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CELLULAR Ek-ALGEBRAS

by

S. Galatius, A. Kupers & O. Randal-Williams

Abstract. –We give a set of foundations for cellular Ek-algebras which are especially
convenient for applications to homological stability. We provide conceptual and com-
putational tools in this setting, such as filtrations, a homology theory for Ek-algebras
with a Hurewicz theorem, CW approximations, and many spectral sequences, which
shall be used for such applications in future papers.

Résumé (Ek-algèbres cellulaires). – Nous bâtissons les fondations de la théorie des
Ek-algèbres cellulaires, en vue d’applications en stabilité homologique. Nous donnons
des outils conceptuels et des outils de calcul, y compris des filtrations, une théorie
d’homologie pour les Ek-algèbres avec un théorème de Hurewicz, des approximations
cellulaires, et plusieurs suites spectrales.
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CHAPTER 1

INTRODUCTION

In this book and subsequent papers we develop a multiplicative approach to the
study of automorphism groups Gn such as mapping class groups, automorphism
groups of free groups, or general linear groups. The multiplicative structure on these
groups is given by homomorphisms Gn ×Gm → Gn+m which are appropriately asso-
ciative and commutative. This can be made precise by saying that the disjoint union
of classifying spaces R :=

⊔
n≥1BGn has the structure of a (non-unital) Ek-algebra,

usually for k = 2 or ∞.
This perspective on the groups Gn and their homology is fundamentally different

than the traditional additive approach. That approach focuses on homomorphisms
Gn → Gn+1 which induce stabilization maps BGn → BGn+1 on classifying spaces.
This is akin to thinking of the space R as a module over the monoid of natural numbers
under addition, with k ∈ N sending BGn to BGn+k by iterating the stabilization map.
A typical result of the additive approach is homological stability ; the statement that
the stabilization map BGn → BGn+1 induces an isomorphism on the d-th homology
group when d≪ n.

Our multiplicative approach recovers many such homological stability results. How-
ever, it is also capable of producing qualitatively different results, such as what we
call secondary homological stability (or non-stability) results. Our strategy for proving
these results is to construct R or related objects out of free Ek-algebras in a manner
analogous to CW approximation. We use a homology theory for Ek-algebras to bound
how many Ek-cells are needed. Such bounds together with explicit knowledge of the
homology of free Ek-algebras are then used to deduce results about the homology
of R.

With an eye towards implementing this strategy, in this book we provide a robust
set of foundations for a cellular theory of Ek-algebras. Later papers shall focus on the
geometric and algebraic arguments relevant to particular examples.
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2 CHAPTER 1. INTRODUCTION

1.1. Ek-algebras

We start by explaining the notion of an Ek-algebra in a sufficiently nice category S,
e.g., the category of simplicial sets, spectra, or simplicial k-modules. To talk about
Ek-algebras in S, it must be copowered over simplicial sets and have a monoidal struc-
ture. This monoidal structure needs to be braided if we wish to discuss E2-algebras
and symmetric if we wish to discuss Ek-algebras with k > 2.

e1 e2 ∈ C2(2)

Figure 1. An element of C2(2)

Next we need to pick an Ek-operad in simplicial sets: we use the (singular simplicial
set of the) little k-cubes operad Ck. The space of i-ary operations in this operad, Ck(i),
is the space of rectilinear embeddings of i cubes Ik into Ik with disjoint interior, and
composition of operations is given by composition of embeddings.

Operads encode algebraic structures: a (unital) Ek-algebra R in S is an object R
of S equipped with maps

Ck(n)×R⊗n −→ R

satisfying unit, associativity, and equivariance axioms. Here × denotes the copowering
over simplicial sets and ⊗ denotes the monoidal product on S. For example, Figure 1
depicts an element µ of C2(2) which encodes a particular operation which “multiplies”
two elements of E2-algebra. This operation R ⊗ R → R is commutative in the sense
that it is homotopic to the map with input switched because µ ∈ C2(2) may be
connected by a path to µ with labels e1 and e2 switched. There is no canonical choice
of such a path and the existence of non-trivial families of multiplications gives rise to
operations on the homology of Ek-algebras.

We write AlgEk
(S) for the category of Ek-algebras in S, and UEk : AlgEk

(S) → S
for the functor which forgets the Ek-algebra structure. To do homotopy theory with
Ek-algebras, we define a morphism in AlgEk

(S) to be a weak equivalence if it becomes
one after applying UEk , i.e., after forgetting the Ek-algebra structure.

Let us give two examples of Ek-algebras:
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1.2. CELLULAR Ek-ALGEBRAS 3

Example 1.1. — Ek-algebras were introduced to study k-fold loop spaces [19, 82],
the prototypical examples of Ek-algebras. If X is a pointed topological space and
ΩkX denotes the space of continuous maps Ik → X sending ∂Ik to the basepoint x0,
then we may combine an element e of Ck(i) with i elements fj of ΩkX to form a
single element of ΩkX; insert fj into the image of the j-th cube ej , and extend by
the constant map with value x0. Section 13.8.3 contains more details, and Figure 2
gives an example in the case k = 2 and j = 3.

x0

f2

f1

f3

∈ Ω2X

Figure 2. The result of combining three elements f1, f2, f3 ∈ Ω2X with
an element of C2(3)

Example 1.2. — The example
⊔
n≥1BGn discussed above arises as follows: if G is a

braided or symmetric monoidal groupoid whose objects are given by N and such that
the monoidal product of objects is addition, then the disjoint union

⊔
n≥1BGn of the

automorphism groups Gn of the objects of G has a canonical structure of an E2- or
E∞-algebra. Section 17.1 contains the details.

1.2. Cellular Ek-algebras

Cell attachments for Ek-algebras are modeled after cell attachments for topological
spaces. In the latter case, we start with the data of a topological space X and an
attaching map ∂Dd → X. Taking a pushout

∂Dd X

Dd X ′,

we get a space X ′ which we say is obtained by attaching a d-dimensional cell to X.
If we assume the category S has all colimits then so does AlgEk

(S), and we can
form cell attachments in an analogous manner. That is, we start with the data of
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an Ek-algebra R, a pair of simplicial sets (Dd, ∂Dd) whose geometric realization is
homeomorphic to (Dd, ∂Dd), and an attaching map ∂Dd → UEkR in S. (Here the
copowering is used to make sense of a map from a simplicial set to an object of S.)
Then we have a diagram

(1.1)
∂Dd UEk(R)

Dd

in S, but its pushout does not in general admit the structure of an Ek-algebra.
To remedy this, we use that the forgetful functor UEk participates in the adjunction

S AlgEk
(S),

FEk

UEk

with left adjoint FEk given by the free Ek-algebra functor. That is, every
map X → UEk(R) gives rise to a unique map FEk(X) → R of Ek-algebras. So
instead of taking the pushout of (1.1), we take the pushout of the adjoint diagram

FEk(∂Dd) R

FEk(Dd)

in the category AlgEk
(S), which exists because AlgEk

(S) has all colimits so in particular
pushouts. By construction the result will be an Ek-algebra, and we say is obtained
by attaching a d-dimensional cell to R. This is justified because it satisfies the same
universal property in AlgEk

(S) that an ordinary cell attachment does in Top.
An object C ∈ AlgEk

(S) is cellular if it can be obtained from the initial object by
a (perhaps transfinite) sequence of such cell attachments. A slightly stronger version
of this is a CW object, in which the cells are in particular attached in order of
dimension. Just as in the category of topological spaces, an R ∈ AlgEk

(S) admits a
CW approximation under mild conditions on both S and R, i.e., a weak equivalence
C

∼→ R in AlgEk
(S) where C is a CW object.

Relative cellular algebras have always played an important role in the study of the
homotopy theory of algebras over an operad, as they are the cell complexes in the pro-
jective model structure, e.g., [16, Section 4]. They were applied to study homological
stability in the context of factorization homology in [72].

1.3. Ek-homology

We want to obtain small CW approximations, i.e., ones with as few cells of each
dimension as possible. When finding a CW approximation of a topological space X, a
lower bound on the number of cells needed is given in terms of generators of its singular
homology groups: if the abelian group Hd(X) is generated by a elements and the
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torsion subgroup of Hd−1(X) is generated by b elements, then no CW approximation
has fewer than a+ b cells of dimension d. Furthermore, if X is simply connected then
this bound is realized.

The analogous question for Ek-algebras has a similar answer, given in terms of a
type of homology theory for algebras going back to Hochschild, Quillen, and André
[59, 97, 2]: there are homology groups HEk

∗ (R) which always give a lower bound on
the number of cells in a cellular approximation, and under certain assumptions on
both S and R this bound may be realized. These Ek-homology groups are defined
as the homology groups of an object QEk

L (R) of derived Ek-indecomposables of R,
constructed to satisfy QEk

L (FEk(X)) ≃ X+ and preserve homotopy colimits.
The derived Ek-indecomposables may be thought of as measuring generators, rela-

tions, syzygies, etc. for R as an Ek-algebra, and are obtained by deriving the construc-
tion which takes the quotient of R by the sub-object obtained by applying all possible
operations of Ek to R of arity at least 2. This is a version of THH and TAQ for the
Ek-operad (those constructions corresponding to k = 1 and k =∞ respectively), and
is related to factorization homology (also known as higher Hochschild homology or
topological chiral homology) and to k-fold deloopings. For recent results on these, see
e.g., [7, 10, 38, 41, 42, 74, 79] and their references.

The technical tool underlying this result is a Hurewicz theorem for Ek-homology,
see Section 11. This says that under certain assumptions on both S and R, the first
non-vanishing relative Ek-homology group of a map of Ek-algebras coincides with the
first non-vanishing relative homology group of that map. This is then used to deduce
the existence of minimal CW approximations.

1.4. Computing Ek-homology

In general it is hard to compute HEk
∗ (R) and we will often settle for establishing

vanishing results in a range. These often take the form of vanishing lines with respect
to the naturally present grading of R =

⊔
n≥1BGn by n. That is, we consider R

not as an Ek-algebra in Top, but as an Ek-algebra in the category TopN of functors
from the non-negative integers to Top. More generally we study Ek-algebras in the
category SG of functors G → S, where S is a sufficiently nice model category. If
G has monoidal structure then one can make sense of E1-algebras in SG, and if it is
braided or symmetric monoidal then one can define E2-algebras or Ek-algebras for
any k. In this setting our cells take the form ∂Dd × G(g,−) → Dd × G(g,−), where
G(g,−) : G → S denotes the functor represented by an object g ∈ G considered as
an object of S using the copowering. For G = (N,+, 0), this just endows the cells
with an additional grading. Consequently each cell has both a geometric dimension d

and a rank [g] ∈ π0(G), and we can ask for CW approximations with few cells in
each bidegree ([g], d). The Ek-homology will be bigraded, with ([g], d)-cells measured
by HEk

g,d(R).
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To establish vanishing results for Ek-homology, we prove that it can be computed
using a k-fold bar construction, see Section 13. This is an observation going back to
Getzler and Jones [47], and instances of this result appear in [10, 41, 39]. It is of par-
ticular use in the examples we study in subsequent papers. In these applications, it is
often easier to compute E1-homology, but more convenient to extract information out
of the E2- or E∞-homology. Using the description in terms of iterated bar construc-
tions we prove that vanishing lines can be transferred upwards from Ek-homology
to Ek+1-homology (they can also be transferred downwards using cellular methods),
see Section 14.

1.5. Towards applications

The technology developed in this paper will be applied in the sequels to prove new
results about mapping class groups of oriented surfaces [44] and general linear groups
[45, 46].

The following is an outline of our basic strategy. The groups Gn of interest arise as
automorphism groups in a braided or symmetric monoidal category G. For example,
the general linear group Gn = GLn(F) over a field F is the automorphism group
of Fn in the symmetric monoidal category of finite-dimensional vector spaces over F.
The object R+ :=

⊔
n≥0BGn is the derived pushforward Lr∗(∗) of the terminal

functor ∗ : G → sSet sending each object to ∗ and each morphism to the identity,
along a monoidal “rank” functor r : G → N0, which canonically is a (unital) E2- or
E∞-algebra.

Using the aforementioned bar constructions, we prove that its derived E1-inde-
composables can be computed in terms of the E1-splitting complexes described in
Section 17.2. In applications one must prove these are highly-connected using geo-
metric or algebraic techniques particular to the category G. By transferring vanishing
lines up, we obtain vanishing lines for the E2- or E∞-homology of these objects (it is
helpful to establish these vanishing lines for the largest possible k, as this simplifies
later computations). Combined with low-rank low-degree homology computations, we
can use the Hurewicz theorem to build a small CW Ek-algebra A with map A→ R

which is a good approximation in low degrees.
One can not compute the absolute homology of R using A, but one can compute

relative homology of various ordinary and higher stabilization maps with it. These
computations are done using skeletal and cell attachment spectral sequences, which
we develop in Section 10, and their interaction with the homology operations par-
ticular to Ek-algebras, which we explain in Section 16. Alternatively, one can use a
comparison result proven in Section 15: given a map f : R → S of Ek-algebras, this
compares how to obtain S from R by attaching Ek-algebra cells, with the way to
obtain it by attaching R-module cells.

To make the application of this general theory as straightforward as possible, in
Section 17 we describe a general framework producing Ek-algebras from (perhaps
braided or symmetric) monoidal groupoids. When their corresponding E1-splitting
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complexes satisfy a standard connectivity result (a property related to Koszulity of
the E1-algebra ∗, cf. Section 20), we give generic homological stability results with
both constant and local coefficients in Sections 18 and 19. These are “multiplicative”
analogues to the “additive” generic homological stability theorems of [100].

This is only a basic outline of the strategy used in the sequels to prove homological
stability, secondary homological stability, and non-stability results, and the specifics
of implementing it depend on the groups studied. For example, to obtain secondary
stability for mapping class groups in [44] requires a study of the unstable homology
of mapping class groups, and for general linear groups as in [45, 46] it requires new
results about coinvariants of Steinberg modules. In this paper, however, we shall
give examples that do not require any additional work: improved stability results for
general linear groups over certain Dedekind domains (including Z) and finite fields,
see Sections 18.2, 18.3 and 19.3.

1.6. Guide for the reader

Supposing that the reader is interested in applications of cellular Ek-algebras to
homological stability, their goal will be to understand Part IV of this paper. Here we
describe what should be picked up from the earlier parts of the paper, supposing that
the reader is categorically and homotopically sophisticated.

Much of the development in Parts I and II of this paper is not intrinsically new,
and such a reader will find little here to surprise them. They will be able to skim over
these parts quite rapidly, though should pay some attention to

(i) the way we deal with G-graded objects (described in Section 2.4),
(ii) the way we deal with filtrations (Section 5) and hence cellular and CW objects

(Section 6),
(iii) our notation for homology and the various spectral sequences we develop (Sec-

tion 10).

Such a reader should also at least familiarize themselves with the statement of the
CW approximation theorem (Theorem 11.5), which will be used often, and may want
to read the rest of that section to understand the proof.

On a first reading of Part III such a reader should cover the definitions of Section 12,
but skip the technical Section 12.2.5. From the long Section 13 they should read
Section 13.1 and understand the statement of Theorem 13.7, then understand the
statement of Theorem 13.8 which should be familiar by analogy with the classical
situation of Ek-algebras in Top. It is then a good idea to work through Section 14
in detail, to develop a taste of how the tools discussed so far can be deployed. One
can then move on to the reminder in Sections 16.1 and 16.2 of the natural operations
on the homology of Ek-algebras, and recall the description of the homology of free
Ek-algebras given in Theorem 16.4. Section 16.4 can be omitted, but Sections 16.5.1
and 16.6 should be understood, as they will be used in almost all calculations. The
reader can now return to Section 15, but omit the difficult proof of Theorem 15.3 in
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favor of convincing themselves that it is true (at the level of homology) when G is
discrete using the results of Section 16.
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PART I

CATEGORY THEORY
OF ALGEBRAS

OVER A MONAD

In the first part of this book we will discuss
the category theory of algebras over a sifted
monad on a category S, most of which arise
from operads. Our main goals for this part
are the definitions of indecomposables, cell at-
tachments, and CW-algebras, in Sections 3.4,
6.1, and 6.3. In doing so, we will set up the
machinery which will be used throughout the
second and third parts of this paper.





CHAPTER 2

CONTEXTS FOR CATEGORY THEORY

To make the theory of sifted monads go through smoothly, the category S in which
we work needs to be endowed with certain structures satisfying certain conditions, as
discussed in this section. We shall also explain the contexts we shall work in for the
remainder of this paper.

2.1. Axioms for categories

We start by describing our axioms for S. We shall assume the reader is familiar with
elementary category theory, and refer to [78] and [69] for more background material.

2.1.1. Simplicial enrichment. — Our first assumption is that the category S is en-
riched in simplicial sets, i.e., it has a class of objects, for each pair X,Y of objects
has a simplicial set MapS(X,Y ) of morphisms from X to Y , a composition law for
such morphisms, and for X = Y an identity 0-simplex in MapS(X,Y ). This is the
definition of a V-enriched category specialized to V = sSet.

Axiom 2.1. — The category S is simplicially enriched.

Restricting to the 0-simplices of the simplicial sets of morphisms we obtain an
ordinary category, which by abuse of notation we also denote S. We thus regard the
simplicial enrichment as an additional structure on this ordinary category.

We want S to be complete and cocomplete in the enriched sense, which means that
not only should S be complete and cocomplete in the ordinary sense, but it should
also have all sSet-indexed colimits and limits. This means that for each simplicial
set K, the functors

(2.1) Y 7→ MapsSet(K,MapS(X,Y )) and Y 7→ MapsSet(K,MapS(Y,X))

are representable. This implies that colimits and limits indexed by small simplicial
categories exist [69, Theorem 3.73].

Axiom 2.2. — The category S is complete and cocomplete in the enriched sense.
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The representing objects for the functors (2.1) respectively give us a copower-
ing − ×− : sSet × S → S and a powering (−)− : sSet × S → S, which satisfy
K × (L×−) ∼= (K × L)×− and ((−)K)L ∼= (−)K×L. It also follows that K × − is
left adjoint to (−)K in the enriched sense; there is an isomorphism of simplicial sets

MapS(K ×X,Y ) ∼= MapS(X,Y
K)

natural in X and Y .

2.1.2. Monoidal structure. — A simplicially enriched monoidal structure on a cate-
gory S consists of

— a tensor product simplicial functor −⊗− : S× S→ S,
— a unit object 1 ∈ S,

together with associativity natural isomorphisms and right and left unit natural iso-
morphisms subject to associativity pentagon and unit triangle axioms. By passing
to 0-simplices one obtains a monoidal structure on the underlying ordinary category.

A braided monoidal structure has additional braiding natural isomorphisms,
βX,Y : X ⊗Y → Y ⊗X, subject to additional associativity hexagon and unit triangle
axioms. It is a symmetric monoidal structure if βY,X ◦ βX,Y = idX⊗Y .

Notation 2.3. — Let k ∈ {1, 2, 3, . . . ,∞}. A k-monoidal structure is a monoidal struc-
ture if k = 1, a braided monoidal structure if k = 2, and a symmetric monoidal
structure if k > 2.

Remark 2.4. — This should not be confused with more refined notion of a k-fold
monoidal category, as in e.g., [8].

A simplicially enriched monoidal structure is said to be closed if − ⊗Y : S→ S has
an enriched right adjoint HomS(Y,−) for all Y ; that is, there are isomorphisms of
simplicial sets

MapS(X ⊗ Y, Z) ∼= MapS(X,HomS(Y,Z)).

natural in X and Z, or in other words HomS(−,−) is the internal hom. The unit
isomorphisms imply that HomS(1,−) is naturally isomorphic to the identity functor
id : S→ S.

Using the braiding we see that when k ≥ 2, the functor X ⊗ − : S → S also has
a right adjoint, which is naturally isomorphic to HomS(X,−). This right adjoint is
canonical if k > 2, but it has a Z-torsor’s worth of isomorphisms to HomS(X,−) if
k = 2. If k = 1 it does not necessarily follow that X⊗− has an enriched right adjoint,
and when we want to additionally impose this we say the monoidal structure is closed
on both sides.

The internal hom makes S enriched over itself: the internal identity 1→HomS(X,X)
is adjoint to the identity X → X in S, and the enriched composition

HomS(X,Y )⊗HomS(Y,Z)→HomS(X,Z)
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is given by using twice the evaluation maps X ⊗HomS(X,Y ) → Y adjoint to the
identity HomS(X,Y )→HomS(X,Y ).

Axiom 2.5. — S is equipped with a simplicially enriched closed k-monoidal structure.
If k = 1, it should be closed on both sides.

Notation 2.6. — If we want to indicate that ⊗ and 1 are part of a simplicially enriched
monoidal structure on the category S, we will denote them ⊗S and 1S.

These axioms imply that the simplicial copowering behaves “centrally” with respect
to the monoidal structure, even if the latter is not braided monoidal. In particular,
there are isomorphisms

(K ×X)⊗ Y ∼= K × (X ⊗ Y ) ∼= X ⊗ (K × Y )

naturally in K, X and Y . By specializing X to 1, we see that there is a (tautologically
simplicial) functor

s(−) : sSet −→ S

K 7−→ K × 1,

so that s(K)⊗X is naturally isomorphic to K ×X. This functor s preserves colimits
because it has a right adjoint, and is strong monoidal because

s(K × L) ∼= (K × L)× 1 ∼= K × (L× 1) ∼= (K × 1)⊗ (L× 1) ∼= s(K)⊗ s(L).

2.1.3. Monoidal functors. — If S and S′ are simplicially enriched categories equipped
with a simplicially enriched monoidal structures, and F : S→ S′ is a simplicial functor,
then a lax monoidality (or just monoidality, for brevity) on F is the data of an enriched
natural transformation

m : ⊗S′ ◦(F × F ) =⇒ F ◦ ⊗S : S× S −→ S′,

and a morphism e : 1S′ → F (1S) in S′. The natural transformation m is subject to an
associativity axiom, and the morphism e is subject to a unitality axiom. This data
is a strong monoidality if e is an isomorphism and m is a natural isomorphism. An
oplax monoidality on F is a lax monoidality on F op : Sop → (S′)op.

If S and S′ are additionally equipped with braidings or symmetries, then (lax,
strong, or oplax) monoidalities on a functor are braided or symmetric if they satisfy
the additional property of being compatible with the braidings in S and S′. Following
Notation 2.3, for k ∈ {1, 2, 3, . . . ,∞}, a k-monoidal functor means a monoidal functor
if k = 1, a braided monoidal functor if k = 2, and a symmetric monoidal functor if
k > 2.

We emphasize that monoidal structures and monoidalities on functors are really ex-
tra structures, but we shall follow common usage of the “monoidal” adjective: a simpli-
cially enriched k-monoidal category is a category together with a simplicially enriched
k-monoidal structure, and a lax/strong/oplax k-monoidal functor is a functor be-
tween the underlying simplically enriched categories together with a lax/strong/oplax
k-monoidality. A k-monoidal natural transformation between k-monoidal functors is
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a natural transformation between the underlying functors, subject to two conditions
(one about multiplication and one about units) but involves no additional data.

2.1.4. Pointed categories and pointed simplicial sets. — A simplicially enriched cate-
gory S which is also pointed, i.e., has an object ∗ that is simultaneously initial and
terminal, is automatically enriched in pointed simplicial sets. The adjunctions in the
unpointed setting in Section 2.1.1 imply those in the pointed setting. As a result,
we obtain a refinement of copowering and powering to sSet∗, which will be denoted
− ∧ − : sSet∗ × S → S and (−)−∗ : sSet∗ × S → S. We may recover the original sim-
plicial enrichment by applying the forgetful functor U+ : sSet+ → sSet to the pointed
simplicial enrichment, and we may recover the copowering and powering by precom-
posing with the left adjoint (−)+ := F+ : sSet→ sSet∗ to U+. If S is cocomplete, then
associated to this we have ⋊ : sSet∗ × S→ S∗ given by

A⋊X := colim(∗ ← ∗ ×X → A×X),

and ∧ : sSet∗ × S∗ → S∗ given by

A ∧X := colim(∗ ← ∗ ×X ∨A× ∗ → A×X).

These are related by the familiar isomorphism A ∧X+
∼= A ⋊X. Here, as later, we

write ∨ rather than ⊔ for the coproduct in a pointed category.

2.1.5. Sifted colimits and geometric realization. — Since the k-monoidal structure is
closed (on both sides if k = 1), ⊗ preserves colimits in each variable. While this does
not imply that ⊗ : S × S → S preserves all colimits, it still preserves sifted colimits.
Recall that a sifted colimit is a colimit over a sifted category, and a diagram I is sifted
if the diagonal functor I→ I× I is final. For example, the reflexive coequalizer diagram

[1] [0]

is sifted, as is ∆op and every filtered category. In fact, a functor between cocomplete
categories preserves sifted colimits if and only if it preserves filtered colimits and
reflexive coequalizers [1]. The following is elementary, see e.g., [52, Proposition 5.7].

Lemma 2.7. — If S satisfies Axioms 2.1, 2.2, and 2.5, then the functors ⊗ : S×S→ S
and × : sSet× S→ S commute with sifted colimits.

We will most often use this to say that sifted colimits commute with ⊗-powers:
colimi∈I(X

⊗n
i ) ∼= (colimi∈IXi)

⊗n as long as the diagram I is sifted.
Axiom 2.2 has further consequences for geometric realizations of simplicial objects,

which will play a large role in the later parts. We let sS denote the category of
simplicial objects in S, i.e., of functors ∆op → S and natural transformations between
these. We may then define an internal singular simplicial object functor

Sing : S −→ sS

X 7−→ SingS(X) :=
(
[n] 7→ X∆n)

.
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The functor Sing has a left adjoint | − | : sS → S, an internal version of geometric
realization, given on X• ∈ sS by the coend ∫n∈∆op

∆n ×Xn, which is isomorphic to
the reflexive coequalizer of the two maps

(2.2)
⊔

[n]→[m] ∆
n ×Xm

⊔
n ∆n ×Xn.

There is also a natural transformation |X• ⊗ Y•| → |X•| ⊗ |Y•|, where on the
left ⊗ denotes the levelwise tensor product. To construct it, we provide a natural
map

⊔
n≥0 ∆n × (Xn ⊗ Yn) → |X•| ⊗ |Y•| coequalizing the two maps of (2.2), by

taking the canonical map

(2.3)

 ⊔
n,m≥0

∆n ×∆m × (Xn ⊗ Ym)

 ∼=
⊔
n≥0

∆n ×Xn

⊗
 ⊔
m≥0

∆m × Ym



|X•| ⊗ |Y•|

and mapping into the terms for m = n using the diagonal map ∆n → ∆n × ∆n.
The following is a consequence of [15, Proposition A.3], and the fact that we have
isomorphisms |∆(−, [n])×∆(−, [m])| → |∆(−, [n])| × |∆(−, [m])| satisfying natural
associativity, unit and symmetry conditions.

Lemma 2.8. — If S satisfies Axioms 2.1, 2.2, and 2.5, then ⊗ commutes with geomet-
ric realization, i.e., (2.3) is a natural isomorphism |X• ⊗ Y•|

∼=→ |X•| ⊗ |Y•|.

Letting ∆inj ⊂ ∆ denote the subcategory with only injective morphisms, we define
the category ssS of semi-simplicial objects in S to be that of functors ∆op

inj → S
and natural transformations between these. Analogous to geometric realization of
simplicial objects we have thick geometric realization ∥−∥ of semi-simplicial objects,
given by replacing ∆ with ∆inj in the coend and coequalizer descriptions. We may left
Kan extend along the inclusion σ : ∆op

inj ↪→ ∆op to construct a simplicial object out of
a semi-simplicial object. This is given by freely adding degeneracies; for Z• ∈ ssS we
have that

(2.4) σ∗Zn ∼=
⊔

[n]↠[m]

Zm,

from which it follows that there is a natural isomorphism |σ∗(−)| ∼= ||−||. It is usually
not true that thick geometric realization commutes with ⊗.

2.2. Examples

The following is a non-exhaustive list of examples of monoidal categories which
satisfy the axioms of Section 2.1:

— sSet, simplicial sets, with cartesian product.
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— sSet∗, pointed simplicial sets, with smash product.
— Top, compactly generated weakly Hausdorff (CGWH) topological spaces, with

cartesian product.
— Top∗, pointed CGWH topological spaces, with smash product.
— sModk, simplicial k-modules, with levelwise tensor product over k.
— SpΣ, symmetric spectra in the sense of [63], with smash product.
— R-Mod, R-module symmetric spectra over a commutative ring spectrum R, with

smash product over R.

Remark 2.9. — We purposefully did not include (non-negatively graded) chain
complexes over a commutative ring k, as there is no strong monoidal functor
s : sSet→ Chk; neither the Eilenberg-Zilber nor the Alexander-Whitney map is an
isomorphism. This is only mildly inconvenient, as by the Dold-Kan theorem [48,
Chapter III.2] simplicial k-modules is an equivalent category which does satisfy our
axioms.

With the exception of the case R-Mod, which will be covered by Section 2.3, we
shall now verify the axioms for the aforementioned categories.

2.2.1. Simplicial sets and pointed simplicial sets. — The category sSet of simplicial
sets is the category Fun(∆op, Set) of functors ∆op → Set and natural transformations
between these. It is simplicially enriched by the simplicial mapping set with p-simplices
MapsSet(X,Y )p := HomsSet(X ×∆p, Y ), establishing Axiom 2.1.

Limits and colimits are computed pointwise and hence sSet is complete and
cocomplete in the ordinary sense. To establish Axiom 2.2, it remains to note
Y 7→ MapsSet(K,MapsSet(X,Y )) and Y 7→ MapsSet(K,MapsSet(Y,X)) are repre-
sentable by K ×X and MapsSet(K,X) respectively.

The functor MapsSet(X,−) is the right adjoint to − ×X, with cartesian product
× the monoidal product of a cartesian enriched closed symmetric monoidal structure,
establishing Axiom 2.5. Pointed simplicial sets are similar.

2.2.2. CGWH topological spaces and pointed CGWH topological spaces. — The cat-
egory Top of compactly generated weakly Hausdorff topological spaces is a standard
convenient category of topological spaces, see [84, Chapter 5]. It is enriched in sim-
plicial sets by taking the p-simplices of MapTop(X,Y ) to be HomTop(X × ∆p, Y ),
establishing Axiom 2.1.

It is complete and cocomplete in the ordinary sense, and the functors

Y 7→ MapsSet(K,MapTop(X,Y )) and Y 7→ MapsSet(K,MapTop(Y,X))

are representable by |K|×X and MapTop(|K|, X) respectively, where MapTop(−,−) is
the mapping space in the (retopologized) compact-open topology. This finishes the
verification of Axiom 2.2.

Finally, it is a cartesian enriched closed symmetric monoidal category, with ⊗
given by (retopologized) cartesian product, establishing Axiom 2.5. In particular,
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2.2. EXAMPLES 17

s : sSet→ Top is given by geometric realization | − | : sSet→ Top, which has as right
adjoint the singular simplicial set Sing : Top→ sSet.

2.2.3. Simplicial k-modules. — Let k be a commutative ring. The category sModk
of simplicial k-modules is the category of functors Fun(∆op,Modk). The simplicial
enrichment is given by taking the p-simplices of MapsModk(X,Y ) to be the maps
X ⊗ k[∆p]→ Y of simplicial k-modules, establishing Axiom 2.1.

As limits and colimits are computed pointwise, this is complete and co-
complete since Modk is. The functors Y 7→ MapsSet(K,MapsModk(X,Y )) and
Y 7→ MapsSet(K,MapsModk(Y,X)) are representable, respectively by the levelwise
tensor product k[K]⊗X and MapsSet(K,X), which inherits from X the structure of
a simplicial k-module. This finishes the verification of Axiom 2.2.

It has an enriched closed symmetric monoidal structure by using tensor prod-
uct ⊗k of k-modules levelwise, establishing Axiom 2.1. In particular, the map
s : sSet→ sModk is given by taking the free k-module levelwise, which is strong
monoidal and has a right adjoint giving by forgetting the k-module structure.

2.2.4. Symmetric spectra. — The category SpΣ of symmetric spectra was introduced
by Hovey, Shipley and Smith [63], see also [62, 104]. A symmetric spectrum E is a se-
quence {En}n≥0 of pointed simplicial sets withSn-actions and maps En ∧ S1 → En+1

so that the iterated suspension maps En ∧ Sk → En+k are Sn ×Sk-equivariant. A
morphism of symmetric spectra E → E′ is a sequence of maps En → E′n compatible
with the structure.

To define the simplicial enrichment, we start with the tensoring of SpΣ over sSet
by (K × E)n = En ∧ K+. Using this we may define MapSpΣ(E,F ) by setting its
p-simplices to be HomSpΣ(∆p × E,F ). This gives Axiom 2.1.

As limits and colimits may be computed objectwise, SpΣ is complete and cocom-
plete. The functor F 7→ MapsSet(K,MapSpΣ(E,F )) is represented by K × E with
n-th level given by K+ ∧En. Similarly the functor F 7→ MapsSet(K,MapSpΣ(F,E)) is
represented by EK with n-th level given by Map∗(K+, En). This verifies Axiom 2.2.

The motivation for introducing symmetric group actions is to endow SpΣ with an
enriched symmetric monoidal structure. This is called the smash product, denoted ∧,
and is given by setting (E ∧ F )n to be the coequalizer of the diagram∨

p+1+q=n(Sn)+ ∧Sp×S1×Sq
Ep ∧ S1 ∧ Fq

∨
p+q=n(Sn)+ ∧Sp×Sq

Eq ∧ Fq.

This formula implies that the smash product commutes with colimits in each variable,
and jointly commutes with sifted colimits, because the smash product of pointed
simplicial sets does. This is closed with right adjoint to − ∧E given by the function
spectrum Fun(E,−) of Definition 2.2.9 of [63]. The monoidal unit 1 is the sphere
spectrum S with n-th entry given by Sn := (S1)∧n. This completes the verification of
Axiom 2.5.

The sphere spectrum is an example of a suspension spectrum: for any pointed
simplicial set K there is a symmetric spectrum Σ∞K with n-th entry given by Sn∧K.
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18 CHAPTER 2. CONTEXTS FOR CATEGORY THEORY

The strong monoidal functor s : sSet → SpΣ is the composition of +: sSet → sSet∗
and Σ∞ : sSet∗ → SpΣ, the latter being strong monoidal by Proposition 1.3.1 of [63].
It has right adjoint given by ev0, see Proposition 2.2.6 (F0 is their notation for Σ∞).

2.3. Module categories

If S is symmetric monoidal, we can define commutative algebra objects in S. Given
a commutative algebra R in S, with underlying object R ∈ S, we can define the
category R-Mod of (left) R-modules. The following shows that this satisfies the axioms
of Section 2.1.

Proposition 2.10. — If S satisfies the axioms of Section 2.1 and R is a commutative
algebra object of S, then R-Mod also satisfies the axioms of Section 2.1.

This satisfies Axiom 2.1, as there is a simplicial enrichment given by taking
MapR-Mod(M,N) to be the coreflexive equalizer in sSet of the two maps

MapR-Mod(M,N) MapS(M,N) MapS(R⊗M,N),

where M , N denote the underlying objects of M, N in S.
There is a forgetful functor UR : R-Mod → S with left adjoint given by a free

R-module functor FR : S → R-Mod, explicitly given by X 7→ R ⊗X. It is complete
and cocomplete, as the forgetful functor to S creates both limits and colimits. The
functor N 7→ MapsSet(K,MapS(M,N)) is representable by K ×M , which inherits
a R-module structure the R-module structure aM : R ⊗M → M , and the functor
N 7→ MapsSet(K,MapS(N,M)) is similarly representable by MK . This verifies Ax-
iom 2.2.

To verify Axiom 2.5, if M and N are R-modules, with underlying objectsM,N ∈ S,
we define the tensor product M⊗RN to have underlying object given by the reflexive
coequalizer

M ⊗R⊗N M ⊗N UR(M⊗R N).

of the maps given by the R-module structure maps of M and N, with reflection given
by the unit of R. This may be endowed with the structure of an R-module, using the
left R-module structure on M (this uses the fact that R is a commutative algebra
object). This yields a functor −⊗R− : R-Mod×R-Mod→ R-Mod.

The resulting symmetric monoidal structure is closed. To describe the right adjoint,
let us first explain how to endow the internal hom HomS(X,N) with an R-module
structure when N is endowed with an R-module structure aN : R⊗N → N . Namely,
the structure map is adjoint to the map

R⊗X ⊗HomS(X,N)
R⊗ev−−−−→ R⊗N aN−→ N.
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2.4. DIAGRAM CATEGORIES 19

We write HomS(X,N) for the resulting R-module. Now we can describe the right
adjoint HomR(M,−) to M⊗R − as the equalizer

HomR(M,N) HomS(M,N) HomS(R⊗M,N)

where the top map is induced by R ⊗M → M and the bottom map is the adjoint
of R⊗M ⊗HomS(M,N)→ R⊗N → N . A priori this is an object of S, but the
equalizer is one of R-modules and the forgetful functor to S creates limits so this
describes HomR(M,N) as an R-module.

This yields a functor HomR(−,−) : R-Modop ×R-Mod→ R-Mod.
In this case, the strong monoidal functor s : sSet→ R-Mod is given by the compo-

sition of the strong monoidal functor sSet→ S with FR.

2.4. Diagram categories

If G is a small category then we may form the category C = Fun(G, S) = SG

of G-shaped diagrams in S. When G is discrete, i.e., the only morphisms are identities,
taking SG amounts to adding an additional grading to S. We will denote the evaluation
of an object X of SG at an object g ∈ G by X(g). The following explains when such
a diagram category satisfies the axioms of Section 2.1.

Proposition 2.11. — If S satisfies the axioms of Section 2.1, so is in particular
k-monoidal, and G is a k-monoidal category, then C = SG also satisfies the axioms of
Section 2.1.

To prove Proposition 2.11, we begin by noting that it has a simplicial enrichment
with MapC(X,Y ) to be the sub-simplicial set of

∏
g∈G MapS(X(g), Y (g)) of natural

transformations. This verifies Axiom 2.1.
To verify Axiom 2.2, we first observe that because colimits and limits are computed

pointwise, the category C is complete and cocomplete. By taking the copowering and
powering objectwise, we obtain a copowering and powering of C over sSet giving rise
to the required representing objects.

Next we claim that if S and G are both k-monoidal then C has a k-monoidal
structure, which is closed if the k-monoidal structure on C is, verifying Axiom 2.5.
The monoidal structure on C is given by Day convolution, defined as follows. We shall
introduce the convention that the tensor product of G is denoted ⊕G, even though we
do not assume it is symmetric. This is to prevent the symbol ⊗ from being overloaded.
The monoidal structure on S induces an exterior product

⊗̄ : C× C = SG × SG −→ SG×G

(X,Y ) 7−→ [(g, h) 7→ X(g)⊗S Y (h)] ,
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20 CHAPTER 2. CONTEXTS FOR CATEGORY THEORY

and we may then define X ⊗C Y as the left Kan extension of X⊗Y : G×G→ S along
the monoidal structure ⊕G : G× G→ G, i.e.,

G× G S× S

G S.

X×Y

⊕G ⊗S

X⊗CY

The result is a functor X ⊗C Y : G → S, i.e., an object of C. This construction gives
a simplicially enriched functor −⊗C− : C× C→ C.

The following is often stated only when S in symmetric monoidal. The reason is
that in the literature G is often taken to be enriched in S (e.g., [30]), and then checking
associativity for coends requires the existence of a symmetric braiding. This is not
necessary if G is an ordinary small category, and in fact, the centrality of sSet should
allow one to take G to be a simplicial category.

Theorem 2.12. — The functor ⊗C : C × C → C is part of a simplicially enriched
k-monoidal structure on C = SG with unit 1C given by G(1G,−)⊗1S. If the monoidal
structure on S is closed (on both sides if k = 1) then this monoidal structure is closed
as well (on both sides if k = 1).

By definition of ⊗C as a left Kan extension, specifying a morphism ϕ : X ⊗C Y → Z

is the same as specifying morphisms ϕg,h : X(g) ⊗S Y (h) → Z(g ⊕G h) in S for
all g, h ∈ G, forming a natural transformation of functors G × G → S. In particu-
lar, there is a universal map X(g) ⊗S Y (h) → (X ⊗C Y )(g ⊕G h). Given a braiding
βG
g,h : g ⊕G h→ h⊕G g of ⊕G we construct a braiding βC

X,Y : X⊗C Y → Y ⊗CX of ⊗C

in terms of the maps (the choices of braidings used in the formula are just a conven-
tion, though using (βG)−1 means that Yoneda is braided monoidal if Gop is given the
braiding (βG)−1)

(βC
X,Y )g,h : X(g)⊗S Y (h)

βS

−→ Y (h)⊗S X(g)→ (Y ⊗C X)(h⊕G g)

(Y⊗CX)((βG
g,h)−1)

−−−−−−−−−−−−→ (Y ⊗C X)(g ⊕G h).

If the braidings on G and S are symmetries, then so is the induced braiding on C.
How does this depend on G? For any functor p : G → G′, there is a simplicially

enriched change-of-diagram-category functor p∗ : SG → SG′ obtained as the left adjoint
to the functor p∗ : SG′ → SG, given by enriched left Kan extension. The following is
proven by a straightforward manipulation of coends.

Lemma 2.13. — If p : G → G′ is (strong or oplax) monoidal, then p∗ : SG → SG′ is
(strong or lax) monoidal.

In particular, we can apply this to the inclusion of the monoidal unit 1G : ∗ → G.
This is a strong monoidal functor, so the result is a strong monoidal simplicially
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2.4. DIAGRAM CATEGORIES 21

enriched functor (1G)∗ : S → SG which is a left adjoint and so preserves colim-
its. We then obtain a strong monoidal functor sG : sSet → SG as the composition
(1G)∗ ◦ s : sSet→ S→ SG.

Example 2.14. — Although our main examples shall have G be a groupoid, it is con-
venient to allow also non-invertible morphisms. In particular, in the discussion of
filtrations in Section 5 we will use Z≤, the set of integers considered as a poset with
the usual order. An object X of SG×Z≤ ∼= CZ≤ is then a filtered object of C = CG,
though the maps X(i)→ X(i+ 1) need not be injective in any way.
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CHAPTER 3

SIFTED MONADS AND INDECOMPOSABLES

As explained in the introduction, our eventual goal is a robust theory of (cellular)
Ek-algebras and of (cellular) modules over an associative algebra, both in a category
C = SG. This can be done in a uniform manner by considering both examples as
instances of algebras over an operad in C, and for many purposes all that is important
is that both are examples of algebras over a monad on C which preserves sifted colimits
(we shall explain in Section 4 that the monad associated to an operad always preserves
sifted colimits). The goal of this section is to explain that theory. Unless mentioned
otherwise, we assume that S satisfies the axioms of Section 2.1 and hence so does C
by Proposition 2.11.

3.1. Monads and adjunctions

The category of endofunctors Fun(C,C) is a monoidal category under composition,
the monoidal unit being the identity functor id : C→ C.

Definition 3.1. — A monad T is a unital monoid in Fun(C,C).

Concretely, this means that there are natural transformation µT : T 2 ⇒ T and
ιT : id ⇒ T , satisfying unit and associativity axioms saying that the following dia-
grams commute for all objects X of C:

TX T 2X TX

TX

ιTT X

µT
T X

T (ιTX)
T 3X T 2X

T 2X TX.

µT
T X

T (µT
X) µT

X

µT
X

Definition 3.2. — A T -algebra X = (X, aTX) consists of an object X ∈ C and a
structure map αTX : TX → X such that the following diagrams commute:

X TX

X

ιTX

αT
X

T 2X TX

TX X.

µT
X

T (αT
X) αT

X

αT
X
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24 CHAPTER 3. SIFTED MONADS AND INDECOMPOSABLES

A morphism of T -algebras X → Y is a morphism f : X → Y in C such that
αTY ◦ T (f) = f ◦ αTX . The category of T -algebras is denoted AlgT (C).

Monads are closely related to adjunctions. From any adjunction

C D
F

G

we can obtain a monad GF : C → C, where the counit natural transformation
ε : FG → id is used to define µGF as GεF : GFGF ⇒ GF and the unit natural
transformation η : id⇒ GF gives ιGF .

The monad T is a special case of this. The forgetful functor UT : AlgT (C) → C
given by UT (X) = X has a left adjoint given by sending an object X of C to the free
T -algebra FT (X), having underlying object TX and structure map µTX : T 2X → TX.
We have T ∼= UTFT and the monadic adjunction

C AlgT (C).
FT

UT

3.2. Sifted monads

We shall restrict our attention to monads which are “finitary” in the following sense.

Definition 3.3. — A monad T on C is sifted if the underlying functor T : C → C
preserves all sifted colimits.

It is easier to work with a sifted monad for two reasons: (i) its category of algebras
is well-behaved, and (ii) we can use a “density argument” to construct functors out of
the category of T -algebras.

3.2.1. Categorical properties. — We start by establishing basic properties of the cat-
egories of algebras over a sifted monad. Though the following lemmas are well-known,
see e.g., Exercise II of Section VI.2 of [78] and Proposition II.7.4 of [36], we believe it
is helpful to give a proof.

Lemma 3.4. — The category AlgT (C) has sifted colimits, which are preserved by the
forgetful functor UT : AlgT (C)→ C.

Proof. — Let i 7→ Xi : I → AlgT (C) be a sifted diagram. Applying the forgetful
functor to C gives the diagram i 7→ Xi in C with colimit colimi∈IXi, and as T
preserves sifted colimits we may endow this with a T -algebra structure via

T (colim
i∈I

Xi) ∼= colim
i∈I

TXi −→ colim
i∈I

Xi.

This T -algebra satisfies the universal property for the colimit.

The reflexive coequalizer diagram is sifted, and there is a reflexive coequalizer
diagram

FT (T (X)) FT (X)
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in AlgT (C), where the maps are given by FT (αTX) and µT and the reflection is given
by FT (ιTX). The counit FT (X) = FTUT (X) → X coequalizes this diagram, and by
the above lemma one can check whether this is the coequalizer after applying UT : it
is, because the resulting coequalizer diagram in C is split. The diagram

(3.1) FT (T (X)) FT (X) X

is called the canonical presentation of X in AlgT (C).

Lemma 3.5. — The category AlgT (C) is complete and cocomplete.

Proof. — Limits are calculated in C, and inherit a T -algebra structure in a standard
way.

For colimits, first note that free diagrams, i.e., those functors J→ AlgT (C) factor-
ing through FT : C→ AlgT (C), have colimits, as FT is a left adjoint and so preserves
colimits. A general diagram j 7→ Xj in AlgT (C) may be reduced to reflexive coequal-
izers and free diagrams by means of the canonical presentation. Explicitly, the colimit
of j 7→ Xj ∈ AlgT (C) is the coequalizer of the diagram

FT (colim
j∈J

TXj) FT (colim
j∈J

Xj).

We will occasionally add superscripts T to colimits or limits when we want to
emphasize that they are taken in AlgT (C). For example, we use the notation ⊔T to
denote the coproduct in the category AlgT (C), or ∨T if we want to stress that C is
pointed.

3.2.2. Functors out of AlgT (C). — The full subcategory of AlgT (C) on the image
of FT is called the category of Kleisli algebras for T and denoted KleisT (C). Equiv-
alently, the Kleisli category has the same objects as C, but the morphisms from X

to Y are given by C(X,TY ), with composition of morphisms defined using the monad
structure on T .

If G : AlgT (C)→ D is a functor, then the composition H := G◦FT : C→ D inherits
a natural transformation

µH : H ◦ T = (G ◦ FT ) ◦ (UT ◦ FT )⇒ G ◦ FT = H

coming from the counit of the adjunction. The natural transformation µH satisfies
the axioms of a right T -module functor. This means it is a right module over T
in Fun(C,D), i.e., the following diagrams commutes for all objects X of C:

HT 2X HTX

HTX HX

µH
T X

HµT
X µH

X

µH
X

HX HTX

HX.

HιTX

µH
X

Notice that the above construction only used the restriction of G to the Kleisli
category: if G : KleisT (C) → D is a functor, then H = G ◦ FT : C → D acquires the
structure of a right T -module functor.
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Lemma 3.6. — There is an equivalence of categories between the category of functors
KleisT (C)→ D and the category of right T -module functors C→ D.

Proof. — We described the forwards direction above on objects of Fun(KleisT (C),D).
It clearly extends to morphisms, i.e., natural transformations.

For the converse direction, if H : C → D is given the structure of a right module
functor for a monad T on C, then we define a functor G : KleisT (C) → D on objects
by G(FT (X)) = H(X). On a (possibly non-free) morphism f : FT (X)→ FT (Y ), with
adjoint f ′ : X → TY , we define a morphism G(f) ∈ D(HX,HY ) as the composition

H(X)
H(f ′)−−−−→ H(T (Y ))

µH−→ H(Y ).

This defines the functor G, and this construction clearly extends to natural transfor-
mations. These two constructions induce the stated equivalence of categories.

Since the Kleisli category generates the category of T -algebras under sifted colimits
(or even just reflexive coequalizers), there is a similar description of functors out
of AlgT (C).

Proposition 3.7. — Suppose that T is a sifted monad on C and D has all sifted col-
imits. Then there is an equivalence of categories between the category of functors
AlgT (C)→ D preserving sifted colimits, and the category of right T -module functors
C→ D preserving sifted colimits.

Most relevant for us will be the reverse direction, so let us make it explicit. Given
a right T -module functor H : C→ D we define G(X) as the reflexive coequalizer

H(T (X)) H(X) G(X)

in AlgT (C), of the maps µH and H(αTX) with reflection H(ιTX). We call this technique
of defining functors out of AlgT (C) extension by density under sifted colimits.

3.2.3. Simplicial monads. — Suppose now that C is a category enriched in sSet.

Definition 3.8. — A simplicial monad is a unital monoid in the category of simplicially
enriched functors T : C→ C.

We now show that if T is sifted and simplicial, then AlgT (C) is simplicially enriched
and copowered over sSet. In particular, the copowering is constructed using extension
by density under sifted colimits.

Lemma 3.9. — If T is simplicial the category AlgT (C) is enriched over sSet, and if
additionally T is sifted then AlgT (C) is copowered over sSet. The copowering satisfies
K × FT (X) ∼= FT (K ×X) naturally in K and X.

Proof. — For X,Y ∈ AlgT (C) we define the simplicial set EMapAlgT
(X,Y) as the

equalizer

EMapAlgT
(X,Y) EMapC(X,Y ) EMapC(T (X), Y )
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in sSet, where the top and bottom maps are given by

αTY ◦ T : EMapC(X,Y ) −→ EMapC(TX, TY ) −→ EMapC(T (X), Y ),

αTX : EMapC(X,Y ) −→ EMapC(TX, Y ).

For a simplicial set K and X ∈ AlgT (C) we define the copowering K ×X by the
reflexive coequalizer

FT (K × T (X)) FT (K ×X) K ×X

in AlgT (C), of the map FT (K × αTX) and the map

FT (K × T (X))
FT (ν)−−−−→ FT (T (K ×X))

µT−→ FT (K ×X)

where ν : K × TX → T (K ×X) is adjoint to

K −→ EMapC(X,K ×X) −→ EMapC(TX, T (K ×X)).

The reflection is given by FT (K × ιTX) : FT (K × X) → FT (K × T (X)). From this
construction it follows that K × FT (X) ∼= FT (K ×X).

An elementary argument gives a natural isomorphism

EMapAlgT
(K ×X,Y) ∼= EMapAlgT

(X,Y)K ,

showing that × : sSet× AlgT (C)→ AlgT (C) is indeed a copowering.

If T is simplicial, then so is the Kleisli category KleisT (C): the morphism spaces
are given by EMapKleisT

(X,Y ) = EMapC(X,TY ) and composition uses the simplicial
monad structure on T . If D is simplicially enriched, then the proof of Lemma 3.6
with morphism sets replaced by morphism spaces yields an equivalence between the
category of simplicial functors AlgT (C) → D and right simplicial T -module functors
C → D. Using this, Proposition 3.7 upgrades to an equivalence between simplicial
functors preserving sifted colimits, and right simplicial T -module functors preserving
sifted colimits.

3.3. The basepoint monad

We have assumed that C is complete and cocomplete, so in particular it has an
initial object i and terminal object t. We have however not assumed that the initial
and terminal objects coincide, i.e., that C is pointed. We can make it pointed by
considering instead C∗, the undercategory of t. The functor U+ which forgets the
reference map from the terminal object is part of an adjunction

C C∗
F+

U+

where F+ is given by X 7→ (t → X ⊔ t). The composition U+F+ : C → C is thus
given by taking coproduct with the terminal object, and this composition forms a
monad on C. We denote this monad by +. The underlying functor of (−)+ is defined
in terms of colimits and finite products (the terminal object is the empty product),
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so preserves filtered colimits and reflexive coequalizers. The adjunction is easily seen
to be monadic, i.e., there is an equivalence of categories C∗ ∼= Alg(−)+(C). If the
category C is already pointed, i.e., the unique map i → t is an isomorphism, then
C∗ ∼= C and + is the identity functor.

In the remainder of this section, we will construct a tensor product on C∗ from a
tensor product on C. Whenever we consider C∗ as a monoidal category we shall endow
it with this monoidal structure.

Lemma 3.10. — Suppose (C,⊗,1C) is a category with a k-monoidal structure. Then
there is a k-monoidal structure (C∗,?,1C∗) on C∗ such that (−)+ : C→ C∗ is strong
monoidal and U+ : C∗ → C is lax monoidal. Moreover, if the monoidal structure
on C is closed (on both sides), so is that on C∗.

Proof. — We will use general results about monoidal monads. If (C,⊗,1) is a
monoidal category then a monad T : C→ C is called monoidal if it is equipped with a
lax monoidality such that T 2 ⇒ T and id⇒ T are monoidal natural transformations.
It is well-known [31, p. 30] that in this situation the category KleisT (C) inherits a
monoidal structure. Let us briefly recall the construction. Using Lemma 3.6, we may
define a functor

−⊗T − : KleisT (C)× KleisT (C) = KleisT×T (C× C) −→ KleisT (C)

by giving a right T × T -module functor F : C × C → KleisT (C). Taking F (−,−) =

FT (−⊗−) and equipping it with the right T × T -module structure

FT (T (−)⊗ T (−)) −→ FT (T (−⊗−)) −→ FT (−⊗−),

given by the lax monoidality of T followed with the right T -module structure of FT ,
therefore defines − ⊗T −. A similar discussion produces associators and left and right
unitors, verifies the triangle and pentagon axioms, and yields a natural transformation
UT (−)⊗ UT (−)⇒ UT (−⊗T −).

If in addition − ⊗− preserves sifted colimits, which it always does in cases we will
consider by Lemma 2.7, then by Proposition 3.7 this definition extends to a monoidal
structure ⊗T on AlgT (C). By construction, the functor FT : C→ AlgT (C) has a strong
monoidality and its right adjoint UT a lax monoidality. Finally, if the monoidality
on T is braided or symmetric, then ⊗T inherits a braiding or symmetry.

If (C,⊗,1) is a monoidal (or braided or symmetric monoidal) structure on C, then
the monad + may be given a lax monoidality, using the morphisms

(X ⊔ t)⊗ (Y ⊔ t) ∼= (X ⊗ Y ) ⊔ ((X ⊗ t) ⊔ (t⊗ Y ) ⊔ (t⊗ t)) −→ (X ⊗ Y ) ⊔ t,
which is the identity map on the first summand and the unique map to t on the
second summand. By the above considerations, this defines a monoidal (or braided or
symmetric monoidal) structure on C∗ ∼= Alg(−)+(C), which we shall denote as

− ? − : C∗ × C∗ −→ C∗.
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If C is closed then C∗ with ? is also closed, with enriched right adjoint to − ? X

given by the equalizer

HomC∗(X,Y ) HomC(X+, Y ) HomC(X,Y ).

Example 3.11. — When applied to sSet or Top with ⊗ the cartesian product, ? is the
usual smash product. When applied to a pointed category, ? is ⊗.

3.4. Morphisms of monads and indecomposables

It is helpful to define the notion of a morphism between monads on different cate-
gories, rather than demand they are defined on the same category.

Definition 3.12. — Let T be a monad on a category C and T ′ be a monad on a
category C′. Then a morphism of monads (F, ϕ) : (C, T ) → (C′, T ′) is a pair of a
functor F : C′ → C and a natural transformation ϕ : TF ⇒ FT ′ so that the following
diagrams commute for all objects X of C

T 2FX TFT ′X F (T ′)2X

TFX FT ′X

TϕX

µT
F X

ϕT ′X

FµT ′
X

ϕX

FX FT ′X

TFX.

ιTF X

FιT
′

X

ϕX

This definition is made so that the following holds:

Lemma 3.13. — A morphism of monads (F, ϕ) : (C, T )→ (C′, T ′) induces a functor

(F, ϕ)∗ : AlgT ′(C
′) −→ AlgT (C)

satisfying UT (F, ϕ)∗ = FUT
′
.

Proof. — If X = (X, aT
′

X ) is a T ′-algebra, then FX is a T -algebra, with aTFX given
by

TFX
ϕX−→ FT ′X

FaT ′
X−−−→ FX.

To verify this, we observe that in the diagram

T 2FX TFX

TFT ′X F (T ′)2X FT ′X

TFX FT ′X FX,

µT
F X

TϕX ϕX

ϕT ′X

TFαT ′
X

FµT ′
X

FT ′aT ′
X

FaT ′
X

ϕX FaT ′
X

the top rectangle commutes because ϕ is a morphism of monads, the bottom-left
square commutes because ϕ is a natural transformation, and the bottom-right square
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commutes because X is a T ′-algebra. Similarly, the folllowing diagram commutes
because F is a functor and ϕ is a morphism of monads

FX TFX

FX FT ′X.

ιTF X

FιT
′

X
ϕX

FαT ′
X

This construction of a T -algebra structure on FX is natural in X, and yields the
required functor.

If the functor F is a right adjoint, then (F, ϕ)∗ is a right adjoint too, as follows.

Lemma 3.14. — Suppose that T ′ is a sifted monad and C′ has all sifted colimits. Then
if (R,ϕ) : (C, T )→ (C′, T ′) is a morphism of monads and R has a left adjoint L, then
there is a change-of-category-and-monad adjunction

AlgT (C) AlgT ′(C
′).

(L,ϕ)∗

(R,ϕ)∗

satisfying UT (R,ϕ)∗ = RUT
′

and (L, ϕ)∗F
T = FT

′
L. Moreover, if T and T ′ are

simplicial and if L ⊣ R is a simplicial adjunction, then so is (L, ϕ)∗ ⊣ (R,ϕ)∗.

Proof. — The natural transformation

LT
LTη−−−→ LTRL

LϕL−−−→ LRT ′L
εT ′L−−−→ T ′L

induces a right T -module functor structure on FT
′
L. As this functor also preserves

sifted colimits, because it is the composition of two left adjoints, we may invoke Propo-
sition 3.7 to obtain a functor (L, ϕ)∗ satisfying (L, ϕ)∗F

T = FT
′
L. The statement

about simplicial enrichments is justified by the considerations of Section 3.2.3.

Example 3.15 (The change-of-monad adjunction). — Let us specialize to L = R = IdC.
Suppose (IdC, ϕ) : (C, T ) → (C, T ′) is a morphism of monads, which we abbreviate
to ϕ : T → T ′, then we obtain a change-of-monad adjunction

AlgT (C) AlgT ′(C)
ϕ∗

ϕ∗

satisfying UTϕ∗ = UT
′
and ϕ∗FT = FT

′
.

Example 3.16 (The monadic adjunction). — Let Id denote the identity monad on C, so
that AlgId(C) = C. Then the change-of-monad adjunction for the monad map Id→ T

is precisely the monadic adjunction FT ⊣ UT .

3.4.1. Augmented monads and indecomposables. — Recall that + denotes the base-
point monad on C, as described in Section 3.3.

Definition 3.17. — An augmentation on a monad T on C is a morphism of monads
ε : T → +. An augmented monad is a monad with an augmentation.
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Example 3.18. — If C is pointed then C = C∗ and + = Id, so an augmentation is a
morphism of monads T → Id.

Invoking Example 3.15, we obtain:

Definition 3.19. — Let T be a sifted monad on a category C which has sifted colimits
and ε : T → + be an augmentation. The indecomposables functor QT : AlgT (C)→ C∗
is given by

QT (X) := ε∗(X).

The composition of morphisms of monads Id→ T → + on C gives rise to a pair of
adjunctions

C = AlgId(C) AlgT (C) Alg+(C) = C∗,
FT

UT

QT

ZT

where we have written ZT = ε∗ : C∗ → AlgT (C) for the right adjoint to QT = ε∗. The
right adjoint ZT is the trivial T -algebra functor.

Corollary 3.20. — The functors FT : C → AlgT (C) and QT : AlgT (C) → C∗ preserve
colimits. The composition QT ◦FT : C→ C∗ is naturally isomorphic to the functor F+

(which takes coproduct with the terminal object, regarded as the basepoint).

Proof. — The functors preserve colimits because they are left adjoints. The compo-
sition ZT ◦UT is the functor which forgets the basepoint and hence its left adjoint is
as asserted.

Let us unravel the definition of QT . As QT preserves colimits, applying it to the
canonical presentation (3.1) of a T -algebra X gives a reflexive coequalizer

+T (X) +X QT (X)

in C∗. The maps are given by µ+ ◦ (+ε) and +αTX , and the reflection is given by +ιTX .
Roughly speaking, QT (X) is obtained from +X by collapsing to the basepoint every-
thing obtained by applying a non-identity operation in T .

3.4.2. Indecomposables and morphisms of monads. — Let (R,ϕ) : (C, T )→ (C′, T ′) be
a morphism of sifted monads, and suppose that R has a left adjoint L. Since R is a
right adjoint, it preserves t so the morphisms

R(X) ⊔ t ∼= R(X) ⊔R(t) −→ R(X ⊔ t)
induce a natural transformation υ : + ◦R ⇒ R ◦ + of functors C′ → C, yielding a
morphism of monads (R, υ) : (C,+) → (C′,+′). By Lemma 3.14 we obtain from this
an adjunction

Alg+(C) = C∗ Alg+(C′) = C′∗.
(L,υ)∗

(R,υ)∗
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Explicitly, we have

(R, υ)∗(t→ X ′) =
(
t ∼= R(t)→ R(X ′)

)
(L, υ)∗(t→ X) =

(
t→ colim(t← L(t)→ L(X))

)
.

Lemma 3.21. — Suppose we have a diagram

(C, T ) (C,+C)

(C′, T ′) (C′,+C′)

(IdC,ε)

(R,ϕ) (R,υ)

(IdC′ ,ε
′)

of morphisms of monads commuting up to natural isomorphism. Then there is a nat-
ural isomorphism

QT
′
((L, ϕ)∗(−)) ∼= (L, υ)∗(Q

T (−)) : AlgT (C) −→ C∗.

Proof. — The diagram yields natural isomorphism of right adjoints

(R,ϕ)∗(IdC′ , ε
′)∗ ∼= (IdC, ε)

∗(R, υ)∗,

and hence a natural isomorphism of left adjoints.

Example 3.22. — Let us specialize to L = R = IdC and let ϕ : T → T ′ be a morphism
of monads. If ε′ : T ′ → + an augmentation of T ′, then ε := ε′ ◦ ϕ is an augmentation
of T . Then there is a natural isomorphism

QT
′
(ϕ∗(−)) ∼= QT (−) : AlgT (C) −→ C∗.

Example 3.23 (Indecomposables and change-of-diagram-category). — We will often
invoke Lemma 3.21 in the following setting. A functor p : G→ G′ induces by precom-
position a functor p∗ : CG′ → CG which has a left adjoint given by left Kan extension
p∗ : CG → CG′ . Suppose we are given augmented sifted monads T and T ′ in CG and
CG′ and a commutative diagram of the form

(CG, T ) (CG,+CG)

(CG
′
, T ′) (CG

′
,+CG′ ).

εT

(p∗,ϕ) (p∗,υ)

εT ′

This diagram of functors commutes up to natural isomorphism, so there is a natural
isomorphism

QT
′
((p∗, ϕ)∗(−)) ∼= p∗(Q

T (−)) : AlgT (CG) −→ CG′

∗ .

When G′ is the terminal category, so that CG′ = C, this expresses QT
′
((p∗, ϕ)∗(X)) ∈ C∗

as the colimit over G of the functor QT (X) : G→ C∗. In contrast, there is usually no
simple formula for QT ((p∗, ϕ)∗(X)).
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CHAPTER 4

MONADS ASSOCIATED TO OPERADS

The most important class of monads on C to which we will apply the previous
discussion are monads associated to operads in C: these are always sifted, as we
will show in Corollary 4.12. We continue to suppose that C satisfies the axioms of
Section 2.1, and that it is a k-monoidal category. In order to treat these varying levels
of symmetry uniformly, we will consider operads as certain k-symmetric sequences,
and we first define this notion. See [40, 52] for further background.

4.1. Symmetric, braided and ordered sequences

Operads will be objects of a category of k-symmetric sequences, for k ∈ {1, 2,∞}.
When describing modules over an associative algebra in terms of operads, there are
no higher operations, and we may use 0-symmetric sequences to encode these special
operads.

Definition 4.1. — Write n := {1, . . . , n} for n ≥ 0, so 0 = ∅. We define four groupoids:

(i) FB∞ has objects n for n ≥ 0, which have automorphism groups given by the
symmetric groups Sn. There are no other morphisms.

(ii) FB2 has objects n for n ≥ 0, which have automorphism groups given by the
braid groups βn. There are no other morphisms.

(iii) FB1 has objects n for n ≥ 0, and no non-identity morphisms.
(iv) FB0 has one object 1, and no non-identity morphisms.

Let us first discuss the cases k ∈ {1, 2,∞}, as the case k = 0 is slightly different.
Recall that a k-monoidal category is a monoidal category if k ≥ 1, a braided monoidal
category if k ≥ 2, and a symmetric monoidal category if k > 2. For k ≥ 1, the
categories FBk have a monoidal structure ⊗ given on objects by n⊗m := n+m and
on morphisms by disjoint union of permutations or braids. Furthermore, FB2 has a
braiding

βm,n : m⊗ n −→ n⊗m
given by the braid which crosses the left m strands in front of the right n strands
(see [67, p. 36]), and the corresponding permutation gives a braiding on FB∞ which is
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actually a symmetry. Thus FBk has the structure of a k-monoidal category, and is in
fact the free strict k-monoidal category on one generator. In order to give a uniform
treatment of these three cases, we will write Gn = AutFBk

(n).
To any category C we may associate the category of functors CFBk . If C is closed

k-monoidal then Day convolution endows CFBk with a closed k-monoidal structure.
Explicitly, X ⊗ Y is given by

(X ⊗ Y)(r) := colim
(k1,k2,f : k1⊗k2

∼→r)
X (k1)⊗ Y(k2),

which we may identify as ⊔
k1,k2≥0
k1+k2=r

Gr ×Gk1
×Gk2

X (k1)⊗ Y(k2),

where the homomorphism Gk1 × Gk2 → Gk1+k2 = Gr is given by the monoidal
structure of FBk.

There is a further piece of structure available on the categories FBk; it is perhaps
most familiar in the case k = 2, where it is given by cabling braids.

Definition 4.2. — We define three groupoids:

(i) FB(2)
∞ has objects (n, k1, . . . , kn) for n, ki ≥ 0. A morphism from (n, k1, . . . , kn)

to (n′, l1, . . . , ln′) exists only if n = n′, in which case it consist of a permuta-
tion σ ∈ Sn such that kσ(i) = li for all i, as well as permutations τi ∈ Ski .
Composition is given by

(σ′; τ ′1, . . . , τ
′
n) ◦ (σ; τ1, . . . , τn) = (σ′ ◦ σ; τ ′σ(1) ◦ τ1, . . . , τ

′
σ(n) ◦ τn).

(ii) FB
(2)
2 has objects (n, k1, . . . , kn) for n, ki ≥ 0. A morphism from (n, k1, . . . , kn)

to (n′, l1, . . . , ln′) exists only if n = n′, in which case it consist of a braid σ ∈ βn
such that kσ(i) = li for all i, as well as braids τi ∈ βki

. Composition is given by
the same formula as above.

(iii) FB
(2)
1 has objects (n, k1, . . . , kn) for n, ki ≥ 0, and no non-identity morphisms.

In each case there is a functor c : FB
(2)
k → FBk given on objects by sending

(n, k1, . . . , kn) to k1 ⊗ · · · ⊗ kn, and (for k ≥ 2) given on morphisms by cabling :
sending the morphism (σ; τ1, . . . , τn) : (n, k1, . . . , kn)→ (n, l1, . . . , ln) to

k1 ⊗ · · · ⊗ kn k1 ⊗ · · · ⊗ kn kσ(1) ⊗ · · · ⊗ kσ(n) = l1 ⊗ · · · ⊗ ln.
τ1⊗···⊗τn σ

Objects X ,Y ∈ CFBk can be combined to give a functor

YX : FB
(2)
k −→ C

(n, k1, . . . , kn) 7−→ X (n)⊗ Y(k1)⊗ · · · ⊗ Y(kn),
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where the morphism (σ; τ1, . . . , τn) : (n, k1, . . . , kn)→ (n, l1, . . . , ln) is sent to

X (n)⊗ Y(k1)⊗ · · · ⊗ Y(kn) X (n)⊗ Y(k1)⊗ · · · ⊗ Y(kn)

X (n)⊗ Y(kσ(1))⊗ · · · ⊗ Y(kσ(n)) X (n)⊗ Y(l1)⊗ · · · ⊗ Y(ln)

σ⊗τ1⊗···⊗τn

X (n)⊗σ

Definition 4.3. — We define the composition product

− ◦− : CFBk × CFBk −→ CFBk

by setting X ◦Y to be the left Kan extension of YX : FB
(2)
k → C along c : FB

(2)
k → FBk.

Concretely, the value of X ◦ Y on r is given by

∞⊔
n=0

X (n)⊗Gn

⊔
k1,...,kn≥0
k1+···+kn=r

Gr ×Gk1
×···×Gkn

(
n⊗
i=1

Y(ki)

) .

The functor ι : FBk → C which sends 1 to 1C and all other objects to iC satisfies
ι ◦ X ∼= X ∼= X ◦ ι. As for any colimit, to map out of a composition product one may
equivalently provide equivariant maps out of X (n)⊗

⊗n
i=1 Y(ki).

If C is (k+ 1)-monoidal, then the composition product ◦ on CFBk is associative up
to isomorphism and its associator isomorphism satisfies the pentagon identity. This
follows by considering the evident generalizations FB

(3)
k and FB

(4)
k and the several

different cabling functors between them. See Section 2.2 of [40] or Section 4.2 of [52]
for a (partial) proof that the composition product on CFBk gives a monoidal structure,
under the assumption that C is ∞-monoidal.

It remains to treat the much easier case k = 0 (Example 4.14 may be clarifying).
In this case, the category CFB0 is canonically identified with C, and we define the
composition product to be the 1-monoidal structure on C; thus it is 1-monoidal.

When k = 2, in the applications we have in mind the operads arise through a
strong monoidal functor s : sSet → C, and as such their spaces of k-ary operations
will lie in the “center” of C under the monoidal structure (known as “transparent” in
the mathematical physics literature):

Definition 4.4. — An object X of a braided monoidal category (C,⊗,1) is central if
for all Y , the braidings βX,Y : X ⊗ Y → Y ⊗X satisfy βY,X ◦ βX,Y = idX⊗Y .

If C is 2-monoidal then the full subcategory of CFB2 on those 2-symmetric se-
quences X such that each X (n) is central in C, is a monoidal category under the
composition product.

Let us collect the previous discussion in a proposition:

Proposition 4.5. — If k ≥ 0 and C is k-monoidal, then there is a composition product
on CFBk . This is a monoidal structure if C is (k+1)-monoidal. Furthermore, if k = 2
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and C is 2-monoidal, this is a monoidal structure when restricted to the full subcategory
of CFB2 consisting of those 2-symmetric sequences that are objectwise central.

To emphasize the difference between the Day convolution and composition prod-
ucts, from now on we will write FBk(C) for the functor category CFBk equipped with
the composition product. Let us record some properties of the composition product.

Lemma 4.6. — The composition product ◦ has the following properties:

(i) ◦ : FBk(C)× FBk(C)→ FBk(C) preserves sifted colimits,
(ii) ◦ : FBk(C)× FBk(C)→ FBk(C) preserves geometric realization.

Proof. — As left Kan extension is given by a colimit, it commutes with all colimits
and with geometric realization. It is therefore enough to show that

(X ,Y) 7→ YX : CFBk × CFBk −→ CFB
(2)
k

commutes with sifted colimits and with geometric realization. This is evident from
the formula for YX , and the fact that ⊗C commutes with sifted colimits by Lemma 2.7
and geometric realization by Lemma 2.8.

Notation 4.7. — To ease notation, we will drop the underline from the object of FBk,
i.e., denote X (n) by X (n).

For each n ≥ 0, change-of-diagram-category along the inclusion {n} ↪→ FBk gives
rise to an adjunction

(4.1) C FBk(C),
n∗

n∗

where explicitly we have n∗(X ) = X (n) and n∗(X) is given by the k-symmetric
sequence assigning Gn × X to n, where Gn = AutFBk

(n) acts on the first factor by
translation, and iC to all other objects of FBk. In this notation, the monoidal unit
of FBk(C) can be written as 1∗(1C).

Definition 4.8. — We define a bifunctor FBk(C)× C→ C by

(Y, X) 7−→ Y(X) := 0∗(Y ◦ 0∗(X)).

Concretely, this is given by the formula

(4.2) Y(X) =
⊔
n≥0

Y(n)⊗Gn X
⊗n.

Lemma 4.9. — For any k-symmetric sequence Y the functor X 7→ Y(X) preserves
sifted colimits and geometric realization.

Proof. — This follows from Lemma 4.6, as both 0∗ and 0∗ commute with all colimits
and geometric realization. To spell this out a little, X 7→ X⊗n commutes with sifted
colimits by Lemma 2.7 and geometric realization by Lemma 2.8, and the remaining
constructions in (4.2) commute with all colimits and geometric realization.
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4.2. Operads

Let C be a (k+1)-monoidal category as above, so that there is a monoidal category
(FBk(C), ◦, 1∗(1C)). Alternatively, if k = 2 one may assume C is 2-monoidal and
restrict to those 2-symmetric sequences that are objectwise central.

Definition 4.10. — An operad O in C is a unital monoid in FBk(C), with unit
1O : 1∗(1C)→ O and multiplication µO : O ◦ O → O.

(This notion of course depends on the choice of k-symmetric monoidal structure
on C, though the notation does not reflect this.) Unwinding the definitions, an op-
erad O in C consists of a sequence of objects O(n) with Gn-actions, for n ≥ 0, and
morphisms

1O(1) : 1 −→ O(1),

µO(n; k1, . . . , kn) : O(n)⊗O(k1)⊗ · · · ⊗ O(kn) −→ O(k1 + · · ·+ kn),

which satisfy unit, associativity and equivariance axioms. The objects O(n) are called
n-ary operations of O. If C is symmetric monoidal, then for k =∞ this is a symmetric
operad as defined Chapter 1 of [82], for k = 2 it is a braided operad as in [37], and
for k = 1 it is a non-symmetric operad .

Example 4.11. — The prototypical example of an operad is the endomorphism operad .
Let C be a (k + 1)-monoidal category as above, then given an object X ∈ C we may
form the k-symmetric sequence

EX(n) := HomC(X⊗n, X),

with composition EX ◦ EX → EX induced by the internal composition, and unit
1C →HomC(X,X) adjoint to the identity morphism of X. (One should take
X⊗0 = 1C in the definition of EX(0).)

As O is a unital monoid, the functor X 7→ O ◦ X has the structure of a monad
on FBk(C), which we also denote O. Using the adjunction (4.1), we may transfer
this monad from FBk(C) to C, as described in Section 3.1. The resulting functor is
X 7→ O(X) on C, given in Definition 4.8 and so by the Formula (4.2), and we continue
to denote this monad by O. Unraveling definitions, an algebra X for the monad O is
an object X ∈ C together with morphisms

an : O(n)⊗X⊗n −→ X

for all n ≥ 0 satisfying unit, associativity and equivariance axioms. If C is symmetric
monoidal, for k = ∞ this recovers the classical definition over an algebra over an
operad, as in Section 2 of [82], and similarly for k = 2 [37] and k = 1 [52]. Lemma 4.9
implies the following.

Corollary 4.12. — A monad associated to an operad is sifted.

Remark 4.13. — There are various equivalent points of view on an O-algebra struc-
ture. If C is (k+1)-monoidal, using the closedness of the monoidal structure, the data
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of an O-algebra structure on X is the same as a morphism α : O → EX of operads in C.
An O-algebra structure on an object X ∈ C is the same as an O-algebra structure on
the k-symmetric sequence 0∗(X), since 0∗(X)(n) is initial for n > 0.

Example 4.14. — Let us discuss the prototypical example in the case k = 0. If R is a
unital monoid in a monoidal category C (also known as an associative algebra object)
with underlying object R ∈ C then a left R-module M is an object M ∈ C with a
map R⊗M →M satisfying unit and associativity axioms.

Left R-modules may be encoded by an operad, denoted R. This operad has un-
derlying 0-symmetric sequence given by R(1) = R. The operad structure involves a
map R ◦ R → R, which is the same as a map R ⊗ R → R and is given by multipli-
cation, and a map 1∗(1C)→ R, which is the same as a map 1C → R and is given by
the unit. Thus the associated monad is given by X 7→ R⊗X. We will denote AlgR(C)

by R-Mod. There is a similar definition of right R-modules, which form a category
Mod-R. This example has some special properties that are worth pointing out. Firstly,
the monad R ⊗ − preserves all colimits, not just sifted ones, because the monoidal
structure is closed. Secondly, the forgetful functor UR : R-Mod → C has an enriched
right adjoint given by X 7→ HomC(R, X). To give HomC(R,X) the structure of a
left R-module, we produce a map

R⊗HomC(R,X) −→HomC(R,X)

as the adjoint of the map

R⊗R⊗HomC(R,X) −→ X

given by multiplication followed by evaluation. To show that this is the right
adjoint, we note that HomR-Mod(M,N) is given by the equalizer of two maps
HomC(M,N)→HomC(R⊗M,N). In the case N = HomC(R, X), this simplifies
to the equalizer of two maps HomC(R ⊗M,X) → HomC(R ⊗ R ⊗M,X), which
one may compute as HomC(M,X). As a consequence of this UR commutes with all
colimits.

4.3. Operads and lax monoidal functors

Suppose that C and D are k-monoidal categories. Recall that a lax k-monoidality on
a functor F : C→ D is given by a natural transformation F (X)⊗DF (Y )→ F (X⊗CY )

and a morphism 1D → F (1C), subject to certain conditions. The conditions guarantee
the existence of well-defined maps of iterated tensor powers

(4.3) F (X)⊗Dn −→ F (X⊗Cn)

for all n ≥ 0, and that these are compatible with the various composition maps.
When C and D are (k+1)-monoidal the categories FBk(C) and FBk(D) are monoidal.

If F is (k+1)-monoidal, then applying F levelwise gives rise to a lax monoidal functor

F : FBk(C) −→ FBk(D).
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Such a functor sends an operad O in C to an operad F (O) in D, and sends left
modules, right modules, and algebras over O in C to such objects over F (O) in D,
with underlying objects obtained by applying F . Furthermore, the lax-monoidality
on F induces a natural transformation ϕF : F (O)F ⇒ FO which is part of a morphism
of monads

(F, ϕF ) : (D, F (O))→ (C,O).

Suppose that L : C → D is strong k-monoidal, and has a right adjoint R. By the
above arguments, given an operad O on C we obtain an operad L(O) on D and a
morphism of monads (L, ϕL) : (D, L(O))→ (C,O).

Lemma 4.15. — (L, ϕL)∗ : AlgO(C)→ AlgL(O)(D) satisfies (L, ϕL)∗FO ∼= FL(O)L and
preserves colimits of O-algebras.

Proof. — Because L is strong monoidal and preserves all colimits, the natural map

L(O)(L(X)) =
⊔
n≥0 L(O(n))⊗D,Gn

L(X)⊗Dn

L(O(X)) = L
(⊔

n≥0O(n)⊗C,Gn
X⊗Cn

)
,

upgrades to an isomorphism between the L(O)-algebras FL(O)(X) and (L, ϕL)∗FO(X).
This proves the first claim.

For the second claim, we first observe that (L, ϕL)∗ preserves colimits of free dia-
grams, because it is preserves free algebras and L preserves colimits. It similarly sends
the canonical presentation of X to the canonical presentation of L(X), because we
may verify this on underlying objects. Since these two types of colimits generate all
colimits in AlgO(C), (L, ϕL)∗ preserves all colimits.

On the other hand, the morphisms

L
(⊔

n≥0O(n)⊗C,Gn
R(A)⊗Cn

)
∼=
⊔
n≥0 L(O(n))⊗C L(R(A))⊗Dn

⊔
n≥0 L(O(n))⊗C,Gn A

⊗Cn

give by adjunction a natural transformation ψ : OR ⇒ RL(O), which is part of a
morphism of monads (R,ψ) : (C,O)→ (D, L(O)).

So we can also form (L,ψ)∗ : AlgO(C)→ AlgL(O)(D).

Lemma 4.16. — The functors (L,ψ)∗, (L, ϕL)∗ : AlgO(C)→ AlgL(O)(D) are naturally
isomorphic.

Proof. — The functor (L,ψ)∗ is determined uniquely up to natural isomorphism by
the fact that it preserves sifted colimits and sends the free O-algebra on X to the free
L(O)-algebra on L(X). But (L, ϕL)∗ has the same properties.
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4.4. Non-unitary operads and unitalization

The following discussion is only relevant when k > 0. Later we consider the follow-
ing class of operads:

Definition 4.17. — An operad O in C is said to be non-unitary if O(0) ∼= i, the initial
object.

Remark 4.18. — Note this is still a unital operad, i.e., there is a map Id → O(1)

inducing a map Id→ O.

Given an operad O+, we may form a non-unitary operad O by letting O(0) := i

and O(n) := O+(n) for n > 0, with the same composition in positive arity.
The morphism of operads υ : O → O+ induces a morphism of associated monads,

and hence an adjunction

(4.4) AlgO+(C) AlgO(C),
υ∗

υ∗

where the underlying object of υ∗(R) is naturally isomorphic to O+(0) ⊔R. We call
this the unitalization of R and denote it R+.

Observe that restriction of the operad composition O+◦O+ → O+ to arity 0 yields
a canonical O+-algebra structure on O+(0). If C is pointed then there is a canonical
map of O+-algebras εcan : R+ → O+(0), which we call the canonical augmentation.
On free O+-algebras this may be defined by the map

O+(X) ∼= O+(0) ⊔ O(X)→ O(0)+

induced by the map O(X) → ∗, and on general O+-algebras it is defined by density
under sifted colimits using Proposition 3.7. This is an example of the following notion:

Definition 4.19. — An augmentation of an O+-algebra R is an O+-algebra
map ε : R → O+(0). An augmented O+-algebra is a pair (R, ε) of an O+-alge-
bra R and an augmentation ε : R→ O+(0).

Given an augmented O+-algebra (R, ε), we can form its augmentation ideal.

Definition 4.20. — If C is pointed, the augmentation ideal I(R) of an augmented
O+-algebra I(R) is given by ∗ ×O+(0) R, the pullback along the augmentation.

Lemma 4.21. — If C is pointed and ε : R→ O(0)+ is an augmented O+-algebra, then
I(R) has a canonical structure of an O-algebra such that the map I(R) → R is a
map of O-algebras.

Proof. — The category AlgO(C) is complete and the forgetful functor UO : AlgO(C)→ C
preserves limits as it is a right adjoint. As the diagram

∗ −→ O+(0)
ε←− R

of which I(R) is the limit consists of O-algebras and O-algebra maps, I(R) inherits
an O-algebra structure such that the map I(R)→ R is one of O-algebras.
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Since the unitalization functor (−)+ : AlgO(C)→ AlgO+(C) is a left adjoint to the
forgetful functor AlgO+(C) → AlgO(C), from the map I(R) → R of O-algebras we
obtain a canonical map I(R)+ → R of O+-algebras. This will not be an isomorphism
in general.

Definition 4.22. — If C is pointed, we say that an augmentation ε : R → O+(0) is
split if the canonical map I(R)+ → R is an isomorphism.

Remark 4.23. — The adjunction (4.4) induces an equivalence of categories between
O-algebras and the subcategory of split augmented O+-algebras: the functor υ∗ is
fully faithful and its essentially image are the split augmented O+-algebras.

4.5. Augmentations of operads

Our goal is to study T -indecomposables, when T is the monad associated to a
non-unitary operad O in C. (Recall that we also write O for the associated monad.)
In order to do so, as described in Section 3.4.1 this monad must be equipped with an
augmentation ε : O → +.

In an operad a distinguished role is played by the unary operations O(1), which the
operad structure makes into a unital monoid. (On the other hand, any unitary monoid
may be considered as an operad with only unary operations, as explained in Exam-
ple 4.14.) We will first explain how a non-unitary operad has a canonical “relative”
augmentation, and then explain what is needed to promote this to an augmentation.

4.5.1. The canonical relative augmentation and relative indecomposables. — There is
a map of operads O(1)→ O, which induces a factorization of the monadic adjunction
for O:

AlgO(C)

AlgO(1)(C) C,

UOO(1) UO

FOO(1)

UO(1)

FO(1)

FO

where UOO(1) is the relative forgetful functor and the relative free algebra func-
tor FOO(1) has underlying object given by

FOO(1)(X) :=
⊔
n≥0

O(n)⊗Gn≀O(1) X
⊗n.

Here Gn ≀ O(1) is the monoid, or equivalently associative algebra, with underlying
object Gn ×O(1)⊗n and composition induced the composition in Gn and O(1), and
the action of Gn on O(1)⊗n by the braiding. The relative tensor product is that given
in the proof of Proposition 2.10.

To define relative indecomposables, we need to replace the monad + by one de-
noted O(1)+, which we shall construct now. The monoid O(1) yields a monad O(1)+
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on C whose value on an object X is (O(1) ⊗X)+ and whose multiplication is given
by the map

(O(1)⊗ (O(1)⊗X)+)+ −→ (O(1)⊗O(1)⊗X)+ −→ (O(1)⊗X)+

which first uses that O(1)⊗− preserves coproducts and collapses the term O(1)⊗ t
to t, and then uses the monoid structure of O(1). Equivalently, this is the monad
obtained as the composition +O(1) of the monad induced by O(1) and the monad +,
using the distributive law O(1)+ ⇒ +O(1) induced by the above collapse map
(as in [13]). We can interpret this in terms of the category C∗: the equivalence
AlgId(C∗) ∼= Alg+(C) generalizes to an equivalence AlgO(1)+(C) ∼= AlgO(1)(C∗) where
the monad O(1) on C∗ has value on an object X given by O(1)+ ? X.

Let us now assume that the operad O is non-unitary. In this case there is a mor-
phism of monads εOO(1) : O → O(1)+ given by sending the k-ary operations for k ≥ 2

to the basepoint. We define the functor QOO(1) of relative indecomposables to be

(εOO(1))∗ : AlgO(C) −→ AlgO(1)(C∗).

That is, QOO(1) is the left adjoint in change-of-monad for the map of monads εOO(1),
which has a right adjoint ZOO(1) : AlgO(1)(C∗) → AlgO(C) called the relative trivial
algebra functor. The trivial O-algebra on an O(1)-algebra has the same underlying
object (where we forget the special status of the basepoint) and all 1-ary operations
act by O(1) and k-ary operations for k ≥ 2 map to the basepoint.

4.5.2. Relative decomposables. — It is occasionally useful to express the relative in-
decomposables QOO(1) in terms of relative decomposables.

Definition 4.24. — The relative decomposables of a free O-algebra FO(X) are

DecOO(1)(F
O(X)) :=

⊔
n≥2

O(n)⊗Gn
X⊗n


+

∈ AlgO(1)(C∗).

The right-hand side defines a right O-functor which commutes with sifted colimits,
so there is a unique extension to DecOO(1) : AlgO(C)→ AlgO(1)(C∗) by Proposition 3.7.

The natural transformation given by the inclusion⊔
n≥2

O(n)⊗Gn
X⊗n


+

−→

⊔
n≥1

O(n)⊗Gn
X⊗n


+
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induces a natural transformation DecOO(1) ⇒ +(UOO(1)). If R ∈ AlgO(C) we may form
the following pushout in AlgO(1)(C∗)

DecOO(1)(R) UOO(1)(R)+

∗ UOO(1)(R)+/DecOO(1)(R).

On free O-algebras we have

UOO(1)(F
O(X))+/DecOO(1)(F

O(X)) ∼= (O(1)×X)+ ∼= QOO(1)(F
O(X)),

so by Proposition 3.7 we have:

Lemma 4.25. — For R ∈ AlgO(C), there is a natural isomorphism

QOO(1)(R) ∼= UOO(1)(R)+/DecOO(1)(R) ∈ AlgO(1)(C∗).

4.5.3. Absolute augmentations and absolute indecomposables. — Suppose the
monoid O(1), which is an algebra for the unital associative operad, is equipped
with an augmentation ε : O(1) → 1 in the sense of Definition 4.19, i.e., a morphism
of unital monoids. Then it defines an augmentation ε+ : O(1)+ → 1+ = + of
the monad O(1)+ and so composing it with the canonical relative augmentation
εOO(1) : O → O(1)+ it defines an augmentation of the operad O.

Using this we may define the absolute O-indecomposables

QO : AlgO(C) −→ Alg+(C) = C∗,

which by Lemma 3.21 satisfies QO(X) ∼= QO(1)+(QOO(1)(X)). Using the Lemma 4.25,
we can express the absolute O-indecomposables as

QO(X) ∼= QO(1)+(UOO(1)(R)+/DecOO(1)(R)) ∈ C∗.

As an O(1)+-algebra is a pointed object with an O(1)-action, it is natural to think
of the O(1)+-indecomposables as taking orbits for the O(1)-action. (Although it is
not reflected in the notation, this of course depends on the choice of augmentation
ε : O(1)→ 1.)

4.5.4. Relative indecomposables and lax monoidal functors. — Let L : C → D be a
strong monoidal functor, with right adjoint R. Then L(O) is non-unitary if O is,
because L preserves initial objects. In particular, both O and L(O) have a canonical
relative augmentations. Moreover, the counit LRX → X induces a map

L(O(1)⊗RX) ∼= L(O(1))⊗ LRX −→ L(O(1))⊗X,
which upon adjunction and adding a disjoint basepoint yields a map

O(1)+(R(X))→ R(L(O(1))+(X).
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These assemble to a morphism of monads (R, υO(1)) : (C,O(1)+) → (D, L(O(1))+)

which fits into a commutative diagram

(C,O) (C,O(1)+)

(D, L(O)) (D, L(O(1))+).

(R,ψ)

εOO(1)

(R,υO(1))

ε
L(O)

L(O)(1)

As a consequence of Lemmas 3.21 and 4.16, this implies that L preserves relative
indecomposables, as follows:

Lemma 4.26. — There is a natural isomorphism (L, ϕL)+Q
O
O(1)

∼= Q
L(O)
L(O(1))(L, ϕL)∗

of functors AlgO(C)→ AlgL(O(1))+(D) = AlgL(O(1))(D∗).

Remark 4.27. — Since L preserves free algebras and colimits, it also preserves relative
decomposables and the formula of Lemma 4.25.

Suppose now that the unital monoid O(1) comes with an augmentation
ε : O(1)→ 1. Since L is strong monoidal, we obtain from this an augmentation
Lε : L(O(1)) → L(1) ∼= 1. As the above construction only used that O(1) is
a monoid, we can apply it equally well to 1 to get a morphism of monads
(R, υ1) : (C,+) −→ (D,+), which fits into a commutative diagram

(C,O(1)+) (C,+)

(D, L(O(1))+) (D,+).

(R,υO(1))

ε

(R,υ1)

Lε

This implies that L preserves absolute indecomposables, in the following precise sense:

Lemma 4.28. — There is a natural isomorphism L+Q
O ∼= QL(O)(L, ϕL)∗ of functors

AlgO(C)→ D∗.

4.6. Operads in simplicial sets

By the discussion in Section 4.3, every operad in simplicial sets gives rise to an
operad in C by applying s : sSet → C objectwise. Operads in C which arise in this
way enjoy certain special properties, and some of our results will only hold for such
operads. We shall generally write C for an operad in simplicial sets (just as we write
O for an operad in C), and continue to write C for the operad s(C) in C.

Firstly, for k = 2 the spaces of operations of such operads are always central. This
avoids any difficulties with the composition product of 2-symmetric sequences in a
2-monoidal category.

Secondly, the monad associated to a simplicial operad is a simplicial monad, i.e., it
is a monoid in the category of simplicially enriched functors.
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Thirdly, they are compatible with change-of-diagram-category. If p : G → G′ is
strong k-monoidal, then by Lemma 2.13 the functor p∗ : SG → SG′ is also strong
k-monoidal. Furthermore, as p(1G) ∼= 1G′ we have p∗ ◦ (1G)∗ ∼= (1G′)∗. Thus from the
formula above we see that p∗(C(X)) ∼= C(p∗(X)), and hence there is an induced functor
p∗ : AlgC(S

G) → AlgC(S
G′), which by construction satisfies p∗(F C(X)) ∼= F C(p∗(X)).

In fact, this also works when using an operad O in S in place of C.
Fourthly, as the category sSet is cartesian, i.e., the monoidal product coincides

with the categorical product, any monoid in simplicial sets has a unique augmenta-
tion: if C is an operad in simplicial sets then ε : C(1) → ∗ is an augmentation, and
so if it is non-unitary the operad s(C) is augmented as described in the previous sec-
tion. We call this the canonical augmentation. There is therefore defined an absolute
indecomposables functor QC : AlgC(C)→ C∗.

Example 4.29. — For any operad C in simplicial sets, the monoidal unit 1C is canon-
ically a C-algebra, via the map

C(1C) ∼=

⊔
n≥0

C(n)/Gn

× 1C −→ ∗ × 1C
∼= 1C,

induced by the unique map of simplicial sets
⊔
n≥0 C(n)/Gn → ∗. The isomorphism

uses that the Gn-action on 1C
∼= 1⊗nC is trivial, which follows from the axioms of a

braided monoidal category.

The last special property of operads in simplicial sets is that their algebras in C have
a monoidal structure, coming from the diagonal maps in the category of simplicial
sets which make every simplicial set into a cocommutative coalgebra.

Proposition 4.30. — Let k ∈ {2,∞}, C ∈ FBk(sSet) be an operad, and C be
∞-monoidal. Then AlgC(C) has a (k−1)-monoidal structure ⊗C such that the functor
UC : AlgC(C)→ C is strong monoidal.

Proof. — The key point is that, as sSet is cartesian, the k-symmetric sequence C has
the structure of an unital monoid in FBk(Coalg(sSet)) and hence, on applying s,
in FBk(Coalg(C)), making the associated monad a Hopf monad as described in [87].
This is described in Example 3.1 of that paper if k =∞, but goes through for k ≥ 2.
Furthermore, if k =∞ it is actually a cocommutative Hopf monad. The result is then
the combination of Propositions 1.4 and 3.2 of [87].
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CHAPTER 5

FILTERED ALGEBRAS

For computational as well as for conceptual reasons we shall consider filtered objects
in C, and well as filtered O-algebras. For the latter we never mean filtered objects
in the category of O-algebras in C, but rather O-algebras in the category of filtered
objects in C. In this section we define these notions and present various constructions
related to them. We continue to let C be a category satisfying the axioms of Section 2.1.

5.1. Graded and filtered objects

The perspective we take on filtered objects is close to that of Gwilliam-Pavlov [50];
this will continue when we later discuss the homotopy theory of filtered objects.

Definition 5.1. — Let Z= denote the category with objects Z, and only identity mor-
phisms. A graded object in C is a functor X : Z= → C. The category of graded
objects shall be denoted CZ= .

— Let Z≤ denote the category associated to the partially ordered set (Z,≤). A
filtered object in C is a functor X : Z≤ → C. The category of filtered objects
shall be denoted CZ≤ .

— A filtered object X is called ascending if the morphism X(i)→ X(i+ 1) is an
isomorphism for i < −1. It is called descending if the morphismX(i)→ X(i+ 1)

is an isomorphism for all i ≥ 0.
Both Z= and Z≤ are symmetric monoidal categories using addition of integers, and

so Day convolution endows CZ= and CZ≤ with (symmetric) monoidal structures.

For a graded object X ∈ CZ= , we shall think of
⊔
i∈ZX(i) ∈ C as the “underlying”

object, and think of X(i) as “grading i.” Similarly, for a filtered object X ∈ CZ≤ we
shall think of colim(X) := colimi∈Z≤ X(i) ∈ C as the “underlying” unfiltered object
of X, and think of X(i) as “filtration i.” However, we emphasize that we do not require
the maps X(i) → X(i + 1) to be injective in any sense. For example, the terminal
object t has many interesting filtrations in our sense.
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5.2. Functors between filtered and unfiltered objects

There are adjunctions
colim ⊣ const ⊣ lim,

which we shall describe momentarily. Furthermore, for each integer a ∈ Z, we shall
describe adjunctions

a! ⊣ a∗ ⊣ a∗ ⊣ a!,

where a∗X = X(a) and the leftmost adjunction need only exist when C is pointed.
Finally, we shall describe an “associated graded” functor gr and an adjunction

gr ⊣ u.

5.2.1. The functors colim and const. — Because the functor colim: CZ≤ → C may be
described as forming left Kan extension π∗ along the functor π : Z≤ → {∗}, it has
a right adjoint π∗ given by precomposing with that functor, i.e., sending an object
of C to the corresponding constant functor, which we shall denote const : C → CZ≤ .
The functor const has a further right adjoint given by right Kan extension, sending
X ∈ CZ≤ to the limit lim(X) := limi∈Z≤ X(i) ∈ C.

5.2.2. The functors a!, a∗, a∗ and a!. — The basic functor associated to an object
a ∈ Z is given by evaluation of X at a, giving a functor

a∗ : CZ≤ −→ C

X 7−→ X(a).

This may be identified with precomposition with the functor a : {∗} ↪→ Z≤ given
by ∗ 7→ a.

Since C is cocomplete and complete, a∗ has both left and right adjoints. The left
adjoint is given by left Kan extension along a : {∗} → Z≤:

a∗ : C −→ CZ≤

Y 7−→ a∗Y :=

(
n 7→

{
i if n < a

Y if n ≥ a

)
,

where the functoriality sends a morphism n ≤ m in Z≤ to the identity map of Y if
a ≤ n. Similarly, the right adjoint is given by right Kan extension:

a! : C −→ CZ≤

Y 7−→ a!Y :=

(
n 7→

{
t if n > a

Y if n ≤ a

)
,

where the functoriality sends a morphism n ≤ m to the identity map of Y if a ≥ m.
If C is pointed then a∗ : C→ CZ≤ admits a further left adjoint

a! : CZ≤ −→ C

X 7−→ colim
(
∗ ← X(a− 1)→ colim(X)

)
.

ASTÉRISQUE 460



5.3. MONOIDALITY 49

If C is not pointed we may still use this formula to define a functor a! : CZ≤ → C∗,
replacing ∗ by t.

Remark 5.2. — If C is pointed then a! admits a further right adjoint, sending X to
the pullback of ∗ → X(a+ 1) ← limiX(i). It does not play a role in this paper, but
its existence does imply that a! preserves colimits.

5.2.3. The functors gr and u.— The associated graded functor is given by

gr : CZ≤ −→ CZ=
∗

X 7−→ gr(X) =
(
n 7→ colim

(
t← X(n− 1)→ X(n)

))
,

where the pushout is regarded as a pointed object using the induced morphism from t.
We shall occasionally write this as gr(X)(n) = X(n)/X(n−1), but we emphasize again
that X(n− 1)→ X(n) need not be injective in any sense.

Recall that C∗ is the category of pointed objects, and U+ : C∗ → C is the functor
which forgets basepoint. This is part of an adjunction

CZ≤ CZ=
∗

gr

u

with right adjoint given by

u : CZ=
∗ −→ CZ≤

X 7−→
(
n 7→ U+X(n)

)
,

and extending the functoriality of the composition U+ ◦X : Z= → C by sending non-
identity morphisms a < b to the unique maps X(a) → X(b) factoring through the
basepoint t→ X(b).

5.3. Monoidality

Let us discuss the extent to which the various functors discussed in Section 5.2 pre-
serve the monoidal structures on CZ= and CZ≤ given by Day convolution. Bemusingly,
several of them admit only “half” the structure of a monoidal functor: they preserve
the product in the lax sense, but not the monoidal unit.

5.3.1. The functors colim and const. — Since π : Z≤ → ∗ is strong monoidal, the left
Kan extension colim: CZ≤ → C is also strong monoidal by Lemma 2.13. Hence its
right adjoint const is lax monoidal.

5.3.2. The functors a!, a∗, a∗ and a!. — Because the monoidal structure on CZ≤ is
defined by Day convolution, there are canonical morphisms

X(a)⊗C Y (b) −→ (X ⊗
C
Z≤ Y )(a+ b),
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which may be interpreted as a natural transformation (a∗X)⊗ (b∗Y )→ (a+ b)∗(X ⊗ Y ).
For a = b ≤ 0 we have a+ b ≤ a, so we may compose to get morphisms

(5.1) (a∗X)⊗
C
Z≤ (a∗Y ) −→ a∗(X ⊗

C
Z≤ Y ),

compatible with associators. These are k-symmetric if C is k-monoidal.

Remark 5.3. — We warn reader that (5.1) does not promote a∗ to a monoidal functor
unless a = 0, because there might not be a morphism 1C → a∗(1

C
Z≤ ) with the required

properties. For example, for a < 0 the functor a∗ will send a non-unital monoid in CZ≤

to a non-unital monoid in C, but need not send a unital monoid to a unital monoid.

Next we turn to the left adjoint a∗ : C→ CZ≤ of a∗. Here we have a morphism

(5.2) (a∗X)⊗
C
Z≤ (b∗Y ) −→ (a+ b)∗(X ⊗C Y ),

coming from the canonical morphisms for i ≥ a and j ≥ b
X(i)⊗C Y (j) −→ (X ⊗C Y )(i+ j) = ((a+ b)∗(X ⊗C Y ))(i+ j).

Lemma 5.4. — The morphism (5.2) is an isomorphism. Furthermore, if K ∈ sSet,
then K × (a∗X) ∼= a∗(K ×X).

Proof. — Recall that (a∗X)(r) is i if r < a and X otherwise. The tensor product
(a∗Y )⊗

C
Z≤ (b∗Z) is given on r ∈ Z by the colimit

colim
r1+r2≤r

(a∗Y (r1)⊗C b∗Z(r2)) .

A term in this diagram is initial if r1 < a or r2 < b, and is Y ⊗CZ otherwise. The maps
in the diagram are either the canonical map from the initial object or isomorphisms.
Thus the value is initial when r < a + b, and otherwise is equivalent to the colimit
over a constant diagram on Y ⊗C Z having initial object (a, b).

The proof of the second claim is similar.

For a ≥ 0 the morphism a ≤ 2a gives a natural transformation (2a)∗ ⇒ a∗ and
hence we get a natural map

(a∗X)⊗C≤ (a∗Y ) ∼= (2a)∗(X ⊗C Y ) −→ a∗(X ⊗C Y ).

Due to issues with the unit, this is again not a monoidal functor unless a = 0,
but it will preserve non-unital multiplicative structures. More precisely, the functor
a : {∗} → Z≤ satisfies the part of being oplax concerning the tensor product, but not
the part concerning the unit.

Finally, we discuss the functor a! : CZ≤ → C∗, when C∗ is given the monoidal
structure ⊗C∗ =? constructed in Section 3.3. In general there is no good map between
(a!X)⊗C∗ (a!Y ) and a!(X ⊗C

Z≤ Y ). For descending filtered objects X ∈ CZ≤ we have
a natural isomorphism a!X ∼= X(0)/X(a− 1). For a ≤ 0 we have natural maps

(X(0)/X(a− 1))⊗C∗ (Y (0)/Y (a− 1)) −→ (X ⊗ Y )(0)/(X ⊗ Y )(a− 1),
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which may be promoted to the structure of a monoidal functor on

X 7→ X(0)/X(a− 1) : CZ≤ −→ C∗,

and thus a! becomes a monoidal functor when restricted to descending objects.

5.3.3. The functors gr and u. — We construct a strong monoidality on the functor
gr : CZ≤ → CZ=

∗ , i.e., natural isomorphisms

gr(X)⊗CZ=
∗

gr(Y ) −→ gr(X ⊗
C
Z≤ Y )

1CZ=
∗
−→ gr(1

C
Z≤ ),

satisfying the usual axioms of monoidal functors. In Section 3.3 we have described the
monoidal structure ⊗C∗ = ? on C∗ and given a strong monoidality on F+ : C → C∗,
and this induces a strong monoidality on F+ : CZ≤ → C

Z≤
∗ when both are equipped

with monoidal structures by Day convolution. This reduces the question to the case
where C is pointed, i.e., we want a strong monoidality on gr : C

Z≤
∗ → CZ=

∗ .
Let us first describe a lax monoidality on the right adjoint u : CZ=

∗ → C
Z≤
∗ to gr. By

definition, ((uX) ⊗
C
Z≤
∗

(uY ))(n) is the colimit of (uX(a)) ? (uY (b)) over the poset
consisting of (a, b) ∈ Z≤ × Z≤ with a + b ≤ n. That diagram sends any non-identity
morphisms to the trivial morphisms, from which it is easily deduced that∨

a+b=n

X(a) ? Y (b) −→
(
(uX)⊗

C
Z≤
∗

(uY )
)

(n)

is an isomorphism. This amounts to a natural isomorphism

(uX)⊗
C
Z≤
∗

(uY ) −→ u(X ⊗CZ=
∗
Y ),

but nevertheless we only get a lax monoidality because the obvious map from the
monoidal unit of C

Z≤
∗ to the object S0 := u(1CZ=

∗
) is rarely an isomorphism. Indeed,

we have that S0 and the unit of C
Z≤
∗ are given by

S0(n) =

{
1C∗ if n = 0,
∗ otherwise,

and 1
C
Z≤
∗

(n) =

{
1C∗ if n ≥ 0,
∗ otherwise,

where we recall that ∗ denotes the initial and terminal object in a pointed category.
The object S0 is canonically a unital monoid in the monoidal category C

Z≤
∗ . Since

1→ S0 is an epimorphism, being a module over S0 is simply the property of being in
the essential image of the fully faithful functor u, i.e., that all maps X(n−1)→ X(n)

factor through the terminal object. In fact, the (lax monoidal) functor u gives an equiv-
alence of categories from CZ=

∗ to the full subcategory of C
Z≤
∗ consisting of S0-modules.

Under this equivalence, the functor gr becomes identified with X 7→ S0 ⊗
C
Z≤
∗

X+.
The monoid structure on S0 gives a lax monoidality of gr, and the fact that it is a
strong monoidality is just the fact that the multiplication map S0 ⊗

C
Z≤
∗
S0 → S0 is

an isomorphism.
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Remark 5.5. — This adjunction is formally quite similar to the adjunction between
abelian groups and Fp-modules: the left adjoint is − ⊗ZFp and is strong monoidal; the
right adjoint is the forgetful map which “preserves tensor product up to isomorphism”,
but not the monoidal unit.

5.3.4. Induced functors on algebras. — An operad O in C produces operads in CZ≤

and CZ=
∗ , using the strong monoidal functors 0∗ : C→ CZ≤ and 0∗ ◦ (−)+ : C→ CZ=

∗ .
We shall continue to call these operads O.

We get a diagram of functors

AlgO(CZ≤) AlgO(CZ=
∗ )

CZ≤ CZ=
∗ ,

gr

UO UO

u

gr

FO

u

FO

commuting up to natural isomorphism, and similarly for colim ⊣ const, and 0∗ ⊣ 0∗.
This is natural in the operad. We may apply this to an augmentation ε : O → + (e.g.,
the canonical one when O = s(C) is a non-unitary operad in simplicial sets). This
induces a commutative diagram

AlgO(CZ≤) AlgO(CZ=
∗ )

C
Z≤
∗ CZ=

∗

gr

u

gr

ε!

u

ε!

and since this diagram of right adjoints commutes, so does the corresponding diagram
of left adjoints: this gives a natural isomorphism QO gr ∼= grQO : AlgO(CZ≤)→ CZ=

∗ .
We obtain similar natural isomorphisms QO colim ∼= colim QO, and QO 0∗ ∼= 0∗Q

O

from the analogous argument with colim ⊣ const, and 0∗ ⊣ 0∗.
For a functor to induce a functor between categories of algebras over a non-unitary

operad O, it suffices to produces a morphism of monads. We will do so for a∗ with
a ≤ 0, by observing that the morphisms (5.1) assemble to a natural transformation

ψ : Oa∗ ⇒ a∗O.
(That O is non-unitary is necessary because the left side has a term O(0) but the
right side only does so when a ≥ 0.)

The resulting morphism of monads (a∗, ψ) : (C,O)→ (CZ≤ ,O) yields a diagram

AlgO(CZ≤) AlgO(C)

CZ≤ C

a∗

UO UO

a∗

commuting up to natural isomorphism. Similar considerations apply to a∗ : C→ CZ≤

for a ≥ 0, but the resulting functor between categories of algebras does not appear to
play any important role for a > 0.
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Remark 5.6. — If M is a filtered monoid in sets, then the product of two elements of
filtration −1 is in filtration −2 and so in particular in filtration −1, so filtration −1

becomes a non-unital monoid; in contrast the filtration +1 subset contains the unit
of the monoid, but has no well defined multiplication.

If X∈AlgO(CZ≤) is descendingly filtered, in Section 5.2.2 we defined a!(X)∈AlgO(C∗)
for each a ≤ 0. This is intuitively given by “taking quotient by filtration a”. These
may be assembled into a pro-object

X∧ = (a 7→ a!(X)) ∈ pro-AlgO(C∗).

Both the pro-object X∧ and the corresponding limit in AlgO(C∗) may be regarded
as a completion of X(0) = X(∞) with respect to the filtration.

5.4. The canonical multiplicative filtration

A first example of an O-algebra in filtered objects is given by the canonical mul-
tiplicative filtration, which is defined when O is a non-unitary operad. This is the
analogue of the filtration of a non-unital ring (i.e., an ideal) by powers of itself. In
the context of spectra this filtration has been studied by Harper-Hess [53] (where it
is called the (homotopy) completion tower) and Kuhn-Pereira [71] (where it is called
the augmentation ideal filtration).

5.4.1. Extending a∗ to algebras. — For a < 0 the left adjoint a∗ : C→ CZ≤ to a∗ does
not appear to preserve multiplicative structures in any interesting way. Nevertheless,
for a non-unitary operad O the functor

AlgO(CZ≤)
a∗−→ AlgO(C)

does admit a left adjoint

AlgO(C)
aalg
∗−−→ AlgO(CZ≤),

which we now discuss. (Note that it will usually be the case that UOaalg
∗ R and a∗UOR

are not isomorphic.) If such a left adjoint exists, we must necessarily have a natural
isomorphism aalg

∗ FO(X) ∼= FO(a∗X), and conversely, by Proposition 3.7, this formula
may be used to define aalg

∗ , by stipulating that it preserve sifted colimits and providing
the functor FOa∗ : C → AlgO(CZ≤) with the structure of a right O-module functor.
We will now provide this right O-module functor structure.

Lemma 5.7. — If O is non-unitary and a ≤ 0, then there is a natural isomorphism

O(X) ∼= (O(a∗X))(a).

Proof. — We have O(a∗(X)) =
⊔
n≥1O(n) ⊗Gn

a∗(X)⊗n. By Lemma 5.4, we have
that (O(n) ⊗Gn

a∗(X)⊗n) ∼= (na∗)(O(n) ⊗Gn
X⊗n). Evaluating at a thus gives

O(n)⊗Gn
X⊗n, since a ≥ na if a ≤ 0 and n ≥ 1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



54 CHAPTER 5. FILTERED ALGEBRAS

There is a natural transformation mF : a∗O ⇒ Oa∗ adjoint to the isomorphism
O(X) ∼= (O(a∗X))(a) described in the previous lemma. Combining this with the
counit of the adjunction we obtain a natural transformation

(5.3) µF : FOa∗O ⇒ FOOa∗ = FOUOFOa∗ ⇒ FOa∗.

Lemma 5.8. — The natural transformation (5.3) endows FOa∗ with the structure of
a right O-module functor.

Proof. — Let us write F := FOa∗. We must check that µF (µF ◦ O) = µF (F ◦ µO)

as natural transformations FO2 ⇒ F . For this it suffices to check that the following
diagram commutes

a∗O2 a∗O

Oa∗O O2a∗ Oa∗.

a∗(µO)

µF ◦O µF

O◦µF µO(a∗)

By adjunction, this follows because the following two maps concide:

O2(X) −→ O(X) ∼= O(a∗(X))(a)),

O2(X) ∼= O(a∗(O(X))(a)) ∼= O2(a∗(X))(a) −→ O(a∗(X))(a).

Note that 0∗ : C→ CZ≤ is strong monoidal, and satisfies 0∗(F
O(X)) ∼= FO(0∗(X)).

It follows that 0alg
∗ = 0∗.

5.4.2. The canonical multiplicative filtration. — For O a non-unitary operad, in the
previous section we have constructed a functor (−1)∗alg : AlgO(C) → AlgO(CZ≤), left
adjoint to “evaluation at −1.” In this section we shall study this construction more
carefully.

Lemma 5.9. — For any R ∈ AlgO(C), the underlying object UO(−1)alg∗ R ∈ CZ≤ is
descendingly filtered. For any a ≥ −1 there are natural isomorphisms

(UOO(1)(−1)alg∗ R)(a) ∼= UOO(1)R.

Proof. — On free O-algebras we defined (−1)alg∗ (FOX) to be FO((−1)∗X), so that

UOO(1)(−1)alg∗ FOX = UOO(1)F
O(−1)∗X

=
⊔
n≥1

O(n)⊗Gn ((−1)∗X)⊗n

∼=
⊔
n≥1

(−n)∗(O(n)⊗Gn
X⊗n),

where the last two objects are O(1)-modules by the action of O(1) on O(n). This
gives for any a ∈ Z≤ a natural isomorphism

(UOO(1)(−1)alg∗ FOX)(a) ∼=
⊔

n≥−a

O(n)⊗Gn X
⊗n
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of O(1)-modules. This is isomorphic to UOO(1)F
O(X) as long as a ≥ −1. As

(UOO(1)(−1)alg∗ FO(X))(a) and UOO(1)F
O(X) ∼= O(X) commute with sifted colimits,

the conclusion follows by Proposition 3.7.

Thus to any R ∈ AlgO(C) there is associated a canonical descendingly filtered
object (−1)alg∗ R given by

R ∼= [(−1)alg∗ R](0)← [(−1)alg∗ R](−1)← [(−1)alg∗ R](−2)← · · · .

For any a ≤ 0, we have a new algebra a!(−1)alg∗ R ∈ AlgO(C∗), whose underlying
object in C∗ is the quotient R/((−1)alg∗ R)(a− 1). As above, these algebras assemble
to a pro-object

((−1)alg∗ R)∧ = (a 7→ a!(−1)alg∗ R) ∈ pro-AlgO(C∗),

canonically associated to R.

Remark 5.10. — A rough analogy is that of a local ring R, or better its maximal
ideal m: it comes with a canonical filtration forming a pro-object which we could
denote m∧; if the local ring is Artinian, then m∧ is pro-constant and isomorphic
to m. If R is a complete local ring, then m is isomorphic to the inverse limit of the
pro-object m∧.

5.4.3. Its associated graded. — To understand the canonical filtration construction
(−1)alg∗ : AlgO(C) → AlgO(CZ≤), let us describe its associated graded in terms of the
relative indecomposables functor QOO(1). We have

UOO(1)((−1)alg∗ (FO(X))) = UOO(1)(F
O((−1)∗(X))) =

⊔
n≥1

(−n)∗(O(n)⊗Gn X
⊗n)

and the (−1)st piece of the associated graded is defined by the pushout⊔
n≥2O(n)⊗Gn X

⊗n ⊔
n≥1O(n)⊗Gn X

⊗n

t [grUOO(1)((−1)alg∗ (FO(X)))](−1),

so that there is an identification (O(1) ⊗ X)+ ∼= [grUOO(1)((−1)alg∗ (FO(X)))](−1)

as G1 is always trivial. Because (O(1) ⊗ X)+ ∼= QOO(1)(F
O(X)), by adjunction we

obtain a natural transformation

(−1)∗Q
O
O(1)F

O ⇒ grUOO(1)(−1)alg∗ FO : C −→ AlgO(1)(C
Z=
∗ ).

These functors both preserve sifted colimits, are right O-module functors, and the
natural transformation is one of right O-module functors, so by Proposition 3.7 this
extends to a natural transformation

(−1)∗Q
O
O(1) ⇒ grUOO(1)(−1)alg∗ : AlgO(C) −→ AlgO(1)(C

Z=
∗ ).
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Commuting UOO(1) and gr, and taking a further adjoint gives a natural transformation

(5.4) FOO(1)(−1)∗Q
O
O(1) ⇒ gr(−1)alg∗ : AlgO(C)→ AlgO(CZ=

∗ ).

Proposition 5.11. — The natural transformation (5.4) is a natural isomorphism.

Proof. — Using Proposition 3.7 it suffices to verify this on free O-algebras. Further-
more, as UO creates isomorphisms it is enough to check after applying this. As above
we have

UOgr(−1)alg∗ (FO(X))(−k) = (O(k)⊗Gk
X⊗k)+.

On the other hand we have

(−1)∗Q
O
O(1)(F

O(X)) = (−1)∗(O(1)⊗X)+ = O(1)+ ∧ ((−1)∗(X)+),

which is FO(1)((−1)∗(X)+). So, as FOO(1) ◦ F
O(1) ∼= FO, we have

FOO(1)((−1)∗Q
O
O(1)(F

O(X))) ∼= FO((−1)∗(X)+),

whose underlying object in grading −k is (O(k) ⊗Gk
X⊗k)+. It is easy to see that

(5.4) induces the identity map under these identifications.
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CELL ATTACHMENTS

In this section we explain how to attach a T -algebra cell to a T -algebra. When the
monad comes from an operad O, we describe a canonical filtration on a cell attach-
ment. After this, we define cellular and CW O-algebras, and the skeletal filtration of a
CW algebra. As before, in this section we work in a category C = SG where S satisfies
the axioms of Section 2.1.

6.1. Cell attachments for sifted monads

Let T be a monad on C.

6.1.1. The definition of a cell attachment. — For X0 ∈ AlgT (C) the data for a T -cell
attachment to X0 is given by:

— a cofibration of simplicial sets ∂Dd ↪→ Dd, whose geometric realization is homeo-
morphic to the inclusion of the boundary of the d-disk,

— an object g ∈ G, and
— a morphism e : ∂Dd → UT (X0)(g). (Here ∂Dd is considered as an object of S

via the functor s : sSet→ S.)

There is an adjunction g∗ ⊣ g∗, and we will write

Dg,d := g∗(D
d),

∂Dg,d := g∗(∂D
d),

and for later use, also define the pointed object Sg,d := Dg,d/∂Dg,d ∈ C∗.
Using the adjunction g∗ ⊣ g∗ the morphism e corresponds to a morphism

∂Dg,d → UT (X0), and using the adjunction FT ⊣ UT , this in turn corresponds to
a morphism FT (∂Dg,d) → X0 in AlgT (C) which we shall also denote by e. We then
define X1 ∈ AlgT (C) to be the following pushout in AlgT (C)

(6.1)
FT (∂Dg,d) X0

FT (Dg,d) X1.

e
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Definition 6.1. — Given the pushout diagram (6.1), we say that X1 is obtained
from X0 by attaching a T -cell of dimension (g, d) along e and we shall often denote
X1 by X0 ∪Te Dg,n.

The proof of existence of colimits in AlgT (C) in Lemma 3.5 was constructive, so
we shall concretely describe the underlying object of the pushout (6.1) in AlgT (C) for
the benefit of the reader. Given a diagram

Dg,d ←↩ ∂Dg,d e−→ X0

as above, let us write X0 ∪e Dg,n for the pushout in C. Then the T -algebra X1 has
underlying object of C given by the reflexive coequalizer

(6.2) T (T (X0) ∪e Dg,d) T (X0 ∪e Dg,d) X1,

where: the top arrow is obtained by applying T to the induced map on pushouts
µTX0

∪∂Dg,d Dg,d : T (X0) ∪e Dg,d → X0 ∪e Dg,d; the bottom arrow is obtained by
applying T to i : T (X0) ∪e Dg,d → T (X0 ∪e Dg,d) and then composing with the
component of the natural transformation µT : T 2 ⇒ T at X0 ∪eDg,d; the reflection is
obtained by applying T to ιTX0

∪eDg,d, with ιTX0
: X0 → T (X0) the unit of the monad.

6.1.2. Cell attachments and change-of-monad. — If ϕ : T → T ′ is a morphism of
sifted monads and ϕ∗ : AlgT (C) → AlgT ′(C) is the left adjoint in the correspond-
ing change-of-monads adjunction, then ϕ∗ preserves pushout diagrams like any left
adjoint functor. Hence if we apply it to the diagram (6.1) and use the natural isomor-
phism ϕ∗F

T ∼= FT
′
as discussed in Example 3.15, we obtain

FT
′
(∂Dg,d) ϕ∗(X0)

FT
′
(Dg,d) ϕ∗(X1),

ϕ∗(e)

a pushout diagram in AlgT (C). That is, if X1 is obtained from X0 by attaching a
cell along e in AlgT (C), then ϕ∗(X1) is obtained from ϕ∗(X0) by attaching a cell
along ϕ∗(e) in AlgT ′(C).

Lemma 6.2. — If ϕ : T → T ′ is a morphism of sifted monads, then

ϕ∗ : AlgT (C)→ AlgT ′(C)

preserves cell attachments.

6.1.3. Cell attachments and indecomposables. — Since the T -indecomposables QT is
a special case of the change-of-monads construction, the effect on indecomposables of
a cell attachment in AlgT (C) is a cell attachment in Alg+(C) = C∗. This is captured
by the slogan that “QT transforms cell structures in AlgT (C) to cell structures in C∗.”
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Let us discuss this special case more explicitly. If we apply the left adjoint QT

to (6.1), using the formula QTFT (−) ∼= (−)+, we obtain a pushout diagram in C∗

∂Dg,d
+ QT (X0)

Dg,d
+ QT (X1).

For a general diagram category G such a cell attachment may be quite compli-
cated, but if G is a groupoid then one has the following more concrete description. If
g ≁= h ∈ G then the map QT (X0)(h) → QT (X1)(h) is an isomorphism. If g ∼= h ∈ G
then the difference between QT (X0)(h) and QT (X1)(h) is described by a pushout
diagram in S

G(h,h)
∗

(6.3)

∂Dd
+ ∧ G(h, h)+ QT (X0)(h)

Dd
+ ∧ G(h, h)+ QT (X1)(h),

that is, QT (X1)(h) is obtained from QT (X0)(h) by “attaching a free G(h, h)-equivari-
ant d-cell.”

6.1.4. Cell attachments for operads and change-of-diagram-category. — We now show
that change-of-diagram-category preserves O-algebra cell attachments when O is an
operad.

In Section 4.6 we saw that if p : G → G′ is strong k-monoidal, there is a functor
p∗ : AlgO(SG)→ AlgO(SG′) which is a left adjoint and satisfies p∗(FO(X)) ∼= FO(p∗(X)).
Thus p∗ preserves pushouts, so applying it to the diagram (6.1) and using
that p∗g∗ = p(g)∗, we obtain a pushout diagram in AlgO(SG′)

FO(∂Dp(g),d) p∗(X0)

FO(Dp(g),d) p∗(X1).

p∗(e)

That is, p∗(X1) is obtained from p∗(X0) by attaching a O-algebra (p(g), d)-cell:

Lemma 6.3. — If p : G→ G′ is a strong k-monoidal functor and O is an operad in S,
then p∗ : AlgO(SG)→ AlgO(SG′) preserves cell attachments.

6.2. Ascending filtrations from cell attachments

In this section we shall specialize to the case of O-algebras, where O is an operad
in C = SG. We shall study the filtration on a cell attachment.
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6.2.1. The filtration on a cell attachment. — In Section 5.3.1 we saw that the functor
colim: CZ≤ → C is (strong) monoidal and commutes with colimits, so from the formula

O(X) =
⊔
n≥0

0∗(O(n))⊗Gn
X⊗n

for the monad O on CZ≤ , and the fact that colim ◦ 0∗ = id, we conclude that
colimO ∼= O colim. Thus there is a functor colim: AlgO(CZ≤)→ AlgO(C) which com-
mutes with UO.

If S ∈ AlgO(CZ≤) is a filtered O-algebra, we think of colimS ∈ AlgO(C) as the
“underlying” O-algebra and an isomorphism R

∼→ colimS in AlgO(C) as specifying a
multiplicative filtration on R. We now describe such a multiplicative filtration on a
cell attachment in AlgO(C). Let us return to the situation of Section 6.1.1: we have
an R0 ∈ AlgO(C), and a diagram

(6.4)
FO(∂Dg,d) R0

FO(Dg,d),

e

whose pushout in AlgO(C) we denoted R1. To obtain multiplicative filtration on R1,
i.e., lift it to AlgO(CZ≤), it suffices to lift the defining pushout diagram (6.4) to a
diagram in AlgO(CZ≤).

If we did this using the strong monoidal functor 0∗, the result would be isomorphic
to 0∗R1 since 0∗ commutes with pushouts as a left adjoint. Instead, in (6.4) we replace
R0 by 0∗R0, Dg,n by 1∗D

g,d, and ∂Dg,n by 1∗∂D
g,d. The free algebra FO(1∗D

g,d) has
underlying object FO(Dg,d), and its filtration is not concentrated in any particular
degree. Consequently the pushout in AlgO(CZ≤) of the diagram

(6.5)
FO(1∗∂D

g,n) 0∗R0

FO(1∗D
g,n),

e

which we shall denote by fR1 and call the cell attachment filtration, also has a fil-
tration which is not concentrated in any particular degree. This may be seen from
the following description of its associated graded, where ∨O denotes the coproduct
in AlgO(CZ=

∗ ):

Theorem 6.4. — In AlgO(CZ=
∗ ) there is an isomorphism

gr(f(R1)) ∼= 0∗(R0)+ ∨O FO(1∗(S
g,d)).

Proof. — Since gr commutes with colimits and with FO, we have a pushout diagram
in AlgO(CZ=

∗ )

FO(1∗∂D
g,d
+ ) 0∗(R0)+

FO(1∗D
g,d
+ ) gr(f(R1)).
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The top map is adjoint to the unique map ∂Dg,d → 1∗(0∗(R0)+) = ∗ in C∗, so it is
the unique map to ∗ → 0∗(R0)+. Thus the pushout is isomorphic to the coproduct
in AlgO(CZ=

∗ ) of 0∗(R0)+ with the cofiber of the left map. As a left adjoint FO

preserves cofibers, giving the asserted answer.

6.2.2. The stages of the filtration on powers of pushouts. — Next we describe the filtra-
tion steps of the cell attachment filtration. To do so, we first understand the filtration
steps of a tensor power of a pushout.

Given a map i : X0 → X1, we define a filtered object f [i] by setting

f [i](n) =


i if n < 0,
X0 if n ≤ 0,
X1 if n > 0,

with non-trivial structure maps induced by i : X0 → X1. That is, f [i] is the pushout

1∗X0 0∗X0

1∗X1 f [i].

We shall describe the induced filtration on f [i]⊗n, with ⊗ given by Day convolution
on CZ≤ , in terms of pushout-products □ on CZ≤ .

In the case of a general cocomplete category D with monoidal structure, the
pushout-product is a monoidal structure on the arrow category C[1], where [1] is the
diagram category 0→ 1. It is given by Day convolution with respect to the symmetric
monoidal functor min: [1]× [1]→ [1], so inherits many of the properties of (D,⊗,1),
e.g., it is symmetric monoidal if ⊗ is. Explicitly, for two morphisms f : X0 → X1 and
g : Y0 → Y1, f □ g is the induced map in the following diagram:

X0 ⊗ Y0 X1 ⊗ Y0

X0 ⊗ Y1 (X1 ⊗ Y0) ⊔X0⊗Y0
(X0 ⊗ Y1)

X1 ⊗ Y1,

f⊗id

id⊗g
id⊗g

f⊗id

f□g

where we shall usually shorten (X1 ⊗ Y0) ⊔X0⊗Y0
(X0 ⊗ Y1) to X1 □ Y1 (suppressing

from the notation the fact that it depends on f and g).
Let us return to our study of f [i]⊗n. In filtration degree c, this is given by

f [i]⊗n(c) ∼= colim
c1+···+cn≤c

(f [i](c1)⊗ · · · ⊗ f [i](cn)) .

Since the maps f(i)[c] → f(i)[c + 1] are isomorphisms when c ≤ −1 or c ≥ 1, the
maps f [i]⊗n[c] → f [i]⊗n[c + 1] are isomorphisms for c ≤ −1 or c ≥ n, and we may
compute the non-trivial filtration steps by restricting from Z≤ to the subcategory [1] in
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the colimit, as for 0 ≤ c < n, the inclusion of (i1, . . . , in) ∈ {0, 1}n such i1+· · ·+in ≤ c
into the (c1, . . . , cn) ∈ (Z≤)n such that c1+· · ·+cn ≤ c is final functor. Thus it suffices
to give for I = (i1, . . . , in) ∈ {0, 1}n an inductive construction of

colim
i1+···+in≤c

(Xi1 ⊗ · · · ⊗Xin) .

To simplify notation, we shall write X⊗n
I := Xi1⊗· · ·⊗Xin . To obtain the inductive

construction we use that [1]n is a Reedy category by setting I = (i1, . . . , in) to have
degree |I| = i1 + · · · + in (see Section 8.3.1 for a discussion of this theory in the
context of geometric realization). Our filtration is the skeletal filtration of the colimit
over this Reedy category:

skc(X
⊗n
• ) ∼= colim

I∈{0,1}n

i1+···+in≤c

X⊗n
I .

Then we can compute skc(X
⊗n
• ) from skc−1(X

⊗n
• ) in terms of

⊔
|I|=cX

⊗n
I and the

c-th latching object Lc(X⊗n
• ):

(6.6)

Lc(X
⊗n
• ) skc−1(X

⊗n
• )

⊔
|I|=c

X⊗n
I skc(X

⊗n
• ).

This latching object may be computed as

Lc(X
⊗n
• ) :=

⊔
I∈{0,1}n

i1+···+in=c

 colim
J∈{0,1}n, jr≤ir
j1+···+jr≤c−1

X⊗n
J

 ,

and if the monoidal structure on C has a braiding then Lc(X⊗n
• ) is a

(
n
c

)
-fold disjoint

union of terms isomorphic to X⊗n−c
0 ⊗X□c

1 , using the canonical isomorphism

colim
J∈{0,1}c

j1+···+jc≤c−1

X⊗c
J
∼= X□c

1 .

If we let Gn−c,c ≤ Gn denote the setwise stabilizer of the set {n− c+ 1, . . . , n} of
the last c elements (this is just Sn−c × Sc if k = ∞, but more complicated in the
case k = 2), then (6.6) may then be written as

(6.7)

Gn ×Gn−c,c

(
X⊗n−c

0 ⊗X□c
1

)
f [i]⊗n(c− 1)

Gn ×Gn−c,c

(
X⊗n−c

0 ⊗X⊗c
1

)
f [i]⊗n(c).

Gn×Gn−c,c(X
⊗n−c
0 ⊗i□c)
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Lemma 6.5. — For c ≥ 1, and any symmetric sequence X in C, there is a pushout
diagram ⊔

n≥c Xn ⊗Gn−c,c

(
X⊗n−c

0 ⊗X□c
1

)
0∗(X )(f [i])(c− 1)

⊔
n≥c Xn ⊗Gn−c,c

(
X⊗n−c

0 ⊗X⊗c
1

)
0∗(X )(f [i])(c).

Proof. — We use the formula (0∗X )(Y )(c) =
⊔
n≥0 Xn ⊗Gn

(Y ⊗n(c)). Applying
Xn ⊗Gn

− to the pushout square (6.7) in CGn we obtain a pushout square in C (as
− ⊗ − preserves colimits in each variable). Next we take the coproduct over n ≥ c,
using that f [i]⊗n(c− 1)→ f [i]⊗n(c) is an isomorphism for n < c.

6.2.3. The stages of the filtration on a pushout in algebras. — We now describe the
stages of the cell attachment filtration f(R1) of Section 6.2.1 in the case that k = 2,∞.
To do so, we give an alternative expression for the underlying object of the coproduct
R ⊔O FO(Y1) in O-algebras.

Let G̃n−c,c be the kernel of the homomorphism Gn−c,c → Gc obtained by deleting
the first n− c strands if k = 2 or the action on the first n− c elements when k =∞
(so that G̃n−c,c ∼= Sn−c if k =∞). A Gc-action on O(n)⊗G̃n−c,c

X⊗n−c remains. We
then define the following right O-module functor

Envc(O) : C −→ CGc

X 7−→
⊔
n≥c

O(n)⊗G̃n−c,c
X⊗n−c,(6.8)

which visibly commutes with sifted colimits. Extending by density under sifted
colimits as in Section 3.2.2 we obtain functors EnvOc : AlgT (C) → CGc satisfying
EnvOc (FO(X)) = Envc(O)(X) for each c ≥ 0, which can be assembled into a single
functor

EnvO : AlgO(C) −→ FBk(C)

R 7−→
(
EnvO(R) : c 7→ EnvOc (R)

)
.

Remark 6.6. — If C is (k + 1)-monoidal this forms an operad, and the category
of EnvO(R)-algebras is equivalent to the category of O-algebras under R [17,
Lemma 1.7].

Lemma 6.7. — If k = 2,∞, there is an isomorphism

R ⊔O FO(X1) ∼= EnvO(R)(X1),

which is natural in R and X1.

Proof. — Since both

X 7−→ FO(X) ⊔O FO(X1) and X 7−→ EnvO(FO(X))(X1)
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are right O-module functors which commute with sifted colimits, by Proposition 3.7
it suffices to establish this for free algebras. In that case both sides are naturally
isomorphic to ⊔

n1,n2≥0

O(n1 + n2)⊗Gn1,n2
X⊗n1 ⊗X⊗n2

1 .

Let us now consider the defining pushout diagram for the cell attachment filtration

FO(1∗X0) 0∗R0

FO(1∗X1) f(R1).

FO(i)

It may factored as a composition of two pushout diagrams

FO(1∗X0) FO(0∗X0) 0∗R0

FO(1∗X1) FO(f [i]) f(R1),

FO(i)

and we may restrict our attention on the right pushout square. Using the results of
Section 6.2.2, the following proposition gives the filtration steps. This is the starting
point of the homotopical analysis of algebras over operads, and versions of it appear
in the unpublished work of Spitzweck, [40, Chapter 18], [52, Section 7.3], and [53,
Section 5].

Proposition 6.8. — For all c ≥ 1 there is a pushout diagram

(6.9)
EnvOc (R0)⊗Gc

X□c
1 f(R1)(c− 1)

EnvOc (R0)⊗Gc
X⊗c

1 f(R1)(c).

Proof. — By Lemma 6.5, the following two functors CX0↓− → C are naturally iso-
morphic; the first is given by

G1(X0 → X) := O(0∗X ⊔1∗X0
1∗X1)(c)

and the second, G2, defined by the pushout square

Envc(O)(X)⊗Gc X
□c
1 O(0∗X ⊔1∗X0 1∗X1)(c− 1)

Envc(O)(X)⊗Gc
X⊗c

1 G2(X0 → X).

Both are right O-module functor preserving sifted colimits. The extensions of G1 and
G2 to functors AlgO(C)F

O(X0)↓− → C by density are f(R1)(c) and the pushout of (6.9)
respectively, and we may conclude that these are naturally isomorphic as well.
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6.3. Cellular algebras and CW-algebras

We shall define two notions of O-algebras built using cells: (i) cellular O-algebras,
which are obtained by iterated cell attachments starting at the initial object i, and
(ii) CW O-algebras, which are obtained by iterated cell attachments respecting a
skeletal filtration. This not only means that the cells are attached in order of dimen-
sion, but also imposes restrictions on the possible attaching maps.

6.3.1. Cellular maps and CW-structures on maps. — For later use, we shall discuss
the more general notions of a cellular map and a CW-structure on a map. Here one
starts with an O-algebra R instead of the initial object i.

Definition 6.9. — A map f : R → S of O-algebras is said to cellular if it is the
transfinite composition of cell attachments. More precisely, we mean that there exists
a diagram

R = R−1 R0 R1 · · ·

S

f f0 f1

indexed by some ordinal κ, such that (i) colimi∈κfi is an isomorphism, and (ii) for
each successor ordinal i ∈ κ there is a pushout diagram in AlgO(T )

FO
(⊔

α∈Ii
∂Dgα,dα

)
Ri−1

FO
(⊔

α∈Ii
Dgα,dα

)
Ri,

for some set of morphisms {hα : ∂Dgα,dα → Ri−1}α∈Ii , while for each limit ordinal
i ∈ κ, we have that fi : Ri → S is the colimit of fi′ : Ri′ → S for i′ < i.

Definition 6.10. — An O-algebra R is said to be cellular if the map i→ R is cellular.

Cellular O-algebras do not admit a useful filtration, even if one demands the cells
are attached in increasing order of dimension. This is because by definition they only
give a filtered object in O-algebras, i.e., an object of AlgO(C)Z≤ , and its associated
graded need not be an O-algebra.

This defect is addressed by the notion of a CW O-algebra. This will be defined
in terms of their skeletal filtration, which is a filtered O-algebra, i.e., an object
of AlgO(CZ≤). It shall be obtained by attaching d-dimensional cells in filtration d,
along attaching maps into filtration d − 1. To make this precise, given a cofibration
∂Dd ↪→ Dd of simplicial sets, whose geometric realization is homeomorphic to the
d-disk and its boundary, we form a filtered simplicial set as follows: we put the source
∂Dd in filtration d− 1

∂Dd[d− 1] := (d− 1)∗(∂D
d),
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and let the target be filtered by putting the subset ∂Dd in filtration (d− 1) and the
remainder in filtration d. That is, Dd[d] is the pushout in sSetZ≤

d∗(∂D
d) (d− 1)∗(∂D

d)

d∗(D
d) Dd[d].

We will consider objects X of the category CZ≤ = (SG)Z≤ = SG×Z≤ , and we
write their values as X(g, n) for (g, n) ∈ G × Z≤. As usual, we will implicitly apply
sSet→ S→ C to consider simplicial sets as objects of S or C, and hence in particular
we consider Dd[d] as an object of CZ≤ .

Definition 6.11. — A structure of filtered CW attachment of dimension d on a mor-
phism f : R→ S in AlgO(CZ≤) consists of the following data:

(i) a set Id,
(ii) a collection of cofibrations of simplicial sets {∂Dd

α ↪→ Dd
α}α∈I each of whose

geometric realizations is homeomorphic to the inclusion of the boundary of the
d-disk,

(iii) a collection of objects {gα}α∈Id
of G,

(iv) a collection of morphisms eα : ∂Dd
α → R(gα, d − 1) in S, adjoint to mor-

phisms ∂Dgαd
α [d− 1]→ R in CZ≤ ,

(v) a pushout diagram

FO
(⊔

α∈Id
∂Dgα,d

α [d− 1]
)

R

FO
(⊔

α∈Id
Dgα,d
α [d]

)
S.

f

Definition 6.12. — A relative CW-structure on a morphism f : R→ S consists of the
following data:

(i) a diagram indexed by the poset N ∪ {−1}

0∗(R) = sk−1(f) sk0(f) sk1(f) · · ·

in AlgO(CZ≤),

(ii) for d ≥ 0, the data of a filtered CW attachment of dimension d on the mor-
phism fd : skd−1(f)→ skd(f), in particular a pushout diagram

(6.10)

FO
(⊔

α∈Id
∂Dgα,d

α [d− 1]
)

skd−1(f)

FO
(⊔

α∈Id
Dgα,d
α [d]

)
skd(f),

f
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(iii) using the notation sk(f) := colimd skd(f), a commutative diagram

R S

colim(sk−1(f)) colim(sk(f)).

f

∼= ∼=

Definition 6.13. — A CW-algebra structure on R ∈ AlgO(C) is a relative CW-
structure on the initial map i→ R.

Note that sk(f)(d) ∼= sk−1(f)(d) ∼= i for all d < 0, so the filtration sk(f) is
ascending in the sense of Definition 5.1. We will think of sk(f) as the skeletal filtration
on f . Since the left adjoint colim commutes with colimits, if f : R → S admits a
relative CW-structure then it is cellular.

When we eventually construct CW-structures inductively, it is helpful to have a
notion of map between CW-algebras. A map R→ S of CW-algebras is a CW-map if
the CW-structure on R may be obtained from S by taking a subset of the cells, and
R→ S is induced by the inclusion of these cells upon applying colim.

6.3.2. The associated graded of the skeletal filtration. — In this section we describe
the associated graded of the skeletal filtration; heuristically passing to the associated
graded “filters away” the attaching maps for the CW-algebra structure.

Theorem 6.14. — Using the notation of Definition 6.12, there is an isomorphism

gr(sk(f)) ∼= 0∗(R+) ∨O FO
∨
d≥0

∨
α∈Id

d∗(S
gα,d
α )


in AlgO(CZ=

∗ ).

Proof. — On taking quotients the map of pairs

(R, i) = (sk−1(f)(0), sk(f)−1(−1)) −→ (sk(f)(0), sk(f)(−1))

gives a morphism R+ = gr(sk−1(f))(0) → gr(sk(f))(0) in AlgO(C∗) and hence by
adjunction a morphism ϕ : 0∗(R+) → gr(sk(f)) in AlgO(CZ=

∗ ). For each cell we have
a characteristic map

iα : (Dgα,d
α , ∂Dgα,d

α ) −→ (sk(f)(d), sk(f)(d− 1))

which on quotients gives a pointed morphism jα : Sgα,d
α → gr(sk(f))(d) and hence by

adjunction a morphism d∗(jα) : d∗(S
gα,d
α )→ gr(sk(f)). Freely extending this to a map

of O-algebras we obtain a morphism

φ : 0∗(R+) ∨O FO
∨
d≥0

∨
α∈Id

d∗(S
gα,d
α )

 ϕ∨OFO
(∨

d≥0

∨
α∈Id

d∗(jα)
)

−−−−−−−−−−−−−−−−−−−→ gr(sk(f))

in AlgO(CZ=
∗ ), which we claim is an isomorphism.
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We shall prove by induction over k that

φk : 0∗(R+) ∨O FO
∨
d≤k

∨
α∈Id

d∗(S
gα,d
α )

 ϕ∨OFO
(∨

d≤k

∨
α∈Id

d∗(jα)
)

−−−−−−−−−−−−−−−−−−−−→ gr(skk(f))

is an isomorphism given that φk−1 is: as gr and FO both commute with colimits, it
then follows by taking the colimit as k → ∞ that φ is an isomorphism. The initial
case k = −1 is obvious, because in that case both sides are 0∗(R+). For the inductive
step from k−1 to k, we apply gr to the pushout diagram (6.10): as gr commutes with
colimits and with FO this gives a pushout diagram

FO
(∨

α∈Ik
(k − 1)∗(∂D

gα,k−1
α )

)
gr(skk−1(f))

FO
(∨

α∈Ik
(k − 1)∗(∂D

gα,k−1
α ) ∨

∨
α∈Ik

k∗(S
gα,k
α )

)
gr(skk(f)).

Omitting the corner gr(skk(f)), this is a coproduct in AlgO(CZ=
∗ ) of the two diagrams

FO
(∨

α∈Ik
(k − 1)∗(∂D

gα,k−1
α )

)
gr(skk−1(f))

FO
(∨

α∈Ik
(k − 1)∗(∂D

gα,k−1
α )

)
and

∗ ∗

FO
(∨

α∈Ik
k∗(S

gα,k
α )

)
.

Since the left vertical arrow of the first diagram is an isomorphism, the expression
for gr(skk(f)) simplifies to

gr(skk(f)) ∼= gr(skk−1(f)) ∨O FO
( ∨
α∈Ik

k∗(S
gα,k
α )

)
,

under which the map φk is identified with φk−1 ∨O FO
(∨

α∈Ik
k∗(S

gα,k
α )

)
, so is an

isomorphism.
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PART II

HOMOTOPY THEORY
OF ALGEBRAS

OVER A MONAD

In this second part we will add homotopy-theoretic con-
siderations to the theory developed in Part I. We shall
suppose that S is given a model structure, and from this
produce model structures on C = SG and AlgT (C). Using
these we can derive many of the constructions made so far,
such as change-of-diagram-category, change-of-monads, in-
decomposables, decomposables, or cell attachments, which
we do in Section 8.2. The main construction of interest is
the functor of derived T -indecomposables, QTL , whose ho-
mology groups are defined in Section 10.1 and called T -ho-
mology. We will often be specifically interested in the case
that T is the monad associated to an operad O.

The main technical tools we will develop are simplicial
formulae for computing various derived functors, spectral
sequences for computing with filtered objects, a Hurewicz
theorem for O-homology, and a cellular approximation the-
orem for O-algebras. These appear in Sections 8.3, 10.2,
11.3, and 11.5 respectively.

Throughout this part, we will assume that the axioms
of Section 2.1 hold for S (and hence for C = SG) unless
mentioned otherwise:

— Axiom 2.1: S is simplicially enriched.
— Axiom 2.2: S is complete and cocomplete in an en-

riched sense.
— Axiom 2.5: S has a simplicially enriched closed

k-monoidal structure, closed on both sides if k = 1.





CHAPTER 7

CONTEXTS FOR HOMOTOPY THEORY

In Section 2 we discussed axioms on a category S necessary for a good theory of
algebras over a sifted monad. As this part concerns homotopy theory, we will require
S to be a model category and discuss model categorical axioms necessary for a good
homotopy theory of algebras over a sifted monad.

7.1. Axioms for convenient contexts

Model categories are a convenient setting for homotopy theory and several good ref-
erences exist, e.g., [95, 49, 57, 61]. A model category structure on a complete cocomplete
category S consists of three classes of morphisms; weak equivalences, cofibrations, and
fibrations. These classes should be closed under retracts and 2-out-of-3. Morphisms
that are both weak equivalences and cofibrations are called trivial cofibrations and
similarly morphisms that are both weak equivalences and fibrations are called trivial
fibrations. The trivial cofibrations should have the left lifting property with respect
to fibrations and cofibrations should have the left lifting property with respect to
trivial fibrations. There should further exist two functorial factorizations of a mor-
phism f : X → Y into X → Z → Y , one such factorization where X → Z is a trivial
cofibration and Y → Z is a fibration, and another such factorization where X → Y

is a cofibration and Y → Z is a trivial fibration. Applying this to i → X or X → t

we obtain functorial cofibrant or fibrant replacements. We call a weak equivalence
f : Y → X with Y cofibrant a cofibrant approximation of X and say it is a cofibrant
replacement if f is a trivial fibration. Similarly, we call a weak equivalence g : X → Z

with Z fibrant a fibrant approximation of X and say it is a fibrant replacement if
g is a trivial cofibration. A model category S has a homotopy category Ho(S), which
can be constructed as a localization but also has a concrete model as the category
with objects the cofibrant-fibrant objects in S and morphisms the homotopy classes
of morphisms in S.
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In an adjunction between model categories, the left adjoint F is a left Quillen
functor and the right adjoint G a right Quillen functor if one of the following equiv-
alent conditions hold: (i) F preserves cofibrations and trivial cofibrations, (ii) G pre-
serves fibrations and trivial fibrations, (iii) F preserves cofibrations and G fibrations,
(iv) F preserves trivial cofibrations and G trivial fibrations. Left, resp. right, Quillen
functors may be derived by composing them with a functorial cofibrant, resp. fibrant,
replacement functor, which we shall denote c, resp. f . We use the notation LF := L◦c
and RG := G ◦ f for these derived functors: they come with a natural transformation
LF ⇒ F (which is a weak equivalence on cofibrant objects) and G⇒ RG (which is a
weak equivalence on fibrant objects). The functor LF preserves weak equivalences be-
tween cofibrant objects and RG preserves weak equivalences between fibrant objects,
by Ken Brown’s Lemma. These derived functors induce a pair of adjoint functors on
the homotopy categories, which is independent of the choice of c or f , and will also
be denoted LF ⊣ RG. It is possible to derive functors with weaker properties: a func-
tor F may be left derived if it takes trivial cofibrations between cofibrant objects to
weak equivalences, and a functor G may be right derived if it takes trivial fibrations
between fibrant objects to weak equivalences, see Proposition 8.4.8 of [57].

For categories of algebras or diagram categories, we define so-called projective
model structures. The construction of these uses that the model category structure
on S is cofibrantly generated , see Section 2.1 of [61]. Roughly, this means that the cofi-
brations and trivial cofibrations are generated by sets of morphisms under pushouts,
transfinite composition and retracts. These sets are called generating cofibrations and
generating trivial cofibrations.

Axiom 7.1. — S is equipped with a cofibrantly generated model category structure.

As the category S is required to satisfy the axioms in Section 2, it comes with a
simplicial enrichment and a closed k-monoidal structure (using the latter, the former
can be reconstructed from a functor s : sSet→ C). We will require the model category
structure to be compatible with these two structures, in the following precise sense
(see Section 4.2 of [61]).

A functor F : C× D→ E is called a Quillen bifunctor if it is an adjunction of two
variables and has the following two properties: firstly, if i : K → L and j : X → Y are
cofibrations then the pushout F (K,Y ) ⊔F (K,X) F (L,X) → F (L, Y ) is a cofibration.
Secondly, this should be a weak equivalence if at least one of i, j is a weak equivalence.
If F is a Quillen bifunctor, fixing cofibrant objects C ∈ C or D ∈ D we obtain a left
Quillen functor F (C,−) : D→ E or F (−, D) : C→ E.

A model category is monoidal if ⊗ : S×S→ S is a Quillen bifunctor and tensoring
a cofibrant X with a cofibrant replacement c(1)→ 1 gives a weak equivalence. Note
that the second condition is automatically satisfied when 1 is cofibrant, which we
shall soon assume in Axiom 7.2. It has the following consequences: (i) if X, Y are
cofibrant, then so is X ⊗ Y , (ii) if X → X ′ is a weak equivalence between cofibrant
objects and Y is cofibrant, then X⊗Y → X ′⊗Y is a weak equivalence (and similarly
in the other variable).
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A left Quillen functor F between monoidal model categories is strong/oplax/lax
monoidal if it is a strong/oplax/lax monoidal functor and F (c(1))→ F (1) is a weak
equivalence. If 1 is cofibrant the latter is automatic.

The model category S is simplicial if the copowering × : sSet× S→ S is a Quillen
bifunctor. It has the following consequences: (i) if X is cofibrant, then so is K ×X,
(ii) if K → K ′ is a weak equivalence and X cofibrant, then K × X → K ′ × X is a
weak equivalence, (iii) ifX → X ′ is a weak equivalence between cofibrant objects, then
K×X → K ′×X is a weak equivalence. Using s(K) = K×1S and K×X = s(K)⊗X,
it follows that if S satisfies the axioms in Section 2.1 and is a monoidal model category
with 1 cofibrant, then S is simplicial if and only if s : sSets→ S is a left Quillen functor
if and only if Sing : S→ sSets is a right Quillen functor.

Though we believe that with appropriate modifications one can state all our results
when the unit is not cofibrant (e.g., [90, Theorem 1]), it will be quite convenient to
make this assumption.

Axiom 7.2. — The model category structure on S is monoidal and simplicial. The
unit 1 of the monoidal structure is cofibrant.

We do not demand any compatibility between fibrant replacements and the
monoidal structure. Sometimes there is, through the existence of a lax k-monoidal
fibrant approximation (which need not be a functorial fibrant replacement):

Definition 7.3. — A lax k-monoidal fibrant approximation on C is a functor R : C→ C
such that R(X) is fibrant for all X which comes with a lax k-monoidality and a lax
k-monoidal natural weak equivalence X → R(X).

Finally, it shall be useful to know that homotopy equivalences in the following sense
are weak equivalences. This is Proposition 9.5.16 of [57].

Definition 7.4. — Given two maps f0, f1 : X → Y , a homotopy from f0 to f1 is a
map H : ∆1 × X → Y such that the composite H ◦ i0 : {0} × X → ∆1 × X → Y

equals f0 and the composite H ◦ i1 : {1} ×X → ∆1 ×X → Y equals f1.
A map f : X → Y is a homotopy equivalence if there exists a map g : Y → X such

that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX .

Remark 7.5. — It may be helpful to note which axioms in this section we consider
necessary, and which we consider merely helpful (and likely avoidable with more
technical work). The “helpful” assumption is the part of Axiom 7.2 stating that the
monoidal unit 1 is cofibrant. The remaining axioms seem to be “necessary.”

7.2. Examples

We explain how to endow the following examples of S with model structures satis-
fying the axioms of Section 7.1.
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7.2.1. Simplicial sets. — The Quillen model structure has cofibrations the monomor-
phisms and fibrations the Kan fibrations, and these determine the remaining data.
The weak equivalences are those maps that induce weak equivalences of topological
spaces upon geometric realization. It is cofibrantly generated by generating cofibra-
tions {∂∆n ↪→ ∆n} and generating trivial cofibrations {Λni ↪→ ∆n} [61, Chapter 3.2].
Thus the Quillen model structure satisfies Axiom 7.1.

For Axiom 7.2, the Quillen model structure is monoidal for the Cartesian product ×
[61, Proposition 4.2.8]. Clearly id : sSet → sSet is a left Quillen functor, so it is also
simplicial. It has a lax symmetric monoidal fibrant replacement functor given by Ex∞,
which preserves finite products as it is a filtered colimit of functors with a left adjoint.

7.2.2. CGWH topological spaces. — The Serre model structure on CGWH topologi-
cal spaces has fibrations the Serre fibrations and weak equivalences the weak homo-
topy equivalences, and these determine the remaining data. It is cofibrantly gener-
ated by the generating cofibrations {Sn−1 ↪→ Dn} and generating trivial cofibrations
{Dn × {0} ↪→ Dn × [0, 1]} [61, Chapter 2.4].

For Axiom 7.2, it is monoidal for the Cartesian product × [61, Proposition 4.2.11].
The functor |−| : sSet→ Top is a left Quillen functor, as it sends a monomorphism of
simplicial sets to a relative CW-complex and creates weak equivalence by definition.
As all spaces are fibrant, the identity is a lax (in fact strong) symmetric monoidal
fibrant replacement.

7.2.3. Simplicial k-modules. — Let sC denote the category of simplicial objects in C,
and suppose there is a functor F : sSet→ sC with right adjoint U : sC→ sSet. There
exists a simplicial model structure on sC in which f is a fibration or weak equivalence
if Uf is, if the following conditions are satisfied [48, Theorem II.5.4 and Lemma II.6.1]:
(i) U commutes with filtered colimits and (ii) every object of sC has fibrant underly-
ing simplicial set. This will then be cofibrantly generated by generating cofibrations
{F (∂∆n)→ F (∆n)} and generating trivial cofibrations {F (Λni )→ F (∆n)}.

This result in particular applies to the category of simplicial k-modules sModk, with
F : sSet→ sModk given by taking the levelwise free k-module, as U preserves filtered
colimits and every simplicial abelian group is Kan. Because every object of sModk is
fibrant, the identity is a lax symmetric monoidal fibrant replacement functor. For
Axiom 7.2, [61, Corollary 4.2.5] implies it suffices to check the properties of a Quillen
bifunctor for ⊗ only on generating (trivial) cofibrations. This is clear, as all maps
involved can be expressed as F applied to colimits of generating (trivial) cofibrations.

7.2.4. Symmetric spectra. — There is a number of model structures on the category
of symmetric spectra, all of which are cofibrantly generated, monoidal and simplicial
[104], verifying Axioms 7.2 and 7.1. We shall take the absolute projective stable model
structure (called the stable model structure in [63]).

In the absolute projective stable model structure, the cofibrations are those maps
that have the left lifting property with respect to the level trivial fibrations, i.e., the
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maps f : X → Y such that fn : Xn → Yn is a Kan fibration of underlying simplicial
sets. The weak equivalences are the stable equivalences; these are the map f : X → Y

such that the induced map f∗ : [Y,A]→ [X,A] is a bijection for all injective Ω-spec-
tra A. It is worth pointing out that no lax fibrant approximation functor can exist on
symmetric spectra, due to Lewis’s argument [73].

Remark 7.6. — An alternative model structure on symmetric spectra is the positive
projective stable model structure. To obtain this, only use the generating (trivial)
cofibrations for n > 0. This has advantages when dealing with operads that are not
Σ-cofibrant, see e.g., [51, 53, 93], but S is no longer cofibrant.

7.2.5. Pointed categories. — If S satisfies the axioms of Section 7.1, then S∗ does too.
Firstly, if S is a cofibrantly generated model category it follows from [58] that S∗ has
the structure of a cofibrantly generated model category, where weak equivalences,
cofibrations, and fibrations are all created by U+ : S∗ → S. The generating (trivial)
cofibrations are f ⊔ t where f : A→ B is a generating (trivial) cofibration of S.

We equip S∗ with the monoidal structure ? described in Section 3.3. The unit
is 1S ⊔ t, so is cofibrant in S∗ as 1C is cofibrant in S. As ? participates in an
adjunction of two variables, to prove that ? is a Quillen bifunctor it suffices to
verify the condition on generating (trivial) cofibrations by Corollary 4.2.5 of [61].
As F+(X) ? F+(Y ) ∼= F+(X ⊗ Y ), the pushout-product of generating cofibra-
tions F+(f) and F+(g) is obtained by applying F+ to the ⊗ pushout-product of f
and g in S, so is a cofibration, and is a trivial cofibration if one of f or g is. This
verifies Axiom 7.2. That × : sSet × S∗ → S∗ is a Quillen bifunctor may similarly be
verified on generating (trivial) cofibrations using K × F+(X) ∼= F+(K ×X).

If S is pointed, the fact that × : sSet × S∗ → S∗ is a Quillen bifunctor implies
that ∧ : sSet∗ × S∗ → S∗ is also a Quillen bifunctor. We again use Corollary 4.2.5 of
[61] and that F+(K) ∧ F+(X) ∼= F+(K ×X).

7.3. Model category structures transferred along adjunctions

The construction of a model category structure on sModk and S∗ are examples of
the transfer of a model structure along an adjunction. In this section we explain this
technique, and apply it to diagram categories and module categories.

7.3.1. The projective model structure. — Given a model category C and a functor
F : C → D with right adjoint U , one may try to construct a model structure on D
by declaring a morphism f in D to be a fibration or weak equivalence if Uf is in C.
If it exists, this is called the projective model structure (also known as the right-
induced model structure), and with respect to this model structure F becomes a left
Quillen functor since U preserves fibrations and trivial fibrations. If C is cofibrantly
generated by sets I and J of generating cofibrations and trivial cofibrations, then
this is equivalent to declaring FI := {F (i) | i ∈ I} to be the set of generating
cofibrations and FJ := {F (j) | j ∈ J} to be the set of generating trivial cofibrations.
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Theorem 11.1.13 of [40] or Theorem 11.3.2 of [57] give general conditions under which
this indeed defines a cofibrantly generated model structure (these results essentially
go back to Quillen [95]).

Theorem 7.7. — The projective model structure on D transferred along the adjunction
F ⊣ U exists if

(i) FI and FJ admit a small object argument.
(ii) U takes relative FJ-cell complexes to weak equivalences.

In condition (i), the fact that FI admits a small object argument means that the
domains of morphisms of the set FI are small relative to the class of relative FI-cell
complexes [57, Definition 10.5.15]. The following observation appears in Section 2.5
of [14]:

Lemma 7.8. — Assumption (i) of Theorem 7.7 holds if

(i′) The domains of I and J are small relative to all morphisms, and U preserves
filtered colimits.

Theorem 3.8 of [49] gives a way to verify (ii) (see also Section 2.6 of [14]):

Proposition 7.9. — Assumption (ii) of Theorem 7.7 holds if

(ii′) D is simplicial and there exists an fibrant approximation, i.e., a functor
R : D→ D such that R(X) is fibrant for all X (i.e., fibrant upon applying U)
and a natural transformation idD → R that is a natural weak equivalence (i.e.,
a natural transformation that becomes a weak equivalence upon applying U).

7.3.2. Diagram categories. — These techniques can be applied to diagram categories.
If G is a small category, then the inclusion ob(G) → G with ob(G) the set of objects
in G defines a functor U : SG →

∏
ob(G) S by restriction, with left adjoint F given by

F ((Xg)g∈ob(S)) =
⊔

g∈ob(G)

G(g,−)×Xg.

In [57, Theorem 11.6.1] the assumptions of Theorem 7.7 are verified for F ⊣ U assum-
ing that S is cofibrantly generated. Thus assuming Axiom 7.1, the projective model
structure on SG exists. By [57, Theorem 11.7.3] it will be a simplicial model structure
if S is a simplicial cofibrantly generated model category.

If the category G is in addition monoidal then SG is equipped with a Day convolution
product, and we will now verify that this makes it a monoidal model category [64,
Section 2.2].

Lemma 7.10. — If G is a small closed monoidal category and S satisfies the axioms
of Section 7.1, then SG with the projective model structure also satisfies the axioms of
Section 7.1. If S has a lax monoidal fibrant approximation functor, then so does SG.
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Proof. — We have explained above that SG has the projective model structure, which
is by definition cofibrantly generated, and that it is simplicial, so to verify Axiom 7.2
it remains to show that it is monoidal with respect to Day convolution and that the
unit is cofibrant.

The Day convolution product is closed, so participates in an adjunction of two
variables and hence by [61, Corollary 4.2.5] it suffices to check that Day convolution
is a Quillen bifunctor only on generating (trivial) cofibrations. Since F is a left adjoint,
and ⊗ distributes over colimits by closedness, it suffices to check this for morphisms
of the form G(g,−) × i or G(h,−) × j, where i ∈ I is a generating cofibration and
j ∈ J is a generating cofibration. For example, in the case G(g,−) × i, G(g′,−) × i′
for i, i′ ∈ I, the pushout-product

G(g ⊕ g′,−)× ((X ⊗ Y ′) ⊔X′⊗Y ′ (X ′ ⊗ Y )) −→ G(g ⊕ g′,−)× (X ′ ⊗ Y ′)
is a cofibration, as it is obtained by applying the left Quillen functor (g⊕g′)∗ : S→ SG

to a cofibration. Furthermore, if one of i or i′ is a trivial cofibration then it is obtained
by applying (g ⊕ g′)∗ : S→ SG to a trivial cofibration, so is a trivial cofibration. The
unit of SG is 1SG = G(1G,−)× 1S, obtained by applying

S
(1G)∗−−−→

∏
ob(G)

S
F−→ SG

to 1S. These are both left Quillen functors, so as 1S is cofibrant so is 1SG .
Any fibrant approximation functor f : S → S induces a functor fG : SG → SG by

applying f objectwise. This will be lax monoidal with respect to Day convolution if
f is lax monoidal.

Example 7.11. — In Example 3.23 we explained that the functor p∗ : SG′ → SG induced
by precomposition by functor p : G→ G′ has a left adjoint p∗ : SG → SG′ given by left
Kan extension. This is a Quillen adjunction, since it is clear that p∗ preserves (trivial)
fibrations. Thus we may derive either of these functors.

Remark 7.12. — At this point we can also mention homotopy colimits (see [34] for
more background). If I is a small category and C is a cofibrantly generated model
category, then as described above the projective model structure on CI exists. The
adjunction

CI C
colim

const

is a Quillen adjunction, as const clearly preserves fibrations and trivial fibrations
by definition of the projective model structure, and the homotopy colimit functor
hocolim is the derived functor L colim.

If D is another such model category and F : C→ D is a functor which takes weak
equivalences between cofibrant objects to weak equivalences then it has a left de-
rived functor LF : Ho(C) → Ho(D). Furthermore F I : CI → DI also preserves weak
equivalences between cofibrant objects, because weak equivalences are objectwise and
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cofibrant objects of CI are in particular objectwise cofibrant, by e.g., [57, Proposi-
tion 11.6.3], so F I also has a left derived functor. Hence we may ask if

Ho(CI) Ho(C)

Ho(DI) Ho(D)

L colim

LF I LF

L colim

commutes (up to natural isomorphism). If it does then we say that F preserves ho-
motopy colimits. A sufficient condition is that F is a left Quillen functor, but this is
not a necessary condition.

7.3.3. Module categories. — The second application of Section 7.3.1 is to the category
R-Mod of modules over a commutative algebra object R in S. We shall give two con-
ditions under which the projective model structure transferred along the free-forgetful
adjunction exists. The second of these involves the monoid axiom [105, Definition 3.3]:
if a morphism is a transfinite composition of pushouts of tensor products of trivial
cofibrations with any object, it is a weak equivalence.

Theorem 7.13. — Suppose that S satisfies the axioms of Section 7.1 and R is a com-
mutative algebra in S such that either

(i) the underlying object of R is cofibrant in S, or
(ii) S satisfies Schwede-Shipley’s monoid axiom,

then the category R-Mod := AlgR⊗−(S) of left R-modules has a projective model
structure. In case (i), UR : R-Mod→ S preserves (trivial) cofibrations.

Proof. — In case (i), we use [40, Proposition 11.1.4], which says that sufficient con-
ditions to apply Theorem 7.7 are that (a) UR preserves sifted colimits, (b) in each
pushout diagram

(7.1)
FR(Y0) M0

FR(Y1) M1,

FO(i) f

the morphism UR(f) is a (trivial) cofibration if i is.
Part (a) follows from Lemma 3.4. For part (b), we note that R ⊗ − preserves all

colimits as a left adjoint, so that UR preserves all colimits as well by an argument
analogous to Lemma 3.4; if i 7→ Mi is a diagram of R-modules with underlying ob-
jectsMi, we can endow colimi∈IMi with a R-module structure satisfying the universal
property. Thus it suffices to consider the following pushout diagram in S

R⊗ Y0 M0

R⊗ Y1 M1.

R⊗i f
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Under assumptions of case (i), R⊗− preserves (trivial) cofibrations by the axioms of
a monoidal model category. As trivial cofibrations these are preserved by pushouts,
(b) is satisfied. Since every (trivial) cofibration g in R-Mod is a retract of transfi-
nite compositions of morphisms of the form of the right hand vertical map (7.1),
whose underlying morphisms is also a (trivial) cofibration S, UR(g) is also a (trivial)
cofibration.

For case (ii), we refer to [105, Theorem 4.1] (note Remark 2.4 weakens the smallness
assumptions).

Remark 7.14. — In case (i), we may replace the assumption that R is cofibrant with
the assumption that 1 → R is a cofibration. One follows the proof given above, but
to show that R⊗ i is a (trivial) cofibration one applies the pushout-product axiom to
the cofibration 1→ R and the (trivial) cofibration Y0 → Y1 to see that the map g in

1⊗ Y0
∼= Y0 R⊗ Y0 R⊗ Y0

1⊗ Y1
∼= Y1 Y1 ⊔Y0

(R⊗ Y1) R⊗ Y1

f R⊗i
g

is a (trivial) cofibration. As (trivial) cofibrations are closed under pushouts, f is a
(trivial) cofibration and hence so is R⊗ i.

In case (ii), UR : R-Mod→ S might not preserve (trivial) cofibrations; if R is not
cofibrant but the monoidal unit 1 is, then i → R is a cofibration in R-Mod whose
underlying morphism in S is not a cofibration.

For our applications, we need to verify some additional axioms on the model struc-
ture on R-Mod, listed in Section 7.1:

Lemma 7.15. — Suppose that S satisfies the axioms of Section 7.1 and R is a com-
mutative algebra in S such that either

(i) the underlying object of R is cofibrant in S, or
(ii) S satisfies Schwede-Shipley’s monoid axiom,

then R-Mod also satisfies the axioms of Section 7.1.

Proof. — First, recall that in Proposition 2.10 we showed that R-Mod satisfies the
axioms of Section 2.1. We start with case (i), and the existence of the projective model
structure was established in Theorem 7.13. However, in Section 7.1 we have imposed
additional axioms beyond the mere existence of a model category structure, which we
shall now verify for the category R-Mod.

Axiom 7.1 holds as R-Mod is by definition cofibrantly generated. Axiom 7.2 first
requires R-Mod to be a simplicial model category, which means that

−×− : sSet×R-Mod −→ R-Mod

(K,M) 7−→ (R⊗ s(K))⊗R M
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should be a Quillen bifunctor, which can be identified with

(K,M) 7→ K ×M := s(K)⊗M.

Since − × − participates in an adjunction of two variables, by [61, Corollary 4.2.5]
it suffices to check that it is a Quillen bifunctor on generating (trivial) cofibrations.
So, given generating cofibrations f : K → L ∈ sSet and g : A → B ∈ S the pushout-
product f□(R⊗ g) may be identified with

R⊗ (f □ g) : R⊗ (L×A ⊔K×A K ×B) −→ R⊗ (L×B)

which is R⊗− applied to a cofibration in S (as × : sSet×S→ S is a Quillen bifunctor),
so is a cofibration. If f or g is a trivial cofibration then so is f□g. Because R⊗− is
a left Quillen functor, then R⊗ (f□g) is also a trivial cofibration.

Axiom 7.2 next requires R-Mod to be a monoidal model category. We will construct
a tensor product ⊗R in Section 9.4, which is a Quillen bifunctor by Lemma 9.17.
As 1S is cofibrant in S by assumption and R⊗− is a left Quillen functor, 1R-Mod =

R⊗ 1S is cofibrant in R-Mod.
In case (ii), [105, Theorem 4.1(2)] shows that the projective model structure

on R-Mod exists, and that it is monoidal. Verifying the remaining axioms may be
done as above.

Example 7.16. — The category S = SpΣ with the absolute projective stable
model structure satisfies Schwede-Shipley’s monoid axiom [105, Section 5]. The
Eilenberg-Mac Lane object Hk has (Hk)k given by the underlying simplicial set of
k[Sk] ∈ sModk, and is a commutative ring spectrum. The category of Hk-module
spectra is Quillen equivalent to chain complexes over k by [108] (see also [109]).
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HOMOTOPY THEORY OF MONADS AND INDECOMPOSABLES

In this section we discuss the interaction of homotopy theory with the theory of
monads of Section 3, and thus we assume that the axioms of Section 2.1 and 7.1
are satisfied. We will explain how to obtain a model structure on the category of
algebras over a monad, and hence how to derive the functors defined in that section,
most importantly indecomposables of an augmented monad. We also give simplicial
formulae to make these derived functors computable.

8.1. Homotopy theory of algebras over a monad

Fix a sifted and simplicial monad T . If it exists, the projective model structure
on AlgT (C) is obtained by transferring the model structure on C along the adjunction

(8.1) C AlgT (C).
FT

UT

Section 7.3 explains conditions which guarantee the existence of such a transferred
model structure, and we make the existence of the projective model structure an
assumption on C and T .

Axiom 8.1. — The projective model structure on AlgT (C) exists and the forgetful
functor UT : AlgT (C)→ C preserves (trivial) cofibrations between cofibrant objects.

Lemma 8.2. — Assuming Axiom 8.1, the monad T preserves (trivial) cofibrations
between cofibrant objects and the projective model structure on AlgT (C) is simplicial.

Proof. — By definition of the projective model structure, if it exists, the adjunc-
tion (8.1) is a Quillen adjunction. Thus FT (f) is a (trivial) cofibration between cofi-
brant objects if f is, and applying UT and using the second part of Axiom 8.1 we see
that Tf is a (trivial) cofibration between cofibrant objects.

As × : sSet × AlgT (C) → AlgT (C) participates in an adjunction of two variables,
that it is a Quillen bifunctor may be verified on generating (trivial) cofibrations
by [61, Corollary 4.2.5]. That is, given generating cofibrations f : K → L ∈ sSet
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and g : A→ B in C, we must check that f□FT (g), determined from the pushout
diagram

K × FT (A) L× FT (A)

K × FT (B) L× FT (A) ⊔K×FT (A) K × FT (B)

L× FT (B),

f□FT (g)

is a cofibration, which is a trivial cofibration if f or g is a trivial cofibration. By
Lemma 3.9 and the fact that FT is a left adjoint, we may identify f□FT (g) with
FT (f □ g). Since × : sSet × C → C is a Quillen bifunctor, f □ g is a cofibration and
hence so is FT (f □ g). Similarly, if f or g is a trivial cofibration, then so is f □ g and
hence FT (f □ g).

We note that it is usually not the case that the monad T preserves cofibrations
between objects that are not cofibrant.

To compute derived functors we will use simplicial resolutions of T -algebras, and
hence we will impose the condition that T preserves geometric realizations. This
assumption is not of a model-categorical nature, but only becomes relevant when doing
homotopy theory. It should be thought of as analogous to preserving sifted colimits
(indeed, preserving enriched or∞-categorical sifted colimits means preserving filtered
colimits and geometric realizations).

The identity morphism of ∆n × X yields an n-simplex of EMapC(X,∆n × X).
Applying a simplicial functor F we obtain an n-simplex of EMapC(F (X), F (∆n×X))

which in turn yields a morphism ∆n ×F (X)→ F (∆n ×X). This is natural in n and
X, so given a simplicial object X• we get a map

|F (X•)| =
∫ n∈∆op

∆n × F (Xn) −→
∫ n∈∆op

F (∆n ×Xn).

Upon applying F to the natural maps ∆n ×Xn → |X•|, we obtain a map from the
right side to F (|X•|). Taking the functor to be T , we can ask for the compositon of
these two maps to be an isomorphism:

Axiom 8.3. — T and preserves geometric realization, in the sense that the natural
map |TX•| → T |X•| is an isomorphism.

Axioms 8.1 and 8.3 are quite restrictive, but hold under reasonable assumptions
when the monad is obtained from an operad O, as we will show in Section 9.2.
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8.2. Deriving constructions on T -algebras

Now that we have a model structure on AlgT (C), we can derive all the important
constructions on T -algebras from the first part of this paper.

8.2.1. Derived cell attachments. — A model structure on T -algebras in C allows us to
define derived cell attachments in AlgT (C). In Section 6.1.1 we defined a cell attach-
ment in AlgT (C) for C = SG, and it depended on the data of an X0 ∈ AlgT (SG),
a cofibration of simplicial sets ∂Dd ↪→ Dd, an object g of G, and a morphism
e : ∂Dd → X0(g). The cell attachment was then defined to be a pushout

FT (∂Dg,d) X0

FT (Dg,d) X1,

e

in AlgT (SG) as in Diagram (6.1). This is not necessarily homotopy invariant, and to
remedy this, we should replace the pushout by a homotopy pushout. This can be done
replacing the diagram by one where all three objects are cofibrant and one of the two
maps is a cofibration. Since

sSet
s−→ S

g∗−→ SG FT

−→ AlgT (SG)

is a composition of left Quillen functors, the left-hand map is a cofibration between
cofibrant objects, this pushout diagram is a homotopy pushout if X0 is cofibrant. Thus
we may derive the cell attachment by taking a cofibrant approximation cX0

∼→ X0.
The attaching map e lifts because the map cX0(g) → X0(g) on underlying object is
a trivial fibration because cX0 → X0 is, and the source of e is cofibrant because s is
a left Quillen functor.

Since FT is a left Quillen functor, if X ↪→ Y is a cofibration in C then
FT (X)→ FT (Y ) is a cofibration in AlgT (C), and similarly for trivial cofibrations.
Hence a (transfinite) composition of pushouts along such maps is a cofibration, and
similarly for trivial cofibrations, so that in particular a cellular map is a cofibration.

8.2.2. Derived change-of-monads. — We can similarly derive change-of-monad func-
tors, lifting the adjunction of Lemma 3.14 to a Quillen adjunction.

Lemma 8.4. — Suppose that (R,ϕ) : (C, T ) → (C′, T ′) is a map of monads such
that R has a left adjoint L forming a Quillen adjunction, and T , T ′ are sifted monads
satisfying Axiom 8.1. Then the adjunction

AlgT (C) AlgT ′(C
′)

(L,ϕ)∗

(R,ϕ)∗

is a Quillen adjunction.
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Proof. — It suffices to check that (R,ϕ)∗ preserves fibrations and trivial fibrations,
but this is clear since both are verified by forgetting the algebra structure and R is a
right Quillen functor.

Using functorial cofibrant and fibrant replacement functors we obtain derived func-
tors L(L, ϕ)∗ : AlgT (C)→ AlgT ′(C

′) and R(R,ϕ)∗ : AlgT ′(C)′ → AlgT (C).

8.2.3. Derived indecomposables. — Since indecomposables are an example of a
change-of-monad functor, the previous section provides a derived functor of indecom-
posables. Due to its importance we spell out the details.

Definition 8.5. — Let T be a sifted monad on C and ε : T → + be an augmentation.
The derived indecomposables of a T -algebra X with respect to the augmentation ε

are
QTL (X) := Lε∗(X) ∈ C∗.

That is, QTL (X) ≃ QT (cX) for a cofibrant approximation cX ∼→ X.

The derived indecomposables functor QTL inherits many properties from QT . In
particular, Lemma 3.21 says that if (R,ϕ) : (C, T ) → (C′, T ′) is a morphism of aug-
mented monads with R the right adjoint in a Quillen adjunction L ⊣ R then we
have

QT
′

L (L(L, ϕ)∗X) ≃ L(L, υ)∗(Q
T
L (X)),

where (L, υ)∗ : C∗ → C∗ is the functor induced by L on pointed objects.

Example 8.6. — The analogue of Example 3.22 is that if ϕ : T → T ′ is a map of
monads augmented over +, then there is a natural weak equivalence

QT
′

L (Lϕ∗(X)) ≃ QTL (X).

Example 8.7. — Given the data in Example 3.23, for X ∈ AlgT (CG) change-of-
indexing-category induces a natural weak equivalence

QT
′

L (Lϕ∗(X)) ≃ Lp∗(QTL (X)).

8.3. Simplicial formulae

When we extend a right T -module functor H : C → D preserving sifted colim-
its to a functor G : AlgT (C) → D using the techniques in Section 3.2.2, its value
on X ∈ AlgT (C) is given by a reflexive coequalizer. While we could compute LG(X)

by applyingG to a cofibrant approximation of X, the result usually is rather inexplicit.
The relevant reflexive coequalizer diagram is the truncations of a simplicial objets and
in this section we discuss why under mild conditions LG(X) can be described as the
geometric realization of this simplicial object.
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8.3.1. Geometric realization. — When using simplicial objects to produce resolutions,
we intend to eventually take their geometric realization. For this to be homotopically
well-behaved, our resolutions need to be sufficiently cofibrant. One could ask for cofi-
brancy in the projective model structure on simplicial objects, but this is too strong
a condition. Instead it suffices to ask for Reedy cofibrancy.

For a simplicial object X• ∈ sC, the n-th latching object Ln(X•) is

(8.2) Ln(X•) := colim
[q]↞[n],[q]̸=[n]

Xq.

There is a natural map Ln(X•)→ Xn, by adding the identity [n]→ [n] to the diagram
indexing the colimit, which is terminal. This is called the latching map.

Definition 8.8. — A simplicial object in C is Reedy cofibrant if all latching maps are
cofibrations in C.

This is an example of a general construction, see [102]. The category ∆op has
a Reedy structure. A Reedy structure on a category D consists of subcategories
D+,D− ⊂ D and a degree functor from D to some ordinal such that every non-identity
morphism in D+ strictly increases degree, every non-identity morphism in D− strictly
decreases degree, and every morphism f factors uniquely as f = gh with g ∈ D+ and
h ∈ D−. For example, on ∆ the degree function is given by the cardinality, ∆− con-
sists of surjections and ∆+ of injections. This data also induces a Reedy structure
on ∆op. For a functor F : D→ C the n-th latching object LnF is given on D ∈ D by
the colimit over the subcategory of D+ ↓ D of objects of strictly lower degree than D.
For ∆op, the n-th latching object is given by the formula in (8.2).

If D has a Reedy structure and C is cofibrantly generated, then CD has a Reedy
model structure, where weak equivalences are levelwise and the cofibrations are the
maps f : X• → Y• such that the maps Xn ⊔Ln(X•) Ln(Y•)→ Yn are cofibrations in C.
Definition 8.8 describes cofibrant objects in the Reedy model structure on simplicial
objects. See [48, Chapter VII] or [57, Chapter 15] for more information on Reedy
model structures. The following collates Theorems 18.6.6 (1) and 18.6.7 (1) of [57].

Lemma 8.9. — Geometric realization |−| : sC → C preserves Reedy cofibrations and
Reedy weak equivalences between Reedy cofibrant simplicial objects. In particular, it
sends Reedy cofibrant simplicial objects to cofibrant objects.

We shall give a criterion for a simplicial object to be Reedy cofibrant.

Definition 8.10. — A simplicial object X• has split degeneracies if there are objects
Np(X•) and morphisms Np(X•)→ Xp for all p ≥ 0 such that the induced map⊔

[p]↠[q]

Nq(X•) −→ Xp

is an isomorphism.

Lemma 8.11. — A simplicial object X• with split degeneracies is Reedy cofibrant if
and only if each Np(X•) is cofibrant.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



86 CHAPTER 8. HOMOTOPY THEORY OF MONADS AND INDECOMPOSABLES

Proof. — Note that
Ln(X•) =

⊔
[n]↠[q],[n]̸=[q]

Nq(X•)

so that the map Ln(X•) → Xn is given by taking the coproduct of Ln(X•) with
Nn(X•). This is a cofibration if and only if Nn(X•) is cofibrant.

The subcategory ∆inj ⊂ ∆ has a trivial Reedy structure: ∆+ = ∆inj, and ∆−
inj

consists of identities only. In this Reedy model structure both weak equivalences and
cofibrations are levelwise.

The inclusion σ : ∆op
inj → ∆op defines a restriction functor σ∗ : sC→ ssC by forget-

ting degeneracy maps, which has a left adjoint σ∗ given by freely adding degeneracies.
The adjunction

ssC sC
σ∗

σ∗

is a Quillen adjunction if we endow both sides with the Reedy model structures. It is
evident that σ∗ preserves weak equivalences. By the Formula (2.4) for σ∗, the latching
maps are given by the map

Xn ⊔
⊔

[n]↠[q],[n]̸=[q]

Yq −→
⊔

[n]↠[q]

Yn

induced by Xn → Yn. These are hence cofibrations if all maps Xp → Yp are.
This has two useful consequences worth recording separately. Recalling that

||X•|| ∼= |σ∗X•|, Lemma 8.9 yields:

Lemma 8.12. — Thick geometric realization ∥−∥ : ssC → C preserves Reedy cofibra-
tions and Reedy weak equivalences between Reedy cofibrant semi-simplicial objects. In
particular, it sends Reedy cofibrant semi-simplicial objects to cofibrant objects.

Note that a Reedy cofibrant semi-simplicial object is simply one that is levelwise
cofibrant, so we conclude:

Lemma 8.13. — If X• is a levelwise cofibrant semi-simplicial object, then σ∗X• is
Reedy cofibrant.

By writing a simplicial object as a colimit of representables and switching two
coends, one proves that the thick geometric realization ∥σ∗X•∥, of the restriction of a
simplicial object X• to a semi-simplicial object, may also be computed as the coend∫ n∈∆op

∥σ∗∆n∥ × Xn. The canonical map ∥σ∗∆n∥ → ∆n then induces a natural
transformation ∥σ∗−∥ ⇒ |−| of functors sC→ C.

Lemma 8.14. — If X• is a Reedy-cofibrant simplicial object, then ∥σ∗X•∥ → |X•| is
a weak equivalence.

Proof. — By [57, Corollary 18.4.14], it suffices to prove that ||∆•|| → ∆• is a weak
equivalence between Reedy cofibrant cosimplicial objects. It is clearly a weak equiva-
lence, and its target is Reedy cofibrant [57, Corollary 15.9.11], which is proven using
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[57, Corollary 15.9.10] saying that it suffices to verify that the maximal augmentation
is empty. This is also true for ||∆•||.

Remark 8.15. — We remark that when working in Top, one may weaken the required
cofibrancy conditions of Lemma 8.9 and 8.13 by playing the Strøm and Serre model
structures off each other. In particular, in Top the functor ∥−∥ sends levelwise weak
equivalences to weak equivalences, and for |−| this is true when the simplicial spaces
involved are proper.

8.3.2. Extra degeneracies. — We next give a useful condition for a map out of the
geometric realization of a simplicial object to be a homotopy equivalence.

An augmentation of simplicial object X• is a morphism ε : X0 → X−1 coequalizing
d0, d1 : X1 → X0. As the geometric realization |X•| maps to the coequalizer of

X1 X0,
d0

d1

and hence to X−1, there is a canonical map ε : |X•| → X−1. The data of an augmen-
tation is the same as an extension from ∆op to the category of possibly empty finite
ordered sets.

An augmented simplicial object is said to have an extra degeneracy if there are
maps s−1 : Xi → Xi+1 for i ≥ −1 satisfying the additional simplicial identities
εs−1 = id, d0s−1 = id, di+1s−1 = s−1di, sj+1s−1 = s−1sj . There is a similar def-
inition for semi-simplicial objects, omitting the final additional simplicial identity.
Equivalently, a semi-simplicial object X• admits an extra degeneracy when the sim-
plicial object σ∗X• does.

Lemma 8.16. — If X• ∈ sC has an augmentation to X−1 with an extra degeneracy,
then ε : |X•| → X−1 is a weak equivalence in C. The same is true for semi-simplicial
objects and the thick geometric realization.

Proof. — It suffices to prove this for simplicial objects. By [86, §6], an extra degen-
eracy is equivalent to giving a pair of simplicial maps

const(X−1)•
s−1−−→ X•

d0−→ const•(X−1)

so that d0◦s−1 is the identity and s−1◦d0 admits a simplicial homotopy to the identity.
Upon geometric realization, these respectively yield the identity and a homotopy
equivalence in the sense of Definition 7.4, hence weak equivalences.

8.3.3. Geometric realization of algebras. — The category AlgT (C) is simplicial and has
colimits, so it has its own geometric realization functor |−|T : sAlgT (C) → AlgT (C).
We learned the following from Johnson-Noel [66]. Recall we assumed that Axiom 8.3
holds.

Lemma 8.17. — The following are natural isomorphisms:

(i) For X• ∈ sC, the natural map FT |X•| → |FTX•|T in AlgT (C).
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(ii) For X• ∈ sAlgT (C), the natural map QT |X•|T → |QTX•| in C∗.
(iii) For X• ∈ sAlgT (C), the natural map |UTX•| → UT |X•|T .

In particular, for X• ∈ sAlgT (C) the structure map TX• → X• makes |UTX•| into a
T -algebra, and it follows that this is |X•|T .

Proof. — Parts (i) and (ii) follow because FT : C → AlgT (C) and QT : AlgT (C) → C
are left adjoints and preserve the copowering by simplicial sets by construction of the
copowering of AlgT (C) in Lemma 3.9.

For part (iii), the following commutative diagram has top row expressing UT |X•|T
as a reflexive coequalizer

UT |FTTUTX•|T UT |FTUTX•|T UT |X•|T

UTFT |TUTX•| UTFT |UTX•|

T |TUTX•| T |UTX•|

|T 2UTX•| |TUTX•| |UTX•|,

∼= ∼=

∼= ∼=

while the bottom row expresses |UTX•| as a reflexive coequalizer. The top maps are
isomorphisms by (i) and bottom maps by Axiom 8.3.

Because we only used that FT and QT are left adjoints and preserve the copowering
by simplicial sets, parts (i) and (ii) of this lemma hold more generally, e.g., for the
thick geometric realization of semi-simplicial objects and without Axiom 8.3. However,
part (iii) might not hold for thick geometric realization, as it might not commute
with T because T often does not commute with the functor σ∗ which freely adds
degeneracies.

8.3.4. Free resolutions. — One use of simplicial objects is to resolve T -algebras by
free T -algebras.

Definition 8.18. — An augmented simplicial T -algebra ε : X• → X is a free simplicial
resolution of X if

(i) the map ε : |X•|T → X is a weak equivalence,
(ii) each Xp is a free T -algebra,
(iii) X• ∈ sAlgT (C) is Reedy cofibrant.

By Lemma 8.9, if X• is a free simplicial resolution then |X•|T ∈ AlgT (C) is cofi-
brant. Because the weak equivalence ε : |X•|T → X need not be a fibration, this is
not necessarily a cofibrant replacement but only a cofibrant approximation. How-
ever, as explained in Section 7.1 we can still use it to compute left derived functors: if
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F : AlgT (C)→ D is a functor which commutes with geometric realization and preserves
trivial cofibrations between cofibrant objects, there are natural weak equivalences

LF (X) ≃ F (|X•|T ) ∼= |F (X•)|.

8.3.5. The monadic bar resolution. — Recall that we write X = UT (X) for the un-
derlying object in C of a T -algebra X. There is an explicit source of free simplicial
resolutions coming from the monadic bar resolution B•(F

T , T,X)→ X given by

[p] 7−→ Bp(F
T , T,X) = FTT pX,

with face maps given by the T -algebra structure map of X and the right T -module
functor structure of FT , and with degeneracy maps given by the unit of the monad T .

This is visibly a free T -algebra in each degree, establishing (ii) of Definition 8.18.
The unit transformation ιT : id → T of the monad gives a map X → T (X) which
is not a T -algebra map, but nonetheless equips the underlying augmented simplicial
object UTB•(FT , T,X)→ X in C with an extra degeneracy, so

UT |B•(FT , T,X)| −→ X

is a weak equivalence by Lemma 8.16. This establishes (i) by noting that Lemma 8.17 (iii)
identifies this map with UT |B•(FT , T,X)|T → X.

In general it need not be the case that B•(FT , T,X) is Reedy cofibrant, but we do
have the following lemma. We can form the simplicial T -algebra σ∗σ

∗B•(F
T , T,X)

by freely adding degeneracies to the semi-simplicial T -algebra σ∗B•(FT , T,X). Here
it is important that we are freely adding degeneracies in the category of T -algebras,
as σ∗ does not commute with FT (though σ∗ does). We call the simplicial object
σ∗σ

∗B•(F
T , T,X) the thick monadic bar construction.

Lemma 8.19. — If X is cofibrant in C, then σ∗σ∗B•(FT , T,X) is Reedy cofibrant and
hence a free simplicial resolution of X.

Proof. — The following computation

σ∗σ
∗Bp(F

T , T,X) ∼=
AlgT (C)⊔
α : [p]↠[q]

Bq(F
T , T,X)

∼=
AlgT (C)⊔
α : [p]↠[q]

FTT q(X)

∼= FT

 C⊔
α : [p]↠[q]

T q(X)


shows that σ∗σ∗B•(FT , T,X) is levelwise free and has split degeneracies. Lemma 8.13
says it is Reedy cofibrant if all FT (T p(X)) are cofibrant in AlgT (C). These are cofi-
brant if T p(X) is cofibrant in C, which follows from the assumption that T preserves
cofibrant objects.
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8.3.6. A simplicial formula for derived cell attachments. — The derived cell attach-
ment as discussed in Section 8.2.1 may be described simplicially, by extending the
reflexive coequalizer diagram (6.2) to a simplicial diagram.

To derive the attachment of a cell to X ∈ AlgT (CG), we replace it by a cofibrant
T -algebra cX, lift the attaching map to cX (which we have explained is possible),
and form the pushout. If FT commutes with geometric realization then the geometric
realization of a free simplicial resolution ε : |X•|T

∼→ X provides a cofibrant approxi-
mation, and we need that the attaching map factors through ε.

If T preserves cofibrations and X is cofibrant in C, then we may take

X• = σ∗σ
∗B•(F

T , T,X),

in which case the unit ιX : X → T (X) = UTFT (X) = UTX shows that the attaching
map does factor through ε. The geometric realization of X• is the thick geometric
realization of B•(FT , T,X). As thick geometric realization commutes with pushouts,
an explicit simplicial formula for derived cell attachment is given by

∥B•(FT , T,X)∥T ∪TFT (∂Dg,d) F
T (Dg,d) ∼= ∥B•(FT , T,X) ∪TFT (∂Dg,d) F

T (Dg,d)∥T .

Furthermore, the free algebra functor FT is a left adjoint and commutes with colimits,
so we may write this as the thick geometric realization of the simplicial object

[p] 7−→ FT (T p(X) ∪∂Dg,d Dg,d).

This is the formula that appears in [72].

8.3.7. A simplicial formula for derived indecomposables. — As QT : AlgT (C)→ C∗ is a
left Quillen functor, the discussion above implies that if FT commutes with geometric
realization we have

QTL (X) ≃ QT (|X•|T ) ∼= |QT (X•)|,
using Lemma 8.17 (ii) for the second isomorphism. If T preserves cofibrations and X is
cofibrant in C then by Lemma 8.19 we have that σ∗σ∗B•(FT , T,X) → X is a free
simplicial resolution, so using the monadic bar resolution and the fact that QTFT ∼= +

we get the following explicit simplicial formula:

QTL (X) ≃ QT (∥B•(FT , T,X)∥T ) ∼= ∥B•(+, T,X)∥.
More generally, if ϕ : T → T ′ is a morphism of monads which commute with ge-

ometric realization, and X• → X is a free simplicial resolution of ε : X ∈ AlgT (C),
then we have in AlgT ′(C) that

Lϕ∗(X) ≃ ϕ∗(|X•|T ) ∼= |ϕ∗(X•)|T ′ .
As before, when X is cofibrant this may be made more explicit by choosing the
monadic bar resolution.
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CHAPTER 9

HOMOTOPY THEORY OF OPERADS,
ALGEBRAS, AND MODULES

In this section we verify the axioms of Section 8.1 in the case of monads T : C→ C
arising from an operad O in C as discussed in Section 4. This will let us do homotopy
theory in the category AlgO(C). As before, we assume Axioms 7.1 and 7.2 throughout.

9.1. Symmetric sequences

In Section 7.1 we discussed the projective model category structure on diagram
categories. The category of k-symmetric sequences in C, FBk(C), is a diagram category
and so has a projective model structure as in Section 7.3.2, in which a k-symmetric
sequence X is cofibrant if and only if each X (n) is a cofibrant object in the projective
model structure on CGn . It is a monoidal model category for the Day convolution
product, but not necessarily for the composition product. However, the following
often suffices.

Lemma 9.1. — The bifunctor

FBk(C)× C −→ C

(Y, X) 7−→ Y(X),

described in Definition 4.8, has the property that the pushout-product

f □ g : Y(X ′) ⊔Y(X) Y ′(X) −→ Y ′(X ′)

of f : Y → Y ′ and g : X → X ′ is a cofibration if f and g are cofibrations and X is cofi-
brant, and a trivial cofibration if additionally f or g (or both) are trivial cofibrations.
In particular, it enjoys the following properties:

(i) If Y ∈ FBk(C) is cofibrant then X 7→ Y(X) : C→ C preserves cofibrations, triv-
ial cofibrations with cofibrant domain, and weak equivalences between cofibrant
objects.

(ii) If X ∈ C is cofibrant then Y 7→ Y(X) : FBk(C) → C preserves cofibrations,
trivial cofibrations, and weak equivalences between cofibrant objects.
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Proof. — Using the formula Y(X) = 0∗(Y ◦ 0∗(X)), this follows from the pushout-
product property established in Theorem 6.2 (a) of [52] for the composition product,
in the cases k = 1 and k =∞. Harper’s argument also applies in the case k = 2 (the
fact that the automorphism groups Gn = βn in FB2 are infinite has no effect on the
argument, as Harper never uses any of the finiteness hypotheses in Section 6 of [52]).
See [40, Lemma 11.5.1] for a related discussion.

9.2. Algebras over operads

Next we discuss the homotopy theory of algebras over operads, verifying the axioms
of Section 8.1 using the results in Sections 7.3 and 9.1. We start by verifying Axiom 8.3,
which does not concern the model structure.

Lemma 9.2. — The monad associated to an operad commutes with geometric realiza-
tion.

Proof. — This follows from part (ii) of Lemma 4.6.

Axiom 8.1 requires the existence of the projective model structure transferred along
the adjunction FO ⊣ UO, and that UO preserves (trivial) cofibrations between cofi-
brant objects. We first show that this second part follows from the existence of pro-
jective model structure under a mild condition on O.

Definition 9.3. — An operad O is called Σ-cofibrant if its underlying symmetric se-
quence is cofibrant in FBk(C).

Remark 9.4. — It is better to say that O is Σ-cofibrant if the unit map 1 → O is a
cofibration. This implies our definition, as we assumed that 1 is cofibrant.

Lemma 9.5. — If AlgO(C) has a projective model structure and O is Σ-cofibrant, then
UO preserves (trivial) cofibrations between cofibrant objects. That is, Axiom 8.1 holds
for AlgO(C).

Proof. — We may restrict our attention to the cofibrations, as by definition of the
projective model structure UO preserves weak equivalences. The projective model
structure on AlgO(C) is cofibrantly generated with a set of generating cofibrations
given by FO(I) := {FO(i) | i ∈ I} with I the set of generating cofibrations of C.
Hence cofibrations in AlgO(C) are retracts of relative FO(I)-cell complexes, which are
(potentially transfinite) compositions of pushouts

FO(Y0) R0

FO(Y1) R1

FO(i) f

in AlgO(C) with i a generating cofibration of C [61, Proposition 2.1.18].
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If R0 is cofibrant, then the small object argument implies it is a retract of a
FO(I)-cell complex. Since cofibrations are closed under retracts and transfinite com-
position, in order to show that UO preserves cofibrations between cofibrant objects it
suffices to show that given a pushout diagram

FO(Y0) R0

FO(Y1) R1,

FO(i) f

where R0 is a FO(I)-cell complex, UO(f) is cofibration if i is. This is proven in [14,
Proposition 5.1] or [40, Lemma 20.1.A].

It remains to discuss the existence of the projective model structure on AlgO(C).
Most of the example model categories we have described in Section 7.2 have a lax
k-monoidal fibrant approximation, so we treat that easier case first. For symmetric
spectra with the absolute stable projective model structure we will need to give a
different argument.

9.2.1. Categories with lax k-monoidal fibrant approximation. — Under standard
smallness hypotheses, a sufficient condition for the existence of the projective model
structure is the existence of a lax monoidal fibrant approximation as in Definition 7.3.
This is essentially [16, Theorem 2.1].

Lemma 9.6. — If there exists a lax k-monoidal fibrant approximation on C, then there
exists a fibrant approximation as in Proposition 7.9 (ii′) on AlgO(C).

Proof. — Given a lax k-monoidal fibrant approximation R : C→ C as in Definition 7.3
and an O-algebra X with underlying object X, R(X) may be endowed with the
structure of an O-algebra using the following structure maps:

O(n)⊗R(X)⊗n −→ R(O(n))⊗R(X)⊗n −→ R(O(n)⊗X⊗n) −→ R(X),

where the first map uses the natural transformation idC ⇒ R, the second map uses
the lax monoidality of R, and the third map uses the O-algebra structure map of X.
The natural transformation idC ⇒ R then induces a weak equivalence X → R(X)

of O-algebras, and thus R lifts to a fibrant approximation R : AlgO(C)→ AlgO(C).

Corollary 9.7. — Suppose C is cofibrantly generated model category such that

(i) FO(I) and FO(J) admit a small object argument.
(ii) There exists a lax k-monoidal fibrant approximation on C.

Then the projective model structure on AlgO(C) exists.

Proof. — We apply Theorem 7.7. Condition (i) of that theorem holds by Assump-
tion (i). To verify condition (ii) of that theorem, we check condition (ii′) of Proposi-
tion 7.9: Lemma 3.9 says AlgO(C) is simplicial, and by Assumption (ii), Lemma 9.6
implies the existence of the appropriate fibrant approximation functor.
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Note, however, that this model structure need not satisfy the second part of Ax-
iom 8.1 unless O is Σ-cofibrant, cf. Lemma 9.5.

Example 9.8. — If the domains of I and J are small with respect to all morphisms in C,
then condition (i) of Corollary 9.7 follows from Lemmas 3.4 and 7.8. This assumption
holds for C = sSet by [61, Lemma 3.1.1] and C = sModk by a similar argument, as
well as C∗ and CG.

Example 9.9. — For C = Top condition (i) of Corollary 9.7 is satisfied because I and
J consist of closed inclusions, FO preserves closed inclusions (as these are preserved
by disjoint unions, products, and quotients by group actions), and CGWH topological
spaces are small relative to closed inclusions (by [61, Lemma 2.4.1] and the remarks
following [61, Proposition 2.4.22]). A similar argument applies to C∗ and CG.

9.2.2. Symmetric spectra with the absolute stable model structure. — The previous
section applies to all S in Section 7.2 with the exception of the category SpΣ of
symmetric spectra.

Remark 9.10. — In general, the projective model structure ofO-algebras in symmetric
spectra transferred from the absolute stable model structure does not exist, by a
similar argument as in [73]. For a contradiction take O = Comm, the commutative
operad, and suppose that the projective model structure on commutative algebras in
symmetric spectra exists. A fibrant replacement of S in this model structure would
also be fibrant in SpΣ. Taking its 0-th space we would obtain a strictly commutative
model of QS0, which would imply QS0 is a product of Eilenberg-Mac Lane spaces
(which of course it is not).

However, one might expect that the projective model structure does exist if O is
a Σ-cofibrant operad. Such a result was sketched by Schwede, but Hornbostel has
pointed out in the remark following Conjecture 3.7 of [60] that a crucial step (our
Lemma 9.13) is hard to verify without additional conditions on O, and mentions
a counterexample of Fresse for operads in chain complexes over a field of positive
characteristic.

We shall show that Schwede’s argument works given a Σ-cofibrant operad C in
simplicial sets satisfying one of two conditions on its 0-ary operations. Our goal is
to apply Theorem 7.7, where as usual (ii) is hardest to verify. Our main tool for
this is the existence of the absolute injective stable model structure on symmetric
spectra: the cofibrations are levelwise cofibrations and the weak equivalences the stable
equivalences (in this model structure every object is cofibrant). The existence of such
a model structure for SpΣ is established in Section 5.3 of [63] (see also [104, p. 367]).
When referring to (trivial) cofibrations, etc., in this model structure, we add the
adjective “injective”. Similarly, when referring to the (trivial) cofibrations, etc., in the
absolute stable projective model structure, we add “projective”.

Proposition 9.11. — Let C be a Σ-cofibrant operad in simplicial sets such that either
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(i) C(0) ̸= ∅, or
(ii) C is non-unitary and admits a unitalization C+.

Then the projective model structure on AlgC(SpΣ) transferred from the absolute stable
projective model structure on SpΣ exists.

Proof. — We apply Theorem 7.7. For (i), we remark that symmetric spectra are
combinatorial, so that this is tautological because all objects are small.

To verify (ii) we shall use the absolute stable injective model structure. It suffices
to prove that if Y0 → Y1 is a projective trivial cofibration of symmetric spectra and
R0 ∈ AlgC(SpΣ), then in a pushout diagram

(9.1)
F C(Y0) R0

F C(Y1) R1,

FC(i) f

the map UC(f) is a stable equivalence. We shall prove the stronger statement that
it is an injective trivial cofibration. The proof involves a number of technical lemmas
about symmetric spectra, which we postpone for the moment.

As explained in Section 6.2.3, the underlying map of the right hand side of (9.1)
admits a filtration f(R1) in SpΣ with filtration steps given by pushout diagrams

(9.2)
EnvCc (R0)⊗Gc

Y □c
1 f(R1)(c− 1)

EnvCc (R0)⊗Gc Y
⊗c
1 f(R1)(c),

where EnvCc (R0) is defined on free C-algebras in (6.8) and in general is extended by
density using Proposition 3.7.

Since injective trivial cofibrations are closed under transfinite composition, it suf-
fices to show that for each c > 0 the right vertical map of (9.2) is an injective trivial
cofibration. As pushouts preserve trivial cofibrations in any model structure, it suffices
to prove that the left vertical map of (9.2) is an injective trivial cofibration. The iter-
ated pushout-product i□c : Y □c

1 → Y ⊗c1 is a projective trivial cofibration because this
is a monoidal model structure. By Lemmas 9.12 and 9.13, the functor EnvCc (R0)∧Sc−
sends projective trivial cofibrations to injective trivial cofibrations.

Let us now prove the remaining technical lemmas. The following is a variation of
[104, Proposition 6.12].

Lemma 9.12. — If E is a symmetric spectrum with a G-action which is levelwise
free away from the basepoint, and f : X → Y is a projective trivial cofibration be-
tween symmetric spectra with G-actions which happens to be G-equivariant, then
E ∧G X → E ∧G Y is an injective trivial cofibration.
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Proof. — The map E∧X → E∧Y is an injective trivial cofibration by Theorem 5.3.7
(5) of [63], because E is injective cofibrant (every object is), f is an S-cofibration as
in Definition 5.3.6 of [63] because it is a projective cofibration, and f is a stable
equivalence. This implies E∧GX → E∧G Y is an injective cofibration because taking
the quotient by G levelwise preserves monomorphisms.

It is however not clear that taking the quotient by G levelwise preserves stable
equivalences. Hence, to verify it is also a stable equivalence, we consider the diagram

EG+ ∧G (E ∧X) ∗+ ∧G (E ∧X) ∼= E ∧G X

EG+ ∧G (E ∧ Y ) ∗+ ∧G (E ∧ Y ) ∼= E ∧G Y,

≃

≃

where the horizontal maps are levelwise weak equivalences (because the G-action
on E is levelwise free away from the basepoint) and hence stable equivalences. Hence
it suffices to prove that the left vertical map is a stable equivalence.

To do so, we filter EG by skeleta EG(k) to obtain a filtration with filtration quo-
tients given by ∆k/∂∆k ∧ G∧k ∧ G+ (with G based at the identity and G acting on
the right term G+). There is then a map of cofiber sequences of symmetric spectra

EG
(k−1)
+ ∧G (E ∧X) EG

(k)
+ ∧G (E ∧X) ∆k/∂∆k ∧G∧k ∧ E ∧X

EG
(k−1)
+ ∧G (E ∧ Y ) EG

(k)
+ ∧G (E ∧ Y ) ∆k/∂∆k ∧G∧k ∧ E ∧ Y.

In this diagram, the right vertical map is an injective trivial cofibration as a conse-
quence of Theorem 5.3.7 (5) of [63] because ∆k/∂∆k ∧G∧k ∧E is injective cofibrant
(every object is), and f is an S-cofibration because it is a projective cofibration.
Because the two left horizontal maps are injective cofibrations between injective cofi-
brant objects, both rows are in fact homotopy cofiber sequences. Thus it follows by
induction over k that each map EG

(k)
+ ∧G (E ∧X) → EG

(k)
+ ∧G (E ∧ Y ) is a stable

equivalence, the initial case k = −1 being trivial. It is also an injective cofibration,
since it is levelwise injective by a similar argument as for E ∧G X → E ∧G Y . In-
jective trivial cofibrations are closed under transfinite composition, so we conclude
EG+ ∧G (E ∧X)→ EG+ ∧G (E ∧ Y ) is an injective trivial cofibration.

In the proof of Proposition 9.11, we want to apply Lemma 9.12 to the left vertical
map of (9.2). Hence we need to prove the following:

Lemma 9.13. — Let C be Σ-cofibrant operad in simplicial sets satisfying either

(i) C(0) ̸= ∅, or
(ii) C is non-unitary and admits a unitalization C+.

If R is an C-algebra in SpΣ, then the Gc-action on EnvCc (R) is levelwise free.
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Proof. — The symmetric spectrum with Gc-action EnvCc (R) is defined by a reflexive
coequalizer

Envc(C)(C(R)) Envc(C)(R) EnvCc (R).

Since colimits of symmetric spectra are computed levelwise and the freeness of the
Gc-action is a property of each of the individual levels, we may restrict our attention
to the k-th level EnvCc (R)k ∈ sSet∗, which is given by the coequalizer in sSet∗ of the
diagram

(9.3)
∨
n≥0 C(n+ c)+ ∧Gn,c

(C(R)∧n)k
∨
n≥0 C(n+ c)+ ∧Gn,c

(R∧n)k.

The Gc-action on each of the right-hand terms is free (away from the basepoint)
because on p-simplices there is Gc-equivariant function

fp,k : (C(n+ c)+ ∧Gn,c (R∧n)k)p −→ (C(c)+)p,

given by sending the basepoint to the basepoint and an equivalence class (o; r1, . . . , rn)

to the element of C(c)p obtained by inserting a fixed element of either (i) C(0) or
(ii) C+(0), into the first n slots of o ∈ C(n + c) to get a p-simplex of C(c). By con-
struction, this only maps the basepoint to the basepoint. Since C(c)p is a free Gc-set,
by Σ-cofibrancy of C, and the map is Gc-equivariant, we conclude that the Gc-action
on the domain of fp,k must be free away from the basepoint as well.

We may compute the underlying pointed sets of p-simplices of the coequalizer of
(9.3) as the quotient of its right hand side by the equivalence relation ∼ generated by

(o; o1(r
1
1, . . . , r

1
k1), . . . , on(r

n
1 , . . . , r

n
kn

)) ∼ (o ◦ (o1, . . . , on); r
1
1, . . . , r

n
kn

).

The map fp,k is not compatible with ∼ because it may happen that one of the
oi(r

i
1, . . . , r

i
ki

) is the basepoint without any of the rij being the basepoint. However,
note that the subset of elements of (C(n + c)+ ∧Gn,c

(R∧n)k)p that are identified
with the basepoint under the equivalence relation is closed under the Gc-action: if
x is equivalent to the basepoint via x ∼ x1 ∼ · · · ∼ xr ∼ ∗, then gx is equiv-
alent to the basepoint via gx ∼ gx1 ∼ · · · ∼ gxr ∼ g∗ = ∗. Hence we may re-
strict fp,k to the complement of this subset to get a Gc-equivariant map of pointed
sets (EnvCc (R)k)p → (C(c)+)p which sends only the basepoint to the basepoint. As
before, because the codomain has free Gc-action away from the basepoint the same
is true for the domain.

Finally, we explain how to generalize this to the diagram categories C = (SpΣ)G.
We want to prove the existence of the model structure on AlgC(C) transferred from
the projective model structure on C induced by the absolute stable projective model
structure on SpΣ, the “projective projective model structure.” Our tool shall be the
injective model structure on C induced by the absolute stable injective model structure
on SpΣ, the “injective injective model structure.” The injective model structure on C
exists by Proposition A.2.8.2 of [76], as the absolute stable injective model structure
on SpΣ is combinatorial. As before, the advantage of this injective injective model
structure is that the cofibrations are those maps E → F that for each object g ∈ G
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the map E(g) → F (g) of symmetric spectra is levelwise a cofibration of pointed
simplicial sets, and thus, as before, every object is cofibrant in this model structure.

The previous argument then needs to be modified in Lemma 9.12: in particular, we
need to explain why F⊗G− sends (trivial) projective projective cofibrations to (trivial)
injective injective cofibrations. It suffices to verify this only for generating projective
projective trivial cofibrations G(g,−)+ ∧ f , where f is a projective trivial cofibration.
In that case, at a fixed object h ∈ G we have that (F⊗(G(g,−)+∧f))(h) = F (g⊕h)∧f .
Now we may apply [63, Theorem 5.3.7] again.

Proposition 9.14. — Let C be a Σ-cofibrant operad in simplicial sets, satisfying either

(i) C(0) ̸= ∅, or
(ii) C is non-unitary and admits a unitalization C+.

Let C = (SpΣ)G, then the projective model structure on AlgC(C) transferred from
the projective model structure on C transferred from absolute stable projective model
structure on SpΣ, exists.

Remark 9.15. — We believe the analogous statement holds when one replaces SpΣ

with the category R-Mod of module spectra over a commutative ring spectrum R,
given the existence of an injective model structure on R-Mod transferred from the
absolute stable projective model structure on SpΣ.

9.2.3. Further results on the existence of the projective model structure on algebras over
operads. — There is a large literature on the existence of the projective model struc-
ture of O-algebras. We shall survey the main results, all of which are obtained by
studying the filtration of Section 6.2.3 to verify the conditions in Theorem 7.7.

In general, for Σ-cofibrant operad O, the lifting and factorization axioms only hold
when the domain is cofibrant and thus one only has a projective semi-model structure
on AlgO(C), see [40, Theorem 12.3.A].

However, there are properties which guarantee the existence of the projective model
structure on algebras over any operad. In the symmetric monoidal case, such a con-
dition is given in [92] (generalizing [12]): all maps of the form of the left vertical
morphism in (9.2) have to be trivial h-cofibrations in the sense of [12] (also called
“flat maps”, e.g., [56]), which is guaranteed by requiring that the model structure
on C is symmetric h-monoidal. Theorem 5.10 of [92] implies that if C is a symmetric
monoidal model category that is symmetric h-monoidal, then projective model struc-
ture on AlgO(C) exists for any operad O under mild additional model-categorical
conditions on C. Many model structures of interest are symmetric h-monoidal and
satisfy the additional conditions, including Top, sSet, and sModk. This gives an alter-
native approach to the existence of projective model structures in these categories.
Similar results hold on weaker conditions in the monoidal setting, see [88, 89, 91].
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9.3. Simplicial formulae revisited

We now discuss how some of the results in Section 8.3 can be improved if the
monad T comes from an operad O.

9.3.1. Derived indecomposables and decomposables. — If O is an augmented operad,
Section 8.2.3 describes how to derive its indecomposables and under mild conditions
Section 8.3.7 gives a simplicial formula for QOL .

As explained in Section 4.5.1, there is a canonical relative augmentation εOO(1) and
if O(1) is augmented, we get an augmentation of O which factors as

O −→ O(1)+ −→ (−)+.

Hence the indecomposables functor QO factors as the composition over a partial
indecomposables functor QOO(1) : AlgO(C) → AlgO(1)(C∗) to the category of pointed
objects with O(1)-action. Under the assumption that projective model structures
on AlgO(C) and AlgO(1)(C∗) exist, QOO(1) is a left Quillen functor.

Let us now assume that O is Σ-cofibrant and R is an O-algebra whose underly-
ing object R = UO(R) is cofibrant in C. By Lemma 9.2 the monad O commutes
with geometric realization and thus we can apply the discussion in Section 8.3.7 to
derive QOO(1) using the explicit simplicial formula

LQOO(1)(R) ≃ ∥B•(QOO(1)F
O,O,R)∥ ∼= ∥B•(O(1)+,O,R)∥.

In Section 4.5.2 we described QOO(1) as the cofiber of a natural transformation

DecOO(1) ⇒ UOO(1) ◦ (−)+ : AlgO(C) −→ AlgO(1)(C∗).

The relative decomposables functor DecOO(1) as defined in Definition 4.24 is not nec-
essarily a left Quillen functor because it is not necessarily a left adjoint, being the
composition of the left adjoint (−1)alg∗ and the right adjoint (−2)∗UO. However, we
can still left derive it as long as it preserves trivial cofibrations between cofibrant
objects. For this it suffices that it sends generating (trivial) cofibrations FO(f) to
(trivial) cofibrations. To prove this, recall that on free algebras DecOO(1) is given by
the formula

DecOO(1)(F
OX) ∼=

⊔
n≥2

O(n)×Gn X
⊗n


+

=: O≥2(X)+.

As O is Σ-cofibrant, O≥2 is also cofibrant in FBk(C). It then follows from
Lemma 9.1 (i) that the functor X 7→ O≥2(X)+ preserves trivial cofibrations
between cofibrant objects. We conclude that we may left derive the functor DecOO(1).

We can resolve R by the thick monadic bar resolution, and compute the derived
functor LDecOO(1) : AlgO(C)→ AlgO(1)(C+) by the explicit simplicial formula

LDecOO(1)(R) := ∥B•(DecOFO,O,R)∥ ∼= ∥B•(O≥2
+ ,O,R)∥.
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As the underlying object R of R is cofibrant, and X 7→ O(X) preserves cofibrant
objects by Lemma 9.1 (i), it follows that Op(R) is cofibrant in C. Thus

O≥2(Op(R)) −→ O(Op(R))

is a cofibration by Lemma 9.1 (ii), and so B•(O≥2
+ ,O,R)→ B•(O+,O,R) is a level-

wise cofibration, so by Lemma 8.12 we obtain a cofibration sequence

(9.4) LDecOO(1)(R) −→ UOO(1)∥B•(F
O,O,R)∥+ −→ LQOO(1)R

in AlgO(1)(C∗).

9.3.2. Reedy cofibrancy and operads in simplicial sets. — For later use, we establish
the following lemma about Reedy cofibrancy of two-sided bar constructions.

Lemma 9.16. — Let C be a Σ-cofibrant operad in simplicial sets, F : C→ D be a right
C-module functor satisfying one of the following properties:

(i) F preserves colimits and (trivial) cofibrations between cofibrant objects.
(ii) F = X (−) where X ∈ FBk(sSet) is a Σ-cofibrant right O-module in k-symmetric

sequences.

Then B•(F, C,R) is Reedy cofibrant if R is cofibrant in C. More generally, B•(F, C,−)

sends (trivial) cofibrations between objects in AlgC(C) cofibrant in C to (trivial) cofi-
brations between Reedy cofibrant objects in sDReedy.

Proof. — It suffices to prove the second statement. We recall that a map X• → Y•
of simplicial objects is a (trivial) Reedy cofibration if Ln(Y•) ⊔Ln(X•) Xn → Yn is a
(trivial) cofibration. We start with a discussion of the latching objects Ln(B•(F, C,R))

and the latching morphism Ln(B•(F, C,R))→ Bn(F, C,R). For i ∈ {0, 1}, let Ci de-
note the identity functor if i = 0 and the functor C if i = 1. If we let [1] denote
the category 0→ 1, then the n-th latching object Ln is given by the colimit over the
punctured cubical diagram

[1]n \ {1, . . . , 1} ∋ I 7−→ F (CI(UC(R))),

where CI := Ci1 ◦· · ·◦Cin . The n-th latching map from Ln(B•(F, C,R)) to Bn(F, C,R)

is induced by adding the missing corner, which is final.
In case (i) it suffices to prove that

colimICI(S) ∪colimICI(R) Cn(R) −→ Cn(S)

is a (trivial) cofibration if the map R → S is a (trivial) cofibration and R is cofi-
brant in C. This uses the fact that F commutes with colimits and preserves (trivial)
cofibrations between cofibrant objects.

The map colimICI → Cn of k-symmetric sequences is a monomorphism with
codomain a k-symmetric sequence of simplicial sets with levelwise free action, be-
cause C is Σ-cofibrant, and hence a cofibration. Using Lemma 9.1, we conclude that
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in

(colimICI)(R) Cn(R)

(colimICI)(S) (colimICI)(S) ⊔(colimICI)(R) Cn(R)

Cn(S),

the dotted map is a (trivial) cofibration if R → S is a (trivial) cofibration and R is
cofibrant in C.

In case (ii), one repeats the above argument to prove that

colimIX (CI) −→ X (Cn)
is a cofibration of k-symmetric sequences, and applies Lemma 9.1 once more.

9.4. Modules over associative algebras

Let us now take R to be a unital associative algebra (i.e., a monoid) in C, and
consider the associated monad R⊗−, whose algebras are by definition left R-modules.
This is the monad associated to an operad with only 1-ary operations, given by R.
This operad is Σ-cofibrant if the underlying object of R is cofibrant in C. We may
then apply the general theory of Section 9.2, which was in fact already explained in
Section 7.3.3: Theorem 7.13 says that the projective model structure on R-Mod exists
if either (i) the underlying object of R is cofibrant in C, or (ii) C satisfies Schwede-
Shipley’s monoid axiom. Furthermore, in case (i), UR : R-Mod→ C preserves (trivial)
cofibrations.

Of course, all of the above may be repeated with the monad − ⊗ R, describing
the category Mod-R := Alg−⊗R(C) of right R-modules and its model structure. This
can be interpreted in terms of the operad with only 1-ary operations, given by Rop.

9.4.1. Tensor product of modules. — There is a functor −⊗R − : Mod-R×R-Mod→C,
defined by the reflexive coequalizer

N⊗R⊗M N⊗M N⊗R M,

where the maps are given by the left and right R-actions and the reflection is given
by the unit of R. There are natural isomorphisms

(X ⊗R)⊗R M ∼= X ⊗M, N⊗R (R⊗X) ∼= N⊗X.

Lemma 9.17. — If R is cofibrant in C, then − ⊗R − : Mod-R × R-Mod → C is a
Quillen bifunctor.

Proof. — Similarly to Section 2.3, one proves that − ⊗R − participates in an
adjunction of two variables. We can then use [61, Corollary 4.2.5], which says
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that it suffices to check the properties of a Quillen bifunctor only on generating
(trivial) cofibrations. The generating (trivial) cofibrations in Mod-R are f ⊗ R

for f generating (trivial) cofibrations in C, and similarly in R-Mod. If f : A → B

and f ′ : A′ → B′ are cofibrations in C then the first natural isomorphism above
shows that (X ⊗R)⊗R (R⊗ Y ) ∼= X ⊗R⊗ Y , and hence the pushout-product
(f ⊗R)□R(R⊗ f ′) is identified with the pushout-product f□(R⊗ f ′) in (C,⊗,1).
As − ⊗ − is a Quillen bifunctor and R is cofibrant in C, this is a cofibration if
both f and f ′ are and is a trivial cofibration if in addition one of f and f ′ is a weak
equivalence.

We write − ⊗L
R − for the derived functor. We wish to explain how this may be

computed by a two-sided bar construction under favorable circumstances. Recall that
if N is a right R-module and M is a left R-module, then the two-sided bar construction
B•(N,R,M) is the simplicial object with

Bp(N,R,M) = N⊗R⊗p ⊗M,

face maps given by the multiplication on R and the module structures, and degen-
eracies given by the unit of R. We shall generally consider this as a semi-simplicial
object, and write B(N,R,M) := ∥B•(N,R,M)∥ for its thick geometric realization.

Lemma 9.18. — If N, R, and M are cofibrant in C, then there is an equivalence

N⊗L
R M ≃ B(N,R,M).

Proof. — There is an augmentation ε : B•(N,R,M)→ N⊗R M, as the coequalizer
defining N⊗R M is the 1-skeleton of the semi-simplicial object σ∗B•(N,R,M).

Suppose first that M is a cofibrant left R-module. If N = X ⊗ R is a free right
R-module then the augmented simplicial object ε : B•(N,R,M)→ N⊗R M is iden-
tified with X ⊗ − applied to the augmented simplicial object B•(R,R,M) → M.
After applying UR(−) this has an extra degeneracy, so after applying X⊗− it does
too, so by Lemma 8.16 the map ε : B(N,R,M)→ N⊗R M is a weak equivalence.

Now let N• = σ∗B•(N,R,R)→ N, an augmented semi-simplicial object with an
extra degeneracy, so a weak equivalence on thick geometric realization as above. We
then have a bi-semi-simplicial object

([p], [q]) 7−→ Bp(Nq,R,M)

augmented in the q direction to Bp(N,R,M), and augmented in the p direction
to Nq ⊗R M. The maps ∥B•(Nq,R,M)∥ → Nq ⊗R M are weak equivalences for
each q by the above, as each Nq is a free right R-module. The augmented semi-
simplicial object Bp(N•,R,M)→ Bp(N,R,M) has an extra degeneracy so is a weak
equivalence on thick geometric realization as above. This gives weak equivalences

∥B•(N,R,M)∥ ∼←− ∥∥B•(N•,R,M)∥∥ ∼−→ ∥N• ⊗R M∥ ∼= ∥N•∥ ⊗R M.

Now, as N is cofibrant in C, N• is levelwise a cofibrant right R-module, and so by
Lemma 8.12, ∥N•∥ is a cofibrant right R-module. As we have supposed that M is a
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cofibrant left R-module, the rightmost term is a model for N ⊗L
R M, which proves

the lemma under the assumption that M is a cofibrant left R-module.
If cM ∼→M is a cofibrant approximation as a left R-module, then

B•(N,R, cM) −→ B•(N,R,M)

is a levelwise weak equivalence as N and R are cofibrant in C, so if M is also cofibrant
in C then both objects are levelwise cofibrant and so this map is a weak equivalence
on thick geometric realization by Lemma 8.12. This proves the lemma in general.

9.4.2. Derived indecomposables. — Let us now suppose that there is given an aug-
mentation ε : R → 1C. This gives a map of monads ε : R ⊗ − → 1C ⊗ − = Id, and
hence there is defined a relative indecomposables functor

QR
Id : AlgR⊗−(C) −→ C.

If C is pointed then Id = +, and so ε defines an augmentation in the sense of
Definition 3.17. In this case the relative indecomposables QR

Id are simply the inde-
composables QR. By abuse of notation, we shall write QR for QR

Id, even if C is not
pointed.

With the model structures discussed above we may form the derived indecompos-
ables functor QR

L . This derived functor can often be computed by a bar construction,
following Section 8.3.

Corollary 9.19. — For a left R-module M, if R and M are cofibrant in C then there
is an equivalence

QR
L (M) ≃ B(1,R,M).

Proof. — The monadic resolution of a left R-module M is B•(R,R,M)→M, and by
Lemma 8.19 if M and R are cofibrant in C then σ∗σ∗B•(R,R,M) is Reedy cofibrant.
This is levelwise a free left R-module, and the underlying simplicial object has an
extra degeneracy so |σ∗σ∗B•(R,R,M)| →M is a weak equivalence by Lemma 8.16.
By Lemma 8.17 (iii), geometric realization in AlgR⊗−(C) has the same underlying
object as geometric realization in C, so |σ∗σ∗B•(R,R,M)|R → M is also a weak
equivalence, and hence this simplicial object is a free simplicial resolution. Then as in
Section 8.3.7 we get QR

L (M) ≃ |σ∗σ∗B•(1,R,M)| = B(1,R,M).

Of course, the entire discussion above goes through for right modules, giving an
equivalence QR

L (N) ≃ B(N,R,1) under the same hypotheses.
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CHAPTER 10

HOMOLOGY AND SPECTRAL SEQUENCES

In this section we shall discuss the filtrations of Section 5 from a homotopical
point of view. Of particular interest is the construction of their attendant spectral
sequences, and this requires a discussion of homology in our contexts. We suppose
throughout that S, and hence C = SG, satisfies the assumptions of of Section 7.1.
If there is a monad T discussed, or the monad associated to an operad O, then we
suppose that monad satisfies the axioms of Section 8.1.

10.1. Homology

We shall discuss homology with coefficients in a k-module, for a commutative
ring k.

10.1.1. Singular chain functors. — We shall define the homology of either chain com-
plexes of k-modules or Hk-modules, and so we write

A =

{
Chk,

Hk-Mod,

with their symmetric monoidal projective model category structures. Here Hk is an
Eilenberg-Mac Lane spectrum that is a commutative ring spectrum in SpΣ as in
Example 7.16, and such a model structure exists by the discussion in Section 7.3.3.
We write Hi(X) for the homology of a chain complex X, and Hi(X) := πi(X) for the
“homology” of an Hk-module X.

In order to discuss homology of objects of S, we shall ask for a singular chain
functor

C∗ : S −→ A,

by which we mean a functor such that

(i) there is a lax symmetric monoidal structure

C∗(X)⊗ C∗(Y ) −→ C∗(X ⊗ Y ),

which is a weak equivalence when X and Y are cofibrant,
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(ii) the composition C∗ ◦ s : sSet → S → A is naturally weakly equivalent to either
C∗(−;k) or Hk ∧ Σ∞(−)+,

(iii) C∗ preserves cofibrant objects and weak equivalences between cofibrant objects,
and preserves homotopy colimits (as described in Remark 7.12).

Given such a functor, we define the associated reduced singular chain functor
C̃∗ : S∗ → A as C̃∗(X) = C∗(X)/C∗(t), with homology H̃∗(X). As C∗(t)→ C∗(X) has
a retraction C∗(X → t), it is a cofibration, and so

C∗(t) −→ C∗(X) −→ C∗(X)/C∗(t) = C̃∗(X)

is a split cofibration sequence, and hence there is a canonical decomposition

H∗(C∗(X)) ∼= H∗(C̃∗(X))⊕H∗(C∗(t)).
Note that i = s(∅) so by (ii) we have C∗(i) ≃ 0. Thus if the category S is pointed
then reduced and unreduced singular chains agree.

Lemma 10.1. — If C∗ : S→ A is a singular chain functor and t ∈ S is cofibrant then
C̃∗ : S∗ → A is a singular chain functor.

Proof. — For X,Y ∈ S∗ the map

C∗(X)⊗ C∗(Y ) −→ C∗(X ⊗ Y ) −→ C∗(X ? Y ) −→ C̃∗(X ? Y )

is trivial when restricted to C∗(X) ⊗ C∗(t) and C∗(t) ⊗ C∗(Y ), so descends to a
map C̃∗(X)⊗ C̃∗(Y ) −→ C̃∗(X ? Y ) which is a lax symmetric monoidality. One may
verify that it is a weak equivalence when X and Y are cofibrant, using the canonical
decomposition above, verifying (i).

The composition C̃∗ ◦ s : sSet → S∗ → A sends X to C̃∗(s(X) ⊔ t) ∼= C∗(s(X)),
verifying (ii).

If we suppose that t ∈ S is cofibrant, then U+ : S∗ → S preserves cofibrant objects.
Thus if t→ X

f→ Y is a weak equivalence between cofibrant objects of S∗ then f is a
weak equivalence between cofibrant objects in S, and so C∗(f) is a weak equivalence
between cofibrant objects. By the functorial split cofibration sequence above, C̃∗(f) is
a weak equivalence too. If F : I→ S∗ is a diagram, its homotopy colimit may be formed
as the homotopy cofiber of

hocolim
i∈I

t −→ hocolim
i∈I

U+F (i).

This identifies C̃∗(hocolimi∈I F (i)) with the homotopy cofiber of

hocolim
i∈I

C∗(t) −→ hocolim
i∈I

C∗(F (i)),

which is hocolimi∈I C̃∗(F (i)). This verifies (iii).

It is also easy to see that given a singular chain functor C̃∗ : S∗ → A, precomposing
with F+ : S→ S∗ defines a singular chain functor on S.
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10.1.2. Examples. — For S = (sModk,⊗,k), we take A = Chk and let C∗(X) := N(X)

be normalized chains. The Eilenberg-Zilber map gives the required natural
weak equivalence N(X) ⊗ N(Y ) → N(X ⊗ Y ). The normalized chains functor
N : sModk → Chk is a left Quillen functor [105, §4.1] so satisfies (iii), and the
composition C∗ ◦ s : sSet → Chk is the functor of normalized simplicial chains which
is naturally weakly equivalent to the functor C∗(−;k) of simplicial chains.

For S = (sSet∗,∧, S0), we take A = Chk and use the strong symmetric monoidal “re-
duced free k-module” functor k̃[−] := k[−]/k[∗] : sSet∗ → sModk, composed with the
construction for simplicial k-modules above. This satisfies (iii) as k̃[−] is a left Quillen
functor. For (sSet,×, ∗) we precompose this with the strong symmetric monoidal left
Quillen functor F+ : sSet→ sSet∗.

For S = (Top,×, ∗) or (Top∗,∧, S0), we take A = Chk and use the strong sym-
metric monoidal singular simplices functor Sing composed with the construction
above for (pointed) simplicial sets. The composition C∗ ◦ s sends a simplicial set K
to C∗(Sing|K|;k) which has a canonical weak equivalence from C∗(K;k), so this
satisfies (ii). For (iii), first note that the functor Sing always produces cofibrant ob-
jects, and preserves weak equivalences between all (not just cofibrant) objects. Thus
it has a left derived functor LSing (even though Sing is a right Quillen functor) given
by (LSing)(X) = Sing(cX) for c a cofibrant replacement functor (which we may take
to be cX = |Sing(X)|). As Sing participates in a Quillen equivalence, it is enough to
show that its adjoint, |−| : sSet→ Top preserves homotopy colimits, but this is clear
as it is a left Quillen functor.

For S = (SpΣ,∧, S0) we take A = Hk-Mod and let C∗(X) = Hk∧X. This is strong
symmetric monoidal and precomposed with s : sSet→ SpΣ it is equal toHk∧Σ∞(−)+.
It is a left Quillen functor by definition of the projective model structure on Hk-Mod,
so satisfies (iii).

10.1.3. Homology of objects of S. — Given such a singular chain functor C∗ : S→ A,
we define the homology H∗(X;k) of X ∈ S as the homology of LC∗(X). More gener-
ally, if A is a left k-module then we define

C∗(X;A) :=

{
LC∗(X)⊗L

k A if A = Chk,
LC∗(X)⊗L

Hk HA if A = Hk-Mod,

with homology H∗(X;A), where HA is the Eilenberg-Mac Lane spectrum for A de-
fined by replacing k with A in Example 7.16.

If f : X → Y is a morphism in S, then we define the relative chains C∗(f ;A) as
the mapping cone in A of f∗ : C∗(X;A) → C∗(Y ;A), whose homology we denote
by H∗(f ;A). There is then a long exact sequence

· · · −→ Hi(X;A)
f∗−→ Hi(Y ;A) −→ Hi(f ;A)

∂−→ Hi−1(X;A) −→ · · · .
If the map f is understood, we write H∗(Y,X;A) for H∗(f ;A).
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If f : X → Y is a cofibration in S with cofiber Y/X = Y ∪X t, then the square

C∗(X;A) C∗(Y ;A)

C∗(t;A) C∗(Y/X;A)

f∗

is a homotopy pushout, giving an equivalence C∗(Y,X;A) ≃ C̃∗(Y/X;A), where the
homology of the latter is denoted H̃∗(Y/X;A). Using this notation, there is a long
exact sequence

· · · −→ Hi(X;A)
f∗−→ Hi(Y ;A) −→ H̃i(Y/X;A)

∂−→ Hi−1(X;A) −→ · · · .

10.1.4. Homology of objects of C. — For objects X ∈ C = SG we consider homology
to give G-graded k-modules, as follows.

Definition 10.2. — Let k be a commutative ring, A be a k-module, and X ∈ C = SG.
The homology groups of X with coefficients in A are defined to be the k-module

Hg,d(X;A) := Hd(X(g);A).

We consider the collection of these groups as giving a functor

G −→ ModZk

g 7−→ Hg,∗(X;A)

to Z-graded k-modules, obtained as the homology of g 7→ C∗(X(g);A) : G→ A.

As usual, it is convenient to also have available relative homology. For a mor-
phism f : X → Y in C = SG the relative homology groups Hg,d(f ;A) are defined as
the homology groups of the mapping cones of f∗ : C∗(X(g);A) → C∗(Y (g);A). As
usual, we shall write these groups as Hg,d(Y,X;A) := Hg,d(f ;A) when f is under-
stood. As in the previous section, if f : X → Y is a cofibration in C with cofiber Y/X
then there is an identification H̃g,d(Y/X;A) ∼= Hg,d(f ;A), and an associated long
exact sequence.

Remark 10.3. — There is a more general notion of coefficients for objects of SG,
which we will not have need for but which some readers may find clarifying. If
A : Gop → Modk is a functor then we can define C∗(X;A) to be the homotopy co-
end of the functor

G× Gop −→ A

(g, g′) 7−→ C∗(X(g);A(g′)).

One can then define homology of X with coefficients in A as the k-module

Hd(X;A) := Hd(C∗(X;A)).

Let A be a k-module and A(g) = A ⊗Z Z[G(−, g)], the representable functor
G(−, g) : Gop → Set composed with the free Z-module functor, composed with
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A⊗Z − : Ab→ Modk. Then C∗(X;A) is equivalent to C∗(X(g);A), i.e., ordinary
chains of the object X(g) ∈ S with coefficients in A. Hence the two notions of
homology are related by a natural isomorphism Hg,d(X;A) ∼= Hd(X;A(g)).

10.1.5. Künneth theorems. — For cofibrant objects A,B ∈ C = SG and any commu-
tative ring k of coefficients, the lax monoidal structure on C∗ : S → A gives weak
equivalences

C∗(A)⊗ C∗(B) −→ C∗(A⊗B)

in AG. Thus for the purposes of establishing Künneth-type theorems, we may as well
work entirely in AG. For U, V ∈ AG we have, by definition of the Day convolution
product,

(U ⊗ V )(x) = colim
(a,b,f)∈Hx

U(a)⊗ V (b)

where the category Hx has objects triples (a, b, f) with a, b ∈ G and f : a ⊕ b → x

a morphism in G, and Hx((a
′, b′, f ′), (a, b, f)) is given by morphisms g : a′ → a and

h : b′ → b in G such that f ′ = f ◦ (g ⊕ h).

Lemma 10.4. — If U, V ∈ AG are cofibrant then the functor

(a, b, f) 7→ U(a)⊗ V (b) : Hx −→ A

is cofibrant. Thus there is a strongly convergent spectral sequence

E2
x,s,t = Ls colim

(a,b,f)∈Hx

Ht(U(a)⊗ V (b)) =⇒ Hx,s+t(U ⊗ V )

with differentials dr : Erx,s,t → Erx,s−r,t+r−1.

Proof. — It suffices to prove that the functor

−⊗− : AG × AG −→ AHx ,

given by exterior product to AG×G followed by restriction along the functor
(a, b, f) 7→ (a, b) : Hx → G× G, is a Quillen bifunctor.

By Corollary 4.2.5 of [61] it suffices to verify that −⊗− satisfies the property
of a Quillen bifunctor only on generating (trivial) cofibrations. If fi : Ai → Bi are
the generating (trivial) cofibrations in A, then the morphisms G(z,−) × fi are the
generating (trivial) cofibrations of AG.

The pushout-product (G(y,−)×f1)□(G(z,−)×f2) evaluated at (a, b, f) is identified
with the map

G(y, a)× G(z, b)×

(
A1 ⊗B2

⊔
A1⊗A2

B1 ⊗A2

)
−→ G(y, a)× G(z, b)× (B1 ⊗B2),

which is the identity on the first two factors and the pushout-product in A on the
second.
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The pushout-product is a cofibration in A and is a trivial cofibration if f1 or f2 is,
as −⊗− on A is a Quillen bifunctor. On the other hand the functor

Hx −→ Set

(a, b, f) 7−→ G(y, a)× G(z, b)

is naturally isomorphic to the coproduct of representable functors

(a, b, f) 7−→
⊔

g : y⊕z→x
Hx((y, z, g), (a, b, f)),

so (G(y,−) × f1)□(G(z,−) × f2) is a cofibration in AHx , trivial if either fi is, as
required.

Since the functor (a, b, f) 7→ U(a)⊗ V (b) : Hx → A is cofibrant, its colimit is also a
homotopy colimit, and the Bousfield-Kan spectral sequence for a homotopy colimit is
given in [21, Section XII.5.7]. As it is in particular the spectral sequence of a simplicial
object, it is a half-plane spectral sequence with exiting differentials and A∞ = 0 in
the sense of Boardman, so it converges strongly by [18, Theorem 6.1].

This result will typically be used in conjunction with a Künneth theorem—or
Künneth spectral sequence—in A, which may be described as follows.

Lemma 10.5. — If U, V ∈ AG are cofibrant then for each a, b ∈ G there is a strongly
convergent Künneth spectral sequence

E2
p,q =

⊕
q′+q′′=q

Torkp (Hq′(U(a)), Hq′′(V (b))) =⇒ Hp+q(U(a)⊗ V (b))

with differentials dr : Erp,q → Erp−r,q+r−1. The edge homomorphism gives an external
product map

H∗(U(a))⊗H∗(V (b)) −→ H∗(U(a)⊗ V (b)),

which is an isomorphism if H∗(U(a)) is a flat k-module.

Proof. — As U is cofibrant in AG each U(a) is cofibrant in A. If A = Chk then this
means it is a chain complex of projective k-modules, so by e.g., [112, Ex. 5.7.5] there
is a Künneth spectral sequence

E2
p,q =

⊕
q′+q′′=q

Torkp (Hq′(U(a)), Hq′′(V (b))) =⇒ Hp+q(U(a)⊗ V (b)),

where the abutment is as claimed because U(a) is a chain complex of flat modules,
so hyper-Tor is simply given by tensor product in this case. It is a half-plane spectral
sequence with exiting differentials and A∞ = 0 in the sense of Boardman, so it
converges strongly by [18, Theorem 6.1].

If A = Hk-Mod there is completely analogous spectral sequence, yielding the same
conclusion. This spectral sequence is developed in [36, IV Theorem 4.1] (for a different
model of spectra, but a similar analysis gives it in SpΣ).

Under the further assumption that H∗(U(a)) is a flat k-module, we have E2
p,q = 0

for p > 0 so the spectral sequence degenerates to give the claimed isomorphism.
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The previous two results will be used in Lemma 11.4 to estimate the homological
connectivity of U ⊗ V in terms of those of U and V , and similarly for maps. Here
we give a finer result than that, a Künneth isomorphism in AG, valid when G is a
groupoid satisfying a mild hypothesis. We use the notation Gx := AutG(x) = G(x, x)

for the automorphisms of an object x.

Lemma 10.6. — If U, V ∈ AG are cofibrant and either

(i) G is a groupoid such that the map − ⊗− : Gx ×Gy → Gx⊕y is injective for all
x, y ∈ G, or

(ii) U(a) = i for a ≁= 1G,

then
Hx,∗(U ⊗ V ) ∼= colim

(a,b,f)∈Hx

H∗(U(a)⊗ V (b)).

The edge homomorphism of Lemma 10.5 then defines an external product map

H∗(U)⊗H∗(V ) −→ H∗(U ⊗ V ),

which is an isomorphism if H∗(U(a)) is a flat k-module for all a ∈ G.

Proof. — Under assumption (i) on G, the category Hx is filtered (because it is
equivalent to a discrete category) so, as taking homology in A commutes with
filtered colimits, the claimed formula holds. Under assumption (ii) on U we have
(U ⊗ V )(x) ∼= U(1G)⊗ V (x), so the same formula holds. The second part follows
from Lemma 10.5.

If the H∗(U(a)) are not flat, but k is a PID, then the above can also be used to
develop a Künneth short exact sequence for H∗,∗(U ⊗ V ) involving Tork1 .

10.1.6. T -homology. — Let S satisfy the axioms of Section 7.1 and let T be an aug-
mented monad on C = SG satisfying the axioms of Section 8.1. In Section 8.2.3 we
defined the derived T -indecomposables QTLX ∈ C∗ for a X ∈ AlgT (C). The T -homol-
ogy is given by the homology of the T -indecomposables:

Definition 10.7. — Let f : X → Y be a morphism in AlgT (C). We define the T -ho-
mology groups to be

HT
g,d(Y,X;A) := Hg,d(Q

T
LY, QTLX;A).

The absolute T -homology is then defined to be T -homology relative to the initial
T -algebra FT (i), whose underlying object is i. As QTL (FT (i)) ≃ i+ = t, this means
that

HT
g,d(X;A) := H̃g,d(Q

T
LX;A).

Of course, the absolute and relative T -homology groups fit into a long exact se-
quence

(10.1) · · · → HT
g,d(X;A)→ HT

g,d(Y;A)→ HT
g,d(Y,X;A)→ HT

g,d−1(X;A)→ · · · .
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If k is a field then we can extract numerical invariants of f , the relative T -Betti num-
bers bTg,d(Y,Z) := dimkH

T
g,d(Y,X;k) ∈ N ∪ {∞}. Similarly defined are the absolute

T -Betti numbers.
If the monad T is obtained from an operad O, we shall replace HT by the nota-

tion HO and bT by the notation bO.

10.2. Homotopy theory of filtered objects

Recall from Section 5 that we have adjunctions

(10.2) CZ=
∗ CZ≤ C.

u

gr colim

const

Following the discussion in Section 7.3, as C satisfies the assumption of Section 7.1
it follows from Lemma 7.10 that the model structure on C induces projective model
structures on CZ=

∗ and CZ≤ , making them into cofibrantly generated k-monoidal (with
respect to Day convolution) simplicial model categories when C is k-monoidal.

Proposition 10.8. — With these model structures, the adjunctions (10.2) are Quillen
adjunctions.

Proof. — The right adjoint const : C→ CZ≤ sends X to the constant functor n 7→ X.
Because weak equivalences and fibrations are objectwise in CN≤ this preserves fibra-
tions and trivial fibrations, so colim ⊣ const is a Quillen adjunction.

The right adjoint u : CZ=
∗ → CZ≤ sends X : Z= → C∗ to the functor u(X) : Z≤ → C

which sends n to X(n) all non-identity morphisms to the constant map to the base-
point. In particular on objects it is given by (Z many copies of) the forgetful functor
U+ : C∗ → C. But U+ is a right Quillen functor, as its left adjoint +: C → C∗ pre-
serves weak equivalences and cofibrations. Thus U+ preserves weak equivalences and
fibrations, and so u does too, so gr ⊣ u is a Quillen adjunction.

It is possible to (partially) characterize cofibrant graded and filtered objects.

Lemma 10.9. — An object X ∈ CZ= is cofibrant if and only if each X(n) ∈ C is
cofibrant. If X ∈ CZ≤ is cofibrant, then each X(n) is cofibrant and each structure
map X(n) → X(n + 1) is a cofibration. If X ∈ CZ≤ is ascending and each structure
map X(n)→ X(n+ 1) is a cofibration, then const(X(−1))→ X is a cofibration.

Proof. — The case of CZ= is immediate from the definition of the projective model
structure. If X ∈ CZ≤ is cofibrant then each X(n) is cofibrant by Proposition 11.6.3 of
[57]. To see that X(n)→ X(n+1) is a cofibration choose a trivial fibration f : A→ B

in C and consider the lifting problem

X(n) A

X(n+ 1) B

g

f

h
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in C. This gives rise to a lifting problem

i (· · · → A→ A→ A→ t→ t→ · · · )

X (· · · → A→ A
f→ B → t→ t→ · · · )

(··· ,idA,f,idt,...)

in CZ≤ . The right hand map is a trivial fibration, as these are defined objectwise and
f is a trivial fibration, so this lifting problem can be solved as X is cofibrant. A solu-
tion to this determines in particular a solution to the original lifting problem: hence
X(n)→ X(n+ 1) has the left lifting property with respect to all trivial fibrations, so
is a cofibration in C.

For the converse, suppose X ∈ CZ≤ is ascending and that there is given a trivial
fibration f : A→ B ∈ CZ≤ and a lifting problem

const(X(−1)) A

X B.

f

We will build a lift inductively. Since the filtration is ascending, it suffices to begin
with

X(−1) A(0)

X(0) B(0).

f(0)

This has a solution L0, as f(0) is a trivial fibration and the left-hand map is a
cofibration by assumption. Supposing compatible maps Li : X(i) → A(i) have been
constructed for i < n, consider

X(n− 1) A(n− 1) A(n)

X(n) B(n),

Ln−1

f(n)

which has a solution Ln as f(n) is a trivial fibration and the left-hand map is a
cofibration by assumption. These inductively determined Ln give a lift L : X → A in
the original lifting problem.

Theorem 10.10. — If X ∈ CZ≤ is cofibrant then there is a spectral sequence

E1
g,p,q = H̃g,p+q,p(gr(X);A) =⇒ Hg,p+q(colim(X);A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1, which is conditionally convergent if

lim
p→−∞

H∗,∗(X(p);A) = 0 = lim1

p→−∞
H∗,∗(X(p);A).

This does not relate the different g ∈ G at all, so we may equivalently think of
this as one spectral sequence for each g. The indexing of each these is that of the
homological Serre spectral sequence.
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Proof. — The long exact sequences of the homology of the pairs (X(q), X(q − 1))

assemble into an exact couple as usual, with

E1
g,p,q = Hg,p+q(X(p), X(p− 1);A).

As X is cofibrant, by Lemma 10.9 all maps X(n) → X(n + 1) are cofibrations and
so the homology of the pair (X(p), X(p − 1)) is the same as the reduced homology
of gr(X)(p)(g). This gives a spectral sequence with the claimed E1-page, and with
A1
g,p,q = Hg,p+q(X(p);A). The colimit colim(X) is a homotopy colimit, as X is cofi-

brant. As taking derived singular simplicial chains commutes with homotopy colimits,
and taking homology in A commutes with filtered colimits, the spectral sequence abuts
to Hg,p+q(colim(X);A). Conditional convergence is by definition of that term, cf. [18,
Definition 5.10].

We give two easy applications of this general existence result for spectral sequences.
We will later give more delicate applications.

10.2.1. The geometric realization spectral sequence. — The geometric realization |X•|
of a simplicial object X• has a canonical ascending filtration by skeleta: for k ∈ Z the
k-skeleton is the coend

|X•|(k) =

∫ n∈∆op
≤k

∆n ×Xn

over the full subcategory ∆op
≤k of ∆op on those ordered finite sets of cardinality ≤ k.

There is a pushout diagram

(10.3)

∆k × Lk(X•) ⊔∂∆k×Lk(X•) ∂∆k ×Xk |X•|(k−1)

∆k ×Xk |X•|(k).

As × : sSet × C → C is a Quillen bifunctor, the left vertical map is a cofibration
as long as Lk(X•) → Xk is, i.e., as long as X• is Reedy cofibrant. In this case,
as const(|X•|(−1)) = i is cofibrant, it follows from Lemma 10.9 that this filtered
object is cofibrant.

Theorem 10.11. — If X• is a Reedy cofibrant simplicial object, there is a spectral
sequence

E1
g,p,q = Hg,q(Xp;A) =⇒ Hg,p+q(|X•|;A),

which converges strongly, has d1-differential given by
∑
i(−1)i(di)∗, and has differen-

tials dr : Erg,p,q → Erg,p−r,q+r−1.

Proof. — Applying Theorem 10.10 to the above cofibrant filtered object, the col-
imit of the skeletal filtration is |X•| and its associated graded has p-th term given
by ∆p/∂∆p ∧Xp/Lp(X•). Thus, using the suspension isomorphism (which is a con-
sequence of Lemma 10.6 under assumption (ii)), there is a spectral sequence

F 1
g,p,q = H̃g,q(Xp/Lp(X•);A) =⇒ Hg,p+q(|X•|;A).
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As explained in the proof of [106, Proposition 5.1], F 2
g,p,q agrees with the homology

of E1
g,p,q = Hg,q(Xp;A) with respect to the differential

∑
i(−1)i(di)∗.

It remains to verify the convergence condition, for which we note that it is a
half-plane spectral sequence with exiting differentials and A∞ = 0 in the sense of
Boardman, so converges strongly by [18, Theorem 6.1].

A similar but easier argument applies to Reedy cofibrant (i.e., levelwise cofibrant)
semi-simplicial objects, with ∂∆n ×Xn → ∆n ×Xn replacing the left vertical arrow
in (10.3).

Theorem 10.12. — If X• is a Reedy cofibrant semi-simplicial object, there is a spectral
sequence

E1
g,p,q = Hg,q(Xp;A) =⇒ Hg,p+q(∥X•∥;A),

which converges strongly, has d1-differential given by
∑
i(−1)i(di)∗, and has differen-

tials dr : Erg,p,q → Erg,p−r,q+r−1.

10.2.2. The bar spectral sequence. — An example of this type of spectral sequence
is the bar spectral sequence associated to the two-sided bar construction described in
Section 9.4. Recall that for a unital associative algebra (i.e., a monoid) R in C and right
and left R-modules N and M, the two-sided bar construction B(N,R,M) is the thick
geometric realization of the (semi-)simplicial object with p-simplices Bp(N,R,M) =

N ⊗R⊗p ⊗M and face maps given by the multiplication on R and its action on N

and M. In this situation Theorem 10.12 gives a strongly convergent spectral sequence

E1
g,p,q = Hg,q(N⊗R⊗p ⊗M;A) =⇒ Hg,p+q(B(N,R,M);A)

with d1-differential given by the alternating sum of the face maps.
Often the E1-page of this spectral sequence may be simplified using a version of the

Künneth formula. In particular, if a Künneth theorem as in Lemma 10.6 applies, then
H∗(R;k) is an augmented associative algebra object in the diagram category GrModG

k,
where GrModk denotes the category of graded k-modules with tensor product involv-
ing a Koszul sign as normal, and GrModG

k is given the Day convolution monoidal
structure.

Via the Künneth isomorphism E1
∗,p,∗

∼= H∗,∗(N;k) ⊗H∗,∗(R;k)⊗p ⊗H∗,∗(M;A),
we may identify the p-th column of the E1-page with

(H∗,∗(N;k)⊗H∗,∗(R;k)⊗p+1)⊗H∗,∗(R;k) H∗,∗(N;A).

Under this identification the d1-differential may be identified with that of the complex
associated to the bar resolution of H∗,∗(N;k) by free H∗,∗(R;k)-modules, so that we
may identify E2

∗,p,∗ with TorH∗,∗(R;k)
p (H∗,∗(N;k),H∗,∗(M;A)) with Tor-groups taken

in GrModG
k.

10.2.3. The homotopy orbit spectral sequence. — An special case of the above spectral
sequence is the homotopy orbit spectral sequence. Let M be a unital monoid in C,
defining a monadM⊗− on C whose algebras are leftM -spaces, and suppose that there
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is an augmentation ε : M → 1 of monoids. If M arises from a monoid in simplicial
sets then there is a canonical such augmentation.

If X is an algebra for this monad it is acted upon by M on the left, and the
orbit X/M is given by the reflexive coequalizer

M ⊗X X X/M

of the action map M ⊗X → X and the map M ⊗X → 1⊗X ∼= X induced by ε. In
other words, these are the indecomposables of the monad M ⊗− with respect to the
augmentation M ⊗− ⇒ Id induced by the augmentation ε.

We then define homotopy orbits X � M to be its left derived functor. If M is
cofibrant in C, then the monad M ⊗ − satisfies the axioms of Section 8.1. By Sec-
tion 8.3.7, if X is cofibrant in C, this derived functor may be computed as the thick
geometric realization of the two-sided bar construction

X � M := ∥B•(1,M,X)∥.
As in the previous section there is a strongly convergent spectral sequence

E1
g,p,q = Hg,q(M

⊗p ⊗X;A) =⇒ Hg,p+q(X � M ;A)

with d1-differential given by an alternating sum of the maps induced by the augmen-
tation, the multiplication of M , and the action of M on X. If there is a Künneth
theorem available then we may identify E2

∗,p,∗ with TorH∗,∗(M ;k)
p (k[1], H∗,∗(X;A)).

10.2.4. The change-of-diagram-category spectral sequence. — Just before stating
Lemma 2.13, we explained how to associate to a (strong k-monoidal) functor
f : G → G′ a (strong k-monoidal) functor f∗ : SG → SG′ , which is left adjoint to
restriction along f , and in Section 7.3.2 we explained that the model structures on
these categories are such that f∗ is a left Quillen functor.

Theorem 10.13. — Let f : G → G′ be a functor between groupoids which induces sur-
jective maps Gg → G′f(g) on automorphism groups, with kernels Kg. If X ∈ SG is
cofibrant then there is a spectral sequence

E2
g′,p,q =

⊕
[g]∈π0G
f(g)∼=g′

Hp(Kg;Hg,q(X;A)) =⇒ Hg′,p+q(f∗X;A),

which converges strongly, and has differentials dr : Erg′,p,q → Erg′,p−r,q+r−1.

Proof. — By definition we have

(f∗(X))(g′) = colim
g∈f/g′

X(g).

Under the stated conditions there is an equivalence of groupoids

f/g′ ≃
∐

[g]∈π0G
f(g)∼=g′

Kg,
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and so

(f∗(X))(g′) ∼=
∐

[g]∈π0G
f(g)∼=g′

X(g)/Kg.

As X is cofibrant in SG, X(g) is cofibrant in SKg and so EKg ×X(g) → X(g) is
a weak equivalence between cofibrant objects, hence EKg ×Kg X(g) → X(g)/Kg is
a weak equivalence too. Considering EKg = ∥E•Kg∥ as the realization of a semi-
simplicial object in sSet, the above is ∥E•Kg ×Kg

X(g)∥. Applying Theorem 10.12,
we obtain a spectral sequence which coincides with the direct sum of the homotopy
orbit spectral sequences of Kg acting on X(g). As explained in Sections 10.2.2 and
10.2.3, using Lemma 10.6 (ii) we may identify its E1-page as

E1
g′,p,q =

⊕
[g]∈π0G
f(g)∼=g′

k[Kg]
⊗p+1 ⊗k[Kg ] Hq(X(g);A),

where the d1-differential on the g-th summand may be identified with that of the bar
complex computing Tork[Kg ]

p (k, Hq(X(g);A)), which is one definition of the group
homology Hp(Kg;Hq(X(g);A)).

As described in Section 4.6, for an operad O in S the functor f∗ induces a functor
f∗ : AlgO(SG) → AlgO(SG′). If the operad O is augmented then the absolute O-in-
decomposables functor QO is defined, and if both categories of algebras admit the
projective model structure then the derived O-indecomposables and O-homology are
defined too. In this case the following lemma allows one to compute the O-homology
of f∗(X) in terms of that of X.

Corollary 10.14. — If X ∈ AlgO(SG) has underlying object cofibrant in SG then there
is a spectral sequence

E2
g′,p,q =

⊕
[g]∈π0G
f(g)∼=g′

Hp(Kg;H
O
g,q(X;A)) =⇒ HO

g′,p+q(f∗X;A),

which converges strongly, and has differentials dr : Erg′,p,q → Erg′,p−r,q+r−1.

Proof. — Let cX ∼→ X be a cofibrant approximation in AlgO(SG), so QOL (X) ≃ QO(cX).
The functor f∗ : AlgO(SG) → AlgO(SG′) is a left Quillen functor, because it sends
the generating (trivial) cofibrations of AlgO(SG) to (trivial) cofibrations, as there is
a natural isomorphism f∗F

O ∼= FOf∗ and f∗ : SG → SG′ is a left Quillen functor.
Hence the object f∗(cX) ∈ AlgO(SG′) is cofibrant, and as the underlying object
of X is cofibrant the map f∗(cX) → f∗(X) is a weak equivalence. Thus we have
QOL (f∗(X)) ≃ QO(f∗(cX)) ∼= f∗(Q

O(cX)). Furthermore, as QO : AlgO(SG′) → SG′

∗ is
a left Quillen functor the object QO(cX) is cofibrant in SG′

∗ . Applying Theo-
rem 10.13 to QO(cX) and using the above identifications gives the required spectral
sequence.
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10.3. Multiplicative filtrations of O-algebras

Let O be a Σ-cofibrant operad in C. By the discussion in Section 9.2 and Proposi-
tion 10.8, we obtain model structures on AlgO(CZ=

∗ ) and AlgO(CZ≤). As discussed in
Section 5.3.4, the Quillen adjunctions

CZ=
∗ CZ≤ C,

u

gr colim

const

induce Quillen adjunctions

AlgO(CZ=
∗ ) AlgO(CZ≤) AlgO(C)

u

gr colim

const

between the associated categories of O-algebras.
If O is equipped with an augmentation ε : O → + then there is an associated

O-indecomposables functor QO, which commutes with the left adjoints gr and colim

by Section 5.3.4.

10.3.1. The derived indecomposables spectral sequence. — Assuming thatO is an aug-
mented operad so that QO is defined, since it takes filtered algebras to filtered pointed
objects, under suitable cofibrancy assumptions a filtration on an O-algebra induces a
spectral sequence on O-homology.

Theorem 10.15. — If X ∈ AlgO(CZ≤) has underlying object cofibrant in CZ≤ then
there is a spectral sequence

E1
g,p,q

∼= HO
g,p+q,p(gr(X);A) =⇒ HO

g,p+q(colimX;A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1, which is conditionally convergent if

lim
p→−∞

HO
∗,∗,p(X;A) = 0 = lim1

p→−∞
HO
∗,∗,p(X;A).

Proof. — Let cX
∼→ X be a cofibrant approximation in AlgO(CZ≤), so that

QOL (X) := QO(cX) ∈ C
Z≤
∗ is cofibrant as QO is a left Quillen functor. Thus we

may apply the spectral sequence of Theorem 10.10 to it, which takes the form

E1
g,p,q = H̃g,p+q,p(gr(QO(cX));A) =⇒ H̃g,p+q(colim(QO(cX));A),

and is conditionally convergent under the given assumptions.
Let us identify the abutment. By definition of QOL (X), we have

colim(QOL (X)) ≃ colim(QO(cX)).

As discussed in Section 5.3.4, colim commutes with QO so we have that
colim(QO(cX)) ∼= QO(colim(cX)). Since colim is a left Quillen functor by Sec-
tion 10.2, and the map cX

∼→ X is a weak equivalence between objects which are
cofibrant in CZ≤ , the map colim(cX)→ colim(X) is a weak equivalence. Furthermore,
the source is a cofibrant O-algebra, again as colim is a left Quillen functor, so this
may be used to compute QOL (colim(X)) as QO(colim(cX)). This may be summarized
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as
(QOL (X)) ≃ colim(QO(cX)) ∼= QO(colim(cX)) ≃ QOL (colim(X)).

Similarly, to identify the E1-page we note that, as discussed in Section 5.3.4, the
functor gr commutes with QO, giving gr(QO(cX)) = gr(QO(cX)) ∼= QO(gr(cX)), and
as gr is a left Quillen functor by Section 10.2 and X is cofibrant in CZ≤ , we also have
gr(cX)

∼→ gr(X). This is a weak equivalence from a cofibrant O-algebra, so QOL (gr(X))

may be computed as QO(gr(cX)).

10.3.2. The cell attachment spectral sequence. — In Section 6.2 we discussed the
canonical ascending filtration associated to a cell attachment. In C = SG, given the
data of an X0 ∈ AlgO(C), a cofibration of simplicial sets ∂Dd ↪→ Dd, an element g ∈ G,
and a map e : ∂Dd → X0(g), this was defined as the pushout fX1 in AlgO(CZ≤) of
the diagram

FO(1∗D
g,d)←− FO(1∗∂D

g,d) −→ 0∗X0,

which one should think of as putting X0 is filtration degree 0 and the cell in filtration
degree 1. The underlying object X1 = colim fX1 was also denoted X0 ∪Oe Dg,d. In
Theorem 6.4 we identified its associated graded as

(10.4) gr(fX1) ∼= 0∗(X0) ∨O FO(1∗(S
g,d)).

Lemma 10.16. — If X0 ∈ AlgO(C) is cofibrant, then the filtered object fX1 is cofibrant
in CZ≤ .

Proof. — The filtered object fX1 is given by the pushout

FO(1∗∂D
g,d) 0∗X0

FO(1∗D
g,d) fX1.

Here 0∗X0 is cofibrant in AlgO(CZ≤) using Lemma 10.9 and the assumption
that X0 is cofibrant in X0. Since cofibrations are closed under pushouts, the
map 0∗X0 → fX1 is a cofibration and hence fX1 is cofibrant as well. Finally, we use
that UO : AlgO(CZ≤)→ CZ≤ preserves cofibrant objects by Lemma 9.5.

Corollary 10.17. — If X0 ∈ AlgO(C) is cofibrant, then there is a strongly convergent
spectral sequence

E1
g,p,q

∼= H̃g,p+q,p

(
0∗(X0) ∨O FO(1∗(S

g,d);A
)

=⇒ Hg,p+q(X0 ∪Oe Dg,d;A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1.

Proof. — We apply the spectral sequence of Theorem 10.10 to the filtered object
UO(fX1) ∈ CZ≤ , which is cofibrant by Lemma 10.16. As fX1(d) = i for d < 0 the
assumptions for conditional convergence are satisfied, but even further this becomes
a half-plane spectral sequence with exiting differentials and A∞ = 0 in the sense
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of Boardman, so converges strongly by [18, Theorem 6.1]. The E1-page is identified
by (10.4).

10.3.3. The skeletal spectral sequence. — In Section 6.3, we described the skeletal
filtration of a relative CW algebra f : R→ S. By definition, f : R→ S the underlying
object of an ascendingly filtered object sk(f) and in Theorem 6.14 we showed that its
associated graded is given by

(10.5) gr(sk(f)) ≃ 0∗(R+) ∨O FO
∨
d≥0

∨
α∈Id

d∗(S
gα,d
α )

 .

Lemma 10.18. — If R ∈ AlgO(C) is cofibrant, then the filtered object sk(f) is cofibrant
in CZ≤ .

Proof. — The map 0∗(R+)→ sk(f) is a cofibration in AlgO(CZ≤), as it is the trans-
finite composition of the maps skd−1(f) → skd(f) which are obtained as pushouts
along cofibrations

FO

( ⊔
α∈Id

∂Dgα,d
α [d− 1]

)
−→ FO

( ⊔
α∈Id

Dgα,d
α [d]

)
.

If R ∈ AlgO(C) is cofibrant then so is 0∗(R+), as 0∗ and (−)+ are left Quillen functors,
and hence 0∗(R+) → sk(f) is a cofibration between cofibrant objects in AlgO(CZ≤).
It follows from Lemma 9.5 that its underlying map is a cofibration between cofibrant
objects in CZ≤ ; in particular sk(f) is cofibrant in CZ≤ .

Corollary 10.19. — If R ∈ AlgO(C) is cofibrant and f : R → S is a relative CW
algebra, then there is a strongly convergent spectral sequence

E1
g,p,q

∼= H̃g,p+q,p

0∗(R+) ∨O FO
∨
d≥0

∨
α∈Id

d∗(S
gα,d
α )

 ;A

 =⇒ Hg,p+q(S,R;A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1.

Proof. — We apply Theorem 10.10 to the object UO(sk(f)) ∈ C
Z≤
∗ , which is cofibrant

by Lemma 10.18. Strong convergence is as in the proof of Corollary 10.17. The E1-page
is identified by (10.5).

10.3.4. The canonical multiplicative filtration spectral sequence. — In Section 5.4.2 we
have associated to a non-unitary operad O and an O-algebra R a canonical multiplica-
tive filtration (−1)alg∗ (R). By Lemma 5.9 this is a descending filtration. This canonical
filtration and its associated spectral sequence has been studied by Harper-Hess [53]
and Kuhn-Pereira [71].

The spectral sequence for the canonical multiplicative filtration has quite subtle
convergence properties, as the filtration is descending. In fact, to state them we shall
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have to borrow some terms which will be introduced in Section 11, and to prove them
we will have to use some results from that section too. There is no risk of circularity,
as this result is not necessary for anything which follows. We start by defining an
abstract connectivity c (cf. Definition 11.1) by

(10.6) c(g) :=

{
1 if g ∈ G×,
0 otherwise.

We shall assume in the next theorem that R is homologically c-connective. We remark
that this is implied by R being homologically 0-connective (cf. Definition 11.2) and
R being reduced (cf. Definition 11.11).

Theorem 10.20. — If R ∈ AlgO(C) is cofibrant then there is a spectral sequence

E1
g,p,q = H̃g,p+q,p(F

O
O(1)(−1)∗Q

O
O(1)(R);A) =⇒ Hg,p+q(R;A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1. If R is homologically c-connective,
each O(n) is homologically 0-connective (cf. Definition 11.1), and G is Artinian (cf.
Definition 11.10), then this converges strongly.

Proof. — Recall that (−1)alg∗ is left adjoint to the evaluation map

(−1)∗ : AlgO(CZ≤) −→ AlgO(C),

and this preserves fibrations and trivial fibrations (as these are defined pointwise
on underlying objects) so is a right Quillen functor, and hence (−1)alg∗ is a left
Quillen functor. Thus (−1)alg∗ (R) ∈ AlgO(CZ≤) is cofibrant, so by Theorem 10.10
it has an associated spectral sequence. We have colim(−1)alg∗ (R) ∼= R which iden-
tifies the abutment. By Proposition 5.11, we may identify the associated graded
as gr(−1)alg∗ (R) ∼= FOO(1)(−1)∗Q

O
O(1)(R), which identifies the E1-page.

This is a half-plane spectral sequence with entering differentials in the sense of
Boardman, so to show that it converges strongly we will show that it converges con-
ditionally and then verify the hypothesis of [18, Theorem 7.3], i.e., that the derived
E∞-page vanishes. By the lim1 exact sequence, conditional convergence is the same
as asking for

holim
a∈Z≤

LC∗((−1)alg∗ R(a);A) ≃ ∗.

It is enough to show this with k-coefficients. We will prove that:

Claim. — We have that LC∗((−1)alg∗ R(−a);k) is c∗a-connective.

Proof of claim. — We first prove this in the case that R = FO(X) is a free algebra
with X homologically c-connective. Then in the proof of Lemma 5.9, which uses the
assumption that O is non-unitary, we saw that

UO(−1)alg∗ FO(X)(−a) =
⊔
n≥a

O(n)⊗Gn
X⊗n.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



122 CHAPTER 10. HOMOLOGY AND SPECTRAL SEQUENCES

As the derived functor LC∗ of the singular chain functor preserves arbitrary coprod-
ucts up to weak equivalence, the natural map⊕

n≥a

LC∗(O(n)⊗Gn X
⊗n;k) −→ LC∗(UO(−1)alg∗ FO(X)(−a);k)

is a weak equivalence. It thus suffices to prove that O(n)⊗Gn
X⊗n is c∗a-connective

whenever n ≥ a.
As X is homologically c-connective, by Lemma 11.4 (i) the object X⊗n is homo-

logically c∗n-connective. By the homotopy orbits spectral sequence of Section 10.2.3,
the fact that each O(n) is homologically 0-connective, and Lemma 11.4 (i), it follows
that O(n) ⊗Gn

X⊗n is c∗n-connective as well. As c ∗ c ≥ c, if n ≥ a then c∗n ≥ c∗a.
This finishes the proof of the claim for free O-algebras on homologically c-connected
objects.

Let us now suppose that R is a general cofibrant O-algebra. In particular R is
cofibrant in C, so by the discussion in Section 8.3.5 there is a free simplicial reso-
lution ε : R• = σ∗σ

∗B•(F
O,O,R) → R given by the thick monadic bar construc-

tion. As (−1)alg∗ is a left Quillen functor and preserves geometric realization (as
it commutes with the copowering by simplicial sets), we have a weak equivalence
|(−1)alg∗ R•|O

∼→ (−1)alg∗ (R) and so, on underlying objects, a weak equivalence

∥UO(−1)alg∗ B•(F
O,O,R)∥ ∼= |UO(−1)alg∗ R•|

∼−→ UO(−1)alg∗ (R)

using Lemma 8.17 (iii). As R is homologically c-connective, O is non-unitary, and
each O(n) is homologically 0-connective, each UO(−1)alg∗ Bp(F

O,O,R) is obtained
by applying UO(−1)alg∗ to a free O-algebra on a homologically c-connective object.
Hence for fixed g ∈ G and a ∈ Z, (UO(−1)alg∗ Bp(F

O,O,R))(−a) is homologically
c∗a-connective.

We will prove by induction over p that ∥UO(−1)alg∗ B•(F
O,O,R)∥(p)(−a) is homo-

logically c∗a-connective. For p = 0, we have that

∥UO(−1)alg∗ B•(F
O,O,R)∥(0)(−a) = (UO(−1)alg∗ FO(UOR))(−a)

is homologically c∗a-connective by the case proved above. For the induction step, we
use the homotopy cofiber sequence

|UO(−1)alg∗ R•|(p−1) −→ |UO(−1)alg∗ R•|(p) −→ Sp ∧ (UO(−1)alg∗ Bp(F
O,O,R))+

in CZ≤ , which on applying LC∗ give homotopy cofiber sequence in (AG)Z≤ , which are
thus homotopy fiber sequences as A is stable. Since (−a)∗ is a right Quillen functor,
it preserves homotopy fiber sequences. Applying (−a)∗, by the inductive hypothesis

LC∗(|UO(−1)alg∗ R•|(p−1);k)(−a)
is c∗a-connective, and by the case proved above

LC∗(Sp ∧ (UO(−1)alg∗ Bp(F
O,O,R))+;k)(−a)

is (p+ c∗a)-connective. It follows that

LC∗(|UO(−1)alg∗ R•|(p);k)(−a)
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is c∗a-connective as well. This completes the proof of the induction step. The claim
follows as LC∗ preserves sequential homotopy colimits.

Let us make the connectivities more explicit. Since G is Artinian, it has a
rank functor r : G → N≤. Observe that c∗n(g) ≥ n − r(g), as a decomposition
g ∼= a1 ⊕ · · · ⊕ an must have at least (n − r(g)) ai’s ⊕-invertible, by definition of a
rank functor. We conclude that for each fixed g ∈ G and d ∈ Z, the inverse system
Hg,d(LC∗((−1)alg∗ R(a);k)) is eventually constantly equal to 0. This implies that the
homotopy limit is contractible, proving conditional convergence.

To see that the derived E∞-page vanishes, we establish a vanishing line.
As R is c-connective, QOO(1)(R) is too (this may be seen, for example, by using
QOO(1)(R) ≃ B(O(1)+,O,R) and working simplicially as above). Now the spectral
sequence has

E1
g,p,q = H̃g,p+q,p(F

O
O(1)(−1)∗Q

O
O(1)(R);A)

= H̃g,p+q(O(−p)⊗G−p≀O(1) Q
O
O(1)(R)⊗(−p);A).

As QOO(1)(R) is a cofibrant O(1)-module, and G−p acts freely on O(−p), the quotient
of O(−p)⊗QOO(1)(R)⊗(−p) by G−q ≀ O(1) is in fact a homotopy quotient. Thus, using
the homotopy orbits spectral sequence and the fact that each O(n) is homologically
0-connective in the same way as above, we see that E1

g,p,q vanishes for p+q ≤ c∗(−p)(g).
In particular using the estimate above it vanishes for p+q ≤ −p−r(g). Thus, holding
(g, p, q) fixed, the target of the differential

dr : Erg,p,q −→ Erg,p−r,q+r−1

vanishes if (p − r) + (q + r − 1) ≤ −(p − r) − r(g), i.e., if p + q − 1 ≤ r − p − r(g),
which is satisfied for all r ≫ 0. Therefore Erg,p,q is independent of r for r ≫ 0, so the
derived E∞-page vanishes.

Remark 10.21. — Suppose that f : R→ S is a morphism of cofibrant O-algebras, and
that O, R, and S satisfy the assumptions of Theorem 10.20 for strong convergence.
If f induces a homology equivalence

QOO(1)(f) : QOO(1)(R) −→ QOO(1)(S),

then it induces an isomorphism between E1-pages of the spectral sequence of that the-
orem (as FOO(1) and (−1)∗ preserve homology equivalences), so by [18, Theorem 5.3]
it follows that f : R → S is a homology equivalence too. This is related to Theo-
rem 1.12 (c) of [53], which studies the case of O-algebras in modules over a commuta-
tive symmetric ring spectrum with the positive projective stable model structure and
calls the canonical multiplicative filtration spectral sequence the “homotopy comple-
tion spectral sequence.” We will study such questions in more detail, and by different
methods, in Section 11 (see especially Section 11.4).
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10.4. Filtrations of associative algebras and their modules

If R is a unital associative algebra in C, then in Example 4.14 we described an
operad in C whose algebras are (left) R-modules. All of the discussion so far can
therefore be applied to manipulate filtered R-modules.

However, we can also consider a filtered unital associative algebra R, i.e., a unital
associative algebra in the category CZ≤ . In this case, if N and M are right and left
R-modules respectively, then as described in Section 9.4 we can form the two sided
bar construction B•(M,R,N) ∈ sCZ≤ and hence its thick geometric realization

B(M,R,N) := ∥B•(M,R,N)∥ ∈ CZ≤ .

Lemma 10.22. — If the underlying objects of R, M, and N are cofibrant in CZ≤ then
there is a spectral sequence

E1
n,p,q

∼= H̃n,p+q,p(B(gr(M), gr(R), gr(N))) =⇒ Hn,p+q(colimB(M,R,N))

with differentials dr : Ern,p,q → Ern,p−r,q+r−1. If the filtrations on R, M, and N are
ascending then it converges strongly.

Proof. — The semi-simplicial object B•(M,R,N) ∈ ssCZ≤ is levelwise cofibrant (as
its p-simplices M⊗R⊗p⊗N are a tensor product of cofibrant objects) so it is Reedy
cofibrant, and hence B(M,R,N) ∈ CZ≤ is cofibrant by Lemma 8.12. We may thus
apply Theorem 10.10 to it, to obtain a spectral sequence. To identify the E1-page we
use the isomorphism

gr(B(M,R,N)) ∼= B(gr(M), gr(R), gr(N)) ∈ CZ=
∗ ,

which holds as gr is symmetric monoidal, and preserves (thick) geometric realizations
as it is objectwise given by a pushout and commutes with the simplicial copowering.

It converges strongly under the given assumption by [18, Theorem 6.1], as then
the filtration on B(M,R,N) is also ascending, so it becomes a half-plane spectral
sequence with exiting differentials and A∞ = 0.

A similar spectral sequence has been studied by Angelini-Knoll-Salch [3]: they con-
sider (descendingly) filtered E∞-algebras (in fact, strictly commutative monoids), the
induced filtration of the cyclic bar construction (i.e., topological Hochschild homol-
ogy), and its associated spectral sequence.
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CHAPTER 11

HUREWICZ THEOREMS AND CW APPROXIMATION

In Sections 11.2 and 11.3 we will establish Hurewicz theorems for O-homology.
This culminates in Corollary 11.14 which under certain conditions identifies the first
non-trivialO-homology group in terms of the corresponding ordinary homology group.

Using these, in Section 11.4 we will establish conditions under which O-homology
can be used to detect (homology or) weak homotopy equivalences. In Section 11.5
we will develop a theory of (minimal) CW approximations, which makes use of the
ordinary Hurewicz theorem comparing homology and homotopy groups.

11.1. Connectivity functors

We begin with a discussion of the appropriate method to keep track of (homologi-
cal) connectivity of objects in diagram categories, as well as establish the behavior of
connectivity under tensor products.

For simplicial sets or topological spaces, it is common to say that a map X → Y is
homologically c-connective if Hd(Y,X) = 0 for all d < c. We would like to point
out the difference between “connective” and “connected”: the term “(c−1)-connected”
usually means c-connective. In this section we shall discuss how to encode vanishing
conditions on the homology of each of the values X(g) of an object X ∈ C = SG.

Definition 11.1. — Let [−∞,∞]≥ be the category with objects given by the
set [−∞,∞] of extended real numbers, and a unique morphism x → y if and only if
x ≥ y. We endow it with a symmetric monoidal structure given by addition, with the
convention

(∞) + (−∞) = (∞).

The category [−∞,∞]≥ has all colimits, and this monoidal structure preserves col-
imits in each variable.

An abstract connectivity for G is a functor c : G→ [−∞,∞]≥.

Definition 11.2. — For an abstract connectivity c and a commutative ring k, a mor-
phism f : X → Y in C = SG is homologically c-connective if Hg,d(Y,X;k) = 0
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for d < c(g). An object X ∈ C is homologically c-connective if Hg,d(X;k) = 0

for d < c(g).

It follows from the properties of a singular chains functor that H∗,∗(i;k) = 0, so we
can equivalently define X to be homologically c-connective if the morphism i→ X is.
We warn the reader that when S is not pointed, this condition may not be what they
expect: the condition is about the map from the initial object, not the map to the
terminal object. For example, a functor X : G → sSet is homologically c-connective
precisely when X(g) = ∅ whenever c(g) > 0. This seemingly unusual definition is
in fact desirable, since it makes connectivity be “additive under tensor product”, cf.
Lemma 11.4 (i) below.

The k-monoidal structure on G induces a k-monoidal structure on abstract connec-
tivities with tensor product − ∗ −, as follows. Let c and c′ be abstract connectivities
for G, then their convolution is the abstract connectivity c ∗ c′, defined by Day convo-
lution of functors c, c′ : G→ [−∞,∞]≥, using that the target category has all colimits.
Explicitly, we have

(11.1) (c ∗ c′)(g) = inf{c(a) + c′(a′) | G(a⊕ a′, g) ̸= ∅} ∈ [−∞,∞].

Recognize G(a⊕ a′, g) ̸= ∅ if and only if a⊕ a′ ∼= g, as G is a groupoid. This endows
the category of functors G→ [−∞,∞]≥ with a k-monoidal structure, with unit given
by

(11.2) 1conn(g) =

{
0 if G(1G, g) ̸= ∅,
∞ otherwise.

Recall that the cofiber of a cofibration f : X → Y is the pushout Y/X = Y ∪X t,
which comes with a canonical map from t and is hence considered as an object of C∗.
The following is a direct consequence of the definitions:

Lemma 11.3. — Let f : X → Y be a cofibration and let c be an abstract connectivity.
Then f is a homologically c-connective morphism in C if and only if t → Y/X is a
homologically c-connective morphism.

Proof. — There is an identification H∗(Y,X;k) ∼= H∗(Y/X, t;k) as in Section 10.1.4.

The next lemma is preparation for Corollary 11.6 below, giving an estimate on the
connectivity of iterated tensor products of maps.

Lemma 11.4. — (i) Let X,X ′ ∈ C be cofibrant, and assume that X is homologically
c-connective and X ′ is homologically c′-connective. Then X⊗X ′ is homologically
(c ∗ c′)-connective.

(ii) Let f : X ′′ → X ′ be a homologically cf -connective morphism between cofibrant
objects of C and let X ∈ C be a homologically c-connective cofibrant object. Then
X ⊗ f : X ⊗X ′′ → X ⊗X ′ is homologically (c ∗ cf )-connective, as is f ⊗X.
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Proof. — The first part follows from the second, applied to the morphism
X ′′ = i→ X ′. To prove the second part we may as well suppose that f is a cofibration,
so X ⊗ f is too and, as X ⊗− preserves pushouts, the cofiber of X ⊗ f is isomorphic
to the cofiber of X ⊗ t → X ⊗ (X ′/X ′′). By Lemma 11.3 the map t → X ′/X ′′ is
homologically cf -connective.

The strongly convergent Künneth spectral sequence of Lemma 10.5 has an obvious
relative elaboration⊕

q′+q′′=q Torkp (Hq′(X(a)), Hq′′((X
′/X ′′)(a′), t))

Hp+q(C∗(X(a))⊗ C∗((X ′/X ′′)(a′), t)),

and we haveHq′(X(a)) = 0 for q′ < c(a) andHq′′((X
′/X ′′)(a′), t) = 0 for q′′ < cf (a

′),
so the target vanishes in degrees < c(a) + cf (a

′). Therefore it vanishes in de-
grees < (c ∗ cf )(g), whenever there exists a morphism f : a ⊕ a′ → g in G. It then
follows from the spectral sequence

E2
g,s,t = Ls colim(a,a′,f)∈Hg

Ht(C∗(X(a))⊗ C∗((X ′/X ′′)(a′), t))

Hg,s+t(X ⊗ (X ′/X ′′), X ⊗ t),

of Lemma 10.4 that the mapX⊗t→ X⊗(X ′/X ′′) is homologically (c∗cf )-connective.

Corollary 11.5. — Let f : X → X ′ and g : Y → Y ′ be morphisms between cofibrant
objects. Assume X is homologically cX-connective, f is homologically cf -connective,
and so on. Then f ⊗ g : X ⊗ Y → X ′ ⊗ Y ′ is homologically

max(min(cX ∗ cg, cf ∗ cY ′),min(cf ∗ cY , cX′ ∗ cg)) -connective.

Proof. — The four convolutions in the formula are the connectivities of the four
arrows in the diagram

X ⊗ Y X ⊗ Y ′

X ′ ⊗ Y X ′ ⊗ Y ′.

X⊗g

f⊗Y f⊗Y ′

X′⊗g

The corollary follows because the connectivity of a composition is at least the mini-
mum of the two connectivities, by the five lemma, and we may pick the way around
the diagram which results in the maximal connectivity.

Applying the previous corollary (n− 1) times, we obtain:

Corollary 11.6. — If f : X → Y is a homologically cf -connective morphism
between cofibrant objects which are homologically cX and cY -connective, then
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f⊗n : X⊗n → Y ⊗n is homologically

min{c∗aX ∗ cf ∗ c∗bY | a+ b = n− 1}-connective.

11.2. Hurewicz theorems for relative indecomposables

In this section, we prove the first Hurewicz theorem comparing ordinary homology
to O-homology. To do so, we will additionally assume that O is a non-unitary Σ-cofi-
brant operad and that all O(n) are homologically 0-connective: we will abbreviate the
latter condition by saying that O is homologically 0-connective. We start by applying
the results of Section 11.1 to the monad associated to this operad.

Lemma 11.7. — Let O be a non-unitary homologically 0-connective Σ-cofibrant op-
erad. Let c, cf : G→ [−∞,∞]≥ be abstract connectivities such that c∗c ≥ c, c∗cf ≥ cf ,
and cf ∗ c ≥ cf . Let X and Y be homologically c-connective cofibrant objects of C and
let f : X → Y be a homologically cf -connective map. Then

(i) O(X) is homologically c-connective,
(ii) O(f) is homologically cf -connective, and
(iii) DecOO(1)(F

Of) is homologically min{c ∗ cf , cf ∗ c}-connective.

Proof. — Note that (i) follows from (ii) applied to f : i → X. For (ii), we have
O(X) =

⊔
n≥1O(n) ×Gn X⊗n. The map f⊗n : X⊗n → Y ⊗n is homologically

min{c∗a ∗ cf ∗ c∗b | a+ b = n− 1}-connective by Corollary 11.6, so as c ∗ cf ≥ cf and
cf ∗ c ≥ cf it is homologically cf -connective for all n ≥ 1. That O(n) ×Gn

f⊗n is
homologically cf -connective then follows from the fact that O(n) is homologically
0-connective, Lemma 11.4 (ii), and the map of homotopy orbit spectral sequences

E2
g,p,q = Tork[Gn]

p (k, Hg,q(O(n)× f⊗n;k)) =⇒ Hg,p+q(O(n)×Gn f
⊗n;k)

of Section 10.2.3, using that the Gn-action on O(n) is free.
For (iii) a similar argument applies to DecOO(1)(F

Of) =
⊔
n≥2O(n)×Gn

f⊗n, except
now each summand is homologically min{c ∗ cf , cf ∗ c}-connective.

Lemma 11.8. — Let O be a non-unitary homologically 0-connective Σ-cofibrant op-
erad. Let c, cf : G→ [−∞,∞]≥ be abstract connectivities such that c∗c ≥ c, c∗cf ≥ cf ,
and cf ∗ c ≥ cf . Let f : R → S be a homologically cf -connective morphism of homo-
logically c-connective O-algebras. Then

LDecOO(1)(f) : LDecOO(1)(R) −→ LDecOO(1)(S)

is homologically min{c ∗ cf , cf ∗ c}-connective.

Proof. — As the desired conclusion is about derived decomposables, without loss of
generality we may suppose that R and S are cofibrant O-algebras, and hence (by
Axiom 8.1) that their underlying objects are cofibrant in C. Thus as described in
Section 9.3.1 we may compute their derived decomposables using the monadic bar
resolution.
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The p-simplices of B•(DecOO(1)F
O,O,R) are DecOO(1)F

OOp(R). By iteratedly ap-
plying Lemma 11.7 we see that Opf is homologically cf -connective for all p ≥ 0 and
hence that DecOO(1)F

OOpf is homologically min{c ∗ cf , cf ∗ c}-connective for all p.
The geometric realization in C is calculated objectwise, and so preserves homological
connectivity, so the geometric realization is also homologically min{c ∗ cf , cf ∗ c}-con-
nective.

Proposition 11.9. — Let O be a non-unitary homologically 0-connective Σ-cofibrant
operad. Let R,S ∈ AlgO(C) be cofibrant and homologically c-connective for some
abstract connectivity c such that c ∗ c ≥ c. Let f : R→ S be a map such that UOf is
homologically cf -connective. Then the square

(UOR)+ QOO(1)R

(UOS)+ QOO(1)S

is homologically (1 + min{c ∗ cf , cf ∗ c})-cocartesian, i.e., the induced map

Hg,d(S,R) −→ Hg,d(Q
O
O(1)S, Q

O
O(1)R)

is an epimorphism for d < (1 + min{c ∗ cf , cf ∗ c})(g) and an isomorphism for
d < (min{c ∗ cf , cf ∗ c})(g).

Proof. — As R and S are cofibrantO-algebras, we may identify the square in question
with the right-hand square of

LDecOO(1)(R) UOO(1)∥B•(F
O,O,R)∥+ LQOO(1)R

LDecOO(1)(S) UOO(1)∥B•(F
O,O,S)∥+ LQOO(1)S,

where the rows are cofibration sequences described in Section 9.3.1. Establishing the
result in question means showing that

LDecOO(1)(f) : LDecOO(1)(R) −→ LDecOO(1)(S)

is homologically min{c∗cf , cf ∗c}-connective, which is the content of Lemma 11.8.

The next result is our Hurewicz theorem for relative O-indecomposables, the main
result of this section. For a map f : R→ S of O-algebras we wish to make a statement
about “the lowest” degree in whichH∗,∗(S,R) is not known to vanish. In order to make
sense of this, we make the following definition.

Definition 11.10. — A k-monoidal groupoid (G,⊕,1) is Artinian if there exists a lax
k-monoidal functor r : G → N≤, such that r(g) > 0 when g ∈ G is not ⊕-invertible.
We let G× denote the full subcategory of g that are ⊕-invertible.
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When G is Artinian, r(g) gives an upper bound on the number of summands in a
decomposition g ∼= g1 ⊕ · · · ⊕ gn with no gi invertible under ⊕. In fact, if such an r

exists, then we may define ω : G→ N≤ by

ω(g) := sup{n | g ∼= g1 ⊕ · · · ⊕ gn with no gi ⊕-invertible},
using r to show that the supremum is attained, so is in fact a maximum. Then ω is in
fact lax monoidal and satisfies ω(g) ≤ r(g) for any rank functor r. Let us call ω the
canonical rank functor .

Definition 11.11. — An object X ∈ C is reduced if Hg,0(X) = 0 for all g ∈ G that are
⊕-invertible.

To state the main result, we introduce the relation ≨ on Z2: (ω′, d′) ≨ (ω, d) if
(ω′, d′) belongs to the set

Z≤ω × Z≤d−1 ∪ Z≤ω−1 × Z≤d,

as in Figure 3.

3

2 • •

1 • • •

0 • • •

d/ω 0 1 2 3 4

Figure 3. The set Z≤ω × Z≤d−1 ∪ Z≤ω−1 × Z≤d for d = 2 and ω = 2

Corollary 11.12. — Let O be a non-unitary homologically 0-connective Σ-cofibrant
operad. Let G be an Artinian groupoid, and R,S ∈ AlgO(C) be cofibrant, reduced, and
homologically 0-connective. Let f : R → S be a morphism such that Hg′,d′(S,R) = 0

whenever (ω(g′), d′) ≨ (ω(g), d), for some d ∈ Z and g ∈ G. Then the induced map

Hg,i(S,R) −→ Hg,i(Q
O
O(1)S, Q

O
O(1)R)

is an isomorphism for i = d, and a surjection for i = d+ 1.
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Proof. — Recall that G× denotes those objects that are ⊕-invertible. Define an ab-
stract connectivity c by

c(g) :=

{
1 if g ∈ G×,
0 otherwise.

Then c ∗ c ≥ c, and as S and R are homologically 0-connective and reduced, they are
homologically c-connective.

Let cf denote the homological connectivity of the map f . If there is a mor-
phism a⊕ b ∼→ g ∈ G then ω(a) + ω(b) ≤ ω(g). If b ̸∈ G× then ω(b) ≥ 1 and so
ω(a) < ω(g), and hence Ha,d′(S,R) = 0 for d′ < d+1, and so cf (a) ≥ d+1; therefore
cf (a) + c(b) ≥ d+ 1. On the other hand if b ∈ G× then a⊕ b = g so ω(a) ≤ ω(g) and
g⊕b−1 = a so ω(g) ≤ ω(a), which imply that ω(a) = ω(g), and hence Ha,d′(S,R) = 0

for d′ < d, so cf (a) ≥ d, but also c(b) ≥ 1 as g ∈ G×, so cf (a) + c(b) ≥ d + 1 in this
case too. By the formula for (cf ∗ c)(g) as an infimum it follows that

(cf ∗ c)(g) ≥ d+ 1.

Similarly for c ∗ cf . Applying Proposition 11.9 gives the required result.

For the little n-cubes operad in S-modules this has been proved by Basterra-
Mandell [11, Theorem 3.7]. A similar result has been obtained by Harper-Hess [53,
Theorem 1.8] for operads in symmetric spectra or chain complexes (what they call
TQ or Q is what we call LQOO(1), see Definitions 3.15 and 8.4 of their paper), and by
Basterra [9, Lemma 8.2] for the commutative operad in S-algebras.

11.3. Hurewicz theorems for absolute indecomposables

Corollary 11.12 concerned the relative indecomposables QOO(1). IfO is a non-unitary
operad equipped with an augmentation ε : O(1) → 1C, then we may also form the
absolute indecomposables QO as described in Section 4.5. As QO = QO(1)QOO(1), the
derived functors are related by the homotopy orbit construction of Section 10.2.3, as

(11.3) LQO(R) ≃ (LQOO(1)(R)) � O(1).

The homology groups H∗,0(O(1);k) ∈ ModG
k form an (augmented) algebra in this

category, and if R is a O(1)-algebra then in particular each H∗,d(R;k) has the struc-
ture of a H∗,0(O(1);k)-module. As the composition (O(1)⊗R)+ → R+ → QO(1)(R)

canonically factors through the augmentation, if cR ∼→ R is a cofibrant approximation
then the map on homology induced by

R+
∼←− cR+ −→ QO(1)(cR) ≃ R � O(1)

descends to a map

k[1]⊗H∗,0(O(1);k) H∗,d(R;k) −→ H∗,d(R � O(1);k) = H
O(1)
∗,d (R;k),

where k[1] is the functor (1G)∗(k) given by g 7→ k[G(1G,−)].
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Lemma 11.13. — Suppose that O(1) is homologically 0-connective. If f : R → S is a
morphism of O(1)-algebras which satisfies H∗,d′(S,R;k) = 0 whenever d′ < d, for
some d ∈ Z, then

k[1]⊗H∗,0(O(1);k) H∗,i(S,R;k) −→ H
O(1)
∗,i (S,R;k)

is an isomorphism for i ≤ d. If in addition ε : H∗,0(O(1);k) → k[1] is an isomor-
phism, then it is also a surjection for i = d+ 1.

Proof. — Without loss of generality we may suppose that S and R are cofibrant
O(1)-algebras and f is a cofibration, so in particular S and R are cofibrant in C. We
shall apply the obvious relative analogue of the homotopy orbit spectral sequence of
Section 10.2.3, which takes the form

E1
g,p,q = Hg,q(O(1)⊗p ⊗ S,O(1)⊗p ⊗R;k) =⇒ H

O(1)
g,p+q(S,R;k).

We have E1
g,0,d = Hg,d(S,R;k), and we wish to identify E1

g,1,d. The spectral sequence
of Lemma 10.4 shows that the natural map

colim
(a,b,f)∈Hg

Hd(C∗(O(1))(a)⊗ C∗(S,R)(b)) −→ Hg,d(O(1)⊗ S,O(1)⊗R;k)

is an isomorphism. As O(1) is homologically 0-connective the Künneth spectral se-
quence of Lemma 10.5 shows that the natural map

H0(O(1)(a);k)⊗k Hb,d(S,R;k) −→ Hd(C∗(O(1))(a)⊗ C∗(S,R)(b))

is an isomorphism. Combining these two isomorphisms shows that the natural map

H∗,0(O(1);k)⊗H∗,d(S,R;k) −→ H∗,d(O(1)⊗ S,O(1)⊗R;k)

is an isomorphism, which identifies E1
∗,1,d

∼= H∗,0(O(1);k)⊗H∗,d(S,R;k).
Under this isomorphism the differential d1 : E1

∗,1,d → E1
∗,0,d is identified with the

difference of the O(1)-action map on H∗,d(S,R;k) and the augmentation. Thus

E2
∗,0,d

∼= k[1]⊗H∗,0(O(1);k) H∗,d(S,R;k).

This is the only term in total degree d, and there are none in total degree less than d,
which gives the claimed isomorphisms in degrees i ≤ d.

To obtain a surjection in degree i = d+ 1, we need to analyze the E1-page in one
degree further. Firstly, the argument used above to identify E1

∗,1,d generalizes to show
that the natural map

H∗,0(O(1);k)⊗p ⊗H∗,d(S,R;k) −→ H∗,d(O(1)⊗p ⊗ S,O(1)⊗p ⊗R;k) = E1
∗,p,d

is an isomorphism, and to identify the d1-differential with that of the bar complex.
Thus we obtain

E2
∗,p,d

∼= TorH∗,0(O(1);k)
p (k[1], H∗,d(S,R;k)).

Using the assumption that ε : H∗,0(O(1);k)→ k[1] is an isomorphism, it follows that
this vanishes for p ≥ 1.
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We still have E1
∗,0,d+1 = H∗,d+1(S,R;k), but the entry

E1
∗,1,d+1 = H∗,d+1(O(1)⊗ S,O(1)⊗R;k)

is more complicated. The edge homomorphism in the spectral sequence of Lemma 10.4
gives a natural map

colim
(a,b,f)∈Hg

Hd+1(C∗(O(1))(a)⊗ C∗(S,R)(b)) −→ Hg,d+1(O(1)⊗ S,O(1)⊗R;k).

Similarly, the Künneth spectral sequence of Lemma 10.5 gives a natural map⊕
j=0,1

Hj(O(1)(a);k)⊗k Hb,d+j(S,R;k) −→ Hd+1(C∗(O(1))(a)⊗ C∗(S,R)(b)).

As before, the composition⊕
j=0,1

Hj(O(1)(a);k)⊗k Hb,d+j(S,R;k) −→ E1
∗,1,d+1

d1−→ E1
∗,0,d+1

coincides with the difference of the O(1)-action map and the augmentation, and so
E2
∗,0,d+1 is a quotient of k[1]⊗H∗,0(O(1);k)H∗,d+1(S,R;k). With the vanishing of E2

∗,p,d
for p > 0 established above, in degree d+1 we have H∗,d+1(S,R;k) ∼= E2

∗,0,d+1, which
gives the claimed surjectivity.

If R is a cofibrant O-algebra, then we can form an absolute Hurewicz map by
composing k[1]⊗H∗,0(O(1);k) − applied to the relative Hurewicz map with

k[1]⊗H∗,0(O(1);k) H∗,d(Q
O
O(1)R;k) −→ H∗,d(Q

O
O(1)R � O(1);k) ∼= HO

∗,d(R;k).

This definition extends easily to relative homology, and to non-cofibrant O-algebras
by taking cofibrant replacements.

Corollary 11.14. — Let O be an augmented non-unitary homologically 0-connective
Σ-cofibrant operad. Let R,S ∈ AlgO(C) be homologically 0-connective. Let f : R→ S

be a morphism such that either
(i) G is an Artinian groupoid, R and S are reduced, and Hg′,d′(S,R) = 0 whenever

(ω(g′), d′) ≨ (ω(g), d), for some d ∈ Z and g ∈ G, or
(ii) O is the operad associated to an associative ring, and H∗,d′(S,R) = 0 whenever

d′ < d, for some d ∈ Z.
Then the induced map

(k[1]⊗H∗,0(O(1);k) H∗,i(S,R))(g) −→ HO
g,i(S,R)

is an isomorphism for i = d. If in addition ε : H∗,0(O(1);k) → k[1] is an isomor-
phism, then it is also a surjection for i = d+ 1.

Proof. — Without loss of generality we may suppose that S and R are cofibrant
O-algebras. In case (i), we apply the right-exact functor k[1] ⊗H∗,0(O(1);k) − to the
conclusion of Corollary 11.12, then use Lemma 11.13 on the map LQOO(1)(f) and (11.3)
to identify the target with HO

∗,∗(S,R). In case (ii), we note that QOO(1) is the identity,
so this is just Lemma 11.13.
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11.4. Whitehead theorems

Having established Hurewicz theorems comparing ordinary homology to O-homol-
ogy, we next wish to describe conditions under which the homology of the derived
relative or absolute indecomposables detects homology equivalences between O-alge-
bras. With the methods developed in the last two sections this question could be
studied quite generally, but we restrict ourselves to those situations which will be
important for our applications.

11.4.1. Whitehead theorem for relative indecomposables. — The following is immedi-
ate from Corollary 11.12.

Proposition 11.15. — Let O be a non-unitary homologically 0-connective Σ-cofibrant
operad. Let G be an Artinian groupoid, and R,S ∈ AlgO(C) be reduced and homolog-
ically 0-connective. If f : R → S is a morphism such that LQOO(1)(f) is a homology
equivalence, then f is also a homology equivalence.

11.4.2. Whitehead theorem for absolute indecomposables. — For absolute indecom-
posables, the discussion of Section 11.2 means that we need to understand when the
functor k[1]⊗H∗,0(O(1);k)− : H∗,0(O(1);k)-Mod→ ModG

k detects trivial objects. This
seems like a difficult question to answer in general, and we content ourselves with the
following condition, which covers all the examples we have in mind.

Lemma 11.16. — Suppose that G is Artinian and either

(i) ε : H∗,0(O(1);k)→ k[1] is an isomorphism, or
(ii) the ideal Ker(ε : H1G,0(O(1);k) → k) is nilpotent and all ⊕-invertible objects

are isomorphic to 1G.

If M is a H∗,0(O(1);k)-module such that (k[1]⊗H∗,0(O(1);k) M)(g) = 0 for all g ∈ G
satisfying ω(g) ≤ r, then M(g) = 0 for all such g too.

Proof. — Define a H∗,0(O(1);k)-module I by the exact sequence

0 −→ I −→ H∗,0(O(1);k) −→ k[1] −→ 0.

It follows from the assumption that

(I ⊗H∗,0(O(1);k) M)(g) −→M(g)

is surjective for all g ∈ G such that ω(g) ≤ r.
Under hypothesis (i) we have I = 0 so it follows that M(g) = 0, as required. Under

hypothesis (ii), suppose for a contradiction that M(g) ̸= 0 for some g with ω(g) ≤ r,
and that ω(g) is minimal with this property. If a ⊕ b ∼= g with a not a unit then
ω(b) < ω(g) so M(b) = 0. On the other hand, if a is a unit then by hypothesis it is
isomorphic to 1G. Thus we have

(I ⊗H∗,0(O(1);k) M)(g) ∼= I(1G)⊗H1G,0(O(1);k) M(g)
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so I(1G) ⊗H1G,0(O(1);k) M(g) → M(g) is surjective. As I(1G) is a nilpotent ideal
in H1G,0(O(1);k) it follows that M(g) = 0, a contradiction.

Proposition 11.17. — Let O be an augmented non-unitary homologically 0-connec-
tive Σ-cofibrant operad, such that G and O satisfy the hypotheses of Lemma 11.16.
Let f : R → S be a morphism between homologically 0-connective O-algebras such
that HO

∗,d′(S,R) = 0 for all d′ ≤ d. If either

(i) R and S are reduced, or
(ii) O is the operad associated to an associative ring,

then H∗,d′(S,R) = 0 for all d′ ≤ d too.

Proof. — Suppose for a contradiction that Hg′,d′(S,R;k) ̸= 0 for some g′ and d′ ≤ d;
we may further suppose that (ω(g′), d′) is minimal with respect to the partial order ≨,
so that Hg′′,d′′(S,R;k) = 0 for all (ω(g′′), d′′) ≨ (ω(g′), d′). By Corollary 11.14 we
then have that

(k[1]⊗H∗,0(O(1);k) H∗,d′(S,R;k))(g′) −→ HO
g′,d′(S,R;k) = 0

is an isomorphism. The same holds for all g′′ with ω(g′′) ≤ ω(g′), so by Lemma 11.16
we have that Hg′,d′(S,R;k) = 0, a contradiction.

In particular, taking d = ∞ it follows that O-homology detects homology equiva-
lences, as follows.

Corollary 11.18. — Under the same hypotheses, if LQO(f) is a homology equivalence
then f is also a homology equivalence.

11.5. CW approximation in the semistable case

In this section we use the Hurewicz results of Section 11.2 to prove the existence of
(minimal) CW approximations. Until now we have had no need to consider homotopy
groups of objects of S, but it will now be essential to do so. For this we shall suppose
that S = S∗ is pointed. Then, using the copowering − ∧− : sSet∗×S→ S we obtain for
any pointed simplicial set X an object s+(X) := X∧1, giving a pointed version of the
usual map s : sSet → S satisfying s+(X) ∼= s(X)/s(∗). Write id : Sd−1 → Dd for the
inclusion. To define relative homotopy groups we work in the category S[1] of arrows
in S, which by abuse of notation we consider as pairs, and for a morphism f : X → Y
in S and a d ∈ N we set

πd(Y,X) = πd(f) := Ho(S[1])(s+(id), f).

We define absolute homotopy groups as πd(X) := πd(X, ∗), which may be identified
with Ho(S)(s+(Sd), X). As usual the homotopy cogroup structure on Sd ∈ sSet∗
makes πd(X) into a group for d ≥ 1, which is abelian for d ≥ 2, and similarly
for relative homotopy groups. There is a long exact sequence for relative homotopy,
developed in the usual way.
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The functor Σ(−) = s+(S1) ⊗ − = S1 ∧ − : S → S has a right adjoint
Ω(−) = HomS(s+(S1),−) : S→ S and these form a Quillen adjunction: follow-
ing Heller [54] we call S semistable if the derived unit of this adjunction is a natural
isomorphism between the identity functor and the composition

Ho(S)
LΣ−→ Ho(S)

RΩ−→ Ho(S).

In particular we have weak equivalences Y ≃ (RΩn)(LΣn(Y )) for every n ∈ N and so
weak equivalences of derived mapping spaces

MapS(X,Y ) ≃ ΩnMapS(X,LΣn(Y )).

This can probably be used to enrich S in infinite loop spaces or even spectra, but
we shall settle for observing that it yields an enrichment of Ho(S) in abelian groups.
Furthermore semistability implies that LΣ: Ho(S)→ Ho(S) is full and faithful, so in
particular that the maps

LΣ(−) : πd(X) −→ πd+1(LΣ(X))

are bijections; the same follows for relative homotopy groups.
The first point endows each πd(f) with the structure of an abelian group (which

agrees with the old structure when it is defined, by the Eckmann-Hilton argument),
and the second allows us to extend the definition of relative homotopy groups above
to

π−d(f) := π0(LΣd(f)) for d ∈ N.
We then say that a morphism f : X → Y in S is c-connective if πd(f) = 0 for all
d < c, and an object X is c-connective if πd(X) = 0 for all d < c. As with homology
groups, for a map f : X → Y in C = SG we can then define

πg,d(Y,X) := πd(Y (g), X(g))

for any d ∈ Z, and so define c-connectivity for any abstract connectivity c on G.
As we wish to use homology rather than homotopy to detect cells, it is vital

that we work in a context where homology may be used to detect homotopical
connectivity of maps. By the second axiom of a singular chain functor on S, the
homology groups Hi(D

d ∧ 1, Sd−1 ∧ 1;k) are naturally isomorphic to the ordinary
homology groups Hi(D

d, Sd−1;k), and in particular there is a canonical generator
ud ∈ Hd(D

d ∧ 1, Sd−1 ∧ 1;k). Given a morphism X → Y in S, functoriality defines a
relative Hurewicz map

(11.4) h : πd(Y,X) −→ Hd(Y,X;k)

for each d ∈ N. As homology has a suspension isomorphism (this follows from
Lemma 10.6 (ii)) this definition extends to all d ∈ Z.

Axiom 11.19. — The category S is pointed and semistable, and the weak equivalences
are precisely those maps which induce a bijection on πd(−) for all d ∈ Z. Furthermore
for any d ∈ Z and any map f : X → Y in S such that πi(Y,X) = 0 for all i < d, the
relative Hurewicz map (11.4) is a bijection.

ASTÉRISQUE 460



11.5. CW APPROXIMATION IN THE SEMISTABLE CASE 137

This property holds in sModk (with k coefficients), in SpΣ (with Z coefficients),
and in the category of R-modules in SpΣ for a fixed commutative ring spectrum R

(with π0(R) coefficients). In the latter two cases we shall write k for Z and π0(R)

respectively.

11.5.1. CW approximation. — We use much of the terminology from Section 6.3, but
recall some definitions for the convenience of the reader. Definition 6.12 defined a
relative CW-structure on a map f : R→ S to be an object sk(f) in AlgO(CZ≤) which
is the colimit in AlgO(CZ≤) of a diagram

0∗(R) = sk−1(f) −→ sk0(f) −→ sk1(f) −→ · · · ,
where fd : skd−1(f) → skd(f) comes with the structure of a filtered CW attachment
of dimension d, and a factorisation

f : R −→ colim sk(f)
∼=−→ S.

Here the second map is, crucially, an isomorphism. A relative CW approximation is
the homotopical analogue of this definition.

Definition 11.20. — A relative CW approximation of a map f : R→ S of O-algebras
is an object sk(f) in AlgO(CZ≤) as above and a factorization

f : R −→ colim sk(f)
∼−→ S

as a relative CW algebra followed by a weak equivalence.

In the main theorem of this section, we give conditions under which a map admits
a relative CW approximation, and furthermore show that then the dimensions of the
cells involved can be constrained by the derived absolute O-indecomposables.

Theorem 11.21. — Let S be a pointed category satisfying the axioms of Section 7.1, and
Axiom 11.19. Let O be an augmented non-unitary homologically 0-connective Σ-cofi-
brant operad in C = SG, such that G and O satisfy the hypotheses of Lemma 11.16.
Let f : R → S be a morphism between homologically 0-connective O-algebras, such
that either

(i) R and S are reduced, or
(ii) O is the operad associated to an associative ring.

Let c : G → [−∞,∞]≥ be an abstract connectivity such that HO
g,d(S,R;k) = 0 for

d < c(g). Then there exists a relative CW approximation f : R → colim sk(f)
∼−→ S

where sk(f) has no (g, d)-cells with d < c(g).

The construction in the proof below will in fact give a minimal cell structure,
i.e., one having the smallest possible number of cells in a given bidegree. To make
this precise, suppose that k is a field and recall that we have defined the O-Betti
numbers bOg,d(S,R) := dimkH

O
g,d(S,R;k) ∈ N ∪ {∞}. Then the relative CW O-al-

gebra R → colim sk(f)
∼→ S produced by this theorem will have precisely bOg,d(S,R)

(g, d)-cells.
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Proof. — In case (i), by Corollary 11.14 we may assume that c(g) > 0 for g ∈ G×,
as S and R are reduced. We shall prove by induction over ε, the dimension, starting
at ε = −1, the following statement:

Statement. — There exists a factorization of 0∗(f) : 0∗(R)→ 0∗(S):

0∗(R) = sk−1(f)
h0−→ sk0(f)

h1−→ · · · hε−→ skε(f)
fε−→ 0∗(S)

with the following properties for all 0 ≤ e ≤ ε:
(a) HO

∗,d(S, colim ske(f)) = 0 for all d satisfying d ≤ e,
(b) he : ske−1(f)→ ske(f) comes with the structure of a filtered CW attachment of

dimension e, and only has cells attached to those g with c(g) ≤ e.

Supposing we have done so, then

HO
g,d(S, colim sk(f);k) = colim

ε
HO
g,d(S, colim skε(f);k)

vanishes for all g and d by (a), so the induced map f∞ : colim sk(f) → S induces
an isomorphism on O-homology. In case (i) it follows from (b) that colim sk(f) is
obtained from R by attaching cells with no 0-cells attached to g ∈ G×: as R is
reduced so is colim sk(f). Thus in case (i) or (ii), Corollary 11.18 applies, and shows
that the map f∞ is a homology isomorphism, so also a π∗-isomorphism and hence a
weak equivalence by Axiom 11.19.

It remains then to prove the above statements by induction; the case ε = −1 is
immediate. For the induction step let us write Ze = colim ske(f) to ease notation.
Assuming the statement holds for (ε−1), we haveHO

∗,d(S,Zε−1) = 0 for all d satisfying
d ≤ ε− 1, and hence by Proposition 11.17 we have H∗,d(S,Zε−1) = 0 for all such d.

Claim. — The Hurewicz map

π∗,ε(S,Zε−1) −→ HO
∗,ε(S,Zε−1;k)

is surjective.

Proof of claim. — It follows from Corollary 11.12 that the Hurewicz map

(11.5) H∗,d(S,Zε−1;k) −→ H∗,d(LQOO(1)S,LQ
O
O(1)Zε−1;k)

is surjective for d ≤ ε, and an isomorphism for d ≤ ε−1. Thus the target also vanishes
for d ≤ ε− 1, and so by Lemma 11.13 applied to this pair, the map

k[1]⊗H∗,0(O(1);k) H∗,ε(LQOO(1)S,LQ
O
O(1)Zε−1;k) −→ HO

∗,ε(S,Zε−1;k)

is an isomorphism. Applying k[1]⊗H∗,0(O(1);k) − to the map (11.5), it follows that

k[1]⊗H∗,0(O(1);k) H∗,ε(S,Zε−1;k) −→ HO
∗,ε(S,Zε−1;k)

is a surjection. Combining this with the surjections

π∗,ε(S,Zε−1) −→ H∗,ε(S,Zε−1;k)

−→ k[1]⊗H∗,0(O(1);k) H∗,ε(S,Zε−1;k),
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where the first map is surjective (in fact, an isomorphism) by Axiom 11.19, proves
the claim.

Thus for each g ∈ G, we may choose a set of maps

{Eα : (Dε, ∂Dε)→ (S(g),Zε−1(g))}α∈Ig,ε
,

whose images under the above Hurewicz map generateHO
g,ε(S,Zε−1;k) as a k-module.

In the exact sequence

· · · −→ HO
g,ε(S,R;k) −→ HO

g,ε(S,Zε−1;k) −→ HO
g,ε−1(Zε−1,R;k) −→ · · ·

of the triple R ⊂ Zε−1 ⊂ S, the left-hand term vanishes for ε < c(g) by assumption,
and the pair (Zε−1,R) only has relative (g, ε−1)-cells if c(g) ≤ ε−1 by part (b) of the
inductive assumption, so also vanishes for ε < c(g). Thus the middle term vanishes
for ε < c(g), so we can take Ig,ε = ∅ for ε < c(g).

In order to use the maps eα := Eα|∂Dε
to attach (g, ε)-CW-cells to the filtered

object skε−1(f), we must lift them along

skε−1(f)(g, ε− 1) −→ colim skε−1(f)(g) = Zε−1

up to homotopy.

Claim. — This map is (ε− 1)-connected.

Proof of claim. — By Axiom 11.19 it is enough to check that it is homologically
(ε − 1)-connected, and we may do this by analyzing the associated graded of the
filtered object skε−1(f). By Theorem 6.14 there is an isomorphism

gr(skε−1(f)) ∼= 0∗(R+) ∨O FO
 ∨
d≤ε−1

∨
α∈Id

d∗(S
gα,d
α )

 ,

and we need to show that in each grading n ≥ ε it is homologically ε-connective, i.e.,
homologically (ε− 1)-connected.

To do so, using that R ∈ AlgO(C) is cofibrant, so 0∗(R+) is too, we can consider
the above coproduct of O-algebras as a derived coproduct, and use the analogue of
the simplicial formula in Section 8.3.6 to describe it. This gives

gr(skε−1(f)) ≃

∥∥∥∥∥∥[p] 7→ FO

Op(0∗(R+)) ∨
∨

d≤ε−1

∨
α∈Id

d∗(S
gα,d
α )

∥∥∥∥∥∥ .
Let us consider the abstract connectivity in the Z=-grading direction given by
ℓ(n) = n, which satisfies ℓ ∗ ℓ ≥ ℓ. That is, an object X ∈ CZ= is homologically ℓ-con-
nective if Hg,d,n(X) = 0 whenever d < ℓ(n) = n. First observe that if X ∈ CZ= is a
homologically ℓ-connective object then O(X) =

∨
k≥1O(k)+ ∧Gk

X⊗k is too, using
that X⊗k is homologically ℓ∗k-connective and hence homologically ℓ-connective, and
then applying the homotopy orbit spectral sequence. (Here we have used the fact
that O is non-unitary, homologically 0-connective, and Σ-cofibrant.)
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The object 0∗(R+) is supported in grading 0, and R is homologically 0-connective
by assumption, so 0∗(R+) is homologically ℓ-connective and hence by the observation
above Op(0∗(R+)) is homologically ℓ-connective too. The object d∗(Sgα,d

α ) is sup-
ported in grading d and Sgα,d

α is d-connective, so d∗(Sgα,d
α ) is homologically ℓ-connec-

tive. ThusOp(0∗(R+))∨
∨
d≤ε−1

∨
α∈Id

d∗(S
gα,d
α ) is homologically ℓ-connective, and by

the observation above the free O-algebra on it is too. Thus the semi-simplicial object
is levelwise homologically ℓ-connective, so it follows from the geometric realization
spectral sequence (Theorem 10.12) that gr(skε−1(f)) is homologically ℓ-connective
too, which is precisely what we required.

Thus we may lift the maps eα (up to homotopy) to skε−1(f)(g, ε− 1), use them to
attach filtered (g, ε)-cells to form skε(f), and use the corresponding Eα to extend the
map fε−1 to a map fε : skε(f)→ const(S). This satisfies property (b) by construction.
The long exact sequence of the triple Zε−1 → Zε → S takes the form

0 HO
g,ε+1(S,Zε−1;k) HO

g,ε+1(S,Zε;k)

⊕
α∈Ig,ε

k{Eα} HO
g,ε(S,Zε−1;k) HO

g,ε(S,Zε;k)

0 HO
g,ε−1(S,Zε−1;k) = 0 HO

g,ε−1(S,Zε;k) 0,

as the pair (Zε,Zε−1) only has relative O-algebra cells of dimension ε. It follows
that HO

g,d(S,Zε;k) = 0 for all d ≤ ε, which verifies property (a).
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PART III

Ek-ALGEBRAS

In this third part we will apply the results of Parts I
and II to Ek-algebras. Next we develop a number of tools
particular to this setting, most importantly a result relating
QEk

L to k-fold bar constructions.
In this part we will assume that the axioms of Sec-

tions 2.1 and 7.1 hold unless mentioned otherwise:
— Axiom 2.1: S is simplicially enriched.
— Axiom 2.2: S is complete and cocomplete in an en-

riched sense.
— Axiom 2.5: S has a simplicially enriched closed

k-monoidal structure, closed on both sides if k = 1.
— Axiom 7.1: S has a cofibrantly generated model struc-

ture.
— Axiom 7.2: this model structure is monoidal, simpli-

cial, and 1 is cofibrant.
The monads associated to the little k-cubes operads will

also satisfy the axioms of Section 8.1:
— Axiom 8.1: the projective model structure on AlgT (C)

exists and UT preserves (trivial) cofibrations between
cofibrant objects.

— Axiom 8.3: T preserves geometric realization.





CHAPTER 12

Ek-ALGEBRAS AND E1-MODULES

In Section 12.1 we specialize the theory of Parts I and II to the monad associated
to the little k-cubes operad. There are two instances of this operad: unitary and non-
unitary. For most of our work we shall consider algebras for the non-unitary little
k-cubes operad, but we shall occasionally have cause to consider algebras over the
unitary operad obtained by formally adjoining a unit. In Section 12.2 we discuss
some technical points of the theory of E1-modules over Ek-algebras.

12.1. Ek- and E+
k -operads

In this section we define the operads which are the main subject of this paper.

12.1.1. TheEk- andE+
k -operads in the symmetric monoidal case. — We start by defin-

ing the little k-cubes operad C+k , our choice of a unitary Ek-operad. We will write
down an operad in Top, but implicitly take the singular simplicial set to obtain an
operad in sSet denoted the same way. The following definition uses the notion of an
rectilinear embedding. An embedding Ik ↪→ Ik is rectilinear if it is of the form

(t1, . . . , tk) 7−→ ((b1 − a1)t1 + a1, . . . , (bk − ak)tk + ak)

for ai < bi (note that necessarily we must have 0 ≤ ai < bi ≤ 1 in this case, but
later we shall encounter cubes of other sizes). The set of rectilinear embeddings is
topologized as a subspace of R2k.

Definition 12.1. — The underlying symmetric sequence of the unitary little k-cubes
operad C+k is given by

C+k (n) := Embrect(
⊔
n

Ik, Ik)

where Embrect(
⊔
n I

k, Ik) denotes the space of n-tuples of rectilinear embed-
dings e1, e2, . . . , en : Ik → Ik with disjoint interiors (see Figure 4 for an example).
This is a monoid for the composition product using the map induced by composition
of rectilinear embeddings (see Figure 5 for an example)

Ck(n)× Ck(k1)× · · · × Ck(kn) −→ Ck(k1 + · · ·+ kn),
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and unit ∗ → Ck(1) given by the identity map Ik ↪→ Ik.

e1

e2

e3

∈ C2(3)

Figure 4. An element of C2(3)

As the notation suggests, this operad is isomorphic to the unitalization of a non-
unitary operad Ck, as described in Section 4.4. The operad Ck will be our choice of
an Ek-operad.

e1
e2

C2(2)× C2(1)× C2(3)

∈

∈ C2(4)

Figure 5. An example of composition in C2. We have left out the labels
on the inner cubes for readability.
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Definition 12.2. — The underlying symmetric sequence of the non-unitary little
k-cubes operad Ck is given by

Ck(n) :=

{
∅ if n = 0,
Embrect(

⊔
n I

k, Ik) otherwise,

with operad structure restricted from that of C+k .

Remark 12.3. — We have specified that C+k and Ck are our choices of unitary and non-
unitary Ek-operads; these operads are Σ-cofibrant. Another operad Ek is said to be
an Ek-operad if it is Σ-cofibrant and there is a zig-zag of weak equivalences of operads
between Ek and Ck (this zig-zag may always be taken to consist of Σ-cofibrant operads,
using the existence of a model structure on operads in sSet [14, Theorem 3.2]). The
notion of an E+

k operad is defined analogously.
Some other choices Ek of Ek- and E+

k -operads are just minor variations of the
definitions, e.g., the operad of little k-disks, while some seem quite different, e.g., the
McClure-Smith E2-operad [85]. As long as Ek is Σ-cofibrant, an algebra over Ek is
naturally weakly equivalent to an algebra over the operad Ck described above. In fact,
the categories of Ck- and Ek-algebras with the projective model structures are Quillen
equivalent [16, Theorem 4.1].

The operads C+k and Ck may be used to define monads E+
k and Ek on any symmetric

monoidal category C satisfying the axioms of Section 2.1:

E+
k : X 7−→

⊔
n≥0

C+k (n)×Sn
X⊗n,

Ek : X 7−→
⊔
n≥1

Ck(n)×Sn
X⊗n.

In order to align with the notational convention we have employed that structured
objects such as algebras over a monad are displayed in bold font, and in order to
distinguish free algebras from the values of the monad, we adopt the notation

E+
k (X) := FE

+
k (X) and Ek(X) := FEk(X).

Both of these monads are sifted by Corollary 4.12. The latter, Ek, has a canonical
augmentation ε : Ek → + as in Section 4.6. Hence we may define the (absolute)
derived indecomposables of R ∈ AlgEk

(C) by the derived functor

QEk

L (R) := Lε∗(R) ∈ C∗,

as described in Section 8.2.3. We may also define the derived relative indecomposables
LQEk

Ek(1)(R), but as Ek(1) ≃ ∗ the natural map LQEk

Ek(1)(R) → QEk

L (R) is a weak
equivalence. For the same reason we abbreviate DecEk

L (R) := LDecEk

Ek(1)(R).
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12.1.2. The E∞-operad in the symmetric monoidal case. — The E∞-operad is ob-
tained by letting k go to ∞ in the definition of Ck. Sending a rectilinear embed-
ding e :

⊔
i I
k ↪→ Ik to e× idI :

⊔
i I
k+1 ↪→ Ik+1 defines a map Ck → Ck+1 of operads

in sSets.

Definition 12.4. — We define the unitary E∞-operad and non-unitary E∞-operad
as C+∞ := colim

k→∞
C+k and C∞ := colim

k→∞
Ck respectively.

As above, we get sifted monads E+
∞ and E∞ on any category C satisfying the ax-

ioms of Section 2.1, and indecomposables QE∞ with its derived functor. Remark 12.3
simplifies because we can compare C∞ and E∞ using the E∞-operad C∞ × E∞.

12.1.3. Modification for k-monoidal categories with k = 1, 2. —

Definition 12.5. — The underlying 1-symmetric sequence of the non-unitary non-
symmetric little 1-cubes operad CFB1

1 is given by

CFB1
1 (n) :=

{
∅ if n = 0,
Embrect,FB1(

⊔
n I, I) otherwise,

where Embrect,FB1(
⊔
n I, I) ⊂ Embrect(

⊔
n I, I) is the path component consisting of

those (e1, . . . , en) such that e1(0) < e2(0) < · · · < en(0). This is a monoid for the
composition product with composition induced by composition of rectilinear embed-
dings.

For any monoidal category C satisfying our axioms (in particular, being enriched
and copowered over simplicial sets) we then get a monad EFB1

1 whose underlying
functor is given by

X 7−→
⊔
n≥1

CFB1
1 (n)×X⊗n.

If the monoidal structure on C comes from a symmetric monoidal structure, this
monad agrees with the previously defined monad E1, up to natural isomorphism of
monads. Hence we shall often drop the superscript FB1 from the notation.

For each n ≥ 1 there is an injective map of spaces

(12.1) CFB1
1 (n) −→ C2(n)

given by taking cartesian product with the identity map of I. As n ∈ FB1 varies, these
maps form a morphism of non-symmetric operads. Since the domain is contractible
for n ≥ 1, this provides a “basepoint subspace” for C2(n).

Definition 12.6. — The underlying 2-symmetric sequence of the non-unitary braided
little 2-cubes operad CFB2

2 is given by

CFB2
2 (n) :=

{
∅ if n = 0,
Embrect,FB2(

⊔
n I

2, I2) otherwise,
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where Embrect,FB2(
⊔
n I

2, I2) consists of pairs (e, η) of an element e ∈ Embrect(
⊔
n I

2, I2)
and a homotopy class η of path from e to an element in the image of (12.1). This is
a monoid for the composition product with composition induced by composition of
rectilinear embeddings and concatenation of homotopy classes of path.

For any braided monoidal category C satisfying our axioms we then get a
monad EFB2

2 whose underlying functor is given by

X 7−→
⊔
n≥1

CFB2
2 (n)×βn X

⊗n.

For each n, the action of βn on CFB2
2 (n) is free, and the quotient space is homeomor-

phic to C2(n)/Sn. The quotient maps CFB2
2 (n) → C2(n) are universal covering maps,

and as n ∈ FB2 varies they define a morphism of braided operads. If the braiding
on C is a symmetry, so that the previously discussed monad E2 is defined, it follows
that the monads E2 and EFB2

2 agree up to natural isomorphism. Hence we shall often
drop the superscripts FB2 from the notation.

Discussion of unitalizations, monads, indecomposables and comparison of different
Ek-algebras in Section 12.1.1 may easily be adapted to both of these cases, and we
shall not bother the reader with this.

12.2. Modules over E1-algebras

There are several homotopically equivalent descriptions of modules over an E1-al-
gebra, see Remark 12.10, but for our applications the following is most convenient. For
each E1-algebra R we shall construct a unital associative algebra (i.e., a monoid) R,
reminiscent of the Moore loops construction. We will then consider a (left or right)
R-module to be a module over the unital associative algebra R, and appeal to Sec-
tion 9.4 for the homotopy theory of such. We will also show that the unital associative
algebra R is equivalent to R+ as an E+

1 -algebra (at least when R is cofibrant in C).
If C is pointed we will construct an augmentation ε : R → 1, so as in Section 9.4

there are indecomposables functors

QR : R-Mod −→ C∗ and QR : Mod-R −→ C∗

(we omit leftness or rightness of the module from the notation), and hence derived
functors QR

L .
Finally, if the E1-algebra R is obtained by neglect of structure from an E2-algebra

then we will show that there is an adapter : an object A(R) having two homotopic
left R-module structures and a right R-module structure, all three of which commute
strictly, and such that A(R) ≃ R as an R-R-bimodule. (See below for the precise
definition of what that means.) If M is a left R-module then the tensor product

A(R)⊗R M

is weakly equivalent to M as a left R-module, but has an additional special left
R-module structure which strictly commutes with the first.
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Eventually, the special module structure can be used to cone off multiplication by
a map f : ∂Dg,d+1 → R in the R-module structure on M and have the result M/f

again be a left R-module. This construction will play a central role in our applications.

12.2.1. The unital associative replacement of an E1-algebra. — For an E1-algebra R,
we explain how to obtain a unital associative algebra R. This construction was made
in [80, Section 2] and [10, Section 3] for specific categories of spectra, and there
is no essential difficulty in adapting it to our setting (though we also change the
construction slightly).

Firstly, we define the object in C underlying the unital associative algebra R as
the coproduct

(12.2) R := ({0} × 1) ⊔ ((0,∞)×R),

where {0} and (0,∞) denote (singular simplicial sets of) these subset of R in the
Euclidean topology. To define an associative multiplication, it suffices to give {0} × 1
the structure of a unital associative algebra, (0,∞)×R the structure of a {0} × 1-bi-
module, and (0,∞)×R the structure of a non-unital associative algebra.

We have
({0} × 1)⊗ ({0} × 1) ∼= ({0} × {0})× (1⊗ 1)

and addition on the first factor and the unit structure on the second make this into
an associative algebra. Furthermore, we have

({0} × 1)⊗ ((0,∞)×R) ∼= ({0} × (0,∞))× (1⊗R)

((0,∞)×R)⊗ ({0} × 1) ∼= ((0,∞)× {0})× (R⊗ 1)

and addition on the first factor and the unit structure on the second define a
{0} × 1-bimodule structure. Finally, we have

((0,∞)×R)⊗ ((0,∞)×R) ∼= ((0,∞)× (0,∞))× (R⊗R)

whereupon we use the map

Γ: (0,∞)× (0,∞) −→ (0,∞)× CFB1
1 (2)

(s, t) 7→
(
s+ t,

(
x 7→ s · x

s+ t
, x 7→ s+ t · x

s+ t

))
and the action map CFB1

1 (2)× (R⊗R)→ R to get to (0,∞)×R. The associativity of
addition makes (0,∞)×R into a non-unital associative algebra, and in total we have
produced a unital associative algebra R. Letting Ass+ denote the operad for unital
associative algebras, this defines a functor

(−) : AlgE1
(C) −→ AlgAss+(C),

which has the following properties:

Lemma 12.7. — We have that

(i) R is cofibrant in C if and only if R is cofibrant in C,
(ii) (−) preserves weak equivalences between objects which are cofibrant in C,
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(iii) (−) commutes with the functor gr : AlgE1
(CZ≤) → AlgE1

(CZ=
∗ ) and the functor

colim: AlgE1
(CZ≤)→ AlgE1

(C).

Proof. — For (i), recall that we are working under the assumption that 1 is cofibrant,
cf. Axiom 7.2, so this follows from (12.2). Property (ii) similarly follows from that
formula (note that coproducts in general only preserve weak equivalences between
cofibrant objects, hence the cofibrancy assumption). Finally, (iii) follows from the
fact that both gr and colim are simplicial functors.

We first show that when applied to an E1-algebra that is already associative, the
result is weakly equivalent (as a unital associative algebra) to the unitalization.

Lemma 12.8. — If R is a non-unital associative algebra, considered as an E1-algebra,
then the morphism

R ∼= ({0} × 1) ⊔ ((0,∞)×R) −→ 1 ⊔R = R+

induced by the projections {0} → ∗ and (0,∞) → ∗ is a natural weak equivalence of
unital associative algebras.

Proof. — That this morphism is a homotopy equivalence is clear, and so it is a weak
equivalence. That it is a morphism of unital associative algebras follows by unraveling
the definition of the multiplication on R.

We will now show that for a E1-algebra R, R is naturally weakly equivalent to the
unitalization R+ of R as a E+

1 -algebra. To do so, we use the notation Ass for the
non-unital associative operad, and Ass+ for the unital associative operad.

Proposition 12.9. — There is a zig-zag of natural transformations

(−)⇐= · · · =⇒ (−)+ : AlgE1
(C) −→ AlgE+

1
(C),

which are weak equivalences on those objects which are cofibrant in C.

Proof. — Let us first show that there is such a zig-zag of functors between the identity
on AlgE1

(C) and a functor giving a non-unital associative algebra. To do this, note
that there is map of operads C1 → Ass to the non-unital associative operad, by which
every associative unital algebra becomes an E1-algebra. There is therefore a zig-zag

(12.3) R←− B•(FE1 , E1,R) −→ B•(F
Ass, E1,R),

where the left map is an augmentation and the right one is a semi-simplicial map, and
the thick geometric realization B(FAss, E1,R) is a non-unital associative algebra.

Using Lemma 12.8 we may therefore form the zig-zag

(12.4)

R+ B(FE1 , E1,R)+ B(FAss, E1,R)+

R B(FE1 , E1,R) B(FAss, E1,R).
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Now suppose that R is cofibrant in C. The left map in (12.3) is a weak equivalence
on geometric realization by Lemma 8.16, as (after neglecting the E1 structure) the
augmented semi-simplicial object has an extra degeneracy. Using Lemma 9.1 and the
assumption that R is cofibrant in C, the two semi-simplicial objects in (12.3) are Reedy
cofibrant. Since the maps C1(n) → Ass(n) are weak equivalences of free Sn-spaces,
the map of simplicial objects is a levelwise weak equivalence, so by Lemma 8.12
its geometric realization is a weak equivalence between objects which are cofibrant
in C. Because 1 was assumed cofibrant, (−)+ = 1 ⊔ − preserves weak equivalences
between objects which are cofibrant in C, so the maps in the top row of (12.4) are
weak equivalences. Similarly, by Lemma 12.7 (ii) the maps in the bottom row of
(12.4) are weak equivalences. The vertical map in (12.4) is a weak equivalence by
Lemma 12.8.

Remark 12.10. — There are two other approaches to producing a unital associative
monoid out of a non-unital E1-algebra, weakly equivalent under suitable cofibrancy
conditions.

Firstly, as in the proof of Proposition 12.9, we may apply the bar construction to
the morphism of operads C1 → Ass+ and define a functor

R 7−→ B(FAss+ , E1,R),

which is isomorphic to B(FAss, E1,R)+. By the proof of Proposition 12.9 this is
weakly equivalent to R as long as R is cofibrant in C.

Secondly, we may use infinitesimal modules over an O-algebra R. An infinitesimal
module is an object M with maps O(n)×Gn−1 (R⊗n−1⊗M)→M satisfying suitable
associativity and unit axioms. There exists a unital associative monoid InfO(R) such
that an infinitesimal module is a left InfO(R)-module and R is weakly equivalent
to InfO(R).

12.2.2. Adapters, and bi- and tri-modules over R. — When the ambient category C is
at least braided monoidal, the tensor product R⊗R ∈ C inherits the structure of an
associative algebra, with multiplication

(R⊗R)⊗ (R⊗R)
R⊗βR,R⊗R
−−−−−−−−→ (R⊗R)⊗ (R⊗R)

µ⊗µ−−−→ R⊗R.

There are maps of associative algebras

R ∼= R⊗ 1 −→ R⊗R(12.5)

R ∼= 1⊗R −→ R⊗R,(12.6)

obtained from the unit isomorphism in C and the unit of R, giving rise to two (a
priori distinct) ways of viewing an (R⊗R)-module as an R-module.

If R is an Ek-algebra and k ≥ 2, the associative algebra R depends only on the
E1-algebra obtained from R by neglect of structure. The forgotten structure may
of course be used to perform further constructions. We shall discuss a method for
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turning a left R-module M into a left (R⊗R)-module, provided k ≥ 2, based on the
following notion.

Definition 12.11. — Let R be an E1-algebra which is cofibrant in C and let R be the
corresponding associative algebra. An adapter for R is a cofibrant (R⊗R)-R-bimod-
ule A(R), together with a zig-zag of weak equivalences

(12.7) A(R)
≃←− · · · ≃−→ R

of R-R-bimodules when A(R) is viewed as an R-R-bimodule via (12.5), satisfying
moreover that the diagram

(R⊗ 1)⊗A(R) A(R)

(1⊗R)⊗A(R)

∼=βR,1⊗A(R)

in the category of right R-modules, arising from the two left R-module struc-
tures (12.5) and (12.6), is homotopy commutative (i.e., becomes commutative in the
homotopy category of right R-modules).

Remark 12.12. — Since R is cofibrant in C so is R (by Lemma 12.7 (i)) and
hence R

⊗3
, so the cofibrancy of A(R) as a (R ⊗ R)-R-bimodule implies that

it is cofibrant in C (the forgetful functor preserves cofibrant objects just like in
Theorem 7.13). By a similar argument it is cofibrant as a right R-module.

Conversely, if one has an (R ⊗ R)-R-bimodule A′(R) satisfying all conditions
above except for cofibrancy, then any cofibrant approximation A(R) → A′(R) as an
(R⊗R)-R-bimodule will be an adapter.

The defining properties of adapters depend only on the associative algebra R and
hence only on the E1-algebra structure on R (as well as the braided monoidal struc-
ture on the ambient category C). But they most naturally arise when R is obtained
from an E2-algebra by neglect of structure. In Section 12.2.5 below, we shall con-
struct adapters R 7→ A(R), functorially in the E2-algebra R, together with a zig-zag
of natural transformations (12.7) which are weak equivalences when R is cofibrant
in C. Functoriality in R means that a map c : R → R′ of E2-algebras induces a
map A(c) : A(R) → A(R′) of (R ⊗ R)-R-bimodules. There is a left adjoint map
of (R

′ ⊗R)-R-bimodules

(12.8) (R
′ ⊗R)⊗R⊗R A(R) −→ A(R′),

and it follows from (12.7) that this map is a weak equivalence when both R and R′

are cofibrant in C.

12.2.3. Applications of adapters. — If R is an E1-algebra, M is a left R-module, and
f : ∂Dg,d+1 → R is a map, then we may form the “left multiplication by f ” map

f · − : (∂Dg,d+1)⊗M
f⊗M−−−→ R⊗M

µ−→M.
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As a preliminary definition, to be updated below, we define an object M/f by taking
the homotopy pushout diagram

(12.9)
(∂Dg,d+1)⊗M M

Dg,d+1 ⊗M M/f,

f ·−

where ∂Dg,d+1 and Dg,d+1 are as defined in Section 6.1.1. The objects ∂Dg,d+1⊗M,
M, and Dg,d+1 ⊗M are all left R-modules, but unfortunately f · − is not a module
map, so the homotopy pushout may only be formed in C.

Definition 12.13. — Let A(R) be an adapter for R. Given a map f : ∂Dg,d+1 → R,
define a map ϕ(f) : ∂Dg,d+1 ⊗A(R)→ A(R) of R-R-bimodules as the composition

(∂Dg,d+1)⊗A(R)
f⊗A(R)−−−−−→ R⊗A(R)

(12.6)−→ (R⊗R)⊗A(R)
µ−→ A(R),

and define R/f as the pushout

(12.10)
(∂Dg,d+1)⊗A(R) A(R)

Dg,d+1 ⊗A(R) R/f

ϕ(f)

in the category of R-R-bimodules.

Since A(R) is assumed cofibrant, diagram (12.10) is also homotopy pushout. After
forgetting down to a diagram in right R-modules the map ϕ(f) is homotopic to
left multiplication by f in the bimodule structure, so the underlying map of right
R-modules R ≃ A(R) → R/f is equivalent to a cell attachment along f in this
category.

Definition 12.14. — Let R and f be as in Definition 12.13, and let R/f be the
R-R-module defined there. For a left R-module M define an R-module M/f as

M/f = (R/f)⊗R M.

The defining properties of adapters, and cofibrancy of R/f as an R-module, imply
a homotopy pushout diagram

∂Dg,d+1 ⊗M M

Dg,d+1 ⊗M UR(M/f),

f ·−

in C. In case C is pointed, we have an object Sg,d ∈ C as in Section 6.1.1, and a
map c : ∂Dg,d+1 → Sg,d obtained by identifying a point in ∂Dg,d+1 with the basepoint.
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If f factors as

f : ∂Dg,d+1 c−→ Sg,d
f ′−→ R

then there is a cofiber sequence

Sg,d ∧M
f ′∧−−−−→M −→ UR(M/f),

expressing informally that UR(M/f) is the “cofiber of left multiplication by f ′”.

Remark 12.15. — Upon working in a pointed setting, we can make sense of homotopy
groups πg,d(R) = πd(R(g)) as in Section 11.5. When Ob(G) = N,

⊕
g,d πg,d(R) is a

bigraded ring and
⊕

g,d πg,d(M) is a bigraded module over it. If further S is semistable
so that Sg,d ∧ − only has the effect of shifting bigrading, then the homotopy groups
of M/f fit into a long exact sequence with the homotopy groups of M and multipli-
cation by [f ] ∈ πg,d(R) in the bigraded module structure.

Since the resulting object M/f is again an R-module, this operation may be iter-
ated: given pointed maps f ′i : Sgi,di → R in C, we may form a left R-module

M/(f1, . . . , fn) = (· · · ((M/f1)/f2)/ · · · )/fn.
Let us point out that this process of course depends on the choice of adapter,

although we have omitted that from the notation. We shall not discuss the extent to
which it is independent up to homotopy, except point out that at least the homotopy
type of the object URM/f of C is independent of this choice.

12.2.4. Base change for the M/f construction. — Let us also spell out a natural-
ity property of this construction with respect to maps h : R → R′ between cofi-
brant E1-algebras. Given f : Sg,d → R we may apply this construction to f or to
h ◦ f : Sg,d → R′. The weak equivalence (12.8) then implies a weak equivalence

(12.11) R
′ ⊗R (M/f) ≃ (R

′ ⊗R M)/(h ◦ f)

in the category of left R
′
-modules, and hence an isomorphism in the homotopy cate-

gory.

12.2.5. Construction of adapters. — As promised, we shall now explain a construction
R 7→ A(R) of adapters, functorial in E2-algebras R. There are surely many ways
to construct such an object and establish its basic properties; we take a hands-on
approach. It does not seem clear that the construction below results in a cofibrant
(R⊗R)-R-bimodule, so A(R) should be some functorial cofibrant approximation to
the object resulting from the geometric construction.

Definition 12.16. — For a triple a, b, c ∈ [0,∞), define a subset V ca,b ⊂ R2 by

V ca,b := ([−1− a, 1 + b]× [−1, 0])

∪ ([−1, 1]× [−1, 2])

∪ ([−1− c, 1]× [1, 2]),
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−1− a

−1− c

1 + b0
−1

0

1

2

V ca,b

0
−1

0

1

2

e1

e2

e3

Figure 6. An example of the region V c
a,b and an element of V (3)

as depicted in Figure 6. We obtain a symmetric sequence of topological spaces by

V (n) := {(a, b, c; e) ∈ [0,∞)3 × Embrect(
⊔
n

I2,R2) | im(e) ⊂ V ca,b},

where the symmetric group Sn acts as usual on Embrect(
⊔
n I

2,R2).
The associated functor is X 7→ V (X) =

⊔
n≥0 V (n) ×Sn

X⊗n, and it inherits a
right action of the monad E2.

Remark 12.17. — If the braiding on C is not a symmetry then the above definition
should be rephrased, since the action of βn on R⊗n does not factor through βn → Sn.
The following modification works for braided monoidal C and gives a result isomorphic
to the above in case the braiding is a symmetry. Replace the spaces V (n) by their
universal covering spaces Ṽ (n), taken with respect to the contractible “basepoint
subspace” defined by the condition on rectilinear embedding e that the composition

{1, . . . , n} ↪→ {1, . . . , n} × I2 e−→ R2 π1−→ R

is an order-preserving injection. This universal cover comes with an action of the
braid group βn and the covering map Ṽ (n) → V (n) is equivariant for the usual
homomorphism βn → Sn, and the resulting functor

Ṽ : X 7−→ V (X) =
⊔
n≥0

Ṽ (n)×βn
X⊗n

inherits a right action of the monad associated to the braided operad CFB2
2 .

If the braiding on C is a symmetry, this agrees (up to canonical isomorphism) with
the functor X 7→ V (X) from Definition 12.16.
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−1− a 1 + b0
−1

0

1

2

V 0
a,b

0
−1

0

1

2

e1e2

Figure 7. An example of the region V 0
a,b and an element of V 0(2). The

requirement for lying in V 0 is that all cubes lies below the dashed line
in V 0

a,b.

Definition 12.18. — The functor X 7→ V (X) has the structure of a right E2-func-
tor and by Corollary 4.12 it preserves sifted colimits. Thus we may define
A : AlgE2

(C)→ C on free algebras by A(E2(X)) := V (X) and extend this to
general E2-algebras by density under sifted colimits using Proposition 3.7. Explicitly,
for an E2-algebra R, A(R) is the coequalizer of the two maps

V (E2(R)) V (R) A(R)

given by the right E2-functor structure of V and the E2-algebra structure of R.
There is a sub-symmetric sequence V 0 ⊂ V (and in the braided case, Ṽ 0 ⊂ Ṽ )

consisting of tuples of the form (a, b, 0; e) where im(e) ⊂ [−1−a, 1+b]×[−1, 0]. The as-
sociated functor X 7→ V 0(X) is again a right E2-functor and preserves sifted colimits,
and one defines A0(R) as above; by construction it has a natural map to A(R).

The empty collection of little cubes determines a map ι : 1→ A0(R)→ A(R).

We now wish to explain how A(R) has an (R ⊗ R)-R-bimodule structure.
Equivalently, this is encoded by three morphisms µll : R ⊗ A(R) → A(R),
µul : R⊗A(R)→ A(R), and µr : A(R) ⊗ R → A(R) in C which “commute” in
the sense that the six orders in which multiplication can be performed result in equal
morphisms

R⊗R⊗A(R)⊗R −→ A(R)
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in C. Two of these involve the braiding in C, namely the compositions

R⊗R⊗A(R)⊗R R⊗R⊗A(R)⊗R

A(R) R⊗A(R)⊗R.

βR,R⊗A(R)⊗R

R⊗µll⊗R

µul◦(R⊗µr)

µr◦(µul⊗R)

The subscripts “ ll” and “ul” stand for “lower left” and “upper left”; some readers may
find it helpful to imagine the left and right tensor factors in (R⊗R) typeset instead
as “lower” and “upper” tensor factors, respectively.

For the right R-module structure, we start with the map

V (R)⊗R ∼=
⊔
n≥0

(Ṽ (n)×βn
R⊗n)⊗ (({0} × 1) ⊔ ((0,∞)×R)) −→ V (R)

given heuristically by the formula

((a, b, c; e), (r1, . . . , rn), (t, r)) 7−→ ((a, b+ t, c; e′), (r1, . . . , rn, r)),

where e′ :
⊔
n+1 I

2 → V ca,b+t is the rectilinear embedding given by e on the first n
copies of I2, and by

(x, y) 7−→ (1 + b+ x · t, y − 1)

on the final copy. It is easy to see that this map descends to a map A(R)⊗R→ A(R),
and defines a right R-module structure.

The “lower left” module structure µll : R⊗ A(R)→ A(R) is defined similarly. We
start with the map

R⊗ V (R) ∼=
⊔
n≥0

(({0} × 1) ⊔ ((0,∞)×R))⊗ (Ṽ (n)×βn
R⊗n) −→ V (R)

given heuristically by the formula

((t, r), (a, b, c; e), (r1, . . . , rn)) 7→ ((a+ t, b, c; e′), (r1, . . . , rn, r)),

where e′ :
⊔
n+1 I

2 → V ca+t,b is the rectilinear embedding given by e on the first n
copies of I2, and by

(x, y) 7−→ (−1− a− t+ x · t, y − 1)

on the final copy. As above, this descends to a map R⊗ A(R) → A(R), and defines
a left R-module structure. These two module structures clearly restrict to module
structures on A0(R).

The “upper left” module structure µul : R⊗ A(R) → A(R) is also similar, but let
us spell out the details. We start with the map

R⊗ V (R) ∼=
⊔
n≥0

(({0} × 1) ⊔ ((0,∞)×R))⊗ (Ṽ (n)×βn
R⊗n) −→ V (R)
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given heuristically by the formula

((t, r), (a, b, c; e), (r1, . . . , rn)) 7−→ ((a, b, c+ t; e′), (r1, . . . , rn, r)),

where e′ :
⊔
n+1 I

2 → V c+ta,b is the rectilinear embedding given by e on the first n
copies of I2, and by

(x, y) 7−→ (−1− c− t+ t · x, 1 + y)

on the final copy. As above, this descends to a map R⊗ A(R) → A(R), and defines
a left R-module structure.

It is clear that these three module structures commute with each other in the sense
described; Figure 8 may clarify these module structures and this fact.

−1− a

−1− c

1 + b0
−1

0

1

2

r1

r2

r3

−1− a

−1− c− tul

1 + b+ tr0
−1

0

1

2

r1

r2

r3

rul

rr

Figure 8. Heuristically, the result of using the “upper left” R-module
structure with (tul, rul) and the right R-module structure with (tr, rr)

Lemma 12.19. — There is a zig-zag of weak equivalences of R-R-bimodules between
A(R) and R.

Proof. — Firstly, the inclusion A0(R) → A(R) is a morphism of R-R-bimodules
where the left R-module structure on A(R) is the “lower left” one (12.5), and we claim
that it is a weak equivalence. To see this, we will show that the inclusion V 0 ⊂ V

of right E2-functors has a homotopy inverse as such. This then induces a homotopy
inverse of A0(R)→ A(R), and a homotopy equivalence is a weak equivalence.

The homotopy inverse is in fact given by a weak deformation retraction of V
into V 0, as follows. There is a path of self-embeddings of V ca,b given by first scaling
horizontally until it fits into [−1, 1] × [−1, 2], and then scaling vertically until it fits
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into [−1, 1]× [−1, 0]; more formally, it is given by the 1-parameter family:

ρca,b(t) : V ca,b −→ V ca,b

(x, y) 7−→

{(
(1 + 2t( 1

1+max(a,b,c) − 1)) · x, y
)

t ∈ [0, 1
2 ],(

1
1+max(a,b,c) · x, (2− 2t+ (2t− 1) 1

3 ) · (y + 1)− 1
)

t ∈ [12 , 1].

This expression makes clear it depends continuously on a, b, c. We use this family of
embeddings to define the homotopy

h : [0, 1]× V −→ V

(t, (a, b, c; e)) 7−→
(
a, b,max((1 + 2t( 1

1+max(a,b,c) − 1)) · c, 0), ρca,b(t) ◦ e
)
.

As each ρca,b(t) is given by a vertical and horizontal scaling and a translation, this
is a homotopy through morphisms of right E2-functors. It starts at the identity, and
h(1,−) has image in V 0. Furthermore, each h(t,−) sends V 0 into V 0, so h|[0,1]×V 0 is a
homotopy from the identity map of V 0 to h(1,−)|V 0 . As required, h(1,−) : V → V 0 is
therefore homotopy inverse to the inclusion, as right E2-functors.

It remains to compare the R-R-bimodules A0(R) and R. By definition we have

V 0(R) =
⊔
n≥0

Ṽ 0(n)×βn
R⊗n,

and a coequalizer diagram

V 0(E2(R)) V 0(R) A0(R).

There is a morphism

V 0(R) −→ [0,∞)2 × 1 ⊔ ([0,∞)2 \ {(0, 0)})×R

given heuristically by

((a, b, 0; e), r1, . . . , rn) 7→

{
((a, b),1) if n = 0,
((a, b), µ(e; r1, . . . , rn)) if n > 0,

where µ(e; r1, . . . , rn) is given by considering

e :
⊔
n

I2 → [−1− a, 1 + b]× [−1, 0]

as an embedding of n little cubes in a large cube and (identifying

[−1− a, 1 + b]× [−1, 0] ∼= [0, 1]2

linearly) applying the operadic multiplication. This descends to a morphism

A0(R) −→ [0,∞)2 × 1 ⊔ ([0,∞)2 \ {(0, 0)})×R,

which is an isomorphism. Under this isomorphism, and (12.2), there is a morphism

A0(R) −→ R = ({0} × 1) ⊔ ((0,∞)×R)

given by the map [0,∞)2 × 1 → {0} × 1 induced by the projection [0,∞)2 → {0}
on the first term and (a, b; r) 7→ (a+ b+ 2; r) on the second term. This is easily seen
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to be a morphism of R-bimodules, and is a homotopy equivalence and hence weak
equivalence.

Proof that A(R) is an adapter. — We have constructed the (R ⊗ R)-R-bimodule
structure and proved that it is equivalent to R as an (R ⊗ 1)-R-bimodule. It re-
mains to see that the two maps µll, µul : R ⊗ A(R) → A(R) are homotopic as
maps of right R-modules. As A(R) ≃ R as right R-modules, we have a bijection
[R ⊗ A(R), A(R)]mod-R

∼= [R, A(R)]C. Under this bijection, the two left R-module
structure maps are given heuristically by sending (t, r) to (t, 0, 0; e1) and (0, 0, t, e2)

where the ei : I
2 → R2 are two rectilinear embeddings. These maps are evidently

homotopic, by sliding one such little cube to the other inside V tt,0. As already men-
tioned, this construction does not obviously satisfy the cofibrancy requirements, so
we redefine A(R) by cofibrantly replacing the result of the geometric construction
above.
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CHAPTER 13

INDECOMPOSABLES AND THE BAR CONSTRUCTION

As before, we work in the category C = SG with S satisfying the axioms of Sec-
tions 2.1 and 7.1. In Section 8.2 we defined the derived indecomposables QTL (−)

for a monad T , and described two ways of computing it. Firstly, given a T -al-
gebra cell structure on X ∈ AlgT (C) there is a associated ordinary cell structure
on QTL (X) ∈ C∗. Secondly, we may choose a free simplicial resolution ε : X• → X, so
that QTL (X) ≃ |QT (X•)| ∈ C∗. These methods work for quite general monads T . In
this section we shall describe a third way of computing the derived indecomposables
particular to the case that T = Ek is the non-unital little k-cubes monad: the k-fold
iterated bar construction.

We also discuss a number of related results; the effect of bar constructions on maps,
Ek-algebra structures on iterated indecomposables, and group completion.

13.1. The iterated bar construction

The k-fold iterated bar construction is a flexible version of the ordinary bar con-
struction, applied in k directions at the same time. For simplicity of exposition we will
first describe this construction under the assumption that C is symmetric monoidal;
at the end of this section we will explain the mild changes to be made if this category
is only monoidal or braided monoidal.

The iterated bar construction will be described in terms of grids in the k-dimen-
sional cube.

Definition 13.1. — Let us write Pk(p1, . . . , pk) ⊂
∏k
j=1Rpj+1 for the subspace of k-tu-

ples {tji}1≤j≤k of sequences 0 < tj0 < · · · < tjpj
< 1. The assignment

[p1, . . . , pk] 7→ Pk(p1, . . . , pk)

forms a k-fold semi-simplicial space, if we define the i-th face map in the j-th direc-
tion dji to be given by forgetting tji .

It will be helpful to think of an element of Pk(p1, . . . , pk) as a collection of hy-
perplanes Rj−1 × {tji} × Rk−j cutting Ik into

∏k
j=1(pj + 2) k-cubes, as depicted in
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0 t10 t11 1

1

t21

t20

0

d1
0

0 t10 1

1

t21

t20

0

Figure 9. The face map of d1
0 : P(1, 1) → P(0, 1)

Figure 9. Of these, the p1 · · · pk cubes given by
k∏
j=1

[tjqj−1, t
j
qj

] for (qj)
k
j=1 ∈

k∏
j=1

{1, . . . , pj}

will play a major role (these are the shaded cubes in Figure 11). The face map dji
for 0 < i < pj merges the cubes

(q1, . . . , qj−1, i, qj+1, . . . , qk) and (q1, . . . , qj−1, i+ 1, qj+1, . . . , qk).

This merging may be interpreted as elements δji (q1, . . . , q̂j , . . . , qk) ∈ Ck(2), as in
Figure 10.

0 t10 t11 1

1

t21

t20

0

e1

e2

0
0

t10
t10+t

1
1

1

1

Figure 10. The element δ1
0(1) for the face map as in Figure 9
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More precisely the two rectilinear embeddings e1, e2 : Ik ↪→ Ik forming δji ∈ Ck(2)

are given by

(13.1)

e1(x1, . . . , xk) =

(
x1, . . . , xj−1,

tji − t
j
i−1

tji+1 − t
j
i−1

xj , xj+1, . . . , xk

)
,

e2(x1, . . . , xk) =

(
x1, . . . , xj−1,

(tji+1 − t
j
i )xj + (tji − t

j
i−1)

tji+1 − t
j
i−1

, xj+1, . . . , xk

)
.

For later use, we remark that there is also an element δ ∈ Ck(p1 · · · pk) consisting
of the embeddings eq1,...,qk

: Ik ↪→ Ik for (qj)
k
j=1 ∈

∏k
j=1{1, . . . , pj} given by

(13.2) eql,...,qk
: (x1, . . . , xk) 7→

(
(t1q1+1 − t1q1)x1 + t1q1 , . . . , (t

k
qk+1 − tkqk

)xk + tkqk

)
,

whose image consists of the p1 · · · pk inner cubes, where these embeddings are ordered
lexicographically by (q1, . . . , qk).

We wish to define the k-fold bar construction for an E+
k -algebra R with augmen-

tation ε : R → 1, but it is no more difficult to make a definition for an arbitrary
morphism of E+

k -algebras.

Definition 13.2. — Let f : R → S be a morphism of E+
k -algebras. Then BEk

•,...,•(f) is
the k-fold semi-simplicial object with BEk

p1,...,pk
(f) := Pk(p1, . . . , pk) × Gp1,...,pk

(f),
where

Gp1,...,pk
(f) :=

p1+1⊗
q1=0

· · ·
pk+1⊗
qk=0

Bq1,...,qk
p1,...,pk

and Bq1,...,qk
p1,...,pk

is R if 1 ≤ qj ≤ pj for all j, and S otherwise (see Figure 11 for an
example).

The i-th face map in the j-th direction

dji : B
Ek
p1,...,pk

(f) −→ BEk
p1,...,pj−1,pj−1,pj+1,pk

(f)

is given by the face map of Definition 13.1 on the first factor and then, by adjunction,
by the map of simplicial sets

Pk(p1, . . . , pk) −→ Ck(2)
α−→ MapC(Gp1,...,pk

(f), Gp1,...,pj−1,pj−1,pj+1,pk
(f))

{tji} 7−→ δji ,

where α is given as follows:

(i) For i = 0, the maps

Ck(2) −→ ES(2) = MapC(S⊗ S,S)
(S⊗ε)∗−→ MapC(S⊗R,S)

= MapC(Bq1,...,qj−1,0,qj+1,...,qk
p1,...,pk

⊗Bq1,...,qj−1,1,qj+1,...,qk
p1,...,pk

, B
q1,...,qj−1,0,qj+1,...,qk

p1,...,pj−1,pj−1,pj+1,pk
)

and the evident identity maps on the remaining factors.
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(ii) For 0 < i < pj , the maps

Ck(2) −→ ER(2) = MapC(R⊗R,R)

= MapC(Bq1,...,qj−1,i,qj+1,...,qk
p1,...,pk

⊗Bq1,...,qj−1,i+1,qj+1,...,qk
p1,...,pk

, B
q1,...,qj−1,i,qj+1,...,qk

p1,...,pj−1,pj−1,pj+1,pk
)

and the evident identity maps on the remaining factors.
(iii) For i = pj , the maps

Ck(2) −→ ES(2) = MapC(S⊗ S,S)
(ε⊗S)∗−→ MapC(R⊗ S,S)

= MapC(Bq1,...,qj−1,pj ,qj+1,...,qk
p1,...,pk

⊗Bq1,...,qj−1,pj+1,qj+1,...,qk
p1,...,pk

, B
q1,...,qj−1,pj ,qj+1,...,qk

p1,...,pj−1,pj−1,pj+1,pk
)

and the evident identity maps on the remaining factors.

We write BEk(f) := ∥BEk
•,...,•(f)∥ ∈ C and call this the k-fold iterated bar construc-

tion. It is natural in commutative squares of morphisms of E+
k -algebras:

R S

R′ S′

f

f ′

yields BEk(f)→ BEk(f ′).

S S S S S

S R R R S

S R R R S

S R R R S

S S S S S

0 t10 t11 t12 t13 1

1

t20

t21

t22

t23

0

Figure 11. An illustration of BE2
3,3(f)

In particular, if ε : R→ 1 is an augmented E+
k -algebra then we write

BEk
•,...,•(R, ε) := BEk

•,...,•(ε)
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for the associated k-fold bar construction, and similarly for its geometric realization.
The unit map 1: 1→ R and augmentation ε : R→ 1 are maps of augmented E+

k -al-
gebras, where 1 has augmentation given by the identity. Thus we get maps

BEk(1, ε1) −→ BEk(R, ε) −→ BEk(1, ε1),

whose composition is the identity.

Lemma 13.3. — BEk(1, ε1) ≃ 1.

Proof. — In terms of the copowering over simplicial sets 1 ∼= ∗, so the thick geometric
realization of BEk(1, ε1) in C is isomorphic to 1 copowered with the thick geometric
realization of the k-fold semi-simplicial simplicial set whose (p1, . . . , pk)-simplices are
given by Pk(p1, . . . , pk). This is contractible in each multisimplicial degree, hence so
is its thick geometric realization. This induces the desired weak equivalence.

Definition 13.4. — We define reduced k-fold bar construction B̃Ek(R, ε) ∈ C∗ to be
the cofiber of the map BEk(1, ε1)→ BEk(R, ε) induced by the unit.

In Definition 4.22, we called (R, ε) split augmented if the induced map
(I(R))+ → R is an isomorphism, where the augmentation ε : R → 1 is used to
define the augmentation ideal I(R).

Lemma 13.5. — If (R, ε) is split augmented, then we have that

BEk(R, ε)+ ∼= BEk(1, ε1)+ ∨ B̃Ek(R, ε).

If additionally R is cofibrant in C, then BEk(1, ε1)→ BEk(R, ε) is a cofibration.

Proof. — If R is split augmented, the map BEk(1, ε1)→ BEk(R, ε) is induced by a
levelwise inclusion of a term into a coproduct, and the isomorphism follows from a
levelwise isomorphism of pointed k-fold semi-simplicial objects.

If UEk(R) is cofibrant, then terms of BEk(R, ε) which are not in BEk(1, ε1),
are cofibrant and thus the inclusion is a cofibration. By Lemma 8.12 the map
BEk(1, ε1)→ BEk(R, ε) is then a cofibration.

As explained in Section 4.4, if C is pointed then the unitalization R+ of an Ek-al-
gebra R may be endowed with the canonical augmentation εcan, and this is always
split augmented. In that case we will simplify notation and write

B̃Ek(R) := B̃Ek(R+, εcan) ∈ C.

More generally if C is not pointed then we can instead consider R+ as an Ek-algebra
in the pointed category C∗, and set

(13.3) B̃Ek(R) := B̃Ek(R+
+, εcan) ∈ C∗.

The previous lemmas imply that if R is cofibrant in C then

BEk(R+
+, εcan) ≃ 1+ ∨ B̃Ek(R),
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so we do not lose any homotopy-theoretical information when computing B̃Ek instead
of BEk . In arguments later in this section, we shall use the following description
of B̃Ek(R), which does not make reference to augmented E+

k -algebras.

Lemma 13.6. — Let R be a non-unital Ek-algebra which is cofibrant in C. Then
we may compute B̃Ek(R) as the geometric realization of the following k-fold semi-
simplicial object B̃Ek

•,...,•(R) in C∗. It has the (p1, . . . , pk)-simplices B̃Ek
p1,...,pk

(R) given
by ∗ if any pi = 0, and otherwise by the quotient of

Pk(p1, . . . , pk)×
p1⊗
q1=1

· · ·
pk⊗
qk=1

(1 ⊔R)

by the subobject

Pk(p1, . . . , pk)×
p1⊗
q1=1

· · ·
pk⊗
qk=1

1.

The i-th face map in the j-th direction

dji : B̃
Ek
p1,...,pk

(R) −→ B̃Ek
p1,...,pj−1,pj−1,pj+1,...,pk

(R)

is given as in Definition 13.2, with the variation that dj0 is given by applying the
augmentation ε : 1⊔R→ 1 to those factors with qj = 1, and djpj

is given by applying
the augmentation ε : 1 ⊔R→ 1 to those factors with qj = pj.

The following theorem is the main result of this section. It says one can compute the
derived Ek-indecomposables in terms of the reduced k-fold bar construction. Instances
of this result are due to Getzler-Jones [47], Basterra-Mandell [10], Fresse [41], and
Francis [39].

Theorem 13.7. — There is a zig-zag (13.9) of natural transformations

B̃Ek(−)⇐ · · · ⇒ Sk ∧QEk

L (−)

of functors AlgEk
(C) → C∗, which are weak equivalences when evaluated on objects

which are cofibrant in C.

We will prove this theorem in Section 13.4 after some preparation.

13.1.1. Modification for k-monoidal categories with k = 1, 2

For concreteness we explain how Definition 13.2 must be modified; there are com-
pletely analogous modifications to Lemma 13.6.

If the category C is only 1-monoidal then it only makes sense to consider
E1-algebras, which must be done as described in Section 12.1.3 using the monad
EFB1

1 . In this case there is no difficulty in following the construction in Defini-
tion 13.2. For a given grid (t10, . . . , t

1
p1) ∈ P1(p1) the embeddings e1, e2 : I ↪→ I

forming δ1i ∈ C1(2) satisfy e1(0) = 0 <
t1i−t

1
i−1

t1i+1−t1i−1
= e2(0) and so δ1i lies in CFB1

1 (2).

Then the face map d1
i : BE1

p1 (f) → BE1
p1−1(f) is given in the same way, using
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{t1i } 7→ δ1i : P1(p1)→ CFB1
1 (2), the map CFB1

1 (2)→ MapC(Bip1 ⊗B
i+1
p1 , Bip1−1) given by

the EFB1
1 -algebra structure on R and S, and the map of simplicial sets

i−1∏
q1=0

MapC(Bq1p1 , B
q1
p1−1)×MapC(Bip1 ⊗B

i+1
p1 , Bip1−1)×

p1∏
q1=i+1

MapC(Bq1+1
p1 , Bq1p1−1)

−→ MapC

(
p1+1⊗
q1=0

Bq1p1 ,

p1⊗
q1=0

Bq1p1−1

)
given by multiplication. (In Definition 13.2 we had employed this construction, but
implicitly followed it by a permutation of the factors in the target in order to identify
the target with Gp1,...,pj−1,pj−1,pj+1,pk

(f). In this case no permutation is necessary.)
The remaining case is when the category C is 2-monoidal and we consider E2-al-

gebras, which must be done as described in Section 12.1.3 using the monad EFB2
2 . In

this case a little care must be taken, because in defining Gp1,p2(f) we have needed to
impose a linear ordering of the terms Bq1,q2p1,p2 when they are more naturally arranged
in a 2-dimensional grid. The linear ordering we have chosen is a convention, but this
convention dictates a choice of lift

P2(p1, p2) −→ CFB2
2 (2)

of the map {tji} 7→ δji : P2(p1, p2) → C2(2). Namely: the point δ1i ∈ C2(2) already
lies in the subspace CFB1

1 (2) ⊂ C2(2) so equipping it with the constant path de-
fines an element of CFB2

2 (2); the point δ2i ∈ C2(2) should be equipped with the
path where the top cube moves rightwards and then down, to give a point in
CFB1
1 (2) ⊂ C2(2). Using this choice, the face maps d2

i are as in Definition 13.2 us-
ing the map CFB2

1 (2)→ MapC(Bq1,ip1,p2 ⊗B
q1,i+1
p1,p2 , Bq1,ip1−1,p2

) given by the EFB2
2 -algebra

structure on R and S. There is no need to explicitly use the braiding, as the terms
which are being multiplied together are adjacent in the linear ordering of the terms
in Gp1,p2(f). On the other hand, for the face map d1

i the same construction naturally
defines a map from

P2(p1, p2)×

(
i−1⊗
q1=0

p2+1⊗
q2=0

Bq1,q2p1,p2

)
⊗
p2+1⊗
q2=0

(Bi,q2p1,p2 ⊗B
i+1,q2
p1,p2 )⊗

 p1+1⊗
q1=i+2

p2+1⊗
q2=0

Bq1,q2p1,p2


to P2(p1 − 1, p2) ×

⊗p1
q1=0

⊗p2+1
q2=0 B

q1,q2
p1−1,p2

= P2(p1 − 1, p2) × Gp1,p2(f). To identify
the source with P2(p1, p2)×Gp1,p2(f) it is necessary to choose a way to braid all the
terms Bi+1,q2

p1,p2 to the right of all the terms Bi,q2p1,p2 . This choice is again dictated by our
convention: in order for this d1

i to commute with the d2
i′ , we must precompose the

map constructed so far with the isomorphism(
p2+1⊗
q2=0

Bi,q2p1,p2

)
⊗

(
p2+1⊗
q2=0

Bi+1,q2
p1,p2

)
−→

p2+1⊗
q2=0

(Bi,q2p1,p2 ⊗B
i+1,q2
p1,p2 )
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which braids the Bi+1,q2
p1,p2 ’s in front of the Bi,q2p1,p2 ’s. (This is with the convention

that βX,Y : X ⊗ Y → Y ⊗X is represented by the braid where the strand labeled X
crosses in front of the strand labeled Y .)

13.2. The bar construction for modules

Let us briefly draw a parallel. In Section 12.2 we described how to associate a unital
associative algebra R to an E1-algebra R. A (left or right) module over R is then
a (left or right) R-module in the usual sense. Furthermore, if C is pointed then we
showed that there is a canonical augmentation ε : R→ 1, and so by Section 9.4 there
is a notion of derived R-module indecomposables QR

L . In this case Corollary 9.19 is
the analogue of Theorem 13.7.

13.3. The bar construction on free algebras

In order to prove Theorem 13.7 we will need to compute B̃Ek(Ek(X)). In fact,
for later use and because it is no more difficult, we shall explain how to compute
B̃Ek(En+k(X)). The following for n = 0 has also been proved by Lurie [77, Proposi-
tion 5.2.3.15]. The reader familiar with En-algebras in spaces should compare Theo-
rem 13.8 to the results in Section 13.8 on group completion, where a different aug-
mentation is used. This highlights the role played by the augmentation.

Theorem 13.8. — There is a zig-zag (13.7) of natural transformations

B̃Ek(En+k(−))⇐ · · · ⇒ En(S
k ∧ (−)+)

of functors from C to C∗, which are weak equivalences on cofibrant objects.

The intermediate constructions involve spaces of little cubes in In × Rk. It is eas-
ier to define such objects, maps and homotopies in Top rather than in sSet. If so,
we implicitly form the singular simplicial set before using copowering, and do not
distinguish in notation between topological spaces and their singular simplicial sets.

For simplicity of exposition we will give the proof when C is symmetric monoidal,
but the variations required to treat the 1- or 2-monoidal cases are routine (the fol-
lowing spaces of cubes should be defined in terms of Embrect,FBk instead of Embrect).

Definition 13.9. — We define the following three symmetric sequences:

— Let Fn,k denote the symmetric sequence in Top given by

Fn,k(i) :=

{
∅ if i = 0,
Embrect(

⊔
i I
n+k, In × Rk) otherwise,

see Figure 12 for an example.
— Let ∂Fn,k(i) be the subspace of Fn,k(i) where at least one cube lies entirely

outside the interior of In × Ik. This is preserved by the action of Si and hence
we obtain a symmetric sequence ∂Fn,k in Top.
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— Let Fn,k/∂Fn,k denote the quotient symmetric sequence in Top∗, whose value
at i is the pointed space Fn,k(i)/∂Fn,k(i).

e1

e2

e3

∈ F1,1(3)

Figure 12. An element of F1,1(3) which does not lie in ∂F1,1(3)

There is an inclusion, resp. quotient map, of symmetric sequences

∂Fn,k −→ Fn,k −→ Fn,k/∂Fn,k.

The symmetric sequence Fn,k is a left module over Cn. The structure maps

(13.4) Cn(j)× Fn,k(i1)× · · · × Fn,k(ij) −→ Fn,k(i1 + · · ·+ ij),

for j ≥ 1 are given by sending e ∈ Cn(j) = Embrect(
⊔
j I

n, In) to e × idRk and
composing rectilinear embeddings. The left Cn-module structure preserves ∂Fn,k (here
it is important that Cn is non-unitary so no cubes are forgotten), so that ∂Fn,k is also
a left Cn-module. This implies that the quotient Fn,k/∂Fn,k inherits a left Cn-module
structure, that is, the maps (13.4) descend to maps

Cn(j)+ ∧
Fn,k(i1)

∂Fn,k(i1)
∧ · · · ∧ Fn,k(ij)

∂Fn,k(ij)
−→ Fn,k(i1 + · · ·+ ij)

∂Fn,k(i1 + · · ·+ ij)
.

Similarly, the symmetric sequence Fn,k is a right module over Cn+k. In this case
the structure maps

(13.5) Fn,k(j)× Cn+k(i1)× · · · × Cn+k(ij) −→ Fn,k(i1 + · · ·+ ij)

for il ≥ 1 for each l are given by composition of rectilinear embeddings of (n+k)-cubes.
The subsequence ∂Fn,k is preserved by this (here it is again important that Cn is non-
unitary), so both ∂Fn,k and Fn,k/∂Fn,k inherit right Cn+k-module structures. That
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is, the maps (13.5) descend to maps
Fn,k(j)

∂Fn,k(j)
∧ Cn+k(i1)+ ∧ · · · ∧ Cn+k(ij)+ −→

Fn,k(i1 + · · ·+ ij)

∂Fn,k(i1 + · · ·+ ij)
.

Definition 13.10. — Define the functor F̄n,k : C→ C∗ by

F̄n,k : X 7−→
⊔
i≥1

Fn,k(i)

∂Fn,k(i)
⋊Si X

⊗i,

where ⋊ denotes smash product with the associated pointed object, as in Section 2.1.4,
and the subscript Si here denotes the quotient of that smash product by the evident
symmetric group action.

As explained above, this is both a left En-module functor and right En+k-module
functor. Hence it naturally lifts to a functor F̄n,k : C → AlgEn

(C∗). In the following
lemma, we construct a “scanning map.” In its definition, one has a choice whether to
translate by v or −v. We prefer the latter.

Lemma 13.11. — There is a natural transformation

φ(−) : En(S
k ⋊−) =⇒ F̄n,k(−)

of functors C→ AlgEn
(C∗), which is a weak equivalence on cofibrant objects.

Proof. — Consider the map ϕ : Rk → Fn,k(1) sending v ∈ Rk to the translation of
the unit cube In+k ⊂ In × Rk by −v in Rk:

ϕ(v) : In+k −→ In × Rk

x 7−→ x− (0, v),

where we write (0, v) ∈ Rn × Rk. Let us temporarily write ∂Rk ⊂ Rk for the sub-
space consisting of those points for which at least one of the R-coordinates lies
outside (−1, 1), and identify Sk with the quotient Rk/∂Rk. Then ϕ(v) ∈ ∂Fn,k(1)

for v ∈ ∂Rk, so there is an induced map

φ : Sk =
Rk

∂Rk
−→ Fn,k(1)

∂Fn,k(1)

and hence φ ⋊ idX : Sk ⋊ X → Fn,k(1)
∂Fn,k(1) ⋊ X ⊂ F̄n,k(X). Since the target is an

En-algebra, ϕ⋊ idX extends uniquely to an En-algebra map

(13.6) φX : En(S
k ⋊X) −→ F̄n,k(X),

which is clearly natural in X.
To show that this is a weak equivalence, we may forget the En-algebra structure,

and then unraveling the above definition gives the following. Consider the maps

ϕi : Cn(i)× (Rk)i −→ Fn,k(i)

((e1, . . . , ei), (v1, . . . , vi)) 7−→ (e1 × idIk − (0, v1), . . . , ei × idIk − (0, vi)).
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That is, we cross each of the embeddings of the n-cubes with the identity map on Ik,
and then translate the i-th resulting embedding of an (n+ k)-cube by −vi ∈ Rk. Let
us write ∂(Cn(i) × (Rk)i) ⊂ Cn(i) × (Rk)i for the subspace where at least one of the
R-coordinates lies outside (−1, 1). This subspace is sent into ∂Fn,k(i) by ϕi, which
determines a map

φi : Cn(i)+ ∧ (Sk)∧i ∼=
Cn(i)× (Rk)i

∂(Cn(i)× (Rk)i)
−→ Fn,k(i)

∂Fn,k(i)
.

As i varies, these form a map of symmetric sequences in Top∗, and the map (13.6) is
induced by this map of symmetric sequences.

We will show that each φi is a weak homotopy equivalence, and as Si acts freely
(away from the basepoint) on the domain and codomain of φi both symmetric se-
quences are cofibrant. It then follows from Lemma 9.1 (ii) that (13.6) is a weak
equivalence whenever X is cofibrant in C.

To see that φi is a weak homotopy equivalence, first observe that this map is a
homeomorphism onto its image, which is the subspace S of those points which may be
represented by configurations of cubes in In×Rk which have edge length 1 in each of
the Rk-directions and which remain disjoint when projected to In. (The map e consists
of i embeddings of a cube, and here we identify each of these with its image for the
sake of simplicity.) Let S′ be the larger subspace where we omit the “edge length 1”
condition: it consists of those points which may be represented by configurations of
cubes in In ×Rk which remain disjoint when projected to In. We will show that the
inclusions S ↪→ S′ ↪→ Fn,k(i)

∂Fn,k(i) are weak homotopy equivalences.
For the inclusion S → S′ we obtain a homotopy inverse by a simple scaling of the

edge lengths of representative cubes in the Rk-direction, as follows. First consider the
homotopy σt : Fn,k(i)→ Fn,k(i), t ∈ [0, 1], sending a tuple of disjoint rectilinear cubes
e1, e2, . . . , ei : I

n+k → In × Rk to the tuple σt(e1), σt(e2), . . . , σt(ei), given by

σt(ej) :=
(
idIn × (1 + t ·max(0, 1

ε − 1))idRk

)
◦ ej ,

where ε is the minimum of the edge lengths of the ej in the Rk-direction. This ho-
motopy preserves the subspace ∂Fn,k(i), so induces a homotopy of the same name
on Fn,k(i)

∂Fn,k(i) .
As σt does not change the projections of the cubes to In, this homotopy preserves

the subspace S′: it gives a deformation retraction to the subspace S′′ ⊂ S′ of those
cubes which have edge length ≥ 1 in each of the Rk-directions. Now we define a
deformation retraction from S′′ to its subspace S by shrinking each cube linearly in
each of the Rk-directions, fixing their centers, until they have edge length precisely 1
in each of these directions. This is well-defined, because shrinking cubes about their
centers preserves disjointness, and if some cube ej has image outside of In × Ik then
it still does after shrinking it about its center.

For the inclusion S′ ↪→ Fn,k(i)
∂Fn,k(i) , first consider the 1-parameter family of self-

maps ρt : Fn,k(i) → Fn,k(i), t ∈ [0,∞), sending a tuple of disjoint rectilinear cubes
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e1, e2, . . . , ei : I
n+k → In×Rk to the tuple ρt(e1), ρt(e2), . . . , ρt(ei) given by translat-

ing in the Rk-direction via

ρt(ej)(x1, . . . , xn+k) := ej(x1, . . . , xn+k) + t · projRk(ej(
1
2 , . . . ,

1
2 )).

This is again a rectilinear embedding, of the same edge lengths as ej , and the ρt(ej)
are disjoint from each other: for each pair of cubes the absolute value of the difference
of the ℓ-th coordinates of their centers is non-decreasing, but their size remains the
same. This 1-parameter family of maps has the following crucial properties:

(i) if ej has image outside of In × Ik then so does ρt(ej) for all t ≥ 0, and
(ii) if projRk(ej(

1
2 , . . . ,

1
2 )) ̸= 0 then ρt(ej) has image outside of In×Ik for all t≫ 0.

By property (i) ρt descends to a 1-parameter family of self-maps of Fn,k(i)
∂Fn,k(i) . This

1-parameter family preserves the subspace S′, as it does not change the projections
of cubes to In. If an equivalence class [e1, e2, . . . , ei] ∈ Fn,k(i)

∂Fn,k(i) is not in S′ then some
pair of cubes {ej , eℓ} do not have disjoint projections to In, and so, as these cubes are
disjoint in In × Rk, projRk(ej(

1
2 , . . . ,

1
2 )) and projRk(eℓ(

1
2 , . . . ,

1
2 )) cannot both be 0,

and hence by property (ii) either ρt(ej) or ρt(eℓ) lies outside of In × Ik for all t≫ 0.
But then ρt([e1, e2, . . . , ei]) is the basepoint for all t ≫ 0, so in particular lies in S′.
As the necessary t’s can be chosen continuously, for any compact subset K of Fn,k(i)

∂Fn,k(i)

there is a t such that ρt(K) ⊂ S′, and hence S′ ↪→ Fn,k(i)
∂Fn,k(i) is a weak homotopy

equivalence.

We now wish to relate F̄n,k(X) to B̃Ek(En+k(X)). In order to do this we will
construct a k-fold semi-simplicial resolution of the functor F̄n,k. This k-fold semi-
simplicial resolution contains the additional data of grids of hyperplanes between the
cubes.

Definition 13.12. — Let Fn,k(i)p1,...,pk
⊂ P(p1, . . . , pk) × Fn,k(i) be the space of

pairs ({tji}, e) of an element {tji} of P(p1, . . . , pk) consisting of

0 < tj0 < tj1 < · · · < tjpj
< 1

for j = 1, 2, . . . , k, and an e ∈ Fn,k(i), such that each hyperplane

In × Rj−1 × {tji} × Rk−j

is disjoint from the interior of all cubes of e (see Figure 13 for an example).
From the k-fold semi-simplicial structure of P(•, . . . , •), this inherits the struc-

ture of a k-fold semi-simplicial k-symmetric sequence Fn,k(i)•,...,• in Top augmented
over Fn,k(i). In particular, the i-th face map in the j-th simplicial direction dji for-
gets tji and the augmentation ε sends ({tji}, e) to e.

As in Definition 13.9, we let the k-fold semi-simplicial k-symmetric sequence
∂Fn,k(i)•,...,• in Top augmented over ∂Fn,k(i) be the sub-object consisting of ({tji}, e)
such that e ∈ ∂Fn,k(i). We shall use the following convenient lemma, which uses the
quotient map q :

⊔
n≥0 ∆n ×Xn → ||X•||.
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e1

e2

e3

e4

e5

0

t10

t11

t12

1

∈ F1,1(4)2

Figure 13. An example of an element of F1,1(4)2 which also lies
in ∂F1,1(3)2, as e4 lies outside I × I

Lemma 13.13. — Let X• be a semi-simplicial space. Then each map f : Si → ||X•|| is
homotopic to a map f̃ such that there exist compact subsets Kj ⊂ Xj for 0 ≤ j ≤ i,
so that f̃ has image in q

(⋃
0≤j≤i ∆

j ×Kj

)
⊂ ||X•||.

Proof. — The counit natural weak equivalences εn : |Sing(Xn)| → Xn give a levelwise
weak equivalence of semi-simplicial spaces

ε• : |Sing(X•)| −→ X•,

which induces a weak equivalence upon thick geometric realization. Thus up to ho-
motopy we may lift f to a map f ′ : Si → ∥|Sing(X•)|∥. The latter is homeomorphic
to the thin geometric realization of the diagonal of the bisimplicial set

Y•,• : [p, q] 7−→
⊔

[p]↠[r]

Singq(Xr).

Hence, by the simplicial approximation theorem (e.g., Corollary 4.8 of [65]), there
exists a simplicial triangulation L• of Si so that f ′ is homotopic to |f̃•| for a simplicial
map f̃• : L• → diag(Y•,•). Under f̃• each non-degenerate q-simplex σ maps to some
continuous map ∆q → Xr for r ≤ q ≤ i. As the simplicial set L• has finitely many
non-degenerate simplices, necessarily of dimension j ≤ i, for each j ≤ i we obtain a
finite collection of continuous maps ∆q → Xj so that we may take Kj to be the image
in Xj of these maps. This is a finite union of compact subsets and hence compact.
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Lemma 13.14. — The augmentations induce maps

∥Fn,k(i)•,...,•∥ −→ Fn,k(i) and ∥∂Fn,k(i)•,...,•∥ −→ ∂Fn,k(i),

which are weak equivalences of k-symmetric sequences. Thus, taking the pointed geo-
metric realization, the map

∥Fn,k(i)•,...,•/∂Fn,k(i)•,...,•∥∗ −→ Fn,k(i)/∂Fn,k(i)

is a weak equivalence of k-symmetric sequences in Top∗.

Proof. — We start with the easier proof that ∥Fn,k(i)•,...,•∥ → Fn,k(i) is a weak
equivalence. We define the space Cn,k(i) of an ordered configuration of i disjoint
points in In × Rk as

Cn,k(i) := Emb(
⊔
i

∗, In × Rk).

Let Cn,k(i)p1,...,pk
⊂ P(p1, . . . , pk) × Cn,k(i) be the space of pairs ({tji′}, x) of a

grid in P(p1, . . . , pk) and a configuration x ∈ Cn,k(i) such that each hyperplane
In × Rj−1 × {tji′} × Rk−j is disjoint from all points in the configuration x. We may
assemble these into a k-fold semi-simplicial k-symmetric sequence Cn,k(i)•,...,• in Top
augmented over Cn,k(i).

Evaluating at the centers of cubes gives the maps of augmented k-fold semi-
simplicial spaces

Fn,k(i)•,...,• Cn,k(i)•,...,•

Fn,k(i) Cn,k(i)

≃

≃

which is easily seen to be a levelwise weak equivalence.
Hence to prove that ∥Fn,k(i)•,...,•∥ → Fn,k(i) is a weak equivalence, it suffices to

prove that the map π : ∥Cn,k(i)•,...,•∥ → Cn,k(i) induced by the augmentation of the
augmented k-fold semi-simplicial object is a weak equivalence.

We will prove this using the notion of a Serre microfibration, see [113, p. 190], and
in particular the result that a Serre microfibration with weakly contractible fibers
is in fact a Serre fibration [113, Lemma 2.2], and hence a weak equivalence. Since a
hyperplane disjoint from a finite configuration of points x stays disjoint under a small
perturbation of x, the map π is a Serre microfibration.

The fiber of π over x is given by thick geometric realization of the k-fold semi-
simplicial space Cn,k(x)•,...,• with (p1, . . . , pk)-simplices Cn,k(x)p1,...,pk

given by
the subspace of P(p1, . . . , pk) consisting of grids {tji′} such that each hyperplane
In × Rj−1 × {tji′} × Rk−j is disjoint from all points in the configuration x. Equiva-
lently, grids which are disjoint from the projection projk(x) of x to Rk. The conditions
on hyperplanes in each coordinate are independent, so we recognize this as a k-fold
product of semi-simplicial spaces

∏k
j=1X•(c

j
1, . . . , c

j
i ) where cj1 ≤ · · · ≤ cji are ele-

ments in R, and X•(c
j
1, . . . , c

j
i ) is the nerve of the topological poset of real numbers

in (0, 1) distinct from the cji′ .
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It is therefore enough to show that ∥X•(c1, . . . , ci)∥ is weakly contractible for any
real numbers c1 ≤ · · · ≤ ci, so let f : Sm → ∥X•(c1, . . . , ci)∥ be a continuous map,
which we shall show is homotopic to a constant map. By Lemma 13.13, we may assume
that f has image in q

(⊔
0≤j≤i′ ∆

j ×Kj

)
for Kj ⊂ Xj(c1, . . . , ci) compact. Let c be

the smallest strictly positive ci, or 1 if there is none. By compactness there exists an
0 < ε < c such that ε < t0 for all {t0 < t1 < · · · < tj} ∈ Kj and all j ≤ i′. Then the
inclusion

q

 ⊔
0≤j≤i′

∆j ×Kj

 ⊂ ∥X•(c1, . . . , ci)∥
is nullhomotopic, as it extends over the cone to the vertex ε.

For ∥∂Fn,k(i)•,...,•∥ → ∂Fn,k(i), consider instead the subspace ∂∗Fn,k(i) ⊂ Fn,k(i)
such that at least one cube has center outside of In × Ik. The inclusion ∂Fn,k(i) ↪→ ∂∗Fn,k(i)
is a weak equivalence. Similarly, we may define ∂∗Fn,k(i)p1,...,pk

as the subspace
of Fn,k(i)p1,...,pk

where at least one cube has center outside of In × Ik, and the
inclusion ∂Fn,k(i)•,...,• ↪→ ∂∗Fn,k(i)•,...,• is a levelwise weak equivalence. Hence it
suffices to prove that

∥∂∗Fn,k(i)•,...,•∥ −→ ∂∗Fn,k(i)

is a weak equivalence. This follows by specializing the previous proof to these sub-
spaces.

We define functors (F̄n,k)p1,...,pk
analogously to F̄n,k, as

(F̄n,k)p1,...,pk
(X) : X 7−→

⊔
i≥1

Fn,k(i)p1,...,pk

∂Fn,k(i)p1,...,pk

⋊Si
X⊗i.

This is a right En+k-functor for the same reason that F̄n,k is. However, it is not a
left En-functor, as attempting to use elements of Cn to combine different collections
of cubes with grids might result in the grids of one collection intersecting the cubes
of the other collection. These assemble into a k-fold augmented semi-simplicial object
(F̄n,k)•,...,• → F̄n,k.

Lemma 13.15. — The map ∥(F̄n,k)•,...,•(X)∥ → F̄n,k(X) is a weak equivalence for
X ∈ C cofibrant.

Proof. — There is an isomorphism

∥(F̄n,k)•,...,•(X)∥ ∼=
⊔
i≥1

∥Fn,k(i)•,...,•/∂Fn,k(i)•,...,•∥∗ ⋊Si
X⊗i,

so, as X is cofibrant, by Lemma 9.1 (ii) it is enough to show that the augmentation

∥Fn,k(i)•,...,•/∂Fn,k(i)•,...,•∥∗ −→ Fn,k(i)/∂Fn,k(i)

is a weak equivalence of cofibrant symmetric sequences. It is a weak equivalence by
Lemma 13.14, and the Si-action is free away from the basepoint by observation.
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In Fn,k(i)•,...,• we have grids of hyperplanes as in the bar construction which avoid
the interior of the (n+k)-cubes. If we take the quotient by ∂Fn,k(i)•,...,•, any collection
of (n+k)-cubes with some cube lying outside In× Ik is identified with the basepoint.
However, in the reduced k-fold bar construction as in Definition 13.4 and Lemma 13.6
a collection should already be collapsed to the basepoint when some (n + k)-cube is
in the outer parts of the grid. To remedy this discrepancy, we make the following
definition:

Definition 13.16. — Let ∂◦Fn,k(i)p1,...,pk
be the subspace of Fn,k(i)p1,...,pk

of
pairs ({tji}, e) such that some cube of e lies outside the interior of

In × [t10, t
1
p1 ]× · · · × [tk0 , t

k
pk

].

This is a collection of path components and defines a sub-object of p-fold semi-
simplicial k-symmetric sequences

∂◦Fn,k(i)•,...,• ⊂ Fn,k(i)•,...,•.

The inclusions ∂Fn,k(i)p1,...,pk
↪→ ∂◦Fn,k(i)p1,...,pk

induce a map of augmented
k-fold semi-simplicial spaces

∂Fn,k(i)•,...,• −→ ∂◦Fn,k(i)•,...,•,

which is easily seen to be a levelwise homotopy equivalence by scaling coordinates.
Using this variant, we define a k-fold simplicial functor

(F̄ ◦n,k)p1,...,pk
(X) : X 7−→

⊔
i≥1

Fn,k(i)p1,...,pk

∂◦Fn,k(i)p1,...,pk

⋊Si
X⊗i,

which comes with a natural transformation (F̄n,k)•,...,• ⇒ (F̄ ◦n,k)•,...,• because
∂◦Fn,k(i)p1,...,pk

contains ∂Fn,k(i)p1,...,pk
.

Lemma 13.17. — The natural transformation ∥(F̄n,k)•,...,•(−)∥ ⇒ ∥(F̄ ◦n,k)•,...,•(−)∥ is
a weak equivalence on cofibrant objects.

Proof. — Let X ∈ C be cofibrant. By Lemma 8.12 it is enough to show that
each (F̄n,k)p1,...,pk

(X) → (F̄ ◦n,k)p1,...,pk
(X) is a weak equivalence between cofibrant

objects of C∗. As X is cofibrant in C, by Lemma 9.1 (ii) it is enough to show that
Fn,k(i)p1,...,pk

∂Fn,k(i)p1,...,pk

−→ Fn,k(i)p1,...,pk

∂◦Fn,k(i)p1,...,pk

is a weak equivalence between cofibrant symmetric sequences. The Si-action on both
spaces is free away from the basepoint, so they are cofibrant symmetric sequences;
the map is a weak equivalence as ∂Fn,k(i)p1,...,pk

→ ∂◦Fn,k(i)p1,...,pk
is.

The following lemma connects the functor ∥(F̄ ◦n,k)•,...,•(−)∥ to the reduced k-fold
bar construction B̃Ek of Definition 13.4 and Lemma 13.6.

Lemma 13.18. — There is a natural isomorphism B̃Ek
•,...,•(En+k(X)) ∼= (F̄ ◦n,k)•,...,•(X)

of k-fold semi-simplicial objects.

ASTÉRISQUE 460



13.3. THE BAR CONSTRUCTION ON FREE ALGEBRAS 177

Proof. — There are two cases to consider. Firstly, if some pj is 0 then we have iso-
morphisms

B̃Ek
p1,...,pk

(En+k(X)) ∼= ∗ ∼= (F̄ ◦n,k)p1,...,pk
(X),

in the latter case because ∂◦Fn,k(i)p1,...,pk
= Fn,k(i)p1,...,pk

for all i ≥ 0.
The second case is when pj > 0 for all j. In this case we have that the pointed

object B̃Ek
p1,...,pk

(En+k(X)) is given by the quotient of

P(p1, . . . , pk)×
⊗p1

q1=1 · · ·
⊗pk

qk=1

(⊔
i≥0 Cn+k(i)×Si

X⊗i)
by the sub-object corresponding to the terms i = 0, given by

P(p1, . . . , pk)×
⊗p1

q1=1 · · ·
⊗pk

qk=1 1.

We may describe this quotient as B(X) for a symmetric sequence B ∈ FB∞(Top∗)
applied to X. A non-basepoint element of B(i) is an element in the space of grids
P(p1, . . . , pk), together with for each (qj)

k
j=1 ∈

∏k
j=1{1, . . . , pj} a collection e[(qj)kj=1]

of (n+k)-cubes with interiors disjoint from the grid, and a bijection of {1, . . . , i} with
the set of all of these (n+ k)-cubes.

This is isomorphic to the symmetric sequence B′ ∈ FB∞(Top∗) with a non-
basepoint element of B′(i) given by an element in the space of grids P(p1, . . . , pk)

together with an element e of Cn+k(i) with image in [t10, t
1
p1 ] × · · · [t

k
0 , t

k
pk

] whose
interior is disjoint from the grid. The isomorphism B → B′ is given by composing
with δ ∈ Ck(p1 · · · pk) of (13.2).

The space B′(i) may be described as adding a disjoint basepoint to those path com-
ponents of Fn,k(i) that are not in ∂◦Fn,k(i). Since all the path components of Fn,k(i)
that are in ∂◦Fn,k(i) are collapsed to the basepoint, we have described the desired
isomorphism

B̃Ek
p1,...,pk

(En+k(X)) ∼= (F̄ ◦n,k)p1,...,pk
(X).

We need to check this isomorphism is simplicial. Upon applying dji for i = 0 or
i = pj , both sides get mapped to ∗. Otherwise, the face maps act identically on
the grids {tji}. On the rectilinear embeddings, the action on e is the identity, and
δ coequalizes the identity and the application of dji by associativity of composition of
rectilinear embeddings.

We may now complete the proof of Theorem 13.8.

Proof of Theorem 13.8. — The result follows from the following zig-zag of natural
transformations, each of which has been shown to be a weak equivalence when X is
cofibrant:

(13.7)

B̃Ek(En+k(X))

∥(F̄ ◦n,k)•,...,•(X)∥ ∥(F̄n,k)•,...,•(X)∥ F̄n,k(X)

En(S
k ⋉X).

∼=Lemma 13.18
≃

Lemma
13.17

≃
Lemma
13.15 ≃ Lemma 13.11

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



178 CHAPTER 13. INDECOMPOSABLES AND THE BAR CONSTRUCTION

13.4. Proof of Theorem 13.7

We will now prove Theorem 13.7, which describes how to compute derived inde-
composables using iterated bar constructions.

Let Sk•,...,• be the k-fold semi-simplicial object in sSet∗ given by taking the quotient
simplicial set ∆1/∂∆1, taking its k-fold smash product considered as a k-fold pointed
simplicial set and remembering only the k-fold semi-simplicial structure.

Definition 13.19. — We define a k-fold semi-simplicial object

QEk
•,...,•(R) := Sk•,...,• ∧QEk(R).

Let S̄k denote thick geometric realization ∥Sk•,...,•∥, and recall that the quotient
map S̄k → Sk from the thick to the thin geometric realization is a homotopy equiv-
alence. By construction we have that ∥QEk

•,...,•(R)∥+ ∼= ∥Sk•,...,•∥ ∧QEk(R), and thus
the natural transformation

∥Sk•,...,•∥ ∧QEk(R) −→ Sk ∧QEk(R)

is a weak equivalence.
We claim that there is a map of k-fold semi-simplicial objects

B̃Ek
•,...,•(R) −→ QEk

•,...,•(R)

induced by projection of P(p1, . . . , pk) to a point, the canonical map R → QEk(R)

if only one entry is R and the canonical map to the terminal object otherwise.
To see this is indeed semi-simplicial, recall that by Lemma 4.25 the object
QCk

Ck(1)(R) can be obtained as the quotient of UCk

Ck(1)(R)+ by DecCk

Ck(1)(R), so
the map Ck(n)×Sn

R⊗n → QEk(R) for n ≥ 2 factors over the terminal object.
Upon geometric realization of this k-fold semi-simplicial map we obtain a pair of

natural transformations of functors AlgEk
(C)→ C∗

B̃Ek S̄k ∧QEk

Sk ∧QEk .

υ

υ̃

Lemma 13.20. — If R ∼= Ek(X) with X ∈ C cofibrant, then υR is a weak equivalence.

Proof. — It suffices to prove that υ̃ : B̃Ek ⇒ S̄k ∧QEk is a natural weak equivalence.
Firstly, the canonical morphism X+ → Ek(X)+ → QEk(Ek(X)) is an isomorphism

in C∗ by Corollary 3.20. This gives us an isomorphism S̄k ∧X+
∼= ∥Sk•,...,• ∧QEk(Ek(X))∥,

which forms the right column of (13.8). Secondly, we obtain the middle column of
(13.8) from the natural transformations between B̃Ek(Ek(X)) and F̄0,k(X) which
appear in the diagram (13.7) in the case n = 0. These are weak equivalences under
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the assumption that X is cofibrant.

(13.8)

S̄k ∧X+ S̄k ∧X+

∥Sk•,...,• ∧X+∥ ∥B̃Ek
•,...,•(Ek(X))∥ ∥Sk•,...,• ∧QEk(Ek(X))∥

∥(Ḡ◦0,k)•,...,•(X)∥ ∥(F̄ ◦0,k)•,...,•(X)∥

∥(Ḡ0,k)•,...,•(X)∥ ∥(F̄0,k)•,...,•(X)∥

Ḡ0,k(X) F̄0,k(X).

υ̃Ek(X)

∥j•∥≃ ∼=

≃

≃

≃

≃

≃

The left column of (13.8) remains to be defined. Let Ḡ0,k(X) ⊂ F̄0,k(X) be the
sub-object which consists of ≤ 1 cubes labeled by X, giving rise to a functor

Ḡ0,k(X) : X 7−→ F0,k(1)

∂F0,k(1)
⋊X = Sk ⋊X.

We may form the k-fold semi-simplicial objects (Ḡ0,k)•,...,•(X) and (Ḡ◦0,k)•,...,•(X) in
analogy with those for F̄0,k(X). As in the proof of Lemma 13.14, the maps between
them become weak equivalences upon geometric realization. Furthermore, the proof
of Lemma 13.11 shows that the inclusion Ḡ0,k(X)→ F̄0,k(X) is a weak equivalence.

Let us now define the k-fold semi-simplicial map j•. We have that

(Ḡ◦0,k)1,...,1(X) ∼= Pk(1, . . . , 1)× Ck(1)×X ⊂ Pk(1, . . . , 1)× Ek(X)

and the map j• is given by taking connected components of (Ḡ0,k)•,...,• and identifying
π0((Ḡ

◦
0,k)p1,...,pk

) with Skp1,...,pk
by recording which of the subsets cut out by the

hyperplanes of grid contains the unique cube. This is a levelwise weak equivalence.
We claim that the entire diagram (13.8) commutes. The two bottom squares com-

mute since they are induced by a commutative diagram of symmetric sequences. The
two maps ∥(Ḡ◦0,k)•,...,•(X)∥ → S̄k ∧ X+ coincide, as both ways around record the
label X and which of the subsets cut out by the grid hyperplanes contains the unique
cube. From this we conclude that υEk(X) is a weak equivalence.

We can now finish the proof of Theorem 13.7.

Proof of Theorem 13.7. — To make use of Lemma 13.20, choose a simplicial resolu-
tion R• → R as in Section 8.3.4. Such a resolution can be picked naturally in R by
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taking the thick monadic bar resolution. Then we have a commutative diagram

(13.9)

B̃Ek(R)

B̃Ek(∥R•∥Ek
) Sk ∧QEk(∥R•∥Ek

) Sk ∧QEk

L (R)

∥B̃Ek(R•)∥ ∥Sk ∧QEk(R•)∥,

υ∥R•∥

ε≃

∥υR•∥
≃

where the right vertical equality comes from the fact that QEk commutes with geo-
metric realization, and the left vertical equality follows from Lemma 8.17 and com-
muting two geometric realizations. The map induced by ε is a weak equivalence by
Lemma 8.12. The lower map is a weak equivalence by Lemma 13.20, as each Rp is a
free Ek-algebra. This proves Theorem 13.7.

13.5. The bar construction on maps between free algebras

Given a map f : X → Y in C, we obtain a map En+k(f) : En+k(X) → En+k(Y )

and Theorem 13.8 identifies B̃Ek(En+k(f)) with

En(S
k ∧ f+) : En(S

k ∧X+) −→ En(S
k ∧ Y+)

up to natural weak equivalence. However, a general map F : En+k(X) → En+k(Y )

of En+k-algebras need not be of the form En+k(f). We wish to describe the
map B̃Ek(F ) in terms of free En-algebras. To do so, note that F is determined by a
map f : X → En+k(Y ), and may be factored as

En+k(X) En+k(En+k(Y )) En+k(Y ),
En+k(f)

F

µY

where the first map is of the form we have treated already, and the second is given
by the monadic structure map. Thus it is enough to describe B̃Ek(µY ).

The description we shall give will be in terms of a natural transformation

η(−) : S
k ∧ En+k(−) =⇒ En(S

k ∧ −)

of functors C∗ → C∗.

Remark 13.21. — This is related to a construction due to May [82, Proposition 5.4].
May’s construction is different from ours because it is built for the “group completion”
augmentation, which does not exist in general in our setup, and even if it does may not
be equal to the canonical augmentation. It is discussed in Section 13.8 for C = Top.

We construct η(−) in the case n = 0, generalizing to n > 0 afterwards. The natural
transformation η(−) : S

k ∧ Ek(−) ⇒ Sk ∧ − is induced by a map η of symmetric
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sequences in Top∗ given by Si-equivariant maps

ηi : S
k ∧ Ck(i)+ −→ (Sk)∧i.

The map ηi is the constant map to the basepoint if i > 1. To define η1, suppose we
are given v = (v1, . . . , vk) ∈ (0, 1)k ⊂ ((0, 1)k)+ = Sk and a single cube e ∈ Ck(1).
Then we define

η1(v, e) :=

{
∗ if v /∈ im(e),
e−1(v) ∈ (0, 1)k ⊂ ((0, 1)k)+ ∼= Sk otherwise.

For the generalization to n > 0, we shall similarly record the intersection of cubes
with an n-dimensional linear subspace, and map to the basepoint if any of these
intersections is empty. The natural transformation η(−) : S

k ∧En+k ⇒ En(S
k ∧−) is

induced by a map η of symmetric sequences in Top∗ given by Si-equivariant maps

ηi : S
k ∧ Cn+k(i)+ −→ Cn(i)+ ∧ (Sk)∧i.

To define ηi on v ∈ (0, 1)k ⊂ ((0, 1)k)+ ∼= Sk and a collection of cubes
e = (e1, . . . , ei) ∈ Ck+n(i), we do the following. We write each ej as a product enj × ekj
of a rectilinear embedding enj : In ↪→ Rn and a rectilinear embedding ekj : Ik ↪→ Rk,
that is, an n-cube and a k-cube. Firstly, if v is not in im(ekj ) for all 1 ≤ j ≤ i then
ηi(v, e) = ∗. Otherwise, we let ηi(v, e) be the point of Cn(i)+ ∧ (Sk)∧i given by

ηi(v, e) :=
(
(en1 , . . . , e

n
i ), ((e

k
1)−1(v), . . . , (eki )

−1(v))
)
,

noting that the n-cubes enj for 1 ≤ j ≤ i are disjoint, because the (n+k)-cubes ej are
disjoint and their projections to (0, 1)k all contain v. For n = 0 this definition agrees
with the one given above. See Figure 14 for an example.

These maps of pointed spaces form a map of symmetric sequences in Top∗

η : Sk ∧ (Cn+k)+ −→ (Cn)+ ∧ (Sk)∧−,

which induces a natural transformation given by

(13.10)

(Sk ∧ (Cn+k)+)(Y ) ((Cn)+ ∧ (Sk)∧−)(Y )

⊔
i≥1 S

k ∧ Cn(i)+ ∧Si
Y ⊗i

⊔
i≥1 Cn(i)+ ∧Si

(Sk ∧ Y )⊗i.

ηY

∼= ∼=

⊔
i ηi∧Si

Y ⊗i

On the bottom line we have implicitly used the symmetric monoidal structure
to Si-equivariantly write (Sk ∧ Y )⊗i ∼= (Sk)∧i ∧ Y ⊗i.

Theorem 13.22. — The map B̃Ek(µY ) is weakly equivalent to the map

En(ηY ) : En(S
k ∧ En+k(Y )) −→ En(S

k ∧ Y )

induced by ηY : Sk ∧ En+k(Y )→ En(S
k ∧ Y ).
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e1

e2

v

en1 en2

(ek
1 )−1(v) ∈ (0, 1) (ek

2 )−1(v) ∈ (0, 1)

Figure 14. The map ηi for k = n = 1 and i = 2 assigns to (v, (e1, e2))

the pair of 1-cubes (en
1 , en

2 ) obtained by projection to the x-axis, and el-
ements (ek

1)−1(v) and (ek
2)−1(v) in (0, 1) ⊂ S1 obtained by recording the

intersections of either cube with v. If e2 is moved slightly upwards (or v is
decreased) so that the line at height v no longer intersects the image of e2,
then we map to the basepoint ∗.

Proof. — Consider the diagram

(13.11)

B̃Ek(En+k(En+k(Y ))) B̃Ek(En+k(Y ))

∥(F̄n,k)•,...,•(En+k(Y ))∥ ∥(F̄n,k)•,...,•(Y )∥

F̄n,k(En+k(Y )) F̄n,k(Y )

En(S
k ∧ En+k(Y )) En(S

k ∧ Y ),

B̃Ek (µY )

≃

≃

≃

≃

≃ φEn+k(Y ) φY ≃

where the top horizontal map is given by functoriality of B̃Ek with respect to maps
of Ek-algebras, the middle two horizontal maps are given by the right Cn+k-module
structures on the functors F̄n,k and (F̄n,k)p1,...,pk

, and the lower map is essentially the
En-map in the statement of the theorem, induced by ηY : Sk∧En+k(Y )→ En(S

k∧Y ).
The vertical maps are weak equivalences by the proof of Theorem 13.8. In particu-
lar, the natural transformation φ(−), which was defined in Lemma 13.11, is a weak
equivalence by that lemma.

The reason that the bottom map of (13.11) is not equal to En(ηY ) is that the
bottom square involves two different identifications of Sk: in the construction of ηY
it is given by ((0, 1)k)+ and in the construction of φY we identified this with Rk/∂Rk
with ∂Rk the complement of (−1, 1)k. As it occurs more often, we opt to write the
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former as Sk in this proof. Using the homomorphism ρ : Rk/∂Rk → Sk given in each
coordinate by x 7→ x+1

2 , the bottom square is given by

F̄n,k(En+k(Y )) F̄n,k(Y )

En(Rk/∂Rk ⋊ En+k(Y )) En(Rk/∂Rk ⋊ Y )

En(S
k ⋊ En+k(Y )) En(S

k ⋊ Y ).

φEn+k(Y ) ≃

∼=En(ρ⋊id)

≃ φY

En(ηY )

∼= En(ρ−1⋊id)

The top two squares of (13.11) commute, as the horizontal maps are given by right
Cn+k-module structures and the vertical maps are induced by natural transformation
of right En+k-module functors. The bottom square does not commute, but we claim
that it does commute up to homotopy. The proof of this occupies the remainder of
this section.

All maps involved in bottom square are En-maps, so it suffices to show that it
commutes up to homotopy after restriction to Rk/∂Rk ⋊ En+k(Y ). We may thus
restrict our attention to the diagram of pointed spaces

(13.12)

Fn,k(1)/∂Fn,k(1) ⋊ En+k(Y ) F̄n,k(En+k(Y )) F̄n,k(Y )

Rk/∂Rk ⋊ En+k(Y ) En(Rk/∂Rk ⋊ Y )

Sk ⋊ En+k(Y ) En(S
k ⋊ Y ).

φ⋊id

∼=ρ⋊id

φY

ηY

∼= En(ρ−1⋊id)

The left-top composition of (13.12) is induced by the map of symmetric sequences

Rk × Cn+k(i) −→ Fn,k(i)

(v, (e1, . . . , ei)) 7−→ (e1 − (0, v), . . . , ei − (0, v)),

where (0, v) ∈ Rn ×Rk. This sends ∂Rk × Cn+k(i) into ∂Fn+k(i) so induces a map of
symmetric sequences

glob:
Rk

∂Rk
⋊ Cn+k(i) −→

Fn,k(i)

∂Fn,k(i)
,

whose notation suggests its informal description as a “global translation”.
For the sake of writing explicit homotopies later, we let F ∗n,k(i) denote the subspace

of Embrect(In+k, In × Ik)i of i cubes whose interiors are disjoint when none of the
cubes lies entirely outside the interior of In×Ik. We let ∂F ∗n,k(i) ⊂ F ∗n,k(i) denote the
subspace where at least one of the cubes lies entirely outside the interior of In × Ik.
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Then the induced map
Fn,k(i)

∂Fn,k(i)
−→

F ∗n,k(i)

∂F ∗n,k(i)

is a homeomorphism.
Let 1⃗ ∈ Rk denote the vector with all entries equal to 1. If the bottom composition

does not map the basepoint, then it translates the j-th cube by the negative of

ρ−1((ekj )
−1(ρ(v))) = 2(ekj )

−1( 1⃗+v
2 )− 1⃗ = (ekj )

−1(v) + (ekj )
−1(⃗1)− 1⃗,

where ekj is the unique extension of ekj to an affine-linear map Rk → Rk. Thus the
bottom-right composition of (13.12) is induced by the map of symmetric sequences

Rk × Cn+k(i) −→ F ∗n,k(i)

(v, (e1, . . . , ei)) 7−→
(
en1 × idIk − (0, (ek1)−1(v) + (ek1)−1(⃗1)− 1⃗), . . .

)
.

This sends ∂Rk × Cn+k(i) into ∂F ∗n+k(i) so induces a map of symmetric sequences

loc :
Rk

∂Rk
⋊ Cn+k(i) −→

Fn,k(i)

∂Fn,k(i)
,

whose notation suggests its informal description as a “local translation”, i.e., each cube
is translated by an amount depending on the cube in question.

It suffices to prove that the maps glob and loc areSi-equivariantly homotopic when
restricted to Rk/∂Rk⋊C=n+k(i), where C=n+k(i) ⊂ Cn+k(i) denotes the subspace where
all cubes have sides of the same length, because the inclusion C=n+k(i) ↪→ Cn+k(i) is a
Si-equivariant homotopy equivalence. We will denote the common length of all sides
of all cubes in e = (e1, . . . , ei) by ℓ(e) ∈ (0, 1]. The homotopy will be a concatenation
of two homotopies: starting at glob, the first homotopy makes the cubes have the same
edge-lengths as in loc, and the second homotopy linearly makes them be translated
by the same amount (see Figure 15).

For e = (e1, . . . , ei) ∈ C=n+k(i) define a 1-parameter family of embeddings

λe,t := idIn × 1

tℓ(e) + (1− t)
idRk : In × Rk ↪→ In × Rk, t ∈ [0, 1].

We start at the map glob: Rk/∂Rk ⋊ C=n+k(i) → Fn,k(i)/∂Fn,k(i), and consider the
homotopy of such maps induced by

[0, 1]× Rk × C=n+k(i) −→ Fn,k(i)

(t, v, (e1, . . . , ei)) 7−→ (λe,t ◦ e1 − (0, v), . . . , λe,t ◦ ei − (0, v)).

This completes the construction of the first of the two homotopies.
The endpoint of this homotopy is induced by the map given at (v, (e1, . . . , ei)) by(
en1 × idIk + (0,−v + 1

ℓ(e)e
k
1( 1

2 , . . . ,
1
2 )), . . . , eni × idIk + (0,−v + 1

ℓ(e)e
k
i (

1
2 , . . . ,

1
2 ))
)
,

while the map loc is induced by(
en1 × idIk + (0,−(ek1)−1(v)− (ek1)−1(⃗1) + 1⃗), . . . , eni × idIk + (0,−(eki )

−1(v)− (eki )
−1(⃗1) + 1⃗))

)
.
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e1

e2

(A)

e1

e2

(B)

Figure 15. Take k = n = 1 and i = 2, and consider the cubes in Fig-
ure 14. We have pictured the elements of F ∗n,k(i) under both compositions
in (13.12) for v = 0, so that ρ(v) = 1

2
as depicted in Figure 14: (A) is

the top composition and (B) the bottom composition. More generally, if
we let v ∈ Rk run from −1 to 1, on the one hand the top composition
translates both e1 and e2 by −v. On the other hand the bottom com-
position replaces e1 by e1

1 × idI and e2 by e1
2 × idI and translates them

by −2(ē2
1)
−1( v+1

2
) + 1 and −2(ē1

1)
−1( v+1

2
) + 1. In either case, both cubes

start in ∂F ∗n,k(i) above the pictured square In × Ik, move downwards into
the square at a rate linear in v, and end in ∂F ∗n,k(i) below the square. The
difference is only in the amount of scaling and translation in the
Rk-direction.

As they differ only by translation, describing a homotopy between them may be done
by interpolating between the translation vectors in Rk given by

τj(0) := −v + 1
ℓ(e)e

k
j (

1
2 , . . . ,

1
2 ) and τj(1) := −(ekj )

−1(v)− (ekj )
−1(⃗1) + 1⃗.

We do so linearly:
τj(s) := (1− s)τj(0) + sτj(1).

This completes the construction of the second of the two homotopies, but it remains
to check that it lies in F ∗n,k(i), i.e., the interiors of two cubes can only intersect if at
least one is entirely outside the interior of In × Ik.

To do so, let us examine two cubes: ej with image given by
∏n+k
m=1[am, bm] ⊂ Rn+k

and ej′ with image given by
∏n+k
m=1[a

′
m, b

′
m] ⊂ Rn+k. As these subsets have disjoint

interiors, we have bm ≤ a′m for some 1 ≤ m ≤ n + k. If 1 ≤ m ≤ n then the
cubes remain disjoint under the linear interpolation of translation vectors, because
the projections of the cubes to their first n coordinates are unchanged. If m = n+ r
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with 1 ≤ r ≤ k, then for projr : Rk → R the projection onto the r-th coordinate we
have

projr(τj(0)) = −vr + 1
2 + am

ℓ(e) , projr(τj(1)) = − vr

ℓ(e) + am

ℓ(e) −
1
ℓ(e) + am

ℓ(e) + 1.

As the same computation for ej′ in place of ej replaces am by a′m, we conclude that

projr(τj′(0))− projr(τj(0)) =
a′m−am

ℓ(e) projr(τj′(1))− projr(τj(1)) = 2
a′m−am

ℓ(e) .

As a′m ≥ am, the difference projr(τj′(s)) − projr(τj(s)) is increasing as s ∈ [0, 1].
Since the projections of the images of the cubes to the m-th coordinate have disjoint
interiors for s = 0 and their distance in the m-th coordinate is increasing while their
sizes remain constant, they must have disjoint interiors for all s ∈ [0, 1].

13.6. Iterated indecomposables

Using the discussion and results of Section 13.3 we can describe a model for the
derived Ek-indecomposables of an En+k-algebra which still has the structure of an
En-algebra. While we find this to be a useful conceptual tool for thinking about
derived Ek-indecomposables, it is not necessary for any of our applications. The reader
can skip this section on a first reading.

Theorem 13.23. — There is a functor Mn,k : AlgEn+k
(C)→ AlgEn

(C∗) such that there
are zig-zags of natural transformations of functors AlgEn+k

(C)→ C∗

UEnMn,k(−)⇐= · · · =⇒ Sk ∧QEk

L (−)

Sn ∧QEn

L (Mn,k(−))⇐= · · · =⇒ Sn+k ∧QEn+k

L (−),

which are weak equivalences on En+k-algebras that are cofibrant in C.

The functor Mn,k is constructed using the functor F̄n,k from Definition 13.10,
which consists of little (n + k)-cubes in In × Rk that can disappear at infinity. This
is a right Cn+k-module and a left Cn-module. We define Mn,k by

Mn,k : R 7−→ ∥B•(F̄n,k, En+k,R)∥,
which has the structure of an Cn-algebra using the left Cn-module structure on F̄n,k.

Proof of Theorem 13.23. — For the first part, we construct the following diagram,
where ≃ denotes that an arrow is a weak equivalence when UEn+kR is cofibrant:

∥B•(F̄n,k, En+k,R)∥ UEnMn,k(R)

∥B•(B̃EkEn+k, En+k,R)∥

B̃Ek(R) Sk ∧QEk

L (R).

≃(13.7)

≃

≃
Theorem 13.7
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The top left arrow denotes (part of) the zig-zag (13.7) applied levelwise, which
consists of weak equivalences as the functor En+k : C → C preserves cofibrant ob-
jects by Lemma 9.1 (i). The bottom left arrow is obtained by applying B̃Ek(−) to
the augmented simplicial object σ∗σ

∗B•(En+k, En+k,R) → R and geometrically
realizing. As this is a free resolution (by Lemma 8.19, because R is cofibrant in C)
the map ∥B•(En+k, En+k,R)∥ → R is a weak equivalence, and so, by commuting
geometric realizations, the bottom left arrow is also a weak equivalence. The bottom
arrow is the zig-zag given by Theorem 13.7.

For the second part, we start by noting that the first part of this theorem implies

Sn ∧QEn

L (Mn,k(R)) ≃M0,n(Mn,k(R)) = ∥B•(F̄0,n, En,Mn,k(R))∥.
The right hand side may be written as the thick geometric realization of the following
2-fold semi-simplicial object

([p], [q]) 7−→ F̄0,nE
p
nF̄n,kE

q
n+kR.

Let us realize in the p-direction first, and therefore consider the semi-simplicial functor
B•(F̄0,n, En, F̄n,k(−)) : C → sC. This has an augmentation to F̄0,n+k(−), defined as
follows. First, there is a map of symmetric sequences F0,n ◦ Fn,k → F0,n+k given by
taking the product of the rectilinear embeddings In ↪→ Rn of the first term with Rk
and composing these with the rectilinear embeddings In+k ↪→ In × Rk of the second
term. This map sends ∂F0,n ◦ Fn,k, as well as the images of the terms

F0,n(r)×
(
Fn,k(s1)× · · ·Fn,k(si−1)× ∂Fn,k(si)× Fn,k(si+1)× · · · × Fn,k(sr)

)
for 1 ≤ i ≤ r, into ∂F0,n+k. Hence it induces a map of symmetric sequences

F0,n

∂F0,n
◦ Fn,k
∂Fn,k

−→ F0,n+k

∂F0,n+k

and hence a natural transformation π : F̄0,nF̄n,k ⇒ F̄0,n+k. Since it is defined by
composition, it equalizes the two maps F̄0,nEnF̄n,k ⇒ F̄0,nF̄n,k and thus is indeed an
augmentation. It induces a map of simplicial objects

∥[p] 7→ Bp(F̄0,n, En, F̄n,kE
q
n+kR)∥ −→ Bq(F̄0,n+k, En+k,R)

and so, after geometrically realizing in the q-direction too, a natural map

εR : ∥B•(F̄0,n, En,Mn,k(R))∥ −→ ∥B•(F̄0,n+k, En+k,R)∥.
By the first part of the theorem, the right-hand term has a zig-zag of natural trans-

formations to Sn+k∧QEn+k

L (R) which are weak equivalences when R is cofibrant in C.
Note that Eqn+kR is cofibrant in C when R is, by Lemma 9.1 (i), so by Lemma 8.12
to show εR is a weak equivalence it suffices to prove that the augmentation

(13.13) π : ∥B•(F̄0,n, En, F̄n,k(X))∥ −→ F̄0,n+k(X)

is a weak equivalence between cofibrant objects of C as long as X ∈ C is cofibrant.
The symmetric sequences of simplicial sets defining the functors F̄0,n, En, F̄n,k, and
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F̄0,n+k are all cofibrant, so by Lemma 9.1 (i) these functors preserve cofibrant objects.
Thus B•(F̄0,n, En, F̄n,k(X)) is a Reedy cofibrant semi-simplicial object and so the
geometric realization ∥B•(F̄0,n, En, F̄n,k(X))∥ is cofibrant by Lemma 8.12. Thus when
X is cofibrant the map (13.13) is indeed between cofibrant objects, and it remains to
show that it is a weak equivalence.

As we have done before, we focus on symmetric sequences and show that the
augmentation ∥B•(F̄0,n, En, F̄n,k)∥ → F̄0,n+k is a weak equivalence of symmetric se-
quences. Our proof of this is similar to the proof of Lemma 13.14. The spaces of p-sim-
plices Bp(F0,n, En, Fn,k)(i) consists of sequences of embeddings of length (n+2). It is
convenient think of the i elements of Fn,k as cubes in Rn+k, as the image under com-
position of all these (p+ 2) embeddings. We refer to them as the “innermost cubes.”
Let us define ∂Bp(F0,n, En, Fn,k) ⊂ Bp(F0,n, En, Fn,k) as the subspace where at least
one of the innermost cube lies outside the interior of In × Ik, that is,

∂Bp(F0,n, En, Fn,k)(i) := (∂F0,n ◦ Epn ◦ Fn,k)(i) ∪ (F0,n ◦ Epn ◦ ∂Fn,k)(i),
as a cube lies outside In × Ik if and only if it lies outside In × Rk or Rn × Ik. As in
Lemma 13.14, it suffices to prove that the two maps

∥B•(F0,n, En, Fn,k)∥ −→ F0,n+k

∥∂B•(F0,n, En, Fn,k)∥ −→ ∂F0,n+k

are weak equivalences.
To do so, as in the proof of Lemma 13.14 we replace cubes by ordered configura-

tions. Consider the symmetric sequence Cn,k given by Cn,k(i) := Emb(
⊔
i ∗, In×Rk).

There is a map Fn,k → Cn,k of symmetric sequences which records the center of the
(i + j)-cubes, and this is a weak equivalence of left En-functors. It and its analogue
F0,n+k → C0,n+k yields a commutative diagram

∥B•(F0,n, En, Fn,k)∥ F0,n+k

∥B•(F0,n, En, Cn,k)∥ C0,n+k,

≃ ≃

π

and hence it suffices to prove that the bottom map is a weak equivalence.
The map π is a Serre microfibration, so by [113, Lemma 2.2] it suffices to

prove that the fibers are weakly contractible. To see this, we observe that the
map π : Bp(F0,n, En, Cn,k)(i) → C0,n+k(i) records the image in Rn+k of the configu-
ration under the sequence of embeddings of length (p + 1), and the embeddings as
cubes In+k or In×Rn around these points in Rn+k. Let projn : Rn×Rk → Rn denote
the projection. Over a configuration x ∈ C0,n+k, the fiber of the augmentation π

consists of the geometric realization of the semi-simplicial space X•(x) with p-sim-
plices given by the subspace of F0,nE

p
nCn,k consisting of those elements such that

the image of the configuration in Rn+k is x and each point of projn(x) is contained
in the product of Rk with the image of some n-cube of the innermost layer.
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Let f : Sm → ∥X•(x)∥ be a continuous map. By Lemma 13.13, it may be homo-
toped so that it factors through the image of compact subspaces Kj ⊂ Bj(F0,n, En, {x})
for j ≤ m, and thus there exists an ε0 > 0 such that for all y ∈ Sm the element
f(y) is represent by an configuration of cubes such that the sides of the innermost
cubes have distance > ε0 from projn(x). By picking a collection of n-cubes with sides
of length ε0/2 around the points in projn(x), we can cone off f and hence conclude
that ∥X•(x)∥ is weakly contractible.

The argument for ∥∂B•(F0,n, En, Fn,k)∥ → ∂F0,n+k is similar. As in the proof
of Lemma 13.14 we use a weakly equivalent versions ∂∗F0,n+k of ∂F0,n+k and
∂∗Bp(F0,n, En, Fn,k) of ∂Bp(F0,n, En, Fn,k) where the center of at least one inner-
most cube is outside In × Ik. Then the above proof goes through with appropriate
modifications.

13.7. The E∞-case and infinite bar spectra

In Section 12.1.2, we defined the operad C∞ as the colimit of the Ck. Hence it is
not surprising that we may compute the derived E∞-indecomposables as a homotopy
colimit of the derived Ek-indecomposables.

Theorem 13.24. — There is a zig-zag of natural weak equivalences

hocolim
k→∞

QEk

L (R)⇐ · · · ⇒ QE∞L (R) : AlgE∞(C) −→ C∗.

Proof. — Let us write cR ∼→ R for a functorial cofibrant replacement in AlgE∞(C).
This is in particular cofibrant in C by Axiom 8.1, so by Lemma 8.19 we have a free
resolution

∥B•(Ek, Ek, cR)∥Ek
−→ cR

in AlgEk
(C), and as in Section 8.3.7 we can compute QEk

L (R) using ∥B•(+, Ek, cR)∥.
It therefore remains to compare hocolimk→∞ ∥B•(+, Ek, cR)∥ with ∥B•(+, E∞, cR)∥.

The p-th level Bp(+, E∞, cR) of the semi-simplicial object is obtained by a p-fold
application of C∞ to cR, followed by adding a basepoint. Since C∞ is the sequen-
tial colimit of the Ck, and as a consequence of Lemma 4.6 we have an isomor-
phism Bp(+, E∞, cR) ∼= colimk→∞Bp(+, Ek, cR). Since cR is cofibrant in C, by
Lemma 9.1 (i) each Bp(+, Ek,R) is cofibrant. Similarly, Ck → Ck+1 is a cofibra-
tion of symmetric sequences and hence the maps Bp(+, Ek, cR) → Bp(+, Ek+1, cR)

are cofibrations. Finally, thick geometric realization preserves cofibrant objects and
cofibrations by Lemma 8.12. We thus conclude that

∥B•(+, E∞, cR)∥ ∼= colim
k→∞

∥B•(+, Ek, cR)∥ ∼←− hocolim
k→∞

∥B•(+, Ek, cR)∥,

where the second map is an equivalence as a sequential colimit is equivalent to the
homotopy colimit if all objects are cofibrant and all morphisms are cofibrations.
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Since the k-fold suspension of the derived Ek-indecomposables was computed by
a k-fold bar construction, we are similarly able to describe the derived E∞-indecom-
posables in terms of an iterated bar construction.

To make this precise, we will define the infinite bar symmetric spectrum. This will
be an object of the category SpΣ(C) of symmetric spectra in C, as defined in [62]
(see also [93]). (This coincides with SpΣ as in Section 2.2.4 in the case C = sSet.) An
object E of SpΣ(C) consists of a sequence {En}n≥0 of objects of C∗ and a Sn-action
on En, along with structure maps En ∧ S1 → En+1 such that the iterated structure
maps En∧Sk → En+k are Sn×Sk-equivariant. For example, given an object X ∈ C∗
we may form the suspension spectrum Σ∞X ∈ SpΣ(C) by taking (Σ∞X)n := X ∧Sn
with standard suspension maps.

The circle S1 is isomorphic to the thick geometric realization of the pointed
semi-simplicial set S1

• with a single 0-simplex and 1-simplex. We therefore obtain a
(k + 1)-fold semi-simplicial map

B̃Ek(R)•,...,• ∧ S1
• −→ B̃Ek+1(R)•,...,•,

which yield structure maps

bk : B̃Ek(R) ∧ S1 −→ B̃Ek+1(R)

upon geometric realization. The object B̃Ek(R) = ∥B̃Ek(R)•,...,•∥ has an Sk-action
by permuting the k semi-simplicial directions, and this makes the iterated structure
maps appropriately equivariant.

Definition 13.25. — The infinite bar construction symmetric spectrum in SpΣ(C) is
given by B̃∞(R) := {B̃Ek(R), bk}k≥0, where we set B̃E0(R) := ∗.

We can construct a closely related symmetric spectrum out of the derived Ek-inde-
composables after picking an explicit model: we may take a cofibrant approximation
cR → R in the category of E∞-algebras, and as in the proof of Theorem 13.24 take
QEk

L (R) = ∥B•(+, Ek, cR)∥.
The inclusion of Ek into Ek+1 induces a map QEk

L (R) → Q
Ek+1

L (R). We can
then define a symmetric spectrum Q̃∞(R) := {QEk

L (R) ∧ Sk, βk}k≥0 with struc-
ture maps βk : QEk

L (R) ∧ Sk ∧ S1 → Q
Ek+1

L (R) ∧ Sk+1 given by smashing the map
QEk

L (R)→ Q
Ek+1

L (R) with the identification Sk ∧ S1 ∼= Sk+1. In the proof of Theo-
rem 13.7 we exhibited the zig-zag (13.9) of maps Sk∧QEk

L (R)← · · · → B̃Ek(R) which
are weak equivalences in R is cofibrant in C, and when precomposed with the sym-
metry QEk

L (R)∧Sk ∼= Sk ∧QEk

L (R) these assemble to a zig-zag of maps of symmetric
spectra:

Lemma 13.26. — There is a natural zig-zag of morphisms

Q̃E∞(R)←− · · · −→ B̃∞(R)

in SpΣ(C), which are levelwise weak equivalences if R is cofibrant in C.
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Under mild conditions on C (namely, that it is left proper cellular, e.g., S = sSet,
sModk or SpΣ, a property which is preserved by transferring to the projective model
structure on SG), Hovey has shown [62, Theorem 8.2] that there is a projective model
structure on SpΣ(C), with a localization called the stable model structure. Levelwise
weak equivalences are weak equivalences in either of these model structures. Hovey
also proves that if the functor S1 ∧− : C∗ → C∗ is already a Quillen equivalence, then
C∗ is Quillen equivalent to SpΣ(C) with the stable model structure [62, Theorem 9.1].
Thus in the case C = SpΣ we obtain a Quillen equivalent category.

In the case C = sSet, [63, Theorem 3.1.11] says that stable homotopy equivalences
are stable equivalences (see also [103]). Using this fact we may deduce the following.

Corollary 13.27. — Suppose that C = sSetG with G discrete, then there is a natural
zig-zag of morphisms

Σ∞QE∞L (R)←− · · · −→ B̃∞(R)

in SpΣ(C), which are weak equivalences if R is cofibrant in C.

Proof. — By Lemma 13.26 it suffices to show that Σ∞QE∞L (R) and Q̃E∞(R)

are stable equivalent for each g ∈ G. The inclusions Ek ↪→ E∞ induce maps
QEk

L (R) ∧ Sk → QE∞L (R) ∧ Sk which assemble into a map of symmetric spectra
f : Q̃∞(R)→ Σ∞QE∞L (R).

Since G is discrete, a map X → Y in SpΣ(C) is a stable equivalence if and
only if each X(g) → Y (g) is a stable equivalence in SpΣ. Thus to see that f is
a stable equivalence, it suffices to prove that Q̃∞(R)(g) → Σ∞QE∞L (R)(g) is
a stable homotopy equivalence. This follows if the map of pointed simplicial
sets QEk

L (R)(g) → QE∞L (R)(g) is (k − 1)-connected. The thick geometric real-
ization of a levelwise (k − 1)-connected map between semi-simplicial simplicial
sets is (k − 1)-connected, and thus it suffices to prove that for each p ≥ 0 the
map Bp(+, Ek, cR)(g) → Bp(+, E∞, cR)(g) is (k − 1)-connected. To prove this, we
use that both functors Ck(−) and C∞(−) preserve connectivity of maps because
Ck and C∞ are Σ-cofibrant, and that Ck(X) → C∞(X) is (k − 1)-connected for all
X ∈ sSet∗ because the map of Σ-cofibrant operads Ck → C∞ is (k−1)-connected.

Remark 13.28. — We expect this corollary to be true more generally; in SG for
S = sSet, sModk or SpΣ, and G any diagram category.

13.8. Group completion

We shall discuss group completion in the setting of Ek-algebras in the category Top.
The discussion goes through unchanged for sSet, but we make no claims about the
other examples of categories we have discussed (one requirement seems to be that the
category is semi-cartesian: the morphism 1→ t is an isomorphism).
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13.8.1. The group completion augmentation. — In the monoidal category (Top,×, ∗)
the terminal object t = ∗ is also the monoidal unit 1 = ∗, and so any E+

k -algebra R

in Top has a canonical map εgc : R → 1 of E+
k -algebras, which we call the group

completion augmentation.
Suppose we have a filtered non-unital Ek-algebra R ∈ AlgEk

(TopN≤), with un-
derlying Ek-algebra colim(R) ∈ AlgEk

(Top). If we unitalize R then we obtain an
E+
k -algebra R+ ∈ AlgE+

k
(TopN≤) satisfying colim(R+) ∼= colim(R)+.

Now colim(R+) has the group completion augmentation εgc : colim(R+) → ∗ de-
scribed above, which by adjunction gives a map ε′gc : R+ → 0∗(∗) in AlgE+

k
(TopN≤).

(Note that 0∗(∗) is the terminal object of TopN≤ , so is canonically a E+
k -algebra.)

The associated graded of 0∗(∗) is the object 0∗(S
0) ∈ TopN=

∗ , which is the monoidal
unit when Top∗ is given a monoidal structure via smash product, and TopN=

∗ is given
the induced monoidal structure by Day convolution. Therefore the colimit of the
map ε′gc is the map εgc, and its associated graded is the canonical augmentation
εcan : gr(R)+ → gr(0∗(∗)) = 0∗(S

0).

Proposition 13.29. — If R is cofibrant in TopN≤ then there is a group completion
spectral sequence

E1
p,q = HEk

p+q−k,p(gr(R)) =⇒ H̃p+q(B
Ek(colim(R)+, εgc))

which converges strongly, with differentials dr : Erp,q → Erp−r,q+r−1.

Proof. — Consider the filtered object BEk(ε′gc) given by the bar construction of Defi-
nition 13.2 applied to the morphism ε′gc : R+ → 0∗(∗) of filtered E+

k -algebras. As gr is
strongly monoidal (by Section 5.3.3) and BEk commutes with gr (as it is a geometric
realization of iterated tensor products), we have an isomorphism

gr(BEk(ε′gc))
∼= BEk(gr(R)+, εcan)

in TopN=
∗ . For the same reason BEk commutes with colim, so there is an isomorphism

colim(BEk(ε′gc))
∼= BEk(colim(R)+, εgc)

in Top. If R is cofibrant in TopN≤ then BEk(R+, ε′gc) is cofibrant in TopN≤ . Thus we
may apply Theorem 10.10 to obtain a spectral sequence

E1
p,q = H̃p+q,p(B

Ek(gr(R)+, εcan)) =⇒ Hp+q(B
Ek(colim(R)+, εgc)),

which in this case converges strongly by [18, Theorem 6.1].
We have BEk(gr(R)+, εcan) ≃ S0∨ B̃Ek(gr(R)+, εcan) by Lemma 13.5. As gr(R) is

cofibrant in TopN=
∗ (as gr is a left Quillen functor), by Theorem 13.7 we have

B̃Ek(gr(R)+, εcan) ≃ Sk ∧QEk

L (R). Thus the induced spectral sequence on homology
relative to ∗ has the indicated E1-page.

Remark 13.30. — In the case k = ∞, as in Section 13.7 the collection of spaces
{BEk(colim(R)+, εgc)}k≥0 assemble into a symmetric spectrum B∞(colim(R)+, εgc),
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Figure 16. An illustration of BE2
1,0(f)

and as above (but using Corollary 13.27) we obtain a spectral sequence

E1
p,q = HE∞

p+q,p(gr(R)) =⇒ Hspec
p+q (B∞(colim(R)+, εgc))

converging to the spectrum homology of this spectrum.

In the remainder of this section, our goal will be to show that BEk(−, εgc) coincides
up to natural weak equivalence with classical delooping constructions in topology. This
is a folklore result, but we do not know a reference.

13.8.2. A variation of the k-fold iterated bar construction. — To study group comple-
tions, it will be convenient to use a variation of Definition 13.2.

Definition 13.31. — Let us write Ik(p1, . . . , pk) for the space of collections of k-tu-
ples {[aji , b

j
i ]} of intervals for 1 ≤ j ≤ k and 0 ≤ i ≤ pj with endpoints

0 < aji < 1/2 < bji < 1 such that [aji , b
j
i ] ⊋ [aji+1, b

j
i+1]. This is a k-fold semi-simplicial

space where the i-th face map in the j-th direction dji forgets [aji , b
j
i ].

Definition 13.32. — Let f : R → S be a morphism of E+
k -algebras in Top. Then

BEk
•,...,•(f) is the k-fold semi-simplicial object with

BEk
p1,...,pk

(f) := Ik(p1, . . . , pk)× Gp1,...,pk
(f),

where

Gp1,...,pk
(f) :=

2p1+2∏
q1=0

· · ·
2pk+2∏
qk=0

Bq1,...,qk
p1,...,pk

and Bq1,...,qk
p1,...,pk

is R if 1 ≤ qj ≤ 2pj + 1 for all j, and is S otherwise.
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The i-th face map in the j-th direction

dji : B
Ek
p1,...,pk

(f) −→ BEk
p1,...,pj−1,pj−1,pj+1,pk

(f)

is given by the face map of Definition 13.31 on the first factor and then, on the
term Gp1,...,pk

(R), there are two cases. The precise description is analogous to Defini-
tion 13.2 (or Section 13.1.1), but here we settle for a heuristic description:

(i) For 0 < i ≤ pj the map dji is induced by the E+
k -algebra structure on R

by applying elements analogous to (13.1) to the terms Bq1,...,qj−1,i,qj+1,...,qk
p1,...,pk

and Bq1,...,qj−1,i+1,qj+1,...,qk
p1,...,pk , and to the terms Bq1,...,qj−1,2pi−i,qj+1,...,qk

p1,...,pk and
Bq1,...,qj−1,2pi−i−1,qj+1,...,qk
p1,...,pk .

(ii) The map dj0 is given by first applying the f to each of the entries Bq1,...,qj−1,1,qj ,...,qk
p1,...,pk

and Bq1,...,qj−1,2pj−1,qj ,...,qk
p1,...,pk and then applying elements analogous to (13.1).

We write BEk(f) := ∥BEk
•,...,•(f)∥ ∈ C. This construction is natural in commutative

squares of maps of E+
k -algebras.

We shall be interested in the case that f is an augmentation ε : R→ 1. Then, as be-
fore, we write BEk(R, ε) for BEk(ε) and denote the cofiber of BEk(1, ε1)→ BEk(R, ε)

by B̃Ek(R, ε).
To compare BEk(R, ε) and BEk(R, ε), we shall use that BEk(f) is obtained

from BEk(f) by k-fold edgewise subdivision of [107, Appendix I] up to weak equiv-
alence. Recall that the [n] denotes the ordered finite set {0 < 1 < · · · < n}.
A single edgewise subdivision is obtained by precomposing a functor ∆op → Top or
∆op

inj → Top with (the opposite of) the functor

esd: ∆ −→ ∆

[n] 7−→ [n]op ∗ [n],

with ∗ denoting the join of finite ordered sets, so that [n]op ∗ [n] is an ordered set with
2n+ 2 elements, i.e., isomorphic to [2n+ 1].

There is a natural transformation id⇒ esd given by the inclusion of the second [n],
and only in the case of ∆op, also a natural transformation esd ⇒ id by collapsing
the first copy of [n] onto the first element of the second copy of [n]. Since natural
transformations induce simplicial homotopies, this implies that the thick geometric
realization of an edgewise subdivision of a simplicial object X• is homotopy equivalent
to the thick geometric realization of X•, hence is weakly equivalent. We use these
observations to prove the next lemma.

Lemma 13.33. — BEk(R, ε) and BEk(R, ε) are naturally weakly equivalent.

Proof. — The k-fold semi-simplicial space BEk
•,...,•(R, ε) is levelwise weakly equivalent

to a variation BEk,0
•,...,•(R, ε). Let P0

k(p1, . . . , pk) be as in Definition 13.1 but replace the
condition that 0 < tj0 < · · · < tjpj

< 1 by 0 ≤ tj0 ≤ · · · ≤ tjpj
≤ 1. Using the notation

of Definition 13.2,

BEk,0
p1,...,pk

(R, ε) ⊂ P0
k(p1, . . . , pk)×Gp1,...,pk

(ε)
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is the subspace where the element of the term Bq1,...,qk
p1,...,pk

of Gp1,...,pk
(f) is required to

be the unit of R when tjqj−1 = tjqj
for some j (by convention tj−1 = 0). Informally,

grids are allowed to contain cubes of volume 0 but only when labeled by the unit. We
may can the face maps of BEk

•,...,•(R, ε) to BEk,0
•,...,•(R, ε) as follows: dji is as before when

tji−1 ̸= tji and otherwise projects away the corresponding terms (necessarily given by
units of R).

This admits a system of degeneracy maps by defining sji to duplicate tji ’s and
adding the unit of R. We thus have weak equivalences

BEk(R, ε) = ∥BEk
•,...,•(R, ε)∥ ≃ ∥BEk,0

•,...,•(R, ε)∥ ≃ ∥esdBEk,0
•,...,•(R, ε)∥.

The semi-simplicial space BEk
•,...,•(R, ε) is levelwise weakly equivalent to the edgewise

subdivision esdBEk,0
•,...,•(R, ε), differing only in the intervals allowed. As in Top the

construction − × R preserves weak equivalences even if R is not cofibrant, this
induces a weak equivalence upon thick geometric realization.

13.8.3. The group completion map. — In Section 13.5 we described a natural trans-
formation η : Sk ∧Ek(−)⇒ Sk ∧− of functors C∗ → C∗ which is related to a natural
transformation ηM : ΣkEk ⇒ Σk of functors Top → Top∗ due to May [82] which we
will now describe. Here we write Σk(−) = Sk ∧ (−)+. The essential feature of May’s
map is that its adjoint Ek ⇒ ΩkΣk is a map of monads.

The natural transformation ηM is given by maps Sk ∧ (Ck(i)×Si X
×i)+ → Sk ∧X+

defined as follows: a tuple (v, e;x1, . . . , xi), consisting of a v ∈ ((0, 1)k)+ ∼= Sk, an
e = (e1, . . . , ei) ∈ Ck(i), and labels x1, . . . , xi ∈ X, is mapped to the basepoint un-
less v is contained in a cube ej , in which case we normalize to identify that cube
with (0, 1)k and record the position of v in this cube and the label xj . (Note that
this is different to the construction in Section 13.5, where the analogous map was
to the basepoint if i > 1.) It is easy to verify that ηM , as well as giving Σk the
structure of a right Ek-functor, is a map of right Ek-functors. Hence its adjoint
natural transformation η∨M : Ek ⇒ ΩkΣk of functors Top→ Top is also a map of right
Ek-functors.

Furthermore, ΩkΣk also has the structure of a left Ek-functor and the natu-
ral transformation η∨M is one of left Ek-functors. The left Ek-functor structure
on ΩkΣk is described in Section 5 of [82] and appeared in Example 1.1; it is
induced by maps Ck(i)× (ΩkSk)i → ΩkSk, defined as follows. Given an element
(e, f1, . . . , fi) ∈ Ck(i)× (ΩkSk)i we may form the pointed map Sk → Sk

θ(e, f1, . . . , fk) : x 7−→

{
fi(e

−1(x)) if x ∈ im(ei),
∗ otherwise.

Thus we may produce a zig-zag of maps of non-unital Ek-algebras in Top as in
Theorem 13.1 of [82]

R←− |B•(Ek, Ek,R)| −→ |B•(ΩkΣk, Ek,R)| −→ Ωk|B•(Σk, Ek,R)|,
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where it may be helpful to observe that the leftmost map is a weak equivalence with
a section induced by the inclusion id × R → B0(Ek, Ek,R). We call the resulting
zig-zag

R
≃←− |B•(Ek, Ek,R)| −→ Ωk|B•(Σk, Ek,R)|

group completion.

Definition 13.34. — We denote |B•(Σk, Ek,R)| ∈ Top∗ by BkM(R).

The following is consequence of Lemma 9.16 (i).

Lemma 13.35. — If R is cofibrant in Top, then BkM(R) is cofibrant in Top∗. The func-
tor BkM(−) : AlgEk

(Top) → Top∗ preserves (trivial) cofibrations between Ek-algebras
with cofibrant underlying objects.

Remark 13.36. — May has proved that the group completion is a weak equivalence
if and only if the monoid π0(R) is a group ([82] proves this for π0(R) trivial and [83]
addresses the case when π0(R) is a group).

13.8.4. Comparing deloopings. — We claim that BkM(−) and BEk(−, εgc) are natu-
rally weakly equivalent when applied to Ek-algebras R that are cofibrant in Top,
which is stated as Corollary 13.38 below. Note that

BEk
0,...,0(E

+
k (X), εgc) = Ik(0, . . . , 0)×E+

k (X).

This has a map to Sk ∧X+ given by forgetting the first factor, and then taking the
composition

E+
k (X) ⊂ E+

k (X)+ = S0 ∧E+
k (X)+ −→ Sk ∧E+

k (X)+
ηM−→ Sk ∧X+,

where the middle map is induced by the inclusion S0 = (1/2, . . . , 1/2)+ ⊂ Sk = ((0, 1)k)+.
Unraveling this definition, the map is given by the basepoint unless the point
p0 := (1/2, . . . , 1/2) ∈ (0, 1)k lies in one of the cubes ej , in which case we
record e−1

j (p0) and the label in X. It is easy to see that this coequalizes all
face maps arriving at BEk

0,...,0(E
+
k (X), εgc), so defines an augmentation

BEk
•,...,•(E

+
k (X), εgc) −→ ΣkX.

It is in order to define this map that we have passed from BEk to the model BEk : in
the former we have BEk

0,...,0(E
+
k (X), εgc) ≃ S0 so there is no useful augmentation.

By construction the augmentation maps the sub-object BEk
•,...,•(1, ε1) to the base-

point and thus upon geometric realization it factors over a natural transformation

(13.14) B̃Ek(E+
k (−), εgc)⇒ Σk(−) : Top −→ Top∗,

which is a natural transformation of right Ek-functors. The following is a well-known
folklore result with a proof analogous to that of Theorem 13.8, which we shall only
sketch.

Lemma 13.37. — The map B̃Ek(E+
k (X), εgc) → ΣkX is a weak equivalence if X is

cofibrant.
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Sketch of proof. — As in the proof of Theorem 13.8, we can obtain zig-zag of natural
transformation analogous to (13.9) consisting of weak equivalences when X is cofi-
brant, by comparing B̃Ek(E+

k (X), εgc) to a space of cubes in Rk with labels in X that
can disappear outside [0, 1]k. By applying a scanning argument to this space, we may
weakly deformation retract onto the subspace where at most a single cube appears,
which is visibly weakly equivalent to ΣkX.

The conclusion of this section is as follows:

Corollary 13.38. — There is a zig-zag of natural transformations

B̃Ek(R+, εgc)⇐ · · · ⇒ BkM(R)

of functors AlgEk
(Top)→ Top∗, which consists of weak equivalences if R is cofibrant

in Top.

Proof. — Consider the following zig-zag

B̃Ek(R+, εgc)
≃←− ∥B•(B̃Ek(E+

k (−), εgc), Ek,R)∥ −→ ∥B•(Σk, Ek,R)∥ −→ BkM(R).

The left-hand map is a weak equivalence by commuting the two bar constructions,
as B̃Ek((−)+, εgc) : AlgEk

(Top) → Top∗ preserves weak equivalences between objects
which are cofibrant in Top. By Lemma 13.37 the natural transformation (13.14) is a
weak equivalence when applied to a cofibrant object, so by Lemma 8.12 the middle
map is a weak equivalence. The right-hand map is the natural map from the thick to
the thin geometric realization, which by Lemma 8.14 is a weak equivalence as long as
the simplicial space B•(Σk, Ek,R) is Reedy cofibrant, which it is by Lemma 9.16.

13.8.5. Group completion by cell attachment. — As an application of the preceding
discussion, we explain an alternative construction of the group completion for Ek-al-
gebras in Top. As a consequence of Theorem 13.7, up to weak equivalence B̃Ek takes
cell attachments in AlgEk

(C) to cell attachments in C∗ with a k-fold suspension. By
considering May’s delooping, we will obtain a similar result for BkM , which we need
to prove our alternative group completion is indeed a group completion.

Any map e : ∂Dd → R induces a map Σke : Σk∂Dd → ΣkR, and since the latter
are the 0-simplices of the simplicial object defining BkM(R), we get an induced map

Σke : Σk∂Dd −→ BkM(R).

Using Corollary 13.38, we get an analogue for BkM of the result that B̃Ek(−) takes
Ek-cell attachments to cell attachments. The difference is that k-fold bar construction
used the canonical augmentation, whereas the lemma below uses the group completion
augmentation.

Lemma 13.39. — Given a map e : ∂Dd → R, the map

BkM (R) ∪Σke ΣkDd −→ BkM (R ∪Ek
e Dd)

is a weak equivalence.
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Proof. — We shall first prove this when R = Ek(X) with X cofibrant. In that case
we saw in Section 8.3.6 that we may compute a derived cell attachment by taking
the thick geometric realization of the simplicial object [p] 7→ Ek(E

p
k(X) ∪e Dd) where

e : ∂Dd → Epk(X) is given by applying the unit transformation for the monad Ek
p times. In this case, by an extra degeneracy argument as in Lemma 8.16 applied
to BkM(∥Ek(Epk(X) ∪e Dd)∥), we may compute BkM as the thick geometric realization
of the simplicial object

[p] 7→ Σk(Epk(X) ∪e Dd) ∼= Σk(Epk(X)) ∪Σke ΣkDd

and since geometric realization commutes with push-outs, we see this is in turn iso-
morphic to BkM (Ek(X)) ∪Σke ΣkDd.

The general case follows by taking a free simplicial resolution R• → R, in particular
the thick monadic bar construction B•(Ek, Ek,R)→ R. Then we have a commutative
diagram

∥[p] 7→ BkM(Ek(E
p
kR) ∪Ek

e Dd)∥ BkM(R ∪Ek
e Dd)

∥[p] 7→ BkM(Ek(E
p
kR)) ∪Σke ΣkDd∥ BkM(R) ∪Σke ΣkDd,

≃

≃

≃

where the left vertical map is a weak equivalence by Lemma 8.12 because it is a
levelwise weak equivalence between levelwise cofibrant semi-simplicial objects. That
it is a levelwise weak equivalence follows from the case of free Ek-algebras discussed
above. For levelwise cofibrancy we remark that − ∪Ek

e Dd and − ∪ΣkeΣkDd preserve
cofibrant objects in AlgEk

(Top) and Top∗ respectively, so that it suffices to prove
that BkM preserves cofibrant objects, which follows from Lemma 13.35. We conclude
that the right vertical map is a weak equivalence, proving the lemma.

Suppose that R is a Ek-algebra in Top with π0(R) ∼= N>0 as a monoid, and let
σ1 ∈ R be a choice of point in the path-component corresponding to 1 ∈ N>0

∼= π0(R).
Then we may construct a new E+

k -algebra from the unitalization R+ of R by freely
adding a 0-cell σ−1. The result R+ ∪Ek σ−1 has π0 isomorphic as a unital monoid to
the free unital abelian monoid on two generators σ1 and σ−1. We then further attach
a 1-cell η along a map ∂D1 → R+ ∪Ek σ−1 sending 0 to the unit in R+ and 1 to a
point in the component corresponding to σ1σ−1. We denote

R+[π−1
0 ] := R+ ∪Ek σ−1 ∪Ek η.

Lemma 13.40. — The map BkM(R+)→ BkM(R+[π−1
0 ]) is a weak equivalence.

Proof. — Lemma 13.39 tells us that up to homotopy BkM(R[π−1
0 ]) differs from BkM(R)

by the attachment of a k- and a (k + 1)-dimensional cell. An inspection of the at-
taching maps shows that these cells cancel, so that BkM(R)→ BkM(R[π−1

0 ]) is a weak
equivalence.
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We conclude that the map ΩkBkM(R+)→ ΩkBkM(R+[π−1
0 ]) is also a weak equiva-

lence. Since the monoid π0(R
+[π−1

0 ]) ∼= Z is in fact a group, we obtain the following
from Remark 13.36:

Corollary 13.41. — R+[π−1
0 ] is weakly equivalent to ΩkBkM(R+) as an Ek-algebra.
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CHAPTER 14

TRANSFERRING VANISHING LINES

In this section we explain under which circumstances vanishing lines for Ek-homol-
ogy imply vanishing lines for Ek−1-homology (“transferring down”) or Ek+1-homology
(“transferring up”). Transferring up uses the bar constructions of the previous section,
transferring down is the first application of our theory of Ek-cells. As before, C = SG

with S satisfying the axioms of Sections 2.1 and 7.1.

14.1. The bar spectral sequence

The k-fold iterated bar construction BEk(R, ε) for an augmented Ek-algebra con-
structed in Section 13.1 is a variation on the ordinary k-fold iterated bar construc-
tion. As such, there exists a bar spectral sequence which computes H∗,∗(BEk(R, ε))

from H∗,∗(B
Ek−1(R, ε)). This will be used in Section 14.2 to show that if R is an

Ek-algebra whose El-homology for l < k vanishes in a range of bidegrees, then the
same is true for its Ek-homology.

The setup is identical to that for the bar spectral sequence in Section 10.2.2. Let
GrModk denote the category of graded modules over a commutative ring k with
tensor product as usual involving a Koszul sign, and given a monoidal category G, let
GrModG

k denote the category of functors with the Day convolution monoidal structure.
As in Section 11.2, we let k[1] denote the monoidal unit (1G)∗(k) in this category,
given by the functor k[G(1G,−)].

Theorem 14.1. — Let R be an augmented E+
k -algebra which is cofibrant in C. Then

for each k-module A there is a strongly convergent spectral sequence

E1
g,p,q = Hg,q(B

Ek−1(R, ε)⊗p;A) =⇒ Hg,p+q(B
Ek(R, ε);A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1.
More generally, given a map f : R→ S of augmented E+

k -algebras which are cofi-
brant in C there is a strongly convergent spectral sequence

E1
g,p,q = Hg,q(B

Ek−1(S, ε)⊗p, BEk−1(R, ε)⊗p;A)

converging strongly to Hg,p+q(B
Ek(S, ε), BEk(R, ε);A).
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Proof. — There is a semi-simplicial object in C

X• : [p] 7−→ ∥BEk
p,•··· ,•(R, ε)∥,

given by forming the thick geometric realization in the last (k − 1) simplicial
directions. This is levelwise cofibrant, by Lemma 8.12. By Lemma 13.3, X0 is
weakly equivalent to 1. The object X1 is isomorphic to the geometric realization of
P1(1)× (B

Ek−1
•,...,•(R, ε)), and using the fact that P1(1) is contractible, we may conclude

that this is weakly equivalent to BEk−1(R, ε). More generally there is a (k − 1)-fold
simplicial map

(14.1) BEk
p,•··· ,•(R, ε) −→ P1(p)×B

Ek−1
•,...,•(R, ε)

⊗p

induced by the inclusion

Pk(p1, . . . , pk) ↪→ P1(p1)× Pk−1(p2, . . . , pk)
p1 ,

which remembers the grid inside each strip in the first simplicial direction. This map is
a homotopy equivalence, so (14.1) is a levelwise weak equivalence. As both objects are
levelwise cofibrant, by Lemma 8.12 we obtain an equivalence Xp ≃ X⊗p

1 . The spectral
sequence is then the geometric realization spectral sequence of Theorem 10.12 applied
to the levelwise cofibrant simplicial object X•, using the equivalences Xp ≃ X⊗p

1 to
identify the E1-page.

For the more general case, take the map of semi-simplicial objects(
[p] 7→ ∥BEk

p,•··· ,•(R, ε)∥
)
−→ [

(
[p] 7→ ∥BEk

p,•··· ,•(S, ε)∥
)

induced by f : R → S, and take the relative geometric realization spectral sequence.

If k is a field, or more generally if H∗,∗(BEk−1(R, ε);k) consists of flat k-modules,
there is an algebraic description of the E2-page of the absolute version of the bar
spectral sequence. To describe it, we use the Segal-like nature of the k-fold iterated
bar construction in one of its k directions to endow H∗,∗(B

Ek−1(R, ε);k) with the
structure of an augmented associative algebra in GrModG

k.

Lemma 14.2. — Let R be as in Theorem 14.1 and further suppose that G is a groupoid
such that Gx×Gy → Gx⊕y is injective for all x, y ∈ G. Then H∗,∗(BEk−1(R, ε);k) has
a natural structure of an augmented associative algebra in GrModG

k.
If H∗,∗(B

Ek−1(R, ε);k) consists of flat k-modules, then we may identify the
E2-page of the first spectral sequence in Theorem 14.1 as

E2
∗,p,∗ = TorH∗,∗(B

Ek−1 (R,ε);k)
p (k[1],k[1]),

with Tor formed in the category GrModG
k.

Proof. — For the first part, when G is a groupoid such that Gx × Gy → Gx⊕y is
injective for all x, y ∈ G we can apply the edge homomorphisms of Lemma 10.6 (i) to
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get a map

H∗,∗(X1;k)⊗H∗,∗(X1;k) −→ H∗,∗(X
⊗2
1 ;k) ∼= H∗,∗(X2;k)

(d1)∗−→ H∗,∗(X1;k),

where H∗,∗(X1;k) ∼= H∗,∗(B
Ek−1(R, ε);k). This induces a multiplication on H∗,∗(X1;k),

which may be seen to be associative by considering the face maps X3 → X1. The two
face maps X1 → X0 are equal, and define an augmentation

H∗,∗(X1;k)→ H∗,∗(X0;k) = k[1].

When H∗,∗(B
Ek−1(R, ε);k) consists of flat k-modules, the Künneth isomorphism

of Lemma 10.6 (i) gives an isomorphism

H∗,∗(Xp;k) ∼= H∗,∗(X
⊗p
1 ;k) ∼= H∗,∗(X1;k)⊗p.

In terms of this data, we make the identification

H∗,∗(Xp;k) ∼= (1G)∗(k)⊗H∗,∗(X1;k) (H∗,∗(X1;k)⊗p+1 ⊗ k[1])

and we recognize the chain complex (E1
∗,∗,∗, d

1) as the result of applying the functor
k[1]⊗H∗,∗(X1;k)− : GrModG

k → GrModG
k levelwise to the canonical bar resolution of k[1]

by free left H∗,∗(X1;k)-modules. This gives the claimed E2-page.

When R is an augmented E+
k+1-algebra, then it is in particular an augmented

E+
k -algebra so the first part of Theorem 14.1 says that H∗,∗(BEk−1(R, ε);k) is an aug-

mented associative k-algebra. We shall shortly prove that this is in fact a commutative
one. (This should come as no surprise given Theorems 13.7 and 13.23, which endow
the reduced Ek−1-bar construction with an E2-algebra structure.) Then we can com-
bine the external tensor product with the multiplication map on H∗,∗(BEk−1(R, ε);k)

(which is a map of algebras if and only if it is commutative) to obtain a multiplication

TorH∗,∗(B
Ek−1 (R,ε);k)

∗ (k[1],k[1])⊗ TorH∗,∗(B
Ek−1 (R,ε);k)

∗ (k[1],k[1])

TorH∗,∗(B
Ek−1 (R,ε);k)⊗H∗,∗(B

Ek−1 (R,ε);k)
∗ (k[1]⊗ k[1],k[1]⊗ k[1])

TorH∗,∗(B
Ek−1 (R,ε);k)

∗ (k[1],k[1]),

making TorH∗,∗(B
Ek−1 (R,ε);k)

∗ (k[1],k[1]) a graded-commutative algebra with addi-
tional grading.

Lemma 14.3. — If R is an augmented E+
k+1-algebra, then H∗,∗(BEk−1(R, ε);k) is an

augmented commutative algebra. When H∗,∗(B
Ek−1(R, ε);k) consists of flat k-mod-

ules, the first spectral sequence of Theorem 14.1 is a spectral sequence of k-algebras.

Proof. — For the statement to be meaningful we must have k−1 ≥ 1 and so k+1 ≥ 3,
which means that C must be symmetric monoidal. It shall be helpful to make the
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following general observation. For r ≤ k, take the map

(14.2) Pk(p1, . . . , pk) −→ Cr(p1 · · · pr)× Pk−r(pr+1, . . . , pk),

which considers the first r grid directions as a collection of little r-cubes and remem-
bers the remaining (k−r) grid directions as a grid in an (k−r)-dimensional cube. We
then define a (k−r)-fold semi-simplicial object Y (k)

p1,...,pr,•,...,• with (pr+1, . . . , pk)-sim-
plices given by

Cr(p1 · · · pr)× Pk−r(pr+1, . . . , pk)×Gp1,...,pk
(ε),

with Gp1,...,pk
(ε) as in Definition 13.2. As in that definition, the i-th face map dji in

the j-th direction (here r + 1 ≤ j ≤ k) is given by the face map of Definition 13.1
on the first factor. On the second factor, it is given by adjunction, by the map of
simplicial sets

Cr(p1 · · · pr)× Pk−r(pr+1, . . . , pk) −→ Ck(2)
α−→ MapC(Gp1,...,pk

(ε), Gp1,...,pj−1,pj−1,pj+1,...,pk
(ε))

with the first map given by {e} × {tji} 7→ idIr × δji , and the second map as in Defini-
tion 13.2.

We next describe a (k − r)-fold simplicial map

(14.3) Y
(k)
p1,...,pr,•,...,• −→ B

Ek−r
•,...,•(R, ε).

On the first factor this is simply the projection

Cr(p1 · · · pr)× Pk−r(pr+1, . . . , pk)→ Pk−r(pr+1, . . . , pk).

On the second factor, it is given by adjunction, by the map of simplicial sets

Cr(p1 · · · pr)× Pk−r(pr+1, . . . , pk) −→ Ck(p1 · · · pr)
β−→ MapC(Gp1,...,pk

(ε), Gpr+1,...,pk
(ε))

{e} × {tji} 7−→ {e× idIk−r},
with β given as follows: as long as 1 ≤ qj ≤ pj for all j ≥ r + 1 by the map

Ck(p1 · · · pr) −→ ER(p) = MapC(R⊗p1···pr ,R)

= MapC

 r⊗
j=1

pj⊗
ij=1

Bi1,...,ir,qr+1,...,qk
p1,...,pr,pr+1,...,pk

, Bqr+1,...,qk
pr+1,...,pk


and the evident identity maps on the remaining factors. If for some j ≥ r + 1, qj is
either 0 or pj + 1, it is the same map but with R replaced by 1.

We shall augment notation from the proof of Theorem 14.1 to make the dependence
on k clear: X(k)

• := ∥BEk
p,•,...,•(R, ε)∥. Since R is an E+

k+1-algebra, we may consider
the Ek+1-bar construction. We set r = 2, p1 = 1, and p2 = 2, then take the geometric
realization of (14.2) and (14.3) to obtain maps

∥BEk+1

1,2,•,...,•(R, ε)∥ −→ ∥Y
(k+1)
1,2,•,...,•∥ −→ BEk−1(R, ε).
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The multiplication on X(k)
1 can be recovered from this. To do so, we use the evident

homotopy equivalences

Pk(2, p3, . . . , pk+1) −→ P1(2)× Pk−1(p3, . . . , pk+1)
2

Pk+1(1, 2, p3, . . . , pk+1) −→ Pk(2, p3, . . . , pk+1),

C2(1 · 2)× Pk−1(p3, . . . , pk+1) −→ C2(2)× Pk−1(p3, . . . , pk+1)
2,

Pk(1, p3, . . . , pk+1) −→ Pk−1(p3, . . . , pk+1),

to obtain the weak equivalences in the following homotopy-commutative diagram

P1(2)× (X
(k)
1 )⊗2 X

(k)
2 X

(k)
1

∥BEk+1

1,2,•,...,•(R, ε)∥ X
(k)
1

C2(2)× (X
(k)
1 )⊗2 Y k1,2 BEk−1(R, ε).

d1≃

≃

≃

≃

Proving that the both squares commute up to homotopy is a simple matter of tracing
through the various maps of grids and cubes.

Thus we have exhibited the multiplication onX(k)
1 up to weak equivalence as arising

from a choice of point in C2(2). It now remains to observe that the multiplication in
reverse order similarly arises by picking another point in C2(2), and since C2(2) is
path-connected these maps are homotopic.

We showed in Theorem 14.1 that there is a weak equivalence and multiplication

(X
(k+1)
1 )⊗2 ≃←− X(k+1)

2 −→ X
(k+1)
1 .

As X(k+1)
1 ≃ BEk(R, ε), it is this zig-zag of maps that endows the bar spectral

sequence with an algebra structure, which by construction converges to the k-algebra
structure on H∗,∗(B

Ek(R, ε);k). On the E1-page it gives the map on canonical bar
resolutions induced by the E1-algebra structure in the remaining direction. This is
homotopic to the E1-algebra structure used to construct the product in the second
part of Theorem 14.1, and hence gives the k-algebra structure on Tor-groups discussed
above.

14.2. Transferring vanishing lines up

Transferring vanishes lines up follows from our expression of derived Ek-indecom-
posables in terms of the iterated bar construction, the bar spectral sequence described
in Theorem 14.1, and a Künneth-type theorem.
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Theorem 14.4. — Let R ∈ AlgEk
(C), and ρ : G → [−∞,∞]≥ be an abstract connec-

tivity such that ρ ∗ ρ ≥ ρ. If l ≤ k is such that HEl

g,d(R) = 0 for d < ρ(g) − l, then
HEk

g,d(R) = 0 for d < ρ(g)− l too.

Proof. — We claim that it is enough to consider the case (l, k) = (k− 1, k). To prove
this claim we need to explain how the case (l, l+1) provides the input for (l+1, l+2),
etc. We can use the case (l, l + 1) to prove that if HEl

g,d(R) = 0 for d < ρ(g) − l,
then H

El+1

g,d (R) = 0 for d < ρ(g) − l too. This conclusion provides input for the
case (l + 1, l + 2) when we rewrite it as HEl+1

g,d (R) = 0 for d < ρ′(g) − (l + 1) with
ρ′ := ρ+ 1, which still satisfies ρ′ ∗ ρ′ ≥ ρ′.

Let us from now assume that l = k − 1. By Theorem 13.7, we have equivalences

B̃Ek−1(R) ≃ Sk−1 ∧QEk−1

L (R) and B̃Ek(R) ≃ Sk ∧QEk

L (R),

so the assumption of the theorem is equivalent to saying that B̃Ek−1(R) is homologi-
cally ρ-connective, and our desired conclusion is equivalent to saying that B̃Ek(R) is
homologically (1 + ρ)-connective. We also have, by definition, homotopy cofiber se-
quences in C∗

BEk−1(1, ε1)+ −→ BEk−1(R+, εcan)+ −→ B̃Ek−1(R),

BEk(1, ε1)+ −→ BEk(R+, εcan)+ −→ B̃Ek(R).

Let us write ε for either of the augmentations ε1 or εcan.
The relative version of the bar spectral sequence of Theorem 14.1 starts form

E1
g,p,q = Hg,q(B

Ek−1(R+, ε)⊗p, BEk−1(1, ε)⊗p)

and converges strongly to Hg,p+q(B
Ek(R+, ε), BEk(1, ε)) = Hg,p+q(B̃

Ek(R)). The
assumption can be rephrased as saying that the map BEk−1(1, ε)→ BEk−1(R+, ε) is
homologically ρ-connective. As BEk−1(1, ε) ≃ 1 by Lemma 13.3, which has homo-
logical connectivity given by the unit 1conn ∈ [−∞,∞]G≥ as in (11.1), the object
BEk−1(R+, ε) is inf(1conn, ρ)-connective.

By Corollary 11.5 the map BEk−1(1, ε)⊗p → BEk−1(R+, ε)⊗p is then homologically
(inf(1conn, ρ)

∗p−1 ∗ρ)-connective, and hence ρ-connective using the fact that ρ∗ρ ≥ ρ.
Furthermore, it is ∞-connective if p = 0, so E1

g,p,q vanishes if p = 0 or if q < ρ(g),
so it vanishes for p + q < 1 + ρ(g). As this spectral sequence converges strongly
to Hg,p+q(B̃

Ek(R)) ∼= HEk

g,p+q−k(R), the conclusion follows.

The absolute case serves as input for the following relative version:

Proposition 14.5. — Let f : R→ S be a map of Ek-algebras, and ρ, σ : G→ [−∞,∞]≥
be abstract connectivities such that ρ ∗ ρ ≥ ρ and ρ ∗ σ ≥ σ. If l ≤ k is such
that HEl

g,d(R) = 0 = HEl

g,d(S) for d < ρ(g) − l and HEl

g,d(S,R) = 0 for d < σ(g),
then HEk

g,d(S,R) = 0 for d < σ(g) too.

Proof. — By the same reasoning as in the proof of Theorem 14.4, it suffices to consider
the case (l, k) = (k − 1, k). As above, let us write ε for the canonical augmentation
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of R+ or S+. The relative version of the bar spectral sequence of Theorem 14.1 starts
from

E1
g,p,q = Hg,q(B

Ek−1(S+, ε)⊗p, BEk−1(R+, ε)⊗p)

and converges strongly to Hg,p+q(B
Ek(S+, ε), BEk(R,+ ε)). Theorem 13.7 and

Lemma 13.5 give that BEk−1(R+, ε) ≃ 1⊕ Sk−1 ∧QEk−1

L (R) and similarly for S, so
the map BEk−1(R+, ε) → BEk−1(S+, ε) is (σ + k − 1)-connective. Its domain and
target are inf(1conn, ρ)-connective by Theorem 14.4.

By Corollary 11.5 the map BEk−1(R+, ε)⊗p → BEk−1(S+, ε)⊗p is then homologi-
cally (inf(1conn, ρ)

∗p−1∗(σ+k−1))-connective, and hence (σ+k−1)-connective. Fur-
thermore, it is∞-connective if p = 0, so E1

g,p,q vanishes if p = 0 or if q < σ(g)+k−1,
so it vanishes for p + q < σ(g) + k. As this spectral sequence converges strongly
to Hg,p+q(B

Ek(S+, ε), BEk(R+, ε)) ∼= HEk

g,p+q−k(S,R), the conclusion follows.

14.3. Transferring vanishing lines down

To transfer vanishing lines down, we use the theory of CW approximation that we
have developed in Section 11.5 and so we must assume Axiom 11.19.

Theorem 14.6. — Suppose that G is Artinian, let R ∈ AlgEk
(C) be reduced and 0-con-

nective, l ≤ k, and ρ : G→ [−∞,∞]≥ be an abstract connectivity such that ρ ∗ ρ ≥ ρ

and HEk

g,d(R) = 0 for d < ρ(g)− l. Then HEl

g,d(R) = 0 for d < ρ(g)− l.

Proof. — Firstly, the groupoid G and the operad Ek satisfy the hypotheses of
Lemma 11.16. The canonical morphism i→ R is between 0-connective reduced Ek-al-
gebras, so by Theorem 11.21 we may construct a CW approximation Z

∼→ R, where Z

consists of (g, d)-cells with d ≥ ρ(g)− l and has skeletal filtration sk(Z) ∈ AlgEk
(CZ≤).

By Theorem 6.14, the associated graded gr(sk(Z)) of this filtration is given by Ek(X),
where X is a wedge of d∗Sn,d’s with d ≥ ρ(g) − l. The spectral sequence of Theo-
rem 10.15 with O = El takes the form

E1
g,p,q = HEl

g,p+q,p(Ek(X)) =⇒ HEl
g,p+q(R),

so, forgetting the internal grading, it is enough to show the vanishing of HEl

g,d(Ek(X))

for d < ρ(g)− l. To do this we use the weak equivalences

Sl ∧QEl

L (Ek(X)) ≃ B̃El(Ek(X)) ≃ Ek−l(Sl ∧X+)

in C∗ from Theorems 13.7 and 13.8, so that it suffices to show that Ek−l(Sl ∧X+) is
homologically ρ-connective.

We have that Sl ∧ X+ is homologically ρ-connective, so it follows from
Lemma 11.4 (i) that (Sl ∧ X+)⊗p is homologically ρ∗p-connective, so ρ-connec-
tive (as ρ is lax monoidal). If C is ∞-monoidal, then we have

Ek−l(S
l ∧X+) =

∨
i≥1

Ck−l(p)×Sp
(Ek−l(S

l ∧X+))⊗p,
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and it follows from the homotopy orbit spectral sequence as in Section 10.2.3 that
this is also homologically ρ-connective, as required. If C is 2-monoidal, one needs to
replace Ck−l(p) by CFB2

k−l(p) and the symmetric group Sp by the braid group βp.

By doing a more careful analysis we can occasionally relax the condition
d < ρ(g)− l; we give the following theorem as an example of a general type of
argument.

Theorem 14.7. — Let R ∈ AlgE∞(sModNQ) be a reduced E∞-algebra in N-graded sim-
plicial Q-modules such that H∗,0(R+) = Q[σ] with |σ| = (1, 0). If HEk

g,d(R) = 0

for d < 2(g − 1) then HE1

g,d(R) = 0 for d < 3
2 (g − 1).

This does not follow from Theorem 14.6, as the assumed vanishing range for Ek-ho-
mology is d < (2g − 1)− 1, but ρ(g) = 2g − 1 does not satisfy ρ ∗ ρ ≥ ρ.

Proof. — Firstly, by transferring vanishing lines up we may suppose thatHE∞
g,d (R) = 0

for d < 2(g− 1). As in the proof of Theorem 14.6, by filtering a suitable CW approx-
imation of R we can reduce to the case R = E∞(X) with X a wedge of spheres such
that Hg,d(X) = 0 for d < 2(g − 1) and H1,0(X) = Q{σ}.

We use the equivalences

S1 ∧QE1

L (E∞(X))) ≃ B̃E1(E∞(X)) ≃ E∞(S1 ∧X)

from Theorems 13.7 and 13.8. By F. Cohen’s computations of the homology of free
Ek-algebras, which shall be explained in Section 16, we have

H∗,∗(E∞(S1 ∧X)) ∼= ΛQ(H∗,∗(S
1 ∧X)),

the free graded-commutative algebra on the rational homology of the suspension
S1 ∧X, which we may write as ΛQ(Q{sσ})⊗A where sσ has bidegree (1, 1) and A is a
free graded-commutative algebra on generators all of which have slope d

g ≥
3
2 , so A is

trivial in bidegrees (g, d) with d < 3
2g. It follows that HE1

g,d(R) = 0 for d < 3
2 (g − 1)

as required.

Remark 14.8. — In fact, we may also do similar analyzes with Fp-coefficients. Then
we obtain the same vanishing range HE1

g,d(R) = 0 for d < 3
2 (g − 1) as long as p ≥ 5,

and a lower range d < 4
3 (g − 1) for p = 3. For p = 2 one would need to know more

information about the cell structures to improve upon Theorem 14.7. To see this done
in an example, see Theorem 10.2 of [46].
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CHAPTER 15

COMPARING ALGEBRA AND MODULE CELLS

Given a map f : R → S of Ek-algebras, we may consider it as a map of E1-al-
gebras by neglect of structure and using the constructions of Section 12.2 obtain a
map f : R→ S of unital associative algebras. In this section we compare HEk

∗,∗(S,R)

(which measures the Ek-algebra cells necessary to construct S from R) with HR
∗,∗(S)

(which measures the R-module cells necessary to construct S).

15.1. Coproducts of Ek-algebras

In this section we discuss coproducts of unital Ek-algebras; we do so in general
when k =∞ and for free ones when k <∞.

15.1.1. Coproducts of E∞-algebras. — The coproduct of unital E∞-algebras is easy
to describe. Recall from Proposition 4.30 that when C is symmetric monoidal and C is
an operad given by a∞-symmetric sequence in sSet, the category AlgC(C

G) inherits a
symmetric monoidal structure ⊗C compatible with the forgetful functor, in the sense
that there is a natural isomorphism UC(R⊗C S) ∼= UC(R)⊗ UC(S).

Let R and S be E+
∞-algebras. The unit maps 1 → R and 1 → S are maps

of E+
∞-algebras. Since there is a natural isomorphism R⊗E+

∞
1 ∼= R of E+

∞-algebras,
they induce maps

R −→ R⊗E+
∞

S←− S

and hence give a natural map R ⊔E+
∞ S→ R⊗E+

∞
S of E+

∞-algebras.

Proposition 15.1. — Let R and S be E+
∞-algebras in C = SG for any G, then

R ⊔L,E
+
∞ S −→ R⊗L

E+
∞

S

is a weak equivalence.
Furthermore, if R and S are cofibrant in C, then R⊗L

E+
∞

S→ R⊗E+
∞

S is a weak
equivalence.

Proof. — For the first part, we must show that R ⊔E+
∞ S → R ⊗E+

∞
S is a weak

equivalence if R and S are cofibrant in AlgE+
∞

(C).
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We first prove this when R and S are free E+
∞-algebras on cofibrant objects in C.

The map in question is induced by a map of right E+
∞-module functors C2 → C

E+
∞(−) ⊔E

+
∞ E+

∞(−) ∼= E+
∞(− ⊔−) =⇒ E+

∞(−)⊗E+
∞

E+
∞(−),

which we claim is a weak equivalence when evaluated on cofibrant objects of C. We
may verify this on underlying objects, where the natural transformation becomes a
map

E+
∞(− ⊔−) =⇒ E+

∞(−)⊗ E+
∞(−),

which we shall now describe. First, note that E+
∞(X ⊔ Y ) may be described as the

colimit as k →∞ of a coproduct over n and n′ of terms

Embrect(
⊔
n+n′

Ik, Ik)×Sn×Sn′ X
⊗n ⊗ Y ⊗n

′
,

while E+
∞(X) ⊗ E+

∞(Y ) may be described as the colimit as k → ∞ of a coproduct
over n and n′ of terms(

Embrect(
⊔
n

Ik, Ik)× Embrect(
⊔
n′

Ik, Ik)

)
×Sn×Sn′ X

⊗n ⊗ Y ⊗n
′
.

The natural transformation is induced by the Sn ×Sn′ -equivariant restriction map

colim
k→∞

Embrect(
⊔
n+n′ I

k, Ik)

colim
k→∞

(
Embrect(

⊔
n I

k, Ik)× Embrect(
⊔
n′ I

k, Ik)
)
,

which is a weak equivalence between free Sn ×Sn′-spaces (because both are con-
tractible). If X and Y are cofibrant then − ×Sn×Sn′ X

⊗n ⊗ Y ⊗n′ is a left Quillen
functor so preserves weak equivalences between free Sn ×Sn′ -spaces, as required.

Next we discuss the case that R and S are cofibrant in AlgE∞+ (C). In that case, we
take the thick monadic bar resolutions to obtain functorial free simplicial resolutions
R• = σ∗B•(E

+
∞, E

+
∞,R) and S• = σ∗B•(E

+
∞, E

+
∞,S), as R and S are in particular

cofibrant in C.
Then the levelwise coproduct R• ⊔E

+
∞ S• is a bisimplicial object augmented

over R ⊔E+
∞ S, and the levelwise tensor product R• ⊗E+

∞
S• is a bisimplicial object

augmented over R ⊗E+
∞

S. We now remark that the geometric realization of a
bisimplicial object may be obtained in two steps. Thus consider first, for fixed q, the
commutative diagram

|[p] 7→ Rp ⊔E
+
∞ Sq|E+

∞
R ⊔E+

∞ Sq

|[p] 7→ Rp ⊗E+
∞

Sq|E+
∞

R⊗E+
∞

Sq.
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To prove that the top horizontal map is a weak equivalence, we use the fact that
− ⊔E+

∞ Sq, being a colimit, commutes with geometric realization. Thus it suffices to
prove that |R•|E+

∞
⊔E+

∞ Sq → R ⊔E+
∞ Sq is a weak equivalence. Since Sq is cofibrant

in AlgE+
∞

(C), the functor − ⊔E+
∞ Sq preserves weak equivalences between cofibrant

objects. That |R•|E+
∞

is cofibrant follows from Lemma 8.9, and we assumed that R is
cofibrant.

There is a map |R• ⊗E+
∞

Sq|E+
∞
→ |R•|E+

∞
⊗E+

∞
Sq which is an isomorphism be-

cause geometric realization in E+
k -algebras or in the underlying category coincide by

part (iii) of Lemma 8.17, UE
+
∞(− ⊗E+

∞
Sq) ∼= UE

+
∞(−) ⊗ UE+

∞(Sq), and −⊗− com-
mutes with geometric realization in each entry.

Thus it suffices to prove that |R•|E+
∞
⊗E+

∞
Sq → R⊗E+

∞
Sq is a weak equivalence. By

the above observations it suffices to note that − ⊗UE+
∞Sq preserves weak equivalences

between cofibrant objects.
The left vertical map is a levelwise weak equivalence by the discussion for free

E+
∞-algebras, and we claim that both simplicial objects are Reedy cofibrant. This

follows since − ⊔E+
∞ Sq and − ⊗E+

∞
Sq commute with the formation of latching

objects and preserve cofibrations between cofibrant objects since Sq is cofibrant. Thus
by Lemma 8.9, the left vertical map is a weak equivalence between cofibrant objects.

A similar argument with R taking the role of Sq implies that R⊔E+
∞S→ R⊗E+

∞
S is

a weak equivalence.

Finally, it remains to observe that the above argument tells us that the map

R⊗L
E+
∞

S −→ R⊗E+
∞

S

is a weak equivalence if R and S are cofibrant in C; whenever we discussed ⊗E+
∞

, we
applied UE

+
∞ and argued only using cofibrancy in C.

Let us specialize this to the case that R and S are both free E+
∞-algebras.

Corollary 15.2. — For A,B ∈ C cofibrant, 0-connective and reduced there is a natural
weak equivalence

E∞(A ⊔B) ≃ E∞(A)⊗ E+
∞(B)

of left E∞(A)-modules.

Proof. — The composition E+
∞(B) → E+

∞(A ⊔ B) → E∞(A ⊔B) has target a left
E∞(A)-module, so extends to a morphism

E∞(A)⊗ E+
∞(B) −→ E∞(A ⊔B)

of E∞(A)-modules. To verify that it is an equivalence we may neglect the module
structure, whereupon it is proven as in the first part of the proof of Proposition 15.1.

15.1.2. Coproducts of Ek-algebras, k < ∞. — For unital Ek-algebras with k < ∞
there is not such a simple description of the coproduct as Proposition 15.1, but we do
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nonetheless have the following analogue of Corollary 15.2, which for many purposes
suffices. The proof will use homology to detect weak equivalences, so we must assume
that S satisfies Axiom 11.19, and in particular that it is pointed.

Theorem 15.3. — Suppose that S satisfies Axiom 11.19 and G is (k + 1)-monoidal as
well as Artinian. Then for A,B ∈ C cofibrant, 0-connective and reduced there is a
natural weak equivalence

Ek(A ∨B) ≃ Ek(A)⊗ E+
k (E+

1 (Sk−1 ∧A)⊗B)

of left Ek(A)-modules.

Remark 15.4. — When G is discrete, this theorem can proven at the level of homology
by direct calculation, using the description (due to F. Cohen) of the homology of free
Ek-algebras which we shall recall in Section 16. This is enough to prove Theorem 15.9
and Corollary 15.10 below in the case that G is discrete, which suffices for most
applications. Rather than follow the admittedly difficult proof of Theorem 15.3 the
reader may wish to go ahead to Section 16, after which they will be able to prove
Theorem 15.3 at the level of homology themselves.

Remark 15.5. — The assumption that G be (k + 1)-monoidal, and not merely
k-monoidal as suffices to define Ek-algebras, may seem surprising but is in fact
necessary for the statement of Theorem 15.3 to hold. This may be seen by taking
G to be the free braided monoidal category on one generator X, S = sModk, and
A = B = X∗(k), then directly calculating both sides.

We shall return to the proof of this theorem in Section 15.4.

15.2. Comparison in the E∞ case

In the case of E∞-algebras, the comparison results we have in mind can be deduced
from the following more precise theorem.

Theorem 15.6. — Suppose that G is Artinian. Let f : R → S be a morphism
in AlgE∞(C) between cofibrant, 0-connective and reduced objects. Then there is a
strongly convergent spectral sequence

E1
g,p,q = H̃g,p+q,p(E

+
∞((−1)∗Q

E∞
L (S)/QE∞L (R));A) =⇒ HR

g,p+q(S;A)

with differentials dr : Erg,p,q → Erg,p−r,q+r−1.

To interpret this as a comparison result, suppose that σ : G→ [−∞,∞]≥ is an ab-
stract connectivity such that σ∗σ ≥ σ, and that HE∞

g,d (S,R) = 0 for d < σ(g). That is,
QE∞L (S)/QE∞L (R) is homologically σ-connective. Then it follows from Lemma 11.4 (i)
that (QE∞L (S)/QE∞L (R))⊗p is homologically σ∗p-connective, and hence from the ho-
motopy orbits spectral sequence of Section 10.2.3 that

C∞(p)+ ∧Sp
(QE∞L (S)/QE∞L (R))⊗p
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is homologically σ∗p-connective too.
In particular, as σ ∗ σ ≥ σ it follows that the map

0∗1 −→ E+
∞((−1)∗Q

E∞
L (S)/QE∞L (R))

is σ-connective, which together with the spectral sequence of Theorem 15.6 shows
that HR

g,d(S) = 0 for d < inf(1conn, σ)(g).
Going further, it also follows that the map

0∗1 ∨ (−1)∗(Q
E∞
L (S)/QE∞L (R)) −→ E+

∞((−1)∗Q
E∞
L (S)/QE∞L (R))

is (σ ∗ σ)-connective, which can be used to obtain a map HR
g,d(S,R) → HE∞

g,d (S,R)

which is an isomorphism for d < (σ ∗σ)(g) and an epimorphism for d < (σ ∗σ)(g)+1.
We do not state these as formal theorems here, as they follow from the more general
Theorem 15.9 and Corollary 15.10 below.

Lemma 15.7. — Let X → Y be a cofibration between cofibrant, 0-connective and
reduced objects in C, inducing a morphism E∞(X)→ E∞(Y ) of non-unital E∞-alge-
bras. Then there is a homology equivalence

B
(
1,E∞(X),E∞(Y )

)
≃ E+

∞(Y/X),

where Y/X denotes the cofiber of X → Y .

Proof. — The map E∞(Y ) → E∞(Y/X) induced by the quotient Y → Y/X gives
an augmentation

(15.1) B•(1,E∞(X),E∞(Y )) −→ E∞(Y/X)

and we shall show that this is a homology equivalence after geometric realization.
To do so, promote X and Y to filtered objects fX and fY by: fX(i) = ∗ for i < 0,

and fX(i) = X for i ≥ 0; fY (i) = ∗ for i < 0, fY (0) = X, and fY (i) = Y for i > 0,
with the evident structure maps. Then gr(fX) = 0∗X and gr(fY ) = 0∗X ∨1∗(Y/X).
The augmented simplicial object (15.1) is promoted to a filtered one, with associated
graded given by

B•(0∗1,E∞(0∗X),E∞(0∗X ∨ 1∗(Y/X))) −→ E∞(1∗(Y/X)).

This augmentation is a split epimorphism. By Corollary 15.2 with A = 0∗X and
B = 1∗(Y/X) we have an equivalence

E∞(0∗X ∨ 1∗(Y/X)) ≃ E∞(0∗X)⊗ E+
k (1∗(Y/X))

of left E∞(0∗X)-modules, so that

B(0∗1,E∞(0∗X),E∞(0∗X ∨ 1∗(Y/X))) ≃ E+
∞(1∗(Y/X)).

Thus this augmentation is a weak equivalence. It follows from the strongly conver-
gent spectral sequence associated to this filtered object that (15.1) is a homology
equivalence after geometric realization.
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Proposition 15.8. — Suppose that G is Artinian. Let f : R → S be a morphism
in AlgE∞(C) between cofibrant, 0-connective and reduced objects. Then there is a cofi-
brant descendingly filtered object with colimit B(1,R,S), contractible homotopy limit,
and whose associated graded is homology equivalent to

E+
∞

(
(−1)∗Q

E∞
L (S)/QE∞L (R)

)
,

where QE∞L (S)/QE∞L (R) denotes the homotopy cofiber of QE∞L (R)→ QE∞L (S).

Proof. — We shall use the canonical multiplicative filtration described in Sec-
tion 5.4.2, given by the functor

(−1)alg∗ : AlgE∞(C) −→ AlgE∞(CZ≤)

left adjoint to evaluating at −1 ∈ Z≤.
There is an induced morphism

(−1)alg∗ R −→ (−1)alg∗ S

between cofibrant objects in AlgEk
(CZ≤), which can be rectified to a morphism

of monoids (−1)alg∗ R → (−1)alg∗ S between objects which are cofibrant in CZ≤ , by
Lemma 12.7 (i). We may therefore form the cofibrant filtered object

(15.2) B
(
0∗1, (−1)alg∗ R, (−1)alg∗ S

)
∈ CZ≤ .

This has colimit B(1,R,S). In the proof of Theorem 10.20 we established the claim
that for any coefficients A and reduced R, LC∗((−1)alg∗ (R)(−a);A) is c∗a-connective,
with the abstract connectivity c as in (10.6). The same result will hold for S. Because
c ∗ c ≥ c, this condition is preserved by tensor product. By an induction over the
skeleta it is also preserved by geometric realization, so it holds for the bar construction
too. As G is assumed Artinian it admits a rank functor r : G→ N≤, and we have the
estimate c∗a(g) ≥ a− r(g). It follows that (15.2) has contractible homotopy limit.

The associated graded is

B
(
0∗1,E∞((−1)∗Q

E∞
L (R)),E∞((−1)∗Q

E∞
L (S))

)
∈ CZ= ,

as taking associated graded commutes with (−) by Lemma 12.7 (iii), and then using
Proposition 5.11. Lemma 15.7 identifies this up to homology equivalence with the
associated graded as described in the statement.

Proof of Theorem 15.6. — This is the spectral sequence for the filtered object of
Proposition 15.8; as its homotopy limit is contractible the spectral sequence converges
conditionally (see Theorem 10.10).

The strong convergence is proved as in Theorem 10.20, which yields the special
case R = i when we take O = C∞. We briefly recall the argument. Since R and S

are reduced and 0-connective, so is QE∞L (S)/QE∞L (R), i.e., it is c-connective. Then
E+
∞((−1)∗Q

E∞
L (S)/QE∞L (R))(−a) is c∗a-connective, so that in terms of a rank functor

r : G → N≤ we have E1
g,p,q = 0 for p + q < −p − r(g). In this spectral sequence the
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differentials take the form

dr : Ern,p,q −→ Ern,p−r,q+r−1

so there are only finitely-many differentials exiting each position. Therefore the derived
E∞-page vanishes and by [18, Theorem 7.3] this spectral sequence actually converges
strongly.

15.3. Comparison in general

The comparison results explained after Theorem 15.6 will, formulated correctly,
hold for Ek-algebras, although nothing so simple as Lemma 15.7 or Proposition 15.8
is available when k <∞.

Theorem 15.9. — Suppose that S satisfies Axiom 11.19, and that G is (k+1)-monoidal
and Artinian. Let ρ, σ : G→ [−∞,∞]≥ be abstract connectivities such that ρ ∗ ρ ≥ ρ,
σ ∗ σ ≥ σ, and ρ ∗ σ ≥ σ ∗ σ. If

(i) R ∈ AlgEk
(C) is such that HEk

g,d(R) = 0 for d < ρ(g)− (k − 1),
(ii) f : R→ S is an Ek-algebra map such that HEk

g,d(S,R) = 0 for d < σ(g), and
(iii) R and S are cofibrant in C, 0-connective, and reduced,

then there is a map HR
g,d(S,R) → HEk

g,d(S,R) which is an isomorphism for
d < (σ ∗ σ)(g), and an epimorphism for d < (σ ∗ σ)(g) + 1.

Proof. — Without loss of generality, we may assume that f : R→ S is a cofibration of
cofibrant Ek-algebras. Similarly to the proof of Proposition 15.8, we use the canonical
multiplicative filtration, and so consider the induced cofibration (−1)alg∗ R→ (−1)alg∗ S

of associative monoid objects which are cofibrant in CZ≤ . We then form the cofibrant
filtered object

B := B(0∗1, (−1)alg∗ R, (−1)alg∗ S/(−1)alg∗ R) ∈ CZ≤ ,

which has colimit B(1,R,S/R) whose homology groups are HR
∗,∗(S,R). This filtered

object has contractible homotopy limit just as in the proof of Proposition 15.8, using
the assumption that G is Artinian. Its associated graded is

gr(B) = B
(
0∗1,Ek((−1)∗Q

Ek

L (R)),Ek((−1)∗Q
Ek

L (S))/Ek((−1)∗Q
Ek

L (R))
)
.

The graded object Ek((−1)∗Q
Ek

L (S))/Ek((−1)∗Q
Ek

L (R)) is contractible in grading 0
and is QEk

L (S)/QEk

L (R) in grading −1, so gr(B) has these properties too. Thus the
spectral sequence

E1
g,p,q = Hg,p+q,p(gr(B)) =⇒ HR

g,p+q(S,R)
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with differentials dr : Ern,p,q → Ern,p−r,q+r−1 provides an edge homomorphism
HR
g,d(S,R) → Hg,d,−1(gr(B)) = HEk

g,d(S,R), which is the required map. The connec-
tivity property of this map then follows from this spectral sequence and the following
vanishing result.

Claim. — We have Hg,p+q,p(gr(B)) = 0 for p+ q < (σ ∗ σ)(g) and p < −1.

As in the proof of Lemma 15.7 we may endow QEk

L (R) and QEk

L (S) with filtrations
such that

gr(QEk

L (R)) = 0∗(Q
Ek

L (R)) and gr(QEk

L (S)) = 0∗(Q
Ek

L (R)) ∨ 1∗(Q
Ek

L (S)/QEk

L (R)).

This induces a further filtration of gr(B). By Theorem 15.3,

Ek((−1)∗gr(QEk

L (S)))/Ek((−1)∗gr(QEk

L (R)))

is equivalent to

Ek((−1, 0)∗gr(QEk

L (R)))⊗ Ek(E+
1 (Sk−1 ∧ (−1, 0)∗(Q

Ek

L (R)))⊗ (−1, 1)∗(Q
Ek

L (S)/QEk

L (R)))

as a Ek((−1, 0)∗gr(QEk

L (R)))-module, and so we have

gr(gr(B)) ≃ Ek(E+
1 (Sk−1 ∧ (−1, 0)∗(Q

Ek

L (R)))⊗ (−1, 1)∗(Q
Ek

L (S)/QEk

L (R)))

as an object of C with two additional Z-gradings. Let us for now suppress the addi-
tional gradings from the notation.

By assumption QEk

L (S)/QEk

L (R) is homologically σ-connective and Sk−1 ∧QEk

L (R)

is homologically ρ-connective. In particular, using

E+
1 (Sk−1 ∧QEk

L (R)) ≃
∨
p≥0

(Sk−1 ∧QEk

L (R))⊗p,

it follows from Lemma 11.4 (i) (and the fact that ρ ∗ ρ ≥ ρ, which we shall use
repeatedly) that the map

1 −→ E+
1 (Sk−1 ∧QEk

L (R))

is homologically ρ-connective, its source is homologically 1conn-connective, and its
target is homologically inf(1conn, ρ)-connective. From this it follows that the map

QEk

L (S)/QEk

L (R) −→ E+
1 (Sk−1 ∧QEk

L (R))⊗ (QEk

L (S)/QEk

L (R))

is homologically (ρ ∗ σ)-connective, its source is homologically σ-connective, and its
target is homologically (inf(1conn, ρ) ∗ σ)-connective. Using the definition

E+
k (−) =

∨
p≥0

Ck(p)+ ∧Sp
(−)⊗p,

Corollary 11.6, and the homotopy orbits spectral sequence of Section 10.2.3, it follows
that the map

Ek(Q
Ek

L (S)/QEk

L (R)) −→ gr(gr(B))

is homologically infa+b≥0(σ
∗a ∗ (ρ∗σ)∗ (inf(1conn, ρ)∗σ)∗b)-connective. Manipulating

the various conditions on the abstract connectivities ρ and σ, it follows that this map
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is homologically σ ∗ σ-connective. On the other hand, the map

QEk

L (S)/QEk

L (R) −→ Ek(Q
Ek

L (S)/QEk

L (R))

is also homologically σ ∗σ-connective, as (QEk

L (S)/QEk

L (R))⊗p is for all p ≥ 2. Recall-
ing now the additional gradings, the composition

(−1, 1)∗(Q
Ek

L (S)/QEk

L (R)) −→ gr(gr(B))

is the induced map on associated gradeds for the second filtration induced by the
inclusion (−1)∗(Q

Ek

L (S)/QEk

L (R)) → gr(B) of the piece of grading −1, so the claim
follows.

We will typically apply this result via the following special case.

Corollary 15.10. — Suppose that S satisfies Axiom 11.19, that G is (k + 1)-monoidal
and Artinian, and that ρ : G→ [−∞,∞]≥ is an abstract connectivity so that ρ∗ρ ≥ ρ.
If

(i) R ∈ AlgEk
(C) is such that HEk

g,d(R) = 0 for d < ρ(g)− (k − 1),
(ii) f : R→ S is an Ek-algebra map such that HEk

g,d(S,R) = 0 for d < ρ(g), and
(iii) R and S are cofibrant in C, 0-connective, and reduced,

then we have HR
g,d(S) = 0 for d < inf(1conn, ρ)(g).

In addition, for an abstract connectivity µ such that µ ∗ ρ ≥ µ, if

(iv) M is a left R-module such that Hg,d(M) = 0 for d < µ(g), and
(v) M is cofibrant in C,

then we have Hg,d(B(M,R,S)) = 0 for d < µ(g).

Proof. — For the first part, we apply Theorem 15.9 with σ = ρ. This yields a
map HR

g,d(S,R)→ HEk

g,d(S,R) which is an isomorphism for d < (ρ ∗ ρ)(g), and as the
latter vanishes for d < ρ(g) ≤ (ρ ∗ ρ)(g), it follows that HR

g,d(S,R) = 0 for d < ρ(g).
From the long exact sequence

· · · −→ HR
g,d(R)

f∗−→ HR
g,d(S) −→ HR

g,d(S,R)
∂−→ HR

g,d−1(R) −→ · · ·

and the fact that HR
g,d(R) is supported in bidegree (g, d) = (0, 0), it follows

that HR
g,d(S) = 0 for d < inf(1conn, ρ)(g).

For the second part, we apply Theorem 11.21 to the operad O having 1-ary oper-
ations given by R and no higher arity operations, whose algebras are right R-mod-
ules, and the O-algebra morphism f : R → S. The augmentation ε : R → 1

makes O into an augmented non-unitary homologically connective Σ-cofibrant op-
erad in C. Furthermore, as R is reduced, ε : O(1) = R→ 1 satisfies assumption (i) of
Lemma 11.16. Thus Theorem 11.21 indeed applies, and gives a relative CW approxi-
mation f : R → colim sk(f) → S where sk(f) has no (g, d)-cells with d < µ(g). This
yields a filtered object

B(0∗M, 0∗R, sk(f))
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with colimit B(M,R, sk(f)) ≃ B(M,R,S), contractible limit, and associated graded
(suppressing the additional grading) given by

B(M,R,R ∨
∨
α∈I

R⊗ Sgα,dα) ≃M⊗ (S0,0 ∨
∨
α∈I

Sgα,dα)

with dα ≥ µ(gα).
By assumption M is homologically µ-connective, and (S0,0∨

∨
α∈I S

gα,dα) is homo-
logically inf(1conn, ρ)-connective, so this has homological connectivity
µ ∗ inf(1conn, ρ) = inf(µ, µ ∗ ρ) ≥ µ. The spectral sequence for this filtered object
then shows that B(M,R,S) has this homological connectivity too.

15.4. Proof of Theorem 15.3

In Section 15.4.1 below we will describe a map

f+
k : E+

1 (Sk−1 ∧A)⊗B fk−→ Ek(A ∨B)
inc−−→ E+

k (A ∨B),

which only exists when the homotopy category of C is enriched in abelian groups
(which follows from Axiom 11.19). As the target is obtained by neglect of structure
from an E+

k -algebra this extends to a map Fk : E+
k (E+

1 (Sk−1 ∧A)⊗B)→ E+
k (A∨B)

of unital Ek-algebras, and hence to a map

F k : E+
k (E+

1 (Sk−1 ∧A)⊗B) −→ E+
k (A ∨B) −→ Ek(A ∨B).

Furthermore, the map Ek(A)→ Ek(A ∨B) makes Ek(A ∨B) into a left Ek(A)-mod-
ule, so F k extends to a map

αk : Ek(A)⊗ E+
k (E+

1 (Sk−1 ∧A)⊗B) −→ Ek(A ∨B)

of left Ek(A)-modules.
It is this map which we shall show is a weak equivalence. Though we have con-

structed it as a map of left Ek(A)-modules, to show it is a weak equivalence we may
forget this module structure.

If R is a E1-algebra then the inclusion R+ = 1⊔R→ R is a weak equivalence by
the formula (12.2). In particular this applies to R = Ek(X). Thus there is a homotopy
commutative diagram

E+
k (A)⊗ E+

k (E+
1 (Sk−1 ∧A)⊗B) Ek(A)⊗ E+

k (E+
1 (Sk−1 ∧A)⊗B)

E+
k (A ∨B)⊗ E+

k (A ∨B)

E+
k (A ∨B) Ek(A ∨B),

≃

E+
k (ι)⊗Fk

βk αk

µ

≃

where µ is given by multiplication using a point in C+1 (2) ⊂ C+k (2). Denoting by βk the
left composition in the diagram, we must show that this is an equivalence.
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If k = 1 then we will show this directly. If k ≥ 2 then we have assumed that G, and
hence C, is∞-monoidal, so by Proposition 4.30 there is a (k−1)-monoidal structure on
the category of E+

k−1-algebras in C. Using this to consider E+
k (A∨B)⊗E+

k (A∨B) as an
E+
k−1-algebra, our choice of multiplication as lying in C+1 (2) means that the map µ is

an E+
k−1-algebra map. Thus the map βk is a map of augmented E+

k−1-algebras, so to
show it is a weak equivalence it is enough, by Axiom 11.19 and Proposition 11.15, to
take augmentation ideals I(−) as in Section 4.4, and show that Sk−1 ∧QEk−1

L (I(βk)) is
a weak equivalence. Applying Proposition 11.15 uses our assumption that A and B

are 0-connective and reduced.
We next apply the natural weak equivalence Sk−1 ∧ QEk−1

L (−) ≃ B̃Ek−1(−) of
Theorem 13.7. We shall apply these functors to the augmentation ideal of either a
free E+

k -algebra, or a tensor product of free E+
k -algebras. In the first case we can use

our calculation of the bar construction applied to a free algebra (from Section 13.3),
and in the second case we will use the following lemma.

Lemma 15.11. — There is a natural weak equivalence

BEk(E+
n+k(X)⊗E+

k
E+
n+k(Y ), εcan) ≃ E+

n (Sk ∧X)⊗ E+
n (Sk ∧ Y )

if X and Y are cofibrant.

Proof. — By Proposition 4.30 the map UE
+
k (R ⊗E+

k
S) → UE

+
k (R) ⊗ UE

+
k (S) is an

isomorphism. Thus there is an isomorphism of k-fold semi-simplicial objects

BEk
•,...,•(E

+
n+k(X)⊗E+

k
E+
n+k(Y ), εcan)

∼= BEk
•,...,•(E

+
n+k(X), εcan)⊗BEk

•,...,•(E
+
n+k(Y ), εcan).

Both are restrictions of k-fold simplicial objects, which are Reedy cofibrant by
Lemma 8.11 because their degeneracies are split. This implies that for the right hand
side, the tensor product commutes with thick geometric realization up to weak equiv-
alence:

BEk(E+
n+k(X)⊗E+

k
E+
n+k(Y ), εcan)

∼= ∥BEk
•,...,•(E

+
n+k(X), εcan)⊗BEk

•,...,•(E
+
n+k(Y ), εcan)∥

≃ BEk(E+
n+k(X), εcan)⊗BEk(E+

n+k(Y ), εcan).

Finally, we use Theorem 13.8 and the definition of B̃Ek in terms of BEk , to con-
clude that there is a natural weak equivalence BEk(E+

n+k(−), εcan) ≃ E+
n (Sk ∧−) on

cofibrant objects.

In particular, we obtain weak equivalences

S0∨
(
Sk−1 ∧QEk−1

L (E+
k (A)⊗E+

k (E+
1 (Sk−1 ∧A)⊗B)))

)
≃ E+

1 (Sk−1 ∧A)⊗ E+
1 (Sk−1 ∧ E+

1 (Sk−1 ∧A)⊗B),
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and
S0 ∨

(
Sk−1 ∧QEk−1

L (E+
k (A ∨B))

)
≃ E+

1 (Sk−1 ∧ (A ∨B)).

Thus for k ≥ 2 checking that βk is a weak equivalence amounts to proving that the
homotopy class

E+
1 (Sk−1 ∧A)⊗ E+

1 (Sk−1 ∧ E+
1 (Sk−1 ∧A)⊗B)

E+
1 (Sk−1 ∧ (A ∨B))

µ(E+
1 (ι)⊗Gk)

is a weak equivalence, where we have used the computation of the bar construction
on maps between free algebras (from Section 13.5) to write S0 ∨ Sk−1 ∧ QEk−1

L (βk)

as µ(E+
1 (ι) ∧Gk), where the map Gk is obtained by freely extending

Sk−1 ∧ E+
1 (Sk−1 ∧A)⊗B

Sk−1 ∧ Ek(A ∨B)

E+
1 (Sk−1 ∧ (A ∨B))

Sk−1∧fk

gk

η+
A∨B

to a map of E+
1 -algebras. Here we have used the natural transformation η from Sec-

tion 13.5 composed with the inclusion E1(−) ↪→ E+
1 (−), which we denote η+. We will

show that this map gk may be identified up to homotopy with f+
1 (with A replaced

by Sk−1∧A and B replaced by Sk−1∧B), so the map µ(E+
1 (ι)∧Gk) is homotopic to

the map µ(E+
k (ι)∧F1) = β1, which reduces us to proving the case k = 1. In this case

we may work instead with the associative operad, where it will be a direct calculation.

15.4.1. Constructing fk. — Let us define a map

f ′k : E+
1 (Sk−1 ∧ (A ∨B))⊗ Ek(A ∨B) −→ Ek(A ∨B),

from which we obtain fk by precomposing with the product of inclusions

E+
1 (Sk−1 ∧A)⊗B −→ E+

1 (Sk−1 ∧ (A ∨B))⊗ Ek(A ∨B)

and obtain f+
k by postcomposing with the inclusion Ek(A ∨ B) ↪→ E+

k (A ∨ B). The
domain and codomain of f ′k are functors of X = A ∨ B and f ′k will be a natural
transformation of functors of X whose definition need only refer to X, not A and B

individually.
We define f ′k by defining its adjoint

f̂ ′k : E+
1 (Sk−1 ∧X) −→HomC(Ek(X), Ek(X))

using the internal hom object HomC of the category C. The target of f̂ ′k is an asso-
ciative unital monoid in C, so in particular an E+

1 -algebra. Thus we can define f̂ ′k as
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an E+
1 -map by describing a map

adk : Sk−1 ∧X −→HomC(Ek(X), Ek(X))

in C, and freely extending it to a map of E+
1 -algebras.

To define adk, we use that there is the morphism s′k : Sk−1 → Sk−1
+ in C con-

structed as follows: there is a map i0 : S0 → Sk−1
+ with retraction r0 : Sk−1

+ → S0.
As S is assumed to satisfy Axiom 11.19 it is in particular semistable, and it imme-
diately follows that C = SG is also semistable. Thus Ho(C) is enriched in abelian
groups (as described in Section 11.5). Using this enrichment we may form the dif-
ference id− i0 ◦ r0 : Sk−1

+ → Sk−1
+ . If we precompose this with i0 we get 0 in the

homotopy category, so up to homotopy it factors over the homotopy cofiber Sk−1 as
a map s′k : Sk−1 → Sk−1

+ . This induces a map

sk := s′k ∧ idX : Sk−1 ∧X −→ Sk−1
+ ∧X.

If k ≥ 2, so that we have assumed that G is symmetric monoidal, the map adk is
defined as µk ◦ sk in terms of a map

µk : Sk−1
+ ∧X −→HomC(Ek(X), Ek(X))

given by picking a homotopy equivalence mk : Sk−1 → Ck(2) (we give an explicit
formula later) and then taking the adjoint of

µ̂k : Sk−1
+ ∧X ⊗ Ek(X)

mk⊗id−−−−→ Ck(2)+ ∧X ⊗ Ek(X) −→ Ek(X)

with second map given by the canonical morphism X → Ek(X) and the Ek-algebra
structure on Ek(X).

If k = 1, so that we have assumed that G is braided monoidal, then the map adk is
defined as above but the map µ̂1 is given on Sk−1 = S0 = {±1} by

µ̂1|+1
: {+1}+ ∧X ⊗ E1(X)

m1⊗id−−−−→ CFB1
1 (2)+ ∧X ⊗ E1(X) −→ E1(X)

and

µ̂1|−1
: {−1}+ ∧X ⊗ E1(X)

m1⊗b−−−−→ CFB1
1 (2)+ ∧ E1(X)⊗X −→ E1(X),

where m1 : {∗} → CFB1
1 (2) is a homotopy equivalence, b denotes the braiding βX,E1(X),

and as above in both cases the second map is given by the canonical morphism
X → E1(X) and the E1-algebra structure on E1(X). Note that if G is actually sym-
metric monoidal then the description given for the case k ≥ 2 above still makes sense,
and it agrees with this definition of µ̂k.

15.4.2. Comparing f+
1 and gk. — We shall now explain how the map gk may be

identified with a special case of the map f+
1 . This only has content for k ≥ 2, in which

case G is assumed to be symmetric monoidal and we may use the simpler construction
of fk in the previous section. More precisely we will show that the map gk for A and
B is homotopic to the map f+

1 for Sk−1 ∧ A and Sk−1 ∧ B, after identifying the
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domains of these maps using the isomorphism

E+
1 (Sk−1 ∧A)⊗ Sk−1 ∧B ∼= Sk−1 ∧ E+

1 (Sk−1 ∧A)⊗B
given by the symmetric monoidal structure preceded by the map induced by negation
w 7→ 1⃗− w on Sk−1 ∧A = ((0, 1)k−1)+ ∧A.

To see this we let X = A ∨B and consider the diagram

(15.3)

E+
1 (Sk−1 ∧A)⊗ Sk−1 ∧B Sk−1 ∧ E+

1 (Sk−1 ∧A)⊗B

E+
1 (Sk−1 ∧X)⊗ Sk−1 ∧ Ek(X) Sk−1 ∧ E+

1 (Sk−1 ∧X)⊗ Ek(X)

Sk−1 ∧ Ek(X)

E+
1 (Sk−1 ∧X)⊗ E1(S

k−1 ∧X) E1(S
k−1 ∧X)

E+
1 (Sk−1 ∧X),

∼=

inc⊗Sk−1∧inc Sk−1∧inc⊗inc

∼=

id⊗ηX !⃝

Sk−1∧f ′k

ηX

f ′1

inc

the horizontal isomorphisms being given by the symmetric monoidality preceded by
the isomorphism induced by negation on Sk−1 ∧ A and Sk−1 ∧X. The composition
along the right-hand edge is the definition of the map gk, whereas the composition
along the left-hand edge and bottom is, using that ηX ◦ Sk−1 ∧ inc agrees with the
inclusion inc : Sk−1∧B → E1(S

k−1∧X), the definition of the map f+
1 . The top square

of this diagram commutes, so it remains to show that !⃝ commutes up to homotopy.

Lemma 15.12. — The square !⃝ commutes up to homotopy if it does so when precom-
posed with

inc⊗ id : Sk−1 ∧X ⊗ Sk−1 ∧ Ek(X) −→ E+
1 (Sk−1 ∧X)⊗ Sk−1 ∧ Ek(X).

Proof. — There is a decomposition E+
1 (Sk−1 ∧ X) ≃

∨
n≥0(S

k−1 ∧ X)⊗n, and it
suffices to show that the squares !⃝n obtained by restricting to the n-th summand
commute up to (based) homotopy. On the n = 0 summand the maps Sk−1 ∧ f ′k and
f ′1 become homotopic to the identity, and so !⃝0 indeed commutes as both directions
give ηX . We have assumed that !⃝1 commutes up to homotopy.

For n > 1 let us write f ′k|n for the restriction of f ′k to the summand

(Sk−1 ∧X)⊗n ⊗ Ek(X) ⊂ E+
1 (Sk−1 ∧X)⊗ Ek(X).

We then have homotopies

f ′k|n ≃ f
′
k|n−1

◦ (id(Sk−1∧X)⊗n−1 ⊗ f ′k|1),

as the adjoint f̂ ′k : E+
1 (Sk−1 ∧ X) → HomC(Ek(X), Ek(X)) of f ′k is by definition a

morphism of E+
1 -algebras. The analogue holds for f ′1.
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We may then form the diagram in Figure 17, where the horizontal isomorphisms
are given by the symmetric monoidality preceded by: for ∼=1 the isomorphism induced
by negation on the rightmost copy of Sk−1 ∧ X; for ∼=2 and ∼=3 the isomorphism
induced by negation on the (n − 1) leftmost copies of Sk−1 ∧X. The bottom right-
hand square is !⃝n−1, so by induction we may suppose this commutes up to homotopy.
The top right-hand square commutes by symmetric monoidality and the fact that the
isomorphisms ∼=2 and ∼=3 use the negation map in the same way. The left-hand square
is obtained from !⃝1 by applying id(Sk−1∧X)⊗n−1⊗−, so commutes up to homotopy by
assumption. The outer rectangle, by the observation above, is !⃝n and so commutes
up to homotopy as required.

To verify that the square !⃝ commutes up to homotopy when restricted to
Sk−1 ∧X ⊗ Sk−1 ∧ Ek(X), we observe that up to homotopy all the maps involved
(f ′k, f

′
1, and ηX) are induced by maps of symmetric sequences of pointed spaces. The

only subtlety here involves the maps s′k : Sk−1 → Sk−1
+ and s′1 : S0 → S0

+, which are
not defined at the level of spaces but use the enrichment of Ho(C) in abelian groups.
To address this we use that k ≥ 2 to obtain maps of pointed spaces

s′′k : Sk−1 ∧ Sk−1 → Sk−1 ∧ Sk−1
+ and s′′1 : Sk−1 → Sk−1 ∧ S0

+

in the same way we formed s′k and s′1, using that homotopy classes of maps out of a
suspension obtain an abelian group structure. Using the tensoring of C over Top∗, it
follows that s′′k ∧ idX ≃ Sk−1 ∧ sk and s′′1 ∧ idX ≃ Sk−1 ∧ s1.

Translated to symmetric sequences, we must show that for each i ≥ 2 the diagram

(Sk−1 ∧ {id}+) ∧ Sk−1 ∧ Ck(i− 1)+ Sk−1 ∧ (Sk−1 ∧ {id}+) ∧ Ck(i− 1)+

Sk−1 ∧ {id}+ ∧ C1(i− 1)+ ∧ (Sk−1)∧i−1 Sk−1 ∧ Sk−1
+ ∧ {id}+ ∧ Ck(i− 1)+

Sk−1 ∧ S0
+ ∧ {id}+ ∧ C1(i− 1)+ ∧ (Sk−1)∧i−1 Sk−1 ∧ Ck(2)+ ∧ {id}+ ∧ Ck(i− 1)+

C1(i)+ ∧ (Sk−1)∧i Sk−1 ∧ Ck(i)+

∼=

id⊗ηi−1 s′′k∧id

s′′1∧id id∧mk∧id

comm id∧oper+

ηi

commutes up to Si−1-equivariant homotopy. Let us recall and explain these maps.
The maps ηi were defined in Section 13.5, and in brief are given by

ηi(v, (e
1
1 × ek−1

1 , . . . , e1i × ek−1
i )) = ((e11, . . . , e

1
i ), ((e

k−1
1 )−1(v), . . . , (ek−1

i )−1(v))),

when the latter terms are defined, and ∗ otherwise; the map ηi−1 is analogous. The
top horizontal isomorphism is induced by

(Sk−1 ∧ {id}+) ∧ Sk−1 −→ Sk−1 ∧ (Sk−1 ∧ {id}+)

(w, id; v) 7−→ (v; 1⃗− w, id).
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The map comm (which stands for “commutator”) is given by

comm(w,+1, id, f2, . . . , fi, t2, . . . , ti) = (µ(id, (f2, . . . , fi)), w, t2, . . . , ti)

comm(w,−1, id, f2, . . . , fi, t2, . . . , ti) = (µ̄(id, (f2, . . . , fi)), w, t2, . . . , ti),

for µ = (ι1, ι2), µ̄ = (ῑ1, ι2) ∈ C1(2) defined using the little 1-cubes

ι1(x) = 1
5x, ι2(x) = 2

5 + 1
5x, ῑ1(x) = 4

5 + 1
5x,

as shown in Figure 18 (A). The map oper : Ck(2)× {id} × Ck(i− 1)→ Ck(i) given by
the operadic composition (where we consider {id} ∈ Ck(1)).

Up to homotopy we can take the map mk : Sk−1 = ∂Ik → Ck(2) to be given
by mk(s1,k ) = (c1(s1,k ), c2) with

c2(x1, . . . , xk) := 1
5 (x1, . . . , xk) + 2

5 1⃗

c1(s1,k )(x1, . . . , xk) := 1
5 (x1, . . . , xk) + 4

5 (s1, s2, . . . , sk),

as shown in Figure 18 (B).

(A)

ι1 ι2

µ

ῑ1ι2

µ̄

(B)

c1

c2

Figure 18. (A) The maps µ and µ̄ used in the construction of comm. (B)
The map mk

With this choice, and identifying Sk−1 = ∂Ik, the map

ηi◦(id∧oper+)◦(id∧mk∧id) : Sk−1∧(∂Ik)+∧{id}+∧Ck(i−1)+ −→ C1(i)+∧(Sk−1)∧i

gives the basepoint whenever the second coordinate lies in (∂Ik−1)× I ⊂ ∂Ik, and so
it factors uniquely over a map

ψ : Sk−1 ∧ (Sk−1
0 ∨ Sk−1

1 ) ∧ {id}+ ∧ Ck(i− 1)+ −→ C1(i)+ ∧ (Sk−1)∧i
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with Sk−1
j := (Ik−1 × {j})/(∂Ik−1 × {j}). The composition

Sk−1 ∧ Sk−1 s′′k−→ Sk−1 ∧ Sk−1
+ = Sk−1 ∧ (∂Ik)+

quot−−−→ Sk−1 ∧ (Sk−1
0 ∨ Sk−1

1 )

has degree 1 on the first summand and degree −1 on the second. Thus the Si−1-equiv-
ariant homotopy class of the clockwise composition is the difference, taken with re-
spect to the co-H-space structure given by the first suspension coordinate, of the
isomorphisms

(Sk−1
j ∧ {id}+) ∧ Sk−1 ∧ Ck(i− 1)+ ∼= Sk−1 ∧ (Sk−1

j ∧ {id}+) ∧ Ck(i− 1)+

(w, id; v; e2, . . . , ei) 7→ (v; 1⃗− w, id; e2, . . . , ei),

composed with the restrictions of ψ to these two summands. On the other hand, the
Si−1-equivariant homotopy class of the anticlockwise composition is also given as the
difference of two maps using the same co-H-space structure, namely the maps

comm(−,+1,−) ◦ id⊗ ηi−1 and comm(−,−1,−) ◦ id⊗ ηi−1.

We will show that these two pairs of maps are homotopic to each other.
The map ψ on Sk−1 ∧Sk−1

0 ∧{id}+ ∧Ck(i− 1)+ is given at (v; 1⃗−w, id; e2, . . . , ei)

as follows. Suppose that ηi−1(v; c2 ◦ e2, . . . , c2 ◦ ei) = (f2, . . . , fi; t2, . . . , ti) and
η1(v; c1(⃗1− w, 0)) = (ι1, t1). Then

ψ(v;w; id; e2, . . . , ei) = (ι1, f2, . . . , fi; t1, t2, . . . , ti).

The point t1 ∈ Sk−1 = ((0, 1)k−1)+ = (R/(−∞, 0] ∪ [1,∞))∧k−1 is represented
by t1 = [5v + 4(w − 1⃗)]. As the remaining ti also tend to ∗ as v does, this map
is Si−1-equivariantly homotopic to

(v;w, id; e2, . . . , ei) 7−→ (ι1, f2, . . . , fi;w, t2, . . . , ti),

which is Si−1-equivariantly homotopic to

(v;w, id; e2, . . . , ei) 7−→ (comm(−,+1,−) ◦ id⊗ ηi−1)(w, id; v; e2, . . . , ei)

by a rescaling of the t2, . . . , ti, as required.
Similarly, on Sk−1 ∧ Sk−1

1 ∧ {id}+ ∧ Ck(i− 1)+ if η1(v, c1(w, 1)) = (ῑ1, t1) then we
have

ψ(v;w, id; e2, . . . , ei) = (ῑ1, f2, . . . , fi; t1, t2, . . . , ti),

which, analogously to the above, is homotopic to

(v;w, id; e2, . . . , ei) 7−→ (comm(−,−1,−) ◦ id⊗ ηi−1)(w, id; v; e2, . . . , ei).

This finishes the proof that (15.3) commutes up to homotopy.

15.4.3. The case k = 1. — Recall that Ass+ denotes the unital associative operad,
and that π0 : C+1 → Ass+ is a weak equivalent of operads. Thus we may replace the
monad E+

1 by the monad

Ass+(X) =

∞∨
n=0

X⊗n.
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We can define a bracket operation in terms of the multiplication · on Ass+(X), the
braiding on C, and the enrichment of Ho(C) in abelian groups, by

[_,_] := (_ ·_)− (_ ·_) ◦ βAss+(X),Ass+(X) : Ass+(X)⊗Ass+(X) −→ Ass+(X).

The weak equivalence of operads π0 : C+1 → Ass+ induces a morphism of monads
E+

1 → Ass+ which is a weak equivalence when evaluated on cofibrant objects. Tracing
through the construction of f1, we get a weakly equivalent map

α1 : Ass+(A)⊗Ass+(Ass+(A)⊗B) −→ Ass+(A ∨B)

of left Ass+(A)-modules. This is obtained from the map

h : Ass+(A)⊗B =

∞∨
n=0

A⊗n ⊗B −→ Ass+(A ∨B)

given in terms of the bracket described above by [_, [_, . . . [_,_]]] on each sum-
mand by first extending to a map of unital associative algebras and then to a left
Ass+(A)-module map.

To understand this map, we use that the monoidal structure ⊗ commutes with
colimits in each variable to see that

(A ∨B)⊗X ∼= (A⊗X) ∨ (B ⊗X),

and hence can expand out (A ∨B)⊗n as the coproduct of terms

A⊗r ⊗B ⊗A⊗i1 ⊗B ⊗A⊗i2 ⊗ · · · ⊗B ⊗A⊗ik

over all (r; i1, . . . , ik) with r+k+
∑k
j=1 ij = n and r, ij ≥ 0. This gives an isomorphism

Ass+(A ∨B) ∼= Ass+(A)⊗Ass+(B ⊗Ass+(A))

of right left Ass+(A)-modules.
With respect to this isomorphism, the map α1 is not given by applying

Ass+(A)⊗Ass+(−) to an isomorphism Ass+(A) ⊗ B ∼= B ⊗ Ass+(A). Rather
the map of left Ass+(A)-module indecomposables,

QAss+(A)(α1) : Ass+(Ass+(A)⊗B) −→ Ass+(B ⊗Ass+(A))

is given by Ass+(h′) where h′ : Ass+(A) ⊗ B → B ⊗ Ass+(A) is given on A⊗n ⊗ B
by (−1)n times applying a certain braid (in the symmetric monoidal case it is given
by a1 ⊗ · · · ⊗ an ⊗ b 7→ (−1)nb⊗ an ⊗ · · · ⊗ a1) so is an equivalence.

As the source and target of α1 are cofibrant Ass+(A)-modules (as long as A,B ∈ C
are cofibrant), their Ass+(A)-module indecomposables and derived indecomposables
agree, we conclude that QAss+(A)

L (α1) is an equivalence. By Corollary 11.18, this im-
plies that α1 is an equivalence as required.
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CHAPTER 16

Wk−1-ALGEBRAS

In this paper and its sequels we will make use of computations of F. Cohen [28,
Part III] to describe the homology of free unital Ek-algebras in the case that G is a
discrete symmetric monoidal groupoid. That is, G only has identity morphisms and
hence simply encodes an additional grading. In a sense it is our explicit knowledge of
the homology of free Ek-algebras that allows for some of the more intricate applica-
tions. In this section we give a careful description of these results, and from this we
obtain a description of the homology of an Ek-cell attachment, in Section 16.4. We
also study spectral sequences and operations on them in Sections 16.5 and 16.6. As
before, C = SG with S satisfying the axioms of Sections 2.1 and 7.1.

16.1. Homology operations on Ek-algebras

We wish to describe the collection of natural operations on the homology H∗,∗(R)

of an Ek-algebra R for k ≥ 2. Recall that we have defined homology, in Section 10.1,
in terms of a singular chain functor C∗ : S→ A where A is either the category Chk of
chain complexes of k-modules, or the category Hk-Mod of modules (in the category
of symmetric spectra) over the Eilenberg-MacLane spectrum associated to the ring k.
The axioms of such a singular chain functor give a lax monoidality which is a weak
equivalence when evaluated on cofibrant objects, and say that when composed with
s : sSet→ S it agrees with either C∗(−;k) or Hk ∧ Σ∞(−)+.

If R is an Ek-algebra in C = SG which is cofibrant in C, with underlying object R
and structure map

αR =
⊔
n≥1

αR(n) : Ek(R) =
⊔
n≥1

Ck(n)×Sn
R⊗n −→ R,

then the lax monoidality of C∗(−) gives Sn-equivariant maps

C∗(Ck(n))⊗ C∗(R)⊗n −→ C∗(Ck(n)×R⊗n) C∗(αR(n))−−−−−−−→ C∗(R).

On taking the quotient by the Sn-action these assemble to αC∗(R) : Ek(C∗(R))→ C∗(R)

giving C∗(R) ∈ AG the structure of an Ek-algebra. The analogous discussion goes
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through for E+
k -algebras. Therefore to define homology operations on Ek-algebras, it

suffices to work in the category AG.
Furthermore we have the following lemma which allows us to compute the homology

of free Ek-algebras working just in AG.

Lemma 16.1. — Let X ∈ C be cofibrant. The natural map C∗(X) → C∗(Ek(X)) has
target an Ek-algebra, so extends to a map

Ek(C∗(X)) −→ C∗(Ek(X))

in AG; this map is a weak equivalence. The analogous statement with E+
k holds too.

Proof. — Both for Ek and E+
k the map is given as a coproduct of the maps

C∗(Ck(n))⊗Sn
C∗(X)⊗n −→ C∗(Ck(n)×Sn

X⊗n)

so it is enough to see that these induce isomorphisms on homology. The Si-actions
on Ck(n) and hence on C∗(Ck(n)) are free, so both quotients are in fact homotopy
quotients. The homotopy orbit spectral sequence of Section 10.2.3 takes the form

E1
p,q = Hp(Sn;Hq(C∗(Ck(n))⊗ C∗(X)⊗n))

in the source and
E1
p,q = Hp(Sn;Hq(C∗(Ck(n)⊗X⊗n)))

in the target, but as the monoidality on C∗ is a weak equivalence on cofibrant objects
the natural map between these is an isomorphism.

16.1.1. The product and Browder bracket. — Let R be an Ek-algebra in AG with
underlying object R. Recall that we assume that G is discrete. The simplest operations
to define only make use of the map

θ2 : Ck(2)×R⊗R −→ Ck(2)×S2
(R⊗R)

αR(i)−→ R.

The external product map provided by Lemma 10.6 (i) induces maps

(θ2)∗ : Hd(Ck(2))⊗Hg,q(R)⊗Hg′,q′(R) −→ Hg⊕g′,q+q′+d(R).

Now the equivalence Sk−1 ∼→ Ck(2) gives u0 ∈ H0(Ck(2)) and uk−1 ∈ Hk−1(Ck(2)).
Using these we define the product − ·− given by

(θ2)∗(u0 ⊗−⊗−) : Hg,q(R)⊗Hg′,q′(R) −→ Hg⊕g′,q+q′(R)

and the (Browder) bracket [−,−] given by

(−1)(k−1)q+1 · (θ2)∗(uk−1 ⊗−⊗−) : Hg,q(R)⊗Hg′,q′(R) −→ Hg⊕g′,q+q′+k−1(R).

(See page 248 of [28] to confirm this choice of sign.) We write ad(x)(y) := [x, y].

16.1.2. Araki-Kudo-Dyer-Lashof operations and “top” operations. — Now let k = Fℓ
be the finite field with ℓ elements, for a prime number ℓ. Let R be an Ek-algebra in AG.
The operations we describe below are constructed for A = Chk in [28, Chapter III] (in
fact they are written there for Top, but the constructions are given on the chain level
and also work when the chain complex does not arise as the singular chains on a space)
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and for A = Hk-Mod in [22, III.§3] (in fact they are written there for the k-homology
of an S-module, but go through for the homotopy of an Hk-module). These definitions
easily extend to G-graded objects, since the functor X 7→

⊔
g∈GX(g) : AG → A is

strong symmetric monoidal.
Suppose first that ℓ is odd. Then there are defined for s ∈ Z and 2s − q < k − 1

Dyer-Lashof operations

Qs : Hg,q(R) −→ Hg⊕ℓ,q+2s(ℓ−1)(R),

and, for 2s− q < k − 1,

βQs : Hg,q(R) −→ Hg⊕ℓ,q+2s(ℓ−1)−1(R).

Remark 16.2. — Note that βQs does not denote the composition of Qs with a Bock-
stein operation β on the homology of R. Indeed, the chain complex of Fℓ-modules (or
HFℓ-module spectra) R(g⊕ℓ) need not arise by reduction along Z/ℓ2 → Z/ℓ = Fℓ so
will not typically have Bockstein operations defined on it. However, if R is obtained
by reduction modulo ℓ from a chain complex of flat Z-modules then the Bockstein
is defined and indeed βQs = β ◦ Qs, cf. [81, Proposition 2.3 (v)]. We imagine an
analogous statement holds for spectra, but have not found a reference.

For q + (k − 1) even there is defined a “top” operation

ξ : Hg,q(R) −→ Hg⊕ℓ,ℓq+(k−1)(ℓ−1)(R)

and an associated operation

ζ : Hg,q(R) −→ Hg⊕ℓ,ℓq+(k−1)(ℓ−1)−1(R).

Remark 16.3. — This operation is not defined by ζ = β ◦ ξ(−)− adℓ−1(−)(β(−)), as
suggested on p. 217 of [28], but rather is defined on p. 248 of [28]. Indeed, it is defined
in situations where the Bockstein is not.

Suppose now that ℓ = 2. Then there are defined for s ∈ Z and s− q < k− 1 Dyer-
Lashof (rather, Araki-Kudo, but we keep to the former for uniformity) operations

Qs : Hg,q(R) −→ Hg⊕g,q+s(R).

There is also defined a “top” operation

ξ : Hg,q(R) −→ Hg⊕g,2q+(k−1)(R).

16.2. Relations among homology operations

There are numerous relations among the operations described above, which appear
in Theorems 1.1, 1.2 and 1.3 of [28, Chapter III] and in [22, III.§3]. We will discuss be-
low all those relations which do not involve Steenrod operations, which are not defined
in our algebraic contexts. Consulting May [81], we have written out some relations
which in [28, 22] are left as implicit consequences of having Bockstein operations. For
definiteness we consider the case of E+

k -algebras.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



232 CHAPTER 16. Wk−1-ALGEBRAS

In the following we work over Fℓ, which in the case ℓ = 0 denotes Q. We write
GrModFℓ

for the category of graded Fℓ-vector spaces with graded tensor product given
by (V ⊗W )k :=

⊕
k′+k′′=k Vk′ ⊗ Vk′′ and symmetric braiding given by the Koszul

sign rule a ⊗ b 7→ (−1)|a||b|b ⊗ a. We denote by GrModG
Fℓ

the category of functors
G→ GrModFℓ

, equipped with the Day convolution symmetric monoidal structure.

16.2.1. The case ℓ > 2

Restricted λk−1-algebras. — The homology H∗,∗(R) equipped with the bracket [−,−]

forms a (k− 1)-Lie algebra, meaning that the bracket satisfies the following relations:

(a) The bracket is linear in both entries.
(b) The bracket is symmetric up to a sign:

[x, y] = (−1)|x||y|+1+(k−1)(|x|+|y|+1)[y, x].

(c) The bracket satisfies the Jacobi identity up to sign:

0 = (−1)(|x|+k−1)(|z|+k−1)[x, [y, z]]

+ (−1)(|x|+k−1)(|y|+k−1)[y, [z, x]]

+ (−1)(|y|+k−1)(|z|+k−1)[z, [x, y]].

It also satisfies [x, [x, x]] = 0 (this follows from the above for ℓ > 3, but for
ℓ = 3 is new).

Considering also the operations ξ and ζ, we have the following relations:

(d) The operation ξ is not linear, but instead satisfies

ξ(x+ y) = ξ(x) + ξ(y) +

ℓ−1∑
i=1

din(x)(y),

with din a certain iterated application of ad(x) and ad(y) to x described on
page 218 of [28]. The operation ζ is linear [114, Lemma 1.6]. For λ ∈ Fℓ one has
ξ(λx) = λξ(x) and ζ(λx) = λζ(x).

(e) The operations ξ and ζ interact with the bracket as

[x, ξ(y)] = adℓ(y)(x) and [x, ζ(y)] = 0.

The resulting algebraic structure is called a restricted λk−1-algebra. There is a free
restricted λk−1-algebra functor

Lk−1 : GrModG
Fℓ
−→ AlgLk−1

(GrModG
Fℓ

),

which is defined inductively as follows. Firstly, L0(V ) is the free restricted Lie
algebra generated by V , i.e., it is the smallest subobject of the tensor algebra
T (V ), defined using the Day convolution formula, which contains V and is closed
under the bracket and under the forming of ℓ-th powers of even-degree elements.
Secondly, L1(V ) = s−1L0(sV )⊕ ζ · s−1L0(sV )odd where s is the suspension defined
by (sV )(g,i) := V(g,i+1) (recall that ζ is only defined on odd-degree elements when
k − 1 = 1). For i ≥ 2, Li(V ) := s−1Li−1(sV ). On L0(V ) the operations ξ and ζ,
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defined on even-degree elements, are respectively x 7→ xℓ and 0. On L1(V ) they are
defined as ξ(x) = s−1ξ(sx) (when sx ∈ L0(sV ) has odd degree) and ζ(x) = ζ · x
(when sx ∈ L0(sV ) has odd degree). Note that as ζ always produces elements of
even degree one can never form ξζ or ζζ, so this gives a complete description of these
operations. For i ≥ 2, we inductively define the operations by ξ(x) = s−1ξ(sx) and
ζ(x) = −s−1ζ(sx) in terms of Li(V ) = s−1Li−1(sV ).

Allowable Dyer-Lashof algebras. — The Dyer-Lashof operations satisfy the following
relations:

(a′) The Dyer-Lashof operations are linear.
(b′) A Dyer-Lashof operation vanishes if the degree of x is too large: Qsx = 0 if

2s < |x| and βQsx = 0 if 2s ≤ |x|.
(c′) The Dyer-Lashof operations satisfy the Adem relations. That is, if r > ℓs we

have

QrQs =
∑
i

(−1)r+i
(
ℓi− (ℓ− 1)s− i− 1

r − (ℓ− 1)s− i− 1

)
Qr+s−iQi

and

βQrQs =
∑
i

(−1)r+i
(
ℓi− (ℓ− 1)s− i− 1

r − (ℓ− 1)s− i− 1

)
βQr+s−iQi,

and if r ≥ ℓs we have

QrβQs =
∑
i

(−1)r+i
(
ℓi− (ℓ− 1)s− i
r − (ℓ− 1)s− i

)
βQr+s−iQi

−
∑
i

(−1)r+i
(
ℓi+ (ℓ− 1)s− i− 1

r − (ℓ− 1)s− i

)
Qr+s−iβQi

and

βQrβQs = −
∑
i

(−1)r+i
(
ℓi+ (ℓ− 1)s− i− 1

r − (ℓ− 1)s− i

)
βQr+s−iβQi.

The resulting algebraic structure is called a Dyer-Lashof module. There is a free al-
lowable Dyer-Lashof module functor

Dk : GrModG
Fℓ
−→ AlgDk

(GrModG
Fℓ

)

which is defined as follows: Dk(V ) is the quotient of the graded Fℓ-vector space gen-
erated by words in the Dyer-Lashof operations applied to elements of V , modulo the
relations (a′)-(c′).

Considering the interaction of the Dyer-Lashof operations and the product, we
have the following further relations:

(d′) A Dyer-Lashof operation is an ℓ-fold power in the critical degree: Qsx = xℓ if
2s = |x|.

(e′) Dyer-Lashof operation of non-zero degree vanish on the unit: if 1 ∈ H1G,0(R) is
the identity element, then Qs1 = 0 if s ̸= 0, and βQs1 = 0 for all s.
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(f′) The Dyer-Lashof operations satisfy the Cartan formula:

Qs(xy) =
∑
i+j=s

(Qix)(Qjy)

and

βQs+1(xy) =
∑
i+j=s

(βQi+1x)(Qjy) + (−1)|x|(Qix)(βQj+1y).

The resulting algebraic structure is called an allowable Dyer-Lashof module. There is
a free allowable Dyer-Lashof algebra functor

Vk−1 : GrModG
Fℓ
−→ AlgVk−1

(GrModG
Fℓ

)

given by sending V to the free graded-commutative algebra on Dk(V ) and taking the
quotient by the ideal generated by xℓ −Qs(x) for |x| = 2s.

Wk−1-algebras. — Finally we combine the allowable Dyer-Lashof algebra structure
with the restricted λk−1-algebra structure. That means we need to describe the rela-
tions between [−,−], ξ and ζ on the one hand, and the product, Qs and βQs on the
other hand.

(a′′) The bracket is a derivation of the product in each variable, up to a sign:

[x, yz] = [x, y]z + (−1)|y|(k−1+|x|)y[x, z].

(b′′) The bracket with the unit vanishes: [1, x] = 0 if 1 ∈ H1G,0(R) is the identity
element.

(c′′) A bracket with a Dyer-Lashof operation vanishes: [x,Qsy] = 0 = [x, βQsy].
(d′′) To incorporate the operations ξ and ζ, one can observe that they behave some-

thing like Dyer-Lashof operations. Note by the restrictions on s in the def-
initions of Qs and βQs, currently we have not defined Q(|x|+k−1)/2(x) and
βQ(|x|+k−1)/2(x). However, the effect on bidegrees of ξ and ζ coincides with
such hypothetical operations. Hence by convention we shall define

Q(|x|+k−1)/2(x) := ξ and βQ(|x|+k−1)/2(x) := ζ.

Using this notation, ζ satisfies the relations (a′)-(f ′), and ξ satisfies the relations
(b′)-(e′) but (a′) must be replaced as explained in (d) and (f ′) must be replaced
by

ξ(xy) =
∑

i+j= 1
2 (k−1+|x|+|y|)

(Qix)(Qjy) +
∑

0≤i,j≤ℓ

xiyjΓij

with Γij a certain function of x and y defined on page 335 of [28].

The combined algebraic structure of an restricted λk−1-algebra and an allowable
Dyer-Lashof algebra, satisfying these conditions, is called a Wk−1-algebra. There is a
free Wk−1-algebra functor

Wk−1 : GrModG
Fℓ
−→ AlgWk−1

(GrModG
Fℓ

)
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given as follows: it is the quotient of Vk−1(Lk−1(V )) by the ideal generated by the
relations (a′′)-(d′′).

Unwinding the definitions of Vk−1 and Lk−1 allows one to write down a basis of a
free Wk−1-algebra on a V ∈ GrModG

Fℓ
. Something like following description appears on

page 227 of [28] (see also [115, Section I.1]), but we have fixed a number of unfortunate
typos. It is obtained by writing Q(|x|+k−1)/2(x) := ξ(x) and βQ(|x|+k−1)/2(x) := ζ(x),
and recalling that Lk−1(V ) is obtained by applying basic Lie words or applications of ξ
or ζ to basic Lie words, see e.g., [20, Section II.2] on how to obtain these. The result
is the free graded-commutative algebra generated by those QI(y) (which includes the
shorthand for ξ and ζ) such that

— y is a basic Lie word in a basis of V ,
— I = (ε1, s1, . . . , εr, sr) is admissible (i.e., ℓsj − εj ≥ sj−1 for 2 ≤ j ≤ r),

e(I)+ε1 > |y| where e(I) = 2s1−ε1−
∑r
j=2(2sj(ℓ−1)−εj), and 2sr ≤ |y|+k−1.

16.2.2. The case ℓ = 2

Restricted λk−1-algebras. — The bracket and ξ satisfy the following relations, de-
scribing the structure of a restricted λk−1-algebra (for ℓ = 2).

(a) The bracket is linear in both entries.
(b) The bracket satisfies [x, x] = 0.
(c) The bracket satisfies the Jacobi identity:

0 = [x, [y, z]] + [y, [z, x]] + [z, [x, y]].

(d) The operation ξ is not linear, but satisfies

ξ(x+ y) = ξ(x) + ξ(y) + [y, x].

(e) The bracket and ξ interact as

[x, ξ(y)] = [y, [y, x]].

Allowable Dyer-Lashof algebras. — The product and Dyer-Lashof operations satisfy
the following relations, describing an allowable Dyer-Lashof algebra (for ℓ = 2).

(a′) The Dyer-Lashof operations are linear.
(b′) A Dyer-Lashof operation vanishes if the degree of x is too large: Qsx = 0 if

s < |x|.
(c′) The Dyer-Lashof operations satisfy the Adem relations. That is, if r > 2s, we

have
QrQs =

∑
i

(
2i− r

r − s− i− 1

)
Qr+s−iQi.

(d′) A Dyer-Lashof operation is squaring in the critical degree: Qsx = x2 if s = |x|.
(e′) A Dyer-Lashof operation of non-zero degree vanishes on the unit: Qs1 = 0 if

s ̸= 0 and 1 ∈ H1G,0(R) is the identity element.
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(f′) The Dyer-Lashof operations satisfy the Cartan formula:

Qs(xy) =
∑
i+j=s

(Qix)(Qjy).

Wk−1-algebras. — Finally, the compatibility between the restricted λk−1-algebra and
allowable Dyer-Lashof algebra structures is described by the following set of relations,
leading to the structure of a Wk−1-algebra (for ℓ = 2).

(a′′) The bracket is a derivation of the product in each variable:

[x, yz] = [x, y]z + y[x, z].

(b′′) The bracket with the unit vanishes: [1, x] = 0 if 1 ∈ H1G,0(R) is the identity
element.

(c′′) A bracket with a Dyer-Lashof operation vanishes: [x,Qsy] = 0.
(d′′) To incorporate the operations ξ, one defines Q|x|+k−1(x) := ξ. Using this nota-

tion, the relations (b′)–(e′) hold, but (a′) must be replaced by (d) and (f ′) must
be replaced by

ξ(xy) =
∑

i+j=k−1+|x|+|y|

(Qix)(Qjy) + x[x, y]y.

There is again a free Wk−1-algebra, using these definitions.
As above, for a V ∈ GrModG

Fℓ
we find (see [28, p. 227]) that Wk−1(V ) is the

free commutative algebra generated by those QI(y) (which includes the shorthand
Q|x|+k−1(x) := ξ(x)) such that

— y is a basic Lie word in a basis of V ,
— I = (s1, . . . , sr) is admissible (i.e., 2sj ≥ sj−1 for 2 ≤ j ≤ r), e(I) > |y| where

e(I) = s1 −
∑r
j=2 sj , and sr ≤ |y|+ k − 1.

16.2.3. The case ℓ = 0. — In this case only the product and bracket are defined, and
they satisfy the following relations:

(a) The bracket is linear in both entries.
(b) The bracket is symmetric up to a sign: [x, y] = (−1)|x||y|+1+(k−1)(|x|+|y|+1)[y, x].
(c) The bracket satisfies the Jacobi identity up to sign:

0 = (−1)(|x|+k−1)(|z|+k−1)[x, [y, z]] + (−1)(|x|+k−1)(|y|+(k−1))[y, [z, x]]

+ (−1)(|y|+k−1)(|z|+k−1)[z, [x, y]].

(a′′) The bracket is a derivation up to a sign: [x, yz] = [x, y]z+(−1)|y|(k−1+|x|)y[x, z].
(b′′) The bracket with the unit vanishes: [1, x] = 0 if 1 ∈ H1G,0(R) is the identity

element.

This algebraic structure is also known as (k − 1)-Gerstenhaber algebra. Let
Wk−1(V ) denote the free (k − 1)-Gerstenhaber algebra on a V ∈ GrModG

Fℓ
. It may

be constructed as a quotient of the free graded-commutative algebra on the free
(k − 1)-Lie algebra Lk−1(V ), by enforcing the above relations.
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16.2.4. Non-unital Ek-algebras. — We have so far discussed the relations which hold
between homology operations on the homology of an E+

k -algebra, but all of these
operations are defined using only the Ek-algebra structure. The only relations which
do not make sense for Ek-algebras are those involving the unit 1 ∈ H1G,0(R). Let
us define a variant of the construction Wk−1 adapted to Ek-algebras as follows.
We have Wk−1(0) = Fℓ[1], where Fℓ[1] was shorthand for (1G)∗(Fℓ). As any object
V ∈ GrModG

Fℓ
has a canonical morphism z : V → 0, we may define

W̃k−1(V ) := ker(Wk−1(V )→Wk−1(0))

as the kernel of this canonical augmentation. This inherits the structure of a monad.

16.3. The homology of free Ek-algebras

The main theorems of F. Cohen’s contribution to [28] say that for X ∈ Top∗, the
homology groups H∗(E+

k (X);Fℓ) are the free Wk−1-algebra on H̃∗(X;Fℓ). Here we
shall show that the same is true for X ∈ AG, and hence for X ∈ C = SG.

Theorem 16.4. — Let k = Fℓ and k ≥ 2. For an object X ∈ AG the natural map

Wk−1(H∗,∗(X)) −→ H∗,∗(E
+
k (X))

is an isomorphism of Wk−1-algebras, and the natural map

W̃k−1(H∗,∗(X)) −→ H∗,∗(Ek(X))

is an isomorphism of W̃k−1-algebras.

Proof. — We may verify this after applying X 7→
⊔
g∈GX(g) : AG → A, so we may

forget about G. Cohen has shown [28, III Theorem 3.1] that the first claim holds
for any pointed space, and hence simplicial set, X (in which case homology is to be
interpreted as reduced homology). Thus it holds for all objects of A in the essential
image of the functor

X 7→ Σ∞X+ : Ho(sSet) −→ Ho(Hk-Mod) or

X 7→ C∗(X;k) : Ho(sSet) −→ Ho(Chk).

As k is a field, this essential image consists precisely of the 0-connective objects.
Now suppose that X ∈ A is bounded below, so that S2N ⊗X is 0-connective for

some N ≫ 0. The permutation action of Sr on (S2N )⊗r is homotopically trivial, i.e.,
there is a zig-zag of Sr-equivariant weak equivalences from (S2N )⊗r to S2Nr with the
trivial action, so there is a weak equivalence

Ck(r)×Sr
(S2N ⊗X)⊗r ≃ S2Nr ⊗ (Ck(r)×Sr

X⊗r).

See [22, VII.§3] for a similar discussion. If we work in AN, where X is placed in
grading 1, the above says that

Hr,d(E
+
k (S2N ⊗X);k) ∼= Hr,d−2Nr(E

+
k (X);k),
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and by the 0-connective case the left-hand side may be identified with the part
of Wk−1(H1,∗(S

2N ⊗X;k)) of bidegree (r, d). Considering the definition of Wk−1, one
sees that this is isomorphic to the part of Wk−1(H1,∗(X);k) of bidegree (r, d− 2Nr).
In terms of the bases we have described, the isomorphism is given as follows: if y is a
basic Lie word of length ρ in a basis of H1,∗(S

2N ⊗X;k), and y′ is the corresponding
basic Lie word in the corresponding basis of H1,∗(X;k), then

Q(ε1,s1,...,εk,sk)(y) 7→ Q(ε1,s1−2Nℓk−1ρ,...εk−1,sk−1−2Nℓρ,εk,sk−2Nρ)(y′).

Putting this together it follows that Wk−1(H∗(X;k))→ H∗(E
+
k (X);k) is an isomor-

phism when X is bounded below. But it is then an isomorphism for general X, as
any X is a filtered colimit of bounded below objects, and both sides commute with
filtered colimits.

The second claim follows from the first by using the decompositions
Wk−1(V ) ∼= Fℓ[1]⊕ W̃k−1(V ) and H∗,∗(E

+
k (X)) ∼= Fℓ[1] ⊕ H∗,∗(Ek(X)), which

are natural.

16.4. Coproducts of E∞-algebras

Combining Proposition 15.1 with Lemma 10.6 (i) gives the following.

Corollary 16.5. — Let R and S be E+
∞-algebras in C = SG with G discrete, cofibrant

in C. Then taking homology in a field we have an isomorphism

H∗,∗(R ⊔E
+
∞ S) ∼= H∗,∗(R)⊗H∗,∗(S)

of objects of AlgW∞(AG).

Remark 16.6. — In the case of E+
k -algebras with k <∞ we do not know an algebraic

formula for H∗,∗(R ⊔E
+
k S) in terms of the Wk−1-algebras H∗,∗(R) and H∗,∗(S). The

naïve guess, as the coproduct of Wk−1-algebras, is false even when S = E+
k (Sg,d) and

working over Q. We thank the referee for explaining this to us.

16.5. E1-pages of spectral sequences

The cell attachment spectral sequence of Corollary 10.17 and the skeletal spectral
sequence of Corollary 10.19 apply to the E+

k -operad and so can be used to compute the
homology of cellular E+

k -algebras. In this and the following section we develop some
basic tools for such calculations in the case that G is a discrete groupoid: we describe
the E1-pages of these spectral sequences and discuss how differentials interact with
the product, bracket, and Dyer-Lashof operations.

16.5.1. The E1-page of the skeletal spectral sequence. — For the skeletal spectral se-
quence of a CW E+

k -algebra Z in C as described in Corollary 10.19, the E1-page is
given by the homology of the free E+

k -algebra on a wedge of spheres corresponding
to the cells. When G is a discrete groupoid Theorem 16.4 explains how F. Cohen’s
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results give a description of the homology of free E+
k -algebras with coefficients in Fℓ,

where ℓ is either prime or 0 (in which case Fℓ means Q), in terms of the functor Wk−1.
Thus in this case the skeletal spectral sequence takes the form

E1
∗,∗,∗

∼= Wk−1

⊕
d≥0

⊕
a∈Id

Fℓ[gα, d, d]

 =⇒ H∗,∗(Z;Fℓ)

with Fℓ[gα, d, d] replacing the more cumbersome notation d∗Fℓ[gα, d].

16.5.2. The E1-page of the cell attachment spectral sequence for E+
∞-algebras. — If

R is a E+
∞-algebra in C which is cofibrant in C, then the cell attachment spectral

sequence of Corollary 10.17 for R ∪E
+
∞

f Dg,d is given by

E1
g,p,q

∼= H̃g,p+q,p(0∗R+ ∨E
+
∞ E+

∞(1∗S
g,d)) =⇒ Hg,p+q(R ∪

E+
∞

f Dg,d),

with the E1-page the homology of an E+
∞-algebra in CN=

∗ . Under the additional as-
sumptions that R is cofibrant in AlgE+

∞
(C) and that G is a discrete groupoid, it follows

from Corollary 16.5 that with coefficients in the field Fℓ there is an isomorphism

H̃∗,∗,∗(0∗R+ ∨E
+
∞ E+

∞(1∗S
g,d)) ∼= 0∗H∗,∗(R)⊗Fℓ

W∞(Fℓ[g, d, 1]).

16.5.3. The E1-page of the spectral sequence of Theorem 15.6. — Recall that for a
map f : R→ S between non-unital E∞-algebras, satisfying certain hypotheses, The-
orem 15.6 provides a strongly convergent spectral sequence

E1
g,p,q = H̃g,p+q,p(E

+
∞((−1)∗Q

E∞
L (S)/QE∞L (R));A) =⇒ HR

g,p+q(S;A).

When we take coefficients in the field k = Fℓ, the E1-page can be described as

W∞((−1)∗H
E∞
∗,∗ (S,R;Fℓ)).

In particular, for ℓ = 0 we get a free graded-commutative algebra on generators
(−1)∗H

E∞
∗,∗ (B,A;Q).

16.6. Wk−1-algebra structures on spectral sequences

In this section we consider homology with coefficients in a field F. Let R ∈ AlgEk
(CZ≤)

be an Ek-algebra with an ascending filtration, and suppose that the underlying filtered
object UEkR ∈ CZ≤ is cofibrant. Then Theorem 10.10 gives a spectral sequence

E1
g,p,q(R) = H̃g,p+q,p(gr(UEkR);F) =⇒ Hg,p+q(colimUEkR;F),

and in the following subsections we wish to discuss the additional structure present
on this spectral sequence arising from R being an Ek-algebra.

16.6.1. Multiplicative structures. — In this subsection we consider homology with
coefficients in any commutative ring k. We do not need to assume that G is a discrete
groupoid, but we do assume that it satisfies the hypothesis of Lemma 10.6 (i) so that
the external product is available.
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Theorem 16.7. — There are operations

− ·r − : Erg1,p1,q1(R)⊗k Erg2,p2,q2(R) −→ Erg1⊕g2,p1+p2,q1+q2(R)

[−,−]r : Erg1,p1,q1(R)⊗k Erg2,p2,q2(R) −→ Erg1⊕g2,p1+p2,q1+q2+(k−1)(R).

For x ∈ Erg1,p1,q1(R) and y ∈ Erg2,p2,q2(R) these satisfy

dr(x ·r y) = dr(x) ·r y + (−1)p1+q1x ·r dr(y)

dr([x, y]r) = [dr(x), y]r + (−1)(k−1)+(p1+q1)[x, dr(y)]r,

and if dr(x) = 0 = dr(y) so that they represent classes x̄ ∈ Er+1
g1,p1,q1(R) and

ȳ ∈ Er+1
g2,p2,q2(R) then

x̄ ·r+1 ȳ = x ·r y

[x̄, ȳ]r+1 = [x, y]r.

On E1
∗,∗,∗(R) and E∞∗,∗,∗(R) these operations are induced by the product and bracket

on H∗,∗,∗(gr(R);k) and H∗,∗(R;k) respectively.

Proof. — As part of the Ek-algebra structure on R we have a morphism

θ2 : Ck(2)×R⊗R −→ Ek(R) −→ R

between cofibrant objects in CZ≤ (we omit the notation UEk for clarity from now on),
which induces a map of spectral sequences. There is a morphism of spectral sequences

H∗(Ck(2);k)[0, 0]⊗k Er∗,∗,∗(R)⊗k Er∗,∗,∗(R) −→ Er∗,∗,∗(Ck(2)×R⊗R),

given (using the external product provided by Lemma 10.6 (i)) by a morphism of
defining exact couples. Thus there is a map of spectral sequences

(θ2)∗ : H∗(Ck(2);k)[0, 0]⊗k Er∗,∗,∗(R)⊗k Er∗,∗,∗(R) −→ Er∗,∗,∗(R).

Recall from Section 16.1.1 that using the equivalence Sk−1 ∼→ Ck(2) and the canon-
ical classes u0 ∈ H0(S

k−1;k) and uk−1 ∈ Hk−1(S
k−1;k), the product and bracket are

defined on X = UEk colimR by (θ2)∗(u0⊗−⊗−) on Hg1,p1+q1(X)⊗Hg2,p2+q2(X) and
by (−1)(k−1)(p1+q1)+1 ·(θ2)∗(uk−1⊗−⊗−) on Hg1,p1+q1(X)⊗Hg2,p2+q2(X). Therefore
defining − ·r − on Erg1,p1,q1(R) ⊗k Erg2,p2,q2(R) by (θ2)∗(u0 ⊗ − ⊗ −), and defining
[−,−]r on Erg1,p1,q1(R) ⊗k Erg2,p2,q2(R) by (−1)(k−1)(p1+q1)+1 · (θ2)∗(uk−1 ⊗ − ⊗ −),
we have the desired properties.

16.6.2. Dyer-Lashof operations. — In this subsection we consider homology with co-
efficients in a prime field Fℓ with ℓ > 0, and we assume that G is a discrete groupoid.

Theorem 16.8. — Let R ∈ AlgE∞(CZ≤) be an E∞-algebra with an ascending filtration.
If x ∈ E1

g,p,q(R) survives to Erg,p,q(R) and dr([x]) = [y] for y ∈ E1
g,p−r,q+r−1(R), then

(i) Qs(x) survives to Eℓr∗,∗,∗ and dℓr([Qs(x)]) is represented by Qs(y),
(ii) βQs(x) survives to Eℓr∗,∗,∗ and dℓr([βQs(x)]) is represented by −βQs(y).
If x ∈ E1

g,p,q(R) survives to E∞g,p,q(R) and represents z ∈ Hg,p+q(colimR;Fℓ), then
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(i) Qs(x) survives to E∞∗,∗,∗ and represents Qs(z),
(ii) βQs(x) survives to E∞∗,∗,∗ and represents βQs(z).

Proof. — In the case A = ChFℓ
the first part of the theorem follows from the definition

[28, p. 7] of the operations Qs and βQs along with May’s general approach to Steenrod
operations, specifically [81, Proposition 3.5] with f(a, b, c) = a. The argument given
there can be mimicked in A = Hk-Mod, as in [22, III§1].

For the second part, that Qs(x) and βQs(x) survive to E∞∗,∗,∗ follows from the first
part. That they represent the claimed elements is immediate from the construction
of the spectral sequence.

The arguments of [81] can be adapted to study Ek-algebras, where modified formu-
lae can be obtained for how Qs and βQs interact with differentials, as well as for how
ξ and ζ do. For example, for ℓ = 2 one finds that dr([ξ(x)]) is represented by [y, x].
We will not develop those formulae, as we have—as yet—no need for them.

16.7. Derived W̃k−1-indecomposables

If R is an Ek-algebra which is cofibrant in C, then one may use the equivalence
QEk

L (R) ≃ B(1, Ek,R) of Section 8.3.7, the geometric realization spectral sequence
of Theorem 10.11, and Theorem 16.4 to obtain a spectral sequence

E1
∗,p,∗ = (W̃k−1)

p(H∗,∗(R)) =⇒ HEk
∗,∗(R).

One may consider the E1-page to be obtained by taking the W̃k−1-indecomposables
QW̃k−1(−) of the canonical simplicial resolution (W̃k−1)

•+1(H∗,∗(R)) → H∗,∗(R),
so tautologically one has E2

∗,p,∗ = (LpQW̃k−1)(H∗,∗(R)), the (simplicially) derived
W̃k−1-indecomposables of the W̃k−1-algebra H∗,∗(R).

We will not make use of this spectral sequence, but it has been studied in some
detail by Richter-Ziegenhagen [101], especially in even characteristic.
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PART IV

A FRAMEWORK
FOR EXAMPLES

In this final part we use the techniques de-
veloped in parts I, II, and III to prove re-
sults related to homological stability, in the
setting of Ek-algebras arising from monoidal
groupoids. We show that in this setting the de-
rived E1-indecomposables can be computed in
terms of a semi-simplicial set of splittings. We
then describe the relationship to Koszul du-
ality and give a generic homological stability
results for both constant and local coefficients.
As before, C = SG with S satisfying the axioms
of Sections 2.1 and 7.1. Often we shall also as-
sume Axiom 11.19 (which roughly says that in
the category C homotopy groups detect weak
equivalences, and there is a Hurewicz theorem
which holds in all degrees), so that we have
a Hurewicz theorem and CW approximation
theorem in the category of Ek-algebras in C.





CHAPTER 17

Ek-ALGEBRAS FROM MONOIDAL GROUPOIDS

In many applications of the theory developed in this paper, the Ek-algebras in
question will arise as the classifying space of a monoidal groupoid; these are always
E1-algebras, but if the monoidal groupoid is braided, resp. symmetric, the result is an
E2-algebra, resp. E∞-algebra. In this section we shall explain the basic application
of the theory developed in this paper to such examples. As before, C = SG with
S satisfying the axioms of Sections 2.1 and 7.1.

17.1. Constructing Ek-algebras

Let (G,⊕,1) be a k-monoidal groupoid, let r : G → N be a monoidal functor,
which we call the rank , and suppose that r−1(0) consists precisely of those objects
isomorphic to 1G. Recall that for an object x ∈ G we write Gx := AutG(x) = G(x, x),
and we make the following assumption:

Assumption 17.1. — G1 is trivial.

We have defined the monoidal category sSetG, and it has a canonical object ∗
given by ∗(x) = ∗ for all x ∈ G. The object ∗ ∈ sSetG is terminal, so it has the
structure of a C-algebra for any operad C in simplicial sets (as its endomorphism
operad is the terminal operad). In particular it has the structure of an E+

k -algebra.
Under Assumption 17.1 the unit 1sSetG is the functor that takes the value ∗ on objects
isomorphic to 1G and ∅ otherwise, so we recognize that ∗ = 1sSetG ⊔ ∗>0 is the
unitalisation of the Ek-algebra ∗>0 having

∗>0(x) :=

{
∅ if x ∼= 1,
∗ else,

and we may find a cofibrant approximation

T
∼−→ ∗>0

as an Ek-algebra in sSetG. We may then form the left Kan extension

R := r∗(T) ∈ AlgEk
(sSetN).
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As T is a cofibrant Ek-algebra it is in particular cofibrant in sSetG, and so r∗(T) is
a derived left Kan extension. Thus UEkR ≃ Lr∗(∗>0) and we have

(UEkR)(n) ≃

∅ if n = 0,⊔
[x]∈π0(G)
r(x)=n

BGx if n > 0,

where the coproduct is over isomorphism classes of objects in G of rank n.

17.2. E1-splitting complexes

In Definition 8.5 we defined the derived E1-indecomposables QE1

L (R) of an E1-al-
gebra R, whose homology is the E1-homology of R. This heuristically computes the
generators, relations, etc., of R, and is used to bound the number of cells needed for
a CW approximation of R in the category of E1-algebras. In Section 13 we proved it
may be computed by a bar construction.

For the non-unital Ek-algebras R arising as in the previous section, we wish to give
a combinatorial model for this bar construction. To do so, we will make the following
simplifying assumption (later we will explain how this can be omitted, at the expense
of complicating the answer a little).

Assumption 17.2. — For all x, y ∈ G, the homomorphism −⊕− : Gx ×Gy → Gx⊕y
is injective.

Let Gr>0 denote the full subgroupoid of G on those objects x with rank r(x) > 0,
i.e., those objects not isomorphic to 1G.

Definition 17.3. — For x ∈ G let TE1•(x) ∈ ssSet∗ be the semi-simplicial pointed set
with p-simplices given by

TE1
p (x) :=

(
colim

x1,...,xp∈Gp
r>0

G(x1 ⊕ · · · ⊕ xp, x)

)
+

.

The face maps d0, dp : TE1
p (x) → TE1

p−1(x) are the constant maps to the basepoint.
For 0 < j < p the face map dj is induced by replacing (xj , xj+1) by xj ⊕ xj+1. We
write TE1(x) := ∥TE1

• (x)∥ ∈ sSet∗ for its thick geometric realization into pointed
simplicial sets.

In Section 13 we defined an E1-bar construction B̃E1(R) for a non-unital E1-al-
gebra R in a pointed category such as sSet∗. Let us recall its definition. It is the
thick geometric realization of a semi-simplicial space with p-simplices B̃E1

p (R) given
by the quotient of P1(p)× (R+)∧p by the subobject consisting entirely of units. Here
P1(p) is a contractible space of divisions of [0, 1] into p + 2 intervals, and R+ is the
unitalization of R obtained by formally adding a unit. Let T be obtained from ∗>0

as in Section 17.1, with k = 1.
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Proposition 17.4. — Under Assumption 17.2 there are Gx-equivariant homotopy
equivalences

S1 ∧QE1

L (∗>0)(x) ≃ S1 ∧QE1(T)(x) ≃ TE1(x)

of pointed simplicial sets.

Proof. — First note that all three terms are equivalent to ∗ if x ∼= 1, so we may
suppose that x ≁= 1. As T is cofibrant in C we may apply Theorem 13.7, which gives
an equivalence S1∧QE1

L (T) ≃ B̃E1(T+) between the suspension of the derived E1-in-
decomposables of T and the E1-bar construction recalled above. Here T+ : G→ sSet∗
is the functor obtained by levelwise adding a disjoint basepoint.

By definition of the Day convolution product we have

P1(p)× (T+
+)∧p(x) = colim

x1,...,xp∈Gp

(
P1(p)× G(x1 ⊕ · · · ⊕ xp, x)×T+(x1)× · · · ×T+(xp)

)
+
,

and as B̃E1
p (T+) is obtained by taking the quotient by the subobject consisting entirely

of units, under our assumption that x ≁= 1G this is also B̃E1
p (T+)(x).

There is a natural transformation of functors Gp → sSets

P1(p)+ ∧ G(x1 ⊕ · · · ⊕ xp, x)+ ∧T+(x1)+ ∧ · · · ∧T+(xp)+

G(x1 ⊕ · · · ⊕ xp, x)+,

given by P1(p)+
∼→ S0 and T+(xi)+

∼→ S0. As Gxi acts freely on T(xi), the source
is a cofibrant functor from Gp to sSet∗, and under Assumption 17.2 the group
Gx1
× · · · ×Gxp

acts freely on G(x1 ⊕ · · · ⊕ xp, x) so the target is also a cofibrant
functor: this is therefore a weak equivalence between cofibrant functors, so a weak
equivalence on colimits. Letting ZE1

• (x) ∈ ssSet∗ be the semi-simplicial pointed set
with

ZE1
p (x) := colim

x1,...,xp∈Gp
(G(x1 ⊕ · · · ⊕ xp, x))+ ,

and face maps analogous to TE1
• (x), this discussion determines a semi-simplicial

map B̃E1
• (T+)(x) → ZE1

• (x) which is a levelwise weak equivalence, and so a weak
equivalence on geometric realization.

Now the semi-simplicial object ZE1
• (x) admits a system of degeneracies, by inserting

copies of 1G into a tuple (x1, . . . , xp), giving it the structure of a simplicial set. With
these degeneracies, a face of a non-degenerate simplex is non-degenerate (as we have
a monoidal rank functor r : G → N such that r(x) = 0 if and only if x ∼= 1G), so the
non-degenerate simplices form a sub-semi-simplicial set, and this is precisely TE1

• (x).
Thus the composition

∥TE1
• (x)∥ −→ ∥ZE1

• (x)∥ −→ |ZE1
• (x)|

is an isomorphism, and the second map is a weak equivalence, so the first map is also
a weak equivalence. This gives a zig-zag

TE1(x) = ∥TE1
• (x)∥ ∼−→ ∥ZE1

• (x)∥ ∼←− ∥B̃E1
• (T+)(x)∥ = B̃E1(T+)(x)
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of Gx-equivariant maps which are each weak equivalences.

Corollary 17.5. — There is an equivalence

S1 ∧QE1

L (R)(n) ≃
∨

[x]∈π0(G)
r(x)=n

TE1(x) ∧Gx (EGx)+.

Proof. — We have R = r∗(T), with T
∼→ ∗>0 a cofibrant approximation as an

E1-algebra. Thus R is a cofibrant E1-algebra, so

QE1

L (R) ≃ QE1(R) = QE1(r∗(T)) ∼= r∗(Q
E1(T)).

By Proposition 17.4 there is a weak equivalence S1 ∧QE1(T)(x) ≃ TE1(x)∧ (EGx)+
of cofibrant Gx-spaces, so as required

S1 ∧ r∗(QE1(T))(n) ≃
∨

[x]∈π0(G)
r(x)=n

TE1(x) ∧Gx (EGx)+.

By this corollary, the E1-homology of R can be interpreted in terms of the
Gx-equivariant homology of TE1(x). The simplicial set TE1(x) has no homology in
degrees above r(x), because TE1

p (x) = ∗ for p > r(x), and the best possible situation
is when it only has homology in this degree.

Definition 17.6. — If the homology of TE1(x) is concentrated in degree r(x) for ev-
ery x ∈ G, then we say that (G,⊕,1) satisfies the standard connectivity estimate,
and call the Z[Gx]-module StE1(x) := H̃r(x)(T

E1(x);Z) the associated E1-Steinberg
module.

In this case we have

HE1

n,d(R;Z) = Hd(Q
E1

L (R)(n);Z) =
⊕

[x]∈π0(G)
r(x)=n

Hd−(n−1)(Gx;St
E1(x)),

so in particular HE1

n,d(R;Z) = 0 for d < n−1. As Ek-homology may be computed as a
k-fold bar construction, a bar spectral sequence may be used to transfer this vanishing
line for E1 to a vanishing line for E2-homology. More precisely, by Theorem 14.4 it
follows that if G is braided monoidal then HE2

n,d(R;Z) = 0 for d < n − 1 too, and if
G is symmetric monoidal then HE∞

n,d (R;Z) = 0 for d < n− 1 as well.

Remark 17.7. — It is clear from the proof of Proposition 17.4 that Assumption 17.2
may be omitted if in the definition of TE1

p (x) one forms the homotopy colimit (of
simplicial sets) rather than the colimit (of sets). This is analogous to the relaxation of
a similar injectivity condition in [100] obtained by Krannich [70, §7.3]. In Section 17.5
we will give a combinatorial model for QE1

L (T)(x) that does not use Assumption 17.2.

Remark 17.8. — If G is k-monoidal then there is an evident k-fold semi-simplicial
pointed set generalizing that of Definition 17.3, for which one can prove the analogue
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of Proposition 17.4 relating it to the derived Ek-indecomposables of ∗>0. If G is sym-
metric monoidal, these assemble into an infinite bar spectrum, which in Section 13.7
we have shown is equivalent to the suspension spectrum of QE∞L (R). In Section 17.4
we will give a combinatorial model for it.

The semi-simplicial set TE1
• (x) is visibly a double semi-simplicial suspension, where

one suspension is formed on the left and one is formed on the right, of the following
semi-simplicial set SE1

• (x). We record this in Lemma 17.10 below.

Definition 17.9. — For x ∈ G let SE1•(x) ∈ ssSet be the semi-simplicial set with
p-simplices given by

SE1
p (x) := colim

x0,...,xp+1∈Gp+2
r>0

G(x0 ⊕ · · · ⊕ xp+1, x)

and all face maps are given by the monoidal structure. This is called the E1-splitting
complex . We write SE1(x) := ∥SE1

• (x)∥ ∈ sSet for its thick geometric realization into
simplicial sets.

Lemma 17.10. — There is a Gx-equivariant homotopy equivalence TE1(x) ≃ Σ2SE1(x)

of pointed simplicial sets.

We note that Σ denotes the unreduced suspension, and in particular Σ∅ = S0. In
the following remark we give a more concrete description of SE1(x) under mild condi-
tions. For another perspective on it and its relationship to the derived decomposables,
see Section 17.5.

Remark 17.11. — We may give a more concrete description of SE1
• (x) in terms of

subgroups of Gx = G(x, x) which we call Young-type subgroups. An ordered tuple of
objects (x0, . . . , xp+1) ∈ Gp+2

r>0 together with an isomorphism ι : x0 ⊕ · · · ⊕ xp+1 → x

defines an element of SE1
p (x) which we also denote ι. Acting on ι defines a Gx-equiv-

ariant injection

(17.1) Gx/G(x0,...,xp+1) ↪→ SE1
p (x),

where G(x0,...,xp+1) < Gx denotes the image of the homomorphism

Gx0
× · · · ×Gxp+1

−→ Gx

induced by ι, which is injective by Assumption 17.2. This image G(x0,...,xp+1) is the
Young-type subgroup. Different choices of ι lead to conjugate subgroups.

The set SE1
p (x) is the disjoint union of the images of the injections (17.1), over

tuples (x0, . . . , xp+1) ∈ Gp+2
r>0, one in each isomorphism class, and isomorphisms

ι : x0 ⊕ · · · ⊕ xp+1 → x, one in each Gx-orbit.
We shall say that (x′0, . . . , x

′
p′+1) is a refinement of (x0, . . . , xp+1) if there exists a

surjective order-preserving map ϕ : [p′+1]→ [p+1] such that there exist isomorphisms⊕
j∈ϕ−1(i) x

′
j
∼= xi. Choosing such isomorphisms for each i ∈ [p+1] leads to a diagram
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of isomorphisms

(17.2)
x′0 ⊕ · · · ⊕ x′p′+1 x

x0 ⊕ · · · ⊕ xp+1 x,

ι′

ι

where ι′ is defined by commutativity of the diagram. In this situation, the Young-
type subgroup G(x′0,...,x

′
p′+1

) < Gx is a subgroup of G(x0,...,xp+1), and we obtain a
Gx-equivariant diagram

(17.3)

Gx/G(x′0,...,x
′
p′+1

) SE1

p′ (x)

Gx/G(x0,...,xp+1) SE1
p (x),

θ

when the surjection ϕ : [p′ + 1] → [p + 1] is induced from θ : [p] ↪→ [p′]. If we instead
choose ι′ arbitrarily, the diagram (17.2) commutes only up to an element g ∈ Gx,
in which case G(x′0,...,x

′
p′+1

) will only be conjugate to a subgroup of G(x0,...,xp+1). In
this situation we still obtain a Gx-equivariant diagram of the form (17.3), but the left
horizontal map is induced by the element g ∈ Gx.

Let us also remark that when the monoidal structure on G is strict, and the under-
lying category is skeletal, the isomorphisms ι, ι′, and ϕi in the above discussion can
all be chosen as the identity.

Example 17.12. — Let us consider the case G = N with monoidal product given by
addition, with monoidal rank functor r : N → N given by the identity. The resulting
E1-algebra R is weakly equivalent to the non-unital associative algebra N>0 with mul-
tiplication given by addition. Using Remark 17.11, its E1-splitting complex SE1(n) is
the thick geometric realization of the semi-simplicial set with p-simplices given by the
ordered sum decompositions n0 + · · ·+ np+1 = n with each ni > 0.

If n = 1 this is empty. If n ≥ 2, it is contractible. To see this, note that SE1(n) is
homeomorphic to the geometric realization of the nerve of the poset with objects the
ordered sum decompositions n0 + · · ·+np+1 = n ordered by refinement. If n ≥ 2, this
has a terminal object 1 + · · ·+ 1 = n.

We conclude that TE1(n) = Σ2SE1(n) ≃ S1 if n = 1 and ∗ otherwise. Using
Proposition 17.4 we see that HE1

n,d(N>0;Z) is Z if (n, d) = (1, 0) and 0 otherwise.
This also follows from the fact that N>0 is weakly equivalent to the free E1-algebra
on 1∗∗ ∈ sSetN.

17.3. Ek-splitting complexes

Here we give the generalization of Section 17.2 to k ≥ 2. It is more convenient
to generalize the simplicial set ZE1

• (x) rather than the semi-simplicial set TE1
• (x).
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Considering the finite set p = {1, . . . , p} as a discrete category, we define Gp1···pk to
be the category of functors Fun(p1×· · ·×pk,G). We denote an object of this category
as x⃗, which consists of a collection of objects xi1,...,ik for 1 ≤ ij ≤ pj .

Definition 17.13. — For x ∈ G define a k-fold simplicial pointed set ZEk
•,...,•(x) with

the pointed set of (p1, . . . , pk)-simplices given by

ZEk
p1,...,pk

(x) :=

(
colim

x⃗∈Gp1···pk
G(x1,...,1 ⊕ · · · ⊕ xp1,...,pk

, x)

)
+

.

For 1 ≤ i ≤ k, the face maps di0, dipi
are the constant maps to the basepoint.

The face maps dij for 0 < j < pi are induced by replacing each pair of objects
(xa1,...,ai−1,j,aj ,...,ap

, xa1,...,ai−1,j+1,aj ,...,ap
) by its sum. The degeneracy maps insert

1’s. It has a remaining Gx-action, and we write ZEk(x) := |Z•,...,•(x)| ∈ sSetGx
∗ for

its k-fold thin geometric realization.

Let T be obtained from ∗>0 as in Section 17.1. The analogue of Proposition 17.4 is
a computation of the derived indecomposables QEk

L (∗>0) ∈ sSetG∗ in terms of ZEk(x)

under Assumption 17.2. Following the proof of Proposition 17.4 but using the Ek-bar
construction in place of the E1-bar construction, we get a Gx-equivariant homotopy
equivalence B̃Ek(T)(x)→ ZEk(x) and conclude that:

Proposition 17.14. — Under Assumption 17.2, there are Gx-equivariant homotopy
equivalences

Sk ∧QEk

L (∗>0)(x) ≃ Sk ∧QEk(T)(x) ≃ ZEk(x),

pointed simplicial sets for x ∈ G>0.

Taking the derived pushforward along r : G → N, a straightforward adaptation of
Corollary 17.5 gives us:

Corollary 17.15. — For n ≥ 1, there is a weak equivalence

Sk ∧QEk

L (Lr∗∗>0)(n) ≃
∨

[x]∈π0(G)
r(x)=n

ZEk(x)//Gx.

Remark 17.16. — As in Remark 17.11 we can identify the simplices of ZEk
•,...,•(x) with

a disjoint union of cosets of Young-type subgroups.
Under the above conditions, we can identify the sets which appear:

colim
x⃗∈Gp1···pk

G(x1,...,1 ⊕ · · · ⊕ xp1,...,pk
, x) ∼=

⊔
x⃗∈Gp1···pk

ι:
⊕
xi1,...,ik

→x

Gx
G(x1,...,1,...,xp1,...,pk

)
,

the indexing set running over tuples x⃗ ∈ Gp1···pk , one in each isomorphism class, and
isomorphisms ι :

⊕
xi1,...,ik

∼→ x, one in each Gx-orbit.
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17.4. E∞-splitting complexes

If (G,⊕,1) is a symmetric monoidal groupoid then the construction of Section 17.1
provides an E∞-algebra R, which has derived E∞-indecomposables QE∞L (R) as in
Definition 8.5. Here we wish to give a combinatorial model for this, in the same way
that we gave a combinatorial model for the derived E1- and Ek-indecomposables given
in the previous section. However, the strategy in this case will be different from that
of Section 17.2; in Section 17.5 we will explain how the ideas of this section can also
be applied in the E1 case.

Definition 17.17. — For x ∈ G, define the E∞-splitting category SE∞(x) as follows:

— Its objects are given by triples ([n], f, ϕ) of a finite set [n] := {1, 2, . . . , n} with
n ≥ 2, a function f : [n]→ ob(Gr>0), and a morphism ϕ :

⊕
α∈[n] f(α)→ x in G

(necessarily an isomorphism).
— A morphism ([n], f, ϕ) → ([n′], f ′, ϕ′) is the data of a surjection e : [n] → [n′]

and isomorphisms φα : f ′(α)→
⊕

β∈e−1(α) f(β) for each α ∈ [n′] such that the
following diagram commutes⊕

α∈[n′] f
′(α) x

⊕
α∈[n′]

⊕
β∈e−1(α) f(β)

⊕
β∈[n] f(β),

⊕
α∈[n′] φα

ϕ′

∼=

ϕ

with bottom map the canonical identification of these two sums.
— Composition is given by composing the surjections e, and composing the appro-

priate direct sums of the isomorphisms ϕα.

The E∞-splitting category is similar in nature to the category of simplices of the
semi-simplicial set SE1

• (x) defined in Definition 17.9 in the E1 setting, but also incor-
porates morphisms that permute direct summands.

Definition 17.18. — For x ∈ G, we let the E∞-splitting complex SE∞(x) ∈ sSet be
the nerve of the E∞-splitting category SE∞(x).

As we shall see in Proposition 17.22, the E∞-splitting complex gives a model for
the derived E∞-decomposables of T and hence ∗>0.

Let Gn ≀ Sn denote the Grothendieck construction of the action of Sn on the
groupoid Gn: it is a groupoid whose objects are given by tuples (x1, . . . , xn) of objects
of G, and a morphism from (x1, . . . , xn) to (x′1, . . . , x

′
n) is given by a permutation

σ ∈ Sn and a collection of morphisms φi : xσ(i) → x′i in G for i = 1, 2, . . . , n. As ⊕ is
symmetric monoidal, the functor ⊕ : Gn → G extends to a functor πn : Gn ≀Sn → G.

If X ∈ sSetG, then there is a functor X⊗n ≀Sn : Gn ≀Sn → sSet given on objects by

(X⊗n ≀Sn)(x1, . . . , xn) = X(x1)⊗ · · · ⊗X(xn)
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and on a morphism (σ, {φi}) by

X(x1)⊗ · · · ⊗X(xn)
σ̂−→ X(xσ(1))⊗ · · · ⊗X(xσ(n))

∏
i φi−−−−→ X(x′1)⊗ · · · ⊗X(x′n),

where σ̂ denotes the permutation of the factors given by σ.

Lemma 17.19. — If X ∈ sSetG is cofibrant then there is a weak equivalence in sSetG

C∞(n)×Sn
X⊗n ≃ L(πn)∗(X

⊗n ≀Sn).

Proof. — Consider the functor C : Gn ≀Sn → sSet given on objects by

C(x1, . . . , xn) := C∞(n)×X(x1)⊗ · · · ⊗X(xn)

and on a morphism (σ, {φi}) by

C∞(n)×X(x1)⊗ · · · ⊗X(xn)
σ×σ̂−−−→ C∞(n)×X(xσ(1))⊗ · · · ⊗X(xσ(n))

id×
∏

i φi−−−−−−→ C∞(n)×X(x′1)⊗ · · · ⊗X(x′n).

The projection C∞(n)→ ∗ gives a natural transformation C → X⊗n ≀Sn, which is an
objectwise weak equivalence as C∞(n) ≃ ∗. As X is cofibrant, each X(x) has a free
Gx-action, and certainly C∞(n) has a free Sn-action. Thus C(x1, . . . , xn) has a free
AutXn≀Sn

(x1, . . . , xn)-action, and hence C is cofibrant. Hence

(πn)∗(C) = C∞(n)×Sn
X⊗n

computes the homotopy Kan extension of X⊗n ≀Sn, as required.

This lemma shall be used to produce a model for the E∞-decomposables of T.

Definition 17.20. — For x ∈ G, let GSE∞(x) be the category object internal to
groupoids described as follows.

— The “object” groupoid O = ob(GSE∞(x)) has objects triples ([n], f, ϕ) of a
finite set [n] := {1, 2, . . . , n} with n ≥ 2, a function f : [n] → ob(Gr>0),
and a morphism ϕ :

⊕
α∈[n] f(α) → x in G. A morphism from ([n], f, ϕ)

to ([n′], f ′, ϕ′) is the data of a bijection b : [n] → [n′] and a collection of
morphisms ε(α) : f(α)→ f ′(b(α)) such that⊕

α∈[n] f(α) x

⊕
α∈[n] f

′(b(α))
⊕

β∈[n′] f
′(β)

⊕
α∈[n] ε(α)

ϕ

b∗

ϕ′

commutes.
— The “morphism” groupoid M = mor(GSE∞(x)) has objects given by tuples

([n0], f0, ϕ0; [n1], f1, ϕ1; e, {φα}) of a pair of objects of the groupoid ob(S̄E∞(x)),
a surjection e : [n0] ↠ [n1], and isomorphisms φα : f1(α)→

⊕
β∈e−1(α) f0(β)

for α ∈ [n1].
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A morphism from such an object to another ([n′0], f
′
0, ϕ

′
0; [n

′
1], f

′
1, ϕ

′
1; e

′, {φ′α})
is the data of morphisms in the groupoid O

(bi, ε(α)i) : ([ni], fi, ϕi) −→ ([n′i], f
′
i , ϕ

′
i)

such that b1 ◦ e = e′ ◦ b0 and

f1(α)
⊕

β∈e−1(α) f0(β)

f ′1(b1(α))
⊕

b0(β)∈(e′)−1(b1(α)) f
′
0(b0(β))

φα

ε(α)1
⊕
ε(β)0

φ′b1(α)

commutes for all α ∈ [n1].
— The composition functor M×O M is defined similarly to Definition 17.17: com-

pose the surjections e and compose the appropriate direct sums of the isomor-
phisms ϕα.

Let us write NGSE∞(x) for the simplicial set obtained as the nerve of this category,
i.e., first form the simplicial category with objects N•O and morphisms N•M, take
the bisimplicial nerve of this simplicial category, then form the diagonal simplicial set.

Lemma 17.21. — There are Gx-equivariant homotopy equivalences

DecE∞L (T)(x) ≃ NGSE∞(x)+

of pointed simplicial sets.

Proof. — We use the description DecE∞L (T) ≃ B((E≥2
∞ )+, E∞,T) given in Sec-

tion 9.3.1, where we have

Bp((E
≥2
∞ )+, E∞,T) = (E≥2

∞ )+((E∞)p(T)).

By Lemma 17.19 we have,

E≥r∞ (X) =
∐
n≥r

C∞(n)×Sn
X⊗n ≃−→ L

∐
n≥r

πn


∗

∐
n≥r

X⊗n ≀Sn

 .

By iterating, this lets us describe (E≥2
∞ )+((E∞)p(X)) as the homotopy Kan extension

along a certain functor rp : Bp → G of a certain functor Xp : Bp → sSet.
Unwinding definitions, the category Bp is given as follows:

— An object of Bp consists of the following data: a collection of finite sets and
surjections

[n0]
e(1)
↞− [n1]

e(2)
↞− · · ·

e(p)
↞− [np]

with n0 ≥ 2, together with functions fj : [nj ] → ob(G) for 0 ≤ j ≤ p and
morphisms ϕj−1(i) :

⊕
k∈e(j)−1(i) fj(k)→ fj−1(i) in G for 1 ≤ j ≤ p.

— A morphism from such an object to another, decorated with primes, is
a collection of bijections bj : [nj ] → [n′j ] and a collection of morphisms
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εj(i) : fj(i)→ f ′j(bj(i)) in G for 0 ≤ j ≤ p and i ∈ [nj ] which intertwine the e’s
and ϕ’s in the evident way.

The functor rp : Bp → G sends an object as described above to
⊕

i∈[n0]
fi(0) and a

morphism as described above to⊕
i∈[n0]

f0(i)
⊕
ε0(i)−−−−−→

⊕
i∈[n0]

f ′0(b0(i))
(b0)∗−−−→

⊕
k∈[n′0]

f ′0(k).

The functor Xp : Bp → sSet can be expressed in terms of X as follows. It sends
an object as described above to X(fp(1))⊗ · · · ⊗X(fp(np)), and induces the evident
operation on morphisms.

In the case X = T ≃ ∗>0 we therefore obtain

Bp((E
≥2
∞ )+, E∞,T) ≃ L(rp)∗(Tp) ≃ L(rp)∗((∗>0)p).

The value of this object at x may be described as the classifying space of the sub-
groupoid of rp/x in which all objects fi(j) which arise are required to lie in Gr>0.
This subgroupoid is recognizable as the groupoid Np(GSE∞(x)) obtained as the p-th
stage of the nerve of the category object in groupoids GSE∞(x). Let us write sSE∞(x)

for the category object in simplicial sets obtained by taking the nerve in the groupoid
direction. The naturality with respect to face maps of the above discussion is easily
seen, and we obtain a zig-zag of Gx-equivariant maps of simplicial objects

B•((E
≥2
∞ )+, E∞,T)(x) −→ · · · ←− N•(sSE∞(x)),

which are levelwise weak equivalences. Therefore, taking geometric realization gives
the desired conclusion.

We now wish to simplify our model for DecE∞L (T)(x) for the classifying space of
the category object in groupoids GSE∞(x) and relate it to the classifying space of the
category SE∞(x), which is our definition of SE∞(x). We shall see in the proof that this
amounts to the claim that we may discretize the objects and morphisms of sSE∞(x)

without affecting the homotopy type of its nerve.

Proposition 17.22. — There are Gx-equivariant homotopy equivalences

DecE∞L (T)(x) ≃ SE∞(x)+

of pointed simplicial sets.

From this proposition we may immediately deduce the following corollary, using
the cofiber sequence

DecE∞L (T) −→ ∥B•(E∞, E∞,T)∥+ −→ QE∞L (T)

given in (9.4), and the equivalence ∥B•(E∞, E∞,T)∥ ≃ T ≃ ∗>0.

Corollary 17.23. — There are Gx-equivariant homotopy equivalences

QE∞L (T)(x) ≃ ΣSE∞(x)

of pointed simplicial sets.
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Proof of Proposition 17.22. — In view of Lemma 17.21, we must show that there are
Gx-equivariant homotopy equivalences NGSE∞(x) ≃ NSE∞(x) = SE∞(x) between
the nerves of these two categories.

The category SE∞(x) is obtained from GSE∞(x) by taking the underlying sets
of objects of O and M. Let TSE∞(x) be the category object internal to topological
spaces obtained by forming the (thin) geometric realization of the groupoids O and
M of objects and morphisms, denoted O = |N•O| and M = |N•M|. Write δO ⊂ O for
the (discrete) subspace of 0-simplices, i.e., objects of O, and similarly δM ⊂M .

The combined source-target map

s× t : M −→ O× O

is easily seen to be a fibration of groupoids, i.e., to induce a Kan fibration on nerves, so,
as the geometric realization of a Kan fibration is a Serre fibration [96], the combined
source-target map s× t : M → O×O is a Serre fibration. This puts us in a position to
apply [35, Theorem 5.2], applied to the 0-connected map i : δO → O. This produces a
new topological category TSE∞(x)δO with space of objects δO and space of morphisms
given by the pullback

mor(TSE∞(x)δO) M

δO × δO O ×O,

s×t

i×i

and shows that the inclusion TSE∞(x)δO → TSE∞(x) induces an equivalence on
classifying spaces. We may compute the above pullback as follows: it is the geomet-
ric realization of the nerve of the groupoid having the same objects as M, but only
those morphisms which map to identity morphisms under s × t. By the definition
of morphisms in M this is the discrete groupoid with the same objects as M, i.e.,
mor(TSE∞(x)δO) = δM . Thus TSE∞(x)δO is just the category SE∞(x), and the con-
clusion is that the inclusion, which is Gx-equivariant, induces a weak equivalence of
topological spaces

|N•SE∞(x)| ∼−→ |N•TSE∞(x)|.
Recognizing this as the geometric realization of the map of simplicial sets
SE∞(x) = NSE∞(x)→ NGSE∞(x), the desired conclusion follows.

Example 17.24. — We continue Example 17.12. There we used that addition endows
the discrete groupoid N with a monoidal structure, which is of course a symmetric
monoidal structure (with identity symmetries). Thus the E1-algebra structure on R

extends to an E∞-algebra structure, weakly equivalent to the obvious non-unital com-
mutative algebra structure on N>0. Its E∞-homology is significantly more complicated
than its E1-homology, being related to the associated graded of the symmetric power
filtration on HZ, as explained in the work of Arone-Lesh [5, 6].

In this case for n ∈ N, the E∞-splitting category SE∞(n) may be described as
follows. Objects are (ordered) tuples (n1, n2, . . . , nk) of k ≥ 2 natural numbers such
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that n =
∑
ni, and a morphism from such a tuple to (n′1, n

′
2, . . . , n

′
k′) is the data of

a surjection e : [k] ↠ [k′] such that n′i =
∑
j∈e−1(i) nj .

In this example we will explain the relationship between SE∞(n) and the partition
complex of n in the sense of Arone-Dwyer [4]. Consider the analogous category D([n])

whose objects are tuples (S1, S2, . . . , Sk) of k ≥ 2 subsets of [n] = {1, 2, . . . , n} such
that [n] =

⊔k
i=1 Si, and a morphism from such a tuple to (S′1, S

′
2, . . . , S

′
k′) is the data

of a surjection e : [k]→ [k′] such that S′i =
⊔
j∈e−1(i) Sj . This category has a natural

action of Sn, by permuting elements of [n] and hence also its subsets.
Sending a set to its cardinality defines a functor ϕ : D([n])→ SE∞(n), which strictly

commutes with the Sn-action, and there is therefore a factorisation

Bϕ : ND([n]) −→ ND([n])/Sn
φ−→ NSE∞(n)

of the induced map on simplicial nerves. It is easy to see that φ is an isomorphism.
To describe the middle term we study the Sn-equivariant homotopy type

of ND([n]). First note that the object ({1}, {2}, . . . , {n}) is initial in D([n]), so
ND([n]) ≃ ∗ for n ≥ 2 (and it is empty for n = 1). A p-simplex is given by a sequence
of surjections

[k0]
e(1)
↞− [k1]

e(2)
↞− · · ·

e(p)
↞− [kp]

with k0 ≥ 2 and a tuple of sets (S1, S2, . . . , Skp
) decomposing [n]. A permutation

of [n] stabilizes this simplex if and only if it preserves the sets Si, so the stabilizer of
this simplex is the Young subgroup SS1

×· · ·×SSkp
≤ Sn. On the other hand for any

decomposition [n] =
⊔r
i=1Xi defining a Young subgroup SX1

× · · · ×SXr
≤ Sn, the

fixed points for this subgroup consist of the simplices as above such that each Si is
a union of Xj ’s. We can identify this with N•D({X1, X2, . . . , Xr}), the construction
above applied to the set of parts Xj , so it is contractible as long as r ≥ 2, and empty
if r = 1. We recognize the above properties as characterising the Sn-equivariant
homotopy type of EY, the universal Sn-space whose isotropy is in the collection Y
of all Young subgroups associated to proper decompositions of [n]. Thus we have
ND([n])/Sn = BY.

Finally, by [4, Proposition 7.3] (put into our notation) there is a homotopy equiv-
alence

S1 ∧ ΣBY ≃ S1 ∧ (Sn ∧ ΣPn)//Sn,

where the homotopy orbits are formed in pointed simplicial sets. Here Pn is the n-th
partition complex, i.e., the nerve of the poset of partitions of [n], with the discrete
and indiscrete partitions removed. It is known that ΣPn is a wedge of (n−2)-spheres,
and following [4] we write Lie∗n := sign⊗ H̃n−2(ΣPn;Z).

Putting the above together, and using Corollary 17.23, we have

S1 ∧QE∞L (N>0)(n) ≃ S1 ∧ ΣSE∞(n) ≃ S1 ∧ ΣNSE∞(n) ≃ S1 ∧ (Sn ∧ ΣPn)//Sn,

and so
HE∞
n,d (N>0;k) ∼= Hd−2n+2(Sn; Lie∗n ⊗ k).
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In particular we have HE∞
n,d (N>0;k) = 0 for d < 2(n − 1); a range twice as large as

that given by the standard connectivity estimate. Furthermore, if k is a finite field of
characteristic p, it vanishes unless n is a power of p [4, Theorem 1.1].

17.5. E1-splitting complexes revisited

One may develop the analogue of the results of the previous section for a monoidal
groupoid (G,⊕,1) too, which we outline here.

In this case there is an analogous E1-splitting category SE1(x) for x ∈ G:
— It has objects given by triples ([n], f, ϕ) of a finite ordered set [n] := {1<2 < · · ·<n}

with n ≥ 2, a function f : [n]→ ob(Gr>0) and a morphism ϕ :
⊕

α∈[n] f(α)→ x

in G (necessarily an isomorphism).
— A morphism ([n], f, ϕ) → ([n′], f ′, ϕ′) is the data of an order-preserving surjec-

tion e : [n] ↠ [n′] and isomorphisms φα : f ′(α)→
⊕

β∈e−1(α) f(β) for all α ∈ [n′]

such that the following diagram commutes⊕
α∈[n′] f

′(α) x

⊕
α∈[n′]

⊕
β∈e−1(α) f(β)

⊕
β∈[n] f(β),

ϕ′

⊕
α∈[n′] φα

∼=

ϕ

with bottom map the canonical identification of these two sums.
The following analogues of Proposition 17.22 and Corollary 17.23 are established by
the same arguments: there are Gx-equivariant equivalences

DecE1

L (T)(x) ≃ BSE1(x)+

and hence
QE1

L (T)(x) ≃ ΣBSE1(x).

These results hold without Assumption 17.2.
This is related to the discussion of Section 17.2 as follows. There is a functor

SE1(x) −→ Simp(SE1
• (x))

to the poset of simplices of the semi-simplicial set SE1
• (x) given by sending an ob-

ject ([n], f, ϕ) to the equivalence class of the element ϕ ∈ G(f(1) ⊕ · · · ⊕ f(n), x)

in colimx0,...,xp+1∈Gp+2
r>0

G(x0 ⊕ · · · ⊕ xp+1, x) = SE1
p (x), and the evident map on mor-

phisms. This functor is full and essentially surjective, and under Assumption 17.2 it
is also faithful and so is an equivalence of categories. As equivalences of categories
induce homotopy equivalences on classifying spaces, and the classifying space of the
poset of simplices is the barycentric subdivision, we deduce that SE1(x) ≃ BSE1(x).
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APPLICATION TO HOMOLOGICAL STABILITY

One of the basic consequences of the theory developed so far is a homological
stability theorem for the groups Gx of automorphisms in a braided monoidal groupoid
G satisfying the hypotheses described in Section 17:

(i) there is a monoidal functor r : G→ N with r−1(0) the objects isomorphic to 1,
(ii) Assumption 17.1 that G1 is trivial, and
(iii) Assumption 17.2 that for all objects x, y ∈ G, morphism −⊕− : Gx ×Gy → Gx⊕y

is injective.

As before, C = SG with S satisfying the axioms of Sections 2.1 and 7.1.
In this section we shall deduce a generic “homological stability” result based on the

theory developed in this monograph. We emphasize that our main motivation for this
project is to give applications “beyond homological stability” (as in [44, 45, 46]).

18.1. A generic homological stability result

The basic generic homological stability result is as follows. It has surprisingly many
applications, and in Section 18.2 we shall give one. A related result regarding the
relative groups Hd(Gσ2d , Gσ2d−1 ;Z) has been given by Hepworth [55].

Theorem 18.1. — Suppose that (G,⊕,1) is a braided monoidal groupoid as above which
satisfies the standard connectivity estimate of Definition 17.6, and such that there is
a unique σ ∈ G with r(σ) = 1 up to isomorphism. Then up to isomorphism the objects
of G are precisely the powers of σ, and Hd(Gσn , Gσn−1 ;Z) = 0 for 2d ≤ n− 1.

In addition, if k is a commutative ring such that σ · − : H1(Gσ;k) → H1(Gσ2 ;k)

is surjective, then in fact Hd(Gσn , Gσn−1 ;k) = 0 for 3d ≤ 2n− 1.

We will prove this by considering the E2-algebra R ∈ AlgE2
(sSetN) associated to G

as in Section 17.1. As we are only interested in the homology of R, say with coefficients
in a commutative ring k, there is no harm in applying the free k-module functor to
consider Rk := kR ∈ AlgE2

(sModNk) as an E2-algebra in the category of N-graded
simplicial k-modules. The category sModk satisfies all the axioms of Sections 2.1 and
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7.1, as well as Axiom 11.19, so all the tools we have developed so far may be applied.
Moreover, this construction preserves derived indecomposables:

Lemma 18.2. — There is a natural weak equivalence QEk

L (Rk) ≃ k[QEk

L (R)]

in sModNk.

Proof. — This follows from the considerations of Section 8.2.3 applied to the Quillen
adjunction k[−] ⊣ U between sSetN and sModNk, using the fact that the left adjoint k[−]

is strong monoidal so there is a natural isomorphism (k[−], ϕk[−])∗(R) ∼= Rk by
Lemma 4.16.

Let us take for granted for the moment the part of Theorem 18.1 that says that the
objects of G up to isomorphism are σn for n ∈ N. Recall that in Section 12.2 we have
defined an associative unital algebra Rk, weakly equivalent to the unitalisation R+

k as
an E+

1 -algebra, and using the adapter construction of Section 12.2.2 and the element
σ ∈ H0(Gσ;k) = H0(G1;k) = π1,0(R) ∼= π1,0(Rk) we have described in Section 12.2.3
how to form a left Rk-module Rk/σ. By definition, the underlying homotopy type
of Rk/σ is that of the homotopy cofiber of the composition

S1,0 ⊗Rk
σ⊗id−−−→ Rk ⊗Rk

µ−→ Rk,

with µ the multiplication, so that we have

Hn,d(Rk/σ) ∼= Hd(Gσn , Gσn−1 ;k).

Thus Theorem 18.1 will be a consequence of the following general theorem for Ek-alge-
bras in the category of N-graded simplicial k-modules, using Lemma 18.2 to translate
the hypothesis on the Ek-homology of R into one about Rk.

Theorem 18.3. — Let k ≥ 2 and R ∈ AlgEk
(sModNk) be a non-unital Ek-algebra

such that H∗,0(R) = k[σ] with |σ| = (1, 0). If HEk

n,d(R) = 0 for d < n − 1, then
Hn,d(R/σ) = 0 for 2d ≤ n− 1.

If in addition the map σ · − : H1,1(R) → H2,1(R) is surjective then in fact
Hn,d(R/σ) = 0 for 3d ≤ 2n− 1, and HEk

2,1 (R) = 0.

Proof. — We will make a cumulative sequence of reductions, until we can directly
compute the homology of R/σ using Cohen’s computation of the homology of free
Ek-algebras, described in Section 16.

Reduction 1. — It is enough to consider the case R = Ek(X) with X a finite wedge
of spheres such that Hn,d(X) = 0 for d < n− 1 and H1,0(X) = k{σ}.

Firstly, the groupoid G = N and the operad Ck satisfy the hypotheses of
Lemma 11.16. Every E2-algebra in sModNk is 0-connective, and R is reduced (cf. Def-
inition 11.11) because H0,0(R

+;k) = k implies H0,0(R;k) = 0. The canonical
map i → R is thus between 0-connective reduced Ek-algebras, and thus our CW
approximation theorem for Ek-algebras applies to it, Theorem 11.21. Its conclusion
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is that there is a CW approximation Z
∼→ R, where Z is a CW Ek-algebra built out

of cells in bidegrees (n, d) with d ≥ n− 1 and a single (1, 0)-cell σ : S1,0 → Z.
The CW Ek-algebra Z has a skeletal filtration sk(Z) ∈ AlgEk

((sModNk)
Z≤) with

(1, 0)-cell σ has filtration 1, which is attached along a filtered map σ : 1∗S
1,0 → sk(Z).

We may form the unital associative algebra sk(Z) in (sModNk)
Z≤ and, using the adapter

construction of Section 12.2, taking the quotient by σ ·− gives rise to a left sk(Z)-mod-
ule sk(Z)/σ. Upon taking colimit this recovers Z and Z/σ, so there is a spectral
sequence

E1
n,p,q = Hn,p+q,p(gr(sk(Z)/σ)) =⇒ Hn,p+q(Z/σ),

whose target is isomorphic to Hn,p+q(R/σ).
Recall that sk(Z)/σ is defined to be the homotopy pushout

0∗S
1,0 ×B(A(sk(Z)), sk(Z), sk(Z)) B(A(sk(Z)), sk(Z), sk(Z))

0∗D
1,1 ×B(A(sk(Z)), sk(Z), sk(Z)) sk(Z)/σ

σ′′

in the category of sk(Z)-modules, where the top map is multiplication by the
map σ : 0∗S

1,0 → sk(Z) using the special left sk(Z)-module structure on the adapter
A(sk(Z)). As gr(−) commutes with pushouts (as it is a left adjoint), bar construc-
tions (as it is symmetric monoidal and preserves thick geometric realizations), (−)

(by Lemma 12.7 (iii)), and A(−) (by the construction in Section 12.2.5), we find
that gr(sk(Z)/σ) ∼= gr(sk(Z))/σ.

By Theorem 6.14 the associated graded of the skeletal filtration is given by

gr(sk(Z)) ≃ Ek

⊕
d≥0

⊕
α∈Id

Snα,d,d
k

 ,

with Snα,d,d
k shorthand for d∗S

nα,d
k . This is a free Ek-algebra on a wedge of

spheres X =
⊕

d≥0

⊕
α∈Id

Snα,d,d
k such that d ≥ nα − 1 for all α, and there is a

single sphere σ of degree (1, 0, 0). While this may not be a finite wedge of spheres,
it is the colimit of its finite sub-wedges, and so gr(sk(Z))/σ ∼= Ek(X)/σ is a colimit
of Ek(X ′)/σ’s with X ′ ⊂ X a finite sub-wedge.

Reduction 2. — It is enough to consider the case k = Z.

Let us write − ⊗Zk : ModZ → Modk for the base-change functor, which is symmet-
ric monoidal and commutes with colimits, and use the same notation for the induced
functor between categories of N-graded simplicial modules. Writing Sn,dk ∈ sModNk
for sphere objects for now, we have Sn,dk = Sn,dZ ⊗Z k. As base-change is symmetric
monoidal and commutes with colimits, we recognize

R = Ek

(⊕
d≥0

⊕
α∈Id

Snα,d
k

)
= Ek

(⊕
d≥0

⊕
α∈Id

Snα,d
Z

)
⊗Z k
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as the base-change of RZ := Ek(
⊕

d≥0

⊕
α∈Id

Snα,d
Z ).

Thus we have R/σ = (RZ/σ)⊗Z k, so by the universal coefficient sequence

0 −→ Hn,d(RZ/σ)⊗Z k −→ Hn,d(R/σ) −→ TorZ1 (Hn,d−1(RZ/σ),k) −→ 0

it is enough to establish the result for the case k = Z.

Reduction 3. — It is enough to consider the cases k = Fℓ for all primes ℓ.

Suppose R = Ek(X) ∈ AlgEk
(sModNZ) with X a finite wedge of spheres such

that Hn,d(X) = 0 for d < n−1 and H1,0(X) = Z{σ}. Then each Hn,d(R) is a finitely-
generated Z-module, so the same is true of each Hn,d(R/σ). Thus, if Hn,d(R/σ) ̸= 0

then there is a prime number ℓ such that Hn,d(R/σ)⊗ZFℓ ̸= 0, and so by the universal
coefficient sequence

0 −→ Hn,d(R/σ)⊗Z Fℓ −→ Hn,d(R/σ ⊗Z Fℓ) −→ TorZ1 (Hn,d−1(R/σ),Fℓ) −→ 0,

we have Hn,d(R/σ ⊗Z Fℓ) = Hn,d((R⊗Z Fℓ)/σ) ̸= 0.
Contrapositively, if Hn,d((R⊗Z Fℓ)/σ) = 0 in a range of bidegrees for all primes ℓ,

then Hn,d(R/σ) = 0 in that range of bidegrees too.

So let us consider the case k = Fℓ, and R = Ek(X) with X = S1,0σ ⊕
⊕

α∈I S
nα,dαxα

a finite wedge of spheres such that dα ≥ nα − 1 and dα > 0 for each α. In this case
we can compute the homology of R/σ, using the results of F. Cohen summarized in
Theorem 16.4. Namely, H∗,∗(R+) = Wk−1(H∗,∗(X)) is a free graded commutative
algebra with generators QIℓ (y) where y is a basic Lie word on σ and the xα, satisfying
certain conditions. Thus H∗,∗(R/σ) ∼= H∗,∗(R

+)/(σ) is the free graded commutative
algebra with the same generators except for σ (though it should only be considered
as an H∗,∗(R+)-module, not as a ring). Applying βQsℓ or Qsℓ to an element increases
its slope d

n (in principle there can be elements of infinite slope when n = 0, which is
fine) and the bracket of two elements has larger slope than the smaller of the slopes of
the two elements, so a generator of minimal slope is one of: (i) [σ, σ], (ii) βQ1

ℓ(σ) (or
Q1

2(σ) if ℓ = 2), or (iii) xα with |xα| = (r, r− 1) and r ≥ 2. These have slope (i) k−1
2 ,

(ii) 2(ℓ−1)−1
ℓ (or 1

2 if ℓ = 2), and (iii) r−1
r , so all have slope ≥ 1

2 . Thus Hn,d(R/σ) = 0

for 2d < n.

For the addendum we will employ essentially the above argument but using a
modified filtration. We have that

Ek(S
1,0
Z )(2) = Ck(2)⊗S2

(S0
Z)⊗2 ≃ ZSing•(Ck(2)/S2) ≃ ZSing•(RP

k−1).

We will make use of the element

Q1
Z(σ) ∈ H2,1(Ek(S

1,0
Z σ)) =

{
Z if k = 2,
Z/2 if k > 2,

characterized by the properties that it reduces modulo 2 to Q1
2(σ) and, if k = 2, it

satisfies 2Q1
Z(σ) = −[σ, σ] (the sign is due to Cohen’s conventions for the bracket;

note that when k = 2 we have Q1
2(σ) = ξ(σ)).
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We make a choice of a map Q1
Z(σ) : S2,1

Z → Ek(S
1,0
Z σ) representing this class. Under

− ⊗Z k it yields a map Q1
k(σ) : S2,1

k → Ek(S
1,0
k σ). As the map σ : S1,0

k → R extends
to a map Ek(S

1,0
k σ)→ R, we obtain a map Q1

k(σ) : S2,1
k → R.

Let {xα}α∈I be a set of generators of the k-module H1,1(R). Under the assump-
tion that σ · − : H1,1(R) → H2,1(R) is surjective, there is an x ∈ H1,1(R) such
that Q1

k(σ) = σ · x, and we may suppose that x is one of the generators xα. There is
thus an Ek-map

Z0 := Ek

(
S1,0
k σ ⊕

⊕
α∈I

S1,1
k xα

)
∪Ek

Q1
k(σ)−σ·x D2,2

k ρ −→ R,

given by a choice of nullhomotopy of the map Q1
k(σ)− σ · x : S2,1

k → R.

Claim. — We have HEk
2,1 (R,Z0) = 0 = HEk

2,1 (R).

Proof of claim. — The long exact sequence on Ek-homology gives

0 = HEk
2,1 (Z0) −→ HEk

2,1 (R) −→ HEk
2,1 (R,Z0) −→ HEk

2,0 (Z0) = 0,

so the two vanishing statements are equivalent. It also gives

0 HEk
1,2 (R) HEk

1,2 (R,Z0)

⊕
α∈I

k{xα} HEk
1,1 (R) HEk

1,1 (R,Z0)

k{σ} HEk
1,0 (R) HEk

1,0 (R,Z0) 0,∼

so we have HEk
1,0 (R,Z0) = HEk

1,1 (R,Z0) = 0 and hence by the Hurewicz theorem
(Corollary 11.14) we have an isomorphism

H2,1(R,Z0)
∼−→ HEk

2,1 (R,Z0).

(We have used that Ck(1) ≃ ∗ so that k[1] ⊗H∗,0(Ck(1);k) − is the identity.) But the
diagram

H2,1(Z0) H2,1(R) H2,1(R,Z0) H2,0(Z0) H2,0(R)

H1,1(Z0) H1,1(R)

0 ∼

σ σ

shows that H2,1(R,Z0) = 0. Thus HEk
2,1 (R,Z0) = 0 as claimed.

By again applying the CW approximation theorem for Ek-algebras, Theorem 11.21,
we can extend the map Z0 → R to a relative CW approximation Z0 → Z

∼→ R having
no (2, 1)-cells (as HEk

2,1 (R,Z0) = 0). The associated skeletal filtration sk(Z) has

gr(sk(Z)) ≃ 0∗(Z0) ∨Ek Ek(X
′),
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where X ′ ∈ (sModNk)
N= is a wedge of Sn,d,d’s with d ≥ n−1, d > 0, and (n, d) ̸= (2, 1).

Taking underlying ungraded objects, as in Reduction 1 it is enough to prove the
vanishing of the homology of (Z0 ∨Ek Ek(colimX ′))+/σ in the appropriate range of
degrees, and we may suppose without loss of generality that colimX ′ is a finite wedge
of Sn,d’s with d ≥ n− 1, d > 0, and (n, d) ̸= (2, 1).

Now we observe that Z0 is obtained by base-change along Z→ k, as(
Ek

(
S1,0
Z σ ⊕

⊕
α∈I

S1,1
Z xα

)
∪Ek

Q1
Z(σ)−σ·x D2,2

Z ρ

)
⊗Z k,

and Ek(X
′) for X ′ a wedge of spheres is too. Thus, as in Reduction 2, it is enough

to consider the case k = Z. Finally, as in Reduction 3 it is enough to consider the
case k = Fℓ for all primes ℓ.

We therefore consider the case k = Fℓ, and R = Z0 ∨Ek Ek(X
′) with

X ′ =
⊕

α∈J S
nβ ,dβxβ a finite wedge of spheres such that dβ ≥ nβ − 1 and

(nβ , dβ) ̸= (2, 1) for each β ∈ J . If we give R the cell attachment filtration for
the cell ρ, the associated filtration of R/σ has spectral sequence starting with

E1
n,p,q = Hn,p+q,p

Ek

S1,0,0
Fℓ

σ ⊕
⊕
α∈I

S1,1,0
Fℓ

xα ⊕ S2,2,1
Fℓ

ρ⊕
⊕
β∈J

S
nβ ,dβ ,0
Fℓ

xβ

/σ


and converging to Hn,p+q(R/σ). As in the first case, this E1-page may be written
as the free graded commutative algebra on a certain set of generators, except σ. The
d1-differential satisfies

d1(ρ) = Q1
Fℓ

(σ)− σ · x ≡ Q1
Fℓ

(σ) mod (σ).

By our characterization of Q1
Fℓ

(σ) we have Q1
Fℓ

(σ) = Q1
2(σ) if ℓ = 2, and Q1

Fℓ
(σ) =

− 1
2 [σ, σ] if ℓ is odd.

Claim. — We have that E2
n,p+q,p = 0 vanishes for p+q

n < 2
3 .

Proof of claim. — The groups E2
∗,∗,∗ are given by the homology of the chain complex

(E1
∗,∗,∗, d

1) = (ΛFℓ
(L/⟨σ⟩), d1) where L is the trigraded vector space with homoge-

neous basis QIℓ (y) for y a basic Lie word in {σ, xα, ρ, xβ}. To estimate these homology
groups we introduce an additional “computational” filtration, which has the virtue of
filtering away most of the d1-differential. We let F •E1

∗,∗,∗ be the filtration in which
Q1

Fℓ
(σ) and ρ are given filtration 0, the remaining elements of a homogeneous basis

are given filtration equal to their homological degree, and this filtration is extended
multiplicatively. The d1-differential preserves this filtration.

The associated graded gr(F •E1
∗,∗,∗) is the tensor product of chain complexes(

ΛFℓ
(Fℓ{Q1

Fℓ
(σ), ρ}), δ

)
⊗
(
ΛFℓ

(L/⟨σ,Q1
Fℓ

(σ), ρ⟩), 0
)
,

where δ(Q1
Fℓ

(σ)) = 0 and δ(ρ) = Q1
Fℓ

(σ). This is the first page of a spectral sequence
converging to E2

∗,∗,∗.
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First note that all elements of L/⟨σ,Q1
Fℓ

(σ), ρ⟩ have slope ≥ 2
3 , so the right term

consist of elements of slope ≥ 2
3 . There are now two cases, the difference owing to

the fact that (Q1
Fℓ

(σ))2 = 0 if and only if ℓ is odd. In the case ℓ = 2, the left term
has homology ΛF2

(F2{ρ2}) in which every element has slope 1, so the second page
of this spectral sequence consists of elements of slope ≥ 2

3 . In the case ℓ is odd, the
non-zero class of lowest slope in the homology of the left term is Q1

Fℓ
(σ) · ρℓ−1, of

bidegree (2ℓ, 2ℓ − 1) so slope 2ℓ−1
2ℓ ≥ 5

6 . Thus in this case the second page of this
spectral sequence consists of elements of slope ≥ 2

3 too. This implies the claim.

The claim says that the E2-page of a spectral sequence converging to Hn,d(R/σ)

vanishes for d
n <

2
3 , hence so does Hn,d(R/σ). This finishes the proof of Theorem 18.3.

Proof of Theorem 18.1. — Let R ∈ AlgE2
(sSetN) be the E2-algebra associated to G

as in Section 17.1. The powers of σ are distinct because r : G → N is a monoidal
functor sending σ to 1. For contradiction, suppose that the objects of G are not
precisely the powers of σ, and let x ∈ G be an object of minimal rank r(x) ≥ 2

which is not a power of σ. Such an x would define a 1-simplex Gx

Gx
of TE1(x), but

there are no non-degenerate simplices of higher dimension. Thus TE1(x) ≃ S1 and
hence QE1

L (R)(r(x)) contains Σ∞+ BGx as a summand, which is not 0-connected and
so violates the standard connectivity estimate.

Now let RZ := ZR ∈ AlgE2
(sModNZ). Then HE1

n,d(RZ) = HE1

n,d(R;Z) = 0 for
d < n− 1 by the standard connectivity estimate. We can transfer the vanishing line
from E1- to E2-homology using Theorem 14.4 and conclude that HE2

n,d(RZ) = 0 for
d < n− 1 too. We explained above that there is an identification Hn,0(R

+
Z ) = Z{σn},

and thus Theorem 18.3 applies.

In the subsequent papers we will employ the techniques developed so far to study
the homology of families of groups arising from braided monoidal groupoids (such
as mapping class groups, automorphism groups of free groups, general linear groups,
unitary groups, and so on), as well as other moduli spaces which can be arranged to
form Ek-algebras (such as classifying spaces of diffeomorphism groups, configuration
spaces, and so on). Homological stability, as in Theorem 18.1, of such spaces is one
application, but the methods of this paper allow us to prove other types of results
about the homology of such spaces. We feel that the reader, having done so much work,
is due an application of these techniques: luckily, there are two which are accessible
with no further theory.

18.2. Example: general linear groups of Dedekind domains

Let Λ be a Dedekind domain, and (PΛ,⊕, 0) denote the symmetric monoidal
category of finitely-generated projective Λ-modules under direct sum. Assigning to
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such a Λ-module its rank defines a functor r : PΛ → N, and only the zero mod-
ule has rank zero. The construction of Section 17.1 therefore defines an E∞-algebra
R ∈ AlgE∞(sSetN) such that

Hn,d(R;k) =
⊕

[P ]∈π0(PΛ)
rk(P )=n

Hd(GL(P );k)

is the sum of the homologies of the general linear groups of all (isomorphism classes
of) projective Λ-modules of rank n. The realization of the semi-simplicial set SE1

• (P )

from Definition 17.9 is isomorphic to the realization of the nerve of the “split Tits
poset” SΛ(P ) introduced by Charney [23], which she has shown has the homotopy
type of a wedge of (r(P )− 2)-spheres (it is here the assumption that Λ is a Dedekind
domain is used). Thus TE1(P ) is a wedge of r(P )-spheres, and so PΛ satisfies the
standard connectivity estimate.

To apply Theorem 18.1 we require that PΛ has a unique (isomorphism class of)
object of rank 1, i.e., that the Dedekind domain Λ has class number 1, so all finitely
generated projective Λ-modules are free. In this case the first part of Theorem 18.1
simply recovers van der Kallen’s stability range for the groups GLn(Λ) [68, Theo-
rem 4.11], but the power of our method becomes apparent with the second part of
Theorem 18.1. Applied to Dedekind domains satisfying H1(GL2(Λ),GL1(Λ);Z) = 0,
it tells us Hd(GLn(Λ),GLn−1(Λ);Z) = 0 for 3d ≤ 2n − 1. This property holds for
example for rings of integers in any number field except Q(

√
−d) for d ̸= 1, 2, 3, 7, 11

[29, 111], so such rings of class number 1 enjoy this improved stability range. A less
obvious application is that if H1(GL2(Λ),GL1(Λ);Z) is a finite group of order N , then
Hd(GLn(Λ),GLn−1(Λ);Z[ 1

N ]) = 0 for 3d ≤ 2n−1. This applies for example to Λ = Z
and N = 2, where it seems to be new.

18.3. Example: general linear groups of Fq

Let us specialize the example of the previous section to Λ = Fq the finite field with
q = pm elements.

If ℓ is a prime number other than p then Quillen has computed the homology
groups H∗(GLn(Fq);Fℓ), and in fact in the notation of the previous section he has
computed H∗,∗(R;Fℓ) as a ring. To express the answer, let r be the smallest positive
integer such that qr ≡ 1 mod ℓ. Then Quillen [98, Theorem 3] shows there is an
isomorphism of bigraded rings

H∗,∗(R;Fℓ) ∼= Fℓ[σ, ξ1, ξ2, . . .]⊗ ΛFℓ
[η1, η2, . . .],

where σ has bidegree (1, 0), ξi has bidegree (r, 2ir), and ηi has bidegree (r, 2ir − 1).
Homological stability in this case is evident: one has

H∗,∗(R/σ;Fℓ) ∼= Fℓ[ξ1, ξ2, . . .]⊗ ΛFℓ
[η1, η2, . . .],

which vanishes in bidegrees (n, d) with d
n < 2− 1

r .
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On the other hand when ℓ = p the homology groups H∗(GLn(Fq);Fp) are not
yet known. However, Quillen has shown [98, Theorem 6] that Hn,d(R;Fp) = 0 for
0 < d < m(p− 1), and this vanishing range has been improved by Friedlander-Parshall
[43, Lemma A.1] to 0 < d < m(2p−3). The free E∞-algebra E∞(S1,0σ) on a generator
σ of bidegree (1, 0) has Fp-homology class of smallest positive degree given by βQ1(σ)

(or Q1(σ) if p = 2) of degree 2p − 3. Thus the natural map E∞(S1,0σ) → R is an
isomorphism on Fp-homology in homological degrees ∗ < 2p−3. Combining this with
the vanishing line for E1-, and hence E∞-, homology of R in the previous section, we
find that HE∞

n,d (R,E∞(S1,0σ);Fp) = 0 for d
n <

2p−3
2p−2 . Consulting Cohen’s calculations

we have Hn,d(E∞(S1,0σ)/σ;Fp) = 0 for d
n <

2p−3
p , so using

R/σ ≃ B(E∞(S1,0σ)/σ,E∞(S1,0σ),R)

and Corollary 15.10 we obtain Hn,d(R/σ;Fp) = 0 for d
n < 2p−3

2p−2 . This establishes
homological stability for Hd(GLn(Fq);Fp) with slope 2p−3

2p−2 . In fact, Quillen has shown
that for q ̸= 2 these groups have homological stability with slope 1 [99, 1974-I, p. 10]:
in [45] we explain how our methods can be used to prove this result, which was also
obtained by Sprehn and Wahl [110, Theorem A].
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CHAPTER 19

LOCAL COEFFICIENTS

In this section we explain how to obtain results for local coefficients analogous to
the generic homological stability results obtained in the previous section. In particular,
we again assume that G satisfies the assumptions (i)–(iii) described in the beginning
of Section 17.

19.1. Coefficient systems

In the framework we have described in Sections 17 and 18, it is easy to discuss ho-
mology of the collection of groupsGx with coefficients in a collection of k[Gx]-modules.
In fact it is no more difficult, and is technically convenient, to discuss hyperhomology
of the groups Gx with coefficients in simplicial k[Gx]-modules.

Let k := k∗ ∈ sModG
k denote the free k-module on ∗ ∈ sSetG. As ∗ has the structure

of a unital commutative monoid, so does k.

Definition 19.1. — A coefficient system for G is a left k-module, i.e., a functor
A ∈ sModG

k equipped with maps

µa,b : A(b) ∼= k(a)⊗k A(b) −→ A(a⊕ b)
of simplicial k-modules which are appropriately associative.

We say a coefficient system is discrete if each simplicial k-module A(x) is actually
just a k-module.

As before, we take a cofibrant approximation T
∼→ ∗>0 of non-unital Ek-algebras.

This gives in particular a map T→ ∗>0 of unital associative algebras, and as ∗>0 is
strictly associative the latter has a map of unital associative algebras to ∗. Taking the
associated simplicial k-modules this gives a map Tk → k of associative algebras, and
so any coefficient system is also a left Tk-module.

We may therefore find a cofibrant approximation cA
∼→ A as a left Tk-mod-

ule, which will be cofibrant in sModG
k, and hence the derived left Kan extension

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



270 CHAPTER 19. LOCAL COEFFICIENTS

RA := r∗(cA) ≃ Lr∗(A) has the structure of a left Rk = r∗(Tk)-module. Further-
more, by definition of the (derived) left Kan extension one has

Hn,d(RA) =
⊕

[x]∈π0(G)
r(x)=n

Hd(Gx;A(x)),

the direct sum over the isomorphism classes of rank n objects x of the hyperhomologies
of the groups Gx with coefficients in the simplicial k-modules A(x).

In particular for each σ ∈ H1,0(Rk) = H1,0(Rk) there is a left multiplication
map σ · − : S1,0 ⊗RA → RA, inducing a map

σ · − :
⊕
y∈G

r(x)=n−1

Hd(Gy;A(y)) −→
⊕
x∈G

r(x)=n

Hd(Gx;A(x)),

on homology, and one may ask for stability with respect to this map. Using the
adapter as in Section 12.2.3, this left multiplication map is equivalent to a map of left
Rk-modules, with homotopy cofiber RA/σ, and so the homology stability of this map
is equivalent to the vanishing ofHn,d(RA/σ) in a range of bidegrees. Our general result
in this direction establishes stability in terms of the Rk-module homology of RA.

Theorem 19.2. — Let A be a coefficient system for G, and suppose that there are λ ≤ 1

and c such that Hn,d(Rk/σ) = 0 for d < λn and HRk

n,d (RA) = 0 for d < λ(n − c).
Then Hn,d(RA/σ) = 0 for d < λ(n− c).

Proof. — We will apply the theory of CW approximations developed in Section 11.5 in
the setting of left Rk-modules in sModNk. As the groupoid N is Artinian, and the operad
O which models left Rk-modules has H0,0(O(1)) = H0,0(Rk) = k, because r−1(0)

consists of objects isomorphic to 1G, condition (ii) of Lemma 11.16 is satisfied. As
before all simplicial k-modules are 0-connective, so the canonical morphism i→ RA

is between 0-connective O-algebras. Thus by Theorem 11.21 we may construct a
CW approximation Z

∼→ RA, where Z consists of (n, d)-cells with d ≥ λ(n − c). It
has skeletal filtration sk(Z) ∈ AlgO((sModNk)

Z≤) and by Theorem 6.14 its associated
graded is given by

gr(sk(Z)) ∼=
∨
α∈I

Snα,dα,dα ∧Rk

with dα ≥ λ(nα − c) for each α.
The filtered object B(0∗(Rk/σ), 0∗(Rk), sk(Z)) has colimit

B(Rk/σ,Rk,Z) ≃ B(Rk/σ,Rk,RA) ≃ RA/σ

and associated graded

B(0∗(Rk/σ), 0∗(Rk), gr(sk(Z))) ≃
∨
α∈I

Snα,dα,dα ∧Rk/σ,
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so gives a spectral sequence⊕
α∈I

H∗,∗,∗(S
nα,dα,dα ∧Rk/σ) =⇒ H∗,∗(RA/σ).

By assumption Hn,d(Rk/σ) = 0 for d < λn, and so Hn,d(S
nα,dα ∧ Rk/σ) = 0 for

d− dα < λ(n− nα). Thus the target of this spectral sequence vanishes in bidegrees
(n, d) satisfying

d < λn+ min
α∈I

(dα − λnα),

so satisfying d < λn− λc as required.

Once the principle behind this proof is understood, other qualitative (and quanti-
tative) results suggest themselves. For example, under the weaker hypothesis

HRk

n,d (RA) = 0 for n≫ d

the same argument allows one to conclude that Hn,d(RA/σ) = 0 for n≫ d.

Remark 19.3. — The following argument shows that all coefficient systems A which
are known to enjoy homological stability do in fact have a vanishing line forHRk

n,d (RA);
in this sense Theorem 19.2 is optimal.

Any Rk-module M may be descendingly filtered by its N-grading, giving an asso-
ciated graded gr(M) which is isomorphic to M in sModNk but which has the trivial
Rk-module structure induced by the augmentation ε : Rk → k. This induces a fil-
tration of B(k,Rk,M) with associated graded B(k,Rk,k)⊗gr(M) and, suppressing
the internal grading, a spectral sequence

E1
∗,∗ = (k⊕ Σ0,1HE1

∗,∗(R))⊗H∗,∗(M) =⇒ HRk
∗,∗ (M).

Suppose that A is a coefficient system which is known to enjoy homological stability,
i.e., Hn,d(RA/σ) = 0 for d < λ(n−c) for some λ ≤ 1 and some c, and apply the above
spectral sequence to the Rk-module RA/σ. Assuming that G satisfies the standard
connectivity estimate, it follows that E1

n,d = 0 for d < λ(n−c), and henceHRk

n,d (RA/σ)

vanishes in this range too. But the left Rk-module map S1,0⊗RA → RA constructed
using the adapter is nullhomotopic on Rk-module derived indecomposables, so

HRk

n,d (RA/σ) ∼= HRk

n,d (RA)⊕HRk

n−1,d−1(RA)

and hence HRk

n,d (RA) = 0 for d < λ(n− c).

Applying Theorem 19.2 requires an effective way of computing the homology
groups HRk

n,d (RA), or at least of proving their vanishing. We shall give one method to
do so. If A is discrete then

H∗,d(cA) =

{
A if d = 0,

0 else,
and H∗,d(Tk) =

{
k if d = 0,

0 else.
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Now note that under Assumption 17.2 we may apply Lemma 10.6 (i). As k is object-
wise flat, the Künneth formula gives

H∗,d(Bp(k,Tk, cA)) = H∗,d(k⊗T
⊗p
k ⊗ cA) ∼=

{
k⊗ k⊗p ⊗A if d = 0,

0 else.

Hence the bar spectral sequence for B(k,Tk, cA) takes the form

E2
x,d,p = Tor

k
p,d(k,A)(x) =⇒ Hx,d+p(B(k,Tk, cA))

and is supported along the line d = 0 so collapses at E2. By the equivalences
QRk

L (RA) ≃ B(k,Rk,RA) = r∗B(k,Tk, cA) there is a spectral sequence

(19.1) E1
n,p,q =

⊕
[x]∈π0(G)
r(x)=n

Hp(Gx; Torkq (k,A)(x)) =⇒ HRk
n,p+q(RA),

from which the following lemma is immediate.

Lemma 19.4. — If A is a discrete coefficient system and λ, µ ∈ Z are such that for
each x ∈ G we have Tor

k
d (k,A)(x) = 0 for d ≤ λr(x) + µ, then HRk

n,d (RA) = 0

for d ≤ λn+ µ.

Remark 19.5. — If G has objects N and A is a discrete coefficient system, considered
as a Tk-module, then cA can be filtered as in Remark 19.3 by rank. Its associ-
ated graded gr(cA) is isomorphic to cA in sModG

k but has trivial module structure.
We obtain from it a descending filtration of B(k,Tk, cA) with associated graded
B(k,Tk,k) ? gr(cA).

If G satisfies the standard connectivity estimate then B(k,Tk,k)(n) is a wedge
of n-spheres, and its n-th reduced homology is by definition the E1-Steinberg module
StE1(n). Thus the spectral sequence associated to the above filtration has

E1
n,n,q = IndGn

Gn+q×G−q
(StE1(n+ q)⊗A(−q)) for q ≤ 0

and all other terms zero: hence it collapses at E2. This gives a chain complex
Cn,∗(A) := (E1

n,n,∗−n, d
1) computing Tork∗ (k,A)(n), quite different to that given by

the bar resolution.

Example 19.6. — If G = FB is the category of finite sets and bijections, then a dis-
crete k-module is precisely the datum of an FI-module in the sense of [26], and
Tor

k
d (k,−)(S) is precisely FI-homology. By the Noetherian property of the category

of FI-modules (when k is Noetherian) [27], if A is a FI-module which is finitely-
generated, then it is equivalent to a cellular k-module with finitely-many cells of each
dimension, so it satisfies Tor

k
d (k,A)(S) = 0 for |S| ≫ d. In fact, by the Castelnuovo-

Mumford regularity property of the category of FI-modules [25] a finitely-generated
FI-module A satisfies Tor

k
d (k,A)(S) = 0 for d ≤ |S|+ c for a constant c (which may

be determined in terms of the d = 0 and d = 1 pieces).
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In this case the E1-Steinberg modules are all given by the sign representation,
and the chain complex C∗(A) from Remark 19.5 is Putman’s “central stability chain
complex” [94], which is known to compute FI-homology.

19.2. Polynomial coefficients

There is a common source of examples of coefficient systems for which the results
of the previous section can be applied, namely tensor powers of “linear” coefficient
systems. In this section we will make use of the objectwise tensor product A ⊠ B of
functors A,B : G→ sModk, given by

(A⊠B)(x) := A(x)⊗k B(x).

If A is a coefficient system and S is a finite set, let us write A⊠S for the objectwise
S-th tensor power of A, i.e.,

A⊠S(a) = A(a)⊗kS .

The maps µ⊗Sa,b : A(b)⊗S → A(a⊕ b)⊗S make A⊠S into a coefficient system. Further-
more, the symmetric group SS acts on A⊠S by maps of coefficient systems.

Definition 19.7. — Let (G,⊕,1) be a braided monoidal groupoid. A linear coefficient
system L = (L, s) on G is a functor L : G → Modk equipped with a strong braided
monoidality

sa,b : L(a)⊕ L(b) −→ L(a⊕ b)
with respect to direct-sum of k-modules.

This implies that L(1) = 0, and that L(βb,a ◦ βa,b) = Id. This yields a coefficient
system in the usual sense by considering k-modules as discrete simplicial k-modules,
and with the k-module structure given by

µa,b : L(b) = 0⊕ L(b) −→ L(a)⊕ L(b)
sa,b−→ L(a⊕ b).

In Remark 19.12 we give an example showing that it is necessary for our purposes
that L is braided.

Our goal is to establish a vanishing line for Hk
x,d(L

⊠S) when L is linear and S is
a finite set. By the “multiplicative” philosophy we are expounding, it is advantageous
to collect the coefficient systems L⊠S into a single multiplicative object, as follows.
Consider the functor

L⊠ : G× FB −→ Modk ⊂ sModk

(x, S) 7−→

{
0 if (x, S) ∼= (1,∅)

L(x)⊗S else.

Let us write k = k ⊕ k>0 : G → sModk, so k>0 is a nonunital commutative monoid,
and consider the functor

π∗Gk>0 : G× FB
πG−→ G

k>0−→ sModk.
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We may then write, tautologically, L⊠ = (π∗Gk>0) ⊠ L⊠.
We may calculate

(L⊠ ⊗ L⊠)(x, S) = colim
a,b∈G

r(a),r(b)>0
a⊕b→x

colim
A,B∈FB
A⊔B→S

L(a)⊗A ⊗ L(b)⊗B ,

now note that holding a and b fixed, the innermost left Kan extension along
⊔ : FB× FB→ FB is S 7→ (L(a) ⊕ L(b))⊗S (a categorification of the Binomial
Theorem) and hence isomorphic to L(a⊕ b)⊗S via s⊗Sa,b , so

= colim
a,b∈G

r(a),r(b)>0
a⊕b→x

L(a⊕ b)⊗S

=

 colim
a,b∈G

r(a),r(b)>0
a⊕b→x

k

⊗k L(x)⊗S

= (k>0 ⊗ k>0)(x)⊗k L(x)⊗S .

The conclusion is that there is an isomorphism L⊠⊗L⊠ ∼= ((π∗Gk>0)⊗(π∗Gk>0))⊠L⊠;
analogously we have isomorphisms (L⊠)⊗p ∼= (π∗Gk>0)

⊗p ⊠ L⊠. In particular, the
multiplication map µk>0

: k>0 ⊗ k>0 → k>0 defines a multiplication map

µL⊠ : L⊠ ⊗ L⊠ −→ L⊠,

making L⊠ into an associative algebra in sModG×FB
k . As k>0 is in fact commutative (in

the sense that µk>0
◦ βk>0,k>0

= µk>0
, which makes sense even though sModG×FB

k is
only braided monoidal), and L is a braided monoidal functor, one can check that this
multiplication makes L⊠ into a non-unital commutative algebra, and therefore into
an E2-algebra.

Theorem 19.8. — We have S1 ∧ QE1

L (L⊠)(x, S) ≃ S1 ∧ QE1

L (k>0)(x) ⊗ L(x)⊗S. In
particular, if G satisfies the standard connectivity estimate then

HE1

x,S,d(L
⊠) = 0 for d < r(x)− 1.

Proof. — We may choose a cofibrant approximation TL
∼→ L⊠ as an E1-algebra. As

in the proof of Proposition 17.4, there are equivalences

S1 ∧QE1

L (L⊠) ≃ S1 ∧QE1

L (TL) ≃ B̃E1(TL),

with B̃E1
p (TL) the quotient of P1(p) × (T+

L )⊗p by the subobject consisting of units.
By the same analysis as that which showed (L⊠)⊗p ∼= (π∗Gk>0)

⊗p ⊠ L⊠, there are
equivalences

(T+
L )⊗p

∼−→ (π∗G(Tk)
+)⊗p ⊠ T+

L ,

giving a map B̃E1
• (TL) → π∗G(B̃E1

• (Tk)) ⊠ T+
L of semi-simplicial objects which is

a levelwise weak equivalence. As both objects are levelwise cofibrant, and − ⊠ −
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commutes with geometric realization in each entry, this gives a weak equivalence
between geometric realizations.

Corollary 19.9. — Suppose G satisfies the standard connectivity estimate.

(i) If G is symmetric monoidal, then

Tor
k
d (k,L

⊠S)(x) = 0 for d < r(x)− |S|.
(ii) If G is braided monoidal, then

HRk

n,d (RL⊠S ) = 0 for d < n− |S|.

Proof. — If G is symmetric monoidal then (ii) follows from (i) by Lemma 19.4. We
will explain the proof of (i), then explain the modifications necessary to prove (ii).

Suppose that G is symmetric monoidal. The statement has no content if r(x) = 0, so
we may assume that x ̸∼= 1G. Consider the E2-algebra map f : π∗Gk>0 ⊗ π∗FBk→ L⊠,
given by the identity maps k → L(x)⊗S when S = ∅ and r(x) > 0. The unit
object k ∈ sModFB

k is cofibrant, though not as an E2-algebra. We choose cofibrant
approximations Tk

∼→ k>0 and TL
∼→ L⊠ as E2-algebras, and can therefore lift f to

a map
F : π∗GTk ⊗ π∗FBk −→ TL

of E2-algebras which are cofibrant in sModG×FB
k .

We will apply Corollary 15.10 to the E2-algebra map F , using the lax monoidal
abstract connectivity ρ(x, S) = sup(0, r(x)− |S|).

Note that (π∗GTk ⊗ π∗FBk)+ ≃ π∗G(T+
k )⊗ π∗FBk so we have

k⊕ ΣQE1

L (π∗GTk ⊗ π∗FBk) ≃ BE1(π∗GT+
k ⊗ π

∗
FBk) ≃ π∗GBE1(T+

k )⊗ π∗FBB
E1(k).

As k ∈ sModFB
k is the unit, BE1(k) ≃ k by Lemma 13.3.

Furthermore BE1(T+
k ) ≃ k⊕ ΣQE1

L (Tk), so

ΣQE1

L (π∗GTk ⊗ π∗FBk) ≃ π∗G(ΣQE1

L (Tk))⊗ π∗FB(k).

We have assumed that G satisfies the standard connectivity estimate, HE1

d,x(Tk) = 0

for d < r(x)− 1, and so HE1

x,S,d(π
∗
GTk × π∗FBk) = 0 unless S = ∅ and d ≥ r(x)− 1. In

particular, it vanishes for d < ρ(x, S) − 1. Thus by Theorem 14.4 the E2-homology
vanishes in the same range, which verifies hypothesis (i) of Corollary 15.10.

To verify hypothesis (ii), note that the map F is an equivalence evaluated at
any (x,∅), so the map

HE2

x,∅,d(π
∗
GTk × π∗FBk) −→ HE2

x,∅,d(TL)

is an isomorphism, and soHE2

x,∅,d(TL, π
∗
GTk×π∗FBk) = 0. On the other hand, for S ̸= ∅

we have HE1

x,S,d(π
∗
GTk × π∗FBk) = 0 and so

HE2

x,S,d(L
⊠)

∼−→ HE2

x,S,d(TL, π
∗
GTk × π∗FBk).

By Theorem 19.8 we have that HE1

x,S,d(TL) = HE1

x,S,d(L
⊠) = 0 for d < r(x) − 1, and

so for d < r(x) − |S| as S ̸= ∅; these groups always vanish in negative degrees, so
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they vanish for d < ρ(x, S) = sup(0, r(x)− |S|). By Theorem 14.4 (applied using the
abstract connectivity ρ + 1, which is also lax monoidal), the same vanishing holds
for E2-homology of TL, and so for HE2

x,S,d(TL, π
∗
GTk × π∗FBk) as required.

By Corollary 15.10 we conclude that

H
π∗GTk×π∗FBk

x,S,d (TL) = 0 for d < ρ(x, S)

(recall that we have assumed that x ̸∼= 1G). Finally, as

H∗,d(π∗GTk × π∗FBk) =

{
π∗Gk× π∗FBk if d = 0,
0 otherwise,

is objectwise flat in sModG×FB
k , we may apply the Künneth formula of Lemma 10.6 (i)

to identify the E2-page of the bar spectral sequence for

Q
π∗GTk×π∗FBk

L (TL) ≃ B(k, π∗GTk × π∗FBk,TL)

as E2
x,S,p,q = Torkp (k,L

⊠S)(x) for q = 0 and zero otherwise. Thus the spectral sequence
collapses, showing that

Tor
k
d (k,L

⊠S)(x) ∼= H
π∗GTk×π∗FBk

x,S,d (TL),

from which the result follows.
Now, if G is only braided monoidal then we cannot apply Corollary 15.10 to

the E2-algebra map F as the category sModG×FB
k is only braided monoidal, which

is not sufficient for Corollary 15.10. However, forming the Kan extension along
r × Id : G× FB→ N× FB gives an E2-algebra map

F ′ : π∗N(Rk)⊗ π∗FB(k) −→ RL

in the symmetric monoidal category sModN×FB
k . By applying the change-of-diagram-

category spectral sequence from Section 10.2.4 one checks that the above es-
timates descend to this map, so Corollary 15.10 applies to it and shows that
H
π∗GRk×π∗FBk

n,S,d (RL) = 0 for d < sup(0, n − |S|). As above this translates into the
required vanishing range.

We do not know whether Corollary 19.9 (i) holds when G is only braided monoidal,
as Corollary 15.10 does not apply. It would be interesting to know whether it is true
nonetheless.

Corollary 19.10. — If G is symmetric monoidal, has objects N, and satisfies the stan-
dard connectivity estimate, and if L is a linear coefficient system, then

Tor
k
d (k,L)(n) = 0 for d ̸= n− 1.

Proof. — Remark 19.5 gives a chain complex Cn,d(L) computing these groups. Now
the fact that Cn,d(L) = 0 for d ≥ n (as L(0) = 0) and Corollary 19.9 imply the
result.
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Remark 19.11. — There are more general notions of “polynomial coefficient systems,”
cf. [33], [32], [100, §4.4]. One would expect an analogue of Corollary 19.9 for these,
expressing a vanishing line for the Tk-module homology of A in terms of its degree,
but we were not able to find a satisfactory such analogue. However, such coefficient
systems are generally known to enjoy homological stability, and so by Remark 19.3
the Rk-module homology of RA does generally have a vanishing line.

Remark 19.12. — It is perhaps not obvious why we demanded the functor L to be
braided monoidal in Definition 19.7: let us give an example to show why this condition
is necessary.

Suppose that G = N with (symmetric) monoidal structure given by sum and the
trivial braiding. Choose a A ∈ Modk and define L : N→ Modk by L(n) = A⊕n. This
admits a strong monoidality with respect to direct sum of k-modules, but it is not
braided: L(β1,1) : L(2) → L(2) is trivial, as β1,1 is, but βA,A : A ⊕ A → A ⊕ A is
not. One may compute that Tor

k
0 (k,L)(n) ∼= A for all n > 0, so the conclusion of

Corollary 19.9 (i) does not hold. The step that fails is that the multiplication on L⊠ is
not commutative.

19.3. Example: general linear groups of Fq with local coefficients

Let us consider the example of Section 18.3 with local coefficients. Taking Λ = Fq
there is a linear coefficient system

V : P(Fq) −→ ModFq

given by sending an Fq-module to itself. The associated RFq -module RV⊠S has

Hn,d(RV⊠S ) ∼= Hd(GLn(Fq), (Fnq )⊗FqS),

so a vanishing of the homology of RV⊠S/σ corresponds to homological stability

with these local coefficients. Now we have H
RFq

n,d (RV⊠S ) = 0 for d < n − |S| by
Corollary 19.9 (ii), so applying Theorem 19.2 with the estimate Hn,d(R/σ;Fp) = 0

for d
n <

2p−3
2p−2 of Section 18.3 gives

Hn,d(RV⊠S/σ) = 0 for d < 2p−3
2p−2 (n− |S|).
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CHAPTER 20

KOSZULITY AND CONNECTIVITY

In this section we shall specialize to S = sModk for a commutative ring k and
C = sModG

k for an Artinian monoidal category G, as in Definition 11.10. In particular,
there is a monoidal rank functor r : G→ N such that r(x) > 0 if x is not ⊕-invertible.
Our goal is explain how, for a quadratic algebra, the standard connectivity estimate
of Definition 17.6 is equivalent to this algebra having the Koszul property. While this
material will not be logically necessary for the applications we intend, it puts our
work in perspective and explains how it relates to work of other authors, and may be
clarifying for some readers. The definitions and presentation in this section have been
adapted to our setting from [75].

20.1. Quadratic data

In this section we associate to a quadratic datum as below both a quadratic algebra
and coalgebra.

Definition 20.1. — A quadratic datum in C is a pair (V,R), where V : G→ Modk is a
functor with V (x) = 0 if r(x) = 0, regarded as a (simplicially constant) object of C,
and R ⊂ V ⊗ V is a subfunctor.

20.1.1. Quadratic algebras. — To define the quadratic algebra, let us in this section
write A(V ) :=

⊕∞
n=1 V

⊗n for the free associative non-unital algebra in ModG
k gen-

erated by V , and Ass for the non-unital associative operad (consistent with the use
of Ass+ for the unital associative operad).

Definition 20.2. — The quadratic algebra presented by a quadratic datum (V,R) is
the quotient A(V )→ A(V,R), terminal among algebra homomorphisms which vanish
when restricted to R ⊂ V ⊗2 ⊂ A(V ). More explicitly, the vector space A(V,R)(x) is
defined by the exact sequence

∞⊕
n=1

n−1⊕
i=1

(
V ⊗i−1 ⊗R⊗ V ⊗(n−1−i)

)
(x) −→

∞⊕
n=1

V ⊗n(x) −→ A(V,R)(x) −→ 0.
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It may be described as a pushout in the category of non-unital associative algebras

FAss(R) FAss(V )

0 A(V,R),

but we emphasize that this need not be a homotopy pushout, since the homotopy
pushout would likely have non-trivial higher homotopy groups.

20.1.2. Quadratic coalgebras. — To define the quadratic coalgebra, let us next recall
the deconcatenation coproduct on the object C(V ) = ⊕∞n=1V

⊗n ∈ ModG
k. For a, b ≥ 1

and a+ b = n, let

∆a,b : V
⊗n ∼=−→ (V ⊗a)⊗ (V ⊗b) −→ C(V )⊗ C(V )

be the canonical isomorphism composed with the maps induced from inclusions of the
a-th and b-th direct summands.

Let ∆n = ∆1,n−1 + · · · + ∆n−1,1 : V ⊗n → C(V ) ⊗ C(V ) and assemble to a mor-
phism ∆: C(V ) → C(V ) ⊗ C(V ) from the infinite direct sum (i.e., coproduct). As
usual, this makes (C(V ),∆) into an associative non-unital coalgebra. The assump-
tion that G is Artinian implies that the canonical morphism C(V ) →

∏∞
n=1 V

⊗n is
an isomorphism, from which it is easily verified that the projection C(V )→ V to the
n = 1 summand makes C(V ) into the cofree coalgebra: it has the universal property
that coalgebra maps into C(V ) are in natural bijection with linear maps into V .

Definition 20.3. — The quadratic coalgebra of a quadratic datum (V,R) is the subcoal-
gebra C(V,R) ⊂ C(V ) of the deconcatenation coalgebra, terminal among subalgebras
whose projection to V ⊗2/R vanishes. Explicitly, it is given by the exact sequence
∞⊕
n=1

n−1⊕
i=1

(V ⊗i−1 ⊗ (V ⊗2/R)⊗ V ⊗(n−1−i))(x)←−
∞⊕
n=1

V ⊗n(x)←− C(V,R)(x)←− 0.

The fact that the (co)relations defining A(V,R) and C(V,R) are homogeneous im-
plies that both objects may be lifted to N-graded objects, i.e., functors N× G→ Modk,
as follows.

Definition 20.4. — Let sV := 1∗V ∈ ModN×G
k ⊂ CN and s2R := 2∗R ⊂ sV ⊗CN sV . We

obtain algebras A(sV, s2R) and coalgebras C(sV, s2R) in ModN×G
k . The underlying

ungraded (co)algebras, i.e., those obtained by left Kan extension along the strong
monoidal functor N→ ∗, are canonically isomorphic to A(V,R) and C(V,R).

20.2. Duality and the E1-homology of quadratic algebras

By Theorem 13.7, up to a suspension the derived E1-indecomposables of
A ∈ AlgE1

(C) may be calculated using the E1-bar construction. We now restrict
to the special case and C = sModG

k and UE1A = A ∈ ModG
k ⊂ C is an (objectwise)
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discrete simplicial object. For A = A(V,R) quadratic, we shall explain how to
compute HE1

x,d(A) for d ≥ r(x)− 1 in terms of C(sV, s2R).
If A is discrete, then the endomorphism operad of A is also discrete and so the

E1-algebra structure descends to an associative algebra structure. Thus the E1-bar
construction may be replaced by the standard bar construction model for k ⊗L

A+ k.
Concretely, this is given by the k-linear chain complex in ModG

k

· · · ∂−→ A⊗n
∂−→ · · · ∂−→ A⊗2 ∂−→ A→ 0,

where we have removed the extra copy of k in degree 0 to get a model for the suspended
derived E1-indecomposables. After forgetting the differential, the underlying N-graded
object in ModG

k is isomorphic to C(sA). Let us write BA = (C(sA), ∂) for this chain
complex; then HE1

g,d−1(A) ∼= πd((BA)(g)) for any such A.
Let us now assume that A = A(V,R) comes from a quadratic datum (V,R). Let

us also assume that V (x) = 0 unless r(x) = 1, and that R(x) = 0 unless r(x) = 2.
Then we may deduce that the bar construction above is supported in homological de-
grees ≤ r(x), and hence thatHE1

x,d(A) = 0 if d ≥ r(x). It also implies that C(sV, s2R) is
concentrated in bidegrees (x, d) ∈ G× N with d = r(x).

The inclusion V → A of the generators as a direct summand induces split injec-
tions V ⊗n → A⊗n for all n ≥ 1 and in turn a split injection

(20.1) C(sV ) −→ C(sA),

as a map of functors N×G→ Modk. Upon identifying it with BA, the right hand side
comes with a boundary homomorphism which makes it a model for the suspended
derived indecomposables, but (20.1) is not a chain map (when the domain is given the
trivial boundary homomorphism). However, as in [75, Proposition 3.3.2], one shows
that it becomes one when restricted to C(sV, s2R).

Proposition 20.5. — For G, r : G → N, and (V,R) a quadratic datum such that
V (x) = 0 unless r(x) = 1, and R(x) = 0 unless r(x) = 2, let A = A(V,R) ∈ ModG

k ⊂ C.
Then the induced map

(20.2) C(sV, s2R) −→ BA

is a chain map when the domain is given the trivial boundary homomorphism, and
induces an isomorphism

(20.3) C(sV, s2R)(x, d) −→ HE1

x,d−1(A)

for d = r(x).

Hence, the E1-homology of a quadratic algebra A(V,R) in functors G→ Modk ⊂ sModk
is completely known in all bidegrees (x, d) with d ≥ r(x)− 1: it vanishes for d ≥ r(x)
and for d = r(x) − 1 is canonically isomorphic to the coalgebra presented by the
same quadratic data. There may be non-zero E1-homology in bidegrees (x, d) with
d < r(x)− 1.
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The (non-counital) coassociative coalgebra C = C(sV, s2R) has underlying functor
G → ModNk ⊂ sModk, where we identify N-graded k-modules with chain complexes
having trivial boundary map, regarded as a full subcategory of simplicial k-modules by
the Dold-Kan functor. By construction, C(x) is connected for all x, i.e., π0(C(x)) = 0.
Hence the objectwise desuspension as an N-graded vector space is again a functor
s−1C : G → ModNk ⊂ sModk. (In simplicial terms, we take based loops on the based
Kan complexes C(g), resulting again in a simplicial k-module). Now form the free
associative algebra

Ω(C) :=
⊕∞

n=0(s
−1C)⊗n,

and define a degree-decreasing derivation ∂ : Ω(C) → Ω(C) on the generating sum-
mand (s−1C) as the coproduct (s−1C) → (s−1C) ⊗ (s−1C) of the coalgebra (the
desuspension makes this have degree −1). The pair (Ω(C), ∂) may be regarded as a
functor from G to k-linear chain complexes or, by applying the Dold-Kan functor, as
a functor G → sModk. The fact that the Dold-Kan functor is lax monoidal ensures
that the resulting functor

Ω(C) : G −→ sModk

inherits the structure of an associative algebra. This is the cobar construction of C.
Dually to the homomorphism (20.2) of coalgebras, we have a canonical morphism

of associative (non-unital) algebras in sModG
k

(20.4) Ω(C) −→ A.

The following is a version of Koszul duality for algebras:

Proposition 20.6. — Let (V,R) be a quadratic datum such that V (x) = 0 unless
r(x) = 1, and that R(x) = 0 unless r(x) = 2, and A = A(V,R) be the associated
quadratic algebra and C = C(sV, s2R) be the corresponding shifted coalgebra. Assume
that HE1

x,d(A) = 0 for d < r(x)− 1, then the morphism (20.4) is a quasi-isomorphism.

Proof sketch. — This may be verified after taking derived E1-indecomposables. It is
an easy exercise to verify that the derived E1-indecomposables of Ω(C) is just C,
concentrated in bidegrees (x, d) with d = r(x) − 1. We have already seen that the
assumptions imply that this is also the derived E1-indecomposables of A, and one
verifies that the map is isomorphic to the identity map of C. See also [75, Theo-
rems 3.4.6 and 7.4.6].

20.3. The fundamental example

Let G be a monoidal groupoid with object set N satisfying Assumptions 17.1 and
17.2, and r : G→ N be the identity on objects. Recall that the automorphism groups
of its object are denoted Gx := AutG(x) = G(x, x).

Let k be a commutative ring and k>0 be the algebra object with k>0(0) = 0,
k>0(x) = k for x > 0, and algebra structure maps k>0(x)⊗k k>0(x

′)→ k>0(x⊕ x′)
given by the multiplication in k.
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Let V (1) = k be the trivial representation of the group G1. Then (V ⊗ V )(2) is
the permutation representation associated to the action of G2 on G2/(G1 ×G1), and
hence comes with a map to the trivial representation by collapsing G2/(G1 ×G1) to
a point. We define a G2-representation R(2) by the short exact sequence

0 −→ R(2) −→ (V ⊗ V )(2) −→ k −→ 0.

This gives quadratic data presenting a non-unital algebra A = A(V,R) : G → Modk.
Then the identity map V (1) = k = k>0(1) extends to a homomorphism of associative
algebras A→ k>0.

Let us assume that TE1(x) as in Definition 17.9, is connected for x ≥ 3. This
is equivalent to the groups Gx being generated by the image of the (x − 1)-many
mapsG2 → Gx obtained by applying the functors (−)⊕id1 and id1⊕(−) (note that the
relations of the groups Gx play no direct role). Then the derived E1-indecomposables
of k>0 vanish in bidegree (x, 1) for x > 2 and no further relations are needed to
present k>0. Hence A→ k>0 is an isomorphism of functors G→ Modk.

In this situation, Proposition 20.5 tells us how to compute HE1

x,d(k>0) for d ≥ r(x)− 1.
If in addition G satisfies the standard connectivity estimate, the E1-decomposables
vanish for d < r(x)− 1 and as in Proposition 20.6 we have

HE1

x,d(k>0) =

{
C(sV, s2R)(x, d) if d = r(x)− 1,
0 otherwise.

As we shall see in sequels to this paper, this applies to groupoids arising from mapping
class groups, general linear groups, and more.

Remark 20.7. — In this example the quasi-isomorphism (20.4) spells out to just an
acyclic chain complex

0 −→ k −→ C(x) −→ (C ⊗ C)(x) −→ (C ⊗ C ⊗ C)(x) −→ · · ·
for all x with r(x) > 0. We would like to compare this with the spectral sequence
associated to the canonical multiplicative filtration, which was described in Theo-
rem 10.20, in the case that O = E1. Applied to a cofibrant approximation T

∼→ k>0

in AlgE1
(sModG

k), and using that C1(1) ≃ ∗ so that absolute and relative E1-indecom-
posables are weakly equivalent, this takes the form

E1
x,p,q = Hx,p+q,q(E1((−1)∗Q

E1(T))) =⇒ Hx,p+q(T).

Now Hx,d(Q
E1(T)) = HE1

x,d(k>0) so if G satisfies the standard connectivity estimate
then this vanishes for d ̸= r(x) − 1 and is, by definition, the E1-Steinberg mod-
ule StE1(x) for d = r(x) − 1. Including the additional grading of (−1)∗Q

E1(T) we
have that Hx,p+q,q((−1)∗Q

E1(T)) = 0 unless q = −1 and p = r(x). But then as

E1((−1)∗Q
E1(T)) ≃

⊕∞
n=1((−1)∗Q

E1(T))⊗n

by the Künneth theorem we have that E1
x,p,q = 0 for p ̸= r(x) or q ≥ 0, and

E1
x,r(x),q

∼= (StE1)⊗−q(x)
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for q < 0. The d1-differential has the form d1 : (StE1)⊗−q(x)→ (StE1)⊗−q+1(x). There
can be no higher differentials, for reasons of grading, so the spectral sequence collapses
at E2. We have that Hx,d(T) = 0 for d > 0 and is k for d = 0 (and r(x) ̸= 0), which
gives an acyclic chain complex

0 −→ k −→ (StE1)(x)
d1−→ (StE1)⊗2(x)

d1−→ (StE1)⊗3(x)
d1−→ · · ·

for all x with r(x) > 0. Under the identification C(x)
∼→ HE1

x,r(g)−1(k>0) = StE1(x)

of Proposition 20.5 it seems inevitable that this acyclic complex is that of (20.4). We
expect that this can be proved using the work of Ching-Harper [24].
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We give a set of foundations for cellular Ek-algebras which are
especially convenient for applications to homological stability. We pro-
vide conceptual and computational tools in this setting, such as filtra-
tions, a homology theory for Ek-algebras with a Hurewicz theorem,
CW approximations, and many spectral sequences, which shall be
used for such applications in future papers.

Nous bâtissons les fondations de la théorie des Ek-algèbres cellu-
laires, en vue d’applications en stabilité homologique. Nous donnons
des outils conceptuels et des outils de calcul, y compris des filtrations,
une théorie d’homologie pour les Ek-algèbres avec un théorème de Hu-
rewicz, des approximations cellulaires, et plusieurs suites spectrales.
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