0,2) - E [V, V] = P(&, < mar) - sup Pulé, < 7).
x€OB\ v€9Bum

Note also that

Elra] _ 22M 1
n < P(¢ >k) < < < ]
R

Altogether, this gives

L
35 ) Shen
m>N
Moreover,
Y EY v Y P zm) - sup Pu(€n > 7) S (loglogn)?,
L<t<m L<t<m ©€0Be 41

and it just remains to consider the case when ¢ < m < M. Note that the case
m = £+ 1 can be handled using a similar bound like (29). Furthermore, if
£+ 2 < m, then by (31),

E[Y," Y] <E[Y; - YV,
SN B 1{X,,, =y} Hily, o) E[Y]

y€EOBy11 ©€EIBy,
< (1+0(27™)) - E[Y] - E[Y,].

Conversely, one can use that by Cauchy—Schwarz inequality,

(28)
E[Y,") 2 E[Yi] - E[Y7]"/? - P(6n < 7e01)"/? 2 E[Yi] - C - B(6n < 7e41)"/%,

for some constant C' > 0, and that for £ < M,
E[reyq] _ 22M 1

P, < < < ,
(E —TZ+1)— n ~y (1ogn)2

which altogether also give

(n)
Z A&m < logn.
0<t<m<N

This concludes the proof of the upper bound for the variance. O
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We now move to proving concentration for U,,. The proof is based on a
similar idea.

Proof of Proposition 3.1. — First recall, see, e.g., [3], that for each i > 1, and
k >0, one has P(d; = k) = >_,5;,, #(j), and hence

2

Bld] = 30— 0wt = 3 2R = 5

k>1 i>k i>1

while E[dg] = 1. Thus, recalling (14) and the definition of G,, from (27), we
get

2 2
(32) E[U, | X.6,61] = 5 G+ (1= 590,
with
3
In = Z 9(Xj).
J=—€k

Therefore, the result for the expectation of U, follows from Lemma 3.7 together
with the fact that E[g,] < 2G(0). We shall now use that

(33)  Var(Uy) = E[Var(Us | X,€,€)] + Var(E[U, | X,¢,€1]).
Lemma 3.7 and (32) yield

Var (E[U,, | X,¢,.€]) S Var(Gy) + Elg2] S logn + E[g?].

Furthermore,
Elg2] < 41'*3[(29(?@))2]
Jj>0
<8 Y Elg(X,)g(Xp)] =8 Y g(u)’g(u+v)gv) S1,
0<5<k u,vEZ4

and, thus, it only remains to consider the first term on the right-hand side
of (33). Here, we will use again that p has a finite third moment, which
implies that d; has a finite second moment for all ¢ > 0.

For ¢ > 0, define

T = inf{k >0: Xk S 834},
and for x € Z5,

F‘Fve+1*1
Yo(z) = > dj-g(x, X;).

J=Te¢
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Note that by using (31), one has for any m > £ + 2, uniformly over z,y € Z,
E[Ye(x) - Vin(y)] < (1+02™)) - E[Ye(2)] - E[Yon(y)]-
Moreover, repeating the argument used for (28) yields for m > 0,

EVaW] S > 9w.wg@™) < pm(y),

UE B 41
with
pm(y) = 9(1)2*" - Ly & B} + G(2™) - 1{y € By }.
As a consequence, letting
22
he(y) = =3
(1 +1lyl)?
we get that for any ¢ > 0,

> 2T EYn ()] S he(y).

m>0+1

1y ¢ B} +27* - 1{y € By},

It follows that uniformly over z,y € Z5,

> (BlFu@) - V()] - EVi(@)] - ElVn(y)])

>0 m>0+2
< ST pe(@)  he(y) <3 hel@) - hely).
£20 >0

On the other hand, a similar computation as above yields

E[Y(z) (Ye)+ Y1 )] S Y. glaw)gly. u+v)g(2°)?

u,vE€EBy 1
S pe(@) - pe(y) < he(z) - he(y).

Altogether this gives

>3 (BFe(@) - V)] — EVe(@)] - ETm(w)]) S hel) - he(y).

£>0m>0 £>0
From this we infer that
(34) Var(Un | X6, 6) S D D he(X5) - he(Xy).

—€4 <j,k<gr £20

Now, for any fixed ¢ > 0, one has

E| > h(Xphe(Xi)| S D helu) - he(u+v) - g(u)g(v)
0<j<h<er lull ol <y

~ n2_|_24€’
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and likewise,

Thus as wanted,

é n
E{Var(Un | X, & ;)} < Z n2 1 oit < logn,
£>0
concluding the proof of the proposition. O
REMARK 3.8. — Let us explain here how one can adapt the proof above to

show that both E[Y2] and E[Y2] appearing in the proof of Proposition 3.5 are
O(m). First, since E[U,T| is of order logn, by Chebyshev’s inequality it
suffices to show that Var(U') and Var(UE) are O(logn), with the notation
thereof. Note first that Ufl/ + [7;‘;/ = U} and applying readily the same proof
as above shows that Var(UY) = O(logn). Hence, by triangular inequality, it
suffices to bound the variance of UfL,. The starting point is still to decompose the
variance in two terms, as in (33). Concerning the term E[Var(US | X,€")], the
same proof as above applies, in particular the bound (34) still holds, and one can
even restrict the sum on the right-hand side to indices j, k > 0, and £ such that
2¢ < 2. Concerning the other term Var(E[UE' | X,€7)), the same computation
can be done as well, just replacing the function G(x) appearing there by the
function G’ (x), defined as the expected time spent at x by a simple random
walk starting from the origin before it exits the ball centered at the origin with
radius 1/¢'. In particular G (x) = 0, when ||z|| > 1/¢’, but for ||z| < 5o, it
is of the same order as G(x). Therefore, again all the proof above goes through
with only minor modification.

4. Proofs of Theorem 1.1 and Proposition 1.3

Proof of Proposition 1.3. — The proof is the same as in [1], which we recall
for completeness. For the lower bound, we let
n
Ln(x) =Y 1{S =},
k=0

and v,(x) = Ln"ﬁ)’ which defines a probability measure supported on R,.

Thus, one can use Theorem 2.5, which gives that

n2

> .
~ Y eyer, G@ = y)Ln(x)Ln(y)

BCap(R.,)
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Then by using Cauchy—Schwarz’s inequality, we get

(35)  E[BCap(R,)] = > vver, G@ — 9)EL, (@) Ln(y)]

>
T ER 0<ken 2o0<e<n G( Xk — Xo)]
n n

> >
~ E[Zogkgn G(Xp)] ™~ Z”uugﬁ G(u)g(u)

The upper bound comes from the fact that the branching capacity is mono-
tone for inclusion, and thus, if R, = maxo<g<n || Xk, then BCap(R,) <
BCap(B(0,R,)) < Ry, as we know from [18] that the branching capacity of a
ball of radius R is of order R in dimension 5. Therefore, E[BCap(R,)] < E[R,],
and the desired upper bound follows since it is well known that E[R,,] < \f O

> V.

Proof of Theorem 1.1. — The fact that the limit exists in (1) follows from the
ergodic theorem, exactly as in [10]. Let us recall the argument for reader’s
convenience. First, one has

n

BCap ZSR” k)l{Xk ¢{Xk+1,...,Xn}}.
k=0

Thus, letting R and Roo be two independent infinite ranges starting from
the origin, one has

BCap(R,) _ 1 «
—— > kz::eRmuﬁx(Xk) Xk ¢ {Xkg1, -5

and the ergodic theorem implies that the right-hand side converges almost
surely as n — 0o, toward (with the notation of Corollary 2.8)

cq= E[e%uﬁw (0)-1{0 ¢ R[l,oo)}} - ]E{lAw .em],
which already provides the lower bound
BCap(R..)

liminf ————= > ¢4.
n—00 n

To get the upper bound, notice that for any n > 1,
E[BCap(Ry)] < 2+ (1= 20)  E[eryq oy 10 € RILVALY,

and since by monotone convergence the expectation on the right-hand side
converges to c¢q as n — oo, it follows that
E[BCap(R,)]

limsup ———— < ¢q.
n—00 n
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Now fix some integer m > 1 and observe that by subadditivity of the branching
capacity, see, [18], one has

|ln/m]—1
BCap(R,) < Y BCap(R[im, (i + 1)m]).
1=0

Since the right-hand side is a sum of independent and identically distributed
terms, by Kolmogorov’s strong law of large numbers, one gets

Cap(Rn,) < E[BCap(R.)] .

lim sup
n— oo n m

Since this holds for any m, we obtain the converse inequality,

lim sup BCL(R”) < lim sup w <

= Cq-
n—oo n m—oo m

Finally, to see that ¢4 is positive when d > 7, one can use the second statement
of Corollary 2.8. Tt has already been seen in its proof that E[Us] is finite,
which implies that Uy is almost surely finite. Together with the second claim
of Corollary 2.8, we deduce that 14_ - e is not almost surely equal to zero,
and thus ¢4 > 0. O
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