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CHARLES HERMITE’S PRACTICES

AND THE PROBLEM OF THE UNITY OF MATHEMATICS

Catherine Goldstein

Abstract. — The theme of the unity of mathematics developed during the
nineteenth century as specialized articles proliferated and it has often been as-
sociated for this period with the definition of new types of mathematical objects
in a structuralist setting. This article focusses on the almost opposite point of
view of Charles Hermite. Although his work was praised by his contemporaries
for beautifully contributing to and displaying the unity of mathematics, he
himself strongly opposed the idea of free conceptual creation in mathematics
and favored explicit, extensive computations with algebraic forms and classical
functions. Hermite’s way of testifying to the unity of mathematics must thus
be reconstructed by a close reading of his papers, here based on a focus on a
few keywords. The result appears proteiform; Hermite operates sometimes by
constructing bridges within mathematics through formulas, sometimes by re-
cycling and adapting well-known algebraic expressions, and even occasionally
by providing alternative proofs of a theorem. The coherence of these practices
with Hermite’s general viewpoint on mathematics leads us to advocate for a
richer history of the problem of the unity of mathematics.
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Résumé (Les pratiques de Charles Hermite et le problème de l’unité des mathé-
matiques)

Le thème de l’unité des mathématiques s’est développé au cours du
dix-neuvième siècle en même temps proliféraient les articles spécialisés et
il a souvent été associé, pour cette période, à la définition de nouveaux
types d’objets mathématiques dans un cadre structuraliste. Cet article se
concentre sur le point de vue presque opposé de Charles Hermite. Bien que
son travail ait été loué par ses contemporains pour avoir brillamment contribué
à l’unité des mathématiques et même pour l’avoir mise en évidence, il s’est
lui-même fermement opposé à l’idée d’une création conceptuelle libre en
mathématiques et a privilégié les calculs explicites et étendus sur les formes
algébriques et les fonctions classiques. La manière dont Hermite témoignait
de l’unité des mathématiques doit donc être reconstituée par une lecture
attentive de ses articles, ce que nous ferons ici en suivant les indications de
quelques mots-clés. Le résultat apparaît protéiforme, Hermite opérant tantôt
en construisant des ponts à l’intérieur des mathématiques par le biais de
formules, tantôt en recyclant et en adaptant des expressions algébriques bien
connues, et même occasionnellement en fournissant des preuves alternatives
d’un théorème. La cohérence de ces pratiques avec le point de vue général
d’Hermite sur les mathématiques nous conduit à plaider pour une histoire
plus riche du problème de l’unité des mathématiques.

The theme of the unity of science became classic in the philosophy of
science during the twentieth century, mathematics being from the start a
key feature in this edifice. One of the most famous testimonies of this trend
is, of course, the First International Congress for the Unity of Science,
which took place in 1935 in Paris, in parallel with the long-term project of
the International Encyclopedia of Unified Science. Besides Otto Neurath and
Rudolf Carnap, the leading figures of the Vienna Circle at the origin of
the project, the Congress gathered several representatives of the cream of
the mathematical crop of the time: Elie Cartan, Jacques Hadamard, Fed-
erigo Enriques, Bertrand Russell, and Richard von Mises, among others. 1

“Recent years have witnessed a striking growth of interest in scientific en-
terprise and especially in the unity of science,” says the front flap of the first
volume of the Encyclopedia. Boosted in part by the successes and hopes of
general relativity and its developments, the theme of the unity of science
was often at the time associated with that of the unity of the world—both
human and natural—on one side and, on the other, that of the unity of
mathematics which was supposed to reflect and to warrant it.

In an address fittingly entitled “The Unity of Mathematics” at the Amer-
ican Association for the Advancement of Science in 1937, the mathemati-
cian James Byrnie Shaw, professor at the university of Illinois, claimed for

1 [Neurath et al. 1938]. For a brief history of this movement, see [Morris 1960]; see
also [Kremer-Marietti 2003] and [Bourdeau et al. 2018].
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instance that “there is unity in architecture, in sculpture, in painting, in po-
etry, in music, in drama, in dancing, in mathematics. This unity is due to the
central ideas which permeate the whole work [.. .] Mathematics was so in-
terwoven with life that its central ideas are also those of life” [Shaw 1937,
p. 402]. Describing these ideas as those of form, identity, invariance, depen-
dence and ideality, Shaw concluded on an epic tone:

The primeval gods were born of chaos, but their immense power is hurrying
the particles of chaos and the ripples of its ocean, its intense fields and its cre-
ative spirits, into the unity of a universe. Through the ages of human life math-
ematics has come to be the screen upon which we may glimpse this unity.

[Shaw 1937, p. 411]

Besides the spiritual, and even sometimes theological, component illus-
trated in Shaw’s quote, the theme of the unity of mathematics then op-
erates in several ways. One is material: confronted with a potentially dis-
couraging proliferation of results, some argued in favor of new classifica-
tions of knowledge embodied in appropriate textual tools, from reviewing
journals, such as the Jahrbuch über die Fortschritte der Mathematik or the Réper-
toire bibliographique des sciences mathématiques, to all-encompassing encyclo-
pedias, such as Felix Klein and Wilhelm Meyer’s Encyklopädie der mathema-
tischen Wissenschaften mit Einschluss ihrer Anwendungen or, of course, general
books encapsulating new principles of unity, from Giuseppe Peano’s For-
mulario mathematico to Nicolas Bourbaki’s Éléments de mathématique, in whose
title the singular “mathématique” emphasizes the unity of the domain.

But the two most well-known and well-studied components of this striv-
ing for unity in mathematics are methodological and conceptual. At the
beginning of the twentieth century, the unity of mathematics was usually at-
tached to a reduction process (often including a kind of axiomatization, as
in Hilbert’s program). At a conceptual level, this fostered the emergence of
mathematical structures that were supposed to capture the bare bones of
various objects or theories at the forefront of research. For the mathemati-
cians promoting them, structures themselves possessed an intrinsic char-
acter of unity and at the same time helped to warrant the unity of math-
ematics, as they can be recognized and used in various mathematical sub-
domains and situations [Corry 2004].

Tenuous threads link together these different components, with an em-
phasis depending on the author, the genre of the texts or the time. In 1894,
Richard Dedekind, introducing what will be soon considered a key struc-
ture, that of a field—the (unfortunate for our purpose here) translation of
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the word Körper in the original German, that is, “body”—already empha-
sized how it conceptually conveys unity:

This name [“body”], similarly to that in the natural sciences, in geometry,
and in the life of human society, is also intended here to designate a system that
possesses a certain completeness, perfection, closure, whereby it appears as an
organic whole, as a natural unity. 2

That this “natural unity” at a conceptual level paves the road to a more
global view of the unity of mathematics was elaborated by a number of
mathematicians after Dedekind, from Hilbert to Emmy Noether to, of
course, the Bourbaki group. 3 Charles Ehresmann (a co-disciple of Jean
Dieudonné at the École normale supérieure and also a member of the
Bourbaki group) would be very explicit a few decades later:

This is a time of proliferation of mathematics; however, we can recognize also
significant trends toward unity. [...] Considering the similarities of all theories, a
unification is obtained by giving a general definition of the notion of a structure,
or more precisely of a species of structures over sets. [Ehresmann 1966]

A decisive piece on the theme of the unity of mathematics and science—
at least for the French scene, as witnessed for instance by a search of these
terms on Gallica—is the double thesis of Albert Lautman, a philosopher
close to Charles Ehresmann and other members of the Bourbaki group:
the main thesis is devoted to structure and existence, the complementary
one to the unity of mathematics itself, which contributes to strengthening
the association between the various components of the theme. Lautman
concludes:

The unity of mathematics is essentially that of the logical patterns which gov-
ern the organization of its edifices. . . . The analogies of structure and adapta-
tions of existences .. . have no other purpose than to help highlight the exis-
tence within mathematics of logical patterns, which are only knowable through
mathematics itself, and ensure both its intellectual unity and its spiritual inter-
est. 4

2 [Dedekind 1894, p. 452, footnote]: “Dieser Name soll, ähnlich wie in den Natur-
wissenschaften, in der Geometrie und im Leben der menschlichen Gesellschaft,
auch hier ein System bezeichnen, das eine gewisse Vollständigkeit, Vollkommenheit,
Abgeschlossenheit besitzt, wodurch es als ein organisches Ganzes, als eine natürliche
Einheit erscheint.”
3 A huge literature has now been devoted to more tightly link Dedekind’s work and
viewpoint to this trend that identifies Dedekind as one of its main precursors, see for
instance [Ferreirós & Reck 2020; Sieg & Schlimm 2017].
4 [Lautman 1938, p. 198]: “L’unité des mathématiques est essentiellement celle des
schémas logiques qui président à l’organisation de leurs édifices ... Les analogies de
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The same features, reorganized and illustrated in a variety of ways, were
subsequently used in numerous texts, as for instance in this preface of a
book aimed at a more general audience that the mathematician Georges
Bouligand wrote with the engineer and teacher Jean Desbats just after
World War II:

We first notice the obstacles that mathematical activity constantly comes up
against; the share of the plural and the diversified imposes a struggle at all times
to reduce, simplify and encompass. [.. .] The unity of Mathematics requires an
integral struggle. The diversity of objects subjected to reasoning, and also the
plurality of hypothetico-deductive systems, come to an arrangement, and this is
the essential point, with a unitary structure of Mathematics, whose fundamental
terms are the two notions of invariance and group. This unification in the struc-
ture facilitates methodological unity. 5

The theme of the unity of science and the key position of mathematics
in it predate of course the 1930s (going back for some to Antiquity),
the description of its relevant features and components varying greatly
according to the period. 6 In the nineteenth century, one may think of
Martin Ohm’s Versuch eines vollkommen consequenten Systems der Mathematik,
George Boole’s Laws of Thought or of course Auguste Comte. Charles-Ange
Laisant, whose 1898 book La Mathématique: Philosophie, Enseignement was
reedited in 1907, envisioned the unification of all sciences, following
Auguste Comte, through a universal method, leading from the concrete
to the abstract and reciprocally, “which draws its inspiration from Math-
ematics only because Mathematics expresses the intrinsic traits of the

structure et les adaptations d’existences ... n’ont pas d’autre but que de contribuer
à mettre en lumière l’existence au sein des mathématiques de schémas logiques, qui
ne sont connaissables qu’à travers les mathématiques elles-mêmes et en assurent à la
fois l’unité intellectuelle et l’intérêt spirituel.”
5 [Bouligand & Desbats 1947, p. 8]: “On constate d’abord les obstacles auquel se
heurte constamment l’activité mathématique; la part du plural et du diversifié im-
pose une lutte de tous les instants, en vue de réduire, de simplifier et d’englober.
[...] L’unité de la Mathématique exige une lutte intégrale [...] La diversité des objets
soumis au raisonnement, et aussi bien, la pluralité des systèmes hypothético-déductifs
pactisent, c’est là le point essentiel, avec une structure unitaire de la Mathématique
dont les termes fondamentaux sont les deux notions d’invariance et de groupe. Cette
unification dans la structure facilite l’unité méthodologique.”
6 See for a sample of this variety [Kremer-Marietti 2003; Krömer 2007; Maronne
2014; Stump 1997]. Still, it should be noted that there is no mention of this theme
in, for instance, the eighteenth-century Encyclopédie ou Dictionnaire raisonné des sciences,
des arts et des métiers, edited by Denis Diderot, Jean Le Rond d’Alembert and Louis de
Jaucourt. For an example of a different approach which can be retroactively linked to
the theme of the unity of mathematics, see [Rabouin 2009].



154 C. GOLDSTEIN

positivist spirit, [and] nonetheless possesses a profound social and moral
extension”. 7

The tensions between the effective work of the mathematicians and
the explicit discourses on the components of the unity of mathematics,
whether they come from philosophical studies or from general speeches
made by mathematicians in the course of their mathematical life, are
well-known. This situation poses a particular challenge for historians of
mathematics: how to identify, and to account for, mathematical practices
that, for their author, contribute to the unity of mathematics, without rely-
ing too hastily on a later (or simply a different) vision of what the unity of
mathematics is or should be. And how not to consider the theme of unity
as endowed with a synthetic explanatory capacity to more easily describe
the work of a mathematician, but rather to perceive some modalities of
this work which shape its specificity.

With these questions in mind, the case of Charles Hermite seems a par-
ticularly interesting one to tackle. His numerous mathematical heirs often
emphasized his striving towards unity. At Hermite’s 1892 Jubilee, for in-
stance, Henri Poincaré commented:

It can be said that the value of your discoveries is further enhanced by the
care you have always taken to highlight the mutual support that all these appar-
ently diverse sciences lend to each other. 8

And Hermite’s son-in-law and the editor of his complete works, the
mathematician Émile Picard, introduced them along the same lines:

These strange rapprochements, between questions of such different natures,
exerted a sort of fascination on his mind. [...] Thus he wrote once about the
work of Legendre and Gauss on the decomposition of numbers into squares:
‘These illustrious mathematicians, by pursuing at the cost of so much effort their
profound researches in this part of Higher Arithmetic, thus tended unwittingly
towards another area of Science and gave a memorable example of this myste-
rious unity, which manifests itself sometimes in the most seemingly remote an-
alytical works’. 9

7 I am here quoting Hamdi Mlika: “L’unité des sciences ne s’inspire de la Mathé-
matique que parce que cette dernière exprime les traits intrinsèques de l’esprit posi-
tiviste, possède néanmoins une extension sociale et morale profonde” [Mlika 2009].
We again notice the use of the singular “mathématique”.
8 [Jubilé 1893, p. 7]: “On peut dire en effet que le prix de vos découvertes est encore
rehaussé par le soin que vous avez toujours eu de mettre en évidence l’appui mutuel
que se prêtent les unes aux autres toutes ces sciences en apparence si diverses.”
9 [Hermite 1905-1917, vol. 1, p. xxix]: “Ces rapprochements étranges, entre des
questions de natures si différentes, exerçaient sur son esprit une sorte de fascina-
tion. [...] Aussi écrivait-il un jour à propos des travaux de Legendre et de Gauss sur



CHARLES HERMITE’S PRACTICES OF UNITY 155

Although, to my knowledge, Hermite’s work has never been used, nor
even mentioned, by philosophers discussing the unity of mathematics, it
would also be easy to spot aspects of it that would make Hermite a pre-
cursor of the versions of unity, particularly structuralist ones, mentioned
above: the importance he attached to the observation of algebraic trans-
formations and their effects [Goldstein 2019], his insistence on questions
of invariance [Parshall 2024], his application of Galois’s ideas to the mono-
dromy of complex functions, prompting their later use in the study of dif-
ferential equations 10, or his participation in a unified vision of what Nor-
bert Schappacher and I have called with deliberate anachronism “arith-
metic algebraic analysis” [Goldstein 2015; Goldstein & Schappacher 2007].

However, confronted in the second half of the nineteenth century with
the first manifestations of this structuralist movement, Hermite repeatedly
stated his skepticism towards it. He preferred, for instance, to compute
with explicit, down-to-earth, representatives, the so-called reduced forms,
rather than to deal with intrinsically defined classes of quadratic forms
(one of the first steps in the advent of mathematical structures and of
their operations). He would insist on the need to complete the study
of the relations among roots of an algebraic equation, according to Ga-
lois’s ideas—that is, for us, its Galois group—with an explicit, analytic,
parametrization of these roots, in particular by elliptic functions in the
quintic case. Moreover, he claimed to be indifferent, if not hostile, to
philosophical issues. 11

The main questions the present text addresses are thus: how can we get
some access to Charles Hermite’s viewpoint on the “mysterious unity of
mathematics”? When and how was it expressed and constructed by a math-
ematician (of great influence in his time) who was hostile to systematic re-
flections on foundations, to axiomatization, to infinite sets considered as
a whole, as well as to structural reductionism?

la décomposition des nombres en carrés: ‘Ces illustres géomètres, en poursuivant au
prix de tant d’efforts leurs profondes recherches sur cette partie de l’Arithmétique
supérieure, tendaient ainsi à leur insu vers une autre région de la Science et don-
naient un mémorable exemple de cette mystérieuse unité, qui se manifeste parfois
dans les travaux analytiques en apparence les plus éloignés’.”
10 On this point, see [Archibald 2011] and, for Hermite himself, my own study of
Hermite’s underestimated importance in the reception of Galois [Goldstein 2011b].
11 Hermite’s preferences and their effect on the creation of mathematical objects
and his views on computations are discussed in more detail in [Goldstein 2011a].
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1. THE WORDS OF UNITY

Tracking the word “unity” itself in the Hermitian corpus is quite mis-
leading: “unity” (“unité” in French) also designates the number 1 and its
surrogates, such as the various “roots of unity” which routinely appear in
Hermite’s algebraic works. In the published research works of Hermite,
one single mention of “unity” in the sense we are interested in is to be
found, that quoted above by Picard, which originally occurred in [Hermite
1864b]. 12 However, Picard’s quote suggests to follow other words, such as
“rapprochements”.

Thanks to François Lê’s seminal approach, 13 it is possible to locate and
contextualize all words in Hermite’s work. I have thus selected a number
of them belonging to the semantic field of “rapprochements” and which
are used several times in Hermite’s articles: analogie (analogy), analogue
(analogous), rapprochement, rapprocher (to bring closer), lien (link), li-
aison (connection), relation (relation). 14

In the following table, the number of instances of several of these words
is given: 15

analogie 40
analogue(s) 157
liaison(s) 10
lien(s) 13
rapprochement(s) 10
rapprocher, rapproché(e,es) 35
relation(s) 990

These words also have a very local use, that is, as a substitute or a
complement to one of the most frequent words in Hermite’s articles, the

12 I have not found it either in the letters written by Hermite I have been able to
consult, for instance to Thomas Stieltjes, Gösta Mittag-Leffler, Andreï Andreïevitch
Markov, Ernesto Cesàro, Rudolf Lipschitz or Leopold Kronecker.
13 See in particular [Lê 2023; 2024].
14 Other words might play occasionally a similar role. For instance, Hermite once
mentions “a sort of junction between the theory of elliptic sines and those of Göpel
and Rosenhain’s functions, [Hermite 1905-1917, vol. 3, p. 251]: “une sorte de jonction
entre la théorie des sinus d’amplitude et celles des fonctions de Göpel and Rosen-
hain”. For the sake of space, I have left aside here words with only one or very few
occurrences and I will follow only those occurring more frequently and mentioned
in the table.
15 I owe these data to François Lê whom I warmly thank. My table gathers singular
and plural forms for the nouns and the conjugated forms for the verb. Let me also
note that “unité,” as in “roots of unity,” appears c. 300 times in Hermite’s published
papers.
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word “equation” [Lê 2024] ; it may be misleading for us. It is obvious
with “relation,” which Hermite routinely used to announce an algebraic
or differential equation: “the quantities satisfy the relation so and so”
(as for “unity” used as a surrogate of “1,” this explains the high number
of its instances). But it is also true of the word “liaison” (connection),
again employed in exactly the same local context: “There exists between
these periods, drawn from integral calculus, a connection expressed by the
following equation ...” 16, or even of “rapprochement”. 17

What particularly interests us here is their occurrence, with a larger
meaning, in comments about how parts of mathematics or concepts aris-
ing from different subdomains are interrelated. It is then necessary to
consider these words as markers and to analyze the mathematics they are
attached to through a direct and systematic reading of the texts where they
appear. This presents the usual difficulties in reading closely Hermitian
texts: sudden change of notations, allusive remarks, missing assumptions,
etc. However, such an examination brings to light several interesting phe-
nomena. For reasons of space, I will not report here on each occurrence,
but only illustrate by one or two examples the main results of this enquiry.

This down-to-earth, but systematic, selection of texts based on explicit,
verifiable criteria, has for me the advantage of somewhat stripping this se-
lection of tacit presuppositions about what does or doesn’t count as a con-
tribution to the unity of mathematics. 18 A side benefit is to draw attention
on little-studied texts which are nonetheless relevant and instructive for
our purpose.

Hermite does not work in isolation. On the contrary, as this will appear
here incidentally, he often reacts very quickly to writings of his prede-
cessors or contemporaries. Here, I will not try and establish the genesis
or mathematical environment of all Hermitian results included in the
selected texts, and only a few necessary contextual elements will be pro-
vided: my limited purpose is not to study the collective dynamics involving
a concept or a theorem, but only to assess what practices the chosen words
designate within Hermitian mathematics. 19

16 [Hermite 1855, p. 251]: “Il existe entre ces périodes, telles qu’on les tire du calcul
intégral, une liaison exprimée par l’équation suivante” ... My emphasis.
17 See, for instance, [Hermite 1871, p. 21].
18 For instance, Hermite’s 1851 article interpreting Puiseux’s previous work on
monodromy in a Galois setting does not appear in the texts selected with our crite-
ria.
19 For a global study of all the authors quoted by Hermite, see [Goldstein 2012].
Almost all sources used by Hermite, tacitly or explicitly, have now been included in
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2. FROM WORDS TO MATHEMATICS

2.1. Recognizing expressions

A first noticeable feature that this enquiry brings to light is precisely
the shifts from one operating level of relationships and rapprochements
to another. Let us illustrate this point with a short and rather elementary
article—an extract of a letter—Hermite sent to Ernst Leonard Lindelöf
only a year before his death, in December 1899 [Hermite 1899-1900]. Lin-
delöf had answered a question on discrete probability coming from the
Intermédiaire des mathématiciens [Lindelöf 1899-1900]: One has n sets of p
balls, numbered from 1 to p in each set. One draws the balls one by one
and randomly, while counting aloud from 1 to p, n times. What is the prob-
ability that the number called during the drawing coincides with the num-
ber written on the ball?

Lindelöf’s solution is purely combinatorial: noticing first that the ques-
tion is the same if one counts aloud n times 1, then n times 2, etc., and
finally n times p, he sets up to establish the probability that there is no co-
incidence for the balls marked with the number 1 (that is, none of these
balls is drawn in the first n draws); the repetition of the same procedure
for the other marks (2, . . . , p) then provides him with the final solution
of the initial question. Lindelöf computes the first step of his procedure,
the probability that there is no coincidence for the balls marked with the
number 1, in two different ways. One way is to deduce it from the proba-
bilities to have one coincidence at least, then two coincidences at least, etc.
An alternative path relies on a direct computation: dividing the number of
drawings which avoid the balls marked with 1 in the first n places by the to-
tal number (pn)! of possibilities. Because the two paths should arrive at the
same result, Lindelöf deduces from these two computations the following
identity, which he describes as “curious enough to be mentioned”:

(r � n� 1)(r � n� 2) : : : (r � 2n)

r(r � 1) : : : (r � n)
=

1

r
�

n2

r(r � 1)
+

1

1 � 2
�

n2(n� 1)2

r(r � 1)(r � 2)
� � � � ;

where r = pn is the total number of balls. 20

the database Thamous. References to historical studies of some results, their sources,
and their developments will of course be given when they exist.
20 I give this identity in the form provided in Hermite’s article (equation (A)); it is
in fact derived from Lindelöf’s original one by changing r into r � 1 and by dividing
by r .
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The right hand side of the equation can also be written as

nX
k=0

(�1)k
�
n

k

�2 k!

r(r � 1) � � � (r � k)
:

It is this “curious” equation that triggers Hermite’s interest. He imme-
diately recognizes that the terms of the last sum are easily linked to special
values of Eulerian integrals (here the beta functions):

k!

r(r � 1) � � � (r � k)
=

Z 1

0
xr�k�1(1� x)kdx = B(r � k; k + 1)

and thus, with x = y+1
2 ,

k!

r(r � 1) � � � (r � k)
=

1

2r

Z 1

�1
(1 + y)r�k�1(1� y)kdy:

Hermite then uses a well-known (at the time) expression of Legendre
polynomials Pn : 21

2nPn(y) =
nX

k=0

(�1)k
�
n

k

�2

(1 + y)n�k(1� y)k:

Lindelöf’s identity thus becomes (with s = r � n� 1):

s(s� 1) � � � (s� n + 1)

(s + 1)(s + 2) � � � (s + n + 1)
2s+1 =

Z 1

�1
Pn(y)(1 + y)sdy:

The integral on the right is thus 0 for s = 0; 1; : : : ; n�1. This provides, in
particular, a key property of orthogonality for the Legendre polynomials.

Hermite comments: “[Your identity] is tightly linked to the theory
of polynomials Pn(x) of Legendre and opens up a new path to their
fundamental properties. . . . I thought you might be interested to see a
rapprochement, a close link I might say, between the problem of probability
that you solved and an important theory of analysis, the theory of spherical
functions.” 22

21 Legendre polynomials are for instance defined as the coefficients of the powers
of t in the expansion 1p

1�2xt+t2
=
P1

n=0 Pn(x)tn . This polynomial system is orthogonal

for the inner product hP;Qi =
R1

1
P (t)Q(t)dt, among many other properties. Through

another change of variables, Hermite gets the expression he needs from a 1837 pa-
per of Peter Gustav Lejeune-Dirichlet, also mentioned in Hermite’s 1878 presentation
of the second edition of Eduard Heine’s Handbuch der Kugelfunctionen, see [Dirichlet
1837; Hermite 1878].
22 [Hermite 1899-1900, p. 88, p. 90]: “[Votre identité] est liée étroitement à la
théorie des polynômes Pn(x) de Legendre, et ouvre une nouvelle voie pour parvenir à
leurs propriétés fondamentales ... J’ai pensé que vous ne verriez pas sans quelque in-
térêt un rapprochement, une étroite liaison je puis dire, entre le problème du calcul des
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This rather marginal and late example nevertheless seems to me to
highlight a way of working that we often find in in Hermite’s work, includ-
ing in his important achievements such as the creation of Hermitian forms
[Goldstein 2019]: the starting point is a symbolic expression, a formula,
which he observes and transforms, for instance by means of successive,
often quite intricate, changes of variables. This allows him to locate them
inside a stock of familiar expressions, sometimes in far-away theories, or to
generalize them to other cases. The rapprochement on the domain level, as
here between combinatorial probability theory and the theory of spherical
functions, is constructed on the basis of rapprochements at the very local
level of the expressions themselves, .

2.2. Discovering the right analogy

Legendre polynomials regularly appear in Hermite’s work. As we will
see, they also appear in association with the word “analogy,” and in this
context, they serve both as a mould and as a model for building bridges
between fields or mathematical questions that may seem a priori far apart.
They are not the only mathematical objects to play these roles, but I have
chosen this example to illustrate how analogies are handled by Hermite,
because it seems to me one of the simplest and shortest to present.

In 1864, struck by the importance of e�x
2

(or more generally of e��(x;y;z;:::)

for a quadratic form �) in the representation of elliptic and Abelian func-
tions, Hermite notices that these exponentials “give rise, as the radical

(1� 2�x + �2)�
1
2 [: : : ];

to a system of integral polynomials which may be used for the expansion
of functions of any number of variables. [.. .] One will see, by the way, the
most complete analogy between the properties of such expressions coming
from so different origins”. 23

probabilités dont vous avez donné la solution, et une grande théorie de l’analyse, celle
des fonctions sphériques.” I have emphasized here our selected words, as well as “liée,”
the adjective derived from “lier” and “lien”. Spherical functions (at the time) are func-
tions on the sphere satisfying Laplace-type differential equations, among which are
Legendre polynomials. They are the subject of a book by Eduard Heine, which Her-
mite praised and presented to the Academy of sciences [Hermite 1878].
23 [Hermite 1864b, p. 94]: “... les exponentielles e�x

2
et e��(x;y;z;:::) donnent nais-

sance, comme le radical (1� 2�x + �2)
� 1

2 . . . à un système de polynômes entiers, pou-
vant servir au développement des fonctions d’un nombre quelconque de variables. ...
On verra, du reste, entre les propriétés d’expressions d’origine si différente, l’analogie
la plus complète”. My emphasis.
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The coefficients of the radical (1�2�x+�2)�
1
2 developed into the pow-

ers of � indeed give rise to the Legendre polynomials. Hermite defines, for
any non-zero real a, the polynomials Un (in one variable x) such that

e�
a
2 (x�h)2

= e�
x2a
2 (U0 +

h

1
U1 +

h2

1 � 2
U2 + � � � );

then states and proves for his Un the same type of properties as for the clas-
sical Legendre polynomials, in particular:

— the Un satisfy a recursion formula: Un+1 � axUn + anUn�1 = 0,

— the Un satisfy a second-order differential equation: d2U
dx2 � ax dUdx + anU = 0,

— the Un form an orthogonal system, that is
R1
�1

e
ax2

2 UnUn0 = n!an
q

2�
a if

n = n0 and 0 otherwise [Hermite 1864b, p. 267].

It is to be noticed that while the analogous elements in both situations
are polynomials endowed with specific properties—and Hermite men-
tions several other families of such polynomials—, they come from quite

distinct horizons: they arise from algebraic functions (1� 2�x + �2)�
1
2 in

Legendre’s case, from transcendental exponential functions in Hermite’s
new case. The analytical similarities—development in series, differential
equations, values of integrals—are again much more important for Her-
mite than the partition into algebra and analysis we have come to consider
as decisive.

Hermite also extends his construction to several variables, begin-
ning by the original Legendre polynomials themselves. For these poly-
nomials, and two variables instead of one, a 1865 letter to Carl Bor-
chardt (who published it in his journal [Hermite 1865a]) gives us a
rare insight on the way rapprochements and analogies also guide Her-
mite’s work to generalization. To begin with, and in order to mimic
the construction of Legendre polynomials as the coefficients of the
expansion with respect to a of 1p

1�2ax+a2
, Hermite simply tries to

replace 1p
1�2ax+a2

by 1p
1�2ax�2by+a2+b2

. However, the polynomials

he thus obtains do not form an orthogonal family. “In order to re-
establish the analogy with the functions of one variable which originates
from the development of 1

1�2ax+a2 and seems to be lost here,” Her-
mite explains, 24 he then replaces his original choice of the quadratic

24 [Hermite 1865a, p. 295]: “Pour rétablir l’analogie avec les fonctions d’une vari-
able ayant pour origine le développement de 1

1�2ax+a2 et qui me semble ici se per-

dre...”. My emphasis.
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form 1� 2ax� 2by + a2 + b2 in the variables a; b by its adjunct, that is, the
quadratic form (1� ax� by)2 � (a2 + b2)(x2 + y2 � 1).

This original idea of the role of the adjunct comes from Hermite’s early
work on Carl Friedrich Gauss’s Disquisitiones arithmeticae and on the theory
of quadratic forms, where the use of the adjunct form is a key ingredient. 25

The polynomials obtained with this adjunct form satisfy a formula close to
the so-called Rodrigues’ formula 26 for the Legendre polynomials Xn :

Xn =
1

2nn!

dn(x2 � 1)n

dxn
;

and Hermite can then use it to prove the other wanted properties and
display “the analogy as complete as possible with Legendre functions”
([Hermite 1865a, p. 295], my emphasis). Again, the bridge is constructed
by careful handling of symbolic expressions, the behavior of which is
tested through various computations and the exact form corrected until
it fits the desired scheme.

Transfers by analogy from arithmetic to algebra to analysis are frequent
in Hermite’s work. For instance, Hermite stresses in a letter to Paul Gor-
dan the analogy between the arithmetical study of successive minima of
x + ay + bz (with a, b integers) and the study of U sin x+ V cos x+W , where
U , V , W are polynomials in x [Hermite 1873]: in this situation, the anal-
ogy is based on a continued fraction expansion (numerical or algebraic,
according to which case is considered), a technique that Hermite will also
use at the same date in his celebrated proof of the transcendence of e. 27

Other examples involve the discovery of Hermitian forms in n variables,
first introduced as a subclass of real quadratic forms in 2n variables [Gold-
stein 2019]: again, this is the concrete display of the coefficients of a spe-
cific family of quadratic forms which suggests to Hermite that a study using
complex numbers may bring light to their characteristics, as it allows their
arithmetic study to mimic that of quadratic forms with n variables and in-
tegral real coefficients. This, he concludes, is “adding new characters of
similitude between real integers and complex numbers,” at the time still a
controversial issue [Hermite 1905-1917, vol. 1, p. 477]. The same kind of

25 [Brechenmacher 2011; Goldstein 2007]. In 1865, Hermite uses both Gauss’s ter-
minology of “adjunct form” and the terminology of the then blossoming invariant
theory, “quadratic contravariant”.
26 In his 1865 letter to Borchardt, dated from January 27, Hermite only attributes
the formula to Carl Jacobi. He emphasizes Olinde Rodrigues’s priority in a subse-
quent communication to the French Academy of Sciences on March 13, 1865 [Her-
mite 1865b, p. 517].
27 On this point, see [Goldstein 2015; Serfati 1992; Waldschmidt 1983].
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construction is transferred by Hermite to forms associated to the theory of
transformation of Abelian functions (now called symplectic forms): “This
analytic theory of transformation is tightly linked to the arithmetical theory
of quadratic forms I spoke about.. . ,” he writes. 28

In some cases, links operate in several ways for the same question. Her-
mite’s use of elliptic functions to solve general quintic equations is well-
known, but it is perhaps less known that it perfectly illustrates Hermite’s
practice of analogy (and links) in mathematics. 29 His point of departure
here is a quartic equation associated to the flex points of cubic curves: these
nine flex points are aligned three by three on 12 lines, which in turn form
4 triangles (such that each of them contains the nine flex points), giving
rise to a quartic equation. 30 Hermite comments:

From the study of these equations, I noticed that they have the closest affin-
ity with those found in the third-order transformation of elliptic functions, and
so I thought it would not be useless to look into this rapprochement. . . This anal-
ogy, indeed, opened for me the way of representing by elliptic transcendental
functions the roots of the general quartic equation. 31

And so we are on familiar ground here: this is again by a direct compar-
ison of two specific quartic equations (the quartic equation linked to the
flex points and the multiplier equations for the transformation of elliptic
functions of degree 3, whose roots are known in terms of special values of
elliptic functions) that Hermite weaves links between two separate areas
of mathematics. One consequence of this rapprochement is to express the
roots of all these quartic equations as values of modular elliptic functions,
that is, values of analytic, non-algebraic functions.

28 [Hermite 1855, p. 784]: “cette théorie analytique de la transformation se trouve
étroitement liée à la théorie arithmétique des formes quadratiques dont j’ai parlé”. My
emphasis. This case is studied in [Brouzet 2004].
29 On Hermite’s place in the history of algebraic equations, see for instance [Gray
2018; Houzel 2002; Zappa 1995]. The context of Hermite’s work on this topic, in par-
ticular its relation with Galois’s viewpoint and the modular equations, is discussed in
[Goldstein 2011b].
30 On the historical role of these equations arising from geometry, see [Lê 2015].
Here, as at other times, Hermite neglects the potential of a link to the advanced ge-
ometry of his time.
31 [Hermite 1905-1917, vol. 2, p. 22]: “L’étude de ces équations m’ayant fait re-
marquer qu’elles offrent la plus étroite affinité avec celles qu’on rencontre dans la
transformation du troisième ordre des fonctions elliptiques, il ne m’a pas paru inu-
tile de m’arrêter à ce rapprochement . . . Cette analogie, d’ailleurs, m’a ouvert la voie
pour représenter par les transcendantes elliptiques les racines de l’équation générale
du quatrième degré.” My emphasis. Let me remark that “affinité” (affinity) which be-
longs to the same semantic field as “rapprochement,” is an hapax in Hermite’s work.
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This approach will be exported with success by Hermite to quintic equa-
tions, a case which, contrarily to the quartic one, is not in general solvable
by radicals. This is the case that mobilized the attention of historians (and
of contemporaries), and in particular the expression of the roots as ex-
plicit values of elliptic functions: depending on the authors, this analytic
approach to an algebraic problem has been both praised, as establishing
new bridges between far-away domains of mathematics and as allowing a
concrete computation of the roots, and criticized, as introducing foreign
elements to the solution. 32 Hermite’s elliptic study of the quartic equation,
for which algebraic expressions of the roots were already available, seems
to have escaped to attention. However, for our issue, it is worth underlin-
ing how a famous Hermitian achievement again began with a close com-
parison between particular, well-known, equations. And that Hermite, here
as before, forsakes the problem of the algebraic resolution of an algebraic
equation for the constitution of a unique domain, with analysis both at the
basis and at the lead.

2.3. Rapprochement by the proofs

There is still another instance of the word “rapprochement”: it occurs
when several proofs or methods of resolution of a problem are known. In
the case of the quintic equation we just mentioned, “the theory of elliptic
function leads to two methods for the resolution of the equation of the fifth
degree 33: the one proposed by Hermite in 1858 is based, as said earlier,
on the possibility to link any quintic general equation, through adequate
changes of variables, to the reduced form of a modular equation.

Jacobi had introduced his doubly-periodic functions (the so-called Ja-
cobian elliptic functions) through integrals of the type

R
dxp

(1�x2)(1�k2x2)
,

with 0 < k < 1 a real number. Their periods are 2 or 4 times (depending
on the function) the so-called complete integrals:

K =

Z 1

0

dxp
(1� x2)(1� k2x2)

; K 0 =

Z 1

0

dxp
(1� x2)(1� k02x2)

;

32 On this point, illustrated by Felix Klein’s opinion, see [Goldstein 2011b, 46-51].
33 [Hermite 1905-1917, vol. 2, p. 347]: “La théorie des fonctions elliptiques conduit
à deux méthodes pour la résolution de l’équation du cinquième degré.” Hermite de-
voted to this issue 12 communications to the French Academy of Sciences in 1865 and
1866, later gathered in a booklet. To simplify, I will quote them from the second vol-
ume of his collected works where they are all reproduced.
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with k0 =
p

1� k2 . If one puts ! =
p
�1K 0

K , 4
p
k is a uniform function of !,

say �(!), and there exists an algebraic equation of degree n + 1 between
�(!) and �(n!), for each integer n > 1. This is the modular equation of
level n. 34

Another method, due to Leopold Kronecker and completed by
Francesco Brioschi, also in 1858, is based on a direct construction of cyclic
functions of the roots of the quintic equation; this method finally links it
to the so-called multiplier equation, which appears in the transformation
theory of elliptic functions. 35

In his work of 1865-1866, Hermite’s aim is “to take M. Kronecker’s
method a step further and bring it closer to the previous one, using as a
basis the remarkable and inventive work in which M. Brioschi set out its
principles.” 36 As in the rapprochements of the mathematical expressions,
this work on the different proofs should provide alternative paths to a
variety of properties. For instance, in the case of the quintic equation,
Hermite comments: “I will add to this rapprochement between the two
methods of solving the equation of the fifth degree, by deducing from the
second the conditions for the reality of the roots,” which he had previously
studied by his own approach. 37

More generally, and against the common idea of finding the right proof,
Hermite advocates for multiple proofs of a result in order to fully under-
stand it. 38 But reciprocally the very fact that there exist several available
proofs is for him an incentive to clarify the links that this suggests.

34 See [McKean & Moll 1999] for a clear presentation for a modern reader.
35 Definitions and details on this method are given in [Zappa 1995].
36 [Hermite 1905-1917, vol. 2, p. 348]: “approfondir la méthode de M. Kronecker
et la rapprocher de la précédente, en prenant pour base le travail remarquable et plein
d’invention dans lequel M. Brioschi en a exposé les principes”.
37 [Hermite 1905-1917, vol. 2, p. 392]: “J’ajouterai encore à ce rapprochement entre
les deux méthodes de résolution de l’équation du cinquième degré, en déduisant de
la seconde les conditions de réalité des racines.” My emphasis.
38 For instance, Hermite urges Thomas Stieltjes: “Il sera utile de donner pour par-
venir aux mêmes conclusions deux procédés très différents,” [Hermite & Stieltjes
1905, vol. 1, p. 41]. Or in a 1873 article,“On reconnaîtra volontiers que, dans le do-
maine mathématique, la possession d’une vérité importante ne devient complète et
définitive qu’autant qu’on a réussi à l’établir par plus d’une méthode,” [Hermite
1905-1917, vol. 3, p. 128]. Respectively: “It will be useful to consider two very different
procedures to arrive at the same conclusions,” and “It can be readily admitted that, in
mathematics, the possession of an important truth only becomes complete and defini-
tive when we have succeeded in establishing it by more than one method.”
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A good illustration is provided by Hermite’s work on the number of
classes of binary quadratic forms ax2 + 2bxy + cy2 , with integer coef-
ficients a; b; c. Two forms are said to be equivalent, or in the same class,
when they can be deduced from each other by an invertible, linear change
of variables with integer coefficients. The discriminant b2� ac (called “de-
terminant” by Gauss in the Disquisitiones arithmeticae, and by Hermite
following him) is the same for equivalent forms; on the other hand, for
a given determinant, there are a finite number of classes of equivalent
forms. These class numbers had been computed by analytic means by Pe-
ter Gustav Lejeune-Dirichlet in a celebrated application of Fourier analysis
to number theory. From the 1860s on, Kronecker established recurrence
formulas for these class numbers by using elliptic modular functions. 39

In the wake of his involvement with the fifth-degree equation and the
publication of Kronecker’s article in French in 1860, Hermite writes to
Joseph Liouville:

M. Kronecker’s beautiful theorems on the class numbers of quadratic forms
[.. .] remained, however, isolated and belonging to a very distinct order of ideas
to which only the theory of complex multiplication in elliptic functions seemed
able to give access. 40

Besides the doubly-periodic elliptic functions arising from the integralsZ
dxp

(1� x2)(1� k2x2)

alluded to above, Jacobi had introduced theta-functions, that is, spe-
cial quasi-periodic functions, whose quotients also provide these elliptic
functions and which can be developed as series involving trigonomet-

ric functions and rational powers of q = e��
K0

K . Following then Jacobi’s
model, Hermite sets out to derive some of Kronecker’s results from the
developments of quotients of theta functions in series of sinus and cosinus,
such as: 41

(1)
4
p
q sin x

1 + q
�

4
p
q3 sin 3x

1 + q3
+

4
p
q5 sin 5x

1 + q5
+ � � �

39 On these developments, see [Dickson 1919, ch. VI] and [Goldstein & Schap-
pacher 2007].
40 [Hermite 1862, p. 25]: “[Les beaux théorèmes de M. Kronecker sur les nombres
de classes de formes quadratiques ...] restaient cependant comme isolés et appar-
tenant à un ordre d’idées très distinct où la théorie de la multiplication complexe
dans les fonctions elliptiques paraissait seule pouvoir donner accès.”
41 [Hermite 1864b, p. 146-147], formulas 5 and 15. Hermite provides forty-six for-
mulas of this type, which he then combines.
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or

(2) cot x +
4q sin 2x

1� q
�

4q2 sin 4x

1 + q2
+

4q3 sin 6x

1� q3
+ � � � :

In particular, 42 Hermite finds that
q

2K
� can be developed as

�1 =:

r
2K

�
= 1 + 2q + 2q4 + 2q9 + � � � :

Multiplying two by two such developments adequately and integrating
the result between 0 and �

2 , Hermite obtains new series in powers of q
such that the coefficient of the term in q� (or q

�
4 ) depends on the class

numbers of binary quadratic forms ax2 + 2bxy + cy2 , with integer coeffi-
cients a; b; c and discriminant b2 � ac = ��.

For instance, multiplying (1) and (2) above and integrating the result
provides:

�3
1 = 1 + 4

X
n>0

qn

1 + (�q)n
� 2

X
n>0

(�1)nqn
2
Bn + 4

X
n>0

qn
2+nBn

1 + (�q)n
;

with Bn = 1 + 2q�1 + 2q�4 + � � �+ 2q�(n�1)2
.

Hermite then carefully studies the development into the powers
of q of the three series composing �3

1 . The third one, for instance, be-

comes after development
P

n>0(�1)a(n+1)qn
2+n+an�b2 , displaying as the

power of q the opposite � of the discriminant of the quadratic form
nx2 + 2bxy + (n + 1 + a)y2 , with 0 �j b j< n. A careful study of the forms
finally shows that

�3
1 = 1 + 12

X
n>0

(H0 �H1)q�;

with complementary terms if � is a square or the triple of a square. 43 Here
H0 is the number of reduced binary quadratic forms with one of the ex-
treme coefficients odd and H1 is the number of such forms with even ex-
treme coefficients. 44

42 The notations in this domain change according to the authors and, in the case of
Hermite, according to the date of the paper. A concordance table is given in [Dickson
1919, p. 93].
43 There is misprint or miscalculation in the original publication, the 1 is missing.
It is corrected in the complete works, [Hermite 1905-1917, vol. 2, p 253].
44 A binary quadratic form ax2 + 2bxy+ cy2 with integer coefficients and negative de-
terminant is reduced when 2 j b j� a � c, and b � 0 if a = 2 j b j or a = c. There is in this
case a unique reduced form in each class—the reduced form is a representative of all
the forms of the class—and thus counting the reduced forms amounts to computing
the class number. The extreme coefficients are a and c.
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This corresponds (if one expresses it in the language of classes of forms)
to one of Kronecker’s recurrence formulas:

E(n) + 2E(n� 1) + 2E(n� 4) + 2E(n� 9) + � � � =
2

3
[2 + (�1)n]X(n);

where E(n) = 2F (n) � G(n), G(n) is the number of classes of quadratic
forms with determinant �n, F (n) is the number of quadratic forms with
determinant �n and one odd extreme coefficient, X(n) is the sum of the
odd divisors of n. 45

This number of classes, in special cases, had been linked by Legendre
and Gauss to the number of decomposition of a number into the sum of
three squares. Computing the cube of an expression made of exponentials
of squares leads to exponentials of sums of three squares and thus Her-
mite’s previous developments also provide, in particular, the number of
representations of an integer as sums of three squares. This is indeed in
such a context that Hermite used the word “unity” in our sense for the first
and unique time in his published papers:

We have two absolutely distinct methods which connect by a double link
Legendre’s and Gauss’s propositions on the decomposition of numbers into
three squares to the theory of elliptic functions. In so doing, these illustrious
mathematicians were unknowingly reaching out to another region of science,
and providing a memorable example of the mysterious unity that sometimes
manifests itself in analytical work that is seemingly the furthest removed from
the realm of science. 46

45 [Dickson 1919, p. 109]. Kronecker himself was particularly pleased to be able to
“draw only from the theory of elliptic functions the beautiful propositions of higher
arithmetic that until now were based on the deep considerations included in Gauss’s
Disquisitiones arithmeticae,” [Kronecker 1860, p. 297]: “De cette manière, on peut tirer
de la seule théorie des fonctions elliptiques les belles propositions d’arithmétique
supérieure, qui jusqu’ici étaient fondées sur les profondes considérations que ren-
ferment les Disq. Arithm. de Gauss.” Kronecker’s paper does not include the detailed
proofs, which were completed by Henry Smith in his Report to the British Association,
[Smith 1865].
46 [Hermite 1905-1917, vol. 2, p. 254]: “On a deux méthodes absolument distinctes
qui rattachent par un double lien à la théorie des fonctions elliptiques les proposi-
tions de Legendre et de Gauss sur la décomposition des nombres en trois carrés. Ces
illustres géomètres ... tendaient ainsi à leur insu vers une autre région de la science et
donnaient un mémorable exemple de cette mystérieuse unité qui se manifeste parfois
dans les travaux analytiques en apparence les plus éloignés.” My emphasis. This issue
is not explored further here, but let us note the theological undertone of this passage,
in line with Hermite’s views that human beings are not the masters of a free math-
ematical creation: unity “manifests itself,” the mathematicians “unknowingly” reach
out etc. See [Goldstein 2011a].
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In July 1862, Hermite again emphasizes that “the theory of elliptic func-
tions presents two main points where it is linked to arithmetic and particu-
larly to the theory of binary forms with negative determinant” 47, the first
one being his own development in series, explained above, which he de-
scribes as elementary and the second one being Kronecker’s use of com-
plex multiplication.

Obtaining new proofs not only serves to solidify the links between the
arithmetic of quadratic forms and elliptic functions, but also to extend
their now common territory. In his letter to Liouville, Hermite explains:

In arriving at these theorems of Mr. Kronecker by another route, I have at-
tached them in the most direct way, i think, to the order of ideas which belongs
to you, and, if I am not mistaken, in the very sense of your predictions, for the
arithmetical notion of class is replaced by the much simpler and elementary idea
of reduced forms. [.. . I would like to indicate], in conclusion, how I see the con-
nection between the theory of elliptic functions, in its applications to arithmetic,
and your general research on numerical functions. 48

And a few months later, in November of the same year, he would again
extend his viewpoint, this time to sew onto it Dirichlet’s research on class
numbers:

M. Dirichlet’s method for the determination of the class numbers of
quadratic forms with the same determinant and those recently drawn from
the consideration of elliptic functions in the case of negative determinants lead
for the same question to such different solutions that it seems as difficult to
find any link between their results as between the principles on which they are
based. 49

47 This series of communications to the Academy is published again later under var-
ious titles and groupings and, in order to simplify, I quote them here from Hermite’s
complete works, [Hermite 1905-1917, vol. 2, p. 241]: “La théorie des fonctions ellip-
tiques présente deux points principaux où elle vient se lier à l’Arithmétique et spé-
cialement à la théorie des formes quadratiques à deux indéterminées de déterminant
négatif.” My emphasis. Again, let me note the grammatical choice of “se lier” which
seems to exclude a human intervention.
48 [Hermite 1862, p. 25-26, p. 38]: “En parvenant par une autre voie à ces théorèmes
de M. Kronecker, c’est à l’ordre d’idées qui vous appartient que je pense les avoir rat-
tachés de la manière la plus directe, et, si je ne me trompe, dans le sens même de vos
prévisions, car la notion arithmétique de classe se trouve remplacée par l’idée beau-
coup plus simple et élémentaire des formes réduites. [... Je vous indique], en termi-
nant, de quelle manière je conçois la liaison de la théorie des fonctions elliptiques,
dans ses applications à l’arithmétique, avec vos recherches générales sur les fonctions
numériques.” My emphasis.
49 [Hermite 1905-1917, vol. 2, p. 255]: “La méthode de M. Dirichlet pour la détermi-
nation du nombre des classes de formes quadratiques de même déterminant, et celles
qu’on a tirées récemment de la considération des fonctions elliptiques dans le cas des
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To do this, Hermite proposes either to find a purely arithmetical proof
of Kronecker’s results or an elliptic-based one of Dirichlet’s results, which
he prepares by revisiting Dirichlet’s original one. 50

Hermite’s involvement with Kronecker’s formulas did not stop there. In
1884, for instance, he would tackle them again. His new procedure gives in

particular an alternative for the quantity (
q

2kK
� )3 , and a rapprochement

between his formula and Kronecker’s provides a new approach to some
simple arithmetical relations involving class numbers and established by
Gauss in the Disquisitiones arithmeticae. Once more, at this occasion, Her-
mite insists on the fact that they “reveal a tight connection between the arith-
metical theory of quadratic forms and the analytic theory of elliptic tran-
scendental functions” 51.

3. CIRCULATING ALGEBRAIC EXPRESSIONS: A DETAILED EXAMPLE

The preceding exemples clearly suggest that Hermite works on analo-
gies or constructs links and rapprochements at the level of the symbolic
expressions themselves, even when he states them in terms of connections
between fields or mathematical sub-disciplines. For example, he doesn’t
try to derive from Legendre polynomials a list of properties and crite-
ria that would define a general class of objects to be studied; he adapts,
through transformations and calculations, explicit expressions to new
situations, thus weaving, thread by thread, the new, associated, connection
between algebraic and analytic functions.

This feature has some serious historiographical consequences, if only
in terms of the writing adapted to discuss this type of practice. To gain
a deeper understanding of how expressions circulate, creating the unity
Hermite’s successors would enthusiastically praise, we need to take a closer

déterminants négatifs, conduisent pour la même question à des solutions tellement
différentes, qu’il semble aussi difficile de trouver un lien quelconque entre leurs ré-
sultats qu’entre les principes sur lesquels elles se fondent.” My emphasis.
50 It is here interesting to note that Dirichlet’s approach is described as arithmeti-
cal (despite his use of real series). In his own version, Hermite emphasizes only his
restructuration of the (arithmetical) formulas, neglecting to prove a (necessary) con-
vergence result which allows the identification of his formulas with Dirichlet class
number formula. For details on this point and references to the authors who cor-
rected it, see [Dickson 1919, p. 114-115].
51 [Hermite 1905-1917, vol. 4, p. 138-139]: “Les théorèmes dont je vais m’occuper
consistent dans les relations suivantes [...] qui révèlent une liaison étroite entre la
théorie arithmétique des formes quadratiques et la théorie analytique des transcen-
dantes elliptiques.” My emphasis.
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look at some technical nooks and crannies of Hermite’s work. In this sec-
tion, I would like to analyze an example of such a circulation, based on
avatars of Lagrange’s resolvents.

This example concerns expressions of the kind

�(�)(x0; x1; : : : ; xn) = x0 + x1� + x2�
2 + � � � xn�

n;

that is, linear forms in the xi , where x0; : : : ; xn are indeterminates or vari-
ables (usually set at integral values) and � a root of an algebraic equation
of degree n + 1. Hermite usually takes into account, at the same time, all
the �(�), � running over all the roots of the algebraic equation.

To consider these expressions is of course not original with Hermite. For
instance, they appear, for n = 1 or n = 2 , in Joseph-Louis Lagrange’s last
Addition to Leonhard Euler’s Algebra 52 or, for any degree, in a letter ad-
dressed to Joseph Liouville by Dirichlet, and published twice in French. 53

Dirichlet, in particular, uses the notation �(�) and considers the value at
integers of the form obtained as the product of the �(�), for all the roots �.

3.1. Decomposition of prime numbers

As for Hermite, these forms appear quite early in his work, in 1847, in
a (successful) attempt to prove a statement of Jacobi. In a 1839 communi-
cation to the Berlin Academy, translated and published in French in 1843,
Jacobi had commented on how Gauss used complex numbers a + b

p
�1,

with a and b ordinary integers, and developed their arithmetic in order
to establish quartic reciprocity laws; it led Jacobi to advocate for a study
of the decomposition of ordinary prime numbers into (different types of)
complex numbers. 54 If p is a prime of the form 4n + 1, such as 5, 13 or

52 [Lagrange 1774, t. 2, p. 651, 655 in the French 1774 edition]. To solve a cubic
equation, for instance, Lagrange uses the fact that x1 + x2j + x3j

2 , with j a primitive
cubic root of 1, takes 6 values when the xi are permuted, but that the 6th-degree equa-
tion of which these 6 values are the roots is in fact quadratic in x3 , and thus easily
solvable.
53 See for instance [Dirichlet 1840]. Liouville’s closeness to Hermite and the publi-
cation of the letter both in the Comptes rendus of the French Academy and in Liouville’s
Journal de mathématiques pures et appliquées suggests that Hermite was probably aware
of these texts; an explicit reference to them was added by Jacobi, when he published
some letters from Hermite to him in 1850. On the other hand, Hermite certainly knew
Lagrange’s algebraic texts very well.
54 [Jacobi 1839; 1843]. Despite its shortness and elementary character, this paper
proved to give a key impulse to the development of algebraic number theory. It is
already discussed within this context in [Goldstein 2007; Goldstein & Schappacher
2007]. For the convenience of the readers, I repeat here briefly this presentation, em-
phasizing the work on specific algebraic expressions.
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17, it can be written as a sum of two squares of integers, p = a2 + b2 ; thus
p = a2+b2 = (a+b

p
�1)(a�b

p
�1). It is true in particular if p is a prime of

the form 8n+1, such as 17. However, in this case, p can also be represented
by other quadratic forms besides x2 + y2 : p = c2 + 2d2 and p = e2 � 2f2 .
For example, 17 = 16 + 1 = 9 + 2� 4 = 25� 2� 4.

Jacobi proved that a further decomposition can provide the needed co-
herence in these representations. More precisely, in his paper, he factorizes
a + b

p
�1 = �(�)�(��), where � a primitive 8th-root of unity (that is, as

written at the time, “� = 4
p
�1”) and �(�) = a0 + a1� + a2�

2 + a3�
3 , with

integers a0; a1; a2; a3 .
As �4 + 1 = 0, �(�) = a0 + a1� + a2�

2 + a3�
3 is exactly an expression

of the type we are interested in. One has also: a + b
p
�1 = �(�)�(�5),

and, similarly, a � b
p
�1 = �(�3)�(�7). Jacobi then obtains p = 8n + 1 =

a2 + b2 = �(�)�(�5)�(�3)�(�7). And other groupings of the �(�k) provide
the other decompositions:

p = [�(�)�(�3)][�(�5)�(�7)] = (c + d
p
�2)(c� d

p
�2) = c2 + 2d2

p = [�(�)�(�7)][�(�3)�(�5)] = (e + f
p

2)(e� f
p

2) = e2 � 2f2:

To summarize, in order to get the various decompositions of a prime
of the form 8n + 1, Jacobi had to use not only what was considered at the
time as “the” (only known, and even only thought of) complex integers,
that is, Gaussian complex integers a+b

p
�1 with a; b ordinary integers, but

also complex numbers built with 8th-roots of unity. A natural question then
arises: what are, for each kind of primes, the relevant complex integers to
consider and how? At the end of his paper, Jacobi asks the question for
another case, that of the primes p of the form 5n+ 1 and states that in this
case

p = N1N2N3N4;

where each Ni is of the form a0 + a1� + a2�
2 + a3�

3 , with �5 = 1; � 6= 1.
However, he does not give any proof of this result.

A well-known development arising from Jacobi’s paper is the arithmeti-
cal study of cyclotomic integers (that is, linear combinations of roots of
unity, as above), which led to the introduction of ideal complex factors by
Ernst Eduard Kummer, also c. 1847, and then to Dedekind’s theory of ide-
als. Hermite, however, attacked the problem from a quite different angle.
In a letter to Jacobi, he explains:

It is in some very elementary properties of quadratic forms, with any number
of variables, that I encountered the principles of analysis which I ask your per-
mission to discuss. I have drawn from these principles a proof of your beautiful
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theorem on the decomposition of prime numbers 5m + 1, into four complex
factors, built with the fifth roots of unity 55.

Hermite clearly had hopes to be able to handle a much more general
case than the particular ones mentioned by Jacobi. In his letter, he consid-
ers any irreducible algebraic equation of degree n with integer coefficients

F (x) = xn + Axn�1 + � � �+ Kx + L = 0

the roots of which are designated by �; �; : : : ; �.
In particular, F (x) = (x� �)(x� �) � � � (x� �).
He then fixes an integer N and assumes that there exists an integer a

such that F (a) � 0 (mod N) (in other terms, N divides F (a)). Let us no-
tice that if N is a prime number of the form pm+ 1, for a prime number p
and an integer m, Fermat’s Little Theorem shows that xN�1 � 1 (mod N),
for all integers x prime to N ; thus the condition that there exists an in-
teger a such that F (a) � 0 (mod N) is satisfied with F (x) = xp�1

x�1 =

xp�1 + xp�2 + � � �+ x + 1. 56

A decisive move is now to introduce the quantities which will replace
the �(�) of Jacobi’s paper. Hermite adapts the linear forms we are inter-
ested in and defines:

�(�) = Nx0 + (�� a)x1 + (�2 � a2)x2 + � � �+ (�n�1 � an�1)xn�1:

He also considers their product over all roots of F : F = �(�)�(�) � � � �(�).
A key point is that the coefficients of F , which are already by construction
symmetric functions of the roots �; �; : : : ; � and thus integers, are now also
all multiples of N . Indeed, these coefficients are obtained by products of
terms which contain either N or a product (� � a)(� � a) � � � (� � a). Up
to its sign, this last quantity is F (a), which is, as explained, divisible by N .

However, the main object, as Hermite mentioned in the quote above, is
not this product, but a (positive definite) quadratic form Hermite associ-
ated to it: If the roots �; �; : : : ; � are real, he puts

f(x0; x1; : : : ; xn�1) = �2(�) + �2(�) + � � �+ �2(�):

55 [Hermite 1850, p. 262]: “C’est dans quelques propriétés très élémentaires des
formes quadratiques, à un nombre quelconque de variables, que j’ai rencontré les
principes d’Analyse dont je vous demande la permission de vous entretenir. J’ai tiré
de ces principes une démonstration de votre beau théorème sur la décomposition
des nombres premiers 5m + 1, en quatre facteurs complexes, formés des racines cin-
quièmes de l’unité.”
56 In more modern terms, there exists an integer a whose image in (Z=NZ)� is ex-
actly of order p; such an element exists because this group is of order N � 1, which is
divisible by p.
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If � and 
, say, are complex conjugate roots, he uses the term �(�)�(
)
instead of the squares. 57

Generalizing Gauss’s theory of reduction of binary quadratic forms
to n-ary quadratic forms, Hermite had proved earlier that, for each
quadratic form, there exist integers such that the value of the quadratic
form at these integers is bounded, the bound depending only on the
value of the determinant of the form and the number of variables. 58 More
precisely, there exist integers x0; x1; : : : ; xn�1 such that

0 < f(x0; x1; : : : ; xn�1) <

�
4

3

� n(n�1)
2

n
p
j D j;

with D the determinant of the form f .
It is then easy to deduce bounds for the various terms �2(�), �2(�),

. . . (or �(�)�(
)) which compose the form, and thus for their product.
Finally, taking into account that here the coefficients of F are mul-
tiples of N , as explained above, Hermite concludes that there exist
integers x0; x1; : : : ; xn�1 such that

F(x0; x1; : : : ; xn�1) = MN; M <

�
4

3

� n(n�1)
4

(�n�n)
1
2 ;

where M is a non zero integer and � is the discriminant of the equation
F = 0 (that is, the product of the difference of the roots, taken two by two).

To address Jacobi’s statement, Hermite chooses

F (x) =
x5 � 1

x� 1
= x4 + x3 + x2 + x + 1:

Let n = 4 and N a prime number of the form 5k + 1. Then the con-
struction of the �;F ; : : : above applies. One has � = 53 and M < 1:65,
thus M = 1. This provides:

N = F(x0; x1; x2; x3) = �(�)�(�)�(
)�(�);

57 Hermite introduces in fact a family of quadratic forms, built with terms D��
2(�),

or D�;
�(�)�(
), with D�; D�;
 positive real numbers. It provides infinitely many solu-
tions, by varying the coefficients D�; D�;
 , but as it is not relevant to our example, we
will ignore this variant, see [Goldstein 2007] for details.
58 This is what is now called the Hermite-Minkowski theorem, as Hermann
Minkowski established later a better bound than Hermite’s original one. It is a gener-
alization of the bound given above for the first coefficient of a reduced form and thus
a key result for the classification of quadratic forms at the time. To state this theorem,
Hermite had first to define the determinant of a n-ary quadratic form (our modern
discriminant).
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where �; �; 
; � are the primitive 5th-roots of unity, and

�(�) = Nx0 + (�� a)x1 + (�2 � a2)x2 + (�3 � a3)x3;

�(�) = Nx0 + (�� a)x1 + (�2 � a2)x2 + � � � ; �(
) = � � � ;

that is, the decomposition of N into complex factors of the required type.
Hermite also handles in the same way new cases, that of prime num-

bers N of the form 7k � 1. If N = 7m + 1, he puts:

�(�k)(x0; : : : ; x5) = Nx0 + (�k � a)x1 + � � �+ (�5k � a5)x5;

where �k now runs over the roots of the cyclotomic equation F (x) =
x6 + x5 + x4 + x3 + x2 + x+ 1 = 0, that is, the primitive 7-th roots of unity
and a is an integer such that a7 � 1 (mod N) but a 6� 1 (mod N), and
thus F (a) � 0 (mod N).

With the same construction as before, mutatis mutandis, the determinant
D of the quadratic form f = �(�)�(�6) + �(�2)�(�5) + �(�3)�(�4) is, in ab-
solute value, 75

26N
2 , and there exists integers such that the value of F at

these integers is MN , with M < ( 4
3)

15
2 ( 75

66 )
1
2 , that is, finally M < 5;192.

Moreover, Hermite proves that the value at integers of F is also either di-
visible by 7 or � 1 (mod 7), thus again M = 1 and N is a product of six
linear combinations of primitive 7th-roots of unity.

In the case N = 7m � 1, Hermite finds that N can be expressed as a
product of three linear combinations of the roots of the cubic equation

x3 + x3 � 2x� 1 = 0: 59

At that time already, Hermite placed great hopes in the use of “forms
whose coefficients depend on roots of algebraic equations with integral co-
efficients. Maybe we will succeed to deduce from them a complete system
of characters for each species of this kind of quantities”. 60 In the same se-
ries of letters to Jacobi, he uses the same construction, this time with the
roots �; �; 
 of a cubic equation, to study what we now call the units of the
associated cubic field: for Hermite, the problem is to find the solutions of
the equation

(x + �y + �2z)(x + �y + �2z)(x + 
y + 
2z) = 1:

59 These roots are the three periods of two roots of the 7-th cyclotomic equation, as
explained in the last section of Gauss’s Disquisitiones arithmeticae on cyclotomic equa-
tions.
60 [Hermite 1850, p. 286]: “... des formes dont les coefficients dépendent de racines
d’équations algébriques à coefficients entiers. Peut-être parviendra-t-on à déduire de
là un système complet de caractères pour chaque espèce de ce genre de quantités”.
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He shows in particular that, up to roots of unity, the solutions are
the powers of one of them only (in the case of one real root) or the
products of the powers of at most two of them, in the case of three
real roots. 61 He also uses the relation between the product of the
x0 + �x1 + �2x2 + � � �+ �n�1xn�1 , when � runs over the solutions of an
algebraic equation with integral coefficients, and the associated quadratic
forms (according to the procedure explained above between f and F )
to deduce from the theory of forms that the infinitely many algebraic
equations with integral coefficients and a given discriminant define only a
finite number of irrational numbers (their roots), up to a rational change
of variables [Hermite 1905-1917, vol. 1, p. 225].

The results I just outlined announced (among other contemporary re-
sults, in particular by Dirichlet) what will be known later as “algebraic num-
ber theory”. We are thus not surprised now that Hermite combined alge-
braic tools and notions to be able to use number-theoretical techniques
(the theory of integral quadratic forms, in particular), in order to answers
questions arising both in number theory and algebra (according to the
classification of domains in his time). However, in the middle of the nine-
teenth century, this mixture, which Gauss used with spectacular effects in
the last section of his Disquisitiones arithmeticae, was still worthy of note. 62

Hermite was very aware of this fusion and of its promises and challenges:

In the immense range of research opened up by M. Gauss, algebra and num-
ber theory seem to me to merge into a same order of analytical notions, which
our present knowledge does not yet allow us to form a correct idea of. 63

3.2. Sturm’s theorem

This merger will further extend its reach when Hermite will use his fa-
vorite quadratic forms to tackle a key result of algebra at the time, Sturm’s

61 Hermite will tackle later the general case, for algebraic equations of all degrees.
However, he did not prove the existence of the independent basic solutions, a result
known as Dirichlet’s unit theorem.
62 On the place of number theory c. 1800 and the change brought about by the Dis-
quisitiones, see [Goldstein et al. 2007].
63 [Hermite 1850, p. 291]: “Dans cette immense étendue de recherches qui nous a
été ouverte par M. Gauss, l’Algèbre et la Théorie des nombres me paraissent devoir
se confondre dans un même ordre de notions analytiques, dont nos connaissances
actuelles ne nous permettent pas encore de nous faire une juste idée.”
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theorem, which provides the exact number of real solutions, located in a
given interval, of an algebraic equation with real coefficients. 64

Hermite has been interested in this result during all his professional life,
both in research and teaching ; he called it still in 1890 “one of the most
important propositions of the theory of algebraic equations .. . which had
the good fortune to become immediately classic.” 65

According to Sturm’s theorem, the number of distinct real roots located
between, say, x1 and x2 of a polynomial V in one variable with real coef-
ficients is equal to the difference in the number of sign variations when
one evaluates, at x2 and at x1 respectively, a finite sequence of polynomial
functions Vi . In Charles Sturm’s original memoir, the sequence Vi was ob-
tained through successive Euclidean divisions, which required quite labo-
rious computations, and the first proof of the theorem used the interme-
diate value theorem.

Around 1840, James Sylvester expressed Sturm’s auxiliary polynomials
Vi directly in function of the squares of differences of the roots of V ; if V is
of degree m and its roots are a; b; : : : ; k; l , one has: 66

V1

V
=
X 1

x� a

V2

V
=
X (a� b)2

(x� a)(x� b)

V3

V
=
X (a� b)2(a� c)2(b� c)2

(x� a)(x� b)(x� c)

...

Vm
V

=
(a� b)2(a� c)2 � � � (k � l)2

(x� a)(x� b) � � � (x� l)
:

Hermite brought several innovations to the theorem: he extended it to
a system of several equations, he displayed infinitely many Sturm’s series
of auxiliary functions, he proved all the theorems without any recourse

64 This theorem, its complex genesis and its far-reaching reformulations have been
studied in detail and in depth in [Sinaceur 1994].
65 [Hermite 1905-1917, vol. 4, p. 291]: ... un théorème qui est l’une des plus impor-
tantes propositions de la théorie des équations algébriques [... et qui] a eu le bonheur
de devenir classique”. On this point, see [Vincent 2020].
66 [Hermite 1853]. To simplify, I follow as much as possible here Hermite’s nota-
tions, despite their ambiguity and the lack of precision on the summation range. We
can assume here that the roots are distinct and ordered.
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to continuity arguments (in particular, without the intermediate value
theorem). Moreover, through the use of his favorite quadratic forms, he
unified Sturm’s theorem on the number of real roots of an equation in a
given interval and Cauchy theorem on the number of imaginary roots in
a bounded given domain. He also connected Sturm’s theorem with the
classification of algebraic forms, a topic at the forefront of research at the
time. 67

Here as elsewhere, working as closely as possible with formulas (and
their multiple interpretations) is a decisive factor in Hermite’s mathemat-
ical practice, a factor he himself often emphasizes. About his extension
of Sturm’s theorem to several variables, where he begins by replacing the
factors of the type 1

x�a in the original Sturm’s theorem by 1
(x�a)(y�a0)

, he
says for instance:

I must first mention the beautiful expressions discovered by Mr. Sylvester for
the auxiliary functions that appear in Mr. Sturm’s theorem, and those deduced
by Mr. Cayley, as having opened up a new path for me. These are, indeed, for-
mulas analogous to those of these two learned geometers, which will be posited a
priori for simultaneous equations, and from which properties all similar to those
of Mr. Sturm’s functions will be easily concluded. 68

Let us just reconstruct briefly how the same quadratic forms we met
above are used by Hermite in this other context. 69 Let us consider a poly-
nomial V with real coefficients and m distinct roots ai . Hermite associated
to it (a family of) quadratic m-ary forms:X 1

x� ai
(x0 + aix1 + a2

i x2 + � � �+ am�1
i xm�1)2:

67 See in particular [Hermite 1905-1917, vol. 1, pp. 281-287, 397-414, 415-428, 479-
481]. As for other topics, Hermite’s work is tightly connected with the works of other
mathematicians exactly at the same time, in this case Sturm himself, Carl Borchardt,
Arthur Cayley, James Sylvester, and others [Sinaceur 1994]. They exchange letters,
which are partially published, and complement each other’s work, sometimes day by
day. Given our focus on specific Hermite’s tools here, this environment is left aside.
68 [Hermite 1905-1917, vol. 3, p. 2]: “Je dois indiquer d’abord les belles expres-
sions découvertes par M. Sylvester pour les fonctions auxiliaires qui figurent dans le
théorème de M. Sturm, et celles que M. Cayley en a déduites, comme m’ayant ouvert
une voie nouvelle. Ce sont, en effet, des formules analogues à celles de ces deux sa-
vants géomètres qui seront posées a priori pour des équations simultanées et dont
on conclut avec facilité des propriétés toutes semblables à celles des fonctions de
M. Sturm.” My emphasis.
69 Hermite’s published papers on this topic are extracts of letters, with different no-
tations and only allusive outlines of his arguments. For simplicity, I have standardized
slightly the notation and detailed some calculations.
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Here x is a real number, different from the roots ai , and it is treated as
a parameter; I will designate these expressions by fx(x0; x1; : : : ; xm�1). We
recognize the type of forms, built with the roots of an algebraic equation,
introduced before, except for the coefficients of the squares (here 1

x�ai
)

which may be here negative as well as positive. Negative coefficients occur
when the root ai is greater than x, positive ones when ai is smaller than
x, and thus the number of positive and negative coefficients keep track of
the number of roots smaller and bigger than x (and by combination of fx
and fx0 of the number of roots in the interval

Ł
x; x0

ð
). Let us note that the

forms fx are rational symmetrical functions of the roots of V , thus are real
quadratic forms when x is real.

The determinant �m�1;x of fx is

�m�1;x =
1Q

(x� ai)

þþþþþþþþþ
1 a1 a2

1 : : : am�1
1

1 a2 a2
2 : : : am�1

1
...

...
. . .

...
1 am a2

m : : : am�1
m

þþþþþþþþþ
2

:

The Vandermonde determinant is equal as usual to the product

Y
1�i<j�m

(ai � aj)

and thus �m�1;x is Vm=V . Let us designate by �0;x , �1;x , �2;x , etc., the

determinants corresponding to the partial forms
P x2

0
x�ai

,
P (x0+aix1)2

x�ai
,P (x0+aix1+a2

i x2)2

x�ai
, etc. ; they similarly correspond to Sylvester’s auxiliary

functions for Sturm’s theorem.
Hermite explains to Borchardt: “the reduction of a quadratic form to a

sum of squares, which has been the topic of your memoir [.. .] plays the
main role in my research”. 70

70 [Hermite 1856, p. 39]: “La réduction d’une forme quadratique à une somme
de carrés, qui a été le sujet de votre Mémoire [...] joue le principal rôle dans mes
recherches”. The classification of real quadratic forms, more precisely the transforma-
tion by a linear, invertible change of variables, of any real quadratic form into a linear
combination of squares with coefficients, say, +1 or -1, was a hot topic at the time. As
well-known now, the number of coefficients of each sign is an invariant of the form:
this is Sylvester law of inertia. On these developments, see [Brechenmacher 2007].
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Indeed, the form fx can be reduced to a “sum of squares” (up to real
constants) via a triangular change of variables of determinant 1. One has:

fx = �0(x0 + �1;0x1 + �2;0x2 + : : : + �m�1;0xm�1)2

+ �1(x1 + �2;1x2 + �3;1x3 + : : : + �m�1;1xm�1)2

+ � � �

+ �m�2(xm�2 + �m�1;m�2xm�1)2

+ �m�1x
2
m�1:

The �i are real coefficients. Thus �m�1;x = �0�1 : : : �m�1 .
Moreover, putting xm�1 = 0 gives �m�2;x = �0 : : : �m�2 , putting xm�2 =

xm�1 = 0 gives �m�3;x = �0 : : : �m�3 , etc. Finally, the real quadratic form fx
can be reduced by a linear transformation with real coefficients to a form
of the type:

�0;xX
2
0 +

�1;x

�0;x
X2

1 +
�2;x

�1;x
X2

2 + : : : +
�m�1;x

�m�2;x
X2
m�1:

The signs of the coefficients provide the sign of the values of the Sturm’s
functions. In other terms, Sturm’s theorem for a polynomial is now seen as
an explicit version of the law of inertia for our special quadratic forms, built
with the roots of this polynomial.

3.3. Toward complex analysis

Hermite then handles the complex case by a variant of the same expres-
sions. Let F be any algebraic equation with complex coefficients, this time
of degree n, F (z) = Azn + Bzn�1 + � � � + Kz + L = 0, with roots a, b, . . . ,
k . 71 Hermite introduces the quadratic form:

�(x; y; : : : ; u) =
i

F0(a)F 0(a)
(x + ay + � � �+ an�1u)2

+
i

F0(b)F 0(b)
(x + by + � � �+ bn�1u)2

+ � � �

+
i

F0(k)F 0(k)
(x + ky + � � �+ kn�1u)2;

where F0 is the polynomial the coefficients of which are the complex
conjugate of those of F . The quadratic form � is real and Hermite proves
that its signature provides the number of roots in the upper, resp. lower,

71 In Hermite’s fickle notations ; see [Hermite 1856, p. 40].
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half plane. He deduces the number of roots of an algebraic equation
contained in various domains of the complex plane, such as a rectangle
or a hyperbole and, again by means of astute transformations, obtains
particular cases of Cauchy’s integral formula.

Hermite emphasizes the role of his special quadratic forms in his pro-
cedure:

I came to this study largely by a search on arithmetic questions, which since
the year 1847 have called my attention on the quadratic forms composed of a
sum of squares of similar functions of the roots of the same equation.

I have thus felt a real satisfaction to relate to these forms these magnificent
theorems of M. Sturm and M. Cauchy, which open the new era of modern Al-
gebra. 72

3.4. Toward invariant theory

This account of the number of roots of an equation through the study
of quadratic forms is used by Hermite in another work which leads this
time to invariant theory. 73 The context is the resolution (by elliptic modu-
lar functions) of the fifth-degree equation which Hermite and Kronecker,
and then Brioschi, approached as we have seen above, in different ways—
triggering Hermite’s attempt to link and re-interpret the various methods
of resolution. His point of departure here is a general binary form of the
fifth degree f(x; y) = �x5 +5�x4y+10
x3y2 +10
0x2y3 +5�0xy4 +�0y5 , and
the associated fifth-degree equation f(x; 1) = 0, with its roots a; b; : : : ; k . 74

Hermite first shows that if, in this equation, one replaces x by z = �(x;1)
f 0x(x;1)

,
where �(x; y) is a covariant of degree 3 in x, y of f , the coefficients of the
transformed equation in z are invariants of f(x; y). 75 Then, he adapts once

72 [Hermite 1856, p. 50]: “J’ai été amené à cette étude en grande partie par des
recherches sur des questions arithmétiques, qui, depuis l’année 1847, ont appelé mon
attention sur les formes quadratiques composées d’une somme de carrés de fonctions
semblables des racines d’une même équation. Aussi ai-je éprouvé une véritable satis-
faction à rattacher à la considération de ces formes ces magnifiques théorèmes de M.
Sturm et M. Cauchy, qui ouvrent l’ère nouvelle de l’Algèbre moderne.”
73 On the history of this topic, see [Dieudonné 1971; Parshall 1989; Wolfson 2008].
On Hermite’s contributions to it, see [Parshall 2024].
74 [Hermite 1866]. This booklet gathers 12 communications to the French Academy
in 1865 and 1866. They are also reproduced in the second volume of Hermite’s works.
75 Covariants (resp. invariants) are at the time polynomials in the coefficients of f
and x; y (resp. in the coefficients of f ), which are invariant under a linear change of
variables x; y of determinant 1. A first example of an invariant is Gauss’s determinant
of a binary quadratic form, b2 � ac.
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more the expression of his favorite quadratic forms: he replaces the expres-
sion (t0 + at1 + � � �+ a4t4)2 in his special quadratic forms by�

t0 +
t1�1(a; 1) + t2�2(a; 1) + t3�3(a; 1) + t4�4(a; 1)

f 0x(a; 1)

�2

;

where the �i are four cubic covariants of f that Hermite provides explicitly.
Adding these new expressions for all roots a, b, . . . , k , Hermite obtains a

form whose coefficients are invariants of f . The signature of this form (that
is, the number of positive and negative coefficients in its transformation as
a linear combination of squares, according to Sylvester’s law of inertia) pro-
vides, as previously, the number of real and imaginary roots of f(x; 1) = 0.

To go further, Hermite also adapts the expression of the functions V
which intervene in Sturm’s theorem.

First of all, he replaces simply

V1 = (x� a)(x� b) � � � (x� k)
X 1

x� a

by

V1 = (x� a)(x� b) � � � (x� k)
X x0 � a

x� a
;

V2 = (x� a)(x� b) � � � (x� k)
X (a� b)2

(x� a)(x� b)

by

V2 = (x� a)(x� b) � � � (x� k)
X (x0 � a)(x0 � b)

(x� a)(x� b)
(a� b)2;

and so on. As in the original Sturm’s theorem, where they were expressed
as we have seen as determinants, the various terms

Vi+1

(x� a)(x� b) � � � (x� k)

are here invariants of the quadratic forms (which are again variants of
the forms built with the roots of an equation, this time with parameters x
and x0): X x0 � a

x� a
(t0 + at1 + a2t2 + � � �+ aiti)

2:

More generally they share the basic properties of the Sturm’s functions.

It’s easy to see how these new functions are closely related to those of Sturm’s
theorem, whose analytical properties they reproduce. They then serve as a



CHARLES HERMITE’S PRACTICES OF UNITY 183

natural and easy transition to those [.. .] which are double covariants of the
form f(x; y), the proposed equation being f(x; 1) = 0. 76.

To obtain them, Hermite adapts once more his favorite quadratic forms,
considering this timeX x0 � ay0

x� ay
(t0 +

t1�1(x; 1) + t2�2(x; 1) + t3�3(x; 1) + t4�4(x; 1)

f 0x(x; 1)
)2:

These new functions, being composed of covariants in (x; y) and
in (x0; y0) (the expressions x0�ay0

x�ay ) and of invariants, are covariants which
can replace Sturm’s functions, as desired.

3.5. Interpolation

Perhaps more surprising is the use of the same kind of quadratic forms
to approach problems of interpolation. More precisely, the objective is to
approximate a (sufficiently regular) function F by a polynomial P of de-
gree m � n, such that the distance between this polynomial P and F at
n + 1 given points xi—that is, here, the sum of the squares of the differ-
ences between the value of P and F at the xi—is minimum. Hermite was
inspired to deal with this question through a communication of Pafnuti
Tchebichef at the Academy of sciences of Saint-Petersburg on January 12,
1855, which was translated into French in 1858. 77

Let us assume that the function F takes the values ui at the given
points xi , i = 0; 1; : : : ; n. Hermite’s first step is to use Lagrange’s inter-
polation formula to construct a polynomial � of degree n with the same
values ui at the points xi .

Let f(x) = (x � x0)(x � x1) � � � (x � xn) a polynomial of degree n + 1
with the xi as roots. Hermite puts:

�(x) =
f(x)

(x� x0)f 0(x0)
u0 +

f(x)

(x� x1)f 0(x1)
u1 + � � �+

f(x)

(x� xN )f 0(xN )
un:

76 [Hermite 1905-1917, vol .2, p. 382]: “On voit assez [...] l’étroite liaison de ces
nouvelles fonctions avec celles du théorème de Sturm dont elles reproduisent les pro-
priétés analytiques. Elles servent ensuite de transition naturelle et facile pour arriver
à celles [...] qui sont des covariants doubles de la forme f(x; y), l’équation proposée
étant f(x; 1) = 0.” My emphasis.
77 [Tchebichef & Bienaymé 1858]. Hermite’s communication to the French
Academy follows the French publication closely, taking place on January 10, 1859
[Hermite 1859]. Both Tchebichef and Hermite work in a slightly more general
context than reported here as they multiply the squares by positive real numbers that
may represent errors in the measures of the values F (xi). For the sake of simplicity, I
shall ignore these factors here.
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By a linear transformation of the ui which preserves the Euclidean
norm

P
u2
i (that is, by an orthogonal linear transformation), one can also

write, with the new variables vi :

�(x) = �0(x)v0 + �1(x)v1 + � � �+ �n(x)vn;

where the �k are polynomials of degree n.
Hermite remarks that

P
�(xi)

2 =
P

u2
i =

P
v2
i . And that this, in turn,

implies that
P

i �k(xi)
2 = 1 and

P
i �k(xi)�k0(xi) = 0, for all 0 � k � n

and 0 � k0 � n, k 6= k0 .
His second step implements the condition of minimality, that is, that the

distance between F and � should be the smallest possible. More precisely,
Hermite explains how to choose coefficients A; B; : : : ; H such that:

nX
i=0

[F (xi)� A�0(xi)� B�1(xi)� � � � �H�m(xi)]2

is minimum.
Finally, Hermite shows that the �k can be constructed with m = n. It

could be deduced from a counting argument on the number of variables
and equations, but Hermite, as usual, looks for an explicit solution. Her-
mite says:

It would be difficult in this way to explicitly express the new functions [�i]
by the quantities x0; x1; : : : ; xn . It is [.. .] by making use of the properties of
quadratic forms that we can achieve this.” 78

Once again, a variant of our usual quadratic forms, built this time with
the roots xi of f , will provide the expression of the �i . Hermite puts:

nX
i=0

(x� xi)(v0 + xiv1 + x2
i v2 + � � �+ xk�1

i vk�1)2:

For 1 < k � m, let �k be the determinant of the quadratic form ; it is a
polynomial of degree k in x, and if �k is the coefficient of xk in this poly-
nomial, Hermite proves that �k(x) = �kp

�k�k+1
(with specific values for �0

and �1). He concludes:

Finally, I would like to point out that the sequence of quantities 1;�1;�2; : : : ;�m
has the properties of Sturm’s functions with respect to the equation f(x) = 0. 79

78 [Hermite 1859, pp. 65-66]: “Cependant il serait difficile par cette voie de parvenir
à exprimer explicitement les nouvelles fonctions [�i] par les quantités x0; x1; � � � xn .
C’est [...] en faisant usage des propriétés des formes quadratiques qu’on y arrive.”
79 [Hermite 1859, pp. 66-67]: “Je remarquerai enfin, en terminant, que la suite des
quantités 1;�1;�2; : : : ;�m possède à l’égard de l’équation f(x) = 0 les propriétés des
fonctions de Sturm."
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This work, again, also illustrates how playing with explicit algebraic for-
mulas is intertwined with relations at another level. In his article on inter-
polation, Tchebichef used expansions into continued fractions. Bienaymé
had already interpreted this feature as a step to a unification, as he empha-
sized how this work “spreads a new light on the hidden links that unite the
various parts of the analysis of series or of interpolation”. 80

In Hermite’s youth, the expansion into continued fractions was the ba-
sic technique for approximation. 81 In his letters to Jacobi on the theory of
numbers [Hermite 1850], Hermite proudly explains how to replace this
tool with his own, that is, again, quadratic forms with appropriate coeffi-
cients. This context is relevant to understanding why and how Tchebichef’s
1858 article (entitled “On continued fractions”) would immediately attract
Hermite’s attention and direct him towards his favorite quadratic forms:
the thematic level, here the theme of approximation, suggests him to use
a specific process, and in turn this process which operates at the level of the
algebraic expressions themselves reinforces a thematic rapprochement be-
tween mathematical subdomains, from arithmetic to algebra to analysis. 82

4. REVISITING THE UNITY OF MATHEMATICS
THROUGH HERMITE’S PRACTICES

The evolution of mathematics during the 19th century has sometimes
been described as the replacement of an older approach, based on formu-
las, with a modern conceptual one. Such a description is often supported
by some of the statements made by the mathematicians of the time, for
instance that of Dirichlet noting: “the constantly increasing tendency of

80 [Tchebichef & Bienaymé 1858, p. 290, note]: “Le travail de M. Tchebichef, en re-
liant aux fractions continues une classe au moins des fonctions ou des coefficients mis
en évidence par Gauss dans la méthode des moindres carrés, répand une clarté nou-
velle sur les liens cachés qui réunissent les diverses parties de l’analyse des séries ou
de l’interpolation.”
81 For Hermite, it will also be an important tool to adapt in a variety of contexts, ei-
ther for numbers or for functions, launching a whole field of research for his students,
in particular Henri Padé, see [Brezinski 1991].
82 Many years later—but again recycling some constructions and results of his letters
to Jacobi on the theory of numbers—, Hermite tackles in the same way another result
of Tchebichef, this time on the minima of x � ay � b, with a and b real constants and
x and y integers to be found, and its algebraic counterpart, the best approximations
of V by X � UY , where U and V are sufficiently regular given functions, and X and Y
polynomials to be found, [Hermite 1880].



186 C. GOLDSTEIN

the new analysis is to put thoughts in the place of calculations.” 83 Her-
mite offers of course a good counter-example to the relevance of such a
dichotomy, if we wish to account for the actual work of mathematicians.
In many of his articles, a stock of algebraic expressions and formulas,
adapted to each specific mathematical situation, weaves like a garland
through mathematical themes. They also serve as intermediary steps,
enabling Hermite to arrive, by successive replacement, at the expressions
needed to conclude, but also at new concepts, as though “naturally”. 84

This point of view is consistent with Hermite’s creative vision of computa-
tions and, more generally, his view of mathematics as a natural science, a
nature guaranteed by an underlying divine order. 85 It is of course worth
noting that other mathematicians, in the second half of the nineteenth
century, extoll the role of formulas and computations too, as witnessed by
a famous passage of a letter from Kronecker to Cantor in August 1884:

I recognize true scientific value—in the field of mathematics—only in con-
crete mathematical truths, or to put it more sharply, “only in mathematical for-
mulas”. [.. .]The various theories for the foundations of mathematics have been
blown away by time, but Lagrange’s resolvent has remained. 86

It is notable that Hermite’s focus on explicit expressions extends beyond
his articles, in particular to his teaching. If his son-in-law Émile Picard em-
phasizes how in his lectures, “on the most elementary of questions, [Her-
mite] suddenly opened up immense horizons, and alongside the Science

83 “Die immer mehr hervortretende Tendenz der neueren Analysis ist Gedanken an
die Stelle der Rechnung zu setzen.” See a synthetic reminder of this viewpoint, as well
as relevant references, in the introduction of [Sørensen 2005]. Let us note the debat-
table substitution of “thought” by “concepts” in many interpretations of Dirichlet’s
quote. The opposition has already been criticized by historians for several decades,
see [Gilain & Guilbaud 2015; Goldstein et al. 2007].
84 The importance of a construction presented as natural is essential for Hermite.
For the example of Hermitian forms, see [Goldstein 2019].
85 See his criticism of Louis Poinsot’s statement that “computation is an instrument
that does not produce anything from itself and that somehow gives back only the ideas
entrusted to it” in a letter to Leo Königsberger, [Goldstein 2011a, p. 147].
86 See [Jahnke 1987]: “Einen wahren wissenschaftlichen Werth erkenne ich auf
dem Felde der Mathematik nur in concreten mathematischen Wahrheiten, oder
schärfer ausgedrückt, ‘nur in mathematischen Formeln’. [...] Die verschiedenen
Theorien für die Grundlagen der Mathematik sind von der Zeit weggeweht, aber die
Lagrange’sche Resolvente ist geblieben.” For a deeper analysis of the role of formu-
las and computations in Kronecker’s work, see [Edwards 2009; 1995; Vergnerie 2019].
Another interesting case, that of Dedekind, is studied in [Haffner 2021].
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of today, we saw the Science of tomorrow,” 87 a more ironic and critical ac-
count of Hermite’s courses testifies to the continuity between his teaching
and his mathematical practice. Charles Rabut, a Ponts-et-Chaussées engi-
neer, who had followed these courses at Polytechnique around 1871, com-
plains:

As for mathematical dreams, several of my schoolmates and I had them
following Hermite’s abominable lessons on Eulerian, elliptic, ultra-elliptic and
other functions; they consisted of assimilations of algebraic symbols to things
from real life. I remember a certain function C(x), where C was a caravan. I
believe that this phenomenon, which was quite widespread among our fellow
students at the time, was a reflex protest by the cerebral organism against the
inoculation of a veritable intellectual poison. 88

With its caravan of embodied symbols, Rabut’s nightmare seems remark-
ably resonant with what has been discussed here. As we have seen, Her-
mite’s work on specific algebraic expressions constructs a unity from below,
supported, in a less technical but decisive way, by a configuration of links
and transfers operating at other levels. Whether in copying and adapting
a tool developed in one branch or in reshaping a theorem in a new frame,
the threads created by this very work on expressions is consubstantial with
the identification of analogies and rapprochements between large swathes
of mathematics, more specifically among arithmetic, algebra, and analy-
sis (as defined in his time). While Hermite’s proof of Sturm’s theorem is
often praised today for avoiding the use of analysis (in a perspective that
privileges the purity of methods with respect to the statement or the disci-
plinary situation), we have seen that more important for Hermite was first
the link between his number-theoretical research and a theorem of alge-
bra, then the possibility of extending it to Cauchy’s setting. In other cases,
as in the resolution of the fifth-degree equation, Hermite would rejoice

87 [Picard 1901, p. 29]: “à propos de la question la plus élémentaire il faisait sur-
gir tout d’un coup d’immenses horizons, et où à côté de la Science d’aujourd’hui on
apercevait la Science de demain”.
88 [Maillet 1905, p. 26]: “Quant aux rêves mathématiques, plusieurs de mes ca-
marades de salle à l’École et moi en avons fait à la suite des abominables leçons
d’Hermite sur les fonctions eulériennes, elliptiques, ultra-elliptiques et autres; ils
consistaient en des assimilations de symboles algébriques à des choses de la vie réelle.
Ainsi je me souviens d’une certaine fonction C(x), où C était une caravane. J’estime
que ce phénomène, assez répandu parmi nos camarades à cette époque, est une
protestation réflexe de l’organisme cérébral contre l’inoculation d’un véritable poi-
son intellectuel”.
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about bringing analytic means into a number-theoretical question. 89 On
this point, Paul Painlevé comments:

The memoir [on the transformation of Abelian transcendents], in which the
theory of functions is interwoven with Arithmetic and Algebra, is in some ways
representative of Hermite’s work. No one has shown more strikingly, through his
methods and discoveries, the intimate relations that unite these three branches
of Science, and the mutual support they can and must lend each other. 90

While Hermite was particularly effective in building bridges between
these domains, he was far from alone. Echoes of this can also be found for
instance in Emile Borel’s commentary on Edmond Laguerre’s work:

[O]ne is at first astonished to see Laguerre’s research on whole transcen-
dents, and others besides, appear among the memoirs of Algebra. This astonish-
ment disappears when, instead of reading only the Table of Contents, we study
the text itself; we then see that one of Laguerre’s characteristic traits is the ease
with which he solves many questions of Analysis by the methods of the most el-
ementary Algebra, and we hardly notice the transition between the Algebra of
polynomials and the Algebra of transcendental functions, if I may express my-
self in this fashion. 91

However, simply highlighting the connection between integers in arith-
metic, polynomials in algebra, and functions in analysis does not give access
to the practices involved in establishing this connection, which vary widely
depending on the moment and the author. Although Kronecker, Hermite,
Laguerre, but also Dedekind and Heinrich Weber all inherited the mid-
century research field of arithmetic algebraic analysis, they deployed it,
interpreted it and worked within or beyond it in very different ways, pri-
oritizing or not the various aspects. André Weil’s trilingual dictionary, or

89 On this role of analysis, taken in a very broad sense and not limited to continuous
processes, see [Archibald 2024; Vincent 2024].
90 [Painlevé 1905, p. 50-51]: “Le mémoire [sur la transformation des transcendantes
abéliennes], où la théorie des fonctions se mêle à l’Arithmétique et à l’Algèbre, est en
quelques sorte représentatif de l’œuvre d’Hermite. Nul n’a montré, d’une façon plus
éclatante, par ses méthodes et ses découvertes, les relations intimes qui unissent ces
trois branches de la Science, l’appui mutuel qu’elles peuvent et doivent se prêter.”
91 The quote comes from [Vincent 2024] to which I also refer for other relations
between Hermite’s and Laguerre’s works: “[O]n est tout d’abord étonné de voir les
recherches de Laguerre sur les transcendantes entières et d’autres encore, figurer
parmi les mémoires d’Algèbre. Cet étonnement disparaît lorsque, au lieu de lire
seulement la Table des matières, on étudie le texte même; on voit alors que l’un des
traits caractéristiques de Laguerre est l’aisance avec laquelle il résout bien des ques-
tions d’Analyse par les méthodes de l’Algèbre la plus élémentaire, et l’on s’aperçoit à
peine de la transition entre l’Algèbre des polynômes et l’Algèbre des fonctions tran-
scendantes, si l’on peut ainsi s’exprimer.”
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Rosetta stone, half a century later, is yet another formulation of these pos-
sible analogies—even it would be tempting to see Hermite or Kronecker
as its precursors. 92 Such a comparison, which would be necessary to un-
derstand the dynamics of unification between parts of these fields, goes far
beyond the scope of this article, where I have only tried to better understand
Hermite’s related practice by following a few key words.

As the quotations in the introduction to this article testify, the question
of the unity of mathematics has mainly been discussed by mathematicians
or philosophers as a philosophical question, based on their epistemologi-
cal priorities or on a global vision of mathematics, whether to describe its
encompassing modalities or to define its present or future rules. More re-
cently, the variety of mathematical activities in time and place has led oth-
ers to criticize or to throw into doubt the very idea of a unity of mathe-
matics [Booß-Bavnbek & Davis 2013]. Hermite’s (counter-)example, how-
ever, suggests another conclusion than considering the unity of mathemat-
ics as a given to be studied, as an horizon the norms of which are to be es-
tablished, or as an illusion to be dismissed. Examining the configuration
of Hermite’s writings closely, on a micro-scale, 93 reveals how the sense of
unity in mathematics that drove him and was emphasized by his epigones
was concretely put into practice and reinforced in his day-to-day mathemat-
ical work. It also suggests that the topic of the unity of mathematics can be
associated with a richer set both of work practices and of representations
than is usually taken into account, and which, interweaving together, also
calls for a historical investigation.
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Revue d’histoire des mathématiques, 17 (2) (2011), pp. 373–401.

[2024] Hermite’s “Concrete” Analysis: Research and Educational Themes in
an Evolving Discipline, Revue d’histoire des mathématiques, 2024; this is-
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hebdomadaires des séances de l’Académie des sciences, 58 (1864), pp. 93–100.



CHARLES HERMITE’S PRACTICES OF UNITY 193
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intégrales elliptiques de première espèce, Bulletin des sciences mathéma-
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pp. 155-202.
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