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REVISITING DERIVED CRYSTALLINE COHOMOLOGY
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Abstract. — We prove that the ∞-category of surjections of animated rings is pro-
jectively generated, introduce and study the notion of animated PD-pairs—surjections
of animated rings with a “derived” PD-structure. This allows us to generalize classical
results to nonflat and nonfinitely generated situations.

Using animated PD-pairs, we develop several approaches to derived crystalline
cohomology and establish comparison theorems. As an application, we generalize
the comparison between derived and classical crystalline cohomology from syntomic
(affine) schemes (due to Bhatt) to quasisyntomic schemes.

We also develop a noncompleted animated analogue of prisms and prismatic en-
velopes. We prove a variant of the Hodge–Tate comparison for animated prismatic
envelopes from which we deduce a result about flat cover of the final object for qua-
sisyntomic schemes, which generalizes several known results under smoothness and
finiteness conditions.
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660 Z. MAO

Résumé (Revisiter la cohomologie cristalline dérivée). — Nous prouvons que la ∞-
catégorie des surjections d’anneaux animés est projectivement générée, introduisons et
étudions la notion de PD-paires animées – des surjections d’anneaux animés avec une
PD-structure “dérivée”. Cela nous permet de généraliser des résultats classiques à des
situations non plates et non de type fini.

En utilisant les PD-paires animées, nous développons plusieurs approches de la
cohomologie cristalline dérivée et établissons des théorèmes de comparaison. En tant
qu’application, nous généralisons la comparaison entre la cohomologie cristalline déri-
vée et classique à partir de schémas syntomiques (affines) (due à Bhatt) à des schémas
quasisyntomiques.

Nous développons également un analogue animé non complété des prismes et des
enveloppes prismatiques. Nous prouvons une variante de la comparaison de Hodge-
Tate pour les enveloppes prismatiques animées, à partir de laquelle nous déduisons un
résultat sur le recouvrement plat de l’objet final pour les schémas quasisyntomiques,
qui généralise plusieurs résultats connus sous des conditions de lissité et de finitude.

1. Introduction

In this introductory section, we start with a nontechnical discussion of the
background, stating the main results in simplified forms. Then we explain the
main techniques used in this article. After that, we present the main definitions
and constructions used in this article.

1.1. Background and main results. — In this section, we discuss the back-
ground and the main results of the current work in a simplified form.

Regular sequences and local complete intersections play an important role
in the study of Noetherian rings. However, in arithmetic geometry, Noetheri-
anness is not preserved by operations related to perfectoids. Various general-
izations to the non-Noetherian case are available. In [11], it has been shown
that, the quasiregularity (à la Quillen) is a particularly good candidate to re-
place (Koszul) regularity in classical algebraic geometry: an ideal I of a ring A
is called quasiregular (Definition 3.53) if the A/I-module I/I2 is flat and the
homotopy groups πi(L(A/I)/A) of the cotangent complex vanish for i > 1, or
equivalently put, L(A/I)/A ' (I/I2)[1]. In particular, if an ideal is generated
by a Koszul-regular sequence, then it is also quasiregular.

Let us briefly review some details in the simple case of characteristic p (in-
stead of mixed characteristic). An Fp-algebra R is called perfect if the Frobe-
nius map R → R, x 7→ xp is bijective. An Fp-algebra S is called quasiregular
semiperfect if there exists a perfect Fp-algebra R along with a surjective map
R � S of rings of which the kernel I ⊆ R is quasiregular. In this case, [11,
Thm 8.12] shows that the derived de Rham cohomology of R with respect to
the base Fp is concentrated in degree 0, and as a ring, it is equivalent to the
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REVISITING DERIVED CRYSTALLINE COHOMOLOGY 661

PD-envelope of (R, I). Since the cotangent complex LR/Fp vanishes, the base
Fp of the derived de Rham cohomology can be replaced by R.

This result was already known [9, Thm 3.27] when the kernel I of the map
R � S in question is Koszul regular. In other words, [11] generalizes the
classical results about Koszul-regular ideals to quasiregular ideals.

In this article, we develop a different approach, which works with greater
generality: we do not need the base to be perfect, of characteristic p or even
“p-local”Noetherian rings. such as Zp or a perfectoid ring. We build a ma-
chinery to extend results about Koszul-regular ideals to quasiregular ideals in
a systematic fashion. We say that a map R→ S of animated rings [14, §5.1] is
surjective if the induced map π0(R)→ π0(S) is surjective (Definition 3.27).

Theorem 1.1 (Theorem 3.29). — The ∞-category of surjective maps of an-
imated rings is projectively generated. The set {Z[x1, . . . , xm, y1, . . . , yn] �
Z[x1, . . . , xm] |m,n ∈ N} of objects forms a set of compact projective genera-
tors.

For technical reasons, we will introduce the ∞-category of animated pairs,
which is equivalent to the ∞-category of surjective maps of animated rings.
By the formalism of left derived functors (Proposition A.14), given a func-
tor defined for “standard” Koszul-regular pairs (Z[X,Y ], (Y )) where X =
{x1, . . . , xm} and Y = {y1, . . . , ym}1, we get a functor defined on all animated
pairs, and in particular, on classical ring-ideal pairs (A, I), and any comparison
map between such functors is determined by the restriction to these Koszul-
regular pairs. We learned the importance of such standard pairs from the proof
of [8, Cor 4.14].

In order to formulate a reasonable generalization of [11, Thm 8.12], just
as we need animated pairs, we also need animated PD-pairs (Definition 3.21),
denoted by (A� A′′, γ) (Notation 3.31). There is a canonical forgetful functor
from the ∞-category of animated PD-pairs to the ∞-category of animated
pairs, which preserves small colimits (Proposition 3.40). This is remarkable
since the forgetful functor from the 1-category of PD-pairs to the 1-category
of ring-ideal pairs does not preserve small colimits (Remark 3.41). Moreover,
the forgetful functor admits a left adjoint, called the animated PD-envelope
functor .

In general, the animated PD-envelope, considered as a kind of derived func-
tor, is different from the PD-envelope. We will show that, there is a canonical
filtration on the animated PD-envelope of Fp-pairs2 (i.e., pairs (A, I) where A
is an Fp-algebra), called the conjugate filtration (Definition 3.68), of which we
can control the associated graded pieces:

1. In this article, the multivariable notations X and Y are used from time to time.
2. Or more generally, of animated Fp-pairs.
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662 Z. MAO

Theorem 1.2 (Corollaries 3.61 and 3.71). — Let A be an Fp-algebra and I ⊆ A
an ideal3. Then

1. The animated PD-envelope of (A, I) admits a natural animated
ϕ∗A(A/I)-algebra structure.

2. For every i ∈ N, the (−i)-th associated graded piece of the animated PD-
envelope of A is, as a ϕ∗A(A/I)-module spectrum, naturally equivalent to
ϕ∗A(ΓiA/I(L(A/I)/A[−1])), where ΓiA/I is the i-th derived divided power.

As a corollary, the notion of quasiregularity provides an important acyclicity
condition: along with a mild assumption, the animated PD-envelope coincides
with the classical PD-envelope:

Theorem 1.3 (Corollary 3.79). — Let A be an Fp-algebra, I ⊆ A a quasireg-
ular ideal. Suppose that the (derived) Frobenius twist (A/I) ⊗L

A,ϕA
A is con-

centrated in degree 0, i.e., ToriA(A/I,A) ∼= 0 (where the last A is viewed as an
A-module via the Frobenius ϕA : A → A) for all i ∈ N>0. Then the animated
PD-envelope of (A, I) coincides with the classical PD-envelope.

We want to point out that (A/I) ⊗L
A,ϕA

A being concentrated in degree
0 is a very mild assumption. For example, when I ⊆ A is generated by a
Koszul-regular sequence, then this holds automatically [9, Lem 3.41]. This
also happens when (A, I) comes from a “good” PD-envelope;see Remark 4.73.
Using this, we show that

Theorem 1.4 (Proposition 3.83). — Let A be a ring and I ⊆ A an ideal
generated by a Koszul-regular sequence. Then the animated PD-envelope of
(A, I) coincides with the classical PD-envelope.

Moreover, this mild assumption is not needed if we are only interested in
associated graded pieces of the PD-filtration, which answers a question of Illusie
[24, VIII. Ques 2.2.4.2]:

Theorem 1.5 (Propositions 3.90 and 3.98). — Let A be an Fp-algebra, I ⊆ A
a quasiregular ideal. Then there is a canonical comparison map from the an-
imated PD-envelope to the classical PD-envelope (B, J, γ) of (A, I) compatible
with PD-filtrations that induces equivalences on associated graded pieces. Fur-
thermore, these associated graded pieces gr∗PDB, as a graded commutative ring,
are given by the free divided power A/I-algebra Γ∗A/I(I/I2) generated by the
A/I-module I/I2.

The key point is that animated PD-envelopes admit natural PD-filtrations
of which we can control the associated graded pieces (Proposition 3.90).

3. In the introduction, for sake of simplicity, we usually replace the occurrences of animated
pairs (resp. animated PD-pairs) by ring-ideal pairs (resp. PD-pairs) as input data.
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Based on animated PD-pairs, we develop a theory of derived crystalline
cohomology (Definition 4.21) based on a technical construction called derived
de Rham cohomology of a map of animated PD-pairs (Definition 4.10) that
generalizes the derived de Rham cohomology of a map of animated rings. In
other words, our derived crystalline cohomology should be understood as a
variant of derived de Rham cohomology, not site-theoretic cohomology. These
functors preserve small colimits by Proposition 4.23 and Lemma 4.14; therefore
formal properties such as base change compatibility and “Künneth” formula
hold (Corollaries 4.24, 4.26 and 4.27).

In fact, the animated PD-envelope is, roughly speaking, a special case of
derived crystalline cohomology:

Theorem 1.6 (Proposition 4.75). — Let (A, I, γA) be a PD-pair and J ⊆ A
be an ideal containing I. Let (B � A/J, γB) be the relative animated PD-
envelope of (A, J) with respect to the PD-pair (A, I, γA). Then the underlying
E∞-Z-algebra of B is equivalent to the derived crystalline cohomology of A/J
with respect to (A, I, γA).

From this, we deduce a generalization of [11, Thm 8.12] under quasiregularity
and the Tor-independent assumption mentioned above. To see this, similarly
to the animated PD-envelope, we introduce the conjugate filtration on the de-
rived crystalline cohomology (Definition 4.49) and on the relative animated
PD-envelope (Definition 4.69) in characteristic p, and we have a similar control
of associated graded pieces for the conjugate filtration on relative animated
PD-envelopes (Corollary 4.70) and also on the derived crystalline cohomology,
which is a crystalline variant of the Cartier isomorphism (cf. [9, Prop 3.5] over
the base (A, I, γ) = (Fp, 0, 0)):

Theorem 1.7 (Proposition 4.54). — Let (A, I, γ) be a PD-pair, where A is
an Fp-algebra. Note that the Frobenius map ϕA : A → A factors through
A � A/I, giving rise to a natural map ϕ(A,I) : A/I → A (cf. Lemma 4.42).
Then for every animated A/I-algebra R and n ∈ N, the (−i)-th associated
graded piece of the conjugate filtration on the derived crystalline cohomology
of R relative to (A, I, γ) is, as a ϕ∗(A,I)(R)-module spectrum, equivalent to

ϕ∗(A,I)

(∧i
R LR/(A/I)

)
[−i].

On the other hand, similarly to [5], we develop an affine crystalline site
(Definition 4.76) based on animated PD-pairs (Bhatt already indicated such a
possibility;see the paragraph before [9, Ex 3.21]). Recall that a map A → R
of rings is called quasisyntomic (Definition 4.96) if it is flat and the cotangent
complex LR/A, as an R-module spectrum, has Tor-amplitude in [0, 1]. We
could also compare the derived crystalline cohomology to the site-theoretic
cohomology:
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664 Z. MAO

Theorem 1.8 (Propositions 4.77, 4.98 and 4.101). — Let (A, I, γA) be a PD-
pair and R an A/I-algebra.

1. There is a comparison map from the derived crystalline cohomology of R
with respect to (A, I, γA) to the cohomology of the affine crystalline site,
which is an equivalence when as an A/I-algebra, R is either of finite
type, or quasisyntomic.

2. There is a comparison map from the cohomology of the affine crys-
talline site to the (classical) crystalline cohomology of R with respect
to (A, I, γA). When R is a quasisyntomic A/I-algebra.
(a) Supposing that p is nilpotent in A, then the comparison map is an

equivalence.
(b) Supposing that A is p-torsion free, then the comparison map be-

comes an equivalence after derived p-completion, or equivalently,
after derived modulo p.

The theorem above generalizes [9, Prop 3.25], which is established for syn-
tomic algebras.

We do not know whether the derived crystalline cohomology and the coho-
mology of the affine crystalline site are equivalent without any assumption;we
reduced this equivalence to a descent property of the derived crystalline coho-
mology “with respect to the base animated PD-pair” (Proposition 4.81).

In addition to PD-pairs and the crystalline cohomology, we also introduce
animated δ-rings and animated δ-pairs, and a noncomplete but animated ver-
sion of prisms, the static version of which was introduced in [12]. Similarly
to animated PD-envelopes, the noncompleted animated prismatic envelope,
which generalizes4 the prismatic envelope for local complete intersections [12,
Prop 3.13], admits the conjugate filtration of which the associated graded pieces
are easily determined by a variant of the Hodge–Tate comparison:

Theorem 1.9 (Theorem 5.49). — Let (A, d) be a prism and J ⊆ A/d an
ideal. Then for every i ∈ N, the (−i)-th associated graded piece of noncom-
pleted prismatic envelope, as an A/(d, J)-module spectrum, is equivalent5 to
ΓiA/(d,J)(L(A/(d,J))/(A,d)[−1]).

As a corollary, similarly to animated PD-envelopes, when the ideal J is p-
completely quasiregular, roughly speaking, the (p, d)-completed animated pris-
matic envelope satisfies the universal property of the prismatic envelope in [12,
Prop 3.13] (Remark 5.54). Furthermore, the noncompleted prismatic envelope
satisfies a faithful flatness (Proposition 5.52), which leads to a technical result
that is essentially about the flat cover of the final object (Proposition 5.58),
and a similar argument shows the (p, d)-completed variant:

4. More precisely, it is a noncompleted version.
5. Here we suppress the Breuil–Kisin twists.
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Theorem 1.10 (Proposition 5.59). — Let (B, d) be a bounded oriented prism,
R a derived p-complete and p-completely quasisyntomic B/d-algebra. Let P
be a derived (p, d)-complete animated δ-B-algebra, which is (p, d)-completely
quasismooth over B, equipped with a surjection P � R of B-algebras. Then
the (completed) prismatic envelope of P � R exists and is a flat cover of the
final object in the prismatic site.

We stress that our theory is noncompleted. Technically, it is easier to
deal with noncompleted version than with p-completed version because the
∞-category of p-completed objects is usually not projectively generated. For
example, Zp ∈ Dcomp(Zp) is not a compact object. We could overcome this
issue by applying the techniques developed in Section 2.5, but it would make
the theory inconvenient.

However, thanks to Clausen–Scholze’s condensed mathematics, the noncom-
pleted version could serve as a cornerstone of an analytic version that allows
us to put “topologies” and “analytic structures” on our animated rings.

1.2. Main techniques. — We systematically adopt two techniques in this ar-
ticle: the animation and a kind of local-global principle for Z. We briefly
summarize them as follows.

There is a procedure to associate to 1-projectively generated 1-categories
projectively generated∞-categories, called the animation, a concept abstracted
out in [14, §5.1], and defined by the non-abelian derived category [28, §5.5.8] of
a set of compact 1-projective generators.

Example. — The abelian category of R-modules admits a set of compact 1-
projective generators given by free R-modules of finite rank. The animation of
this category is the connective part D≥0(R) of the derived category D(R).

Example. — The 1-category of rings admits a set of compact 1-projective
generators given by polynomial rings on finitely many variables.

Remark. — It is not a coincidence that the sets of compact 1-projective gen-
erators above are given by “finite free objects”. Indeed, it is a corollary of
Proposition A.18, applied to the pairs Set � ModR and Set � Ring of adjoint
functors.

We review the definition of animation and summarize its main properties
in Appendix A.2. When applying this construction to the 1-category of rings,
we get the ∞-category of animated rings. We apply this construction to the
1-category of δ-rings, obtaining the ∞-category of animated δ-rings (Defini-
tion 5.4).

The technical advantage of this construction is that, to produce a sifted-
colimit-preserving functor from a projectively generated∞-category, it suffices
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666 Z. MAO

to produce a functor from the full subcategory spanned by a set of compact
projective generators that, as we have seen, is given by “finite free objects”.

Now we want to apply this procedure to the 1-category of ring-ideal pairs.
Unfortunately, the 1-category of ring-ideal pairs might not be 1-projectively
generated. However, it is reasonable to say that “standard” Koszul-regular
pairs (Z[x1, . . . , xm, y1, . . . , yn], (y1, . . . , yn)) are “finite free objects”. We pick
the non-abelian derived category of the full category spanned by these pairs,
and the 1-category of ring-ideal pairs embeds fully faithfully into it (Propo-
sition 3.23). This ∞-category is equivalent to the ∞-category of surjections
of animated rings (Theorem 3.29). Similarly, we apply this “modified anima-
tion” to the 1-category of PD-pairs, obtaining the∞-category of animated PD-
pairs. The PD-envelope functor gives rise to the animated PD-envelope (Def-
inition 3.21): a “good enough” pair of adjoint functors between 1-projectively
generated 1-categories give rise to a pair of adjoint functors between animations
(Corollary 2.3). However, here the story is slightly more complicated due to
our “modification” of the animation.

In a similar fashion, we apply these animation techniques to δ-pairs, obtain-
ing animated δ-pairs (Definition 5.9), and we use similar techniques to define
and analyze noncompleted animated prismatic envelopes. We also use the an-
imation techniques to define the “de Rham context” dRCon, the “crystalline
context” CrysCon, the derived de Rham cohomology and the derived crystalline
cohomology in Section 4.1.

Now we describe the second main technique that we use: the local-global
principle for Z. Some techniques are only valid in characteristic p. For example,
we do not know how to define the conjugate filtration on the derived crystalline
cohomology beyond characteristic p. However, these arithmetic objects, such
as PD-structures, usually degenerate in characteristic 0. In view of these, we
can usually then glue the results for each prime number p ∈ N and the result
after rationalization. The simplest example of this technique is the following:
let X ∈ Sp be a spectrum. Suppose that the spectrum X/Lp is equivalent
to 0 for every prime number p ∈ N, and that X is also contractible after
rationalization. Then the spectrumX itself is contractible. We establish similar
results (Lemmas 3.80 and 3.82) under connectivity assumptions. These results
allow us to deduce integral results.

1.3. Main definitions and constructions. — In this section, we present the main
definitions and constructions appearing in the current work, explaining the
techniques mentioned above in more detail. As explained above, we introduce
the following concept:

Definition 1.11 (Section 3.2). — The ∞-category of animated pairs is
the non-abelian derived category of the 1-category of ring-ideal pairs
(Z[x1, . . . , xm, y1, . . . , yn], (y1, . . . , yn)). The ∞-category of animated PD-pairs
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is the non-abelian derived category of the 1-category of PD-pairs
ΓZ[x1,...,xm](y1, . . . , yn) � Z[x1, . . . , xm].

As mentioned before, later we will write these pairs as (Z[X,Y ], (Y )) for fi-
nite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn}. We will systematically iden-
tify the ring-ideal pairs (A, I) with the surjections A� A/I of rings. The no-
tation ΓR(y1, . . . , yn) denotes the free PD-R-algebra6 generated by y1, . . . , yn.
One can show that the 1-category of ring-ideal pairs (resp. PD-pairs) em-
beds fully faithfully into the ∞-category of animated pairs (resp. animated
PD-pairs);see Proposition 3.23. Then the first main theorem is the following

Theorem 1.12 (Theorem 3.29). — The left derived functor of sending the an-
imated pair (Z[X,Y ], (Y )) to the surjection Z[X,Y ] � Z[X] of animated rings
identifies the ∞-category of animated pairs with the ∞-category of surjections
of animated rings.

One can prove this directly. The proof presented in this article follows
an indirect approach where one first shows an “linear analogue” for D(Z)≥0
instead of CAlgan and then proves that this equivalence is “compatible with
the multiplicative structure”.

As explained before, this “modified animation” allows us to extend con-
structions for ring-ideal pairs (Z[X,Y ], (Y )) to animated pairs (or equiva-
lently, surjections of animated rings). In particular, the (Y )-adic filtration
gives rise to the adic filtration (Section 3.4), the equivalence (Y n)/(Y n+1) ∼=
SymZ[X]((Y )/(Y 2)) gives rise to its “derived version”, and the computation
of the cotangent complex LZ[X]/Z[X,Y ] ' ((Y )/(Y 2))[1] gives rise to a simi-
lar property for arbitrary surjective maps of animated rings (Corollary 3.61).
The PD-envelope functor, sending (Z[X,Y ], (Y )) to ΓZ[X](Y ) � Z[X], gives
rise to the animated PD-envelope functor (Section 3.2). Similarly, the “modi-
fied animation” allows us to extend the classical PD-filtration on ΓZ[X](Y ) to
the PD-filtration on animated PD-pairs (Definition 3.85), and the conjugate
filtration on animated PD-envelopes (Definition 3.68). The result about asso-
ciated graded pieces of the PD-filtration (resp. the conjugate filtration) for the
“standard case” ΓZ[X](Y ) � Z[X] (resp. (Z[X,Y ], (Y ))) extends in a direct
manner to animated PD-pairs (resp. animated pairs);see Lemma 3.87 (resp.
Corollary 3.71). Furthermore, we know how to detect whether an animated
pair (resp. animated PD-pair) is a classical ring-ideal pair (resp. PD-pair);
see Proposition 3.35 (resp. Proposition 3.38). Consequently, when the input
is a quasiregular ring-ideal pair with some mild conditions, we can deduce
that the animated version coincides with the classical version (Corollary 4.71
and Propositions 3.83 and 3.98).

6. This is sometimes denoted by R〈y1, . . . , yn〉 in the literature. We choose our notation to
avoid confusion with that of topologically free algebras also usually denoted by R〈y1, . . . , yn〉.
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Based on animated pairs and animated PD-pairs, we define the derived de
Rham cohomology associated to a map of animated PD-pairs. More precisely,
we have

Lemma 1.13 (Section 4.1). — The ∞-category of maps of animated PD-pairs
is projectively generated. A set of compact projective generators is given by
(ΓZ[X](Y ) � Z[X])→ (ΓZ[X,X′](Y, Y ′) � Z[X,X ′]).

Therefore, we can extend the de Rham cohomology defined on these “stan-
dard” maps of “standard” PD-pairs to arbitrary maps of animated PD-pairs.
It turns out that the derived de Rham cohomology of a map (A� A′′, γA)→
(B � B′′, γB) of animated PD-pairs “does not depend onB” (Proposition 4.20),
which is a generalization of the fact that the crystalline cohomology computed
by the de Rham complex does not depend on the choice of the lift. This leads
to the definition of the derived crystalline cohomology (Definition 4.21). The
Hodge-filtration and the conjugate filtration also extends from “standard” maps
of “standard” PD-pairs to maps of animated PD-pairs (Section 4.2). The as-
sociated graded pieces of the conjugate filtration is determined by a crystalline
variant of the Cartier isomorphism (Proposition 4.54).

Similarly to the classical case, there is also a relative concept of animated
PD-envelopes (Definition 4.57), and the relative animated PD-envelope could
be reduced to the special case associated to the datum ((A � A′′, γA), A′′ �
R), where (A � A′′, γA) is an animated PD-pair and A′′ � R is a surjection
of animated rings (Lemma 4.64). Furthermore, we have the following lemma.

Lemma 1.14 (Lemma 4.65). — The ∞-category of data ((A � A′′, γA),
A′′ � R) is projectively generated.

Again, we can apply the techniques of non-abelian derived categories to this
category, and along with the local-global principle for Z mentioned before, we
show that the derived crystalline cohomology “coincides” with the relative ani-
mated PD-envelope (Proposition 4.75), which generalizes Bhatt’s computation
[9, Thm 3.27] of the derived de Rham cohomology dRFp/Fp[x].

In order to compare the derived crystalline cohomology with the classical
crystalline cohomology, we introduce an animated variant of the crystalline site
(Definition 4.76). Our main tools are the Čech–Alexander computation, the
Katz–Oda filtration (Definition 4.86) introduced in [19] and the conjugate filtra-
tion. More precisely, the Katz–Oda filtration allows us to identify graded pieces
associated to the Hodge filtration (Lemma 4.88), and the conjugate filtration
allows us to establish a descent-type result in characteristic p (Lemma 4.90).
Along with the local-global principle for Z mentioned before, we prove the
comparison theorem for quasisyntomic schemes (Proposition 4.98).
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Finally, we introduce the ∞-category of animated δ-rings (Definition 5.4),
which is simply the animation of the 1-category of δ-rings, and the following
definition.

Definition 1.15 (Definition 5.9). — An animated δ-pair is an animated δ-ring
A along with a surjection A� A′′ of animated rings.

Using similar techniques, we construct the noncomplete animated prismatic
envelope (Corollary 5.27), the conjugate filtration (Lemma 5.38) and the
Hodge–Tate comparison (Theorem 5.49). Similarly to “animated PD-envelope
being classical under quasiregularity with some mild conditions”, we deduce a
flatness result of prismatic envelopes under quasiregularity (Proposition 5.52),
which is sufficient for the flat cover results mentioned before (Propositions 5.58
and 5.59).

1.4. Structure of the article. — Here is a guideline to the article. Section 2
is devoted to technical preparations. We suggest the readers skip it in the
first reading. Section 3 is devoted to the theory of animated pairs and an-
imated PD-pairs and to the study of the animated PD-envelope. Section 4
is devoted to relative animated PD-envelopes, derived crystalline cohomology,
cohomology of the affine crystalline site and their comparisons. Section 5 is de-
voted to animated δ-rings, animated δ-pairs, “noncomplete animated prisms”,
noncompleted animated prismatic envelope and a variant of the Hodge–Tate
comparison. Appendix A is a collection of basic facts about animations and
projectively generated categories (which we suggest the reader read first if they
have not seen this concept before).

1.5. Notations and terminology. — In this article, since we often work in the
∞-category of certain “derived” categories, we try to distinguish the “ordinary”
objects and “derived” objects by choosing different words.

Given an ∞-category C and a diagram Y ← X → Z in C, the pushout of
the diagram is denoted by Y qX Z. In particular, if C admits an initial object,
the coproduct of two objects Y,Z is denoted by Y q Z.

We will denote by An the∞-category of (small) animæ, that is, the simplicial
nerve of the simplicial category of (small) Kan complexes [28, Def 1.2.16.1].

We say that an anima X ∈ An or a spectrum X ∈ Sp is static7 if πi(X) ∼= 0
for all i 6= 0. For two spectra X,Y ∈ Sp, we will denote by X ⊗L Y the
smash product. Rings are always static and commutative, while En-rings are
En-algebras in the symmetric monoidal ∞-category (Sp,⊗L).

7. This is usually called discrete in homotopy theory. We follow Clausen–Scholze’s ter-
minology in condensed mathematics to call them static to distinguish from the point-set
topological discreteness. In particular, the static object Zp might be equipped with the
p-adic topology which is different from the discrete topology.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



670 Z. MAO

Given a ring A, we will refer to a “classical” A-module a static A-module.
The category of static A-modules will be denoted by ModA. The category of
ring-module pairs (A,M) where M ∈ ModA is denoted by Mod. An object in
the derived ∞-category D(A) an A-module spectrum.

Given an E1-ring A, the ∞-category of left (resp. right) A-module spectra
will be denoted by LModA (resp. RModA). Given a right A-module spectrum
M and a left A-module spectrum N , their relative tensor product is denoted by
M⊗L

AN , to avoid confusion with the ordinary tensor product of static modules.
Given an E∞-ring A, the ∞-category of A-module spectra is denoted by

D(A). In particular, we have Sp = D(S). An En-A-algebra is an En-algebra in
the symmetric monoidal ∞-category (D(A),⊗L

A).
Following [10], we will denote by CAlgan the ∞-category of animated rings,

and CAlgan
R the ∞-category of animated R-algebras for an animated ring R.

2. Categorical preparations

In this section, we will do some technical preparations of∞-categories, which
will be used throughout this article. We try our best to refer to this section
explicitly so that the reader could first skip this section and then read it when
needed.

2.1. Animation of adjoint functors. — This section is devoted to proving that
animation behaves well for certain “monadic” pairs of adjoint functors. Here
is a general lemma.

Lemma 2.1. — Let n ∈ N>0 ∪ {∞}. Let C be a small n-category that admits
finite coproducts and D a locally small n-category, which admits small colimits.
Let f : C → D be a functor which preserves finite coproducts. Then, the
following hold.

1. There is a pair of adjoint functors PΣ,n(C)
F−→←−
G
D (Notation A.10), where

F is the left derived functor (Proposition A.14) of f and G is the functor
given by D 7→ MapD(f(·), D) ∈ P(C).

2. Suppose that for all objects C ∈ C, the object f(C) ∈ D is compact and n-
projective. Then the functor G preserves filtered colimits and geometric
realizations. Under this assumption, if f is further assumed to be fully
faithful, then so is F .

3. Suppose that the set {f(C) |C ∈ C} ⊆ D generates D under small col-
imits. Then the functor G is conservative.

Proof. — We exhibit the proof for n = ∞. First, the functor f : C → D
extends uniquely to a functor F̃ : P(C)→ D, which preserves small colimits by
[28, Thm 5.1.5.6]. Since PΣ(C) ⊆ P(C) is stable under sifted colimits, it follows
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that the functor F is equivalent to the composite PΣ(C) ↪→ P(C) F̃−→ D. The
functor F̃ admits a right adjoint by [28, Cor 5.2.6.5], which is equivalent to the
composite D G−→ PΣ(C) ↪→ P(C); therefore (F,G) is a pair of adjoint functors.

Part 2 follows from the fact that PΣ(C) ⊆ P(C) is stable under sifted colimits
(Proposition A.11). The later statement follows from Proposition A.15.

Suppose that {f(C) |C ∈ C} generates D under small colimits, then for any
mapX → Y inD, if the induced mapG(X)→ G(Y ) is an equivalence in PΣ(C),
then for all objects C ∈ C, the induced map MapD(f(C), X)→ MapD(f(C), Y )
is an equivalence. Let D′ ⊆ D be the full subcategory spanned by those D ∈ D
such that the induced map MapD(D,X) → MapD(D,Y ) is an equivalence.
Then D′ is stable under colimits, and f(C) ∈ D′ for all C ∈ C. The result
follows. �

Then from Lemma A.13 and Corollary A.17 we have the following.

Corollary 2.2. — Let C,D be two small n-categories that admit finite co-
products and f : C → D a functor that preserves finite coproducts. Then, we
have the following.

1. There is a pair of adjoint functors PΣ,n(C)
F−→←−
G
PΣ,n(D), where G is

given by PΣ,n(D) 3 H 7→ H ◦ F ∈ PΣ,n(C) and F is the left derived
functor of the composite functor C f−→ D ↪→ PΣ,n(D).

2. The functor G preserves sifted colimits, and the canonical map τ≤m ◦
G → G ◦ τ≤m of functors is an equivalence for all m ∈ N (cf. [28,
Rem 5.5.8.26] and the discussion before Lemma A.26).

3. If f is fully faithful, then so is the functor F .
4. If f is essentially surjective, then the functor G is conservative.

Now we apply this to animations:

Corollary 2.3. — Let C
F−→←−
G
D be a pair of adjoint functors between 1-cate-

gories such that the following hold.
1. The 1-category D admits filtered colimits and reflexive coequalizers (or

equivalently, geometric realizations, by Remark A.7), and G preserves
filtered colimits and reflexive coequalizers.

2. The 1-category C is projectively generated.
3. The functor G is conservative.

Then D is 1-projectively generated, and we have a pair Ani(C)
Ani(F )
−→←−

Ani(G)
Ani(D)

of adjoint functors between ∞-categories after animation. Furthermore, the
functor Ani(G) is conservative, preserves sifted colimits, and the canonical map
τ≤0 ◦ Ani(G) → G ◦ τ≤0 of functors is an equivalence. If G preserves small
colimits, then so does Ani(G).
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Proof. — It follows from Proposition A.18 that the 1-category D is 1-projec-
tively generated, and, therefore, C,D admit small colimits that are preserved
by F . Furthermore, let C0 ⊆ C be the full subcategory spanned by finite co-
products of a chosen set of compact 1-projective generators for C, and D0 ⊆ D
the full subcategory spanned by the images of objects of C under F , then there
are equivalences C ' PΣ,1(C0) and D ' PΣ,1(D0) of 1-categories by Proposi-
tion A.16 (note that F preserves finite coproducts).

Let f : C0 → D0 be the functor induced by F , which preserves finite co-
products and is essentially surjective. It follows from Corollary 2.2 with n = 1
and the uniqueness of the right adjoint functor that the functor G : D → C is
equivalent to PΣ,1(D0)→ PΣ,1(C0), H 7→ H ◦ f .

We invoke again Corollary 2.2 with n = ∞ to obtain a pair of adjoint
functors PΣ(C0) � PΣ(D0) induced by f . It follows from the definitions that
Ani(C) ' PΣ(C0), Ani(D) ' PΣ(D0) and that the functor PΣ(C0) → PΣ(D0)
obtained above is equivalent to Ani(F ). Let G′ : Ani(D) → Ani(C) be the
right adjoint to Ani(F ). Since f is essentially surjective, G′ is conservative. It
remains to show that G′ is equivalent to Ani(G).

Indeed, both G′ and Ani(G) preserve sifted colimits. Since the functor
G : D → C is equivalent to PΣ,1(D0) → PΣ,1(C0), H 7→ H ◦ f , the restrictions
of G′ and Ani(G) to the full subcategory D0 ⊆ Ani(D) are equivalent. It then
follows from Proposition A.14 that G′ and Ani(G) are equivalent. The colimit
preserving properties follow from Corollary A.25. �

Now we look at two simple examples:

Example 2.4. — Let R → S be a map of rings. Then there is a pair
ModR

·⊗RS−→←− ModS of adjoint functors between the categories of static modules.
Since the forgetful functor ModS → ModR is conservative, and preserves small

colimits, we have the pair of adjoint functors Ani(ModR)
Ani(·⊗RS)
−→←− Ani(ModS).

Under the equivalences Ani(ModR) ' D≥0(R) and Ani(ModS) ' D≥0(S), the
functor Ani(· ⊗R S) is equivalent to the functor · ⊗L

R S.

Example 2.5. — Let Ring be the 1-category of rings and Ab the 1-category
of abelian groups. Then we have a pair Ab

SymZ−→←− Ring of adjoint functors.
Since the forgetful functor Ring → Ab is conservative, and preserves filtered
colimits and reflexive coequalizers, we get a pair D≥0(Z)

L SymZ−→←− CAlgan of
adjoint functors.

In Corollary 2.3, the functor G (resp. Ani(G)) exhibits D (resp. Ani(D)) as
monadic over C (resp. Ani(C)). The associated endomorphism monad is given
by G ◦ F (resp. Ani(G) ◦Ani(F ) ' Ani(G ◦ F ) by Proposition A.27).
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Lemma 2.6. — Let C
F−→←−
G
D be a pair of adjoint functors between ∞-categories.

Let K be a small simplicial set. Then G ◦ F preserves K-indexed colimits if G
preserves K-indexed colimits. The converse is true if G exhibits D as monadic
over C.

Proof. — If G preserves K-indexed colimits, since F is a left adjoint, it follows
that so does T := G ◦ F . Conversely, if G exhibits D as monadic over C, then
D ' LModT (C), and the result follows from [30, Cor 4.2.3.5]. �

2.2. Diagram categories and undercategories. — In this section, we will show
that diagram n-categories and undercategories of n-projectively generated cat-
egories are n-projectively generated, for which we give an explicit choice of
n-projective generators. We first show the version for ∞-categories, then list
the analogues for n-categories for which the proof is nearly verbatim. We start
with diagram categories.

Lemma 2.7. — Let (Cα)α∈T be a small collection of the projectively generated
∞-category. Then the ∞-category

∏
α∈T Cα is projectively generated. More

precisely, let 1α denote the initial objects of Cα. If the collections Sα ⊆ Cα
of objects are sets of compact projective generators for Cα, then the collection
{is,β | s ∈ Sβ , β ∈ T} ⊆

∏
α∈T Cα is a set of compact projective generators for∏

α∈T Cα, where is,β ∈
∏
α∈T Cα is given by

({
s β′ = β
1β′ β′ 6= β

)
β′∈T

.

Proof. — Since the small colimits in
∏
Cα are computed pointwise, it follows

that
∏
Cα is cocomplete. Now given Sα and is,β , let D ⊆

∏
Cα be the full

subcategory generated by {is,β} under colimits. For all β ∈ T , the fully faithful

embedding jβ : Cβ →
∏
Cα given by C 7→

({
C β′ = β
1β′ β′ 6= β

)
β′∈T

preserves small

colimits, and jβ(s) = is,t. Thus, the “skyscraper” functor jβ(C) is an object of
D for C ∈ Cβ .

Finally, we can write any object F ∈
∏
Cα as a small colimit colimβ∈T jβ(Fβ),

and, therefore, D =
∏
Cα. �

Now let C be a cocomplete ∞-category, K ∈ Set∆ a small simplicial set
and K0 ⊆ K the set of vertices. Then we have a pair of adjoint functors

Fun(K0, C)
LanK0→K−→←−
(K0→K)∗

Fun(K, C), where LanK0↪→K is the functor of left Kan

extension along the map K0 → K, and (K0 → K)∗ denotes the restriction
along K0 → K.

Warning 2.8. — In an early draft, we called K0 → K an “inclusion”. How-
ever, any map of simplicial sets is equivalent to a cofibration up to a trivial
fibration in Joyal model structure. That is to say, the concept of “nonfull

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



674 Z. MAO

subcategory” is not model-independent. We decided to suppress such model-
dependent expressions.

Then, from Proposition A.18 and Lemma 2.7we have the following.

Corollary 2.9. — Let C be a projectively generated ∞-category and K ∈
Set∆ a small simplicial set. Then the ∞-category Fun(K, C) of functors is
projectively generated.

Next, we study undercategories.

Lemma 2.10. — Let C be a projectively generated ∞-category and Z ∈ C an
object. Then the undercategory CZ/ is projectively generated. More precisely,
letting S ⊆ C be a set of projective generators for C, the set {Z → X qZ |X ∈
S} is a set of compact projective generators for the undercategory CZ/.

Proof. — Consider the pair C
X 7→(Z→XqZ)

−→←−
Y

7→(Z→Y )
CZ/ of adjoint functors. The for-

getful functor CZ/ → C:
• Is conservative, since an object in CZ/ could be identified with a map

∆1 → C, 0 7→ Z, and a map in CZ/ between two objects could be iden-
tified with a homotopy between two maps ∆1 ⇒ C; then we invoke [32,
Tag 01DK] to conclude.

• Preserves sifted colimits, as it is a left fibration [32, Tag 018F], thus pre-
serves weakly contractible colimits [32, Tag 02KT], and sifted diagrams
are weakly contractible [32, Tag 02QL].

We then invoke Proposition A.18 to conclude8. �

Now we list the n-categorical analogues:

Lemma 2.11. — Let C be an n-projectively generated n-category and K ∈
Set∆ a small simplicial set. Then the n-category Fun(K, C) of functors is n-
projectively generated.

Lemma 2.12. — Let C be an n-projectively generated n-category and Z ∈ C an
object. Then the undercategory CZ/ is n-projectively generated. More precisely,
let S ⊆ C be a set of n-projective generators for C, then the set {Z → X q
Z |X ∈ S} is a set of compact n-projective generators for the undercategory
CZ/.

Now we deduce the corollaries for animations.

8. We believe that our argument could be vastly simplified. However, we point out that
the map K ↪→ {∗} ? K is not necessarily cofinal if the simplicial set K is not sifted. For
example, take K to be a discrete set with at least two elements.
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Corollary 2.13. — Let C be an n-projectively generated n-category. Then
there is a canonical equivalence Ani(Fun((∆1)op, C)) → Fun((∆1)op,Ani(C))
of ∞-categories, or equivalently, a canonical equivalence Ani(Fun(∆1, C)) →
Fun(∆1,Ani(C)) of ∞-categories.

Proof. — Let S ⊆ C be a set of compact n-projective generators for C. Spelling
out the proof of Corollary 2.9 (more precisely, its analogue Lemma 2.11), we ex-
tract anexplicit set of compactn-projectivegenerators forFun((∆1)op, C), namely,
T := {X ← 0 |X ∈ S} ∪

{
X

idX←−− X |X ∈ S
}
. Note that Fun((∆1)op, C) ⊆

Fun((∆1)op,Ani(C)) is a full subcategory, and again by the proof of Corollary 2.9,
it follows thatT is a set of compact projective generators for Fun((∆1)op,Ani(C)).
The result follows. �

The same proof leads to the following (compare with [38, Cons 4.3.4]).

Corollary 2.14. — Let C be an n-projectively generated n-category. Then
there are canonical equivalences

Ani(Fun((Z,≥), C)) −→ Fun((Z,≥),Ani(C))
Ani(Fun(Z, C)) −→ Fun(Z,Ani(C))

Ani(Fun({0, 1}, C)) −→ Fun({0, 1},Ani(C))
Ani

(
CZ/
)
−→ Ani(C)Z/

of ∞-categories. The same goes for replacing Z’s by N’s.

2.3. Comma categories and base change. — In this section, we will discuss
comma categories, which serves as our basic language to discuss various base
changes.

Definition 2.15. — Let C,D be ∞-categories and F : C → D a functor. The
comma category, sometimes denoted by F ↓ D, is given by the simplicial set
C ×Fun({0},D) Fun(∆1,D), where the map C → Fun({0},D) is given by F , and
the map Fun(∆1,D)→ Fun({0},D) is induced by the vertex {0} → ∆1.

Example 2.16. — Consider the functor idCAlgan : CAlgan → CAlgan. The
comma category

CAlgan×Fun({0},CAlgan) Fun(∆1,CAlgan)

is equivalent to Fun(∆1,CAlgan). An object is simply given by a base A ∈
CAlgan and an A-algebra A→ R.

Example 2.17. — Consider the functor Pair → Ring, (A, I) 7→ A/I and the
composite functor Pairγ → Pair→ Ring. Concretely, the objects in the comma
category Pairγ ×Fun({0},Ring) Fun(∆1,Ring) are given by a PD-pair (A, I, γ)
along with an A/I-algebra A/I → R. This is the nonanimated version of
CrysCon that will be introduced in Section 4.1.
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Remark 2.18. — A similar comma category plays an role for prismatic coho-
mology. We will study a noncomplete version in Section 5.3.

Lemma 2.19. — Let C,D be ∞-categories and F : C → D a functor. Then the
simplicial set C ×Fun({0},D) Fun(∆1,D) is an ∞-category.

Proof. — It follows from [28, Corollary 2.3.2.5] applied to the inner fibration
D → {∗} that Fun(∆1,D)→ Fun({0},D) is an inner fibration. Then it follows
[28, Corollary 2.4.6.5] that Fun(∆1,D)→ Fun({0},D) is a categorical fibration.
The result follows. �

Remark 2.20. — The canonical projection C ×Fun({0},D) Fun(∆1,D)→ C ad-
mits a fully faithful section induced by D → Fun(∆1,D), D 7→ idD, which is
also a left adjoint of the projection in question.

Lemma 2.21. — Let C,D be ∞-categories and F : C → D a functor. Suppose
that D admits finite coproducts. Then the functor C ×Fun({0},D) Fun(∆1,D)→
C × D induced by Fun(∆1,D) → Fun({1},D) ' D admits a left adjoint infor-
mally given by (C,D) 7→ (C,F (C)→ F (C)qD).

Proof. — We need the concept of relative adjunctions [30, §7.3.2]. In fact, the
adjunction is relative to C.

To see this, we start with the special case that C = D and F = idD. The
point is that the pair D × D � Fun(∆1,D) of adjoint functors satisfies [30,
Prop 7.3.2.1], where the functor D × D → Fun(∆1,D) is given by left Kan
extension along the functor {0, 1} → ∆1, and the functor Fun(∆1,D)→ D×D
is simply given by the restriction along {0, 1} → ∆1.

The general case follows from [30, Prop 7.3.2.5] by base change along F :
C → D. �

From Proposition A.18, we have the following corollary.

Corollary 2.22. — Let C,D be projectively generated ∞-categories and F :
C → D a functor. Then the comma category C ×Fun({0},D) Fun(∆1,D) is pro-
jectively generated. More precisely, let S ⊆ C and T ⊆ D be sets of compact
projective generators. Then {(C,F (C) → F (C) qD) |C ∈ S,D ∈ T} is a set
of compact projective generators for C ×Fun({0},D) Fun(∆1,D).

It follows from [28, Lem 5.4.5.5] that the colimits in comma categories exist
and are easy to describe under the assumption that the functor in question
preserves colimits.

Lemma 2.23. — Let C,D be ∞-categories and F : C → D a functor. Let K
be a simplicial set. Suppose that C,D admits K-indexed colimits, which are
preserved by F . Then the comma category C ×Fun({0},D) Fun(∆1,D) admits
K-indexed colimits, which are preserved by projection to either factor.
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Remark 2.24 (Base change). — Let C,D be ∞-categories ,which admit finite
colimits, and F : C → D a functor, which preserves finite colimits. Given
an object (C,F (C) → D) ∈ C ×Fun({0},D) Fun(∆1,D), there is a unique map
(C, idF (C))→ (C,F (C)→ D) (which is, in fact, the unit map for the adjunction
in Remark 2.20). For all maps C → C ′ in C, we have the pushout of the diagram
(C ′, idF (C′))← (C, idF (C))→ (F (C)→ D) in C, which is (C ′, D qF (C) F (C ′))
by Lemma 2.23. At the beginning of this section, we said that the objects
in C are considered as “bases”. Thus we understand this pushout as ‘a ‘base
change”.

Example 2.25. — In Example 2.16, given a map A → B of animated rings,
the base change of A→ R along A→ B is B → R⊗L

A B. Since the cotangent
complex functor L·/· : Fun(∆1,CAlgan) → Ani(Mod) preserves small colimits
(Lemma 2.35), we get the base change property: the natural map LR/A⊗L

AB →
LR⊗L

A
B/B is an equivalence (here we implicitly used Lemma 2.36). Similarly, we

get the base change property HH(R/A)⊗L
AB ' HH(R⊗L

AB/B) for Hochschild
homology (the reader should feel free to ignore this since it will not be used in
this article).

Example 2.26. — In Example 2.17, given a map (A, I, γ)→ (B, J, δ) of PD-
pairs, the base change of ((A, I, γ), A/I → R) along (A, I, γ) → (B, J, δ) is
((B, J, δ), B/J → R⊗A/I (B/J)).

Remark 2.27. — We have a prismatic version of base change by Remark 2.18.

Remark 2.28 (Colimits over a fixed base). — Let C,D be cocomplete ∞-
categories and F : C → D a functor that preserves small colimits. Given
an object C ∈ C, a small simplicial set K and a diagram q : K → DF (C)/,
we associate a diagram K → C ×Fun({0},D) Fun(∆1,D) informally given by
k 7→ (C,F (C) → q(k)) (the formal description necessitates a discussion of
“fat” overcategories [28, §4.2.1]). By Lemma 2.23, the colimit of this diagram
is given by (C, colim q). We understand this colimit as taking colimits over a
fixed base.

Example 2.29. — In Example 2.16, given an animated ring A and two A-
algebras R,S, the map (A → R ⊗L

A S), seen as an object of Fun(∆1,CAlgan),
is the pushout of the diagram (A → R) ← (A, idA) → (A → S). Since the
cotangent complex functor L·/· : Fun(∆1,CAlgan)→ Ani(Mod) (which we will
review in Definition 2.33) preserves small colimits (Lemma 2.35), we get the
“Künneth formula”: the natural map LR/A⊗L

R (R⊗L
AS)⊕LS/A⊗L

S (R⊗L
AS)→

L(R⊗L
A
S)/A is an equivalence (again, we used Lemma 2.36, and also the form of

colimits in Ani(Mod)). Similarly, we have HH(R/A)⊗L
A HH(S/A) ' HH(R⊗L

A

S/A) for Hochschild homology (again, Hochschild homology is not needed in
this article).
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Remark 2.30. — In view of Remark 2.18, prismatic cohomology has a similar
“Künneth formula” [2, Prop 3.5.1].

Remark 2.31 (Transitivity). — Let C,D be ∞-categories ,which admit finite
colimits, and F : C → D a functor, which preserves finite colimits. Given a
map C → C ′ in C, any object (C ′, F (C ′) → D) ∈ C ×Fun({0},D) Fun(∆1,D)
could be written as the pushout of the diagram (C,F (C)→ D)← (C,F (C)→
F (C ′)) → (C ′, idF (C′)). This is closely related to transitivity sequence in the
cohomology theory, as shown in the examples below.

Example 2.32. — In Example 2.16, for any maps A → B → R of animated
rings, the “relative” map B → R, viewed as an object of Fun(∆1,CAlgan), is
the pushout of the diagram (A → R) ← (A → B) → (idB : B → B). Since
the cotangent complex functor L·/· : Fun(∆1,CAlgan) → Ani(Mod) preserves
small colimits (Lemma 2.35), we get the transitivity sequence

LB/A ⊗L
B R −→ LR/A −→ LR/B

(Lemma 2.36 was used) Similarly, we have HH(R/A)⊗L
HH(B/A) B ' HH(R/B)

for Hochschild homology.

Finally, we briefly review the theory of the cotangent complex of maps of
animated rings and explain how this “coincides” with the theory of cotangent
complex of maps of animated A-algebra for some ring A. By Corollary 2.13,
the ∞-category AniArr := Fun(∆1,CAlgan) is projectively generated, and the
proof leads to a set {Z[X] → Z[X,Y ] |X,Y ∈ Fin} of compact projective
generators. Let AniArr0 ⊆ AniArr denote the full subcategory spanned by
those compact projective generators.

Definition 2.33. — The cotangent complex functor AniArr → Ani(Mod)
is defined to be the left derived functor (Proposition A.14) of the functor
AniArr0 → Ani(Mod), (A → B) 7→ (B,Ω1

B/A). The image of an object
(A→ B) ∈ AniArr is denoted by (B,LB/A).

Remark 2.34. — In fact, this functor is also the animation of the functor
Fun(∆1,Ring) → Mod, (A → B) 7→ (B,Ω1

B/A). We do not take this as the
definition since later we will apply the same idea to functors that are not
defined by the animation of a functor.

Since the functor AniArr0 → Ani(Mod), B 7→ (B,Ω1
B/A) preserves finite

coproducts, by Proposition A.14, we get the following.

Lemma 2.35. — The cotangent complex functor AniArr → Ani(Mod) pre-
serves small colimits.
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Now we consider the functor CAlgan → AniArr, A 7→ (idA : A → A). This
functor preserves small colimits9, thus so does the composite functor CAlgan →
AniArr

L·/·−−→ Ani(Mod), concretely given by A 7→ (A,LA/A). The next simple10

lemma is key to the “independence of the choice of the base”, which was already
used in examples before.

Lemma 2.36. — The composite functor CAlgan → AniArr
L·/·−−→ Ani(Mod)

above coincides with the functor CAlgan → Ani(Mod), A 7→ (A, 0).

Proof. — By the colimit-preserving property above and Proposition A.14, it
suffices to check this for polynomial rings A = Z[x1, . . . , xn], but this follows
directly from the definitions. �

We now consider the full subcategory P0 of Fun(∆1,Ring) spanned by maps
A[X] → A[X,Y ] withA ∈ Ring andX,Y ∈ Fin. The functor Fun(∆1,Ring) →
Ani(Mod), (A→ B) 7→ (B,Ω1

B/A) restricts to a functorG : P0 → Ani(Mod). By
Proposition A.14, the restriction F of the cotangent complex functor AniArr→
Ani(Mod) to the full subcategory P0 is left Kan extended from AniArr0 ⊆ P0,
and, therefore, we have a comparison map F → G, which becomes an equiva-
lence after restriction to the full subcategory AniArr0. By Example 2.25, this
comparison map is an equivalence since G also has the “base change property”.

Nowwe fix a ringA and let AniArrA denote the∞-category Fun(∆1,CAlgan
A ).

As before, by Corollary 2.13, it is projectively generated with a set {A[X] →
A[X,Y ] |X,Y ∈ Fin} of compact projective generators, which spans a full sub-
category AniArr0

A ⊆ AniArrA. Note that the functor AniArr0
A → Ani(Mod),

(B → C) 7→ (C,Ω1
C/B) coincides with the composite functor AniArr0

A → P0 G−→
Ani(Mod), and since F ' G, this composite functor is just the cotangent com-
plex functor applied to the underlying map of animated rings. From Proposi-
tion A.14 we have the following.

Lemma 2.37. — The composite functor AniArrA → AniArr → Ani(Mod),
(B → C) 7→ (C,LC/B) is equivalent to the left derived functor of AniArr0

A →
Ani(Mod), (A[X]→ A[X,Y ]) 7→ Ω1

A[X,Y ]/A[X].

That is to say, the definition of the cotangent complex does not depend on
the choice of the base. This argument applies to similar situations, such as
animated PD-envelope, and such a phenomenon will appear frequently in this
article.

9. In fact, this is fully faithful. However, in order to apply the same idea to later contexts,
we only abstract out the colimit-preserving property.

10. We warn the reader that this lemma is not tautological.
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2.4. ∞-category of graded and filtered objects. — In this section, we recollect
basic properties of the ∞-category of graded and filtered objects. Our main
reference is [38, §3].

The∞-category of (Z-)graded objects in an∞-category C is the∞-category
Gr(C) := Fun(Z, C) of functors, where Z is the set of integers as an∞-category.
Given a graded object G ∈ Gr(C), we will denote the value of G at i ∈ Z by
Xi. This defines a functor (·)i : Gr(C)→ C.

When the ∞-category C is presentable, for all i ∈ Z, the functor (·)i admits
a fully faithful left adjoint insi : C → Gr(C) simply given by X 7→ G where

Gj =
{
X j = i
0C otherwise where 0C ∈ C is the initial object.

We say that a graded object G ∈ Gr(C) is nonnegatively graded (resp. non-
positively graded) if the restriction F |Z<0 (resp. F |Z>0) is constantly 0C . The
full subcategory spanned by nonnegatively graded (resp. nonpositively graded)
objects is denoted by Gr≥0(C) (resp. Gr≤0(C)), which is canonically equivalent
to Fun(Z≥0, C) (resp. Fun(Z≤0, C)).

Similarly, the ∞-category of (Z-)filtered objects in an ∞-category C is the
∞-category Fil(C) := Fun((Z,≥), C) of functors. Given a filtered object F ∈
Fil(C), we will systematically denote the value of F at i ∈ Z by Fili F instead of
F (i) to indicate that we consider it as a filtered object. This defines a functor
Fili : Fil(C)→ C.

When the ∞-category C is presentable, for all i ∈ Z, the functor Fili admits
a fully faithful left adjoint insi : C → Fil(C) given by the left Kan extension

along {i} → (Z,≥). Given X ∈ C, Filj(insi(X)) =
{
X j ≤ i
0C j > i

, where 0C ∈ C is

the initial object.
We say that a filtered object F ∈ Fil(C) is nonnegatively filtered if the restric-

tion F |Z≤0 is a constant functor (Z≤0,≥)→ C. We denote by Fil≥0(C) ⊆ Fil(C)
the full subcategory spanned by nonnegatively filtered objects, which is canon-
ically equivalent to Fun((Z≥0,≥), C). Similarly, we say that a filtered object
F ∈ Fil(C) is nonpositively filtered if the restriction F |Z>0 is constantly 0C .
We denote by Fil≤0(C) ⊆ Fil(C) the full subcategory spanned by nonpositively
filtered objects, which is canonically equivalent to Fun((Z≤0,≥), C).

Given a filtered object F ∈ Fil(C), the union Fil−∞ is defined to be the
colimit colim(Z,≥) F (when it exists). When C admits all sequential colimits,
this defines a functor Fil−∞ : Fil(C)→ C. Furthermore, when the ∞-category
C is stable, a filtered object F ∈ Fil(C) is called complete [38, Def 3.2.12], or a
completely filtered object, if limF ' 0 in C. We will denote by Fil∧(C) ⊆ Fil(C)
the full subcategory spanned by completely filtered objects.
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Remark 2.38. — To avoid confusion our filtrations are always decreasing.
When we need increasing filtrations, we invert the sign to get a decreasing
filtration.

Now let (C,⊗) be a presentable symmetric monoidal ∞-category. Note that
Z (resp. (Z,≥)) has a symmetric monoidal structure given by the addition +, so
the ∞-category Gr(C) (resp. Fil(C)) admits a presentable symmetric monoidal
structure given by the Day convolution ⊗Day [36, §3]. Informally, given two
graded (resp. filtered) objects F,G, we have (F ⊗Day G)i =

⊕
j+k=i F

j ⊗ Gk

(resp. Fili(F ⊗Day G) = colimj+k≥i Filj F ⊗ FilkG). Under this symmetric
monoidal structure, (·)0 : Gr(C)→ C (resp. Fil0 : Fil(C)→ C) is lax symmetric
monoidal, while the fully faithful left adjoint ins0 : C → Gr(C) (resp. C →
Fil(C)) is symmetric monoidal.

The stable subcategory Gr≥0(C) ⊆ Gr(C) (resp. Gr≤0(C) ⊆ Gr(C)) inherits a
presentable symmetric monoidal structure, and the 0-th piece (·)0 : Gr≥0(C)→
C (resp. Gr≤0(C)→ C) is symmetric monoidal.

Similarly, the stable subcategory Fil≥0(C) ⊆ Fil(C) (resp. Fil≤0(C) ⊆ Fil(C))
inherits a presentable symmetric monoidal structure, and the 0-th piece Fil0 :
Fil≥0(C)→ C (resp. Fil≤0(C)→ C) is symmetric monoidal.

Now we study the relation between graded objects and filtered objects. First,
the symmetric monoidal functor Z→ (Z,≥) induces a lax symmetric monoidal
functor Fil(C) → Gr(C), which admits a symmetric monoidal left adjoint I :
Gr(C) → Fil(C), the left Kan extension along Z → (Z,≥). Concretely, it is
given by G 7→ F where Fili F =

∐
j≥iG

j .
All of the functors mentioned above preserve small colimits. From now

on, let C be a presentable stable symmetric monoidal ∞-category. Then these
functors are exact. Now we consider the associated graded functor gr : Fil(C)→
Gr(C), F 7→ G, where Gi = cofib(F i+1F → Fili F ). It turns out that the
functor gr behaves well.

Proposition 2.39 ([29, Prop 3.2.1] [20, Prop 2.26]). — Let C be a presentable
stable symmetric monoidal∞-category. Then there exists a symmetric monoidal
structureon the functorgr∗ : Fil(C)→ Gr(C). Moreover, this symmetricmonoidal
structure can be chosen so that the composite functor Gr(C) I−→ Fil(C) gr∗−−→ Gr(C)
is homotopic to the identity as a symmetric monoidal functor.

We also need the Beilinson t-structure on the ∞-category Fil(C) of filtered
objects. As before, let (C,⊗, 1C) be a presentable stable symmetric monoidal
∞-category. Moreover, we assume that C admits an accessible t-structure
(C≥0, C≤0) compatible with filtered colimits such that 1C ∈ C≥0 and C≥0 is
closed under ⊗.
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Lemma 2.40. — Under the assumptions above, the heart C♥ := C≥0 ∩ C≤0
admits a canonical symmetric monoidal structure ⊗♥ given by X ⊗♥ Y :=
τ≤0(X ⊗ Y ), and the embedding C♥ → C is then lax symmetric monoidal.

The following is the ∞-categorical enrichment of [4, App].

Proposition 2.41 ([38, Prop 3.3.11]). — Let Fil(C)B≥0 ⊆ Fil(C) be the full
subcategory spanned by X ∈ Fil(C) such that gri(X) ∈ C≥−i for all i ∈ Z.
Then 1ins0(1C) ∈ Fil(C)B≥0, Fil(C)B≥0 is closed under ⊗Day and is the connective
part of an accessible t-structure, called the Beilinson t-structure, whose heart
is equivalent as symmetric monoidal 1-categories to the 1-category Ch(C♥) of
chain complexes with “stupid” truncation FiliK = K≤−i for all i ∈ Z and
K ∈ Ch(C♥).

In particular, when C is the derived ∞-category of a ring R, the filtered
derived category DF(R) is the ∞-category Fil(D(R)) of filtered objects in the
derived∞-category D(R) with the symmetric monoidal structure given by the
derived tensor product · ⊗L

R ·, and DF≥0(R) is the ∞-category Fil≥0(D(R))
of nonnegatively filtered objects in D(R). In this case, we will still denote by
· ⊗L

R · the Day convolution.

Remark 2.42 ([38, Cons 4.3.4]). — Let R be a ring. The∞-category DF(R)
admits a structure of derived algebraic context [38, Def 4.2.1], of which the derived
commutative algebras are calledfiltered derived (commutative)R-algebras. When
R = Z, theyarealso calledfilteredderived rings. Althoughwewill notuse this fact,
we might comment when a filtered E∞-Z-algebra admits such a structure.

We need the following lemma, which follows from the fact that left Kan
extensions are pointwise colimits that preserve cofibers and filtered colimits.

Lemma 2.43. — Let C be an ∞-category, C0 ⊆ C a full subcategory, E a stable
∞-category, which admits filtered colimits, and F̃ : C → Fil(E) a functor left
Kan extended along the fully faithful embedding C0 ↪→ C. Then we have the
following.

1. The composite functor gr∗ ◦F̃ : C → Fil(E) gr∗−−→ Gr(E) is left Kan ex-
tended along C0 ↪→ C.

2. The composite functor Fil−∞ ◦F̃ : C → Fil(E) Fil−∞−−−−→ E is left Kan
extended along C0 ↪→ C.

2.5. Reflective subcategories. — In this section, we will develop the necessary
machinery to deal with the (derived) p-complete or more generally I-complete
situations. We start with the general formalism of reflective subcategories.
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Definition 2.44 ([28, Rem 5.2.7.9 & Def 5.2.7.2]). — Let C be an∞-category.
We say that a full subcategory D ⊆ C is reflective if the inclusion D ↪→ C admits
a left adjoint L : C → D. In such a case, we call the left adjoint L : C → D a
localization.

Proposition 2.45 ([28, Prop 5.2.7.8]). — Let C be an ∞-category. A full
subcategory C0 ⊆ C is reflective if and only if for every object C ∈ C, there
exists an object D ∈ C0 along with a map f : C → D, which induces an
equivalence MapC(D,E) → MapC(C,E) for each object E ∈ C0 (in this case,
LC ' D, where L : C → C0 is the localization).

Example 2.46. — LetDcomp(Zp) ⊆ D(Z) be the p-complete derived category
of Z, consisting of (derived) p-complete Zp-module spectra. Then Dcomp(Zp) ⊆
D(Z) is reflective. The localization is the (derived) p-completion functorD(Z)→
Dcomp(Zp). Similarly, Dcomp,≥0(Zp) ⊆ D≥0(Z) is the reflective subcategory of
connective p-complete Zp-module spectra.

Example 2.47. — More generally, let A be an animated ring and I ⊆ π0(A)
a finitely generated ideal. Then the I-complete derived category Dcomp(A) is
a reflective subcategory of the derived category D(A). The same is true for
Dcomp,≥0(A) ⊆ D≥0(A).

Now we study the left derived functors. Unfortunately, the localization does
not, in general, map compact projective objects to compact projective objects.
For example, Z ∈ D(Z) is compact and projective but Zp ∈ Dcomp(Zp) is not.
We suspect that Dcomp(Zp) is not projectively generated, and, therefore, we
are probably unable to left derive “arbitrary” functors as in the projectively
generated case. However, most functors in practice are good enough to have
a reasonable theory of left derived functors11. We start with a general dis-
cussion about the interaction between localization and left Kan extension [28,
Def 4.3.2.2].

Notation 2.48. — Let C be an ∞-category and D ⊆ C a reflective (full)
subcategory with the localization L : C → D. Let C0 ⊆ C be a full subcategory,
D0 ⊆ D the full subcategory spanned by objects LC where C runs through all
objects in C0. Let C1 ⊆ C be the full subcategory spanned by vertices of both
C0 and D0.

From definitions we have the following.

Lemma 2.49. — In Setup 2.48, D0 ⊆ C1 is a reflective subcategory with local-
ization L|C1 : C1 → D0 being the restriction of L : C → D.

11. This approach is essentially depicted in the special case of p-completed rings in Bhatt’s
Eilenberg Lectures notes [7, Lecture VII]. We were informed of this approach by Yu Min in
private discussions.
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Example 2.50. — One of the crucial examples for the setup above: C is the
∞-category of animated rings, D is the full subcategory of p-complete ani-
mated Zp-algebras, and C0 ⊆ C is the full subcategory spanned by polynomial
rings Z[X1, . . . , Xn]. More generally, let A be an animated ring and I ⊆ π0(A) a
finitely generated ideal. Then we can consider the case that C is the∞-category
of animated A-algebras and D ⊆ C is the full subcategory of I-complete ani-
mated A-algebras, and C0 ⊆ C is the full subcategory spanned by polynomial
A-algebras A[X1, . . . , Xn] := Z[X1, . . . , Xn]⊗L

Z A.

Lemma 2.51. — In Setup 2.48, let E be an ∞-category and F̃ : C → E a
functor left Kan extended from the fully faithful embedding C0 ↪→ C. Then the
restriction F̃ |D is left Kan extended from the fully faithful embedding D0 ↪→ D.

Proof. — It follows from [28, Lem 5.2.6.6] that the restriction F̃ |D is a left
Kan extension of F̃ along L : C → D, and, therefore, is left Kan extended from
the composite functor C0 ↪→ C L−→ D. The composite functor C0 ↪→ C → D can
be rewritten as the composite C0 L−→ D0 ↪→ D, and, therefore, F̃ |D is left Kan
extended from D0 ↪→ D. �

Example 2.52. — In Example 2.50, the cotangent complex L·/Z : C =
CAlgan → D(Z) is left Kan extended from PolyZ ⊆ Ring. Consequently, the
restriction L·/Z|D : D → D(Z) is left Kan extended from p-completed polyno-
mial rings. Similarly, the p-completed cotangent complex (L·/Z)∧p : CAlgan →
Dcomp(Zp) is left extended from PolyZ ⊆ Ring, and, therefore, the restric-
tion (L·/Z)∧p |D : D → Dcomp(Zp) is left extended from p-completed polynomial
rings.

Notation 2.53. — In Setup 2.48, let F : D0 → E be a functor equipped with
a left Kan extension F̃ : C → E along the fully faithful inclusion C0 ↪→ C of the
composite functor C0 L−→ D0 F−→ E .

Remark 2.54. — In our applications, C will be a projectively generated ∞-
category (Definition A.8) with a set S of compact projective generators. We
will choose C0 ⊆ C to be the full subcategory spanned by finite coproducts of
objects in S, and E will be a cocomplete ∞-category. In this case, the left
Kan extension in question always exists (Propositions A.14 and A.16). More
generally, if C0 is a small subcategory and that C is assumed to be locally small,
then the left Kan extension exists.

In Setup 2.53, we first assume without loss of generality that L|D = idD
by [28, Prop 5.2.7.4], and then L2 = L. Now we let F1 : C1 → E denote the
composite C1 → D0 F−→ E , which is an extension of the composite C0 → D0 F−→ E
along C0 → C1. Since F̃ |C1 : C1 → E is, by definition, a left Kan extension of
C0 → D0 F−→ E along C0 → C1, there exists an essentially unique comparison
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map F̃ |C1 → F1 of functors C1 ⇒ E . Restricting to the full subcategory D0 ⊆
C1, we get a comparison map F̃ |D0 → F . From Lemma 2.51 we have the
following.

Corollary 2.55. — In Setup 2.53, if we assume that the comparison map
F̃ |D0 → F is an equivalence, then F̃ |D is the left Kan extension of F along the
fully faithful embedding D0 ↪→ D.

We need the following concept:

Proposition 2.56 ([28, Prop 5.2.7.12]). — Let C be an ∞-category and let
L : C → LC ⊆ C be a localization functor. Let S denote the collection of all
morphisms f in C such that Lf is an equivalence. Then for every ∞-category
D, composition with L induces a fully faithful functor ψ : Fun(LC,D) →
Fun(C,D). Moreover, the essential image of ψ consists of those functors F :
C → D such that F (f) is an equivalence in D for each f ∈ S.

Definition 2.57. — Let C be an ∞-category, L : C → LC ⊆ C a localization
functor and D an ∞-category. We say that a functor F : C → D is L-invariant
if for every morphism f in C such that Lf is an equivalence, then so is F (f)
in D.

Now we come back to our previous discussion.

Lemma 2.58. — Under the above discussion, consider the following conditions.
i. The left Kan extension F̃ : C → E is L-invariant.
ii. The comparison map F̃ |C1 → F1 constructed above is an equivalence.
iii. The comparison map F̃ |D1 → F constructed above is an equivalence.

We have the following.
1. Conditions 2.58 and 2.58 are equivalent.
2. Condition 2.58 implies condition 2.58.
3. Under the assumptions in Remark 2.54, condition 2.58 implies condition

2.58.

Proof. — First, restricting the comparison map F̃ |C1 → F1 to C0, we get the
identity, so conditions 2.58 and 2.58 are equivalent.

If F̃ is L-invariant, then for all X ∈ C1, the unit map X → LX induces a
commutative diagram

F̃ (X) −→ F̃ (LX)

−→ −→

F1(X) −→ F1(LX)

with the horizontal maps being equivalences. In particular, for all Y ∈ D0, there
exists X ∈ C0 such that Y ' LX. Then F̃ (X) → F1(X) is an equivalence,
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and, therefore, so are F̃ (LX) → F1(LX) and F̃ (Y ) → F1(Y ), which proves
condition 2.58.

We now assume that we are in the special case described in Remark 2.54.
Suppose that condition 2.58 holds. Note that F1 is, by definition, L-invariant,
and, therefore, for allX ∈ C0, F̃ maps the unit mapX → LX to an equivalence.
Let C′ ⊆ C be the full subcategory spanned by those X ∈ C such that F̃ maps
X → LX to an equivalence. Then C0 ⊆ C′. It follows from Propositions A.14
and A.16 that F̃ preserves sifted colimits. Since L preserves small colimits, C′
is closed under sifted colimits, and, therefore, C′ = C by Lemma A.13. �

Remark 2.59. — We conjecture that all conditions in Lemma 2.58 are equiv-
alent under Setup 2.53 without the assumptions in Remark 2.54.

Now we describe how the setups above give rise to derived prismatic co-
homology in [12]. Let (A, I) be a bounded prism [12, Def 3.2]. Let C =
Ani(AlgA/I) be the ∞-category of A/I-algebras and D ⊆ C the full subcate-
gory of p-completed A/I-algebras. In this case, the localization functor C → D
is simply given by the p-completion (−)∧p . Let C0 ⊆ C be the full subcat-
egory of polynomial A/I-algebras. Then D0 ⊆ D is the full subcategory of
p-completed polynomial A/I-algebras. [12, §4.2] defines the functors F :=
�·/A : D0 → Dcomp(A) and G := �·/A : D0 → Dcomp(A/I), where Dcomp(A)
is the ∞-category of (p, I)-complete A-module spectra, and Dcomp(A/I) is the
∞-category of p-complete A/I-module spectra. In Setup 2.53 and Remark 2.54,
we claim that the functor F̃ and G̃ are left Kan extended from D0 after restric-
tion to D. That is to say, F̃ and G̃ are left derived functors L�·/A and L�·/A
defined in [12, Cons 7.6]. Thanks to Lemma 2.58, it suffices to show that F̃
and G̃ are (−)∧p -invariant. We will first describe our proof and then we offer
the lemmas used in the proof.

We start with G̃. Composing G with the Postnikov tower Dcomp(A/I) →
DFcomp(A/I), X 7→ (τ≥nX)n∈(Z,≥),where DFcomp(A/I) := Fil(Dcomp(A/I))
is the filtered derived ∞-category of p-completed A/I-module spectra, we
get a functor GP : D0 → DFcomp(A/I) such that the union (see Corol-
lary 2.61) Fil−∞GP : D0 → Dcomp(A/I) is equivalent to G. It follows from
the Hodge–Tate comparison [12, Prop 6.2] that the functorial comparison map(∧i

L·/(A/I){−i}[−i]
)∧
p
→ gr−i ◦GP is an equivalence). Now Remark 2.54

shows that GP : D0 → DFcomp(A/I) gives rise to G̃P : C → DFcomp(A/I), and
the functor

(∧i
L·/(A/I){−i}[−i]

)∧
p

: D0 → DFcomp(A/I) gives rise to some
C → DFcomp(A/I), which is

(∧i
L·/(A/I){−i}[−i]

)∧
p
by Example 2.52, and in

particular, (−)∧p -invariant. It follows from Lemma 2.43 that the associated
graded pieces gr−i ◦G̃P are (−)∧p -invariant, and, therefore, the (−)∧p -invariance
of G̃ follows from Corollary 2.61.
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Note that F̃ coincides with G̃ composed with the derived modulo I, that is,

the composite functor Ani(AlgA/I)
F̃−→ Dcomp(A) ·⊗̂

L
A(A/I)−−−−−−→ Dcomp(A/I). We

deduce by derived Nakayama [39, Tag 0G1U] that F̃ is also (−)∧p -invariant.
Here are the lemmas that we used in the argument above.

Lemma 2.60. — Let C be an ∞-category and D ⊆ C a reflective subcategory
with localization L : C → D. Let E be a stable∞-category. Let F : C → Fil≤0(E)
be a functor. If the associated graded pieces gri ◦F̃ are L-invariant for all i ∈ Z,
then so is F̃ .

Proof. — For all C ∈ C, we inductively show that the unit map C → LC
induces an equivalence Fili(F̃ (C))→ Fili(F̃ (LC)). By assumption, this is true
for all i > 0. Now consider the commutative diagram

Fili+1(F̃ (C)) −→ Fili(F̃ (C)) −→ gri(F̃ (C))

−→ −→ −→

Fili+1(F̃ (LC)) −→ Fili(F̃ (LC)) −→ gri(F̃ (LC))

where the horizontal maps are fiber sequences. Suppose that the result is true
for i+ 1. Then the leftmost and the rightmost vertical maps are equivalences,
and, therefore, so is the middle vertical maps, which shows that the result is
true for i. �

From definitions, the following hold.

Corollary 2.61. — Under the assumptions in Lemma 2.60, if we further
assume that E admits filtered colimits, then the union Fil−∞ ◦F̃ : C →
Fil(E) Fil−∞−−−−→ E is also L-invariant.

3. Animated ideals and PD-pairs

In this section, we will first give an informal exposition of Smith ideals
introduced in [22] in terms of ∞-categories. See also [41, 40] for various gen-
eralizations. Then we will show how to apply these ideas to define and study
“ideals” of animated rings and animated PD-pairs, which are the cornerstones
of the animated theory of crystalline cohomology.

3.1. Smith ideals. — We fix a presentable stable symmetric monoidal ∞-cat-
egory (C,⊗). The reader should feel free to take the special case that C = Sp
is the ∞-category of spectra and ⊗ is the smash product of spectra.
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Consider the 1-simplex ∆1, which is simply the 1-category associated to the
ordinal [1] = {0 < 1}. The opposite category (∆1)op has a symmetric monoidal
structure given by max{·, ·}12.

Thus, the presentable stable∞-category Fun((∆1)op, C) admits a presentable
symmetric monoidal structure given by the Day convolution ⊗Day [36, §3].

Informally, the unit object 1Fun((∆1)op,C) is given by (1C ← 0) ∈
Fun((∆1)op, C), and given n functors F1, . . . , Fn ∈ Fun((∆1)op, C), the Day
convolution F1 ⊗Day · · · ⊗Day Fn is given as follows: F1, . . . , Fn determines an
n-cube F : (∆1)op × · · · × (∆1)op → C, (e1, . . . , en) 7→ F1(e1) ⊗ · · · ⊗ Fn(en).
This cube, except the final vertex, determines a “cubical pushout” mapping
to the final vertex: (F (0, . . . , 0) ← colim(∆1)op×···×(∆1)op\(0,...,0) F ), which is
F1 ⊗Day · · · ⊗Day Fn.

In particular, when n = 2, the Day convolution of (X0 ← X1) and (Y0 ← Y1)
is given by (X0⊗Y0 ← (X0⊗Y1)qX1⊗Y1 (X1⊗Y0)). This is essentially equivalent
to the pushout product monoidal structure in [22, Thm 1.2].

On the other hand, there exists a pointwise symmetric monoidal structure
⊗ on the stable ∞-category Fun(∆1, C), where F1 ⊗ · · · ⊗ Fn is given by the
functor e 7→ F1(e)⊗ · · · ⊗ Fn(e).

There is a comparison between these two stable symmetric monoidal ∞-
categories.

Proposition 3.1 (M.Ramzi). — Let C be a presentable stable symmetricmono-
idal ∞-category. Then there is an equivalence Fun((∆1)op, C) ' Fun(∆1, C)
in CAlgC(PrL). On the level of underlying categories, the equivalence is given
by Fun((∆1)op, C) 3 F 7→ (F (0)→ cofib(F (1)→ F (0))) ∈ Fun(∆1, C) of which
the inverse is given by Fun(∆1, C) 3 G 7→ (G(0) ← fib(G(0) → G(1))) ∈
Fun((∆1)op, C).

Proof. — The pair of inverse functors are clearly well defined. It suffices to
endow the functor

K : (Fun((∆1)op, C),⊗Day) −→ (Fun(∆1, C),⊗)
(F (1)→ F (0)) 7−→ (F (0)→ cofib(F (1)→ F (0)))

a symmetric monoidal structure. Such a structure exists for every pointed
presentable symmetric monoidal ∞-categories. Indeed, since Fun((∆1)op, C) '
Fun((∆1)op,An∗)⊗C, and the same for Fun(∆1, C), without loss of generality,
we may assume that C = An∗. By the universal property of Day convolution,
it suffices to endow the composite functor

∆1 −→ Fun((∆1)op,An∗)
K−→ Fun(∆1,An∗)

12. We were informed of this by Denis Nardin.
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a symmetric monoidal structure, where the first functor is the Yoneda embed-
ding combined with adjoining a point An→ An∗, but since ∆1 is a 1-category,
it is equivalent to endowing the composite functor

∆1 −→ Fun((∆1)op,Set∗)
K−→ Fun(∆1,Set∗)

a symmetric monoidal structure. Note that a symmetric monoidal functor out
of (∆1,max) is the same as a map of idempotent algebras, and this can be
checked directly. �

Now we assume that C admits a symmetric monoidal t-structure (C≥0, C≤0),
which is compatible with filtered colimits. This is the case when C = Sp, and
(C≥0, C≤0) is the canonical t-structure for spectra. Then so does Fun((∆1)op, C),
that is to say, Fun((∆1)op, C)≥0 := Fun((∆1)op, C≥0) and Fun((∆1)op, C)≤0 :=
Fun((∆1)op, C≤0). Transferring this t-structure along the equivalence in Propo-
sition 3.1, we get a t-structure on Fun(∆1, C) where Fun(∆1, C)≥0 ⊆ Fun(∆1, C)
is spanned by edges f : X → Y in C such that X ∈ C≥0 and fib(Y → X) ∈ C≥0,
or equivalently, X,Y ∈ C≥0, and f is 1-connective (that is to say, π0(f) is sur-
jective). We summarize as follows.

Corollary 3.2. — The equivalence in Proposition 3.1 induces an equiva-
lence of presentable symmetric monoidal full subcategories Fun((∆1)op, C≥0) '
Fun(∆1, C)≥0, where the full subcategory Fun((∆1)op, C)≥0 is spanned by maps
Y ← X in C≥0.

Passing to En-algebras for any n ∈ N ∪ {∞}, we get the following.

Corollary 3.3. — There is an equivalence between the ∞-category of En-
algebras in (Fun((∆1)op, C),⊗Day) and the∞-category of En-maps between En-
algebras in (C,⊗). This equivalence induces an equivalence between the full
subcategory spanned by connective En-algebras in (Fun((∆1)op, C),⊗Day) and
the full subcategory spanned by 1-connective En-maps between connective En-
algebras in (C,⊗).

Explicitly, for any En-algebra in ((Fun(∆1)op, C),⊗Day) of which the under-
lying object is (A ← I), the object A ∈ C, the cofiber cofib(I → A) and the
map A → cofib(I → A) admit canonical En-algebra structures. We can then
understand I as an “ideal” of En-algebra A. When A is connective, the pre-
vious identification also describes connective “ideals” of A. This is the Smith
ideal in [22], which gives rise to a reasonable theory of ideals (resp. connective
ideals) of En-rings (resp. connective En-rings) when C is the presentable stable
symmetric monoidal ∞-category Sp of spectra.

In the rest of this section, we will study the animated analogue of the pre-
ceding equivalence, that is to say, “ideals” and “PD-ideals” of an animated ring.
To do so, we need to exploit more structures of D(Z).
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3.2. Animated (PD-)pairs. — In this section, we introduce the central object
of this section: animated pairs and (absolute) animated PD-pairs.

Notation 3.4. — Let Pair denote the 1-category of ring-ideal pairs (A, I),
that is, a (commutative) ring A along with an ideal I ⊆ A. Let Pairγ denote
the 1-category of divided power rings (A, I, γ) [39, Tag 07GU]. The (absolute)
PD-envelope functor [39, Tag 07H9] Pair→ Pairγ , being the left adjoint to the
forgetful functor Pairγ → Pair, is denoted by (A, I) 7→ DA(I).

Notation 3.5. — Let Inj ⊆ Fun((∆1)op,Ab) be the full subcategory spanned
by injective maps M �M ′.

We note that there is a pair Inj � Pair of adjoint functors where
Pair → Fun((∆1)op,Ab) is the forgetful functor (A, I) 7→ (A ← I), and
Fun((∆1)op,Ab) → Pair is the “symmetric product” (M � M ′) 7→
(SymZ(M),M ′ SymZ(M)), where SymZ(M) � M ′ SymZ(M) is the ideal gen-
erated by elements in M ′.

Unfortunately, the category Inj might not be 1-projectively generated. In
particular, we cannot apply Corollary 2.3 to deduce that the category Pair is 1-
projectively generated (we believe that it is not), and to construct “Ani(Pair)”.
In fact, we need to embed Pair as a full subcategory of a 1-projectively gener-
ated 1-category, and then the ∞-category of animated pairs coincides with the
animation of that larger 1-category.

We begin by analyzing the full subcategory Inj ⊆ Fun((∆1)op,Ab). Note
that {Z← 0, idZ : Z← Z} ⊆ Inj is a set of compact 1-projective generators for
Fun((∆1)op,Ab) by Lemma 2.11.

Notation 3.6. — Let Injst ⊆ Fun((∆1)op,Ab) denote the full subcategory
generated by {Z← 0, idZ : Z← Z} under finite coproducts, which is, in fact, a
full subcategory of Inj.

It follows from Proposition A.16 that there is an equivalence PΣ,1(Injst) '−→
Fun((∆1)op,Ab) of ∞-categories. It then follows from Lemma 2.1 that the
fully faithful embedding Inj ↪→ PΣ,1(Injst) admits a left adjoint given by the
left derived functor of the inclusion Injst ↪→ Inj. We claim the following.

Lemma 3.7. — The essential image of Inj ↪→ PΣ,1(Injst) is spanned by those
finite-product-preserving functors F : (Injst)op → Set, which maps the edge
(Z← 0)→ (idZ : Z← Z) in Injst to an injective map of sets.

Proof. — The functors Fun((∆1)op,Ab) ⇒ Set corepresented by idZ ∈ Injst
and (Z ← 0) ∈ Injst are given by (A ← A′) 7→ A′ and (A ← A′) 7→ A,
respectively, and the edge (Z ← 0) → (idZ : Z ← Z) gives rise to the natural
map A← A′ of the two functors. It follows that an object F ∈ Fun((∆1)op,Ab)
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lies in Inj if and only if the value of the natural map on F is an injection. The
result then follows from the equivalence PΣ,1(Injst) '−→ Fun((∆1)op,Ab). �

Notation 3.8. — Let Pairst ⊆ Pair denote the full subcategory spanned by
standard pairs, being the images of Injst under the functor Inj→ Pair. In other
words, a standard pair is a pair of form (Z[X,Y ], (Y )) for finite sets X and Y .

Then by Corollary 2.2, we have the following.

Lemma 3.9. — The free-pair functor Injst → Pairst, being essentially surjec-
tive, gives rise to the forgetful functor PΣ,1(Pairst) → Fun((∆1)op,Ab), which
is conservative and preserves sifted colimits.

Construction 3.10. — Lemma 2.1 gives us a canonical pair of adjoint func-
tors PΣ,1(Pairst) � Pair, where PΣ,1(Pairst)→ Pair is the left derived 1-func-
tor (Proposition A.14) of the inclusion Pairst ↪→ Pair, and Pair→ PΣ,1(Pairst)
is given by the restricted Yoneda embedding (A, I) 7→ HomPair(·, (A, I)).

We first note that the forgetful functors are compatible.

Lemma 3.11. — There is a commutative diagram

Pair −→ PΣ,1(Pairst)

−→ −→

Inj ↪−→ Fun(∆1,op,Ab)

of 1-categories, where the vertical arrows are forgetful functors, and the top
horizontal arrow is described in Construction 3.10.

Proof. — Givenapair (A, I) ∈ Pair, the image inPΣ,1(Pairst) is givenbyPairst 3
(B, J) 7→ HomPair((B, J), (A, I)), subsequently mapped to Injst 3 (M�M ′) 7→
HomPair((SymZ(M),M ′ SymZ(M)), (A, I)) ∼= HomFun((∆1)op,Ab)(M � M ′,
A � I). The other composite is the same. This identification is functorial in
(A, I). �

Now we show that Pair → PΣ,1(Pairst) is an embedding to a 1-projectively
generated 1-category that we want. The trick is to talk about maps (Z[X], 0)→
(A, I) and (Z[X], (X)) → (A, I) in place of elements in A and I, respectively,
to do certain “element chasing”. We remind the reader that PolyZ is a set
of compact projective objects for Ring, which gives rise to an equivalence
PΣ,1(PolyZ) ' Ring of 1-categories, where PolyZ is the 1-category of poly-
nomial rings.

Lemma 3.12. — The functorPair→ PΣ,1(Pairst)described inConstruction3.10
is fully faithful.
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Proof. — The faithfulness follows from Lemma 3.11 and the faithfulness of
the forgetful functor Pair → Inj. Given two pairs (A, I), (B, J) in Pair and a
natural map

HomPair(·, (A, I))|(Pairst)op → HomPair(·, (B, J))|(Pairst)op

of finite-product-preserving functors (Pairst)op ⇒ Set, we need to show that
this is induced by some map (A, I)→ (B, J) of pairs.

By Lemma 3.11, there exists a unique map (A � I) → (B � J) in
Inj which corresponds to the natural transform after composition (Injst)op →
(Pairst)op ⇒ Set.

Similarly, since PΣ,1(PolyZ) ' Ring, there exists a unique map A → B of
rings, which corresponds to the natural transform after composition Polyop

Z →
(Pairst)op ⇒ Set, where PolyZ → Pairst is given by R 7→ (R, 0).

It then follows from the commutativity of the diagram

Freefin
Z

Sym−−−→ PolyZ−→ −→

Injst −→ Pairst

(1)

of 1-categories, where Freefin
Z is the 1-category of finite free abelian groups, with

finite-coproduct-preserving functors that the two maps (A � I) → (B � J)
in Inj and A→ B in Ring are compatible, which gives rise to a map (A, I)→
(B, J) in Pair. �

Now we characterize the image of this embedding.

Lemma 3.13. — The square in Lemma 3.11 is Cartesian. Equivalently by
Lemma 3.7, the essential image of the fully faithful functor Pair ↪→ PΣ,1(Pairst)
is spanned by those finite-product-preserving functors F : (Pairst)op → Set,
which maps the edge (Z[X], 0) → (Z[X], (X)) in Pairst to an injective map of
sets.

Proof. — Let F : (Pairst)op → Set be a functor that preserves finite products
such that the composite (Injst)op → (Pairst)op F−→ Set belongs to the full sub-
category Inj under the identification PΣ(Injst) ' Fun((∆1)op,Ab). The goal is
to show that there exists a pair (A, I) ∈ Pair that represents F .

Let (A � I) ∈ Inj correspond to the composite functor (Injst)op →
(Pairst)op F−→ Set, and the map A � I of underlying sets is precisely induced
by the map (Z[X], 0)→ (Z[X], (X)) in Pairst.

The ring structure is given as follows: the functor PolyZ → Pairst given
by R 7→ (R, 0) preserves finite coproducts, and thus the composite functor
Polyop

Z → (Pairst)op F−→ Set preserves finite products, which corresponds to a
ring structure on A. The compatibility follows from (1).
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Now we show that A� I is an ideal, that is to say, the ring multiplication
A × A → A restricts to a map A × I → I. By the above construction, A =
F (Z[Y ], 0) and I = F (Z[X], (X)), and since F preserves finite products, A ×
I = F (Z[X,Y ], (X)). Consider (Z[T ], (T )) ∈ Pairst. The map (Z[T ], (T )) →
(Z[X,Y ], (X)), T 7→ XY in Pairst induces a map A× I → I. The commutative
diagram

(Z[X,Y ], 0) −→ (Z[T ], 0)

−→ −→
(Z[X,Y ], (X)) −→ (Z[T ], (T ))

in Pairst shows that the preceding map A× I → I is compatible with the ring
structure and the inclusion I → A.

It remains to construct an isomorphism F → FunPair(·, (A, I))|(Pairst)op of
finite-product-preserving functors (Pairst)op ⇒ Set. Composing with the func-
tor (Injst)op → (Pairst)op denoted by j, we get a map F ◦j → FunPair(·, (A, I))◦
j of functors (Injst)op ⇒ Set which is an equivalence by construction (and the
adjunction Fun(∆1,Ab)inj � Pair). We need to show that this equivalence
descends along the essentially surjective functor j.

First, for any (B, J) ∈ Pairst, by picking any lift under j, the map F (B, J)→
FunPair((B, J), (A, I)) could be described as follows: for any f ∈ F (B, J) and
any b ∈ B, the element b corresponds uniquely to a map b : (Z[t], 0) → (B, J)
of pairs. Note that b∗(f) ∈ F (Z[t], 0) ∼= A. The image of f , as a map (B, J)→
(A, I) of pairs, is concretely given by b 7→ b

∗(f), which is independent of the
choice of the lift of (B, J).

Now it remains to show that, for any map ϕ : (B, J)→ (C,K) of pairs, the
diagram

F (B, J) −→ FunPair((B, J), (A, I))

−→ −→

F (C,K) −→ FunPair((C,K), (A, I))

is commutative. Indeed, foranyf ∈ F (C,K), the image inFunPair((C,K), (A, I))
is given by c 7→ c∗(f), and the image in FunPair((B, J), (A, I)) is given by
b 7→ ϕ(b)

∗
(f). On the other hand, the image of f in F (B, J) is ϕ∗(f), and the

image in FunPair((B, J), (A, I)) is given by b 7→ b
∗(ϕ∗(f)). The result follows

from the fact that ϕ ◦ b = ϕ(b) as maps (Z[t], 0) ⇒ (C,K) of pairs. �

Remark 3.14. — The 1-category PΣ,1(Pairst) contains more objects than Pair.
They might be of independent interest. For example, let A be a ring and I
an invertible A-module along with a map j : I → A of A-modules. If the
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map j in question is not injective, then it does not “faithfully” correspond
to a ring-ideal pair such as (A, im(j)), that is to say, it represents an ob-
ject in PΣ,1(Pairst),which is different from (A, im(j)). In fact, the 1-category
PΣ,1(Pairst) could be identified with the 1-category of commutative algebra ob-
jects in Fun(∆1,Ab)surj with pushout product monoidal structure, 1-categorical
version of Section 3.1, or equivalently, the category of quasi-ideals13 in [17, §3.3].

We now develop a PD analogue as follows.

Notation 3.15. — Let Pairγ,st ⊆ Pairγ denote the full subcategory spanned
by the images of (A, I) ∈ Pairst under the functor of PD-envelope [39, Tag
07H9], denoted by (DA(I) � A/I, γ) instead of the cumbersome notation
(DA(I), ker(DA(I) � A/I), γ).

Construction 3.16. — By Lemma 2.1, we get a pair PΣ,1(Pairγ,st) � Pairγ
of adjoint functors. Explicitly, the objects in Pairγ,st are of the form
DZ[X,Y ](Y ) ∼= ΓZ[X](Y ) for finite sets X and Y .

On the other hand, from Corollary 2.2 we have the following.

Lemma 3.17. — The PD-envelope functor Pairst → Pairγ,st, being essentially
surjective, gives rise to the forgetful functor PΣ,1(Pairγ,st) → PΣ,1(Pairst),
which is conservative and preserves sifted colimits.

There is another forgetful functor Pairγ → Pair. These functors are com-
patible.

Lemma 3.18. — The diagram

Pairγ −→ PΣ,1(Pairγ,st)

−→ −→

Pair ↪−→ PΣ,1(Pairst)

is a commutative diagram of 1-categories, where vertical arrows are forgetful
functors, and the top horizontal arrow is described in Construction 3.16.

Proof. — For any PD-pair (A, I, γ) ∈ Pairγ , the image in PΣ,1(Pairγ,st) is
given by Pairγ,st 3 (B, J, δ) 7→ HomPairγ ((B, J, δ), (A, I, γ)), which is sub-
sequently mapped to an object in PΣ,1(Pairst) given by Pairst 3 (B, J) 7→
HomPairγ (DJ(B), (A, I, γ)). On the other hand, the image of (A, I, γ) in Pair
is (A, I), which is subsequently mapped to an object in PΣ,1(Pairst) given by
Pairst 3 (B, J) 7→ HomPair((B, J), (A, I)). It then follows from the functorial
isomorphism HomPairγ (DJ(B), (A, I, γ)) ∼= HomPair((B, J), (A, I)) by adjunc-
tion. �

13. We thank Ofer Gabber for informing about this concept.
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Similarly, we have the following embedding.

Lemma 3.19. — The functor Pairγ → PΣ,1(Pairγ,st) described in Construc-
tion 3.16 is fully faithful.

Proof. — The proof is similar to that of Lemma 3.12. The faithfulness follows
from Lemma 3.18 and the faithfulness of the forgetful functor Pairγ → Pair.
Given two PD-pairs (A, I, γ) and (B, J, δ) in Pairγ and a map

F := HomPairγ (·, (A, I, γ))|(Pairγ,st)op → HomPairγ (·, (B, J, δ))|(Pairγ,st)op =: G

of finite-product-preserving functors (Pairγ,st)op ⇒ Set, we need to show that
this is induced by some map (A, I, γ)→ (B, J, δ) of PD-pairs.

By Lemma 3.12, there exists a uniquemap (A, I)→ (B, J) of pairs, which cor-
respond to the natural transform after composition (Pairst)op → (Pairγ,st)op ⇒
Set. It remains to show that this map preserves the PD-structure.

Indeed, any x ∈ I corresponds to a map (ΓZ(t) � Z, γ0) → (A, I, γ)
of PD-pairs, i.e., an element x ∈ F (ΓZ(t) � Z, γ0), and the image y of
x ∈ I in J is given by the image y ∈ G(ΓZ(t) � Z, γ0) under the map
F → G. For any n ∈ N>0, there is a canonical endomorphism (ΓZ(t) �
Z, γ0)→ (ΓZ(t) � Z, γ0), t 7→ γn(t) of PD-pairs, which induces endomorphisms
F (ΓZ(t) � Z, γ0) → F (ΓZ(t) � Z, γ0) and G(ΓZ(t) � Z, γ0) → G(ΓZ(t) �
Z, γ0) compatible with the map F → G. In particular, the image, denoted
by xn, of x under the first endomorphism maps to the image, denoted by yn,
of y under the second endomorphism. We note that xn corresponds to γn(x),
and yn corresponds to γn(y). Thus, the map (A, I) → (B, J) maps γn(x) to
γn(y). �

We have the following description of the essential image (cf. Lemma 3.13).

Lemma 3.20. — The square in Lemma 3.18 is Cartesian. Equivalently by
Lemma 3.13, the essential image of the fully faithful functor Pairγ →
PΣ,1(Pairγ,st) (Lemma 3.19) is spanned by those finite-product-preserving func-
tors F : (Pairγ,st)op → Set, which maps the edge (Z[X], 0, 0)→ (ΓZ(X) � Z, γ)
in Pairγ,st to an injective map of sets.

Proof. — The proof is similar to that of Lemma 3.13. Let F : (Pairγ,st)op →
Set be a functor such that the composite (Pairst)op → (Pairγ,st)op F−→ Set lies
in the essential image of the fully faithful functor Pair → PΣ,1(Pairst). We
need to construct a PD-pair (A, I, γ) ∈ Pairγ that represents the functor F .

Let (A, I) represent the composite functor (Pairst)op → (Pairγ,st)op F−→ Set.
Unrolling the definitions, we see that A = F (Z[t], 0, 0), I = F (ΓZ(t) � Z, γ),
and the map I → A is induced by the map (Z[t], 0, 0) → (ΓZ(t) � Z, γ) of
PD-pairs. We endow a PD-structure (A, I) as follows: there exists a canonical
endomorphism γn : (ΓZ(t) � Z, γ) → (ΓZ(t) � Z, γ), t 7→ γn(t) of PD-pair,
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which induces a map γn : I → I for all n ∈ N>0. We need to check that
(γn)n∈N>0 satisfies the axioms of divided power structure [39, Tag 07GL], set-
ting γ0 = id. We spell out the verification of two of them.
• γn(x+ y) =

∑
i γi(x)γn−i(y) for (x, y) ∈ I2:

First, in the PD-pair (ΓZ(X,Y ) � Z, γ), the identity γn(X + Y ) =∑
i γi(X)γn−i(Y ) holds. This implies that the composite

(ΓZ(T ) � Z, γ)→ (ΓZ(T0, . . . , Tn) � Z, γ)→ (ΓZ(X,Y ) � Z, γ),

where the first map is induced by T 7→
∑
i Ti, and the second map is

induced by Ti 7→ γi(X)γn−i(Y ), coincides with the composite

(ΓZ(T ) � Z, γ) γn−→ (ΓZ(T ) � Z, γ)→ (ΓZ(X,Y ) � Z, γ),

where the second map is induced by T 7→ X+Y . Applying F to the two
compositions, using the fact that F preserves finite products, and that
(x, y) ∈ I2 corresponds to an element in F (ΓZ(X,Y ) � Z, γ), we get
the result (for the part Ti 7→ γi(X)γn−i(Y ),one need to separate i = 0
and i > 0).

• γn(ax) = anγn(x) for (a, x) ∈ A× I:
In the PD-pair (ΓZ[Y ](X) � Z[Y ], γ), the identity γn(Y X) = Y nγn(X)
holds. This implies that the composite

(ΓZ(T ) � Z, γ)→ (ΓZ[T1,...,Tn](t) � Z[T1, . . . , Tn], γ)→ (ΓZ[Y ](X) � Z[Y ], γ),

where the first map is induced by T 7→ T1 · · ·Tnt, and the second map
is induced by Ti 7→ Y and t 7→ X, coincides with the composite

(ΓZ(T ) � Z, γ) γn−→ (ΓZ(T ) � Z, γ)→ (ΓZ[Y ](X) � Z[Y ], γ),

where the second map is induced by T 7→ XY . Applying F to the two
compositions, using the fact that F preserves finite products, and that
(a, x) ∈ A× I corresponds to an element in F (ΓZ[Y ](X) � Z[Y ], γ), we
get the result.

Finally, the proof of the fact that (A, I, γ) represents F is parallel to the cor-
responding part of the proof of Lemma 3.13. �

Now we arrive at the definition of animated pairs and animated PD-pairs.

Definition 3.21. — The∞-category Pairan of animated pairs is defined to be
the ∞-category PΣ(Pairst), and the ∞-category Pairγ,an of animated PD-pairs
is defined to be the ∞-category PΣ(Pairγ,st).

The forgetful functor Pairan → Fun(∆1, D(Z)≥0) is given by the pair
PΣ(Injst) � PΣ(Pairst) obtained by applying Corollary 2.2 to the free-pair
functor Injst → Pairst (which is essentially surjective).

The forgetful functor Pairγ,an → Pairan and the animated PD-envelope func-
tor Envγ,an : Pairan → Pairγ,an are given by the pair PΣ(Pairst) � PΣ(Pairγ,st)
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obtained by applying Corollary 2.2 to the PD-envelope functor Pairst → Pairγ,st
being essentially surjective.

From Corollary 2.2 we have the following.

Corollary 3.22. — The forgetful functors Pairan → Fun((∆1)op, D(Z)≥0)
and Pairγ,an → Pairan are conservative and preserve sifted colimits.

These forgetful functors are compatible with canonical embeddings Pair ↪→
PΣ,1(Pairst) ↪→ Pairan and Pairγ ↪→ PΣ,1(Pairγ,st) ↪→ Pairγ,an.

Proposition 3.23. — The diagram

Pairγ ↪−→ Pairγ,an

−→ −→

Pair ↪−→ Pairan

−→ −→

Inj ↪−→ Fun(∆1,op, D(Z)≥0)

is a commutative diagram of ∞-categories, where the vertical arrows are for-
getful functors. Moreover, the squares are Cartesian.

Proof. — The commutativity follows from Remark A.22 and Lemmas 3.11
and 3.18. The last claim follows from Lemmas 3.13 and 3.20. �

Remark 3.24. — The embeddings Pair ↪→ Pairan and Pairγ ↪→ Pairγ,an admit
left adjoints given by the composite functors Pairan τ≤0−−→ PΣ,1(Pairst) → Pair
and Pairγ,an τ≤0−−→ PΣ,1(Pairγ,st) → Pairγ (see Remark A.22 for τ≤0). We will
give an explicit description of the functor Pairan → Pair in Proposition 3.35.

Taking the left adjoints to the upper square of the diagram in Proposi-
tion 3.23, we get the following.

Corollary 3.25. — The diagram

Pairan −→ Pair

−→ −→

Pairγ,an −→ Pairγ

is a commutative diagram of ∞-categories, where the horizontal arrows are
described in Remark 3.24.

In particular, we rewrite the PD-envelope in terms of animated PD-envelope.
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Corollary 3.26. — The PD-envelope functor Pair→ Pairγ , (A, I) 7→ DA(I)
coincides with the composite functor Pair ↪→ Pairan Envγ,an

−−−−−→ Pairγ,an → Pairγ ,
where the last functor is described in Remark 3.24.

In fact, there is a more concrete description of Pairan, given by the following.

Definition 3.27. — The ∞-category of surjective maps of animated rings is
the full subcategory Fun(∆1,CAlgan)≥0 ⊆ Fun(∆1,CAlgan) of maps A → A′′

such that the induced map π0(A) → π0(A′′) on the 0th homotopy groups is
surjective.

We now show that the strategy to prove Corollary 3.3 adapts to our case.
Indeed, by Corollary 3.2, we have the equivalence Fun((∆1)op, D(Z)≥0) '
Fun(∆1, D(Z))≥0 of∞-categories; therefore a set of compact projective genera-
tors for Fun((∆1)op, D(Z)≥0) gives rise to a set of compact projective generators
for Fun(∆1, D(Z))≥0:

{
Z id−→ Z,Z → 0

}
. Now we study two adjunctions over

these ∞-categories.
We have a pair Fun(∆1, D(Z)≥0) � Fun(∆1,CAlgan) of adjoint functors

induced by the pair D(Z)≥0
L SymZ−→←− CAlgan of adjoint functors. Restricting to

full subcategories, we get a pair Fun(∆1, D(Z))≥0 � Fun(∆1,CAlgan)≥0; the
latter is defined before Corollary 3.2. We summarize the preceding discussion
by the diagram

PΣ(Pairst) Fun(∆1,CAlgan)≥0 ⊆ Fun(∆1,CAlgan)

−→

−→

−→

−→

−→

−→

Fun((∆1)op, D(Z)≥0) '−→ Fun(∆1, D(Z))≥0 ⊆ Fun(∆1, D(Z)≥0)

(2)

We note that both full subcategories are stable under small colimits, and,
therefore, the forgetful functor Fun(∆1,CAlgan)≥0 → Fun(∆1, D(Z))≥0 pre-
serves sifted colimits. Since the forgetful functor is also conservative, it fol-
lows by Proposition A.18 that Fun(∆1,CAlgan)≥0 is projectively generated, for
which

{
Z[t] id−→ Z[t],Z[t]→ Z

}
is a set of compact projective generators. Let

Z ⊆ Fun(∆1,CAlgan)≥0 denote the full subcategory spanned by finite coprod-
ucts of these objects, which is effectively a full subcategory of Fun(∆1,Ring).
The following lemma is then obvious.

Lemma 3.28. — There is an equivalence Pairst ' Z of 1-categories given by
Pairst →Z, (A, I) 7→ (A�A/I) andZ→ Pairst, (A�A′′) 7→ (A, ker(A�A′′)).

From the previous discussion we have the following.
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Theorem 3.29. — There is an equivalence Pairan = PΣ(Pairst) '−→ Fun(∆1,
CAlgan)≥0 of ∞-categories which fits into (2), making the left square a com-
mutative square14.

In the proof of [3, Lem 3.16], Jorge Antonío sketched a slightly different set
of compact projective generators. It would be nice to compare the two choices.

Remark 3.30. — Corollary 3.3 says that the ∞-category of E∞-algebras in
the symmetric monoidal∞-category Fun((∆1)op, D(Z)≥0) is equivalent to that
of E∞-algebras in the symmetric monoidal ∞-category Fun(∆1, D(Z))≥0 since
two symmetric monoidal ∞-categories are equivalent. Our result essentially
says that both ∞-categories admits endomorphism monads, which is also pre-
served under this equivalence, and, therefore, the module categories over these
monads are equivalent.

Notation 3.31. — Given the equivalence in Theorem 3.29, we will symbol-
ically denote an object in Pairγ,an by (A � A′′, γ), where A � A′′ is the
image under the forgetful functor Pairγ,an → Pairan '−→ Fun(∆1,CAlgan)≥0.
When the PD-structure is the “obvious” one (like ΓZ[X](Y ) � Z[X]), by abuse
of notation, we will omit the γ in question. Under this notation, objects in
Pairst could be identified with Z[X,Y ] � Z[X], and objects in Pairγ,st could
be identified with ΓZ[X](Y ) � Z[X].

Remark 3.32. — In Theorem 3.29, we can replace D(Z) by any derived alge-
braic context C [38, Def 4.2.1], and then both Fun((∆1)op, C) and Fun(∆1, C)
admit canonical structures of derived algebraic contexts that are preserved
under the equivalence Fun((∆1)op, C)→ Fun(∆1, C), and Theorem 3.29 essen-
tially generalizes to the equivalence between the ∞-categories of connective
maps of derived commutative algebras [38, Rem 4.2.24] (note that Pairan '
DAlg(Fun((∆1)op, D(Z)))cn and Fun(∆1,CAlgan)≥0'DAlg(Fun(∆1, D(Z)))cn).

Remark 3.33. — In fact, the machinery in [38, §4], due to Bhatt–Mathew
and [13], allows us to define the ∞-category of derived PD-pairs of which the
connective objects spans a full subcategory equivalent to the ∞-category of
animated PD-pairs.

Warning 3.34. — Wewarn the reader that theheartDAlg(Fun((∆1)op, D(Z)))♥
in [38, Rem 4.2.24] is equivalent to the 1-category PΣ,1(Pairst), not the 1-
category Pair.

We also identify the equivalence in Theorem 3.29 restricted to the full sub-
category Pair ⊆ Pairan.

14. More precisely, there are two possible left squares in (2). However, by uniqueness of
left/right adjoint, roughly speaking, one commutes if and only if the other commutes.
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Proposition 3.35. — Let Fun(∆1,Ring)surj ⊆ Fun(∆1,Ring) be the full sub-
category spanned by those surjective maps A � A′′ of rings. Then the equiv-
alence Pair → Fun(∆1,Ring)surj, (A, I) 7→ (A � A/I) fits into a canonical
commutative diagram

Pair '−→ Fun(∆1,Ring)surj−→ −→

Pairan '−→ Fun(∆1,CAlgan)≥0

of ∞-categories. Furthermore, the localization Pairan → Pair (Remark 3.24)
could be identified with Fun(∆1,CAlgan)≥0 → Fun(∆1,Ring)surj, (A � A′′) 7→
(π0(A) � π0(A′′)).

Proof. — We note that Fun(∆1,Ring) ⊆ Fun(∆1,CAlgan) is the reflective
subcategory (Definition 2.44) spanned by the 1-truncated objects, of which
the localization is given by Fun(∆1,CAlgan) → Fun(∆1,Ring), (A → A′′) 7→
(π0(A) → π0(A′′)) by Corollary 2.13 and Remark A.22. Restricting to the
full subcategory Fun(∆1,CAlgan)≥0 ⊆ Fun(∆1,CAlgan), we get a localization
Fun(∆1,CAlgan)≥0 → Fun(∆1,Ring)surj. Consider the diagram

Pairan '−→ Fun(∆1,CAlgan)≥0−→ −→

Pair '−→ Fun(∆1,Ring)surj

of∞-categories, where the vertical arrows are localizations (Remark 3.24). We
claim that this is a commutative diagram. Indeed, both compositions commute
with filtered colimits and geometric realizations (in fact, all small colimits, since
both vertical arrows are localizations in Definition 2.44), and when restricting
to Pairst ⊆ Pairan, both compositions are canonically equivalent. Then the
claim follows from Proposition A.14.

Another way to show the commutativity is to show that the top right com-
position is (Pairan → Pair)-invariant in Definition 2.57, then invoke Proposi-
tion 2.56.

Then the result follows by taking the right adjoints to the vertical arrows. �

Corollary 3.36. — The lower square in Proposition 3.23 is left adjointable
[30, Def 4.7.4.13], which gives rise to a commutative diagram

Pairan −→ Pair

−→ −→

Fun(∆1,op, D(Z)≥0) −→ Inj

of 1-categories, where the vertical arrows are forgetful functors.
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Warning 3.37. — The upper square in Proposition 3.23 is not left adjointable.
That is to say, the localizations Pairan → Pair and Pairγ,an → Pairγ are not
compatible with forgetful functors; otherwise the forgetful functor Pairγ → Pair
would commute with small colimits, which is false (see Remark 3.41).

From Propositions 3.23 and 3.35 we have the following.

Proposition 3.38. — The essential image of the fully faithful embedding
Pairγ ↪→ Pairγ,an is spanned by those animated PD-pairs (A � A′′, γ) such
that both A and A′′ are static.

To understand the difference between Pair and PΣ,1(Pairst) ' τ≤0(Pairan)
better, we compute the following example.

Example 3.39. — Consider (Z/4Z, (2)) ∈ Pair as an animated pair. By
Proposition 3.35, this corresponds to the surjective map Z/4Z � F2 of rings.
Let us study the coproduct (Z/4Z, (2))q(Z/4Z, (2)) taken in Pairan. Thanks to
Theorem 3.29, this corresponds to the surjective map Z/4Z⊗L

ZZ/4Z � F2⊗L
ZF2

of animated rings. The underlying map in Fun(∆1,CAlgan)≥0 is given by
(Z/4Z)[1]⊕ Z/4Z � F2[1]⊕ F2

induced by 0 : (Z/4Z)[1] → F2[1] and the canonical projection Z/4Z � F2.
Under the forgetful functor Pairan → Fun((∆1)op, D(Z)≥0), the image of
(Z/4Z, (2))q (Z/4Z, (2)) is thus given by

(Z/4Z)[1]⊕ Z/4Z←− fib((Z/4Z)[1]⊕ Z/4Z � F2[1]⊕ F2)
'←− (Z/4Z)[1]⊕ F2 ⊕ 2Z/4Z

induced by F2 → 0, and other maps are canonical. Since the forgetful functor
Pairan → Fun((∆1)op, D(Z)≥0) commutes with τ≤0 (RemarkA.22), we can iden-
tify the underlying object of τ≤0((Z/4Z, (2)) q (Z/4Z, (2))) in Fun((∆1)op,Ab)
with (Z/4Z← F2 ⊕ 2Z/4Z), which is not injective. Roughly speaking, the local-
ization PΣ(Pairst)→ Pair will kill the kernel F2.

We now prove a stronger colimit-preserving property of the forgetful functor
from animated PD-pairs to animated pairs, which does not seem to be obvious
without this identification.

Proposition 3.40. — The forgetful functor Pairγ,an → Pairan preserves small
colimits.

Proof. — By Proposition A.14, it suffices to show that the composite functor
Pairγ,st ↪→ Pairγ,an → Pairan preserves finite coproducts. We first “simplify”
this composition, then we compute the finite coproducts by hand.

Since Pairγ,st ↪→ Pairγ,an factors as Pairγ,st ↪→ Pairγ ↪→ Pairγ,an, it fol-
lows from Proposition 3.23 that the composite functor Pairγ,st ↪→ Pairγ,an →
Pairan is equivalent to the composite functor Pairγ,st ↪→ Pairγ → Pair ↪→
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Pairan. Under the equivalence in Theorem 3.29, this functor is concretely
given by Pairγ,st 3 (A, I, γ) 7→ (A � A/I) ∈ Fun(∆1,CAlgan)≥0. Since
Fun(∆1,CAlgan)≥0 ⊆ Fun(∆1,CAlgan) is stable under small colimits, we can
take the finite coproducts in the larger ∞-category Fun(∆1,CAlgan).

Every object in Pairγ,st is the PD-envelope of a pair of form (Z[X1, . . . , Xm,
Y1, . . . , Yn], (Y1, . . . , Yn)), which we will denote by ΓZ[X1,...,Xm](Y1, . . . , Yn) �
Z[X1, . . . , Xm]. Now the result follows from the fact that

ΓZ[X](Y )⊗L
Z ΓZ[X′](Y ′) ' ΓZ[X,X′](Y, Y ′)

and

Z[X]⊗L
Z Z[X ′] ' Z[X,X ′]

where X = (X1, . . . , Xm), X ′ = (X ′1, . . . , X ′m′), Y = (Y1, . . . , Yn) and Y ′ =
(Y ′1 , . . . , Y ′n′). �

Remark 3.41. — Proposition 3.40 implies that the forgetful functor
PΣ,1(Pairγ,st) → PΣ,1(Pairst) preserves small colimits, cf. Lemma 3.17. How-
ever, the forgetful functor Pairγ → Pair does not preserve small colimits,
even pushouts [39, Tag 07GY]. The counterexample there is given by two PD-
structures on the pair (Z/4Z, (2)). We explain the incompatibility of the lo-
calizations in Warning 3.37 by Example 3.39: the localization Pairan → Pair
kills the kernel F2, while the localization Pairγ,an → Pairγ kills more, since the
PD-structure does not necessarily pass to the quotient, so one needs to quotient
out more relations.

Corollary 3.42. — The composite functor Pairan Envγ,an

−−−−−→ Pairγ,an → Pairan,
where the second functor is the forgetful functor, preserves small colimits.

3.3. Basic properties. — In this section, we will discuss basic properties of
animated pairs (resp. animated PD-pairs).

First, we recall that, given a pair (A, I), let (B, J, γ) be its PD-envelope;
then there is a canonical equivalence A/I ∼= B/J [39, Tag 07H7]. There is an
analogue for animated PD-envelope:

Lemma 3.43. — The composite functor F : Pairan Envγ,an

−−−−−→ Pairγ,an → Pairan,
where the second functor is the forgetful functor, is compatible with the evalua-
tion ev[1] : Pairan ' Fun(∆1,CAlgan)≥0 → CAlgan at [1] ∈ ∆1. That is to say,
the composite functor Pairan F−→ Pairan ev[1]−−−→ CAlgan is homotopy equivalent to
the functor Pairan ev[1]−−−→ CAlgan.

Proof. — Both functors are left derived functors, and, therefore, it suffices
to check on the full subcategory PolyZ ⊆ Pairan, which follows from a direct
identification. �
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We note that the functor CAlgan → Fun(∆1,CAlgan), A 7→ (idA : A → A)
is fully faithful, admits a left adjoint ev[1] and a right adjoint ev[0]. Restricting
this to the fully faithful embedding Pairan ↪→ Fun(∆1,CAlgan), we get the
following.

Lemma 3.44. — The functor CAlgan → Pairan, A 7→ (idA : A → A) is fully
faithful and admits a left adjoint ev[1] : Pairan → CAlgan, (A� A′′) 7→ A′′ and
a right adjoint ev[0] : CAlgan → Pairan, (A� A′′) 7→ A.

This functor preserves small colimits, and, therefore, by Proposition A.14,
it is the left derived functor of the composite functor PolyZ → Pairst ↪→
Pairan, A 7→ (A, 0). Applying Corollary 2.2 to the composite PolyZ → Pairst →
Pairγ,st, we get the following.

Lemma 3.45. — The composite functor CAlgan → Pairan Envγ,an

−−−−−→ Pairγ,an is
fully faithful, where the first functor is CAlgan → Pairan, A 7→ (idA : A → A),
and a further composition CAlgan → Pairγ,an → Pairan, where the second func-
tor is the forgetful functor, is equivalent to the fully faithful functor CAlgan →
Pairan, A 7→ (idA : A→ A).

Despite Warning 3.37, the image of an animated PD-pair (A� A′′, γ) under
the localization Pairγ,an → Pairγ is of the form (−)→ τ≤0(A′′):

Lemma 3.46. — There is a canonical commutative diagram

Pairγ,an −→ Pairan ev[1]−−−→ CAlgan

−→ −→ τ≤0

Pairγ −→ Pair
ev[1]−−−→ Ring

of ∞-categories, where the left horizontal arrows are forgetful functors, and the
leftmost vertical arrow is the localization (Remark 3.24).

Proof. — We first note that the composite functor Pairγ,an → Pairan →
CAlgan → Ring preserves small colimits and, therefore, is a left derived functor
(Proposition A.14), hence left Kan extended along Pairγ,st ↪→ Pairγ,an. The
diagram is canonically commutative on the full subcategory Pairγ,st ⊆ Pairγ,an.
It remains to show the existence of the extension of the equivalence in question.

Now consider the diagram

Ring ↪−→ Pair −→ Pairγ

−→ −→

CAlgan ↪−→ Pairan −→ Pairγ,an

of ∞-categories, where the functors Ring → Pair and CAlgan → Pairan are
given by A 7→ (A, 0) and A 7→ (idA : A → A), respectively, and the functor
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Pair→ Pairγ and the functor Pairan → Pairγ,an are the PD-envelope (resp. an-
imated PD-envelope) functors. This is a commutative diagram by Lemma 3.45.
Taking the right adjoints, we get the commutativity by Lemma 3.44. �

Next, we show that animated PD-envelope “does nothing” after rationaliza-
tion. More precisely, we have the following.

Lemma 3.47. — Consider the unit map η from the functor idPairan to the com-
posite functor Pairan → Pairγ,an → Pairan, where the first functor is the ani-
mated PD-envelope functor, and the second is the forgetful functor. Then the com-
posite of η with the rationalization functor Pairan ' Fun(∆1,CAlgan)≥0

·⊗L
ZQ−−−→

Fun(∆1,Ani(AlgQ))≥0 is an equivalence of functors.

Proof. — Since the rationalization functor preserves filtered colimits and geo-
metric realizations, by Proposition A.14, it suffices to show the equivalence on
Pairst ⊆ Pairan. Concretely, it is saying that the canonical map Z[X,Y ] →
ΓZ[X](Y ) becomes an equivalence after rationalization, which follows from def-
initions. �

Now we consider the base change. Given a surjective map (A � A′′) ∈
Fun(∆1,CAlgan)≥0 and a map A → B of animated rings, the base changed
map B → A′′ ⊗L

A B is also surjective. The key observation is that this base
change is a pushout (A� A′′)q(idA:A→A) (idB : B → B). Since the animated
PD-envelope functor, being a left adjoint, and the forgetful functor preserve
small colimits (Proposition 3.40), from Lemma 3.45 we have the following (to
compare with Remark 2.24).

Lemma 3.48. — The composite functor Pairan → Pairγ,an → Pairan is com-
patible with base change, where the first functor is the animated PD-envelope
functor, and the second is the forgetful functor. More precisely, there is an
equivalence from (C ⊗L

A B � C ′′ ⊗L
A B) to the animated PD-e1.2: the tech-

nique of animation also appears in Lurie’s higher topos theory envelope of
B → A′′ ⊗L

A B between animated pairs, where (C � C ′′, γ) is the animated
PD-envelope of (A� A′′), which is functorial with respect to the diagram

A −� A′′

−→

B

in CAlgan.

Remark 3.49 (General base). — Let R be a ring. We can then replace Z by
R in the theory of animated pairs and PD-pairs. For example, the 1-category
Ab is replaced by ModR, the ∞-category D(Z) is replaced by D(R), the ∞-
category CAlgan is replaced by CAlgan

R , the 1-category Pairst is replaced by
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Pairst
R consisting the pairs of the form (R[X,Y ], (Y )), and Pairγ,st is replaced

by Pairγ,stR consisting the PD-pairs of the form ΓR[X](Y ) � R[X], etc. We
get Pairan

R and Pairγ,an
R . There are canonical base change functors CAlgan →

CAlgan
R , Pairan → Pairan

R and Pairγ,an → Pairγ,an
R essentially induced by the

base change D(Z) ·⊗
L
ZR−−−→ D(R).

From Corollary 2.14 we have the following.

Lemma 3.50. — There are canonical equivalences of ∞-categories

CAlgan
R
'−→ CAlgan

R/

Pairan
R
'−→ Pairan

(idR:R→R)/

Pairγ,an
R

'−→ Pairγ,an
(idR:R→R,0)/

By the proof of Lemma 2.37, from Lemma 3.48 we have the following.

Lemma 3.51. — Let R be a ring. Then there is a canonical commutative
diagram

Pairan
R −→ Pairγ,an

R−→ −→

Pairan −→ Pairγ,an

of ∞-categories, where the vertical arrows are forgetful functors, and the hori-
zontal arrows are animated PD-envelope functors.

Moreover, again by Lemma 3.48, we have the following.

Lemma 3.52. — Let R be a ring. Then there is a canonical commutative
diagram

Pairan −→ Pairγ,an

−→ −→

Pairan
R −→ Pairγ,an

R

of ∞-categories, where the horizontal arrows are animated PD-envelope func-
tors and the vertical arrows are base change functors.

3.4. Quasiregular pairs. — This section is devoted to comparison of animated
theory of pairs and PD-pairs with the classical version. Quasiregularity, intro-
duced by Quillen, plays an important role.
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Definition 3.53 ([16, Thm 6.13]). — We say that a pair (A, I) ∈ Pair is
quasiregular if the shifted cotangent complex L(A/I)/A[−1] ∈ D(A/I) is a flat
A/I-module. We will denote by QRegan ⊆ Pairan ⊆ Pair the full subcategory
spanned by quasiregular pairs. The same for QRegan

Fp ⊆ Pairan
Fp .

Example 3.54. — Let A be a ring and I ⊆ A an ideal generated by a Koszul-
regular sequence. Then L(A/I)/A ' (I/I2)[1] [39, Tag 08SJ], and I/I2 is a free
A/I-module [39, Tag 062I]. We warn the reader that Quillen’s quasiregular is
different from “quasi-regular” in [39, Tag 061M], and the latter is not used in
this article.

The first goal of this section is to show that there is a “derived” version
of the adic filtration on animated pairs. Furthermore, for pairs, there is a
natural comparison map from the “derived” version to the classical version
(strictly speaking, our comparison is slightly more general), which becomes an
equivalence when the pair in question is quasiregular. We refer to Section 2.4
for concepts and notations about filtrations. We need the following results,
which relates the cotangent complex to powers of ideals.

Lemma 3.55 ([39, Tag 08RA]). — There exists a map (I/I2)[1] → L(A/I)/A
in D(A/I) which is functorial in (A, I) ∈ Pair, such that the composite map
(I/I2)[1]→ L(A/I)/A → τ≤1L(A/I)/A is an equivalence.

Remark 3.56. — By abuse of terminology, by a map M(A,I) → N(A,I) in
D≥0(A/I) being functorial in (A, I) ∈ Pair, we mean that the map in ques-
tion is a map between two functors (A, I) ⇒ Ani(Mod) given by (A, I) 7→
(A/I,M(A,I)) and (A, I) 7→ (A/I,N(A,I)), respectively.

Lemma 3.57 ([39, Tag 08SI]). — For any (A, I) ∈ Pairst ⊆ Pair, the cotangent
complex L(A/I)/A is 1-truncated.

Corollary 3.58. — There exists an equivalence (I/I2)[1] → L(A/I)/A in
D≥0(A/I) functorial in (A, I) ∈ Pairst.

Construction 3.59 (Adic filtration). — Consider the classical adic filtration
functor Fil∗ad,cl : Pair → CAlg(DF≥0(Z)), (A, I) 7→ (In)n∈N≥0 . Restricting this
to the full subcategory Pairst ⊆ Pair and applying Proposition A.14, we get
a functor Fil∗ad : Pairan → CAlg(DF≥0(Z)), called the adic filtration functor.
Such a construction appears in [8, Cor 4.14] in the language of model categories.
In [21, §6], Jeroen Hekking constructed the same filtration via different ap-
proaches.

Remark 3.60. — By the same argument, there is a natural structure of filtered
derived ring (Remark 2.42) on Fil∗ad(A � A′′), which we will not use in this
article.
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By Theorem 3.29, we can identify Fil0ad : Pairan → CAlgZ with the composite
functor

Fun(∆1,CAlgan)
ev[0]−−−→ CAlgan → CAlgZ, (A� A′′) 7→ A

and gr0
ad : Pairan → CAlgZ with the composite functor

Fun(∆1,CAlgan)
ev[1]−−−→ CAlgan → CAlgZ, (A� A′′) 7→ A′′

Combining Corollary 3.58, Proposition A.14, sifted-colimit-preserving proper-
ties of LSym∗, and the concrete analysis of pairs in Pairst ⊆ Pairan, we get the
following.

Corollary 3.61. — For every (A� A′′) ∈ Pairan, the shifted cotangent com-
plex LA′′/A[−1] ' gr1

ad(A� A′′) is connective, and there exists an equivalence

LSym∗A′′(gr1
ad(A� A′′))→ gr∗ad(A� A′′)

of graded E∞-Z-algebras functorial in (A� A′′) ∈ Pairan.

Now we construct a comparison map between the “derived” filtration Fil∗ad
and the “nonderived” filtration Fil∗ad,cl on ring-ideal pairs. We apply a trick
used in the proof of Proposition 3.35 and Lemma A.26.

Construction 3.62. — Proposition A.14 and the universal property of left
Kan extensions give us a comparison natural transform from the functor Fil∗ad :

Pairan → CAlg(DF≥0(Z)) to the composite functor Pairan → Pair
Fil∗ad,cl−−−−→

CAlg(DF≥0(Z)), where the first functor Pairan → Pair is the localization (Re-
mark 3.24).

Our next goal is to show that the comparison map is an equivalence after
restriction to QReg ⊆ Pairan. Since the forgetful functor CAlg(DF≥0(Z)) →
DF≥0(Z) is conservative, we can show the equivalence after forgetting the E∞-
structure.

The previous discussion shows that the comparison map is an equivalence
after composing with Fil0 : DF≥0(Z) → D(Z) and gr0 : DF≥0(Z) → D(Z) on
the 1-category Pair (not only for quasiregular pairs). We define the functor
gr[0,n) : DF≥0(Z) → D(Z), F 7→ cofib(Filn(F ) → Fil0(F )). Thus it suffices to
prove that the comparison map is an equivalence after composing with gr[0,n) :
DF≥0(Z)→ D(Z) for all n > 1 for quasiregular pairs. Note that by definition,
the essential image of gr[0,n)

ad already lies in Ab ⊆ D(Z). We show a more
general statement (cf. the proof of Proposition 3.35 and Lemma A.26).
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Lemma 3.63. — There is a commutative diagram

Pairan gr[0,n)
ad−−−−→ D(Z)≥0−→ −→ τ≤0

Pair
gr[0,n)

ad−−−−→ Ab

of ∞-categories, where the homotopy from the top-right composition to the
bottom-left composition is induced by the comparison map in Construction 3.62.

Proof. — The trick is to consider an auxiliary functor. Let (A� A′′) ∈ Pairan

and let I := fib(A � A′′) ∈ D(Z)≥0. We recall that, by Theorem 3.29, and
(2) in particular, the forgetful functor Pairan → Fun((∆1)op, D(Z)≥0) is just
(A� A′′) 7→ (A← I).

Then the map I → A inD(Z)≥0 induces a map L Symn
Z I → LSymn

Z A. Com-
posing with the multiplication LSymn

Z A → A, we get the map L Symn
Z I → A.

We consider the functorF : Pairan →D(Z)≥0, (A�A′′) 7→ cofib(LSymn
Z I→A).

First, the functorF preserves filtered colimits and geometric realizations, since
the functor L SymZ and the forgetful functor Pairan → Fun((∆1)op, D(Z)≥0) do
(Lemma 3.9). In fact, F is the left derived functor (Proposition A.14) of the
functor Pairst → D(Z)≥0, (A, I) 7→ cofib(Symn

Z I → A).
Next, note that for (A, I) ∈ Pairst, the map Symn

Z I → A factors functorially
as Symn

Z I → In → A, and the map Symn
Z I → In is surjective. It follows that

there is a natural surjective map cofib(Symn
Z I → A) → A/In, which gives

rise to a map F → gr[0,n)
ad of functors, which becomes an equivalence after

composition with τ≤0 : D(Z)≥0 → Ab.
We now show that the functor τ≤0 ◦ F : Pairan → Ab factors through the

localization Pairan → Pair. First, since Ab is a 1-category, it factors through
Pairan → PΣ,1(Pairst). Given (A� A′′) ∈ PΣ,1(Pairst), let I = fib(A� A′′) as
before. Then (A← I) ∈ PΣ,1(Injst) ' Fun((∆1)op,Ab), and, therefore, A, I are
static. Let I ′ = im(I → A). It follows that the localization PΣ,1(Pairst)→ Pair
maps (A� A′′) to (A, I ′) ∈ Pair. By Proposition 2.56, it suffices to show that
F maps (A � A′′) → (A, I ′) to an equivalence. This simply follows from the
fact that LSymn

Z I → LSymn
Z I
′ is a surjection on π0, and the “multiplication”

map LSymn
Z I → A factors as LSymn

Z I → LSymn
Z I
′ → A.

In conclusion, we have already shown that there exists an equivalence of
two compositions in the diagram that we need to prove. To show that this
equivalence is the equivalence that we want, we note that the top right compo-
sition preserves filtered colimits and geometric realizations, and then the first
paragraph of the proof of Lemma 3.46 applies. �
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In particular, when (A, I) is quasiregular, it follows from Corollary 3.61
that grnad(A � A/I) ∈ D(Z)≥0 is static for all n ∈ N, which implies that
gr[0,n)

ad (A� A/I) is static for all n ∈ N. Consequently, we have the following.

Proposition 3.64. — The comparison natural transformation in Construc-
tion 3.62 becomes an equivalence after restricting to the full subcategory QReg ⊆
Pairan.

Corollary 3.65 ([16, 6.11]). — For every quasiregular pair (A, I), the canon-
ical map Sym∗A/I(I/I2)→

⊕
I∗/I∗+1 of graded rings is an equivalence.

Proof. — It suffices to show that the equivalence given by Corollary 3.61 co-
incides with the canonical map induced by the multiplicative structure on A.
For any element x1 · · ·xn ∈ Symn

A/I(I/I2), we pick a lift x1, . . . , xn ∈ I, which
gives rise to a map (B, J) := (Z[X1, . . . , Xn], (X1, . . . , Xn)) → (A, I) of pairs,
which induces the commutative diagram

Symn
B/J(J/J2) Jn/Jn+1

LSymn
A/I(gr1

ad(A� A/I)) grnad(A� A/I)

in the ∞-category D(Z)≥0. Taking τ≤0 and trace the element X1 · · ·Xn ∈
Symn

B/J(J/J2), we get the result. �

We are unable to answer the following question in full generality.

Question 1. — Let (A, I) be a quasiregular pair. Let (B � B′′, γ) denote its
animated PD-envelope. Is it true that B,B′′ are static, so by Proposition 3.38
and Corollary 3.26, it coincides with the classical PD-envelope?

However, we are able to answer it under certain flatness. First, it follows
from Lemma 3.47 that when A is a Q-algebra, the animated PD-envelope of
(A, I) is just A� A/I, which is also the classical PD-envelope.

Now we consider the characteristic p > 0 case, switching the ground ring
from Z to Fp (which is valid by Lemma 3.51). We will use the notations
Pairst and Pairγ,st in Section 3.2, but the occurrences of Z are replaced by Fp.
We recall that the Frobenius map A → A, x 7→ xp of an Fp-algebra A gives
rise to an endomorphism ϕ : idAlgFp

→ idAlgFp
of the identity functor idAlgFp

:
AlgFp → AlgFp , which gives rise to an endomorphism idAni(AlgFp ) → idAni(AlgFp )
still denoted by ϕ. We now introduce the conjugate filtration on the animated
PD-envelope of animated Fp-pairs that we learned from [9].

Construction 3.66. — Let (A, I) be an Fp-pair such that the Frobenius ϕA :
A → A is flat and let (B, J, γ) denote its PD-envelope. We first note that
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there is a ϕ∗A(A/I)-algebra structure on B since fp = pγp(f) = 0 for all
f ∈ J . Then we have a filtration on B given by Fil−nconj,clB for n ≥ 0 to be the
ϕ∗A(A/I)-submodule of B generated by

{
γk1p(f1) · · · γkmp(fm) | k1+· · ·+km ≤ n

and f1, . . . , fm ∈ I
}
, which gives rise to a structure of nonpositively filtered

ϕ∗A(A/I)-algebra. We note that the filtration is exhaustive, i.e.,Fil−∞conj,clB =
colimn∈(Z,≥) Fil−nB → B is an isomorphism, and we can rephrase the non-
positively filtered ϕ∗A(A/I)-algebra structure as a map ϕ∗A(A/I)→ FilB15 of a
nonpositively filtered ring.

We need the following result.

Lemma 3.67 ([9, Lem 3.42]). — Let (A, I) be an Fp-pair such that I/I2 is a
flat A/I-module and the Frobenius ϕA : A→ A is flat and let (B, J, γ) denote
the PD-envelope of (A, I).

Then there is a comparison map ϕ∗A(ΓiA/I(I/I2)) → gr−iconj,clB (as in Con-
struction 3.66) of ϕ∗A(A/I)-modules induced by the maps (γkp)k∈N, which is
functorial in (A, I). For example, when I/I2 is free, an element in ΓiA/I(I/I2)
represented by f⊗i

i! will be mapped to γip(f) for f ∈ I.
Furthermore, if I ⊆ A is generated by a Koszul-regular sequence16, then the

comparison map above is an isomorphism.

Now we define the conjugate filtration on the animated PD-envelope.

Definition 3.68. — The conjugate filtration functor (on the animated PD-en-
velope) Fil∗conj Envγ,an : Pairan

Fp → CAlg(DF≤0(Fp)) together with the structure
map of functors Pairan

Fp ⇒ CAlg(DF≤0(Fp)) from (A � A′′, γ) 7→ ϕ∗A(A′′) =
A′′ ⊗L

A,ϕA
A to Fil∗conj Envγ,an, or equivalently, a functor

Pairan −→ Fun(∆1,CAlg(DF≤0(Fp)))
(A� A′′) 7−→ (ϕ∗A(A′′)→ Fil∗conj Envγ,an(A� A′′))

is defined to be the left derived functor (Proposition A.14) of Pairst 3 (A, I) 7→
(ϕ∗A(A/I)→Fil∗conj,clDA(I))∈Fun(∆1,CAlg(DF≤0(Fp))) in Construction 3.66,
where ϕ∗A(A/I) is constantly filtered.

Remark 3.69. — Informally speaking, the functor Pairan → Fun(∆1,

CAlg(DF≤0(Fp))) in Definition 3.68 is capturing two pieces of data.
1. The conjugate filtration Fil∗conj on the animated PD-envelope

Envγ,an(A� A′′).
2. An E∞-ϕ∗A(A′′)-algebra structure on the conjugate filtration.

That these data are functorial in (A� A′′) ∈ Pairan.

15. We will from time to time suppress the asterisk in Fil∗ to avoid confusion with ϕ∗.
16. We only need the special case that (A, I) ∈ Pairst.
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Remark 3.70. — We note that the conjugate filtration is exhaustive, i.e.,
there is a canonical equivalence Fil−∞conj Envγ,an → Envγ,an of functors Pairan

Fp →
CAlg(D(Fp)), which follows either from Proposition A.14 and Lemma 2.43 or
the fact that Pairan ' PΣ(Pairst) ⊆ P(Pairst) is stable under filtered colimits
(Proposition A.11).

It follows from Lemma 3.67 that

Corollary 3.71. — For every (A� A′′) ∈ Pairan
Fp , there exists an equivalence

ϕ∗A(ΓiA′′(gr1
ad(A� A′′)))→ gr−iconj Envγ,an(A� A′′)

in D(ϕ∗A(A′′))≥0 for all i ∈ N which is functorial in (A→ A′′) ∈ Pairan
Fp .

Remark 3.72. — One might wonder what precisely the functor is, since the
target category D(ϕ∗A(A′′))≥0 depends on (A � A′′) ∈ Pairan

Fp . One can rig-
orously describe this ϕ∗A(A′′)-algebra structure in terms of structure maps (as
in Definition 3.68). However, this is cumbersome, and we keep the current
“imprecise” presentation.

We now apply this to a quasiregular pair (A, I) ∈ QRegFp . We first recall
that

Definition 3.73 ([30, Def 7.2.2.10]). — Let A be an E1-ring. We say that a
right A-module spectrum M is flat if the following hold.

1. The homotopy group π0(M) is a flat right π0(A)-module.
2. For each n ∈ Z, the canonical map π0(M)⊗π0(A) πn(A)→ πn(M) is an

isomorphism of abelian groups.
The same concept applies to left A-module spectra.

Remark 3.74 ([30, Rem 7.2.2.11 & 7.2.2.12]). — Let R be an E1-ring and M
a flat right R-module spectrum. By definition, if R is connective (resp. static),
then so is R. In particular, when R is static, a flat R-module spectrum is
simply a flat R-module, and, therefore, we will sometimes refer to flat module
spectra simply as flat modules since there is no ambiguity.

Lemma 3.75. — Let A be a connective E1-ring, and M ′ → M → M ′′ a fiber
sequence of right A-module spectra. If M ′,M ′′ are flat right A-modules, then
so is M .

Proof. — First,M ′,M ′′ are connective by flatness, and, therefore, so isM . For
every static left A-module N , we have a fiber sequence N⊗L

AM
′ → N⊗L

AM →
N ⊗L

A M ′′. By flatness of M ′ and M ′′ and [30, Prop 7.2.2.13], the spectra
N ⊗L

AM
′ and N ⊗L

AM
′′ are static, and, therefore„ so is N ⊗L

AM . The result
then follows from [30, Thm 7.2.2.15]. �
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For future usage, we need to generalize the concept of quasiregular pairs
slightly.

Definition 3.76. — We say that an animated pair A � A′′ is quasiregu-
lar if the shifted cotangent complex LA′′/A[−1] ∈ D(A′′) is a flat A′′-module
spectrum.

Corollary 3.77. — Let (A � A′′) be a quasiregular animated Fp-pair, and
let (B � B′′, γ) denote its animated PD-envelope. Then B is a flat ϕ∗A(A′′)-
module spectrum.

Proof. — It follows from Corollary 3.71, Γ∗ and base change preserving flatness
([31, Cor 25.2.3.3] & [30, Prop 7.2.2.16]) that gr−iconj Envγ,an(A � A′′) is a
flat ϕ∗A(A′′)-module spectrum. The result follows from the fact that the full
subcategory spanned by flat modules over a connective E1-ring is stable under
extension (Lemma 3.75) and under filtered colimits by [30, Thm 7.2.2.14(1)].

�

Remark 3.78. — In fact, by Lemma 5.51, the map ϕ∗A(A′′) → B in Corol-
lary 3.77 is faithfully flat.

From Proposition 3.38, Corollaries 3.26 and 3.77, and Remark 3.74 we have
the following.

Corollary 3.79. — Let (A, I) ∈ QRegFp be a quasiregular pair. Suppose that
ϕ∗A(A/I) is static. Then the animated PD-envelope (B � B′′, γ) of (A� A/I)
belongs to PairγFp , and, therefore, coincides with the classical PD-envelope.

We want to point out that such results for Fp will be used to deduce integral
results, which are based on the following lemmas, cf. [31, Lem 6.1.2.4].

Lemma 3.80. — Let M ∈ Sp≥0 be a connective spectrum. Suppose that the
rationalization M ⊗L

S Q is static, and for every prime p ∈ N, the homotopy
groups of M/Lp := cofib

(
M

p−→M
)
are concentrated in degree 0, 1. Then M

is static.

Proof. — Since Q is S-flat, πi(M)⊗ZQ ∼= πi(M ⊗L
S Q) ∼= 0 when i 6= 0. On the

other hand, πi+1(M/Lp) ∼= 0 for i > 0 implies that the map πi(M) p−→ πi(M) is
injective for every prime p ∈ N and i > 0. It follows that πi(M) ∼= 0 for every
i > 0. �

Warning 3.81. — Lemma 3.80 is false if M is not assumed to be connective.
A counterexample is given by M = (Q/Z)[−1], for which M ⊗L

S Q ' 0 and
M/Lp ' Fp for every prime number p ∈ N.
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Lemma 3.82 (cf. [39, Tag 039C]). — Let A be an animated ring and M ∈
D≥0(A) a connective A-module spectrum. Then the following conditions are
equivalent.

1. M is a flat A-module.
2. M ⊗L

Z Q is a flat A ⊗L
Z Q-module, and for every prime p ∈ N, M/Lp is

a flat A/Lp-module.

Proof. — The first implies the second by the stability of flatness under base
change [30, Prop 7.2.2.16]. We now assume the second. By [30, Thm 7.2.2.15],
it suffices to show that for each static A-module N , the tensor productM⊗L

AN
is also static. Indeed,

(M ⊗L
A N)⊗L

S Q ' (M ⊗L
A N)⊗L

Z Q ' (M ⊗L
Z Q)⊗L

A⊗L
ZQ

(N ⊗L
Z Q)

is static by the Z-flatness of Q and the flatness of M ⊗L
ZQ. On the other hand,

(M ⊗L
A N)/Lp ' (M/Lp)⊗L

A/Lp (N/Lp)

for every prime p ∈ N. Since M/Lp is A/Lp-flat,

πi((M/Lp)⊗L
A/Lp (N/Lp)) ' π0(M/Lp)⊗π0(A/Lp) πi(N/Lp) ∼= 0

for all i > 1 by [30, Prop 7.2.2.13]. It then follows from Lemma 3.80 that
M ⊗L

A N is static. �

We record a simple consequence (compare with [12, Lem 2.42]):

Proposition 3.83. — Let A be a ring and I ⊆ A an ideal generated by a
Koszul-regular sequence. Then the animated PD-envelope (B � B′′, γ) of (A�
A/I) belongs to Pairγ , and, therefore, coincides with the classical PD-envelope.

Proof. — Note that B′′ ' A/I is static by Lemma 3.43. It follows from
Lemma 3.47 that B ⊗L

Z Q ' A is static. Let (f1, . . . , fr) be a Koszul-regular
sequence which generates I. Fix a prime p ∈ N>0. Let A0 denote A/Lp. We
follow the argument in [9, Lem 3.41]:

ϕ∗A0
((A/I)/Lp) ' ϕ∗A0

(A0/
L(f1))⊗L

A0
· · · ⊗L

A0
ϕ∗A0

(A0/
Lfr)

' (A0/
Lfp1 )⊗L

A0
· · · ⊗L

A0
(A0/

Lfpr )
' A0/

L(fp1 , . . . , fpr )
' (A/L(fp1 , . . . , fpr ))/Lp

Note that since (f1, . . . , fr) is Koszul-regular, so is (fp1 , . . . , fpr ), which implies
that πi(ϕ∗A0

((A/I)/Lp)) ∼= 0 for i 6= 0, 1. It follows from Corollary 3.77 and the
base change property (Lemma 3.52) that πi(B/Lp) ∼= 0 for i 6= 0, 1. The result
then follows from Lemma 3.80. �
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3.5. Illusie’s question. — Given a ring A and an ideal I ⊆ A generated by
a Koszul-regular sequence, let (B, J, γ) denote the PD-envelope of (A, I). It
is known that the canonical comparison map Γ∗A/I(I/I2) → J [∗]/J [∗+1] is an
isomorphism, cf. [5, I. Prop 3.4.4], where J [∗] are divided powers of J in B. In
[24, VIII. Ques 2.2.4.2], Illusie asked whether this holds for quasiregular pairs
(A, I). The answer is affirmative, and the goal of this section is to furnish a
proof by our theory of animated PD-pairs.

Our strategy is similar to Section 3.4: both the animated PD-envelope and
the PD-envelope of a pair (A, I) admit a canonical filtration, and there is a
natural comparison between the two. Although for general quasiregular pairs
(A, I) we do not know whether the animated PD-envelope coincides with the
PD-envelope, the comparison map induces equivalences on graded pieces. The
associated graded of the animated PD-envelope admits a natural structure
of divided power algebra and an element tracing proves that the equivalence
coincides with the comparison map in Illusie’s question.

We start with the PD-filtration on animated PD-pairs. We refer to Sec-
tion 2.4 for concepts and notations about filtrations.

Construction 3.84. — Let (A, I, γ) ∈ Pairγ be a PD-pair and n ∈ N a
natural number. The classical divided power ideal I [n] ⊆ A is the ideal generated
by elements γi1(x1) · · · γik(xk), where x1, . . . , xk ∈ I and (i1, . . . , ik) ∈ Nk with
i1 + · · · + ik ≥ n. For example, for (ΓZ(x) � Z) ∈ Pairγ with kernel I, the
kernel I [n] ⊆ ΓZ(x) is generated by {γi(x) | i ≥ n} (which is different from the
ideal (γn(x))). The classical PD-filtration on A is given by A ⊇ I ⊇ I [2] ⊇ · · ·
endowing A with the structure of a filtered ring. A filtered ring is naturally
a (nonnegatively) filtered E∞-ring, and we get a functor Fil∗PD,cl : Pairγ →
CAlg(DF≥0(Z)).

Definition 3.85. — The PD-filtration functor Fil∗PD : Pairγ,an →
CAlg(DF≥0(Z)) is defined to be the left-derived functor (Proposition A.14)

of the composite functor Pairγ,st ↪→ Pairγ
Fil∗PD,cl−−−−−→ CAlg(DF≥0(Z)). For an

animated PD-pair (A � A′′, γ) ∈ Pairγ,an, we will call the image Fil∗PD(A �
A′′, γ) the E∞-Z-algebra A with PD-filtration.

Remark 3.86. — By the same argument, the PD-filtration, in fact, gives rise
to the structure of a filtered derived ring (Remark 2.42), which we will not use
in this article.

Similarly to Corollary 3.61, by Proposition A.14, sifted-colimit-preserving
property of the (derived) divided power functor ((A,M) 7→ ΓAM) : Ani(Mod)→
CAlg(Gr≥0(D(Z))) and the concrete analysis of (A, I, γ) ∈ Pairγ,st, weget the fol-
lowing.
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Lemma 3.87. — For every (A� A′′, γ) ∈ Pairγ,an, there exists an equivalence

Γ∗A′′(gr1
PD(A� A′′, γ)))→ gr∗PD(A� A′′, γ)

of graded E∞-Z-algebras, which is functorial in (A� A′′, γ) ∈ Pairγ,an.

Furthermore, we can compare the adic filtration on an animated pair and the
PD-filtration on the animated PD-filtration. We first compare them on Pairst

and then extend the comparison to Pairan by Proposition A.14, obtaining the
following.

Lemma 3.88. — For every (A � A′′) ∈ Pairan, let (B � B′′, γ) ∈ Pairγ,an

denote its animated PD-envelope. Then there is a canonical comparison map
gr∗ad(A� A′′)→ gr∗PD(B � B′′, γ)

of graded E∞-Z-algebras, which is functorial in (A � A′′) ∈ Pairan. Further-
more, this map induces equivalences in D(Z) when ∗ = 0, 1.

Construction 3.89. — Analogous to Section 3.4, by universal property of
left Kan extensions, there exists an essentially unique comparison map cγ from
the composite functor Pairan Envγ,an

−−−−−→ Pairγ,an Fil∗PD−−−→ CAlg(DF≥0(Z)) to the

composite functor Pairan → Pair Envγ−−−→ Pairγ
Fil∗PD,cl−−−−−→ CAlg(DF≥0(Z)), where

Pairan → Pair is the localization in Remark 3.24.

The main result of this section is the following.

Proposition 3.90. — The comparison map cγ in Construction 3.89 becomes
an equivalence after composition QReg ↪→ Pairan ⇒ CAlg(DF≥0(Z)) gr∗−−→
CAlg(Gr≥0(Z)).

Remark 3.91. — As seen in Question 1, we do not know whether the compari-
son is an equivalence when we replace gr∗ : CAlg(DF≥0(Z)) → CAlg(Gr≥0(Z))
by Fil0 : CAlg(DF≥0(Z)) → CAlgZ, although it is true under assumptions of
Corollary 3.79, which is the only obstruction for the comparison map to be a fil-
tered equivalence.

We start to prove this. Unfortunately, we are unable to establish a strong
result like Lemma 3.63, essentially due to the complication discussed in Warn-
ing 3.37. Our trick is to show that after replacing gr∗ by gr[0,n), both functors
satisfy a common universal property.

As in Section 3.4, we can forget the E∞-algebra structure and then replace
gr∗ by gr[0,n) : DF≥0(Z)→ D(Z), F 7→ cofib(Filn F → Fil0 F ), i.e., it is equiv-
alent to show that the natural comparison c[0,n)

γ from the composite functor

Pairan → Pairγ,an Fil∗PD−−−→ DF≥0(D(Z)) gr[0,n)

−−−−→ D(Z)

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



716 Z. MAO

to the composite functor

Pairan → Pair ↪→ Pairγ
Fil∗PD,cl−−−−−→ DF≥0(D(Z)) gr[0,n)

−−−−→ D(Z),

which is an equivalence after restricting to the full subcategory QReg ⊆ Pairan.
Note that the composite functor gr[0,n)

PD,cl = gr[0,n) ◦Fil∗PD,cl is concretely given
by (A, I, γ) 7→ A/I [n], which motivates the following definition.

Definition 3.92. — We say that a PD-pair (A, I, γ) is PD-nilpotent of height
n ∈ N if I [n] = 0. We will denote by Pairγn ⊆ Pairγ the full subcategory
spanned by PD-nilpotent PD-pairs of height n.

The following lemma could be checked directly or (as ∞-categories) by in-
voking [28, Prop 5.2.7.8].

Lemma 3.93. — Let n ∈ N be a natural number. Then the full subcategory
Pairγn ↪→ Pairγ is reflective of which the localization Pairγ → Pairγn , which
will be denoted by R[n]

cl , is given by killing the higher divided powers: (A, I, γ) 7→
(A/I [n], IA/I [n], γ), where γ(x) = γ(x) for all x ∈ I and x, γ(x) are images of
x, γ(x) in A/I [n].

Then the composite functor gr[0,n)
PD,cl : Pairγ → D(Z), (A, I, γ) 7→ A/I [n] can

be rewritten as the composite Pairγ → Pairγn ↪→ Pairγ,an → D(Z), where the
last functor is the functor Pairγ,an → D(Z), (A � A′′, γ) 7→ A. We now show
that the composite functor gr[0,n)

PD : Pairγ,an → D(Z) can also factor through
Pairγ,an → D(Z), (A � A′′, γ) 7→ A. In fact, it is a “derived” version of the
previous factorization.

Notation 3.94. — Let n ∈ N be a natural number. Then we will denote
by R[n] : Pairγ,an → Pairγ,an the left derived functor (Proposition A.14) of
the composite functor Pairγ,st → Pairγn ↪→ Pairγ,an, where the first functor
Pairγ,st → Pairγn is the restriction of the localization R[n]

cl : Pairγ → Pairγn to
the full subcategory Pairγ,st ⊆ Pairγ .

We compose R[n] with the functor Pairγ,an → D(Z), (A � A′′, γ) 7→ A. We
get a functor Pairγ,an → D(Z), which is equivalent to the composite functor
gr[0,n)

PD by Proposition A.14 since both functors preserves filtered colimits and
geometric realizations, and they are canonically identified on the full subcate-
gory Pairγ,st ⊆ Pairγ,an.

Construction 3.95. — Let n ∈ N be a natural number. Then there is an
essentially unique comparison map c[n]

γ from the composite functor

Pairan → Pairγ,an R[n]

−−−→ Pairγ,an,

tome 152 – 2024 – no 4



REVISITING DERIVED CRYSTALLINE COHOMOLOGY 717

which preserves filtered colimits and geometric realizations, to the composite
functor

Pairan → Pair ↪→ Pairγ
R

[n]
cl−−−→ Pairγn ↪→ Pairγ,an

which is equivalent to c[0,n)
γ after composing the sifted-colimit-preserving functor

Pairγ,an → D(Z) by checking on the full subcategory Pairst ⊆ Pairan and the
universal property of the left Kan extension.

It remains to show the following.

Lemma 3.96. — The comparison map c[n]
γ of functors Pairan ⇒ Pairγ,an be-

comes an equivalence after restricting to the full subcategory QReg ⊆ Pairan.

Proof. — It follows from Lemmas 3.87 and 3.88, Corollary 3.61, and Proposi-
tion 3.38 and the fact that the derived divided powers Γ∗ of a flat module are
flat, and, therefore, static, that the essential image of the composite functor

QReg ↪→ Pairan → Pairγ,an R[n]

−−−→ Pairγ,an(3)

lies in the full subcategory Pairγ ⊆ Pairγ,an. We first show that the essential
image further lies in the full subcategory Pairγn ⊆ Pairγ .

We fix a quasiregular pair (A, I) ∈ QReg. Let (C,K, γ) ∈ Pairγ denote
the image of (A, I) ∈ QReg under the composite functor (3). Since (A, I)
can be rewritten as a sifted colimit colimj∈I(Bj , Jj) taken in Pairan, where
(Bj , Jj) ∈ Pairst. Let (Cj ,Kj , γj) ∈ Pairγ,st be the PD-envelope of (Bj , Jj).
Then (C,K, γ) ' colimj∈I(Cj/K [n]

j ,KjCj/K
[n]
j , γj) taken in Pairγ,an. For

every x1, . . . , xm ∈ K and i1, . . . , im ∈ N such that i1 + · · · + im ≥ n, we
need to show that γi1(x1) · · · γim(xm) = 0. The elements x1, . . . , xm define
a map ϕ : (ΓZ(X1, . . . , Xm) � Z, δ) → (C,K, γ) in Pairγ ⊆ Pairγ,an. Since
(ΓZ(X1, . . . , Xm) � Z, δ) ∈ Pairγ,an is compact and projective, and I is sifted,
the map ϕ factors as (ΓZ(X1, . . . , Xm) � Z, δ)→ (Cj/K [n]

j ,KjCj/K
[n]
j , γj)→

colimk∈I(Ck/K [n]
k ,KkCk/K

[n]
k , γk) for some j ∈ I. Then the element

γi1(X1) · · · γim(Xm) ∈ ΓZ(X1, . . . , Xm) is killed by the first map, and, hence,
γi1(x1) · · · γim(xm) = 0.

Note that the composite of left adjoints Pair→ Pairγ
R

[n]
cl−−−→ Pairγn preserves

small colimits, (C,K, γ) ∈ Pairγn is isomorphic to the image of (A, I) ∈ QReg ⊆
Pair under this composite functor, and the map (A, I) → (C,K) is the unit
map under this isomorphism. The result then follows from the uniqueness of
universal objects. �

Remark 3.97. — In fact, there is an ∞-category Pairγn,an of animated PD-
pairs PD-nilpotent of height n, defined to be the nonabelian derived category of
the essential image of Pairγ,st ⊆ Pair under the functor R[n]

cl : Pairγ → Pairγn .
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Then there is a pair of adjoint functors Pairγn,an � Pairγn,an by Corollary 2.2.
Furthermore, by mimicking the proof of Lemma 3.19, the canonical functor
Pairγn → Pairγn,an is fully faithful. This leads to an alternative proof of
Lemma 3.96. Although the functor Pairγn → Pairγ is fully faithful, we conjec-
ture that the functor Pairγn,an → Pairγ,an is not fully faithful, similarly to the
fact that the forgetful functor D(Z/nZ)→ D(Z) is not fully faithful although
ModZ/nZ → Ab is so.

Now we answer Illusie’s question.

Proposition 3.98. — For every quasiregular pair (A, I) ∈ QReg, let (B, J, γ)
denote its PD-envelope. Then the canonical map Γ∗A/I(I/I2) →

⊕
J [∗]/J [∗+1]

of graded rings induced by γ∗ : I → I is an equivalence.

Proof. — It follows from Corollary 3.61, Lemmas 3.87 and 3.88, and Propo-
sition 3.90 that there is a comparison map Γ∗A/I(I/I2) →

⊕
J [∗]/J [∗+1] of

graded rings. Then the result follows from element tracing, a modification
of the proof of Corollary 3.65 by replacing (Z[X1, . . . , Xn], (X1, . . . , Xn)) with
(ΓZ(X1, . . . , Xn) � Z, γ). �

4. Derived crystalline cohomology

In this section, we define and study the Hodge-filtered derived crystalline
cohomology, a filtered E∞-Z-algebra functorially associated to an animated
PD-pair (A � A′′, γ) along with a map A′′ → R of animated rings. To do so,
we will introduce an auxiliary construction, the Hodge-filtered derived de Rham
cohomology, functorially associated to a map (A � A′′, γ) → (B � B′′, δ)
of animated PD-pairs, which will be proved independent of the choice of B,
and then we define the Hodge-filtered derived crystalline cohomology for (A�
A′′, γ) along with A′′ → R as the Hodge-filtered derived de Rham cohomology
of the map (A � A′′, γ) → (idR : R → R, 0). This is a generalization of the
(usual) derived de Rham cohomology as introduced in Illusie’s thesis [23].

Furthermore, we also define the cohomology of the affine crystalline site,
which can be endowed with Hodge-filtration, whose definition is more simi-
lar to the classical crystalline cohomology in [5]. The Hodge-filtered derived
de Rham cohomology is, roughly speaking, equivalent to the relative animated
PD-envelope whenever A′′ → R is surjective (Proposition 4.75), and the Hodge-
filtered derived de Rham cohomology is equivalent to the cohomology of the
affine crystalline site with Hodge filtration when π0(R) is a finitely generated
π0(A′′)-algebra (Proposition 4.77) or when R is a quasisyntomic A′′-algebra
(Proposition 4.98). Furthermore, the cohomology of the affine crystalline site
is equivalent to the classical crystalline cohomology when everything is clas-
sically given, at least up to p-completion, due to the fact that our theory is
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noncompleted (Proposition 4.101). Our results can be understood as an ex-
trapolation of techniques in [9].

Remark 4.1. — Our theory is characteristic-independent. As a cost, the de-
rived de Rham cohomology does not coincide with algebraic de Rham coho-
mology even under smoothness conditions, although this is true when the base
is of characteristic p. In particular, for a map (A � A′′, γ) → (B � B′′, δ)
of animated PD-pairs where A is an animated Q-algebra, the underlying E∞-
ring of our Hodge-filtered derived de Rham cohomology is constantly A, cf.
Lemma 4.13. However, in this case, the noncompleted crystalline cohomology
(Definition 4.99) is also A, so the derived de Rham cohomology is as “bad”
as the noncompleted derived crystalline cohomology. On the other hand, the
Hodge-filtration allows us to recover the “correct” cohomology theory in char-
acteristic 0 after taking Hodge completion by [9, Rem 2.6].

As a corollary, we deduce that the (usual) derived de Rham cohomology
dRZ/Z[x] is, as an E∞-Z[x]-algebra, equivalent to the PD-polynomial algebra
ΓZ(x). Bhatt showed an p-completed version of this [9, Thm 3.27].

Remark 4.2. — In fact, our theory stems from the observation that the
p-completed derived de Rham cohomology (dRZ/Z[x])∧p coincides with the p-
completed PD-polynomial ring ΓZ(x)∧p , and the rationalization becomes Q[x].

The virtue of our Hodge-filtered derived crystalline cohomology is that it
preserves small colimits. We will show that this implies several properties of
derived crystalline cohomology, such as “Künneth formula” and base change
property (Corollaries 4.38 to 4.40).

Remark 4.3. — In a forthcomingwork [33], theHodge-filtered derived deRham
cohomology admits a natural enrichment to derived PD-pairs, Remark 3.33, and
the Hodge filtration is given by the PD-filtration of the derived PD-pair in ques-
tion.

4.1. Derived de Rham cohomology. — In this section, we define the derived de
Rham cohomology for maps of animated PD-pairs. We need the definition of
modules of PD-differentials17.

Definition 4.4 ([39, Tag 07HQ]). — Let (A, I, γ)→ (B, J, δ) be a map of PD-
pairs and M an B-module. A PD A-derivation into M is a map θ : B → M ,
which is additive, θ(a) = 0 for a ∈ A, satisfies the Leibniz rule θ(bb′) = bθ(b′)+
b′θ(b) and that

θ(δn(x)) = δn−1(x)θ(x)
for all n ≥ 1 and x ∈ J .

17. It is about differentials preserving PD-structure, rather than a module with a PD-
structure.
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In this situation, there exists a universal PD A-derivation
d(B,J)/(A,I) : B → Ω1

(B,J)/(A,I)

such that for any PD A-derivation θ : B → M , and there exists a unique B-
linear map ξ : Ω1

(B,J)/(A,I) → M such that θ = ξ ◦ d(B,J)/(A,I). We also call
Ω1

(B,J)/(A,I) the module of PD-differentials.

Remark 4.5. — In Definition 4.4, the PD-structure on A is irrelevant. How-
ever, we will soon see that the derived version of module of PD-differentials
does depend on the PD-structure on A.

Construction 4.6 ([39, Tag 07HZ]). — Let (A, I, γ) → (B, J, δ) be a map
of PD-pairs such that Ω1

(B,J)/(A,I) is a flat B-module18. The de Rham
complex (Ω∗(B,J)/(A,I),d) is given by Ωi(B,J)/(A,I) =

∧i
B Ω1

(B,J)/(A,I) and
d : Ωi(B,J)/(A,I) → Ωi+1

(B,J)/(A,I) is the unique A-linear map determined by

d(f0df1 ∧ · · · ∧ dfi) = df0 ∧ · · · ∧ dfi.
We recall that a commutative differential graded A-algebra (abbrev. A-CDGA)
is a commutative algebra object in the symmetric monoidal abelian 1-category
Ch(ModA) of chain complexes19 in static A-modules for a ring A. Then any
nonpositively graded A-CDGA gives rise to an E∞-A-algebra20, and in partic-
ular, the de Rham complex constructed above gives rise to the de Rham coho-
mology of (A, I, γ) → (B, J, δ) as an E∞-A-algebra. Furthermore, the trun-
cation map (Ω∗(B,J)/(A,I),d) → Ω0

(B,J)/(A,I) = B is a map of CDGAs, where
B is concentrated in degree 0. Passing to the cohomology, we get a map of
E∞-Z-algebras, called the augmentation map of the de Rham cohomology of
(A, I, γ)→ (B, J, δ).

Remark 4.7. — When we restrict ourselves to the full subcategory
Ch�−∞(Mod[A) ⊆ Ch(ModA) spanned by bounded below chain complexes of
flat A-modules, the fully faithful embedding Ch�−∞(Mod[A) ↪→ DF(A) is, in
fact, symmetric monoidal. We will refer to this later.

18. We assume the flatness only to avoid the appearance of the ordinary tensor product ⊗
and the exterior power

∧
, since for flat modules, these coincide with the derived versions. In

fact, we only need the very special case that ((A, I, γ) → (B, J, δ)) ∈ dRCon defined before
Definition 4.10.

19. We identify cochain complexes (K∗, d) with chain complexes (K−∗, d).
20. This is in [38, Notation 3.3.12], and we reproduce the argument as follows. We can

identify the heart DF(A)♥ with respect to the Beilinson t-structure (Proposition 2.41) with
the abelian 1-category Ch(ModA). Furthermore, the fully faithful embedding Ch(ModA) ↪→
DF(A) is lax symmetric monoidal (Lemma 2.40). Thus, an A-CDGA gives rise to an E∞-
algebra in DF(A). The embedding Ch(ModA) ↪→ DF(A) restricts to a lax symmetric
monoidal embedding Ch≤0(ModA) → DF≥0(A). Thus, a nonpositively graded A-CDGA
gives rise to an E∞-algebra in DF≥0(A), which is mapped to an E∞-A-algebra by the sym-
metric monoidal functor DF≥0(A)→ D(A).
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Remark 4.8. — The composite functor Ch≤0(ModA) ↪→ DF≥0(A)→ D≤0(A)
maps any complex to its underlying module spectrum.

Now we define the derived de Rham cohomology for PD-pairs.

Construction 4.9. — By Corollary 2.9, the ∞-category dRCon :=
Fun(∆1,Pairγ,an) (abbreviated for de Rham context) admits a set of compact
projective generators given by maps of PD-pairs of the form (ΓZ[X](Y ) �
Z[X])→ (ΓZ[X,X′](Y, Y ′) � Z[X,X ′]), where each of X,Y,X ′, Y ′ consists of a
finite set (including empty) of variables. These objects span a full subcategory
dRCon0 ⊆ dRCon stable under finite coproducts. Then it follows from Proposi-
tion A.16 that there is an equivalence PΣ(dRCon0)→ dRCon of ∞-categories.
The de Rham cohomology, equipped with the augmentation map in Construc-
tion 4.6, restricts us to a functor dRCon0 → Fun(∆1,CAlgZ), where CAlgZ is
the ∞-category of E∞-Z-algebras.

Definition 4.10. — ThederiveddeRhamcohomology functor dR·/· : dRCon→
CAlgZ along with a canonical map dR(B�B′′,δ)/(A�A′′,γ) → B of functors
dRCon ⇒ CAlgZ is defined to be the left derived functor (Proposition A.14)
of the functor dRCon0 → Fun(∆1,CAlgZ) in Construction 4.9. Given a map
(A � A′′, γ) → (B � B′′, δ) of animated PD-pairs, its derived de Rham
cohomology, i.e., the image under the derived de Rham cohomology functor, is
denoted by dR(B�B′′,δ)/(A�A′′,γ), or simply dR(B�B′′)/(A�A′′) when there is
no ambiguity.

We first explain that this is a generalization of classical derived de Rham
cohomology.

Remark 4.11. — We recall that the functor CAlgan → Pairγ,an, A 7→ (idA :
A → A, 0) is fully faithful (Lemma 3.45), and, thus, so is the induced functor
Fun(∆1,CAlgan)→ Fun(∆1,Pairγ,an) = dRCon.

Lemma 4.12. — The composite functor Fun(∆1,CAlgan) → dRCon
dR·/·−−−→

CAlgZ, (A → B) 7→ dR(idB :B→B,0)/(idA:A→A,0) is equivalent to the classical
derived de Rham cohomology functor (A→ B) 7→ dRB/A.

Proof. — The crucial point is that Fun(∆1,CAlgan) is projectively generated,
for which {(Z[X] → Z[X,Y ])} forms a set of compact projective generators,
which follows from Corollary 2.9 and Lemma 3.45. The result then follows
from Proposition A.14 and the definition of the classical derived de Rham
cohomology functor. �

We compute concretely the de Rham complex on dRCon0. Fix an object
(ΓZ[X′](Y ′) � Z[X ′]) → (ΓZ[X,X′](Y, Y ′) � Z[X,X ′]) ∈ dRCon0,;to simplify
notations, we will write A := ΓZ[X′](Y ′), A′′ := Z[X ′]. Then this object can
be rewritten as (A � A′′, γ) → (B := ΓA[X](Y ) � A′′[X], γ̃), where X =
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(x1, . . . , xm) and Y = (y1, . . . , yn) with the module of PD-differentials Ω1 =
Bdx1⊕· · ·⊕Bdxn⊕Bdy1⊕· · ·⊕Bdyn, and the universal PD-derivation B →
Ω1 is determined by d(Xαγβ(Y )) =

∑m
i=1 αix

α1
1 · · ·x

αi−1
i · · ·xαmm γβ(Y )dxi +∑n

j=1X
αγβ1(y1) · · · γβj−1(yj) · · · γβn(yn)dyj (with multi-index product).

As we mentioned earlier, the derived de Rham cohomology is considered
uninteresting in characteristic 0. Informally, the derived de Rham cohomology
dR(B�B′′)/(A�A′′) is functorially equivalent to A after rationalization. More
precisely, we will show the following.

Lemma 4.13. — There is a comparison map A→ dR(B�B′′)/(A�A′′), functo-
rial in ((A� A′′)→ (B � B′′)) ∈ dRCon, as a natural transformation of two
functors dRCon ⇒ CAlgZ. This natural transformation becomes an equivalence
after composing with the rationalization (−)⊗L

Z Q : CAlgZ → CAlgQ.

Proof. — We first construct the comparison map in question. We have the
composite of forgetful functors Pairγ,an → Pairan → CAlgan → CAlgZ,
(A � A′′, γ) 7→ A. Further composing with the evaluation map dRCon →
Pairγ,an at [0] ∈ ∆1, we get a functor dRCon → CAlgZ, ((A � A′′, γ) →
(B � B′′, δ)) 7→ A. We restrict this functor to dRCon0, getting a functor
dRCon0 → CAlgZ, which coincides with the composite functor dRCon0 →
Ring = CAlg(Ab) ↪→ CAlg(Ch≤0(Ab))→ CAlgZ given by the “same” formula
((A � A′′, γ) → (B � B′′, δ)) 7→ A. Note that there is a canonical map of
functors from dRCon0 → Ring → CAlg(Ch≤0(Ab)) to the de Rham complex
functor dRCon0 → CAlg(Ch≤0(Ab)), which is given by the A-CDGA structure
on the de Rham complex. Now Proposition A.14 gives us a comparison map
of the left derived functors dRCon ⇒ CAlgZ.

It remains to see that this comparison map is an equivalence after ratio-
nalization. First, we note that the rationalization CAlgZ → CAlgQ preserves
small colimits, and in particular, filtered colimits and geometric realizations;
it follows from Proposition A.14 that both functors are still left derived func-
tors after rationalization, and, therefore, it suffices to check the equivalence
on dRCon0. The Poincaré lemma implies that the comparison map of func-
tors dRCon0 ⇒ CAlg(Ch≤0(Ab)) becomes a homotopy equivalence after com-
posing with CAlg(Ch≤0(Ab)) → CAlg(Ch≤0(ModQ)), which implies that it
becomes an equivalence after composing with CAlg(Ch≤0(Ab)) → CAlgQ by
Remark 4.8. �

Another consequence of this computation is that the de Rham cohomology
functor dRCon0 → CAlgZ preserves finite coproducts, which follows from the
fact that the de Rham cohomology functor dRCon0 → CAlg(Ch�−∞(FreeAb))
preserves finite coproducts, and that the composite functor Ch�−∞(FreeAb) ↪→
DF≥0(Z) → D(Z) is symmetric monoidal; cf. Remark 4.7. By Proposi-
tion A.14, we have the following.
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Lemma 4.14. — The derived de Rham cohomology functor dRCon → CAlgZ
preserves small colimits.

Now we show that the derived de Rham cohomology associated to the map
(A � A′′, γ) → (B � B′′, δ) does not depend on B and define the derived
crystalline cohomology. To formally define the∞-category of animated PD-pairs
(A � A′′, γ) along with a map A′′ → R of animated rings, we need the concept
of comma categories in Section 2.3. Consider the comma category CrysCon :=
Pairγ,an×CAlgan Fun(∆1,CAlgan) (abbreviation for crystalline context), where
the functor Pairγ,an → CAlgan is the composite functor Pairγ,an → Pairan →
CAlgan, (A � A′′, γ) 7→ A′′ and the functor Fun(∆1,CAlgan) → CAlgan is
the evaluation (A′′ → R) 7→ A′′ at 0 ∈ ∆1. It follows from Corollary 2.22 that
CrysCon admits a set of compact projective generators of the form ((ΓZ[X](Y ) �
Z[X], γ),Z[X] → Z[X,Z]), where each of X,Y, Z consists of a finite set of vari-
ables, which spans a full subcategory CrysCon0 ⊆ CrysCon stable under finite
coproducts.

Construction 4.15. — We note that there is a canonical functor dRCon →
CrysCon induced by the evaluation dRCon = Fun(∆1,Pairγ,an)

ev[0]−−−→ Pairγ,an

and the functor dRCon→ Fun(∆1,CAlgan), which is itself induced by the com-
posite of the forgetful functors Pairγ,an → Pairan → CAlgan, (A � A′′, γ) 7→
A′′. Concretely, the functor dRCon → CrysCon is given by ((A � A′′, γ) →
(B � B′′, δ)) 7→ ((A � A′′, γ), A′′ → B′′). Since both functors preserve small
colimits (we have used Proposition 3.40), we deduce the following.

Lemma 4.16. — The functor dRCon → CrysCon in Construction 4.15 pre-
serves small colimits.

It follows from Proposition A.14 that dRCon → CrysCon is the left de-
rived functor of the composite functor dRCon0 → CrysCon0 → CrysCon,
((ΓZ[X](Y ) � Z[X]) → (ΓZ[X,X′](Y, Y ′) � Z[X,X ′])) 7→ ((ΓZ[X](Y ) � Z[X]),
Z[X]→ Z[X,X ′]). From Corollary 2.2 we have the following.

Lemma 4.17. — The functor dRCon→ CrysCon in Construction 4.15 admits
a right adjoint CrysCon→ dRCon, which preserves sifted colimits.

One can verify (see also Lemma 3.45) the following.

Lemma 4.18. — The right adjoint CrysCon → dRCon is concretely given by
((A� A′′, γ), A′′ → R) 7→ ((A� A′′, γ)→ (idR : R→ R, 0)).

The independence of dR(B�B′′)/(A�A′′) with respect to B is formally for-
mulated as follows.

Construction 4.19. — The counit map of the adjunction dRCon � CrysCon
in Lemma 4.17 is an equivalence by Lemma 4.18, and, therefore, the functor
CrysCon → dRCon is fully faithful. The unit map between functors dRCon ⇒
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dRCon is concretely given by ((A � A′′, γ)→ (B � B′′, δ))→ ((A � A′′, γ)→
(idB′′ : B′′ → B′′, 0)). Applying the derived de Rham functor dRCon → CAlgZ,
we get the comparison map dR(B�B′′,δ)/(A�A′′,γ) → dR(idB′′ ,0)/(A→A′′,γ) which
is functorial in ((A � A′′, γ) → (B � B′′, δ)) ∈ dRCon, and the comparison
map is viewed as a natural transformation between two functors dRCon ⇒ CAlgZ.

Proposition 4.20. — The natural transformation in Construction 4.19. In
other words, the derived de Rham cohomology functor dRCon → CAlgZ is
(dRCon→ CrysCon)-invariant (Definition 2.57).

Proof. — Both functors preserve sifted colimits, so by Proposition A.14, it
suffices to establish the equivalence for the full subcategory dRCon0 ⊆ dRCon.
For every (ΓZ[X′](Y ′) � Z[X ′]) → (ΓZ[X,X′](Y, Y ′) � Z[X,X ′]) ∈ dRCon0

simply denoted by ((A � A′′, γ)→ (ΓA[X](Y ) � A′′[X], γ)), we need to show
that the map

dR(ΓA[X](Y )�A′′[X])/(A�A′′) → dR(idA′′[X]:A′′[X]→A′′[X],0)/(A�A′′)

is an equivalence. Note that the constructed map

(ΓA[X](Y ) � A′′[X], γ)→ (idA′′[X] : A′′[X]→ A′′[X], 0)

in Pairγ,an
/(A�A′′,γ) factors as

(ΓA[X](Y )�A′′[X], γ) α−→ (A[X]�A′′[X], γ) β−→ (idA′′[X] :A′′[X]→A′′[X], 0)

Thus it suffices to show that both maps α and β induce equivalences after
passing to the functor dR·/(A�A′′,γ) : Pairγ,an

/(A�A′′,γ) → CAlgZ. Note that
(A[X] � A′′[X], γ) ∈ dRCon0, dRα/(A�A′′,γ) could be computed by de Rham
complexes, which corresponds a homotopy equivalence of de Rham complexes
by the divided power Poincaré lemma [39, Tag 07LC].

It remains to show that dRβ/(A�A′′,γ) is also an equivalence. For this, we
need to resolve (idA′′[X] : A′′[X] → A′′[X], 0) simplicially under (A[X] �
A′′[X], γ). Recall that A = ΓZ[X′](Y ′) and A′′ = Z[X ′]. The key point is
that we can resolve A′′ simplicially by divided power polynomial A-algebras,
in the same way as resolving Z simplicially by polynomial Z[t]-algebras, which
essentially follows from a bar construction of N, see [9, Rem 3.31]. For every
divided power polynomial A-algebra ΓA(Z), (ΓA[X](Z) � A′′[X], γ) belongs to
dRCon0, and the map dR(A[X]�A′′[X])/(A�A′′) → dR(ΓA[X](Z)�A′′[X])/(A�A′′)
(functorial in ΓA(Z)) is an equivalence again by the divided power Poincaré
lemma [39, Tag 07LC]. It follows that dRβ/(A�A′′,γ) is, indeed, an equivalence.

�

In view of Proposition 2.56, we define the derived crystalline cohomology
functor, which corresponds to the (dRCon→ CrysCon)-invariant functor dR·/·.
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Definition 4.21. — The derived crystalline cohomology functor CrysCoh :
CrysCon → CAlgZ is defined to be the composite CrysCon → dRCon

dR·/·−−−→
CAlgZ.

Notation 4.22. — We will denote the derived crystalline cohomology of ((A�
A′′, γ), A′′ → R) ∈ CrysCon by CrysCohR/(A�A′′,γ) (or CrysCohR/(A�A′′)
even CrysConR/A when there is no ambiguity).

Now we show that

Proposition 4.23. — The derived crystalline cohomology functor CrysCon→
CAlgZ preserves small colimits.

Proof. — The functor CrysCon→ dRCon preserves sifted colimits and dR·/· :
dRCon→ CAlgZ preserves small colimits. It follows that the derived crystalline
cohomology functor CrysCoh preserves sifted colimits. By Proposition A.14,
and it remains to show that CrysCoh |CrysCon0 preserves finite coproducts. The
point is that every (ΓZ[X′](Y ′) � Z[X ′],Z[X ′] → Z[X,X ′]) ∈ CrysCon0 lifts
to (ΓZ[X′](Y ′) � Z[X ′]) → (ΓZ[X,X′](Y, Y ′) � Z[X,X ′]) ∈ dRCon0, the func-
tor dRCon0 → CrysCon0 preserves finite coproducts, and the functor dR·/·
preserves finite coproducts. �

Now we apply the discussions in Section 2.3 to deduce some formal proper-
ties. First, by Remark 2.24, we have the following.

Corollary 4.24. — The derived crystalline cohomology is compatible with
base change. More precisely, let ((A � A′′, γA), A′′ → R) ∈ CrysCon and let
(A � A′′, γA) → (B � B′′, γB) be a map of animated PD-pairs. Then the
canonical map

CrysCohR/(A�A′′,γA)⊗L
AB −→ CrysCoh(R⊗L

A′′
B′′)/(B�B′′,γB)

is an equivalence.

Remark 4.25. — Let R be a (finitely generated) polynomial Fp-algebra. Then
by the p-completed derived crystalline cohomology of R with respect to the PD-
pair (Zp, (p)) is equivalent to the usual (p-completed) crystalline cohomology of
R with respect to Zp. In fact, later (Propositions 4.98 and 4.101), we will show
that the same p-completed comparison holds for quasisyntomic Fp-algebras
R (and in particular, for smooth Fp-algebras). However, our noncompleted
derived crystalline cohomology is not necessarily p-complete.

Next, by Remark 2.28, we have the following.
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Corollary 4.26. — The derived crystalline cohomology is symmetric mono-
idal. More precisely, let (A � A′′, γA) ∈ Pairγ,an and let A → R, A → S be
two maps of animated rings. Then the canonical map

CrysCohR/(A�A′′)⊗L
A CrysCohS/(A�A′′) −→ CrysCoh(R⊗L

A′′
S)/(A�A′′)

is an equivalence.

Finally, by Remark 2.31, we have the following.

Corollary 4.27. — The derived crystalline cohomology is transitive. More
precisely, let (A � A′′, γA) → (B � B′′, γB) be a map of animated PD-pairs,
and let B′′ → R be a map of animated rings. Then the canonical map

CrysCohR/(A�A′′)⊗L
CrysCohB′′/(A�A′′)

B −→ CrysCohR/(B�B′′)

is an equivalence, where the map CrysCohB′′/(A�A′′) → B is

CrysCohB′′/(A�A′′) → CrysCohB′′/(B�B′′) ' B.

Remark 4.28. — In particular, if we take (A � A′′, γA) = (Z, 0, 0) in Corol-
lary 4.27, we see that, fixing an animated PD-pair (B � B′′, γB), any derived
crystalline cohomology CrysCohR/(B�B′′) is completely determined by the de-
rived de Rham cohomology dRR/Z. However, without the theory of derived
crystalline cohomology, we do not know how to construct the map dRB′′/Z → B
in terms of the PD-structure on B � B′′.

4.2. Filtrations. — In this section, we will define the Hodge filtration on the
derived de Rham cohomology and show that most of our previous discussions
are compatible with the Hodge filtration. Furthermore, in characteristic p, we
will define the conjugate filtration, which is of technical importance to control
the cohomology. We start with the definition of the Hodge filtration.

Definition 4.29 (cf. [6, §6.13]). — Let (A, I, γ)→ (B, J, δ) be a map of PD-
pairs such that Ω1

(B,J)/(A,I) is a flat B-module. The Hodge filtration Fil∗H on
the de Rham complex (Ω∗(B,J)/(A,I),d) is given by the differential graded ideals
FilmH Ω∗(B,J)/(A,I) := J [m−∗]Ω∗(B,J)/(A,I) ⊆ Ω∗(B,J)/(A,I).

Construction 4.30. — AsCDGAs give rise toE∞-Z-algebras, (nonnegatively)
filtered CDGAs give rise to (nonnegatively) filteredE∞-Z-algebras. Moreover, the
truncation map (Ω∗(B,J)/(A,I),d)→ B is a map of filtered CDGAs, which gives
rise to a map of filtered E∞-Z-algebras. Thus we get a functor dRCon0 →
Fun(∆1,CAlg(DF≥0(Z))).

Definition 4.31. — The Hodge-filtered derived de Rham cohomology func-
tor Fil∗H dR·/· : dRCon → CAlg(DF≥0(Z)) together with a canonical map
Fil∗H dR(B�B′′)/(A�A′′) → Fil∗PDB is defined to be the left derived functor
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(Proposition A.14) of the functor dRCon0 → Fun(∆1,CAlg(DF≥0(Z))) in Con-
struction 4.30, where Fil∗PDB is an abbreviation of Fil∗PD(B � B′′, γ) (Defini-
tion 3.85).

Most of properties in Section 4.1 hold with a similar proof:

Lemma 4.32. — The composite functor

Fun(∆1,CAlgan)→ dRCon→ CAlg(DF≥0(Z)),
(A→ B) 7→ Fil∗H dR(idB :B→B,0)/(idA:A→A,0)

is equivalent to the classical Hodge-filtered derived de Rham cohomology functor
(A→ B) 7→ Fil∗H dRB/A.

Lemma 4.33. — The map in Lemma 4.13 admits a natural enrichment, that
is to say, a map Fil∗PDA → Fil∗H dR(B�B′′)/(A�A′′) of functors dRCon ⇒

CAlg(DF≥0(Z)).21

Lemma 4.34. — The Hodge-filtered derived de Rham cohomology functor
dRCon→ CAlg(DF≥0(Z)) preserves small colimits.

This allows us to define the Hodge-filtration on the derived crystalline co-
homology, due to the following proposition, which follows from the proof of
Proposition 4.20 by replacing the Poincaré lemma by the filtered Poincaré
lemma, cf. [6, Thm 6.13]:

Proposition 4.35. — The map

Fil∗H dR(B�B′′,δ)/(A�A′′,γ) → Fil∗H dR(idB′′ ,0)/(A→A′′,γ)

of functors dRCon ⇒ CAlg(DF≥0(Z)) induced by the counit map associated to
((A � A′′, γ) → (B � B′′, δ)) ∈ dRCon is an equivalence. In other words,
the Hodge-filtered de Rham cohomology functor dRCon → CAlg(DF≥0(Z)) is
(dRCon→ CrysCon)-invariant (Definition 2.57).

Definition 4.36. — The Hodge-filtered derived crystalline cohomology functor
Fil∗H CrysCoh : CrysCon → CAlg(DF≥0(Z)) is defined to be the composite
CrysCon→ dRCon

Fil∗H dR·/·−−−−−−→ CAlg(DF≥0(Z)).

Proposition 4.37. — The Hodge-filtered derived crystalline cohomology func-
tor CrysCon→ CAlg(DF≥0(Z)) preserves small colimits.

Similarly to Corollaries 4.24, 4.26 and 4.27, we have

21. Corrected thanks to a message from Lenny Taelman.
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Corollary 4.38. — The Hodge-filtered derived crystalline cohomology is com-
patible with base change. More precisely, let ((A � A′′, γA), A′′ → R) ∈
CrysCon and let (A � A′′, γA) → (B � B′′, γB) be a map of animated PD-
pairs. Then the canonical map

FilH CrysCohR/(A�A′′,γA)⊗L
FilPD A

FilPDB

−→ FilH CrysCoh(R⊗L
A′′

B′′)/(B�B′′,γB)

is an equivalence.

Corollary 4.39. — The derived crystalline cohomology is symmetric mono-
idal. More precisely, let (A � A′′, γA) ∈ Pairγ,an and let A → R, A → S be
two maps of animated rings. Then the canonical map

FilH CrysCohR/(A�A′′)⊗L FilH CrysCohS/(A�A′′)

→ FilH CrysCoh(R⊗L
A′′

S)/(A�A′′)

is an equivalence, where the tensor product on the left is relative to FilPDA.

Corollary 4.40. — The derived crystalline cohomology is transitive. More
precisely, let (A � A′′, γA) → (B � B′′, γB) be a map of animated PD-pairs
and let B′′ → R be a map of animated rings. Then the canonical map

FilH CrysCohR/(A�A′′)⊗L
FilH CrysCohB′′/(A�A′′)

FilPDB

−→ FilH CrysCohR/(B�B′′)

is an equivalence, where the map FilH CrysCohB′′/(A�A′′) → B is equivalent
to the map

FilH CrysCohB′′/(A�A′′) → FilH CrysCohB′′/(B�B′′) ' FilPDB.

Now we come to the characteristic p > 0 case. We start with an analysis
of the Frobenius map on an animated PD-Fp-pair. Let (A, I, γ) ∈ Pairγ,stFp be
an animated PD-Fp-pair of the form ΓFp[X](Y ) � Fp[X]. We also have similar
definitions for dRConFp ,dRCon0

Fp and CrysConFp ,CrysCon0
Fp , and a parallel

theory for Fp-stuff. We first point out that, by Corollary 4.24 along with the
proof of Lemma 2.37 (to compare with Lemmas 3.51 and 3.52), we have the
following.

Lemma 4.41. — Thederived crystalline cohomologyCrysConFp→CAlg(D(Fp))
fits into the commutative diagram

CrysConFp −→ CrysCon

−→ −→

CAlg(D(Fp)) −→ CAlg(D(Z))
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of ∞-categories, where the horizontal arrows are forgetful functors. The same
goes for the derived de Rham cohomology. Furthermore, this diagram is left
adjointable (roughly speaking, if we replace the horizontal arrows by their left
adjoints, it is still a commutative diagram of ∞-categories).

Then the Frobenius map ϕA : A→ A factors uniquely through the quotient
map A � A/I, which gives rise to a map A/I → A. From Proposition A.14
we then have the following.

Lemma 4.42. — For any animated PD-Fp-pair (A � A′′, γ) ∈ Pairγ,an
Fp , the

Frobenius map ϕA : A → A factors functorially through the map A � A′′,
which gives rise to the a map A′′ → A, denoted by ϕ(A�A′′,γ) or ϕA�A′′ when
there is no ambiguity (when (A � A′′, γ) comes from a PD-Fp-pair (A, I, γ);
it will also be denoted by ϕ(A,I,γ) or ϕ(A,I)).

Now we point out that in the char p-case, the de Rham complex is “Frobenius-
linear” (compare with Definition 3.68).

Construction 4.43. — Let (A, I, γ)→ (B, J, δ) be an object indRCon0
Fp . Each

graded piece Ωi(B,J,δ)/(A,I,γ) admits a natural B-module structure and, there-
fore, also a ϕ∗(A,I)(B/J)-module structure induced by the map ϕ∗(A,I)(B/J) :=
(B/J) ⊗L

A/I,ϕ(A,I)
A → B, the linearization of ϕ(B,J) : B/J → B. Further-

more, the differential d is ϕ∗(A,I)(B/J)-linear, which makes the de Rham com-
plex (Ω∗(B,J,δ)/(A,I,γ),d) a ϕ∗(A,I)(B/J)-CDGA. In other words, there is a map
ϕ∗(A,I)(B/J) → (Ω∗(B,J,δ)/(A,I,γ),d) of Fp-CDGAs, where ϕ∗(A,I)(B/J) is con-
centrated in degree 0.

Construction 4.44. — Let (A, I, γ) → (B, J, δ) be an object in dRCon0
Fp .

The derived de Rham cohomology dR(B,J,δ)/(A,I,γ) is computed by the de Rham
complex (Ω∗(B,J,δ)/(A,I,γ),d). TheWhitehead tower (τ≥n dR(B,J,δ)/(A,I,γ))n∈(Z,≥)

defines a nonpositive22 exhaustive filtration, and, thus, the map ϕ∗(A,I)(B/J)→
(Ω∗(B,J,δ)/(A,I,γ),d) is a map of filtered Fp-CDGAs (where ϕ∗(A,I)(B/J) is triv-
ially filtered), which gives rise to a map of filtered E∞-Fp-algebras, and, thus,
a functor dRCon0

Fp → Fun(∆1,CAlg(DF≤0(Fp))).

Definition 4.45. — The conjugate-filtered derived de Rham cohomology func-
tor Fil∗conj dR·/· : dRConFp → CAlg(DF≤0(Fp)) along with the structure map
ϕ∗(A�A′′)(B′′) → Fil∗conj dR(B�B′′,δ)/(A�A′′,γ) is defined to be the left derived
functor (PropositionA.14)of the functordRCon0

Fp → Fun(∆1,CAlg(DF≤0(Fp)))
in Construction 4.44.

22. In the literature, the conjugate filtration is increasing. We make it decreasing by
negating the sign.
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From either Proposition A.14 and Lemma 2.43 or the fact that Pairan '
PΣ(Pairst) ⊆ P(Pairst) is stable under filtered colimits (Proposition A.11) , we
have the following.

Lemma 4.46. — The conjugate filtration on the derived de Rham cohomology
is exhaustive.

We now prove the corresponding results of Section 4.1 for the conjugate
filtration.

Lemma 4.47. — The conjugate-filtered derived de Rham cohomology functor
dRConFp → CAlg(DF≤0(Fp)) preserves small colimits (note that so does the
functor dRConFp → CAlgFp , ((A� A′′, γ)→ (B � B′′, δ)) 7→ ϕ∗(A�A′′)(B′′)).

Proof. — First, we note that, for any connective E∞-ring A, the Whitehead-
tower functor D(A)→ DF(A),M 7→ (τ≥nM)n∈(Z,≥) is canonically lax symmet-
ric monoidal (recall that DF(A) is endowed with the Day convolution). We give
an informal description: given M,N ∈ D(A), for all m,n ∈ Z, the canonical
map τ≥mM →M and τ≥nN → N gives rise to a map (τ≥mM)⊗L

A (τ≥nN)→
M ⊗L

A N . Since (τ≥mM) ⊗L
A (τ≥nN) is (m + n)-connective, this gives rise to

a map (τ≥mM) ⊗L
A (τ≥nN) → τ≥m+n(M ⊗L

A N). Assembling these maps, we
get the lax symmetric monoidal structure. Next, when A is given by a field, in
particular, A = Fp, the structure above is, in fact, symmetric monoidal, since
(τ≥mM)⊗L

A (τ≥nN)→ τ≥m+n(M ⊗L
A N) is an equivalence for all m,n ∈ Z.

Now recall that in a symmetric monoidal ∞-category, finite coproducts of
commutative algebra objects are given by tensor products. It follows from
Lemma 4.14 that the conjugate-filtered derived de Rham cohomology functor
dRConFp → CAlg(DF≤0(Fp)) is the left derived functor of a finite-coproduct-
preserving functor, and then the result follows from Proposition A.14. �

Note that by the divided power Poincaré lemma [39, Tag 07LC], the conju-
gate filtration on the divided power polynomial algebra is trivial. The proof of
Proposition 4.20 leads to the following.

Proposition 4.48. — The natural transformation
Fil∗conj dR(B�B′′,δ)/(A�A′′,γ) → Fil∗conj dR(idB′′ ,0)/(A→A′′,γ)

of functors dRCon ⇒ CAlg(DF≤0(Z)) induced by the counit map associated to
((A � A′′, γ) → (B � B′′, δ)) ∈ dRCon is an equivalence. In other words,
the conjugate-filtered de Rham cohomology functor dRCon → CAlg(DF≤0(Z))
is (dRCon→ CrysCon)-invariant (Definition 2.57) (note that so is the functor
dRConFp → CAlgFp , ((A� A′′, γ)→ (B � B′′, δ)) 7→ ϕ∗(A�A′′)(B′′)).

Definition 4.49. — The conjugate-filtered derived crystalline cohomology
functor Fil∗conj CrysCoh : CrysCon → CAlg(DF≤0(Fp)) along with the struc-
ture map ϕ∗(A�A′′,γ)(R)→ CrysCohR/(A�A′′,γ) is defined to be the composite
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CrysCon → dRCon → Fun(∆1,CAlg(DF≤0(Fp))), where the later functor is
the conjugate-filtered derived de Rham cohomology functor combined with the
structure map.

By Lemma 4.46, we have the following.

Lemma 4.50. — The conjugate filtration on the derived crystalline cohomology
is exhaustive.

Similarly to Proposition 4.23, we have the following.

Proposition 4.51. — The conjugate-filtered derived crystalline cohomology
functor CrysCon→ CAlg(DF≤0(Fp)) preserves small colimits.

Now we analyze the associated graded pieces of the conjugate filtration. Let
(A, I, γ)→ (B, J, δ) be an element in dRCon0. We recall the inverse23 Cartier
map C−1 : ϕ∗(A,I)(Ω?(B/J)/(A/I)) → H?(Ω∗(B,J)/(A,I),d) of graded ϕ∗(A,I)(B/J)-
algebras (where ? is the grading), then we deduce that this is, in fact, an iso-
morphism. Our presentation has been adapted from the proof of [25, Thm 7.2].
• ? = 0: This is the compositemapϕ∗(A,I)(B/J)→B→H0(Ω∗(B,J)/(A,I),d),
i.e., the ϕ∗(A,I)(B/J)-algebra structure on H0(Ω(B,J)/(A,I),d).

• ? = 1: Consider the map B → H1(Ω∗(B,J)/(A,I),d) of sets given by
f 7→ [fp−1df ]. We first check that this map is additive. In Ω1

Z[u,v]/Z, we
have

(u+ v)p−1d(u+ v)− up−1du− vp−1dv = 1
p

(d((u+ v)p)− d(up)− d(vp))

= 1
p

d

p−1∑
j=1

(
p

j

)
ujvp−1−j


= d

p−1∑
j=1

1
p

(
p

j

)
ujvp−1−j


We deduce the additivity by the map Z[u, v]→ B, u 7→ f, v 7→ g.

Now we note that the map f 7→ [fp−1df ] satisfies Leibniz’ rule (re-
call that H1(Ω∗(B,J)/(A,I),d) is a ϕ∗(A,I)(B/J)-module; therefore a B/J-
module). Indeed, [(fg)p−1d(fg)] = fp[gp−1dg] + gp[fp−1df ].

Thus we get a derivation B/J → H1(Ω∗(B,J)/(A,I),d), which gives
rise to a B/J-linear map Ω1

(B/J)/(A/I) → H1(Ω∗(B,J)/(A,I),d) and after
linearization, we get ϕ∗(A,I)Ω1

(B/J)/(A,I) → H1(Ω∗(B,J)/(A,I),d).
• ? > 1: Taking the exterior power of the map for ? = 1.

23. A priori, the “inverse” Cartier map C−1 is not defined to be the inverse of a map, but
just defined to be a map.
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Now we show the Cartier isomorphism.

Lemma 4.52. — Let (A, I, γ) → (B, J, δ) be an element in CrysCon0
Fp . Then

the inverse Cartier map C−1 : ϕ∗(A,I)(Ω?(B/J)/(A/I)) → H?(Ω∗(B,J)/(A,I),d) is
an isomorphism of graded ϕ∗(A,I)(B/J)-algebras.

Proof. — Recall that (B, J, δ) is of the form (ΓA[X](Y ) � (A/I)[X], δ). It is then
direct tocheck that the inverseCartiermapC−1 factorsasϕ∗(A,I)(Ω?(B/J)/(A/I))→
H?(Ω∗(A[X],IA[X])/(A,I),d) → H?(Ω∗(B,J)/(A,I),d), where the first map is the
inverse Cartier map associated to (A � A/I, γ) → (A[X], IA[X], γ), and the
second map is an isomorphism by the divided power Poincaré lemma [39, Tag
07LC].

Thus we can assume that (B, J, δ) = (A[X], IA[X], γ). In this case, the
inverse Cartier map is base-changed from that for (A, 0, 0)→ (A[X], 0, 0) along
(A, 0, 0)→ (A, I, γ), thus we can assume that I = 0, which is [25, Thm 7.2]. �

From Proposition A.14 we then have the following.

Proposition 4.53. — There exists a natural isomorphism24

C−1 : ϕ∗(A�A′′)

(
?∧
B′′

LB′′/A′′

)
[−?]→ gr−?conj dR(B�B′′)/(A�A′′)

in CAlg(Gr≤0(D(ϕ∗A�A′′(B′′)))), called the derived Cartier isomorphism (cf.
[9, Prop 3.5]), which is functorial25 in ((A � A′′, γ) → (B � B′′, δ)) ∈
dRConFp .

Note that both functors are (dRConFp → CrysConFp)-invariant (Defini-
tion 2.57); from Proposition 2.56 we have the following.

Proposition 4.54. — There exists a natural isomorphism

C−1 : ϕ∗(A�A′′)

(
?∧
R

LR/A′′

)
[−?]→ gr−?conj CrysCohR/(A�A′′)

in CAlg(Gr≤0(D(ϕ∗A�A′′(R)))), called the derived Cartier isomorphism, which
is functorial in ((A� A′′, γ), A′′ → R) ∈ CrysConFp .

24. To avoid the ambiguity of symbols, we suppress the asterisk on Fil∗ to avoid confusion
with the pullback symbol ϕ∗.

25. Here we use the same convention as in Remark 3.72.
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4.3. Relative animated PD-envelope. — Recall that, in the classical case [39,
Tag 07H9], given a PD-pair (A, I, γ) ∈ Pairγ and an ideal J of A containing
I, there is a relative PD-envelope D(A,I,γ)(J), which is essentially the same as
DA(J) ⊗DA(I) A, where the map DA(I) → A is induced by the PD-structure
γ on A. We seek an animated version of this construction, which is needed to
study the derived crystalline cohomology. Roughly speaking, we first construct
a relative PD-envelope for any animated PD-pair (A � A′′, γA) along with a
map (A � A′′) → (B � B′′) of animated pairs, and then we restrict to the
special case that the map A → B is an equivalence. It turns out that the
general case can be recovered from the special case.

Similarly to the classical case, the relative animated PD-envelope of (A �
A′′, γA) along with (A � A′′) → (B � B′′) is obtained by the base change
Envγ,an(B � B′′) qEnvγ,an(A�A′′) (A � A′′, γA) of the (absolute) animated
PD-envelope, where the map Envγ,an(A � A′′) → (A � A′′, γA) is induced
by the PD-structure γA. More formally, we start with reviewing the formal
category-theoretic fact about relative adjunctions.

Lemma 4.55 (dual to [28, Prop 5.2.5.1]). — Let C
F−→←−
G
D be an adjoint pair of

∞-categories. Assume that the ∞-category D admits pushouts and let D ∈ D
be an object. Then

1. The induced functor g : DD/ → CGD/ admits a left adjoint f .
2. The functor f is equivalent to the composition

CGD/
f ′−→ DFGD/

f ′′−−→ DD/,

where f ′ is induced by F and f ′′ is induced by the pushout along the
counit map FGD → D.

We note that this construction is functorial in D ∈ D.

Notation 4.56. — We denote the comma category Pairγ,an×Pairan,ev[0]

Fun(∆1,Pairan) by PDEnvCon, an object of which is denoted by (A� A′′, γ)→
(B � B′′), instead of the cumbersome notation ((A � A′′, γ), (A � A′′) →
(B � B′′)).

Definition 4.57. — Let (A � A′′, γ) ∈ Pairγ,an be an animated PD-pair.
The (relative) animated PD-envelope of an animated pair in Pairan

(A�A′′)/ is
the image under the functor Pairan

(A�A′′)/ → Pairγ,an
(A�A′′,γ)/ induced by the

animated PD-envelope functor Pairan → Pairγ,an by Lemma 4.55.
Concretely, let B � B′′ be an object in Pairan

(A�A′′)/. Then the relative
animated PD-envelope of B � B′′ is given by

Envγ,an
(A�A′′,γA)(B � B′′) := Envγ,an(B � B′′)qEnvγ,an(A�A′′) (A� A′′, γA)

where the map Envγ,an(A� A′′)→ (A� A′′, γ) is the counit map associated
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to (A � A′′, γ) ∈ Pairγ,an, and the map Envγ,an(A � A′′) → Envγ,an(B �
B′′) is the image of (A � A′′)→ (B � B′′) under the animated PD-envelope
functor.

This defines the (relative) animated PD-envelope functor PDEnvCon →
Fun(∆1,Pairγ,an), ((A� A′′, γ)→ (B � B′′)) 7→ Envγ,an

(A�A′′,γ)(B � B′′).

Example 4.58. — Let (A� A′′, γ) ∈ Pairγ,an be an animated PD-pair. Then
the animated PD-envelope of A � A′′ relative to (A � A′′, γ) is given by
(A � A′′, γ). This follows from the fact that A � A′′ relative to (A � A′′, γ)
is the base change of idZ : Z → Z relative to (idZ : Z → Z, 0) along the map
(idZ : Z → Z, 0) → (A � A′′, γ) of animated PD-pairs. Compare with this
Lemma 4.66.

Example 4.59. — Let (A� A′′, γ) ∈ Pairγ,an be an animated PD-pair. Then
the animated PD-envelope of idA′′ : A′′ � A′′ relative to (A � A′′, γ) is
given by (idA′′ : A′′ → A′′, 0). This follows from checking the universal prop-
erty of the unit map at idA′′ : A′′ � A′′ of the adjunction Pairan

(A�A′′)/ �
Pairγ,an

(A�A′′,γ)/.

Immediately from Lemma 3.47 we have the following.

Lemma 4.60. — Let (A � A′′, γ) ∈ Pairγ,an be an animated PD-pair, (B �
B′′) ∈ Pairan

(A�A′′)/ an animated pair under A � A′′. Let (C � B′′, δ) denote
its relative animated PD-envelope. Then the unit map (B � B′′)→ (C � B′′)
becomes an equivalence after rationalization.

Recall that given a PD-pair (A, I, γ) and a map (A, I) → (B, J) of pairs
with A → B being flat, the PD-structure γ extends to B, i.e, there exists a
unique PD-structure γ on (B, IB) such that the map (A, I)→ (B, J) of pairs
gives rise to a map (A, I, γ) → (B, IB, γ) of PD-pairs. Then the PD-envelope
of (B, J) with respect to (A, I, γ) is the same as that with respect to the PD-
pair (B, IB, γ), which corresponds to the crystalline cohomology of B/J with
respect to (B, IB, γ). We now show an animated analogue (without flatness).

Notation 4.61. — LetCrysConsurj denote the full subcategoryPairγ,an×CAlgan

Fun(∆1,CAlgan)≥0 ⊆ CrysCon spanned by objects ((A � A′′, γ), A′′ → R)
such that A′′ → R is also surjective.

Construction 4.62. — There is a canonical functorPDEnvCon→CrysConsurj
given as follows: for every object ((A � A′′, γ) → (B � B′′)) ∈ PDEnvCon,
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we get the commutative diagram

A −� A′′

−→ −→

B −� B′′

in CAlgan, which gives rise to two surjective maps B ⊗L
A A

′′ � B′′ and B �
B ⊗L

A A
′′. Furthermore, the latter admits a PD-structure: it is the underlying

animated pair of the pushout (idB : B → B, 0) q(idA:A→A,0) (A � A′′, γ) in
Pairγ,an. We denote by (B � B⊗L

A A
′′, δ) this pushout. Then we get an object

((B � B ⊗L
A A

′′, δ), B ⊗L
A A

′′ � B′′) in CrysConsurj.

One verifies the following.

Lemma 4.63. — The functor PDEnvCon→ CrysConsurj in Construction 4.62
admits a fully faithful right adjoint CrysConsurj → PDEnvCon given by ((A�
A′′, γ), A′′ � R) 7→ ((A� A′′, γ)→ (A� R)).

Thus CrysConsurj can be seen as a reflective subcategory (Definition 2.44)
of PDEnvCon. Now we claim the following.

Lemma 4.64. — The relative animated PD-envelope functor PDEnvCon →
Fun(∆1,Pairγ,an) is (PDEnvCon→ CrysConsurj)-invariant (Definition 2.57).

Proof. — For every object (A � A′′, γ) → (B � B′′) in PDEnvCon, we have
a map (A � A′′, γ) → (B � A′′ ⊗L

A B, δ) of animated PD-pairs. By the
concrete description of the relative animated PD-envelope functor, it suffices
to show that this map along with the counit maps forms a pushout diagram of
animated PD-pairs. As discussed in Construction 4.62, (B � A′′ ⊗L

A B, δ) is
the pushout (idB : B → B, 0) q(idA:A→A,0) (A � A′′, γ). The counit maps for
(idA, 0) and (idB , 0) are identities (Lemma 3.45). The result then follows from
Proposition 3.40, which implies that counit maps are compatible with small
colimits. �

Consequently, in order to study the relative animated PD-envelope functor, it
suffices to study the composite CrysConsurj → PDEnvCon→ Fun(∆1,Pairγ,an).
By abuse of terminology, we will simply denote this functor as RelPDEnv as well
and call the image (or after evaluation at 1 ∈ ∆1) the animated PD-envelope of
an object ((A � A′′, γ), A′′ � R) ∈ CrysConsurj. We remark that the functor
CrysConsurj → PDEnvCon preserves small colimits by Proposition 3.40, and,
therefore, so does the composite functor.

We note that CrysConsurj is projectively generated: let CrysCon0
surj ⊆

CrysConsurj be the full subcategory spanned by objects ((ΓZ[Y,Z](X) �
Z[Y, Z], γ),Z[Y,Z] � Z[Z]) for all finite sets X,Y, Z.
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Lemma 4.65. — The full subcategory CrysCon0
surj ⊆ CrysConsurj constitutes a

set of compact projective generators for CrysConsurj.

Proof. — We only sketch the proof, which is similar to that of Theorem 3.29.
The key observation is that the composite of forgetful functors CrysCon0

surj →
Fun(∆2,CAlgan)surj → Fun(∆2, D(Z)≥0)surj, ((A � A′′, γ), A′′ � R) 7→ (A �
A′′ � R), which preserves filtered colimits and geometric realizations by Propo-
sition 3.40, admits a left adjoint, where Fun(∆2, C)surj ⊆ Fun(∆2, C) is the full
subcategory spanned by (X → Y → Z) ∈ Fun(∆2, C) such that X → Y and
Y → Z are surjective, for C = D(Z)≥0 and C = CAlgan.

The∞-category Fun(∆2, D(Z)≥0)surj admits a set {ZX⊕ZY ⊕ZZ � ZY ⊕
ZZ � ZZ |X,Y, Z ∈ Fin} of compact projective generators that spans the full
subcategoryFun(∆2, D(Z)≥0)0

surj, which follows fromthe fact that the left adjoint
to the left derived functor PΣ(Fun(∆2, D(Z)≥0)0

surj) → Fun(∆2, D(Z)≥0)0
surj is

conservative (cf.,the proof of [30, Prop 25.2.1.2]).
The result then follows from Proposition A.18. �

By Proposition A.14, the functor CrysConsurj → Fun(∆1,Pairγ,an) is the
left derived functor of the restricted functor CrysCon0

surj → Fun(∆1,Pairγ,an),
which is concretely given as follows.

Lemma 4.66. — The relative animated PD-envelope of an object
((ΓZ[Y,Z](X) � Z[Y, Z], γ),Z[Y,Z] � Z[Z]) ∈ CrysCon0

surj is functorially given
by (ΓZ[Z](X,Y ) � Z[Z], γ̃) ∈ Pairγ,an

(ΓZ[Y,Z](X)�Z[Y,Z],γ)/, i.e., coincides with the
classical relative PD-envelope.

Proof. — First, by the adjointness, there exists a functorial comparison map
from the relative animated PD-envelope to (ΓZ[Z](X,Y ) � Z[Z], γ̃). It suffices
to show that this is an equivalence.

In this case, ((ΓZ[Y,Z](X) � Z[Y, Z], γ),ΓZ[Y,Z](X) � Z[Z]) ∈ PDEnvCon
is the base change of ((idZ[Y,Z], 0),Z[Y,Z] � Z[Z]) ∈ PDEnvCon along
(idZ[Y,Z], 0) → (ΓZ[Y,Z](X) � Z[Y,Z], γ). The result then follows from the
base-change property of the relative adjunction, along with the simple fact
that the (absolute) animated PD-envelope of Z[Y,Z] � Z[Z] is (ΓZ[Z](Y ) �
Z[Z], γ). �

As a generalization of Definition 3.68, we now introduce the conjugate fil-
tration on the relative animated PD-envelope in char p.

Construction 4.67. — Let (A � A′′, γ) ∈ PairγFp be a PD-pair and I ⊆
A′′ an ideal. We recall that there is a canonical “Frobenius” map ϕA�A′′ :
A′′ → A by Lemma 4.42. We suppose that ϕA�A′′ is flat26. Let (B, J, δ)

26. This is satisfied when (A � A′′, γ) ∈ Pairγ,st, which is the only case that we need to
develop the theory. For more examples, see Remark 4.73.
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denote the classical PD-envelope of (A � A′′/I) relative to (A � A′′, γ). We
note that B/J ∼= A′′/I. As in the absolute case, due to the PD-structure
(B, J, δ), there is a canonical ϕ∗A�A′′(A′′/I)-algebra structure on B, and we
consider the nonpositive filtration on B given by Fil−nconj,cl(B) for n ∈ N being
the ϕ∗A�A′′(A′′/I)-submodule of B generated by {γi1p(f1) · · · γimp(fm) | i1+· · ·+
im ≤ n and f1, . . . , fm ∈ I}.

We have the following relative version of Lemma 3.67, for which the proof
of [9, Lem 3.42] adapts.

Lemma 4.68. — Let (A � A′′, γ) be a PD-Fp-pair such that ϕA�A′′ is flat
and let I ⊆ A′′ be an ideal such that I/I2 is a flat A′′/I-module. The relative
PD-envelope (B, J, δ) and the filtration Fil∗conj,clB are as in Construction 4.67.

Then there is a comparison map ϕ∗A�A′′(ΓiA′′/I(I/I2)) → gr−iB of
ϕ∗A�A′′(A′′/I)-modules induced by the maps (γip)i∈N (as in Lemma 3.67),
which is functorial in ((A � A′′, γ), A′′ � A′′/I) in a subcategory of
CrysConFp,surj. Furthermore, if I ⊆ A′′ is generated by a Koszul-regular se-
quence27, and then this comparison map is an isomorphism.

Definition 4.69. — The conjugate filtration functor (on the animated PD-
envelope) Filconj Envγ,an

(−) (−) : CrysConFp,surj → CAlg(DF≤0(Fp)) together with
the structure map of functors CrysConFp,surj ⇒ CAlg(DF≤0(Fp)) from ((A �

A′′, γ), A′′ � R) 7→ ϕ∗A�A′′(R) = R ⊗L
A′′,ϕA�A′′

A to ((A � A′′, γ), A′′ �
R) 7→ Filconj Envγ,an

(A�A′′,γ)(R) is defined to be the left derived functor (Proposi-
tion A.14) of CrysCon0

Fp,surj 3 ((A�A′′, γ), A′′�A′′/I) 7→ (ϕ∗A�A′′(A′′/I)→
Fil∗conj,clB) ∈ Fun(∆1,CAlg(DF≤0(Fp))) as in Construction 4.67.

As in the absolute case (including Remark 3.72), from Lemma 4.68, we have
the following.

Corollary 4.70. — For every ((A � A′′, γ), A′′ � R) ∈ CrysConFp,surj,
there exists an equivalence

ϕ∗A�A′′(ΓiR(gr1
ad(A′′ � R)))→ gr−iconj Envγ,an

(A�A′′,γ)(R)

in D(ϕ∗A�A′′(R))≥0 for all i ∈ N, which is functorial in ((A � A′′, γ), A′′ �
R) ∈ CrysConFp,surj.

As in the absolute case, we have the following.

Corollary 4.71. — For every ((A� A′′, γ), A′′ � R) ∈ CrysConFp,surj such
that A′′ � R is a quasiregular animated pair, let (B � R, δ) denote the relative
animated PD-envelope. Then B is a flat ϕ∗A�A′′(R)-module.

27. We only need the simple case that ((A � A′′, γ), A′′ � A′′/I) ∈ CrysConFp,conj,
which “simplifies” the proof in the sense that a “brute-force” computation suffices.
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Similarly to Proposition 3.83, we have the following.

Proposition 4.72. — Let (A � A′′, γ) ∈ Pairγ be a PD-pair and I ⊆ A′′

an ideal generated by a Koszul-regular sequence. Let (B � B′′, δ) denote the
relative animated PD-envelope of ((A� A′′, γ), A′′ → A′′/I) ∈ CrysCon. Then
(B � B′′, δ) is a PD-pair and, therefore, coincides with the classical relative
PD-envelope.

Remark 4.73. — More precisely, in Corollary 3.77, the map ϕ∗A�A′′(R)→ B
is induced by the Frobenius map ϕB�R : R → B (which can be seen by
left deriving the special case that ((A � A′′, γ), A′′ → R) ∈ CrysCon0

Fp,surj).
In particular, if the Frobenius map ϕA�A′′ : A′′ → A is flat, then so is the
Frobenius map ϕB�R : R→ B.

For example, when R is a quasiregular, semiperfect Fp-algebra [11, Def 8.8],
we set (A � A′′, γ) = (idR[ : R[ → R[, 0) and the map A′′ → R to be the
canonical map; by definition, R[ is a perfect Fp-algebra, and, therefore, ϕR[ is
flat. Then the animated PD-envelope B � R of A′′ → R satisfies the condition
that the Frobenius map ϕB→R : R→ B is flat, and hence B is static. It follows
that (R� B, δ) is a PD-pair (Proposition 3.38).

Note that the associated graded pieces of derived crystalline cohomology
and relative animated PD-envelope of a “surjective” crystalline context ((A�
A′′, γ), A′′ � R) ∈ CrysConFp,surj, with respect to conjugate filtrations, are
equivalent by Corollaries 3.61 and 4.70 and Proposition 4.54. In fact, we have
the following.

Lemma 4.74. — There is a canonical equivalence
Filconj CrysCohR/(A�A′′,γ) → Filconj Envγ,an

(A�A′′,γ)(R)

in CAlg(DF≤0(ϕ∗A�A′′(R))), which is functorial28 in ((A� A′′, γ), A′′ � R) ∈
CrysConFp,surj.

Proof. — We first point out how to produce the comparison map of underlying
E∞-Fp-algebras, i.e., ignoring the ϕ∗A�A′′(R)-algebra structures and conjugate
filtrations. This is logically not necessary, but it benefits our understanding.
Given ((A � A′′, γ), A′′ � R), let (B � R, δ) denote its relative animated
PD-envelope. It follows from Proposition 4.20 that the crystalline cohomol-
ogy CrysCohR/(A�A′′,γ) is naturally equivalent to the derived de Rham co-
homology dR(B�R,δ)/(A�A′′,γ), and by definition, it is equipped with a map
dR(B�R,δ)/(A�A′′,γ) → B of E∞-Fp-algebras, which gives rise to the underlying
comparison map that we want.

By Lemma 4.65 and Proposition A.14, it suffices to construct the equiva-
lence restricted to the full subcategory CrysCon0

Fp,surj ⊆ CrysConFp,surj, i.e.,

28. Here, we apply the same convention as in Remark 3.72.
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to establish the equivalence for all ((ΓFp[Y,Z](X) � Fp[Y, Z], γ0),Fp[Y,Z] �
Fp[Z]) ∈ CrysCon0

Fp,surj. This is essentially [9, Lem 3.29 & Thm 3.27]. We
will briefly sketch the argument. The preceding paragraph already established
a comparison map of underlying E∞-Fp-algebras. The key point is that both
sides are static: the relative animated PD-envelope is static by definition, and
the derived crystalline cohomology is static by Cartier isomorphism (Propo-
sition 4.54) and the fact that static modules are closed under extension and
filtered colimits; see Corollary 3.79 for a similar argument. Then the result
follows from explicit simplicial resolution. �

We now deduce the integral version of Lemma 4.74. We recall that FilPD :
Pairγ,an → CAlg(DF≥0(Z)) is the PD-filtration functor (Definition 3.85), and
FilH is the Hodge-filtration.

Proposition 4.75. — There is a canonical equivalence

FilH CrysCoh→ FilPD ◦Envγ,an
(−) (−)

of functors CrysConsurj ⇒ CAlg(DF≥0(Z)).

Proof. — The comparison map is established in the same way as in the proof
of Lemma 4.74. It suffices to show that this is an equivalence.

We first show that this becomes an equivalence after passing to underly-
ing E∞-Z-algebras, i.e., ignoring the Hodge filtration. By conservativity of
the forgetful functor CAlgZ → D(Z), it suffices to show the equivalence for
underlying Z-module spectra. Note that it is an equivalence after (−) ⊗L

Z Fp
and rationalization by Lemmas 4.13, 4.60 and 4.74, and thus it is itself an
equivalence.

To establish the equivalence of filtered E∞-Z-algebras, it remains to show
that the comparison map induces equivalences after passing to associated graded
pieces, and by Lemma 2.1, it suffices to prove the result restricted to the
full subcategory CrysCon0

surj ⊆ CrysConsurj, which is essentially due to [24,
Cor VIII.2.2.8], see [9, Rem 3.33]. �

4.4. Affine crystalline site. — We now turn to the site-theoretic aspects of the
derived crystalline cohomology by showing that the derived crystalline coho-
mology is equivalent to the cohomology of the affine crystalline site under
a mild smoothness condition. We warn the reader again that our theory is
noncompleted. Fix a crystalline context ((A� A′′, γA), A′′ → R) ∈ CrysCon.

Definition 4.76. — The affine crystalline site Cris(R/(A � A′′, γA)) is de-
fined to be the opposite∞-category of animated PD-pairs (B � B′′, γB) under
(A � A′′, γA) along with an equivalence R '−→ B′′ of A-algebras, depicted by
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the diagram

A //

����

B

����
A′′ // R

' // B′′

which we will simply denoted by
(
R
'−→ B′′ � B

)
∈ Cris(R/(A � A′′, γA)).

More formally, it is the homotopy fiber of the functor Pairγ,an
(A�A′′)/ →

CAlgan
A′′ , (B � B′′, γB) 7→ B′′ at the object R ∈ CAlgan

A′′ . The endowed
Grothendieck topology is indiscrete.

The structure presheaf Cris(R/(A � A′′, γA))op → CAlgA, denoted by
OCRIS(R/(A�A′′,γA)) (or simply O when there is no ambiguity), is induced by
the evaluation Pairγ,an

(A�A′′,γA)/ → CAlgan
A → CAlg(D(A)). Concretely, it is

given by
(
R
'−→ B′′ � B

)
7→ B.

Although the affine crystalline site is not small, the cohomology of the struc-
ture presheaf exists in CAlgA by Čech–Alexander calculation (which we will
reproduce in Proposition 4.81). We will simply call it the cohomology of the
crystalline site and denote by RΓ(Cris(R/(A� A′′, γA)),O). Furthermore, the
structure sheaf admits the PD-filtration (Definition 3.85), which gives rise to a
filtration on the cohomology of the crystalline site, called the Hodge-filtration
and denoted by FilH . We now have a comparison between the derived crys-
talline cohomology and the cohomology of the crystalline site, which becomes
an equivalence after Hodge-completion.

Proposition 4.77. — There is a natural comparison map

FilH CrysCohR/(A�A′′,γA) → FilH RΓ(Cris(R/(A� A′′, γA)),O)

in the ∞-category CAlg(DF≥0(A)). After passing to the associated graded
pieces, i.e., composition with the functor CAlg(DF≥0(A)) → CAlg(Gr≥0(A)),
this comparison map becomes an equivalence. Moreover, when π0(R) is a
finitely generated π0(A′′)-algebra, then the comparison map is an equivalence.

We need some preparation about cosimplicial objects in ∞-categories.

Definition 4.78 ([28, Def 6.1.2.2]). — Let C be an∞-category. A cosimplicial
object of C is a functor X• : ∆ → C. The value of this functor at [ν] ∈ ∆ is
denoted by Xν . A map of cosimplicial objects X• → Y • is simply a map of
functors.

We note that there are two inclusions {0} ↪→ [1]←↩ {1} viewed as two maps
[0] ⇒ [1], and a constant map [1] → [0], which induce three functors i0, i1:
∆ ' ∆/[0] ⇒ ∆/[1] and δ : ∆/[1] → ∆/[0] ' ∆. For any ∞-category C, let
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i∗0 (resp. i∗1) denote the induced functor Fun(∆/[1], C)→ Fun(∆, C) and let δ∗
denote the induced functor Fun(∆, C)→ Fun(∆/[1], C).

Definition 4.79 ([30, Def 7.2.1.6]). — Let C be an ∞-category and let f and
g be two maps X• ⇒ Y • of cosimplicial objects. A simplicial homotopy from
f to g is a map h : δ∗(X•) → δ∗(Y •) of functors ∆/[1] ⇒ C such that the
map i∗0(h) : X• → Y • (resp. i∗1(h) : X• → Y •), being a map of cosimplicial
objects, is equivalent to f (resp. g). When X• = Y •, we say that the simplicial
homotopy h : δ∗(X•)→ δ∗(X•) is constant if it is equivalent to idδ∗(X•).

Lemma 4.80. — Let C be an∞-category and X•, Y • two cosimplicial objects of
which the totalization exists in C. Let f and g be two maps X• ⇒ Y • of cosim-
plicial objects such that there exists a simplicial homotopy from f to g. Then
the maps f, g induce equivalent29 maps lim∆ X• ⇒ lim∆ Y • of totalizations.

Denis Nardin. — For every cosimplicial object X• in C, there are two obser-
vations.

1. The canonical map lim∆/[1] δ
∗(X•) → lim∆ X• is an equivalence (this

involves the existence of the limit as the source). Indeed, it suffices to
show that the map δ : ∆/[1] → ∆ is coinitial. By Joyal’s version of
Quillen’s theorem A [28, Thm 4.1.3.1], it suffices to show that, for every
[n] ∈∆, the category ∆/[1]×∆ ∆/[n] is weakly contractible. Its geomet-
ric realization is ∆1 ×∆n, which is known to be weakly contractible.

2. The two maps lim∆ X = lim∆ i∗νδ
∗(X•) → lim∆/[1] δ

∗(X•) for ν = 0, 1
are equivalences, and these two maps are equivalent. Indeed, both are
inverses of the equivalence lim∆/[1] δ

∗(X•)→ lim∆ X• above.
Note that the map lim∆ f (resp. lim∆ g) can be identified with the composite

lim
∆
X = lim

∆
i∗νδ
∗(X•) −→ lim

∆/[1]
δ∗(X•)

lim∆/[1] (h)
−−−−−−−→ lim

∆/[1]
δ∗(Y •) −→ lim

∆
Y •

for ν = 0 (resp. ν = 1). The result then follows. �

Proof of Proposition 4.77. — There is a map from the constant presheaf
FilH CrysCohR/(A�A′′,γA) on the affine crystalline site to the structure presheaf
O given by the canonical map in Definition 4.31, which induces the comparison
map in question.

Now we show that this map becomes an equivalence after passing to the
associated graded pieces. We first note that, when the map A′′ → R is sur-
jective, i.e.,((A � A′′, γA), A′′ → R) ∈ CrysConsurj, the result follows directly
from Proposition 4.75. Our strategy is to reduce the general case to this special
case via Čech–Alexander computation.

29. Or called “homotopic”. We avoid the terminology “homotopic” to avoid confusion
with the simplicial homotopy.
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We pick a polynomial A-algebra P (of possibly infinitely many variables)
along with a surjection P � R of A-algebras. Let P • → R denote the
Čech conerve of the object P → R in the ∞-category CAlgan

A/. Concretely,
it is given by P ν := P⊗

L
A(ν+1), and the map P ν → R is simply given by

the composite map P ν → P → R, which is surjective. In other words, we
get a cosimplicial object (P • � R) ∈ Fun

(
∆,Pairan

(A�A′′)/
)
. Let (D• �

R, γD•) ∈ Fun
(
∆,Pairγ,an

(A�A′′,γA)/
)
denote the cosimplicial relative animated

PD-envelope, i.e., applying the functor Pairan
(A�A′′)/ → Pairγ,an

(A�A′′,γA)/ (Def-
inition 4.57) pointwise. This effectively gives rise to a cosimplicial object
∆ → Cris(R/(A � A′′, γA))op. Composing with the Hodge-filtered presheaf
FilH O : Cris(R/(A � A′′, γA))op → CAlg(DF≥0(A)), we get a cosimplicial
filtered E∞-A-algebra ∆ → CAlg(DF≥0(A)), the limit of which computes the
cohomology FilH RΓ(Cris(R/(A� A′′, γA)),O). In plain terms, this cosimpli-
cial filtered E∞-A-algebra is just the PD-filtration of the cosimplicial animated
PD-pair (D• � R, γD•).

For this cosimplicial object, the comparison map constructed above is con-
cretely given by

FilH dR(D•�R,γD• )/(A�A′′,γA) → FilPDD
•(4)

Now Proposition 4.75 and Lemma 4.63 gives us an equivalence

FilH CrysCohR/(P•�P•⊗L
A
A′′,γP• ) → FilPDD

•

which is effectively given by

FilH dR(D•�R,γD• )/(P•�P•⊗L
A
A′′,γP• ) → FilPDD

•

by chasing the proof. In other words, (4) can be rewritten as the natural map

FilH dR(D•�R,γD• )/(A�A′′,γA) → FilH dR(D•�R,γD• )/(P•�P•⊗L
A
A′′,γP• )

or equivalently, the natural map

FilH CrysCohR/(A�A′′,γA) → FilH CrysCohR/(P•�P•⊗L
A
A′′,γP• )

It remains to show that this cosimplicial map gives rise to an equivalence after
taking the limit, i.e., the totalization, and passing to associated graded pieces.
We isolate the remaining part into Lemma 4.88. �

Before proving Lemma 4.88, we isolate an important observation in the
previous proof into a proposition.
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Proposition 4.81. — For every crystalline context ((A � A′′, γA), A′′ →
R) ∈ CrysCon, the following are equivalent:

1. The comparison map in Proposition 4.77 is an equivalence.
2. There exists a polynomial A-algebra P (of possibly infinitely many vari-

ables) along with a surjection P � R of A-algebras, and letting P • → R
denote the Čech conerve of P → R in the ∞-category CAlgan

A as in the
proof of Proposition 4.77, then the natural maps
FilH CrysCohR/(A�A′′,γA) → FilH CrysCohR/(P•�P•⊗L

A
A′′,γP• )(5)

form a limit diagram in CAlg(DF≥0(A)).
3. For all polynomial A-algebras P (of possibly infinitely many variables)

along with a surjection P � R of A-algebras, and letting P • → R denote
the Čech conerve of P → R in the ∞-category CAlgan

A , then the natural
maps (5) form a limit diagram in CAlg(DF≥0(A)).

4. (After proving Lemma 4.88) There exists a (or equivalently, for every)
polynomial A-algebra P (of possibly infinitely many variables) along with
a surjection P � R of A-algebras, and letting P • → R denote the
Čech conerve of P → R in the ∞-category CAlgan

A as in the proof of
Proposition 4.77, then the natural maps

CrysCohR/(A�A′′,γA) → CrysCohR/(P•�P•⊗L
A
A′′,γP• )

form a limit diagram in CAlg(D(A)).

In order to deal with associated graded pieces of the Hodge filtration, we need
a variant of the Katz–Oda filtration in [19, Cons 3.12]. We need an auxiliary
construction:

Definition 4.82. — The cotangent complex functor L·/· : dRCon→ Ani(Mod)
is defined to be the left derived functor (Proposition A.14) of the functor
dRCon0 → Ani(Mod), ((A, I, γA)→ (B, J, γB)) 7→ (B,Ω1

(B,J)/(A,I)).

The proof of Lemma 4.12 leads to the following,

Lemma 4.83. — The composite functorFun(∆1,CAlgan)→dRCon→Ani(Mod)
is equivalent to the classical cotangent complex functor.

We now introduce the “stupid” filtration FilB on the Hodge-filtered derived
de Rham cohomology FilH dR·/·. For each ((A, I, γA)→ (B, J, γB)) ∈ dRCon0,
consider the filtration (Ω≥n(B,J,γB)/(A,I,γA),d)n∈(N,≥) of the Hodge-filtered CDGA,
which gives rise to a bifiltered E∞-Z-algebra. By Proposition A.14, we get a
functor CAlg(Fun((N,≥)×(N,≥), D(Z))), ((A� A′′, γA)→ (B � B′′, γB)) 7→
FilB FilH dR(B�B′′)/(A�A′′).

Warning 4.84. — Unlike the Hodge filtration, the “stupid” filtration does not
descend to CrysCon, that is to say, it depends on the choice of B in question.
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We now analyze the associated graded pieces with respect to the “stupid”
filtration.

Lemma 4.85. — Let ((A � A′′, γA) → (B � B′′, γB)) ∈ dRCon be a de Rham
context. Then associated graded pieces griB FilH dR(B�B′′)/(A�A′′) can be func-
torially identified with insi

(∧i
B L(B�B′′)/(A�A′′)[−i]

)
⊗L
B FilPDB as a FilPDB-

module in DF≥0(B) (where · ⊗L
B FilPDB is the base change from DF≥0(B) to the

∞-category of FilPDB-modules). Furthermore, FiliB grjH dR(B�B′′)/(A�A′′) ' 0
when i > j.

Proof. — By Proposition A.14, it suffices to check the equivalences on dRCon0,
which follow from definitions. �

We are now ready to introduce the Katz–Oda filtration.

Definition 4.86 (cf. [19, Cons 3.12]). — Let (A� A′′, γA)→ (B � B′′, γB)
be a map of animated PD-pairs and B′′ → R a map of animated rings.
The Katz–Oda filtration on the Hodge-filtered derived crystalline cohomology
FilH CrysCohR/(A�A′′) rewritten as

FilH CrysCohR/(A�A′′)⊗L
FilH dR(B�B′′)/(A�A′′)

FilH dR(B�B′′)/(A�A′′)

is the nonnegative filtration induced by the “stupid” filtration on
FilH dR(B�B′′)/(A�A′′).

We now have

Lemma 4.87 (cf. [19, Lem 3.13]). — Let (A � A′′, γA) → (B � B′′, γB) be
a map of animated PD-pairs and B′′ → R a map of animated rings. Then we
have the following.

1. The associated graded pieces griKO FilH CrysCohR/(A�A′′) are functori-
ally equivalent to

FilH CrysCohR/(B�B′′)⊗L
FilPD B

(
insi
( i∧

B

L(B�B′′)/(A�A′′)[−i]
)
⊗L
B FilPDB

)
as FilPDB-modules in DF≥0(Z) for all i ∈ N, where the functor insi is
defined in Section 2.4.

2. The induced Katz–Oda filtration on grH CrysCohR/(A�A′′) is complete.
In fact, for i > j, we have

FiliKO grjH CrysCohR/(A�A′′) ' 0.

Proof. — We have seen (Corollary 4.40) that the canonical map

FilH CrysCohR/(A�A′′)⊗L
FilH dR(B�B′′)/(A�A′′)

FilPDB

→ FilH CrysCohR/(B�B′′)
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is an equivalence. Then both follow from Lemma 4.85. �

The convergence of Katz–Oda filtration on associated graded pieces is the
key to Lemma 4.88.

Lemma 4.88. — In Proposition 4.81, the maps (5) form a limit diagram after
passing to the associated graded pieces, i.e., after passing along the functor
CAlg(DF≥0(A))→ CAlg(Gr≥0(A)). Furthermore, if the π0(A′′)-algebra π0(R)
is of finite type, then the maps (5) form a limit diagram.

Proof. — For every [ν] ∈ ∆, let FilKO,ν FilH CrysCohR/(A�A′′) denote the
Katz–Oda filtration with respect to the setup ((A� A′′, γA)→ (P ν → P ν ⊗L

A

A′′, γP ν ), P ν → R). This construction is canonically functorial in [ν] ∈ ∆.
Note that the map (5) is the canonical map

(6) FilH CrysCohR/(A�A′′) = Fil0KO,ν FilH CrysCohR/(A�A′′)

−→ gr0
KO,ν FilH CrysCohR/(A�A′′) .

Now we show that (6) becomes an equivalence after replacing FilH by grH and
taking limit over [ν] ∈ ∆. That is, by the completeness in Lemma 4.87, for
every i ∈ N>0, the totalization limν∈∆ griKO,ν grH CrysCohR/(A�A′′) is con-
tractible. We show the slightly stronger statement that, for every i ∈ N>0, the
totalization

lim
ν∈∆

griKO,ν FilH CrysCohR/(A�A′′)(7)

is contractible.
The key observation is that insi

(∧i
L(P•→P•⊗L

A
A′′)/(A�A′′)[−i]

)
is homo-

topy equivalent to 0 as a cosimplicial B•-module spectrum by [8, Lem 2.6]
when i > 0 (this is, of course, false when i = 0). It follows that the cosimplicial
object gri,(•)KO FilH CrysCohR/(A�A′′) is homotopy equivalent to 0 as FilPDB-
modules by [39, Tag 07KQ] and Lemma 4.87.

Finally, when π0(R) is a finitely generated π0(A′′)-algebra, we pick a poly-
nomial A-algebra P of finitely many variables along with a surjection P � R.
For every [ν] ∈∆, since the animated A-algebra P is polynomial of finite type,
so is the animated A-algebra P ν , and thus the Katz–Oda filtration is finite, i.e.,
FilKO,ν FilH CrysCohR/(A�A′′) is finite in the FilKO,ν-direction, and in partic-
ular, it is a complete filtration. Since completely filtered objects are stable
under small limits, it follows that the object

lim
[ν]∈∆

FilKO,ν FilH CrysCohR/(A�A′′)

is completely filtered in the “lim[ν]∈∆ FilKO,ν”-direction. Now for every i ∈
N>0, since the totalization (7) is contractible, the functorial map (6) becomes
an equivalence after taking lim[ν]∈∆, and the result follows. �
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Warning 4.89. — One should be careful about homotopy equivalences. In an
earlier draft of this article, we came up with the following “proof”: the Hodge-
filtered derived de Rham cohomology FilH CrysCohR/(A�A′′) can be rewritten
as

FilH CrysCohR/(A�A′′)

⊗L
FilH dR(P•�P•⊗L

A
A′′)/(A�A′′)

FilH dR(P•�P•⊗L
A
A′′)/(A�A′′)

and since the map A → P • is a homotopy equivalence as A-algebras, the
map FilH dR(P•�P•⊗L

A
A′′)/(A�A′′) → FilPD P

• is also a homotopy equivalence,
and,“therefore”, the constant cosimplicial algebra FilH CrysCohR/(A�A′′) is ho-
motopy equivalent to

FilH CrysCohR/(A�A′′)⊗L
FilH dR(P•�P•⊗L

A
A′′)/(A�A′′)

FilPD P
•

' FilH CrysCohR/(P•�P•⊗L
A
A′′)

and, therefore, the conditions in Proposition 4.81.
This argument is incorrect: when playing with homotopy equivalences, one

cannot replace the base cosimplicial algebra by a homotopy equivalent algebra
without justification. In fact, the last homotopy equivalence obtained above is
also incorrect: if it were the case, we consider the special case that (A �
A′′, γA) is given by (idA : A → A, 0), and CrysCohR/P• is just the animated
PD-envelope of P • � R (see the proof of Proposition 4.77). We inspect the
homotopy equivalence of cosimplicial objects that we assumed:

dRR/A 'HoEq dRR/P•

when A is a static Fp-algebra and R is a smooth A-algebra such that dRR/A

is not static, the map P • � R is Koszul regular and the derived de Rham
cohomology dRR/P• is simply the PD-envelope and, therefore, static. Applying
πi to the homotopy equivalence, where i 6= 0 is so chosen that πi(dRR/A) 6= 0,
we get a contradiction.

In view of this warning, our proof of Lemma 4.88 tells us that the associated
graded pieces with respect to the Katz–Oda filtration are homotopy equivalent,
but the homotopy equivalences cannot be glued, even after forgetting all the
richer structures to the underlying ∞-category D(Z).

When the π0(A)-algebra π0(R) is not of finite type, we can still prove that the
comparison map is an equivalence with mild smoothness of A′′ → R (Proposi-
tion 4.98). We start with another sufficient condition in characteristic p, which
is essentially a variant of [26, Prop 2.17] by Proposition 4.81.
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Lemma 4.90. — Let ((A � A′′, γA), A′′ → R) ∈ CrysConFp . Suppose the
following.

1. The cotangent complex LR/A′′ ∈ D≥0(R) has Tor-amplitude in [0, 1].
2. The derived Frobenius twist ϕ∗A�A′′(R) (see Lemma 4.42) is bounded

above, i.e., πi(ϕ∗A�A′′(R)) ∼= 0 for i� 0.
Then the comparison map in Proposition 4.77 is an equivalence.

Proof. — Our proof is also adapted from [26, Prop 2.17]. By Proposition 4.81
and Lemma 4.88, it suffices to say that the natural maps

CrysCohR/(A�A′′,γA) −→ CrysCohR/(P•�P•⊗L
A
A′′,γP• )(8)

form a limit diagram in CAlg(D(A)). We endow both sides with conjugate
filtration (Definition 4.49) and show that this, in fact, forms a limit diagram
in CAlg(DF≤0(A)).

We show that, after passing to associated graded pieces with respect to the
conjugate filtration, the maps (8) form a limit diagram, which implies that the
natural maps (8) form limit diagrams after passing to finite level of quotients,
and then we control the convergence to deduce the result. To show the result
for associated graded pieces, by Proposition 4.54, it suffices to show that the
maps

ϕ∗A�A′′

(
?∧
R

LR/A′′

)
[−?] −→ ϕ∗P•�P•⊗L

A
A′′

(
?∧
R

LR/(P•⊗L
A
A′′)

)
[−?](9)

form a limit diagram in Gr≥0(D(A)).
Let R1 := ϕ∗A�A′′(R). Note that the Frobenius map ϕP•�P•⊗L

A
A′′ factors

as P • ⊗L
A A

′′ → ϕ∗A(P •)→ P • where the second map is the Frobenius map of
P • relative to A. Then the maps (9) can be rewritten as the maps

?∧
R1

LR1/A [−?] −→
(

?∧
R1

LR1/ϕ∗A(P•)

)
[−?]⊗L

ϕ∗
A

(P•) P
•

or equivalently, the maps

gr?H dRR1/A −→ gr?H dRR1/ϕ∗A(P•)⊗L
ϕ∗
A

(P•)P
•

by an inverse application of Lemma 4.85 (recall that for derived de Rham co-
homology of animated rings, the “stupid” filtration coincides with the Hodge
filtration). We again consider the Katz–Oda filtration associated to the cosim-
plicial system A→ ϕ∗A(P •)→ R1 (Lemma 4.87) and by completeness, we can
pass to associated graded pieces for i = 0:

gr?H dRR1/ϕ∗A(P•) −→ gr?H dRR1/ϕ∗A(P•)⊗L
ϕ∗
A

(P•)P
•(10)
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and i ∈ N>0:

gr?H dRR1/ϕ∗A(P•)⊗L
ϕ∗
A

(P•)

 i∧
ϕ∗
A

(P•)

Lϕ∗
A

(P•)/A[−i]

 −→ 0

As in Lemma 4.88, the latter maps constitute a homotopy equivalence by [8,
Lem 2.6] and [39, Tag 07KQ] and, therefore, constitute a limit diagram by
Lemma 4.80. On the other hand, by Lemma 4.93, the maps (10) constitute a
limit diagram.

Now we control the convergence. Again by Lemma 4.85, we rewrite the
maps (10) as the maps

?∧
R1

LR1/ϕ∗A(P•) [−?] −→
(

?∧
R1

LR1/ϕ∗A(P•) [−?]
)
⊗L
ϕ∗
A

(P•) P
•

Now consider the transitivity sequence

Lϕ∗
A

(P•)/A ⊗L
ϕ∗
A

(P•) R1 −→ LR1/A −→ LR1/ϕ∗A(P•)

For every static R1-module M , we get the fiber sequence

Lϕ∗
A

(P•)/A ⊗L
ϕ∗
A

(P•) M −→ LR1/A ⊗
L
R1
M −→ LR1/ϕ∗A(P•) ⊗L

R1
M

Since LR/A′′ ∈ D≥0(R) has Tor-amplitude in [0, 1], so does LR1/A ∈ D≥0(R1),
and, therefore, πj(LR1/A⊗L

R1
M) ∼= 0 for j 6= 0, 1. Note that Lϕ∗

A
(P•)/A is a flat

ϕ∗A(P •)-module. It follows that πj(LR1/ϕ∗A(P•) ⊗L
R1
M) ∼= 0 for j 6= 0, 1. Fur-

thermore, since ϕ∗A(P •)→ R1 is surjective, π0(LR1/ϕ∗A(P•) ⊗L
R1
M) ∼= 0. It fol-

lows that LR1/ϕ∗A(P•)[−1] is a flat R1-module, and so is
∧?
R1
LR1/ϕ∗A(P•) [−?] '

Γ?R1
(LR1/ϕ∗A(P•)[−1]). By assumption, R1 is bounded above, and, therefore, so

is
∧?
R1
LR1/ϕ∗A(P•) [−?].

It remains to show that the associated graded pieces are uniformly bounded
above, which implies that (8) form a limit diagram, by Lemma 4.95 and that
the conjugate filtration is exhaustive (Lemma 4.50). Suppose that the ho-
motopy groups of R1 are concentrated in the range [a, b]; then the associated
graded pieces of the target can be rewritten as Γ?R1

(LR1/ϕ∗A(P•)[−1])⊗L
ϕ∗
A

(P•)P
•,

where Γ?R1
(LR1/ϕ∗A(P•)[−1]) is a flat R1-module , and, therefore, the homo-

topy groups of it are also concentrated in the range [a, b]. Since the relative
Frobenius ϕ∗A(P •)→ P • is flat, we get πj(Γ?R1

(LR1/ϕ∗A(P•)[−1])⊗L
ϕ∗
A

(P•) P
•) ∼=

πj(Γ?R1
(LR1/ϕ∗A(P•)[−1]))⊗π0(ϕ∗

A
(P•)) π0(P •) ∼= 0 for j /∈ [a, b]. �

We need the following lemmas.

Lemma 4.91. — Let C be an ∞-category that admits finite coproducts. Let ∅
denote the initial object of C, and let X,Y be two objects of C. Then for any
two maps g0, g1 ∈ HomC(X,Y ), the induced maps X• ⇒ Y • of Čech conerves

tome 152 – 2024 – no 4

https://stacks.math.columbia.edu/tag/07KQ


REVISITING DERIVED CRYSTALLINE COHOMOLOGY 749

X• of X (i.e. of ∅→ X) and Y • of Y (i.e., of ∅→ Y ) are homotopic. More
precisely, there exists a simplicial homotopy from g•0 to g•1 that is functorial
in g0 and g1. In particular, if X = Y and g0 = g1, and then the simplicial
homotopy is constant.

Proof. — We start with the special case that C is a 1-category. We define the
simplicial homotopy h : δ∗(X•) → δ∗(Y •) as follows: for every (αn : [n] →
[1]) ∈ ∆/[1], we note that (X•)(αn) = Xn = X q · · · q X and (Y •)(αn) =
Y n = Y q · · · q Y , and we set hαn =

∐n
i=0 gαn(i) : Xn → Y n. By construction,

i∗0(h)ν = h
[ν]

0−→[1]
=
∐n
i=0 g0 = gν0 and i∗1(h)ν = gν1 .

We need to check that this is a map of functors. For every map ψ : (αn :
[n]→ [1])→ (αm : [m]→ [1]) in ∆/[1], we need to check that the diagram

Xn hαn−−→ Y n

−→ ψ∗

−→ ψ∗

Xm hαm−−−→ Y m

commutes, where the vertical maps ψ∗ : Xn → Xm and ψ∗ : Y n → Y m are
induced by ψ. To this end, let ji : X → Xn be the i-th canonical map for
0 ≤ i ≤ n.

Then the composite hαn ◦ ji : X → Xn → Y n can be rewritten as the
composite ji ◦gan(i) : X → Y → Y n, and the composite ψ∗ ◦hαn ◦ ji : X → Y m

is equivalent to the composite jψ(i) ◦ gαn(i) : X → Y → Y m. Similarly, the
composite ψ∗ ◦ ji : X → Xn → Xm is equivalent to the ψ(i)-th canonical map
jψ(i) : X → Xm, and the composite hαm ◦ ψ∗ ◦ ji can be identified with the
composite jψ(i) ◦ gαm(ψ(i)) : X → Y → Y m.

Since αm(ψ(i)) = αn(i), it follows that ψ∗ ◦hαn ◦ ji = hαm ◦ψ∗ ◦ ji for every
0 ≤ i ≤ n. It follows that ψ∗ ◦ hαn = hαm ◦ ψ∗. The other claims for the
1-category C follow directly from the construction.

Now we claim that the result for ∞-categories follows from that for 1-
categories. The point is that there exists a universal 1-category30 C0 along
with two objects X0, Y0 ∈ C and two maps X0 ⇒ Y0, which admits all finite
products, such that for every∞-category C as in the assumption of this lemma,
there exists an essentially unique functor C0 → C that preserves finite coprod-
ucts: let K be the diagram • ⇒ • and then take the presheaf ∞-category
P(K) = Fun(Kop,An). Then we can take C0 to be the full subcategory of
P(K) spanned by finite coproducts of the two vertices of K. �

Corollary 4.92. — Let C be an ∞-category with finite coproducts and two
objects X,Y in C. Let i : X → Y be a map that admits a left inverse r : Y → X.
Then there is a “strong deformation retract”, i.e., a simplicial homotopy from

30. We were informed about this by Denis Nardin.
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idY • to i• ◦ r•, which restricts to a constant simplicial homotopy of X• along
i• : X• → Y •, where X• (resp. Y •) is the Čech conerve of X (resp. Y ), and
i• : X• → Y • and r• : Y • → X• are induced simplicial maps.

Proof. — We apply Lemma 4.91 to idY , i◦r ∈ HomC(Y, Y ), getting the desired
simplicial homotopy. To see the latter statement, it suffices to inspect the
commutative diagram

Y
idY−→−→
i◦r

Y

−→ −→

X
idX−→−→
idX

X

and invoke the functoriality. �

Lemma 4.93. — Let A ∈ CAlgcn be a connective E∞-ring and let B → C be a
faithfully flat map of connective E∞-A-algebras. Let B• (resp. C•) denote the
Čech conerve of the map A → B (resp. A → C). Then for any cosimplicial
B•-module N•, the natural cosimplicial map

N• −→ N• ⊗L
B• C

•

induces an equivalence after totalization lim•∈∆in D(A), where the cosimplicial
map B• → C• is induced by B → C.

Proof. — Let D•,• denote the cosimplicial Čech conerve of B• → C• (each
Dν,• is the Čech conerve of Bν → Cν), which is a bicosimplicial object in
CAlgA. We note that there is a unique cosimplicial map B• → D•,µ for all
[µ] ∈∆. Consider the bicosimplicial object M•,•:

∆2 −→ D(A)
([ν], [µ]) 7−→ Nν ⊗L

Bν D
ν,µ

and its limit I := lim([ν],[µ])M
ν,µ. Themap that we need to show to be an equiva-

lence factors as lim[ν]N
ν → lim([ν],[µ])M

ν,µ → lim[ν]M
ν,0 ' lim[ν]N

ν ⊗L
Bν C

ν .
It suffices to show that both maps are equivalences.

For the first map, in fact, for every [ν] ∈ ∆, the map Nν → lim[µ]∈∆ Mν,µ

is an equivalence by faithfully flat descent.
For the second map, since ∆op

inj → ∆op is cofinal [28, Lem 6.5.3.7], where
∆inj ⊆ ∆ is the (nonfull) subcategory with strictly increasing maps [m] →
[n], we can replace lim∆(·) by lim∆inj(·). By [28, Cor 4.4.4.10], it suffices
to show that, for every injective map [µ1] → [µ2] in ∆, the induced map
lim[ν]M

ν,µ1 → lim[ν]M
ν,µ2 is an equivalence. Every injective map [µ1]→ [µ2]

admits a retract in ∆, and, therefore, by Corollary 4.92, the induced map
D•,µ1 → D•,µ2 is a homotopy equivalence of cosimplicial E∞-B•-algebras, and,
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therefore,M•,µ1 →M•,µ2 is a homotopy equivalence of cosimplicial A-modules
by [39, Tag 07KQ]. The result then follows from Lemma 4.80. �

Remark 4.94. — When A is a static Fp-algebra, B is a polynomial A-algebra
and C = B ⊗L

A,ϕA
A is the Frobenius twist of B, we recover [12, Lem 5.4].

Lemma 4.95. — Let (M•i )i∈(Z≤0,≥) ∈ Fun(∆ × (Z≤0,≥),Sp) be a cosimpli-
cial filtered spectra. Suppose that it is uniformly bounded above, i.e., there
exists N ∈ N such that for every i ∈ Z≤0 and ν ∈ ∆, we have πj(Mν

i ) ∼= 0
for all j > N . Let M• := colimi→−∞M•i . Then the canonical map
colimi→−∞ limν∈∆ Mν

i → limν∈∆ Mν is an equivalence.

Proof. — We can rewrite limν∈∆ as limn→∞ limν∈∆≤[n] . Furthermore, the func-
tor ∆inj

≤[n] → ∆≤[n] is right cofinal, and, therefore, we can replace limν∈∆≤[n]

by limν∈∆inj
≤[n]

, which is a finite limit, and, therefore, commutes with colimi→−∞.
For any cosimplicial spectrum X•, there is a canonical map limν∈∆ Xν →
limν∈∆≤[n] X

ν . IfX• is assumed to be uniformly bounded above, then the cocon-
nectivity of fib(limν∈∆ Xν → limν∈∆≤[n] X

ν) tends to −∞ as n → ∞ by [30,
Cor 1.2.4.18]. The result then follows. �

For the integral version, we need to extend quasisyntomicity to animated
rings.

Definition 4.96 (cf. [11, Def 4.9]). — We say that a map R→ S of animated
rings is quasisyntomic if it is flat, and the cotangent complex LS/R has Tor-
amplitude in [0, 1].

Example 4.97. — Any smooth map, or more generally, any syntomic map
of static rings is quasisyntomic. Quasisyntomic maps are stable under base
change.

We now phrase the integral comparison.

Proposition 4.98. — Let ((A � A′′, γA), A′′ → R) ∈ CrysCon such that
A is bounded above (that is, πn(A) ∼= 0 for n � 0), and the map A′′ → R is
quasisyntomic. Then the comparison map in Proposition 4.77 is an equivalence.

Proof. — We again appeal to Proposition 4.81. It suffices to show that the
map

CrysCohR/(A�A′′,γA) −→ lim
ν∈∆

CrysCohR/(P ν�P ν⊗L
A
A′′,γPν )

is an equivalence of Z-module spectra (since the forgetful functor is conser-
vative), which can be checked by base change along Z → Z/p for all prime
numbers p ∈ N>0 and along Z → Q. The latter follows from Lemma 4.13
and that the map A → P is faithfully flat, and, therefore the canonical map
A → limν∈∆ P ν is an equivalence (in fact, this is induced by a homotopy
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equivalence of cosimplicial objects, but we do not need this). For every prime
number p, by base change property (Lemma 4.41) and Lemma 4.90, where the
flatness of A′′ → R implies the flatness of A/Lp → ϕ∗A/Lp�A′′/Lp(R/

Lp), and,
therefore, the Frobenius twist in question is bounded above. �

Finally, we want to compare the cohomology of the affine crystalline site and
the classical crystalline cohomology. We first describe a noncomplete variant
of the classical affine crystalline site, which we will name after static affine
crystalline site.

Definition 4.99. — Let (A, I, γA) ∈ Pairγ be a PD-pair and let A/I → R
be a map of rings. Note that ((A � A/I, γA), A/I → R) ∈ CrysCon is a
crystalline context. The static affine crystalline site Crisst(R/(A, I, γA)) is the
full subcategory of Cris(R/(A� A/I, γA)) spanned by those (B � B/J, γB) ∈
Pairγ along with a map R → B/J , i.e., the animated PD-pair in question is
given by a PD-pair, equipped with the indiscrete topology.

We note that the structure presheaf O on Cris(R/(A � A/I, γA)) restricts
to a presheaf Crisst(R/(A, I, γA)), still called the structure presheaf , which
is canonically equipped with PD-filtration, of which the cohomology is called
the cohomology of the static crystalline site (resp. Hodge-filtered cohomology
of the static crystalline site), denoted by RΓ(Crisst(R/(A, I, γA)),O) (resp.
FilH RΓ(Crisst(R/(A, I, γA)),O).

Warning 4.100. — Here, the PD-filtration is that for animated PD-envelope,
although we are considering PD-pairs. However, when I = 0, thanks to Propo-
sition 3.90, we can consider the classical PD-envelope instead.

Now the cohomology of the affine crystalline site coincides with the classical
version.

Proposition 4.101. — Let (A, I, γA) ∈ Pairγ be a PD-pair and A/I → R a
quasisyntomic map of rings (R is static by flatness). Then the comparison map

FilH RΓ(Cris(R/(A� A/I, γA)),O)→ FilH RΓ(Crisst(R/(A, I, γA)),O)

of filtered E∞-A-algebras induced by the inclusion Crisst(R/(A, I, γA)) ↪→
Cris(R/(A, I, γA)) is an equivalence.

Proof. — We adapt the Čech–Alexander computation in Proposition 4.77. We
pick a polynomial A-algebra P (of possibly infinitely many variables) along with
a surjection P � R. Let P • → R denote the Čech conerve of the object P → R
in (AlgA)/R. Concretely, P ν = P⊗A(ν+1). Note that since A → P is flat, the
classical tensor product coincides with the derived tensor product, and, there-
fore, the cosimplicial pair P • → R coincides with the cosimplicial animated pair
in the proof of Proposition 4.77, and then FilH RΓ(Crisst(R/(A, I, γA)),O) is
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computed by the classical PD-envelope of P • � R with respect to (A, I, γA),
equipped with the PD-filtration.

Let (D• � R, γD•) denote the cosimplicial animated PD-envelope of (P • �
R) relative to (A, I, γA). It suffices to show that (Dν � R, γD•) is given by
a PD-pair for all ν ∈ ∆, or equivalently, the underlying animated ring Dν

is static, by virtue of Proposition 3.38 and Lemma 3.43, which follows from
Lemma 4.102 below. �

Lemma 4.102. — Let (A � A′′, γA) be an animated PD-pair, A′′ → R a
quasisyntomic map of animated rings, P a polynomial A-algebra (of possibly
infinitely many variables) and P � R a surjection of A-algebras. Let (D �
R, γD) denote the animated PD-envelope of P � R relative to (A � A′′, γA).
Then D is a flat A-module.

Proof. — This is a “quasi” variant of “flatness of PD-envelope” [12, Lem 2.42].
By Lemma 3.82, it suffices to show that D ⊗L

Z Q is a flat A⊗L
Z Q-module, and

for every prime p ∈ N, D/Lp is a flat A/Lp-module.
By Lemma 4.60, the map P ⊗L

ZQ→ D⊗L
ZQ is an equivalence. Since A→ P

is flat, so is the map A⊗L
Z Q→ D ⊗L

Z Q.
For every prime p ∈ N, by the base change property (a relative version of

Lemma 3.52, with a similar proof), D0 := D/Lp is the animated PD-envelope
of P/Lp � R/Lp relative to the animated PD-pair (A � A′′, γA). To simplify
notations, we let P0 := P/Lp,R0 := R/Lp,A0 := A/Lp,A′′0 := A′′/Lp. Since
A→ R is quasisyntomic, so is A0 → R0. Consider the transitivity sequence

LP0/A0 ⊗
L
P0
R0 −→ LR0/A0 −→ LR0/P0

For every static R0-module M , we get a fiber sequence

LP0/A0 ⊗
L
P0
M −→ LR0/A0 ⊗

L
R0
M −→ LR0/P0 ⊗

L
R0
M

Since P0 is a polynomial A0-algebra, LP0/A0 is a flat P0-module. The map
A0 → R0 is quasisyntomic, and, therefore, π∗(LR0/A0 ⊗L

R0
M) ∼= 0 for ∗ 6= 0, 1.

It follows that π∗(LR0/P0⊗L
R0
M) ∼= 0 for ∗ 6= 0, 1. Furthermore, since P0 → R0

is surjective, π0(LR0/P0 ⊗L
R0
M) ∼= 0. It follows that P0 � R0 is a quasiregular

animated pair. By Corollary 4.71, D0 is a flat ϕ∗
P0�P0⊗L

A0
A′′0

(R0)-module where

ϕP0�P0⊗L
A0
A′′0

: P0 ⊗L
A0

A′′0 → P0 is the Frobenius map (Lemma 4.42). It
remains to see that the composite map A0 → P0 → ϕ∗

P0�P0⊗L
A0
A′′0

(R0) =

R0 ⊗L
P0⊗L

A0
A′′0

P0 is flat, where the second map is the “map into the second
factor”.

We note that the Frobenius ϕP0�P0⊗L
A0
A′′0

factors as P0⊗L
A0
A′′0 → ϕ∗A0

(P0)→
P0, where the second map is the Frobenius of P0 relative to A0. Let R1 denote
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R0 ⊗L
A′′0 ,ϕA0�A′′0

A0. Since A′′0 → R0 is flat, so is A0 → R1, and we have

ϕ∗P0�P0⊗L
A0
A′′0

(R0) ' R1 ⊗L
ϕ∗
A0

(P0) P0

as a pushout of A0-algebras. The relative Frobenius ϕ∗A0
(P0)→ P0 is flat, and,

therefore, the map R1 → R1⊗L
ϕ∗
A0

(P0) P0. The result then follows since flatness
is stable under composition. �

Remark 4.103. — If we examine the proof of Lemma 4.102 closely, we can
see that, instead of being a polynomial, what we really need to impose on the
map A → P is that the map is quasismooth (i.e., it is flat and LP/A is a flat
P -module), and for every prime p ∈ N, the Frobenius of P/Lp relative to A/Lp
is flat.

5. Animated prismatic structures

We fix a prime p ∈ N. In this section, we will develop the theory of animated
δ-rings, that of animated δ-pairs, a noncomplete theory of prisms and prove a
variant of the Hodge–Tate comparison, from which we deduce a result about
“flat covers of the final object”. Almost every ring that we will discuss is a
Z(p)-algebra; we will simply denote Pairan

Z(p)
by Pairan and Pairγ,an

Z(p)
by Pairγ,an.

5.1. Animated δ-rings and δ-pairs. — In this section, we will define animated δ-
rings and animated δ-pairs and discuss the interaction between the δ-structure
and the PD-structure. Recall the following.

Definition 5.1 ([12, Def 2.1]). — A δ-ring is a pair (R, δ), where R is a
Z(p)-algebra and δ : R → R is an endomorphism of the underlying set R such
that

1. δ(x+y) = δ(x)+δ(y)−P (x, y) for all x, y ∈ R where P (X,Y ) ∈ Z[X,Y ]
is the polynomial

(X + Y )p −Xp − Y p

p
:=

p−1∑
j=1

1
p

(
p

j

)
Xp−jY j

2. δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y).
3. δ(1) = 0.

A map f : (R, δ) → (S, δ) of δ-rings is a map f : R → S of rings such that
f ◦ δ = δ ◦ g as maps of sets. These form the 1-category of δ-rings, denoted by
Ringδ.

Remark 5.2 ([12, Rem 2.2]). — Given a δ-ring (R, δ), we write ϕ : R→ R for
the map x 7→ xp + pδ(x). Then ϕ is a ring endomorphism of R, which lifts the
Frobenius map R/p→ R/p, i.e. ϕ(x) ≡ xp (mod p) for every x ∈ R.
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The 1-category Ringδ admits an initial object Z(p) [12, Ex 2.6], and more
generally, all small colimits and small limits, and the forgetful functor Ringδ →
AlgZ(p)

preserves them [12, Rem 2.7]. The forgetful functor Ringδ → Set admits
a left adjoint Set→ Ringδ, which sends a set S to the free δ-ring generated by
S, denoted by Z(p){S}. Indeed, when S = {x} is a singleton, it is given by the
free δ-ring Z(p){x} of which the underlying Z(p)-algebra is isomorphic to the
polynomial Z(p)-algebra Z(p)[x, δ(x), δ2(x), . . .] [12, Lem 2.11], and the general
case follows by taking the coproduct of S-copies of Z(p){x}. From Corollary 2.3
we have the following.

Lemma 5.3. — The 1-category Ringδ is 1-projectively generated and, therefore,
presentable.

Definition 5.4. — The ∞-category of animated δ-rings, denoted by CAlgan
δ ,

is defined to be the animation Ani(Ringδ). An animated δ-ring is formally
denoted by (R, δ), where R is the image of (R, δ) under the forgetful functor
CAlgan

δ → CAlgan
Z(p)

, or simply by R when the δ-structure is unambiguously
obvious.

Remark 5.5. — In [10, App A], an alternative description of animated δ-rings
in terms of derived Frobenius lift, similar to Remark 5.2, is given.

By the adjoint functor theorem, the forgetful functor Ringδ → AlgZ(p)
admits

a left adjoint. A further application of Corollary 2.3 leads to the following.

Lemma 5.6. — There is a pair CAlgan
Z(p)

� CAlgan
δ of adjoint functors, being

the animation of the pair AlgZ(p)
� Ringδ of adjoint functors. We will call the

functor CAlgan
δ → CAlgan

Z(p)
the free animated δ-ring functor31. The functor

CAlgan
δ → CAlgan

Z(p)
, called the forgetful functor, is conservative and preserves

small colimits (and as a right adjoint, it preserves small limits as well).

Concretely, a set of compact projective generators for CAlgan
δ is given by free

δ-rings generated by a finite set, which spans a full subcategory Ring0
δ ⊆ Ringδ.

Recall that Ringδ ↪→ CAlgan
δ is a full subcategory (Remark A.22). Now we

characterize this full subcategory in terms of the underlying animated ring.

Lemma 5.7. — Let (R, δ) ∈ CAlgan
δ be an animated δ-ring. Then the following

are equivalent.
1. The animated δ-ring (R, δ) ∈ CAlgan

δ is n-truncated.
2. The underlying animated ring R ∈ CAlgan

Z(p)
is n-truncated.

3. For every m ∈ N>n, the homotopy group πm(R) vanishes.

31. The nonanimated version was called the “δ-envelope” in [18, Def 1.1].
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Proof. — The equivalence of parts 2 and 3 is [31, Prop 25.1.3.3]. On the other
hand, part 1 is equivalent to saying that, for every free δ-ring F generated
by a finite set, the mapping anima MapCAlgan

δ
(F,R) is n-truncated by [28,

Rem 5.5.8.26]. Since any such F is a finite coproduct of Z(p){x}, it is equivalent
to MapCAlgan

δ
(Z(p){x}, R) being n-truncated, which is equivalent to part 3 since

MapCAlgan
δ

(Z(p){x}, R) ' MapAn({x}, R) ' R �

Now we define the Frobenius map on animated δ-rings. We note that the
identity functor id : CAlgan

δ → CAlgan
δ is the animation of the identity functor

id : Ringδ → Ringδ.

Definition 5.8. — The Frobenius endomorphism is the endomorphism of the
identity functor id : CAlgan

δ → CAlgan
δ defined to be the animation of the

Frobenius endomorphism (described in Remark 5.2) of the identity functor
id : Ringδ → Ringδ.

Recall that a δ-pair is the datum (A, I) of a δ-ring A along with an ideal
I ⊆ A [12, Def 3.2]. Similarly to animated pairs, we have an “animated version”
of δ-pairs:

Definition 5.9. — The∞-category Pairan
δ of animated δ-pairs is defined to be

the fiber product CAlgan
δ ×CAlgan

Z(p)
Pairan where the functor CAlgan

δ → CAlgan
Z(p)

is the forgetful functor, and the functor Pairan → CAlgan
Z(p)

is the evaluation
(A � A′′) 7→ A. An animated δ-pair is an object in Pairan

δ , which we will
denote by ((A, δ), A� A′′) or simply by A� A′′ when there is no ambiguity.

From Lemma 5.6 and [28, Lem 5.4.5.5], which characterizes colimits in the
fiber products, we have the following.

Lemma 5.10. — The∞-category Pairan
δ is cocomplete, and the forgetful functor

Pairan
δ → Pairan is conservative and preserves small colimits.

Explicitly, an animated δ-pair is given by an animated δ-ring (A, δ) along
with a surjection A � A′′ of animated Z(p)-algebras. Since Pair ⊆ Pairan is a
full subcategory (Proposition 3.23), and so is Ringδ ⊆ CAlgan

δ (Remark A.22),
the 1-category of δ-pairs is a full subcategory of the ∞-category of animated
δ-pairs. Similarly to the ∞-category of animated pairs, we have the following.

Lemma 5.11. — The forgetful functor Pairan
δ → Pairan admits a left adjoint,

and the ∞-category Pairan
δ is projectively generated.

Proof. — The left adjoint Pairan → Pairan
δ concretely given by (A � A′′) 7→

((Aδ, δ), (Aδ � A′′ ⊗L
A A

δ)), where Aδ is the image of A ∈ CAlgan
Z(p)

under the
free animated δ-ring functor CAlgan

Z(p)
→ CAlgan

δ . Now the result follows from
Corollary 2.3 and Lemmas 5.3 and 5.6. �
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Concretely, a set of compact projective generators for Pairan
δ is given by

the set {(Z(p){X,Y }, (Y )) |X,Y ∈ Fin} of standard δ-pairs, which spans a full
subcategory Pairst

δ ⊆ Pairan
δ . Now we turn to the PD-structure. Recall that

Lemma 5.12 ([12, Lem 2.11]). — The Frobenius endomorphism ϕZ(p){x} :
Z(p){x} → Z(p){x} on the free δ-ring Z(p){x}, which is, in fact, induced by
x 7→ ϕ(x) = xp + pδ(x), is faithfully flat. The same holds for free δ-rings
generated by arbitrary sets (not-necessarily finite).

We remark that, thanks to Lemma 3.82, it is not necessary to pass to the
polynomial ring of finitely many variables to invoke the fiberwise criterion of
flatness.

We now relate δ-structure to divided powers. Note that, for any p-torsion
free Z(p)-algebra A, any element y ∈ A and any n ∈ N, we have

yn

n! ∈
yn

pvp(n!) GL1(Z(p))

In particular, yp/p! (resp. yp2
/(p2)!) differs multiplicatively from yp/p (resp.

yp
2
/pp+1) by a unit. When A is a p-torsion free δ-ring, we have ϕ(y) = yp +

pδ(y), and yp/p! ∈ A[p−1] belongs to A if and only if ϕ(y) is divisible by p.
Now we define the animated δ-ring Z(p){x, ϕ(x)/p} to be the pushout of the

diagram

Z(p){y}
y 7→pz−−−−→ Z(p){z}−→ y 7→ ϕ(x)

Z(p){x}

in the ∞-category CAlgan
δ . Since the Frobenius map ϕ : Z(p){y} → Z(p){x}

is faithfully flat, so is the map Z(p){z} → Z(p){x, ϕ(x)/p}. It follows that
Z(p){x, ϕ(x)/p} is static and p-torsion-free by Remark 3.74, and, therefore, it
is a δ-ring by Lemma 5.7 (this is essentially [12, Lem 2.36]). We need another
characterization of the underlying ring of Z(p){x, ϕ(x)/p}.

Lemma 5.13 ([12, Lem 2.36]). — There is a natural isomorphism
DZ(p){x}(x) −→ Z(p){x, ϕ(x)/p}

of p-torsion-free Z(p)-algebras.

This map transfers the surjective map DZ(p){x}(x) � Z(p){x}/(x) to a sur-
jective map Z(p){x, ϕ(x)/p} � Z(p){x}/(x), the existence of which does not
seem to be a priori clear (which is implicitly involved in [12, Lem 2.35]).

Note that since x ∈ DZ(p){x}(x) is a nonzero-divisor, the map from the ani-
mated PD-envelope of (Z(p){x}, (x)) to the classical PD-envelope is an equiva-
lence, by base change of (Z(p)[x], (x)) along the flat map Z(p)[x] → Z(p){x} '
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Z(p)[x, δ(x), δ2(x), . . .], or, alternatively, by Proposition 3.83. We can replace x
by a finite number of variables, which leads to the following.

Corollary 5.14. — There exists a canonical δ-pair structure on the animated
PD-envelope of every δ-pair (Z(p){X,Y }, (Y )) ∈ Pairst

δ . More formally, there
exists a canonical functor Pairst

δ → Pairan
δ , which fits into a commutative dia-

gram

Pairst
δ Pairan

δ

Pairan Pairγ,an PairanEnvγ,an

of ∞-categories.

Proof. — The functoriality of Pairst
δ → Pairan

δ needs explanation: a map
(Z(p){X,Y }, (Y )) → (Z(p){X ′, Y ′}, (Y ′)) of δ-pairs induces a map
(Q{X,Y }, (Y )) → (Q{X ′, Y ′}, (Y ′)) of pairs after inverting p, which is “Fro-
benius”-equivariant, where Q{X,Y } := Z(p){X,Y }[p−1]. A careful vp-anal-
ysis implies that this map restricts to a map Z(p){X,Y, ϕ(Y )/p} →
Z(p){X ′, Y ′, ϕ(Y ′)/p} of Z(p)-subalgebras, which gives rise to the functorial-
ity. �

From Propositions 3.40 and A.14, Lemma 5.10, and Corollary 5.14 we have
the following.

Corollary 5.15. — There exists a canonical animated δ-pair structure on the
animated PD-envelope of every animated δ-pair. More formally, there exists a
canonical functor Pairan

δ → Pairan
δ , which fits into a commutative diagram

Pairan
δ Pairan

δ

Pairan Pairγ,an PairanEnvγ,an

of ∞-categories. Moreover, the functor Pairan
δ → Pairan

δ preserves small colim-
its.

We give an analysis of the conjugate filtration on the PD-envelope of
(Fp{x}, (x)), where Fp{x} := Z(p){x}/Lp, which is the base change of the
PD-envelope of (Z(p){x}, (x)) along Z(p) → Fp. Recall the following.

1. The (animate) PD-envelope DFp[x](x) is a free Fp[x]/(xp)-module gen-
erated by the set {γkp(x) | k ∈ N} of divided powers of x.

2. For i ∈ N≥0, the (−i)-th piece of the conjugate filtration of DFp[x](x) is
generated by {γkp(x) | k ≤ i} as an Fp[x]/(xp)-submodule.
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By the base change property (Lemma 3.52), we have the following.
1. The (animate) PD-envelope DFp{x}(x) is a free Fp{x}/(xp)-module gen-

erated by the set {γkp(x) | k ∈ N}.
2. For i ∈ N≥0, the (−i)-th piece of the conjugate filtration of DFp{x}(x)

is generated by {γkp(x) | k ≤ i} as an Fp{x}/(xp)-submodule.
We follow the argument of [12, Lem 2.35]: for every y ∈ Z(p){x} with yp/p ∈
Z(p){x}, we have

δ

(
yp

p

)
= 1
p

(
ϕ(y)p

p
−
(
yp

p

)p)
= (yp + pδ(y))p

p2 − yp
2

pp+1

= 1
p2

(
yp

2
+ p2yp(p−1)δ(y) +

p−2∑
k=0

(
p

k

)
ykp(pδ(y))p−k

)
− yp

2

pp+1

= pp−1 − 1
pp+1 yp

2
+ yp(p−1)δ(y) +

p−2∑
k=0

pp−2−k
(
p

k

)
ykpδ(y)p−k

(11)

Letting z = xp/p, from pp−1 − 1 ∈ GL1(Z(p)) we have the following.

1. The set {za0δ(z)a1(δ2(z))a2 · · · (δr(z))ar | r ∈ N, 0 ≤ a0, a1, . . . , ar <
p} forms a basis of the free Fp{x}/(xp)-module Z(p){x, ϕ(x)/p}/Lp '
DFp{x}(x).

2. For every i ∈ N, the (−i)-th piece of the conjugate filtration ofDFp{x}(x)
is generated by {za0δ(z)a1(δ2(z))a2 · · · (δr(z))ar | 0 ≤ a0, a1, . . . , ar <
p, a0 + a1p+ a2p

2 + · · ·+ arp
r ≤ i}.

Remark 5.16. — In a bit more imprecise terms, δk(z) differs from γpk(x) up
to a unit, modulo “lower terms”.

This generalizes to the multivariable case with the same argument.

Lemma 5.17. — Let (A, I) := (Z(p){X,Y }, (Y )) ∈ Pairst
δ be a standard δ-

pair and let (B, J, γ) be the (animated) PD-envelope of (Fp{X,Y }, (Y )). Let
Y = {y1, y2, . . .} and zj := ϕ(yj)/p. Then we have the following.

1. The ϕ∗A(A/I)-module B is freely generated by the subset∏
j,k

(δk(zj))aj,k | 0 ≤ aj,k < p

 ⊆ B.
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2. For every i ∈ N, the (−i)-th piece of the conjugate filtration of B is
generated by∏

j,k

(δk(zj))aj,k | 0 ≤ aj,k < p,
∑
j,k

aj,kp
k ≤ i


as a ϕ∗A(A/I)-submodule.

5.2. Oriented prisms. — In this section, we will study animated δ-rings viewed
as “noncomplete oriented animated prisms”32. Recall that a orientable prism
is a δ-pair (A, I) such that the ideal I ⊆ A is principal, the δ-ring A is I-torsion
free, derived (p, I)-complete, and p ∈ I + ϕ(I)A [12, Def 3.2]. For technical
reasons, we will study the “noncomplete” analogues where the completeness
and the torsion-freeness are dropped.

We fix a δ-ring A along with a chosen nonzero-divisor d ∈ A. In practice,
we are only interested in the special case that A = Z(p){d} and some variants
like A = Z(p){d, δ(d)−1}. We denote by Ringδ,A the 1-category (Ringδ)A/ of
δ-A-algebras. From Lemma 2.10 we have the following.

Lemma 5.18. — The 1-category Ringδ,A is 1-projectively generated and, there-
fore, presentable. A set of compact 1-projective generators is given by {A{X} :=
A⊗L

Z(p)
Z(p){X} |X ∈ Fin}, which spans a full subcategory of Ringδ,A denoted

by Ring0
δ,A.

Definition 5.19. — Let B be an animated δ-ring. The ∞-category of ani-
mated δ-B-algebras, denoted by CAlgan

δ,B , is defined to be the undercategory
Ani(Ringδ)B/. When B is static, it is equivalent to the animation Ani(Ringδ,B)
by Corollary 2.14.

By Lemma 4.55, we get an adjunction CAlg♥A � Ringδ,A, where the forgetful
functor Ringδ,A → CAlg♥A preserves all small colimits (and as a right adjoint,
it preserves small limits as well). From Corollary 2.3 we have the following.

Lemma 5.20. — There is a pair CAlgan
A � CAlgan

δ,A of adjoint functors, being
the animation of the pair CAlg♥A � Ringδ,A of adjoint functors. We will call
the functor CAlgan

A → CAlgan
δ,A the free animated δ-A-algebra functor. The

functor CAlgan
δ,A → CAlgan

A , called the forgetful functor, is conservative and
preserves small colimits (and as a right adjoint, it preserves small limits as
well).

Definition 5.21. — The ∞-category of animated δ-A-pairs Pairan
δ,A is defined

to be the undercategory (Pairan
δ )(idA:A→A)/, which is equivalent to the fiber

product CAlgan
δ,A×CAlgan

A
Pairan

A by [28, Lem 5.4.5.4].

32. They are noncomplete oriented analogues of [10, Def 2.4].
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Remark 5.22. — By [10, Cor 2.10], our ∞-category Pairan
δ,A is a noncomplete

version of the ∞-category of animated prisms over (A, d). Their setup is more
general in the sense that the base prism can be both animated and nonori-
entable.

The set {(A{X,Y }, (Y )) |X,Y ∈ Fin} forms a set of compact projective
generators for Pairan

δ,A by Lemma 2.10, which spans a full subcategory Pairst
δ,A ⊆

Pairan
δ,A. From Lemmas 4.55 and 5.11 we have the following.

Lemma 5.23. — The forgetful functor Pairan
δ,A → Pairan

A admits a left adjoint.

There is a canonical functor CAlgan
δ,A → Pairan

δ,A given by B 7→ (B � B/Ld).
We observe the following.

Lemma 5.24. — The functor CAlgan
δ,A → Pairan

δ,A, B 7→ (B � B/Ld) admits a
left adjointPairan

δ,A → CAlgan
δ,A, givenby the left derived functor (PropositionA.14)

of Pairst
δ,A → CAlgan

δ,A, (A{X,Y }, (Y )) 7→ A{X,Y/d}, where A{X,Y/d} is an
abbreviation for the free δ-A-algebraA{x1, x2, . . . , y1/d, y2/d, . . .}33.

Proof. — Let G denote the functor CAlgan
δ,A → Pairan

δ,A, B 7→ (B � B/Ld).
Then we have a functor F : Pairan

δ → Fun(CAlgan
δ ,An)op, which preserves

small colimits and sends (B � B′′) ∈ Pairst
δ,A to the functor MapPairan

δ,A
(B �

B′′, G(·)). By Proposition A.14, it is the left derived functor of its restriction
to the full subcategory Pairst

δ,A ⊆ Pairan
δ,A.

We now show that, for every (A{X,Y }, (Y )) ∈ Pairst
δ,A, the functor

F ((A{X,Y }, (Y ))) is equivalent to the functor MapCAlgan
δ,A

(A{X,Y/d}, ·). In
other words, the essential image of F |Pairst

δ,A
lies in the full subcategory

Ring0
δ,A ↪→ CAlgan

δ,A ↪→ Fun(CAlgan
δ,A,An)op. By adjunctions Fun((∆1)op,

D(Z)≥0) � Pairan
A � Pairan

δ,A (Definition 3.21 and Lemma 5.23), we have

F (A{X,Y }, (Y ))(B) ' MapPairan
A

(A[X,Y ] � A[X], B � B/Ld)

' MapFun((∆1)op,D(Z)≥0)
(
XZ⊕ Y Z← Y Z, B d←− B

)
' BCard(Y ) ×BCard(X)

' MapCAlgan
δ,A

(A{X,Y/d}, B)

which are functorial in B ∈ CAlgan
δ,A (note that naively speaking, the “values” of

Y/d correspond to the “preimages” of Y under the map B d←− B and, therefore,
the formal notation Y/d).

33. These generators yi/d are, in fact, formal variables zi. This notation indicates that the
counit map (A{X,Y }, (Y )) → (A{X,Y/d} � A{X,Y/d}/Ld) is induced by xi 7→ xi and
yi 7→ zid.
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Since the Yoneda embedding CAlgan
δ,A ↪→ Fun(CAlgan

δ,A,An)op is stable un-
der small colimits, it follows that the essential image of F lies in CAlgan

δ,A,
which proves that G admits a left adjoint L : Pairan

δ,A → CAlgan
δ,A, and that

L(A{X,Y/d}) ' A{X,Y/d}.
We still need to show that L|Pairst

δ,A
coincides with the functor defined in

the obvious way. We have shown this objectwise, and since L(Pairst
δ,A) lies in

the full subcategory Ring0
δ,A ↪→ CAlgan

δ,A, which is a 1-category, we only need
to show that the image of morphisms coincide with the “obvious” choice, i.e.,
without higher categorical complication. This can be checked putting different
d-torsion-free δ-A-algebras B ∈ Ringδ,A into the functorial isomorphism

HomPairδ,A((A{X,Y }, (Y )), (B, (d))) ∼= HomRingδ,A(A{X,Y/d}, B)
given by the adjunction. �

Now we introduce a variant of Definition 5.21.

Definition 5.25. — The ∞-category of animated δ-(A, d)-pairs Pairan
δ,(A,d) is

defined to be the undercategory (Pairan
δ,A)(A�A/Ld)/, which is equivalent to the

fiber product CAlgan
δ,A×CAlgan

A
Pairan

(A�A/Ld)/ by [28, Lem 5.4.5.4].

By Lemma 2.10, we have the following.

Lemma 5.26. — The ∞-category Pairan
δ,(A,d) is projectively generated. A set

of compact projective generators is given by {(A{X,Y }, (d, Y )) |X,Y ∈ Fin},
which spans a full subcategory of Pairan

δ,(A,d) denoted by Pairst
δ,(A,d).

Note that A is initial in Pairan
δ,A. From Lemmas 4.55 and 5.24 we have the

following.

Corollary 5.27. — The functor CAlgan
δ,A → Pairan

δ,(A,d), B 7→ (B � B/Ld)
admits a left adjoint Pairan

δ,(A,d) → CAlgan
δ,A, which will be denoted by Env�34,

given by the left derived functor (Proposition A.14) of Pairst
δ,(A,d) → CAlgan

δ,A,
(A{X,Y }, (d, Y )) 7→ A{X,Y/d}.

Furthermore, for every B ∈ CAlgan
δ,A, by unrolling the definitions, the counit

map Env�(B � B/Ld) → B is an equivalence, and, therefore, we have the
following.

Lemma 5.28. — The functor CAlgan
δ,A → Pairan

δ,(A,d) is, in fact, fully faithful,
the image of which is a reflective subcategory (Definition 2.44).

The following concept is not strictly necessary, but it would help us to un-
derstand when we need to “divide by d”.

34. This is understood as a “noncomplete” prismatic envelope when p lies in the Jacobson
radical Rad(A), and d ∈ A is weakly distinguished (Definition 5.30).
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Definition 5.29. — Let A be a δ-ring and d ∈ A a nonzero-divisor. Let
M ∈ D(A/Ld) be a A/Ld-module spectrum. For every n ∈ Z, the n-th Breuil–
Kisin twist of M with respect to (A, d), denoted by M{n}, is defined to be
M ⊗L

A/Ld (dA/d2A)⊗
L
A/Ld

n.

Note that when d ∈ A is a nonzero-divisor, the A/Ld-module dnA/dn+1A is
free of rank 1 and therefore, equivalent to A/Ld. The Breuil–Kisin twists are
strictly necessary when we want to generalize to nonorientable prisms. In our
case, we understand M{1} “formally multiplied by d” and M{−1} “formally
divided by d”, just as the formal notations yi/d in Lemma 5.24.

Finally, we introduce a variant of the concept of distinguished elements [12,
Def 2.19].

Definition 5.30. — Let A be a δ-ring. We say that an element d ∈ A is
weakly distinguished if the ideal (d, δ(d)) is the unital ideal A, or equivalently,
δ(d) is invertible in A/d.

Remark 5.31. — Let A be a δ-ring and d ∈ Rad(A) an element in the Jacobson
radical. Then d is weakly distinguished if and only if it is distinguished.

The following lemma is a motivation for the introduction of weakly distin-
guished elements.

Lemma 5.32 (cf. [12, Lem 2.23]). — Let A be a δ-ring and, I = (d) ⊆ A
a principal ideal. Then for any invertible element u ∈ GL1(A), the principal
ideals δ(d)(A/I) and δ(ud)(A/I) are the same. In particular, when I is gener-
ated by a nonzero-divisor, the principal ideal δ(d)(A/I) does not depend on the
choice of the generator d ∈ I.

Proof. — We have δ(ud) = ϕ(u)δ(d) + δ(u)dp ≡ ϕ(u)δ(d) (mod ud). Since u
is invertible, so is ϕ(u), and the result follows. �

Corollary 5.33. — Let A be a δ-ring, I ⊆ A a principal ideal generated by
a nonzero-divisor. Then the following are equivalent.

1. There exists a weakly distinguished generator d of I.
2. Every generator d of I is weakly distinguished.

Remark 5.34 (Bhatt). — We have a variant of Corollary 5.33 that does not
involve nonzero-divisors, by replacing a principal ideal I by the equivalence
classes of maps A→ A of A-modules, and the proof of Lemma 5.32 implies that
the concept of “weakly distinguished” is invariant under this equivalence. More
generally, we can consider the equivalence classes of an invertible A-module I
along with a map I → A, and define the concept of such a map I → A being
weakly distinguished when p ∈ Rad(A). This generalizes to animated δ-rings.
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Recall that an animated ring A is p-local if the element p ∈ π0(A) lies in the
Jacobson radical35 Rad(π0(A)).

Lemma 5.35. — Let A be a p-local δ-ring and d ∈ A a weakly distinguished
element. Then for every n ∈ N, ϕn(δ(d)) is invertible in A/d.

Proof. — By induction, it suffices to show that, for every u ∈ A of which the
image in A/d is invertible, then so is the image of ϕ(u) in A/d. It follows from
the identity ϕ(u) = up + pδ(u), since the image of up in A/d invertible, and
p ∈ Rad(A/d). �

5.3. Conjugate filtration. — In this section, we will introduce the conjugate
filtration on “noncomplete prismatic envelopes”, which plays a role similar to
that of conjugate filtrations on animated PD-envelopes and derived crystalline
cohomology. Let A be a p-local δ-ring and d ∈ A a weakly distinguished
nonzero-divisor. To simplify the presentation, we mostly concentrate on the
“single variable” case: Env�(A{y}, (d, y))/Ld ' A{y/d}/Ld as an A{y}/L(d, y)-
algebra (or module).

First, note that the identity

δ(up) = (ϕ(up)− up
2
)/p

= ((up + pδ(u))p − up
2
)/p

=
p∑
k=1

(
p

k

)
up(p−k)pk−1δ(u)k

(12)

holds in the free δ-ring Z(p){u}, and, therefore, it is an identity in any δ-ring.
We now compute δn(y) in terms of δn(z), where y = zd in the free δ-A-

algebra A{y}:
δ(y) = δ(zd)

= δ(z)ϕ(d) + zpδ(d)
δ2(y) = δ(δ(z)ϕ(d) + zpδ(d))

= δ(δ(z)ϕ(d)) + δ(zpδ(d))−
p−1∑
k=1

1
p

(
p

k

)
(δ(z)ϕ(d))p−k(zpδ(d))k︸ ︷︷ ︸

=:R2

= δ2(z)ϕ2(d) + δ(z)pδ(ϕ(d)) + δ(zp)δ(ϕ(d)) + zp
2
δ2(d)−R2

= δ2(z)ϕ2(d) + ϕ(δ(d))(1 + pp−1)δ(z)p +
p−1∑
k=1
· · ·+ zp

2
δ2(d)−R2

35. The Jacobson radical Rad(A) of a ring A is defined to be the subset (and a fortiori,
the ideal) of elements x ∈ A such that for every a ∈ A, the element 1 + ax is invertible in A.
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where we used the fact that ϕ◦δ = δ◦ϕ and (12) (which leads to the summand∑p−1
k=1 · · · ), and in general, we have the following.

Lemma 5.36. — Let A{z} be the free δ-A-algebra and y := zd. For every n ∈
N, there exists a unique polynomial Pn ∈ A[X0, . . . , Xn−1] with degXn−1 Pn ≤ p
such that

δn(y) = δn(z)ϕn(d) + Pn(z, δ(z), . . . , δn−1(z))
Moreover, there exists a uniqueQn ∈ A[X0, . . . , Xn−1]with degXn−1 Qn < p such
that Pn = anϕ

n−1(δ(d))Xp
n−1 + Qn, where an are partial sums

∑n−1
k=0 p

k(p−1) of
the geometric progression (pk(p−1))k∈N. Note that an ∈ GL1(Z(p)) for n > 0.
On the other hand, if we endow Xi with degree pi, then Pn is homogeneous of
degree pn.

Proof. — The uniqueness follows from the freeness. We prove the existence
inductively on n ∈ N. When n = 0, this is obvious. Now let n ∈ N>0 and
assume that this is true for every m < n, Now we have

δn(y) = δ(δn−1(y))
= δ(δn−1(z)ϕn−1(d) + Pn−1(z, δ(z), . . . , δn−2(z)))
= δ(δn−1(z)ϕn−1(d)) + δ(Pn−1(z, δ(z), . . . , δn−2(z)))−Rn

where δ(δn−1(z)ϕn−1(d)) = δn(z)ϕn(d) + (δn−1(z))pϕn−1(δ(d)) and

Rn :=
p−1∑
k=1

1
p

(
p

k

)
(δn−1(z)ϕn−1(d))p−k(Pn−1(z, δ(z), . . . , δn−2(z)))k

Note that the “degree” of δn−1(z) in Rn is strictly less than p. Let bn−1 =
an−1ϕ

n−2(δ(d)); we have
δ(Pn−1(z, δ(z), . . .)) = δ(bn−1(δn−2(z))p +Qn−1(z, δ(z), . . .))

= δ(bn−1(δn−2(z))p) + δ(Qn−1(z, δ(z), . . .))−
p−1∑
k=1
· · ·︸ ︷︷ ︸

=:R′n

= ϕ(bn−1)δ((δn−2(z))p) + δ(Qn−1(· · · ))

+ δ(bn−1)(δn−2(z))p
2
−R′n

and only ϕ(bn−1)δ((δn−2(z))p) has a contribution on δn−1(z)p, and

δ((δn−2(z))p) =
p∑
k=1

(
p

k

)
(δn−2(z))p(p−k)pk−1(δn−1(z))k

has a contribution on δn−1(z)p only at k = p, i.e., pp−1δn−1(z)p. Note that
ϕ(bn−1) = an−1ϕ

n−1(δ(d)), the result then follows. �
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Construction 5.37. — We now rewrite A{y} → A{z}, y 7→ zd as the se-
quential composite (i.e., the A{y}-algebra A{z} is equivalent to the sequential
colimit of)

A{y} −→ A{y} ⊗L
B0
C0 −→ A{y} ⊗L

B1
C1 −→ · · ·(13)

where An := A[z, . . . , δn−1(z)], Bn := An[δn(y)] and Cn := An[δn(z)] are poly-
nomial algebras, and the map Bn → Cn is given by the evaluation δn(y) 7→
δn(z)ϕn(d) + Pn(z, δ(z), . . . , δn−1(z)) by Lemma 5.36. Thus, Bn → Cn could
be written as the composite (where we replace δn(y) by u and δn(z) by v)

(14) Bn = An[u]
→ An[u, v]/(u− ϕn(d)v − Pn(z, δ(z), . . . , δn−1(z))) ∼= An[v] = Cn

In other words, Bn → Cn is essentially formally adjoining36 (δn(y) −
Pn(z, δ(z), . . . , δn−1(z)))/ϕn(d) to Bn as an (animated) A-algebra, and the
A{y}-algebra A{z} is obtained by formally adjoining (δn(y) −
Pn(z, δ(z), . . . , δn−1(z)))/ϕn(d) iteratively from A{y}. The conjugate filtration
on A{y/d}/Ld is given by Fil−iconj(A{y/d}/Ld) being the A{y}/L(y, d)-submodule
of A{y/d}/Ld spanned by {(y/d)a0δ(y/d)a1(δ2(y/d))a2 · · · (δr(y/d))ar | r ∈ N,
0 ≤ a0, a1, . . . , ar < p}.

Passing to the multivariable version, we get the following.

Lemma 5.38. — Let A be a p-local δ-ring and d ∈ A a weakly distinguished
nonzero-divisor. Then there exists a canonical functor Fil∗conj

(
Env�(·)/Ld

)
:

Pairst
δ,(A,d) → CAlg(DF≤0(A/Ld)), which preserves finite coproducts, along with

a functorial map Fil∗conj
(

Env�(B, J)/Ld
)
→ Env�(B, J)/Ld, understood as the

conjugate filtration on Env�(B, J)/Ld, such that
1. The conjugate filtration is exhaustive, that is to say, the induced map

Fil−∞conj
(

Env�(B, J)/Ld
)
→ Env�(B, J)/Ld is an equivalence in D(A).

2. The filtration Fil∗conj
(

Env�(A{y} � A{y}/L(y, d))/Ld
)
coincides with

the filtration Fil∗conj(A{y/d}/Ld) in Construction 5.37.
3. The maps Fil−iconj

(
Env�(A{x} � A{x}/Ld)/Ld

)
→ Env�(A{x} �

A{x}/Ld)/Ld ' A{x}/Ld are equivalences for all i ∈ N; that is to say,
the conjugate filtration on (A/Ld){x} is “constant37”.

Proof. — The conjugate filtration on each object Env�(B, J) for (B, J) ∈
Pairst

δ,(A,d) is completely determined by these properties and that the functor
preserves finite coproducts, since every (B, J) can be written as a coproduct of

36. Note that this is true although ϕn(d) is not necessarily a nonzero-divisor.
37. More precisely, it is constant after restriction to Z≤0, but this restriction is expected

as the conjugate filtration is nonpositive.
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A{x}�A{x}/Ld andA{y}�A{y}/L(y, d). Concretely, Fil−iconj(A{X,Y/d}/Ld)
are generated, as an A{X,Y }/(d, Y )-submodule, by “standard monomials”∏

(r,y)∈E δ
r(y/d) “of total degree≤ i”, where E ⊆ N × Y is a finite subset,

and the element δr(y/d) is of degree pr for r ∈ N and y ∈ Y . One verifies that
this, indeed, gives rise to a functor.

Alternatively, if we further assume that d is weakly transversal (Defini-
tion 5.42), then we can invoke Lemma 5.45 to reduce the computations sig-
nificantly. �

Definition 5.39. — Let A be a p-local δ-ring and d ∈ A a weakly distinguished
nonzero-divisor. Then the conjugate filtration on Env�(B � B′′)/Ld for
(B � B′′) ∈ Pairan

δ,(A,d) is given by the left derived functor (Proposition A.14)
Pairan

δ,(A,d)→CAlg(DF≤0(A/Ld)) of the functorPairst
δ,(A,d)→CAlg(DF≤0(A/Ld))

in Lemma 5.38.

From Lemma 2.43 we have the following.

Lemma 5.40. — Let A be a p-local δ-ring and d ∈ A a weakly distinguished
nonzero-divisor. Then the conjugate filtration on Env�(B � B′′)/Ld for ev-
ery (B � B′′) ∈ Pairan

δ,(A,d) is exhaustive, i.e., Fil−∞ Env�(B � B′′)/Ld →
Env�(B � B′′)/Ld is an equivalence.

We now analyze the “denominators” ϕn(d) when A is p-local, and d is weakly
distinguished.

Lemma 5.41 (cf. [1, Lem 3.5]). — Let A be a p-local δ-ring and d ∈ A a
weakly distinguished element. Then for every n ∈ N>0, there exists a unit
u ∈ GL1(A/d) such that ϕn(d) ≡ pu (mod d).

Proof. — We will construct inductively on n ∈ N>0 a sequence (un)n ∈ AN>0

such that for every n ∈ N>0, the image of un in A/d is invertible, and ϕn(d)−
dp

n = pun. We take u1 = δ(d), and suppose that um are already constructed
for 1 ≤ m < n, then

ϕn(d) = ϕn−1(ϕ(d))
= ϕn−1(dp + pδ(d))
= (ϕn−1(d))p + pϕ(δ(d))

= (dp
n−1

+ pun−1)p + pϕ(δ(d))

= dp
n

+ p

(
ϕ(δ(d)) +

p∑
k=1

(
p

k

)
dp

n−1(p−k)pk−1ukn−1

)
We pick un = δ(d) +

∑p
k=1

(
p
k

)
dp

n−1(p−k)pk−1ukn−1. Note that the second sum-
mand

∑p
k=1 · · · is canonically divisible by p (separating the cases k = 0 and
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k > 1), thus un ≡ δ(d) (mod p) of which the image in A/(p, d) is invertible.
The result then follows from the fact that p ∈ Rad(A/d). �

We introduce the following temporary terminology.

Definition 5.42. — Let A be a δ-ring. We say that an element d ∈ A is weakly
transversal if it is weakly distinguished, and the sequence (d, p) is regular in A,
that is to say, d is a nonzero-divisor, and A/d is p-torsion-free.

Recall that for a ring A, the Zariski localization of A along an ideal I ⊆ A
is defined to be the localization of A at the multiplicative set 1 + I. The image
of I in (1 + I)−1A lies in the Jacobson radical.

Example 5.43. — The element d in the p-local δ-ring Z(p){d, δ(d)−1}(p) is
weakly transversal. In fact, this special case suffices for our applications.

Now we assume that d ∈ A is weakly transversal. In the “single vari-
able” case A{y}/L(d, y)→ A{y/d}/Ld, by Lemmas 5.36 and 5.41, the sequence
(z, δ(z), δ2(z), . . .) forms a system similar to that of divided pr-powers (γpr )r∈N
up to a multiplication of a unit after modulo d:

pδ(z) ≡ −a1δ(d)zp (mod B)
pδ2(z) ≡ −a2ϕ(δ(d))δ(z)p (mod B[δ(z)])
pδ3(z) ≡ −a3ϕ

2(δ(d))δ2(z)p (mod B[δ(z), δ2(z)])

where B := A{y}/L(d, y) and anϕ
n−1(δ(d)) ∈ GL1(A/d) (cf. Remark 5.16).

We now translate this observation to an analysis of the conjugate filtration,
which seems hard to attack directly. We look at the maps B0/

L(d, y)→ C0/
Ld

and Bn/Ld→ Cn/
Ld for n ∈ N>0 induced by the map (14). We first note that

the map B0/
L(d, y)→ C0/

Ld is the polynomial algebra in single variable z.
If we further (derived) modulo p, we see thatBn/L(d, p)→ Cn/

L(d, p) for n ∈
N>0 is killing a polynomial δn(y)−Pn(z, δ(z), . . . , δn−1(z)) monic in δn−1(z) of
degree p, and then adjoining a formal variable δn(z). In view of (13), we see that
the map A{y}/L(d, p, y) y 7→zd−−−−→ A{z}/L(d, p) is the composition of consecutively
adjoining a root of a monic polynomial of degree p, and consequently, as a
A{y}/L(d, p, y)-module, A{z}/L(d, p) is freely generated by

{za0δ(z)a1(δ2(z))a2 · · · (δr(z))ar | r ∈ N, 0 ≤ a0, a1, . . . , ar < p}.

On the other hand, if we invert p, we see that, for every n ∈ N>0, the
maps (Bn/Ld)[p−1] → (Cn/Ld)[p−1] are equivalences, and, therefore,
(A{y}/L(d, y))[p−1] → (A{z}/Ld)[p−1] is the polynomial algebra in one vari-
able z.
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The mod p conjugate filtration Fil−iconj(A{z}/L(d, p))/Lp is then freely gener-
ated by {

za0δ(z)a1(δ2(z))a2 · · · (δr(z))ar | r ∈ N, 0 ≤ a0, a1, . . . , ar < p,

a0 + pa1 + · · ·+ prar ≤ i
}
.

Ontheotherhand, therationalizedconjugatefiltrationFil−iconj(A{z}/L(d, p))[p−1]
is given by the (A{y}/L(d, y))[p−1]-polynomials in z of degree≤ i. This follows
from the following lemma, which can be established by induction on n.

Lemma 5.44. — In the rationalized free δ-ring Z(p){x}[p−1] ∼= Q[x, ϕ(x),
ϕ2(x), . . .], for every n ∈ N, the image of δn(x) ∈ Z(p){x} in Q[x, ϕ(x),
ϕ2(x), . . .] is given by a polynomial Dn(x, ϕ(x), . . . , ϕn(x)) such that degxDn =
pn with leading term (−p−1)1+p+···+pnxp

n for all n ∈ N.

We summarize the “multi-variable” version as follows.

Lemma 5.45. — Let A be a p-local δ-ring and d ∈ A a weakly transversal
element. Let (A{X,Y }, (d, Y )) ∈ Pairst

δ,(A,d). Then we have the following.
1. The generator

{∏
(r,y)∈E δ

r(y/d)
}
E

for Fil−iconj(A{X,Y/d}/Ld) as an
A{X,Y }/L(d, Y )-submodule, “of total degree≤ i”, where E ⊆ N × Y
is a finite subset, and the element δr(y/d) is of degree pr, becomes a
basis after (derived) modulo p. This also holds for i = +∞.

2. The (−i)-th piece of the rationalized conjugate filtration
Fil−iconj(A{X,Y/d}/Ld)[p−1] ⊆ (A{X,Y/d}/Ld)[p−1] is given by the
A{X,Y }/L(d, Y )-polynomials in variables Y/d of total degree≤ i. This
also holds for i = +∞.

Furthermore, an element x ∈ A{X,Y/d}/Ld belongs to the (−i)-th piece of
the conjugate filtration Fil−iconj(A{X,Y/d}/Ld) if and only if so does it after
(derived) modulo p and after rationalization.

Remark 5.46. — In some vague terms, in Lemma 5.45, the derived modulo
p is about “controlling the denominators”, and the rationalization is about
“controlling the degree”.

Recall that for every (B, J) ∈ Pairst
δ,(A,d), there exists a canonical map

B/Ld ' B ⊗L
A (A/Ld) → B/J , which is, in fact, surjective. Then we have

the following “multivariable” version.

Lemma 5.47. — Let A be a p-local δ-ring and d ∈ A a weakly transver-
sal element. For every (A{X,Y }, (d, Y )) =: (B, J) ∈ Pairst

δ,(A,d), let K :=
ker(B/Ld → B/J). Note that K/K2 is naturally a B/J-module. Then there
exists a comparison map

Γ∗B/J((K/K2){−1}) −→ gr−∗conj
(

Env�(B, J)/Ld
)
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of graded B/J-algebras induced by [γn(zi)] 7→
∏r
j=0

( δj(zi)
−ajϕj(δ(d))

)nj , where Y =
{y1, . . .}, zi = yi/p and n =

∑r
j=0 njp

j is the p-adic expansion of n. The
comparison map is functorial in (B, J) ∈ Pairst

δ,(A,d).

Proof. — The comparison map is induced by
[
γn
(
y
d

)]
7→
∏r
j=0

( δj(y/d)
−ajϕj(δ(d))

)nj
for every y in the ideal (d, Y ). To see that this is well defined, the most non-
trivial part is to show that this vanishes when y ∈ (d, Y 2). By the multiplicity
of the conjugate filtration, we can assume that nr = 1 and nj = 0 for j 6= r,
and it suffices to analyze δr(y/d) when y ∈ (d, Y 2), which can be reduced to
the special case that y = y1y2 where y1, y2 ∈ Y .

By Lemma 5.44, the element δr(y1y2/d) ∈ A[p−1][X,Y/d, ϕ(Y ), ϕ2(Y/d), . . .]
is a polynomial in y1y2/d = y1z2, ϕ(y1y2), . . . , ϕr(y1y2). The crucial point is
that y1y2/d = (y1/d)(y2/d)d = 0 in A{X,Y/d}/Ld, and, therefore, after ratio-
nalization, δr(y1y2/d) lies in Fil0conj

(
Env�(B, J)/Ld

)
[p−1].

By Lemma 5.36, δr(y1z2) = δr(z2)ϕr(y1) + Pr(z2, . . . , δ
r−1(z2)), where Pr

is an A{y1}-polynomial. Note that ϕr(y1) = ϕr(z1d) = ϕr(z1)ϕr(d) ≡ 0
(mod (d, p)) by Lemma 5.41. Since Pr is homogeneous of degree pr when
deg(δj(z2)) = pj , it follows that for every monomial

∏
j T

nj
j of Pr, there exists a

j such that nj ≥ p, but then δj(z2)nj is a linear combination of basis elements in
Lemma 5.45, which shows that

∏
j(δj(z2))nj ∈ Fil−(pr−1)

conj
(

Env�(B, J)/Ld
)
/Lp.

The result then follows from the last part of Lemma 5.45. �

Again, from Lemma 5.45, via derived modulo p and rationalization, we have
the following.

Lemma 5.48. — Let A be a p-local δ-ring and d ∈ A a weakly transversal
element. For every (B, J) ∈ Pairst

δ,(A,d), the comparison map in Lemma 5.47 is
an equivalence.

After such a long march, let us harvest the Hodge–Tate comparison, which
is a prismatic analogue of Corollary 3.71. Note that for every (B � B′′) ∈
Pairan

δ,(A,d), and note that the commutative diagram

A −→ B

−→ −→

A/Ld −→ B′′

induces a natural map B/Ld ' B ⊗L
A (A/Ld)→ B′′ which is surjective; that is

to say, B/Ld� B′′ is an animated pair. Then from Lemma 5.48 and Proposi-
tion A.14 we have the following.
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Theorem 5.49 (Hodge–Tate). — Let A be a p-local δ-ring and d ∈ A a
weakly transversal element. Then for every animated δ-(A, d)-pair (B � B′′) ∈
Pairan

δ,(A,d), there exists a canonical equivalence

ΓiB′′(gr1
ad(B/Ld� B′′){−1}) −→ gr−iconj

(
Env�(B � B′′)/Ld

)
which is functorial in (B � B′′) ∈ Pairan

δ,(A,d), where Filad is the adic filtration
functor defined in Construction 3.59.

Let R be an E1-ring. Recall that a right R-module M is faithfully flat if it
is flat (Definition 3.73), and π0(M) is a faithfully flat right π0(R)-module. A
map R→ S of E∞-rings is faithfully flat if S is faithfully flat as an R-module.
There is a useful characterization of faithfully flat algebras.

Lemma 5.50 ([27, Lemma 5.5]). — Let f : R → S be a map of static (com-
mutative) rings. Then f is faithfully flat if and only if f is flat, injective, and
that coker(f) taken in the category of R-modules is flat.

Lemma 5.51. — Let f : R→ S a map of E∞-rings. If f is faithfully flat, then
cofib(f) taken in the ∞-category of R-module spectra is flat. The converse is
true if R is supposed to be connective.

Proof. — Assume first that f is faithfully flat. Let M := coker(π0(R) →
π0(S)). By Lemma 5.50, the map π0(R) → π0(S) is injective, and the π0(R)-
module M is flat. Then for every n ∈ Z, we have the exact sequence

Torπ0(R)
1 (πn(R),M)→ πn(R)→ πn(R)⊗π0(R) π0(S)→ πn(R)⊗π0(R) M → 0

which implies that the map πn(R)→ πn(R)⊗π0(R) π0(S) is injective. Since f
is flat, the canonical map πn(R)⊗π0(R) π0(S)→ πn(S) is an isomorphism, and,
therefore, the map πn(R) → πn(S) is injective. Then the long exact sequence
associated to the fiber sequence R → S → cofib(f) splits into short exact
sequences

0 −→ πn(R) −→ πn(S) −→ πn(cofib(f)) −→ 0

which implies that the canonical map M → π0(cofib(f)) is an isomorphism.
Furthermore, we have a morphism of short exact sequences

0 // πn(R) //

∼
��

πn(R)⊗π0(R) π0(S) //

∼
��

πn(R)⊗π0(R) M //

��

0

0 // πn(R) // πn(S) // πn(cofib(f)) // 0

By the short five lemma, the map πn(R) ⊗π0(R) M → πn(cofib(f)) is an iso-
morphism, and, therefore, cofib(f) is flat.
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Now we assume that R is connective and that cofib(f) is flat. By definition,
cofib(f) is connective and so is S by the fiber sequence R→ S → cofib(f). For
every static R-module M , we have the fiber sequence

M −→M ⊗L
R S −→M ⊗L

R cofib(f)

By flatness of cofib(f) and [30, Prop 7.2.2.13], M ⊗L
R cofib(f) is static, and,

therefore, so is M ⊗L
R S. It then follows from [30, Thm 7.2.2.15] that S is a

flat R-module. It remains to show that the map π0(R) → π0(S) is faithfully
flat. By Lemma 5.50, it suffices to show that π0(R) → π0(S) is injective
and coker(π0(R) → π0(S)) is flat. The first follows from the connectivity of
cofib(f), and the latter follows from the isomorphism coker(π0(R)→ π0(S)) ∼=
π0(cofib(f)) and the flatness of cofib(f). �

Now we have a prismatic analogue of Corollary 3.77, with a similar argument.

Proposition 5.52. — Let A be a p-local δ-ring and d ∈ A a weakly transversal
element. Let (B � B′′) ∈ Pairan

δ,(A,d) be an animated δ-(A, d)-pair such that
the canonical animated pair B/Ld � B′′ is quasiregular. Then the unit map
B′′ → Env�(B � B′′)/Ld is faithfully flat.

Proof. — By Theorem 5.49 and the quasiregularity of B/Ld � B′′, for every
i ∈ N, the B′′-module gr−iconj

(
Env�(B � B′′)/Ld

)
is flat. By Lemma 3.75,

for every i ∈ N>0, cofib
(
B′′ → Fil−iconj

(
Env�(B � B′′)/Ld

))
is flat. Since

the conjugate filtration is exhaustive (Lemma 5.38), and the collection of
flat modules is stable under filtered colimits [30, Lem 7.2.2.14(1)], we get
cofib

(
B′′ → Env�(B � B′′)/Ld

)
is a flat B′′-module. Then the result fol-

lows from Lemma 5.51. �

Remark 5.53. — In Proposition 5.52, if we further assume that B′′ is static,
then so is Env�(B � B′′)/Ld. This does not imply that Env�(B � B′′)
is static. However, it implies that, after taking d-completion, Env�(B � B′′)
becomes static, which should be understood as a “static d-completed envelope”.

Remark 5.54. — There is a p-completed analogue of Proposition 5.52: sup-
pose that the animated pair B/Ld � B′′ is p-completely38 quasiregular; that
is to say, the shifted cotangent complex LB′′/(B/Ld)[−1] is a p-completely flat
B′′-module, then the same proof shows that the unit map B′′ → Env�(B �
B′′)/Ld is p-completely faithfully flat (i.e., it becomes faithfully flat after de-
rived modulo p).

In particular, if (B, d) is a bounded oriented prism [12, Def 3.2] and that B′′

is static and has bounded p-power torsion, then the p-completion of Env�(B �

38. “p-complete” concepts are usually applied to p-complete objects. However, this is not
necessary because we can always derive p-complete a noncomplete object.
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B′′)/Ld is static. Moreover, by [12, Lem 3.7(2,3)], the (p, d)-completion of
C := Env�(B � B′′) is static, and thus it follows from a formal argument
that (C∧(p,d), d) is the prismatic envelope of the δ-pair B � B′′ as long as it
is d-torsion free. In other words, we generalize [12, Prop 3.13] by weakening
regularity to quasiregularity.

We record a simple corollary that furnishes a quite general class of “flat cov-
ers of the final object” in the affine prismatic site (similarly to Definition 4.76).
For this, we need the following definition.

Definition 5.55. — Let A be a δ-ring, d ∈ A an element and B an animated δ-
A-algebra. The ∞-category of δ-(B, d)-pairs, denoted by Pairan

δ,(B,d), is defined
to be the undercategory (Pairan

δ,(A,d))(B�B/Ld)/.

Let A be a p-local δ-ring and d ∈ A a weakly distinguished nonzero-divisor.
Let B be an animated δ-A-algebra and R an animated B/Ld-algebra. Similarly
to Definition 4.76, we can consider the category of animated δ-B-algebras C
along with a map39 R → C/Ld of animated B/Ld-algebras, which we will
denoted by R→ C/Ld� C, depicted by the commutative diagram

B //

����

C

����
B/Ld // R // C/Ld

More formally, this is thefiberproductAni(Ringδ)B/×Ani(Ring)(B/Ld)/
Ani(Ring)R/

of∞-categories, the opposite category of whichwill be denoted by�(R/(B, d))40.
Now let P be an animated δ-B-algebra along with a surjection P � R of

animated B-algebras such that the cotangent complex LP/B/Ld is a flat P/Ld-
module.

Remark 5.56. — We note that such P exists in abundance. For example,
this happens when R is a smooth B/Ld-algebra which admits a smooth B-lift
P with a δ-structure compatible with that on B, or P is a polynomial B-
algebra B[xi] (of possibly infinitely many variables) with δ(xi) = 0 along with
a surjection P � R of animated B-algebras.

Then the animated pair P � R admits a canonical animated δ-(B, d)-pair
structure, and thus the animated δ-ring Env�(P � R) gives rise to an object
of �(R/(B, d)) (by abuse of notation, we will still denote by Env�(P � R) the
object of �(R/(B, d))).

39. Unlike the crystalline case, here we do not assume that the map R → C/Ld is an
equivalence.

40. In [12], they used the notation (R/A)�. However, this notation is usually devoted to
topoi (such as Xet and Xcris). We therefore adopt the traditional notation for sites.
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Remark 5.57. — By Lemma 5.28, when P � R is “already” a noncompleted
prism in the sense that the induced map P/Ld → R is an equivalence, the
noncompleted prismatic envelope Env�(P � R) is equivalent to P itself.

For any object (R→ C/Ld� C) ∈ �(R/(B, d)), by unrolling the definitions,
the product of (R → C/Ld � C) and Env�(P � R) in �(R/(B, d)) is given
by Env�(P ⊗L

B C � R). We therefore have a map C/Ld → Env�(P ⊗L
B

C � C/Ld)/Ld of animated R-algebras. The following proposition is essentially
equivalent to the “flat cover of the final object”, cf. [15, Prop 1.1.2]41.

Proposition 5.58. — Let A be a p-local δ-ring and d ∈ A a weakly transversal
element. Let B be an animated δ-A-algebra and P � R an animated δ-(B, d)-
pair such that the cotangent complex LP/B/Ld is a flat P/Ld-module. Then,
for every (R→ C/Ld� C) ∈ �(R/(B, d)), the map C/Ld→ Env�(P ⊗L

B C �
C/Ld)/Ld is faithfully flat.

Proof. — By Proposition 5.52, it suffices to show that the map (P/Ld)⊗L
B/Ld

(C/Ld) → C/Ld is quasiregular. To simplify the notations, let P ′′ := P/Ld,
B′′ := B/Ld and C ′′ := C/Ld. We have the transitivity sequence

L(P ′′⊗L
B′′

C′′)/C′′ ⊗L
P ′′⊗L

B′′
C′′ C

′′ → LC′′/C′′ ' 0→ LC′′/(P ′′⊗L
B′′

C′′)

associated to the maps C ′′ → P ′′ ⊗L
B′′ C

′′ → C ′′, whose composite is idC′′ .
Note that L(P ′′⊗L

B′′
C′′)/C′′ ' LP ′′/B′′ ⊗L

B′′ C
′′ is a flat P ′′ ⊗L

B′′ C
′′-module. It

follows that LC′′/(P ′′⊗L
B′′

C′′)[−1] is a flat C ′′-module. �

We first learned the possibility of such kind of result from [34, Prop 3.4]
(which is closely related to [15, Prop 1.1.2]). Later we came up with an argu-
ment which is essentially equivalent to the proof of Proposition 5.58, but the
foundation was lacking then, therefore the current article could be understood
as paving the way to this proof. Now we want to point out that, with minor
modifications, this proof would imply [34, Prop 3.4] and the relevant technical
lemmas in the recent works by Y. Tian and by A. Ogus [37] announced in Illusie
conference. Furthermore, when the proper foundation is laid, the same proof
would lead to a flat cover of the final object in the absolute prismatic site, and
in particular, it would recover [2, Lem 5.2.8]. We now show this implication.

As in Remark 5.54, we assume that (B, d) is a bounded oriented prism,
R is derived p-complete and the map B/Ld → R is a p-completely quasisyn-
tomic (i.e. the map B/Ld→ R is p-completely flat and the cotangent complex
LR/(B/Ld) has p-complete Tor-amplitude in [0, 1] as an R-module spectrum).
Then by [11, Lem 4.7], R is static and has bounded p-power torsion. Let P be

41. This characterization was already implicit in Faltings’s proof of “independence of the
choice of the framing”.
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a derived (p, d)-complete animated δ-B-algebra which is (p, d)-completely qua-
sismooth (i.e. the map B → P is (p, d)-completely flat and the cotangent com-
plex LP/B is a (p, d)-completely flat B-module). Then by [12, Lem 3.7(2,3)],
P is static and for every n ∈ N, the multiplication map dn : P → P is injective
and P/dn has bounded p-power torsion.

Now suppose that we are given a surjection P � R of B-algebras. Then by
Remark 5.54, the derived (p, d)-completion of Env�(P � R) is static and the
prism defined by this (p, d)-completed algebra is the prismatic envelope in the
sense of [12, Prop 3.13], where the d-torsion-freeness follows from the complete
flatness of B → P and [12, Lem 3.7(2)]. Moreover, since both B/Ld→ R and
R → Env�(P � R)/Ld are p-completely flat, the map B → Env�(P � R) is
(p, d)-completely flat (this in fact generalizes the flatness in [12, Prop 3.13]).
The proof of Proposition 5.58 shows that

Proposition 5.59. — Let (B, d) be a bounded oriented prism, R a derived
p-complete and p-completely quasisyntomic B/d-algebra. Let P be a derived
(p, d)-complete animated δ-B-algebra which is (p, d)-completely quasismooth
over B, equipped with a surjection P � R of B-algebras. Then the (p, d)-
completion of Env�(P � R) is static which gives rise to a bounded prism
(C, d) in the prismatic site42 defined in [12, Def 4.1] of R relative to the base
prism (B, d). Furthermore, (C, d) is a flat cover of the final object in this site.

This implies virtually all the similar technical cover results for relative pris-
matic site mentioned above, cf. Remark 5.57.

Remark 5.60. — For the absolute prismatic site, the proof also works in the
special case of [2, Lem 5.2.8], but we are not aware of a statement as general
as Proposition 5.59.

Appendix A. Animations and projectively generated categories

In this appendix, we recollect basic category-theoretic facts about anima-
tions [14] and projectively generated categories [28, §5.5.8] needed in the text.

A.1. Projectively generated n-categories. — In this subsection, we will briefly
recollect basic facts about projectively generated n-categories. We will denote
by An the ∞-category of animæ (see Section 1), and by Ân the ∞-category
of large animæ. We say that an anima X is n-truncated for n ∈ N≥0 if the
homotopy groups πi(X,x) = 0 for every point x ∈ X and every i ∈ N>n,
and (−1)-truncated if X is either empty or contractible, and (−2)-truncated if
X = ∅. An ∞-category C is an n-category [28, Prop 2.3.4.18] if for every pair

42. It is the nonanimated but (p, d)-completed version of our �(R/(B, d)).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



776 Z. MAO

(X,Y ) ∈ C×C of objects, the mapping anima MapC(X,Y ) is (n−1)-truncated.
We will denote by An≤n the ∞-category of n-truncated animae, and by Ân≤n
the ∞-category of large n-truncated animae.

Remark A.1. — 1-categories are just categories in the classical category the-
ory. If we define ∞-categories as quasicategories as in [28], this identification
is given by the nerve construction. Since in our texts, categories often mean
∞-categories, we usually add “1-” to avoid possible ambiguities.

In fact, for the text, we only need results for n = 1 and n = ∞, but the
generalization to general n ∈ N>0 ∪ {∞} is quite cost-free.

Proposition A.2 ([28, Cor 2.3.4.8]). — Let C be an n-category and K a sim-
plicial set. Then Fun(K, C) is an n-category.

Definition A.3 ([28, Rem 5.5.8.20]). — Let C be a cocomplete n-category
and X ∈ C an object. We say that X is compact and n-projective, or that X
is a compact n-projective object, if the functor C → An≤n−1, Y 7→ MapC(X,Y )
corepresented by X commutes with filtered colimits and geometric realizations.

Remark A.4. — Here we need Ân in lieu of An because the ∞-category C is
not necessarily locally small. In practice, the ∞-categories that we encounter,
e.g. projectively generated ∞-categories, are a fortiori locally small, but not
necessarily a priori locally small.

Remark A.5. — In fact, an object X ∈ C is called n-projective if and only
if the functor C → An≤n−1, Y 7→ MapC(X,Y ) corepresented by X commutes
with geometric realizations. In particular, when C is an abelian 1-category, an
object X ∈ C is 1-projective if and only if it is a “projective object” of the
abelian 1-category C.

Remark A.6. — Let C be a cocomplete n-category and X ∈ C a compact
n-projective object. In general, X is not a compact projective object of C as
an ∞-category. In fact, the inclusion Ân≤n−1 → An does not commute with
geometric realizations. That is to say, for general simplicial objects Y• : ∆op →
C, the geometric realization |MapC(X,Y•)|•∈∆op is not in general (n − 1)-
truncated.

Remark A.7. — There is another way to characterize geometric realizations
in an n-category C. In fact, the fully faithful embedding ∆op

≤[n] ↪→ ∆op is “n-
cofinal”, and, therefore, the geometric realization of a simplicial object ∆op →
C exists if and only if colimit of the composite functor ∆op

≤[n] ↪→ ∆op → C
exists, and the two colimits are equivalent. Furthermore, for any diagram
∆op
≤[n] → C, the left Kan extension along ∆op

≤[n] ↪→ ∆op always exists. Thus
for a cocomplete n-category C, an object X ∈ C is n-projective if and only if
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the functor MapC(X, ·) corepresented by X preserves ∆op
≤[n]-indexed colimits.

See [35] and the proof of [30, Lem 1.3.3.10].

Definition A.8 ([28, Def 5.5.8.23]). — Let C be a cocomplete n-category and
S ⊆ C a (small) collection of objects of C. We say that S is a set of compact
n-projective generators for C if the following conditions are satisfied:

1. Each element of S is a compact n-projective object of C.
2. The full subcategory of C spanned by finite coproducts of elements of S

is essentially small.
3. The set S generates C under small colimits.

We say that an n-category C is n-projectively generated if it is cocomplete and
there exists a set S of compact n-projective generators for C.

Remark A.9. — Let C be a cocomplete n-category and C0 ⊆ C an essentially
small full subcategory. Then we will abuse the terminology by saying that C0
is a set of compact n-projective generators for C if a skeleton of C0 is a set of
compact n-projective generators for C.

Notation A.10. — Let C be a small n-category which admits finite coprod-
ucts. We let PΣ,n(C) denote the full subcategory of Pn(C) := Fun(Cop,An≤n−1)
spanned by those functors Cop → An≤n−1 which preserves finite products.
When n =∞, we will omit the subscript n.

Proposition A.11. — Let C be a small n-category which admits finite coprod-
ucts. Then

1. The∞-category PΣ,n(C) is an accessible localization of Pn(C) and, there-
fore, presentable.

2. The Yoneda embedding j : C → Pn(C) factors through PΣ,n(C). More-
over, the induced functor C → PΣ,n(C) preserves finite coproducts.

3. Let D be a presentable n-category and let P(C)
F−→←−
G
D be a pair of adjoint

functors. Then G factors through PΣ,n(C) if and only if f = F ◦ j : C →
D preserves finite coproducts.

4. The full subcategory PΣ,n(C) ⊆ Pn(C) is stable under sifted colimits43.

We recall that, for a small ∞-category C, Ind(C) ⊆ P(C) is the full subcat-
egory generated under filtered colimits by the essential image of the Yoneda
embedding C → P(C), [28, Prop 5.3.5.3 & Cor 5.3.5.4]. It follows from [28,
Prop 5.3.5.11] that

43. We do not introduce n-sifted diagrams, so a priori it is a sifted diagram defined in
[28, Def 5.5.8.1]. However, here one can replace sifted diagrams by n-sifted diagram. See
Remark A.7.
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Lemma A.12. — Let C be a small n-category which admits finite coproducts.
Then the fully faithful embedding C ↪→ PΣ,n(C) extends uniquely to a functor
Ind(C) → PΣ,n(C) which preserves filtered colimit. This functor Ind(C) →
PΣ,n(C) is fully faithful.

Lemma A.13. — Let C be a small n-category which admits finite coproducts.
Then the n-category PΣ,n(C) is n-projectively generated for which C ⊆ PΣ,n(C)
is a set of n-projective generators. In fact, for any X ∈ PΣ,n(C), there exists a
simplicial object U• : ∆op → Ind(C) (or equivalently, a diagram ∆op

≤n → Ind(C)
by Remark A.7) whose colimit is X.

Proof. — First, since PΣ,n(C) ⊆ Pn(C) is an accessible localization, PΣ,n(C) is
presentable [28, Rem 5.5.1.6] and, therefore, cocomplete. SincePΣ,n(C) ⊆ Pn(C)
is stable under sifted colimits (PropositionA.11), the objects ofC are compact and
n-projective. The last statement then follows from [28, Lem 5.5.8.14]. �

Proposition A.14. — Let C be a small n-category which admits finite coprod-
ucts and let D be an n-category which admits filtered colimits and geometric
realizations. Let FunΣ(PΣ,n(C),D) denote the full subcategory spanned by those
functors PΣ,n(C) → D which preserve filtered colimits and geometric realiza-
tions. Then we have the following.

1. Composition with the Yoneda embedding j : C → PΣ,n(C) induces an
equivalence θ : FunΣ(PΣ,n(C),D) → Fun(C,D) of categories. The in-
verse θ−1 is given by the left Kan extension along j. In this case, we
will call θ−1(f) the left derived functor of f ∈ Fun(C,D).

2. Any functor g ∈ FunΣ(PΣ,n(C),D) preserves sifted colimits.
3. Assume thatD admits finite coproducts. A functor g ∈ FunΣ(PΣ,n(C),D)

preserves small colimits if and only if g ◦ j preserves finite coproducts.

Proposition A.15. — Let C be a small n-category which admits finite coprod-
ucts, D an n-category which admits filtered colimits and geometric realizations,
and F : PΣ,n(C) → D a left derived functor of f = F ◦ j : C → D, where
j : C → PΣ,n(D) denotes the Yoneda embedding. Consider the following condi-
tions.

1. The functor f is fully faithful.
2. The essential image of f consists of compact n-projective objects of D.
3. The n-category D is generated by the essential image of f under filtered

colimits and geometric realizations.
If 1 and 2 are satisfied, then F is fully faithful. Moreover, F is an equivalence
if and only if 1, 2 and 3 are satisfied.
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Proposition A.16. — Let C be a n-projectively generated n-category with a
set S of compact n-projective generators for C. Then we have the following.

1. Let C0 ⊆ C be the full subcategory spanned by finite coproducts of the
objects in S. Then C0 is essentially small, and the left derived functor
F : PΣ,n(C0) → C is an equivalence of n-categories. In particular, C is
a compactly generated presentable n-category.

2. Let C ∈ C be an object. The following conditions are equivalent.
(a) The object C ∈ C is compact and n-projective.
(b) The functor C → An≤n−1 corepresented by C preserves sifted col-

imits.
(c) There exists an object C ′ ∈ C0 such that C is a retract of C ′.

Proof. — We explain more details of the first point than [28, Prop 5.5.8.25].
It follows from definitions that C0 is essentially small. Then it follows from
Proposition A.15 that the left derived functor F : PΣ,n(C0)→ C is fully faithful.
Since C0 ⊆ C is stable under finite coproducts taken in C, the embedding C0 ↪→ C
preserves finite coproducts. It follows from Proposition A.14 that F preserves
small colimits, thus the essential image of F is stable under small colimits. By
assumption, S generates C under small colimits, and, therefore, F is essentially
surjective. �

Corollary A.17. — Let C be a projectively generated n-category and let D
be an n-category which admits filtered colimits and geometric realizations. If
a functor C → D preserves filtered colimits and geometric realizations, then it
also preserve sifted colimits.

The following proposition is extremely useful to detect projectively generated
n-categories.

Proposition A.18 ([30, Cor 4.7.3.18]). — Given a pair C
F−→←−
G
D of adjoint

functors between n-categories. Assume that
1. The n-category D admits filtered colimits and geometric realizations, and

the functor G preserves filtered colimits and geometric realizations.
2. The n-category C is n-projectively generated.
3. The functor G is conservative.

Then
1. The n-category D is n-projectively generated.
2. An object D ∈ D is compact and n-projective if and only if there exists

a compact n-projective object C ∈ C such that D is a retract of F (C).
3. The functor G preserves all sifted colimits.
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A.2. Animation ofn-projectively generatedn-categories. — In this subsection,
we describe a procedure, called animation, introduced in [14, §5.1], to produce a
projectively generated∞-category from an n-projectively generated n-category.
Roughly speaking, this projectively generated ∞-category is determined by a
set of compact n-projective generators for the n-category in question.

Definition A.19. — Let C be an n-projectively generated n-category. We
choose a set S ⊆ C of compact n-projective generators for C. Let C0 ⊆ C be
the full subcategory spanned by finite coproducts of the objects in S. Then the
animation of C, denoted by Ani(C), is defined to be the projectively generated
∞-category PΣ(C0).

Remark A.20. — The definition of the animation does not depend on the
choice of the set of compact n-projective generators. The key is that if S′ is
another compact n-projective generators, then it follows from Proposition A.16
that every object X ′ ∈ S′ is a retract of an object X ∈ C0 in Definition A.19.
The same applies to the discussions below.

Example A.21. — Let Ab be the abelian category of abelian groups. Then
Ani(Ab) coincides with the (connective) derived category D≥0(Ab).

Remark A.22. — In the context of Definition A.19, we have C ' PΣ,n(C0) by
Proposition A.16 and Ani(C) ' PΣ(C0). It follows that the n-category C could
be identified with n-truncated objects in Ani(C). In particular, there exists a
left adjoint τ≤n−1 : Ani(C) → C to the fully faithful embedding C ↪→ Ani(C),
cf. [28, Rem 5.5.8.26].

We now discuss the animation of functors.

Definition A.23 ([14, §5.1.4]). — Let C,D be two n-projectively generated
n-categories and F : C → D a functor. Then the animation of the functor F ,
denoted by Ani(F ) : Ani(C)→ Ani(D), is defined as follows:

We choose a set S ⊆ C of compact n-projective generators for C. Let C0 ⊆
C be the full subcategory spanned by finite coproducts of the objects in S.
Then the functor F : C → D gives rise to the composite C0 → C → D →
Ani(D). We define Ani(F ) : Ani(C) → Ani(D) to be the left derived functor
(in Proposition A.14) of C0 → Ani(D).

Example A.24. — Let F : Ab → Ab be an additive functor. Then the
animation Ani(F ) : Ani(Ab)→ Ani(Ab) coincides with the left derived functor
LF : D≥0(Ab)→ D≥0(Ab) in homological algebra.

It follows from Propositions A.14 and A.16 that

Corollary A.25. — In Definition A.23, if F preserves sifted colimits (cf.
Corollary A.17), then so does Ani(F ). Furthermore, if F preserves small col-
imits, then so does Ani(F ).
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In homological algebra, there is a natural comparison mapH0◦LF → F ◦H0,
which becomes an equivalence when F is assumed to be right exact. Now we
study the animated analogue. In the context of Definition A.23, the composite
functor Ani(C)

τ≤n−1−−−−→ C F−→ D
jD
↪→ Ani(D) is an extension of the composite

functor C F−→ D ↪→ Ani(D). Since Ani(F ) : Ani(C) → Ani(D) is the left Kan
extension, there exists an essentially unique map Ani(F ) → jD ◦ F ◦ τ≤n−1 of
functors Ani(C) ⇒ Ani(D). By adjunction, we get a canonical map τ≤n−1 ◦
Ani(F )→ F ◦ τ≤n−1 of functors Ani(C) ⇒ D.

Lemma A.26 ([14, §5.1.4]). — In Definition A.23, suppose that the functor
F : C → D (between n-categories) preserves sifted colimits. Then the map
τ≤n−1 ◦Ani(F )→ F ◦ τ≤n−1 of functors constructed above is an equivalence of
functors.

Proof. — First, note that the map τ≤n−1 ◦ Ani(F ) → F ◦ τ≤n−1 of functors
Ani(C) ⇒ D is an equivalence of functors after composing with the inclusion
C0 ↪→ Ani(C). We claim that both functors τ≤n−1 ◦ Ani(F ) and F ◦ τ≤n−1
preserve sifted colimits, thus belonging to FunΣ(Ani(C),D) which becomes an
equivalence after mapped along FunΣ(Ani(C),D) → Fun(C,D), and hence by
Proposition A.14, the constructed map of functors is an equivalence.

In fact, since τ≤n−1 is a left adjoint and, therefore, commutes with small
colimits, which implies that τ≤n−1 ◦ Ani(F ) commutes with sifted colimits.
On the other hand, F : C → D is a functor which preserves sifted colimits
and, therefore, also preserves sifted colimits since C,D are n-categories. Thus
F ◦ τ≤n−1 also preserves sifted colimits. �

In homological algebra, left deriving functors is not compatible with com-
positions, and, therefore, neither is animation of functors in general. However,
recall that with some acyclicity conditions [39, Tag 015M], there is a compat-
ibility of left deriving functors and compositions. Here is such a condition in
the world of animations.

Proposition A.27 ([14, Prop 5.1.5]). — Let C,D, E be three n-projectively
generated n-categories and F : C → D, G : D → E two functors preserving
sifted colimits (cf. Corollary A.17). Then

1. There is a natural transformation from the composite Ani(G) ◦ Ani(F )
to Ani(G ◦ F ) (In fact, for this, we only need that G preserves sifted
colimits).

2. Let C0 ⊆ C and D0 ⊆ D be full subcategories determined by a choice of
set of compact n-projective generators as in Definition A.19. If either
F (C0) ⊆ Ind(D0) in D or (Ani(G))(F (C0)) ⊆ E in Ani(E), then the
natural transformation Ani(G)◦Ani(F )→ Ani(G◦F ) is an equivalence.
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