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INTRODUCTION 

Axiom A diffeomorphisms and flows, introduced by Smale, are 

generalisations of Anosov systems (extensively studied by the Russian school in the 

1960s) which in turn are based on the prototypical hyperbolic toral automorphisms 

and geodesic flows on surfaces of constant negative curvature. A standard method 

for understanding these dynamical systems, introduced, at various levels of 

generality, by Adler, Weiss, Ratner and especially Sinai and Bowen, is to model 

them, via the introduction of Markov partitions, by shifts of finite type and their 

suspensions. 

In this work we adhere to this procedure and in so doing the initial chapters 

develop some of the basic material of Bowen's and Ruelle's books [16], [82], 

although even here many of our proofs are different. 

The main substance of our effort, however, takes up where Bowen and 

Ruelle left off, in that we are primarily interested in problems associated with 

periodic orbits. These problems are intimately related to the analytic properties of 

certain zeta functions which may be understood with the help of the Ruelle 

(Perron-Frobenius) operator. Our point of departure from previous work is, 

perhaps, our work on the complex Ruelle operator which enables us (at least) to 

demonstrate the extendibility of a zeta functions up to a certain critical line in the 

complex plane or even (at best) to obtain Haydn's optimal extension. Crucial to this 

understanding is an elucidation of the relationship between the spectra of Ruelle 

operators and the poles of zeta functions. 
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This volume centres around three theorems which describe, in appropriate 

settings, the distribution in "space, time and symmetry" of closed orbits for 

hyperbolic systems. Each of these results is derived by methods inspired by 

analytic number theory and involves the analysis of a general zeta function. 

Temporal Distribution 

A zeta function for the closed geodesies of surfaces of constant negative 

curvature was first put forward by Selberg in 1956 in his work on the trace formula. 

Huber made implicit use of this work when he established in 1961 an asymptotic 

formula for the number of closed geodesies and a more general result (for the 

variable curvature case) was announced by Margulis in 1969. The result we 

present, proved in 1983, establishes a first order asymptotic for closed orbits of 

general hyperbolic systems. Our proof, which is entirely analogous to Wiener's 

proof of the prime number theorem, relies on analyticity properties of the zeta 

function first defined and partially analysed by Ruelle. This zeta function is a 

reduced version of the Smale zeta function for flows and is the natural analogue of 

the Artin-Mazur zeta function for diffeomorphisms, whereas Smale's was inspired 

by Selberg's. 

To be specific the main result on temporal distribution is the following: If 

(pt is a topologically weak-mixing hyperbolic flow then the number of closed orbits 

of least period no more than x is asymptotic to e ^ / h x (as x -> oo) where h is the 

topological entropy of the flow. 
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INTRODUCTION 

Spatial Distribution 

In 1972 Bowen proved that closed orbits of an Axiom A flow are uniformly 

distributed, in the non-wandering set, with respect to a certain canonical measure -

the measure of maximum entropy. This result is reproved here, again with the use 

of a Ruelle zeta function, together with a more general 'weighted' spatial 

distribution result. 

Symmetrical Distribution 

Here we take up the work of Sarnak (in his thesis) and Sunada to obtain an 

analogue of the Chebotarev theorem in number theory. The number theoretical 

result concerns the distribution of primes according to the way they split in a finite 

extension field. Our result concerns the distribution of closed orbits according to 

the way they lift in a Galois extension. Our work generalises the Sarnak-Sunada 

theorem from geodesic flows to Axiom A flows. 

The early chapters include basic material on: shifts of finite type, Holder 

continuous functions, the Ruelle-Perron-Frobenius theorem, the Lanford-Ruelle 

variational principle, pressure, equilibrium states, the central limit theorem, periodic 

orbits. However, one also finds the less familiar results on the spectral properties of 

the complex Ruelle operator and an exposition of the analyticity properties of a very 

general zeta function. 

Once we have laid this groundwork we are in a position to prove the 
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temporal (prime orbit), spatial and symmetrical distribution theorems. The final 

chapters relate results which we have proved for suspended flows (over a shift of 

finite type) to corresponding ones for hyperbolic flows on manifolds. We also take 

up a number of miscellaneous themes among which are an optimal meromorphic 

extension result for the zeta function (due to Haydn), the description of the Sinai -

Ruelle-Bowen measure (the 'physical' measure) and a generalisation (due to Adachi 

and Sunada) of Chapter 8 to Z d Galois extensions and its significance for 

homology. 

For the convenience of the reader we conclude with five appendices. The 

first presents a proof of Ikehara-Wiener Tauberian theorem which enables one to 

infer asymptotic results from properties of the zeta function. The second concerns a 

result on unitary cocycles needed for the chapter on Galois extensions. The third is 

an account of Bowen's theory of Markov partitions including the Bowen-Manning 

counting lemma and the related correspondence between the zeta function of an 

Axiom A flow and the zeta functions of associated suspension flows. Appendix IV 

presents material on geodesic flows and the coding of geodesies and the final 

appendix gives a brief account of the perturbation theory of linear operators needed 

for our analysis of Ruelle operators. 

Our main aim is to present a reasonably unified account, between one cover, 

of some of our joint and separate work since 1983 and, of course, to place it in its 

proper context. Each of us has presented significant portions of this work to 

graduate classes at the University of Warwick and, in the case of the first named 

author, at the University of Maryland whereas the second named author presented 

related material at the California Institute of Technology. We wish to acknowledge 
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our gratitude to the participants in these courses and seminars. Particular thanks are 

due to Jawad Al-Khal, Danrun Huang and Marianne James who gave some of the 

lectures at Maryland and made extensive corrections to preliminary notes for this 

work. At a later stage our notes benefitted from further corrections due to Anthony 

Manning, Caroline Series and Richard Sharp for which we extend our gratitude. 

David Ruelle very kindly gave us permission to use his rewriting of Haydn's 

proof of the main theorem in Chapter 10. Almost all of this chapter (with the 

exception of the example) is a verbatim copy of his notes. Our thanks are also due 

to the U.K.-Portugal British Council "Treaty of Windsor" for financially supporting 

the latter part of our joint work. 

Above all we thank Alice Gutkind for her typing and for her patience and 

good humour. 
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CHAPTER 1 

SUBSHIFTS OF FINITE TYPE AND FUNCTION SPACES 

We begin by introducing some of the basic objects that we shall need to 

study. The full shift on k-symbols (k > 2) consists in the totality of all doubly 

infinite sequences of k-symbols together with the shift map (usually denoted a) 

which moves each sequence one step to the left. The space of sequences has a 

natural product topology, and can be viewed as a topological version of an 

independent (Bernoulli) process. If we specify in advance that a finite number of 

words (i.e. finite strings of consecutive symbols) shall not be allowed then we 

obtain a a-invariant sub-process known as a shift of finite type. It is not difficult 

to see that if we interpret certain words as new symbols there is no loss in generality 

if we consider prohibited words of length two. (We need only replace words of a 

given length by new symbols, cf. [63].) 

We shall now be more precise. Let A be a k x k matrix of zeros and ones 

(k > 2) where the (ij)th entry is zero precisely when it is a prohibited word of 

length 2. We define 

X = XA = {x = (xn)~ xn e {l,...,k}, n e Z, A(xn, ^ = l} . 

If {l,...,k} is given the discrete topology then XA is compact and zero-

dimensional with the corresponding Tychonov product topology. The shift 
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a = GA is defined by a(x) = y, where yn = xn+1 i.e. all sequences are shifted one 

place to the left. The pair (X,G) is called a shift of finite type (or topological 

Markov chain). 

We shall always assume that A is irreducible i.e. for each pair (i,j), 

1 < i,j < k, there exists n > 1 such that An(i,j) > 0, where An is an n-fold 

product of A with itself. Under this condition we define the period d of A to be 

the highest common factor of {n : An(i,i) > 0,1 <i <k}. When d= 1, A is called 

aperiodic. 

There is a unique partition of {l,...,k} into sets S1,...,Sd such that 

Ad(ij) > 0 only if i,j belong to the same set S£ and Ad is aperiodic when 

restricted to the index set St x St for each I = l,...,d. Moreover, the indexing 

Slv..,Sd can be arranged so that if A(i,j) = 1 then i e St, j e Sv where £' = £+1 

(mod d). These results are fairly standard and a fuller account may be found in [86]. 

These properties of the matrix A translate back to the associated shift of 

finite type. It is easy to deduce from these facts that X = XA can be partitioned 

into closed-open sets X = X1u...uXd so that a(X£) = Xr (£' = £+1 mod d) and 

(3d I Xj corresponds to an aperiodic matrix. This observation frequently allows us to 

simplify proofs by replacing the irreducibility hypothesis by the stronger 

aperiodicity hypothesis and then deducing a more general result, bearing the above 

comments in mind. 
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SUBSHIFTS OF FINITE TYPE 

To every (two-sided) shift of finite type we can associate a (one-sided) 

shift of finite type (x^ a^j : 

X+ = XA = {X = (XnW A<Xn> W = I- " > 0} 

and G+x = GAX = y, yn = xn+1, n > 0 i.e. all sequences are shifted one place to the 

left, with the first term being deleted. As before, X+ is a compact zero-

dimensional space with the Tychonov product topology. 

An elementary, but important, difference is that whereas the (two-sided) 

shift a : X -> X is a homeomorphism, the (one-sided) shift a+ : X+ X+ is not 

invertible (but merely a local homeomorphism with Card(a+)*1(x) < k). There is a 

natural continuous surjection n : X -» X4* with n(x) = y, yn = xn, n > 0 i.e. one 

deletes the terms xn, n < 0. This surjection clearly satisfies the identity KG = o+7t. 

00 Q 
For a point x = (xN)N=OOG X we describe (xn)n=_00 as the 'past, x0 as the 

00 
present, and (*n)n=o as the future. To simplify our notation as far as possible we 

shall write a for both a, a+. It should always be apparent from the context 

whether we are referring to a one-sided or a two-sided shift. 

Now that we have described the shifts of finite type we can move on to 

11 



W. PARRY, M. POLUCOTT 

consider function spaces for X, X+. For future use it transpires that the most 

interesting family of functions to consider are those that are Holder continuous. 

As before, we begin with X. Given 0 < 9 < 1 we define a metric on X by 

de(x,y) = GN, where N is the largest non-negative integer such that xi = yi? lil < N. 

For a continuous function f : X -» C and n > 0 we define varn f = 

= sup (lf(x) - f(y)l : x. = yif lil < n}. It is easy to see that lf(x) - f(y)l < Cde(x,y) if 

and only if varn f < C9n, n = 0,1,.... 

LetFe = Fe(X) = {f: f continuous, varn f < C9n , n = 0,1,..., for some C > 0} 

then we see that F0(X) is the space of Lipschitz functions with respect to the metric 

r varf i 
de. For f e Fe(X) let Ifl̂  = sup {lf(x)l : x e X} and lfle = sup { — i - : n > 0). 

Together these define a norm on F0 by llfllg = If] ̂  + lf1G. (Notice that lfle is merely 

the least Lipschitz constant.) 
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SUBSHIFTS OF FINITE TYPE 

The situation for X+ is very similar. Given 0 < 6 < 1 we can define a 

metric de on X+ by d0(x,y) = 0N where N is the largest integer such that xi = yi? 

0 < i < N. For a continuous function f: X+ -» C and n > 0 we define varn f = 

sup {lf(x) - f(y)l : xi = yj, 0 < i < n}, lfl0 = sup 
varnf 

uN 
ln>0 and 1 ^ = 

sup {lf(x)l : x e X+} . We let 

FQ = F0(X+) = {f : f continuous, varn f < C0n, n = 0,1,..., for some C > 0} , 

and again we define a norm on F0 by llfll0 = Ifl̂  + lfl0 . 

PROPOSITION 1.1. The spaces (F0, II ll0), (F0, II ll0) are Banach spaces. 

Furthermore, if f, g e F0 (or F£) then llfgll0 < llfll̂ gl̂  + IflooHgHG and if f is 

nowhere zero then lll/fll0 < 11 /^11% . 

The proof of this proposition is straight forward. (The proof of 

completeness is simple since {f e F0 : llfll0 < C} is I l^-compact by Ascoli's 

theorem.) 

Two functions f, g G F0(X) are said to be cohomologous (f ~ g) if there 

exists a continuous function h such that f = g+ h o a - h. Clearly this is an 

equivalence relation on F0(X). A function which is cohomologous to the zero 

function is called a coboundary. In fact, in the above definition of 'cohomologous' 
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we can always choose h G F0(X). (Cf. [16].) 

PROPOSITION 1.2. 7/ f G Fe(X) then there exist g, h G Fe*(X) such that 

f = g + h - ho<j and g(x) = g(y) whenever x{ = y{ for all i > 0 (i.e. g 

depends only on 'future'co-ordinates). 

PROOF. For each 1 < j < k choose an allowable sequence from the'past' (ijjnl-oo 

such that iJQ = j . To each x G X we can associate (p(x) = x' G X with 

fxn,n>0 
(*')n= ' iJn , n < 0 and xQ = j 

Thus q> replaces the 'past' of x by the sequence (̂ )n=_co where j = x0 

Define h(x) = X (f(Gnx) - f(an(px)). (This series clearly converges since 
n=0 

If(anx)- f(Gn(px)l < varn f < llflle 6n, n > 0.) We note that 

h(x) - h(Gx) = X (f(°nx) - f(an9x)) - X (f(Gn+1x) - f(Gn9Gx)) 
n=0 n=0 

= f(x) - [f((px) + S (f(Gn+1(px) - f(Gn(pGx))] . 
n=0 

14 



SUBSHIFTS OF FINITE TYPE 

This can be rewritten as h(x) - h(ax) = f(x) - g(x), where g is defined by 

the expression in square brackets. Evidently g depends only on future 

co-ordinates, and all that remains is to show that h, and therefore g, belongs to 

F0T(X). It suffices to show that var2Nh < K0N, N > 0, for some constant K > 0 for 

then var2N+1h < (K/e*) (0*)2N+1. 

Let x, y G X where xi = yi for lil < 2 N then 

lf(anx) - f(any)l, lf(ancpx)- f(ancpy)l < lfle e2N"n, 0 < n < N. 

For all n > 0 we have 

lf(Gnx) - f(Gn(px)l , |f(Gny) - f(Gn(py)l < lfte 9n . 

Hence lh(x)-h(y)l<2lfl0Xe2N-n + 2lfI0 X 6n 
n=0 ° n=N+l 

= 2lfle 02N ^r-r2 + 2lfU i-T * 4lfle - f - , 9 \ 9'-l / 9 1-9 9 1-9 

which shows that h e F0i(X), completing the proof. 
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The map W : f H g in the above proposition is a linear and continuous map 

from F0 to F0± . Furthermore, g can clearly be identified with an element of FQ .̂ 

When f G F0 already depends on future co-ordinates then W(f) = f. We can 

express this as 

Fe(X+)c>Fe(X) ->Fei(X+). 
w 

We have a certain amount of freedom in our choice of 0 < 6 < 1. Clearly if 

f: X-> C is a-Holder continuous for d0(O < a < 1) then it is Lipschitz with 

respect to d a (i.e. replacing 0 by 0a). 
G 

Generally, we observe that if 0 < Q < 6' < 1 then F0,(X) 5 F0(X) (and 

similarly for F0 , F0,). This gives us a 'filtration' of the spaces of all Holder 

continuous functions F = U Ffl(X) (or F4" = U Ffl(X+)). 
o<e<i w o<e<i 

Finally, we want to consider a class of functions that lies in all of the F0, 

0 < G < 1 (or F0,O<G< 1). Let 

F^={f:X+->C:f(x) = f(y) if xn = yn for 0 < n < m } 

for m > 1 i.e. F^ consists of locally constant functions depending on the terms 

x o , . . . ^ . Clearly, F J C F ^ C . . . and U/MQ ^F*. 

16 



SUBSHIFTS OF FINITE TYPE 

Assume f G F0, for some 0 < 8 < 1, then clearly we can choose fm G Fm 

with If-fjoo ^ lfl0.9m, m > 0 . (In particular, for each admissable word x0,...,xm_1 

we can choose z G X with zi = xi, 0 < i < m-1 and define f(w) = f(z) whenever 

wi = xi, 0 < i <m-l .) 

PROPOSITION 1.3. For any 0 < 9 < 6' < 1 we have that If-f J0, < lfl0 | H , m > 0. 

PROOF. We want to show vark (f-f m) < lfl0 6m(9,)k-m for k > 0 . 

For the case 0 < k < m we have 

vark (f-f m) <\f-fm\œ < lfl0.9m < ifi0.em(e,)k-m 

since (9,)k_m>l. 

For the case m < k < + oo we have 

vark (f-f m) = vark f < lfl0.9k < lfl0.9m(9,)k-m 

and the result follows. 

f &\m 
In particular, we have Hf-fmll0' ^ 2lfl0 —I , m > 0 . 
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Notes 

In a purely mathematical context shifts of finite type were introduced in [61] 
(as "intrinsic Markov chains"). The term "subshift of finite type" was used in [95] 
whereas the Russian school preferred "topological Markov chain". However shifts 
of finite type are closely related to the one-dimensional lattice gases extensively 
studied in statistical mechanics (cf. Ruelle's book [82]). 

Details of the arguments about recoding can be found in the books of Parry -
Tuncel [64] and Denker-Grillenberger-Sigmund [28]. The reduction to the case of 
aperiodic matrices is a standard procedure in matrix theory, and a nice account is 
given in Seneta's book [86]. 

The importance of Holder continuous functions on shift spaces is that they 
correspond to Holder (or more narrowly, differentiable) functions arising in the 
context of flows on manifolds. This will be explained in Appendix HI. The Banach 
space of Holder continuous functions is described in the books of Bowen [16] and 
Ruelle [82]. 

Proposition 1.2 is originally due to Sinai [94], but the proof we give is due to 
Bowen [16]. 

Proposition 1.3 is taken from Ruelle's book [82]. 
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CHAPTER 2 

THE RUELLE OPERATOR 

In the previous chapter we introduced the Banach space of Lipschitz 

functions on subshifts of finite type. For X and X+ the shift a induces an 

operator o* : FQ -» FQ or a* : F -̂> F^ . However, in the case of Fg we have the 

possibility of introducing an important operator which is dual to a* , in a sense 

which can be made precise. 

Let f G FQ and define the Ruelle operator Lf: FQ -> F^ (or more generally, 

Lf: C(X+) -* C(X+)) by (Lfw)(x) = X ef^) w(y). It is easy to see that Lf is a 1 1 ay = x 1 

bounded linear operator. When f is real and Lf 1 = 1 we shall sometimes say that 

f or Lf is normalised. Furthermore we have the following: 

PROPOSITION 2.1. (Basic inequality) Let f G with f = u+iv. If Lul = 1 

then 

iLjwIe^ClwIoo + e ^ w I g , for all w e F* ,n>0 

where C > 0 depends only on f and 0. 
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PROOF. We first show that I Lfw IQ < C0I w I oo + 91 w IQ , for some C0 > 0. Here 

we choose d(x,y) < 9 ^ (then x j = yj for 0 < i < N), and we note that 

I (Lfw)(x) - (Lfw)(y) I < X _ I ef(ix>w(ix) - e^wCiy) I 
A(1,Xq) — 1 

< £ l ef(ix) - e ^ ) 1.1 w(ix) I + Xl ^ I.I w(ix) - w(iy) I 
i i 

(where ix denotes the sequence with (ix)0 = i, (ix)n+1 = xn , n > 0), and the result 

follows easily. 

We proceed by induction: If I L^w I e < C j w 1̂  + 9nl w l0 then 

I LJ+1w I0 = I LJ (LfW) i0 < cnl LfW \w + 9ni Lfw ie < cjwi^+9»[c0iwioo+eiwle] 

= (CN + 9NCo)lwloo + 9n+1lwl0. 

n f n+l\ Q 
Thus we can assume Cn+1 = Cn + 9NC0 = (ZQ 9K) C0 = \^q-J CO ^ JZq and the 

co 
result is proved if we take C = —• . 

20 



RUELLE OPERATOR 

The above inequality is the first of two important ingredients in the 

proof of the theorem below. The second is the elementary observation that D1 = 

{w e F0: llwll0 < 1} is compact in the uniform topology, as a subset of C(X+). 

THEOREM 2.2 (Ruelle-Perron-Frobenius, R.P.F.) Let f e F0 be real valued and 

suppose A is aperiodic. 

(i) There is a simple maximal positive eigenvalue (3 of Lf : C(X+) -» C(X+) 

with a corresponding strictly positive eigenfunction h e F^. 

(ii) The remainder of the spectrum of Lf: F0 -» F0 (excluding P > 0) is 

contained in a disc of radius strictly smaller than (3. 

(iii) There is a unique probability measure \i such that L^|i = P|j, (i.e. 

jLfvdM. = fifvdn for all v e C(X+)). 

(iv) 1 
ßn 

L?v -> hjvdu uniformly for all v e C(X+) where h is as above and 

J W = 1. 

21 



W. PARRY, M. POLUCOTT 

PROOF. Let 

A = {g e C(X+): 0 < g < 1 and g(x) < g(y) exp 
lfiee 

1-0 
when xi = y{, 0 < i < n} . 

It is easy to see that A is convex and uniformly closed. When x,y e X+ with x{ = y{, 

0 < i < n we have 

Ig(x)-g(y) l < lg(y) l (exp( -ÍL | f1e)- l ) 

< f g 
On 

i-e % 

On 

i-e 
lfle \ñ6. 

This allows us to draw two conclusions. The first is that A c FQ . For the 

second we observe that A is an equicontinuous family and by the Ascoli's theorem 

it is compact with respect to the auniform norm. 

Lf(g+i/n) 
For each n > 1 we may define Ln(g) = for g e A. Clearly 

iLfte+i/n)^ 

| Lng I w = 1 and for x,y e X+ with x{ = y{, 0 < i < k , 

Lf(g + l/n)(x) < Lf(g + l/n)(y) exp Ox 1-0 lfle). 

exp 
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In particular, Ln(g)(x) < Ln(g)(y) exp Ok 1 +0 lfl0) and so Ln : A A , n > 1 . 

Since A c C(X+) is a convex uniformly compact set we can apply the Schauder-

Tychonov fixed point theorem to each Ln : A -» A , n > 1 , to see that there exists 

hn e A with Lf(hn + 1/n) = (3nhn , where pn = lLf(hn + 1/n) lw. 

By the compactness of A we can choose a limit point h e A for {hn}n=1 

and by continuity Lfh = ph where p = iL^h)!^ . 

To show P is positive we note that 

PnhnW= £ efW(hn(y) + l/n)>(infhn + l/n)e",f,°° ay = x 

and so Pn(inf hn) > (inf hn + 1/n) e",f,°° . We conclude that pn > e~lf1°° and so 
B >< e 111 . 

To show that h is strictly positive we can assume for a contradiction that 

h(x) = 0 for some x e X+ . Then 

X efnWh(y) = pnh(x) = 0 , n > l 
n 

a y = x 

where f^y) = f(y) + f(ay) +—4- f(an_1y) • In particular, h(y) = 0 whenever 
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an(y) = x, for some n > 0. Since A is aperiodic the set of all such y is dense in 

X+, from which we conclude that h is identically zero. However, we saw above 

that P = ll^hl^ > 0, which gives the required contradiction. 

To show that p is simple we may suppose that Lf has a second (real-

valued) continuous eigenfunction g corresponding to P and let t = inf gfrO 
h(x) 

1^- , for some y e X+. Then g(y) - th(y) = 0 and g(x) - th(x) > 0 for all x e X+. 
n(y) 

By repeating the preceding argument we conclude that g - th = 0, i.e. g is a scalar 

multiple of h. This shows P is simple, and concludes the proof of part (i). 

With h,P as above we define g = f - log h o a + log h - log P, then 

Lg = P"1 A(h)-1 LfA(h), where A(h) is multiplication by h. Moreover, Lgl = 1 so 

that Lg is normalised. Since the spectrum of Lg is the spectrum of Lf scaled by 

1/p, it suffices to complete the proof under the additional assumption that Lf is 

normalised. The remaining statements then reduce to: 

(ii) The spectrum of Lf: FQ-» FQ , other than 1, is contained in a disc 

with radius strictly less than 1 . 

(iii) There is a unique probability measure m such that L!m = m . 
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n f 
(iv) For each w e C(X+), Lfw -> J wdm , uniformly. 

The operator Lf : C(X+)* -» C(X+)* preserves the convex compact (in the 

weak* sense) subset of functional corresponding to (a-invariant) probability 

measures. In particular, by the Schauder-Tychonov fixed point theorem we can 

find such an m with L^m = m. We complete the proof of (iii) by showing 

uniqueness and also prove (iv) at the same time. 

It is simple to see that {L^W| is equi-continuous, since for all n,k > 1 we 

have var, (L"W) < I LJW le 9k < C9k Iwl^ + 6n+k lwl9 and therefore some convergent 

subsequence 
k 

Lf w has a limit w*, say. Since sup w > sup Lfw > sup Lfw > -

JN n we have sup Lf w* = sup w*, N = 1,2,.... Let w*(xQ) = sup w* = Lfw*(xn) so that 

(Lfw*)(xN)= X efN^w*(y) = w*(x0) 
cNy = xN 

then, since Lf is normalised, this is a convex combination and we conclude 

w*(y) = w*(xn) when oNy = xM. Thus w* is a constant. 
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Since L!m = m we see that w* = Jwdm = lim /(L^w) dm . Because F t c C(X+) 
n-»oo 

is uniformly dense we may assume w e C(X+). As we may repeat this argument 

for any subsequence we see that lim L?w = Jwdm (in the uniform norm). This 
n->oo 1 

completes the proof of parts (ii) and (iii). 

To prove (ii) it suffices to show Lf IC1 has spectral radius strictly less than 

1 where: 

C1={wGFQ:/wdm=o} 

By Proposition 2.1 we have 

I L"+kw i0 < ci LJW b + e11! L^w ie < ci LJW I^ +ceniwi00+en+kiwie 

and Lfw converges to zero on the uniformly compact set {w G C1 : llwlle < 1} . So 

for large n,k we have some e > 0 with II L +̂kw lle < e < 1 for all w e C1 with 

llwll0<l. The spectral radius of LfiC1 is therefore no larger than e1/n+k since it is 

r N 1/N 1 given by inf |ll Lf II0 : N > 0 J . This completes the proof. 
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REMARK 1. (Perron-Frobenius theorem for matrices). In the special case where f 

depends on only two coordinates, i.e. f(x) = fCx^Xj), and we can introduce a 

kxk-matrix M(i,j) = A(ij)ef^, 1 < i,j <k , and then P is the maximal positive 

eigenvalue guaranteed by the Perron-Frobenius theorem. In this case h(x) = h(x0) 

where Xh(i) A(ij)ef^ = ph(j), i.e. h(i) is the ith entry in the eigenvector for p. 
i 

If we define g(i,j) = log h(i) - log h(j) - log P + f(i,j) we see that the matrix 

corresponding to Lg is 

P(ij) = A( i j )e^) = ̂ ^P(ij) = A(ij)e 

which is column stochastic, i.e. ]^A(ij)egW> = i . The measure m on cylinders is 
i 

given by m[i0,ilv..,in] = PCio,!^.. .?^.^^)?^), where Pp = p and Xp(i) = 1 
i 

and we use the notation HQ,^,...,^] = {x e X+ : Xj = ij, j = 0,...,n} . 

REMARK 2. Notice that for v,w e L2(m) we have Lf(v.w o a) = (Lfv)w so that 

Lf is a partial inverse to the operator a* : w -» w o a (when Lf is normalised). 

In particular, we have: (i) Lfa* = identity; (ii) a*Lf = Em(-1 a"1^") where & 

is the Borel a-algebra on X+ and Em denotes the conditional expectation for 

G ' ^ c One should also note that Lf is the L2(X+,m) adjoint of a*. 

27 



W. PARRY, M. POLUCOTT 

The measure m satisfying L^m = m when Lf is normalised is clearly 

a-invariant since for v,w e C(X+) we have Lf(v o a.w) = vLfw and it follows 

that Jv o adm = Jvdm. 

We shall also denote by m the natural extension of m from X+ to X. This is 

again a a-invariant measure. (If v € C(X+) a C(X) we can define Jv o a"kdm = 

jvdm and note that { v o a ~ k : k > 0 , v e C(X+)} is dense in C(X).) Since Lf iC1 

has spectral radius strictly less than p < 1 (where C"1 c ), there is a constant K > 0 

such that II L"W II Q < Kpnllwll0 , n = 0,1,... for all W G F Q with Jwdm = 0. 

By considering translates of FQ C C(X) it is simple to show the following: 

PROPOSITION 2.3. If v,w e L2(X,m) with Jwdm = 0 then Jv o anwdm ->0 as 

n-» + oo (i.e. a is strong mixing with respect to m). 

PROOF. We can choose v(k), w(k) , k > 0 with llv(k) - vll2 , llw(k) - wll2 ->0 as 

k-^ + oo, where v(k), w(k) depend only on terms x_k,...,x0,...,xk . 

We can then write 

|fv o on.wdml < jfv(k) o an.w(k)dml + |f[v(k) o an.w(k) - v o an.w] dml. 

However, |fv(k) o an.w(k)dml = |f[v(k) o ak] o an [w(k) o ak] dml 
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= if[v(k) o ck] LJ [w(k) o ak] dml < Kpn II w(k) o ak lle lv(k) o o \ 

which converges to zero as n->oo for fixed k. Moreover 

IJ [v(k) o cn.w(k) - v o anw] dml < llvll2 llw-w(k)ll2 + llw(k)ll2 llv-v(k)ll2 , 

which can be made arbitrarily small. 

REMARK 3. A simple modification of this argument also shows that a : X+ -» X+ 

is exact i.e. fl a"11^ is the trivial a-algebra, n = 0 5 

If we assume v,w e F0 then we want to examine the rate of convergence to 

zero. 

PROPOSITION 2.4. If v,w G F0 and /wdm = 0 then Jv o an.wdm -> 0 

exponentially fast. 

PROOF. If v,w G FQC C(X) with /wdm = 0 the proof is direct since 

I Ljw b < Kpn llwll0 and so |fv o an.wdml < Kpn IIWIIQ.IVÎ  . 
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More generally we need an approximation argument. Let v,w G Fq with J wdm = 0 

then 

ILJ^WI^ < Kpn II L*w lle < Kpn (Iwl̂  (1+C) + Gklwle) 

and if w depends only on the variables x0,...,xk then 

ILJ^WI^ < Kpn ((1+C) Iwl̂  + 2lwl J = K'p11^ where K' = K[(l+C)+2]. 

In this case, with the convention C(X+) c C(X), 

l/v o an+kwdml < K'p^wljvl^ 

i.e. l/v o an.w o a~kdml < K'pnlw o a'^Jvb , where w o a"k depends on the 

variables x_k,...,x0. 

By uniform approximation we have I Jv o an.wdml < K'p^wl^.lvl^ 

whenever v depends on future coordinates, w depends on past coordinates and 

v,w G C(X) with /wdm = 0. 

Returning to the general case, assume v,w G F0(X) with /wdm = 0 and 

choose vk,wk depending on coordinates x_k,...,x0,...,xk with /wkdm = 0 and 
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lv-vkl < lvl0 0k, lw-wkl < lwl0 0k . (For example, wk can be defined by averaging w 

over cylinders [x_k,...,x0,...,xk]_k = {z e X : zi = xi? -k < i < k} as a conditional 

expectation for m.)Then 

l/vkan.wkdml = |JVk o ak o on-2k.wkcrkdml <K'pn"2k lvkl00lwkl00 

when n > 2k since vk o ak depends on the future and wk o a~k depends on the 

past. 

Hence for n > 2k, 

l/v o an.wdml < I J(v-vk) o an.wdml 4- |fvk o an.(w-wk) dml + |fvk o an.wkdml 

< ek ivi9 +ek iwie wk\„+K'P"-2k i v ^ w,^ 

< ek ivie iwi^+ek iwi9 [ivi ,̂+ivie ek]+Ky-^ h\M+w\Q ek].tiwiM+iwie ek] 

<ekllvllellwlle + K'pn-2kllvllellwll9. 

Finally, we can take k=[n/3] then l/vanwdml < L(p /3)n llvll0.llwlle for 

some constant L > 0 and all n > 0 (where we assume without loss of 

generality that 0 < p). 

Notes 

The Ruelle operator first appeared as the 'transfer operator' in an article by 
Ruelle on one-dimensional lattice gases [77], as a generalisation of the 'transfer 
matrix' - but the related Perron-Frobenius operator is a standard construction. 

The basic inequality (Proposition 2.1) is proved in Bowen's book [16]. 
Inequalities of this type were previously studied by Ionescu-Tulcea-Marinescu [43]. 
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Theorem 2.2 illustrates the reason for introducing the Ruelle operator in 

preference to the induced operator o* : F0-» F0, (a*f)(x) = f(ax) , x e . This 

theorem is due to Ruelle, but we have drawn together proofs of its various parts 
from different sources: Part (i) uses the proof in Pollicott's article [71]; Part (ii) is 
taken from Ruelle's book [82]; Part (iii) is adapted from Bowen's book [16] and 
finally Part (iv) is based on Walters' article [100]. Ledrappier introduces the useful 
trick of 'normalising', which is closely related to Keane's notion of g-measures [49]. 

The Perron-Frobenius theorem for matrices can be found in Gantmacher's 
book [35] and the content of our second remark occurs in an article by Ledrappier 
[55]. 

Proposition 2.4 was proved in Bowen's book [16]. 
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CHAPTER 3 

ENTROPY, GIBBS MEASURES AND PRESSURE 

In this chapter we shall introduce some basic notions from ergodic theory 

and related ideas originating in statistical mechanics. 

Let T be a measure preserving transformation defined on a probability 

space (Y,J3,p) i.e. T^AQ A and pCT^A) = p(A) for A e A If y is a finite 

measurable partition and C c A is a sub-a-algebra we define the conditional 

information of y given C as 

Ip (7 lO=-cÇTXclogp(ClO 

and the conditional entropy of y given C as 

HpCYlÖ =/lp(7lÖdp = / - X p(00 logp(ClOdp 

where p(Cl£) = Ep(%^lO and we use the convention x log x is zero at x = 0. 

The information and entropy of T with respect to y are defined, 

respectively, as Ip(T,y) = lp(y\TA0 and hp(T,y) = l y y l T ' O 
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where C= \^T"!Y is the smallest a-algebra containing ^QT'V-

The entropy of T is defined as h (T) = sup h(T,y) where the supremum is 
y 

taken over all finite measurable partitions y. A well-known theorem of 

Kolmogorov and Sinai asserts hp(T) = h(T,y) when A is the smallest T invariant 

00 
a-algebra containing y (i.e. if T is invertible and A = V T~*y , or more 

i = -oo 
00 

generally if A = .VT"1/). 

We can also define Ip(x) = Iv(y\TAJ4), when A is the smallest a-algebra 

00 
containing (J T~1y , and this is then independent of y. This definition only has 

i = 0 

real significance when T is not invertible. When T is a continuous surjective 

map of a compact metric space to itself the topological entropy of T is defined as 

suph (T), where the supremum is taken over all T invariant Borel probabilities p 
P 

We shall now restrict ourselves to (Y,J3,p) = (X+,#*\|j.) and T = a, where 

is the Borel a-algebra for X+. We can let y consist of one-cylinders, 

i.e. y = {[i]0 : i = l,...,k} then from the above we have I^(x) = I(y I a 1 ^ ) and 

h (a) = H(y I a*1^). In this context we can give a convenient expression for these 
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quantities. 

For almost all xeX+ (with respect to |i) we have [i[x0,...,xn] > 0. We can 

define a finite probability distribution on {l,2,...,k} for each x,n by 

Hjilc^x] = 
îtfilncr1 [xlv..,xn]) 
liter1 [x^...^]) 

(n+1)y)(x) 
(n+1)y)(x) 

= ^([illa-Vv.-.v a-(n+1)y)(x) 

(where at v...voc£ represents the smallest a-algebra containing all aisi= 1 ,...,£). 

We recall the following: 

THEOREM 3.1. (Increasing Martingale Theorem) 

With the above notation |in[i I a_1x] -> I cr1^ )(x) a.e., for each i = l,...,k, so 

that I a_1x] = [i([i] I a"1^+)(x) is, for almost all x, a well-defined probability 

distribution on 1,2,..,,k. 

As a consequence we have 

k 
V(a)(x) =-Xx[ i ] (x) log^ila-1x] 

V ° ) =/ l^)(x)dti . 
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K 
One can also see that for every g e C(X+), X Jg(ix< ...)|i[i I a_1x]d|i = Jgd|i. 

i= 1 
To show this it suffices to consider g = % (n+1)y)(x) and note that 

XV 
X/gCix,...) |i[ila_1x] d|i 
i = 1 

= lim X Jg(ixi•••) Hn & I a'lxl dM< 
n-H-oo i= 1 

= l im AjgCix̂ ..)(n+1)y)(x)(n+1)y)(x)dp. 

(n+1)y)(x)(n+1)y)(x) 

Having introduced some of the more basic ideas from entropy theory we 

want to relate this to the material in the previous section on the Ruelle operator. 

A probability measure m on X+ is called a Gibbs measure if there exists 

g e C(X+) such that 

A< 
m[x0,...,xn] 

<B 
gn(x>fnC 

for n > 0 and fixed constants A,B > 0 and C e DR. Here 

gn(x) = g(x) + g(ox) +•••+ gCo^x). 

(We do not necessarily require that m should be a-invariant.) 
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PROPOSITION 3.2. When f 6 F0 is real and normalised we have the following 

inequality: 

a-lfleen< ^ o ^ f c - f(x) <e,f1een 
~ m[x1...xn] ~ 

where Lfm = m as in Theorem 2.2. 

PROOF. m[xlv..,x ]=/% ,(2)0111 
[xt...xn] 

= J I X. ,(y)dm ay = z txo-Xjj] 

= J * X ef<y)y (y)e-f(y)dm 
<jy = z [x0...xn] 

=/L f (x e-f)(z)dm [x0...xnl 

= / e-fdm. [x0...xn] 

|fl 0̂  f( ) f(v/) Ifl 0^ 
But e~ 0 <e <e 9 whenever z,w e [x0,...,xj. Thus, 

R I -,fle0n^ R I FW^ R I ,fle0n m[x0,...,xn] e w <m[x1,...,xn]e <m[x0,...,xn] e u 

This completes the proof. 

COROLLARY 3.2.1. m is a Gibbs measure for the constant C = 0 , 
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PR(X)F. The theorem gives us a sequence of inequalities 

-If1ee mko-̂ n1 -f(x> lflfien e w <—: ,e <e w m[x1...xnl 

-ifue11"1 mfc^jg _f(ax) î e11"1 
e w < — .e <e w 

m[x2...xn] 

e 9<m[xn]e -f(Onx) <e 8. 

By multiplying together we have: 

e-lfle/(i-e)< m[xo-xn] < We/(l-e) 
f^(x)"e 

e 

Thus m is a Gibbs measure. 

m[x0...x ] 
COROLLARY 3.2.2. — -» ef(x), uniformly, and I (0*" I cr1^) = - f(x). 

mLX̂ ...xn] 
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PROOF. The first part is clear from the theorem. Let <Bn be the a-algebra on X+ 

/ + + \ / m'x0—xn\ 
formed from cyclinders of length n, then Im y<B^ I <J-1#n ](x) = - log ^———j and 

by the martingale theorem Im(#* I a"1 <B ) -»IM(& I cr1 ) a.e. (m). Combining this 

with the first part gives IM($~ I (T1^) = - f(x). 

These results can easily be adjusted to deal with the case where f e F0 and 

where we no longer necessarily assume that Lf is normalised. 

By applying the above theorem to g = f -log h o a + log h -log P, where 

h,P are the positive eigenfunction and eigenvalue guaranteed by Theorem 2.2 we 

have 

m[x0...x ] 
A'< —— <B' 

f%)-nlogß 
e 

for all x G X+ . In particular, m is a Gibbs measure with C = log P"1. 

If we assume that f e F0(X) then we can prove similar results by replacing 

f by a function g e F0i/2cF0(X) cohomologous to it. 

We next want to consider the way in which invariant Gibbs measures are 
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distinguished amongst all a-invariant probability measures. This will lead us 

naturally to consider variational principles. To begin this analysis the following 

Lemma will prove useful. 

LEMMA 3.3. If pt,...,pk and q1 ,...,qk are two probability distributions on l,...,k 

such that Pi>0, i= l,...,k then 

k 

i=l qiiogqi+ 
k 

i = 0 l qiiogqi+<0 

with equality only when p. = q., i = l,...,k. 

PROOF. The left handside of the above inequality can be rewritten as 

k 

i = 0 "Pi 
qi 
Pi 

log 
qi 
qi 

and as the function cp(x) = - x log x (with the convention cp(0) = 0) is strictly 

concave, it is less than or equal to cp 
k 

qi =1 Pi 
q. 

kPi 
|j = cp(l) = 0, with equality only 

when qj/pj are all equal i= l,...,k. Hence q ^ P i for all i= l,...,k. 

We use the above lemma as an ingredient in the proof of the following proposition, 

which gives a preliminary version of the characterisation of m we want. 
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PROPOSITION 3.4. If f e FQ is real with Lf normalised and L^m = m, then for 

any a-invariant probability measure |i we have 

ya)+J fd t i<0 

with equality if and only if (i. = m. 

PROOF. Given a a-invariant probability measure \i we can define a probability 

distribution on l,...,k by (i[i I a_1x], for almost all x e X+, with respect to \i. 
f(ix X ) 

When we choose u = m we have m[i I cr'x] = e v 0 v'" for all x e X+. 

In view of Lemma 3.3 we have (for almost all x) 

k k 
- X | i i I o-y log ^[i I cr'x] + Z Vli I cr'x] fCixQX .̂.) < 0 

i= 1 i= 1 

with equality a.e. if and only if |i[i I cAx] = cf̂ lxoxi"̂  

Integrating with respect to |i gives: 

k 
hu(a) + X JVft I cr'x] f(ixoXl...)d^i = hu(a) +Jfd[i < 0 , 

i= 1 K 
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with equality if and only if |a[i I A_1x] = e 0 1 a . e . (u) The latter condition 

implies /Sef(lX°Xl")g(ix0x1...)dM>=Jgd|i, when g e C(X+) i.e. jLf(g)dp, = / gd|i 
i 

or Lf \i = (I. But by Theorem 2.2 (iii) we know that m is the unique A-invariant 

probability measure with L^m = m. This completes the proof of the proposition. 

We can easily extend the above result to two sided shifts using the 

correspondences discussed earlier in Theorem 2.2 and Proposition 1.2. 

Furthermore, we can dispense with the normalisation assumption on the associated 

Ruelle operator. Thus, by Proposition 1.2 we can find for each f e F0(x) a 

function g G Fol/2(X+) with f = g.+ u o A - u. By Theorem 2.2 we can then write 

g = log h o a - log h + log P + k , where 

L^m = m for Lk normalised. By the above proposition for any A-invariant 

probability measure |X we have: 

h^(A)+/kd^<hM(A)+/kdm = 0 

i.e. h^(A) + Jfdp. < hM(A) +/fdm 

with equality if and only if (I = m. We summarise as follows: 

THEOREM 3.5. (Variational Principle) For f e Fe(x) (or F0(X+)) 

h^(A)+/fd^<hM(A)+Jfdm 
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with equality if and only if \\. = m for a unique G-invariant probability measure 

m. 

If we denote P(f) = sup{h (a)+/fd|i} = hm(o) + /fdm then P(f) = log (3, 

where (3 is the maximal eigenvalue for Lf where f ~ f wftfi f e F0I/2 . 

The quantity P(f) = sup {h (a) + /fd|i} is called the pressure of f (and 

can be similarly defined for any f e C(X)). 

A a-invariant probability measure |X satisfying P(f) = h^(a) + Jfdii is 

called an equilibrium state. The above theorem tells us that for f e FE there exists 

a unique equilibrium state and that the pressure has an equivalent definition 

as P(f) = log |3. 

There is a general theory of pressure and equilibrium states for continuous 

functions with respect to a homeomorphism of a compact metric space, due to 

Walters [101] and Ruelle [78], which we shall not require. 

Next we want to describe some of the basic properties of P : C(X) -»IR with 

P(f) = sup{h^(a)+/fd^}. These are easily seen to follow from the definition: 

(i) P : C(X) -> IR is monotone increasing, i.e. if f,g e C(X), f < g then 

P(f)£P(g); 
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(ii) P : C(X) -> IR is convex, i.e. for 

0 < X < 1, P(W+ (1-X)g) < AP(f) + (l-X)P(g); 

(iii) If f ~ g 4- c, for some constant c, then P(f) = P(g) 4- c ; 

(iv) P : C(X) -> IR is Lipschitz continuous, i.e. lP(f) - P(g)l < If-gl^ . For if 

lf-gloo = c then g-c < f < g+c so that P(g) - c < P(f) < P(g) + c by (i) and 

(iii) above. Thus lP(f) - P(g)l < If-gl^ = c. 

The following result shows that there is a one-one correspondence between 

elements of Fe(X) (modulo coboundaries plus constants) and equilibrium states of 

F0 functions. 

PROPOSITION 3.6. If f,g G Fe(X) and f - g 4- c , where c is a constant then f 

and g have the same equilibrium state. Conversely, if f and g have the same 

equilibrium state then f ~ g 4- c , where c is constant 

PROOF. For the first part we note that the equilibrium state m of f is defined by 

hm(a) 4-Jfdm = P(f). Therefore hm(a) 4-Jgdm = hm(a) + Jfdm - c = P(f)-c = P(g) 

i.e. m is the equilibrium state for g. 
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For the second part, let m be the common equilibrium state of f and g. 

Since we are only interested in equating f and g up to the addition of a 

coboundary and a constant we can assume that Lf, Lg are normalised (using 

Proposition 1.2 and Theorem 2.2). Thus Lfl = 1, L 1 = 1 and L^m = m, 

L*m = m. In particular, jLfwdm = Jwdm = /Lgwdm for all w e C(X+). If we 

let w = u.v o a then Jv Lfu dm = Jv Lgu dm . Thus Lf = Lg from which it 

follows ef(x) = LfX[X()] (o*) = LgX[X()] (ox) = e*to i.e. f = g (when Lf, Lg are 

normalised). 

The above proposition shows that we may recover f e F0(X) (up to a 

coboundary and a constant) from its equilibrium state. The next result is in a similar 

spirit, and essentially says that f e Fe(X) is determined uniquely (up to a 

coboundary) by the sum of its values around periodic orbits. This result, due to 

Livsic, will be considered again in Chapter 5. 

PROPOSITION 3.7. (Livsic [56]) Two functions f,g e Fe(X) satisfying if and 

only if F(x) = gn(x) whenever anx = x. 
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PROOF. It suffices to show that if P(x) = 0 whenever anx = x then f is a 

00 
coboundary. Fix x0 e X such that < CMCQV is dense in X. We want to define 

^ J n=0 

u G C(X) by u(anx0) = F(x0) on this dense orbit. If y = anx0 and y' = an+mx0 = 

Gmy then we can choose a periodic point amx = x with x{ = y{, i = 0,...,m-l , 

provided y and y' are sufficiently close. Assume that d(y,y') < 6k, say, then we 

have 

lu(y) - u(y')l = IfCa^^x^-h-.+fC^XQ)! 

= Ifm(y) - f m(x)l 

m-l 

< ZQ If(aV) - f№)l 

(where we have used the fact that fm(x) = 0). 

Since d(amy,y) = d(y\y) < 6k we see that y{ = yi+m , for -k < i < k. In particular, 

xi = yi, for lil < m + k. 

Thus If(aV) - f(a*x)l < Ifl e QK+M'{, for i = 0,...,m-l and hence 

b(y) - u(y,)i < 2L ifl e ek+i < - 4 e k . 
i = 0 

Thus u extends to a continuous function on X. (In fact, we can see that 
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U G F 0 . ) 

If y = Gnx0 then u(oy) - u(y) = fn+1(x0) - fn(x0) = f(anx0) = f(y). This identity 

extends to all y e X by continuity. 

Notes 

Some basic ideas and results from ergodic theory can be found in [62], 
including a proof of the increasing martingale theorem (Theorem 3.1). 

The introduction of Gibbs measures into ergodic theory and dynamical 
systems began with the important paper of Sinai [94]. Expositions of this theory 
occur in the books of Bowen [16] and Ruelle [82]. Our treatment is probably closer 
to that of Bowen, at least in terms of notation. 

The variational principle (Theorem 3.5) originated in statistical mechanics. 
See, for example, the work of Lanford and Ruelle [53]. Alternatives to our proof 
occur in the books of Bowen [16] and Ruelle [82]. 

Following work of Ruelle [78], Walters produced the most general version of 
the variational principle for homeomorphisms of compact metric spaces [101] (and 
there is a shortened proof due to Misiurewicz [58]). 

Basic properties of pressure, Gibbs measures and equilibrium states can be 
found in the books of Bowen [16], Walters [102] and Ruelle [82]. Ruelle's book also 
describes a parallel theory in which functions are replaced by 'interactions'. 

Proposition 3.6 was originally proved by Ruelle [82] using a different 
approach involving "strict convexity of pressure". 

Livsic's theorem (Proposition 3.7) is taken from [56]. 
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CHAPTER 4 

THE COMPLEX RUELLE OPERATOR 

So far we have considered the Ruelle operator Lf for f real-valued and 

developed it as a tool to study pressure, equilibrium states, etc. In this chapter 

we want to consider Lf with f e F0(X+) = F0(X+,C). We then refer to 

Lf: F0(X+)->F0(X+) as the complex Ruelle operator. We shall assume that a is 

aperiodic. 

For convenience, we can assume that if f = u 4- iv then Lu is normalised, 

i.e. Lul = 1. (Here u,v e F0(X+, R) are the real and imaginary parts of f .) We 

let m denote the equilibrium state of u (in particular, L*m = m). 

In view of the basic inequality (Proposition 2.1), we have 

II Ljw ll0 < (C+l) Iwl̂  + Gn lwl0 < (C+l) llwll0 . 

Thus by the spectral radius theorem we see that Lf: F0(X+) -» F0(X+) has spectral 

radius at most unity. 
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Our main concern will be the possibility that Lf has an eigenvalue of 

modulus one. To investigate this phenomenon it is convenient to introduce an 

operator Vw = e"lvw o a. This is defined on any of the three spaces L2(m), C(X+) 

or F0(X+), and is an isometry on the first two. The basic relationship between Lf 

and V is that LfVw = w, VLfw = M -1 v . Em(w Ia1 )) . Mv where Mvw = eivw. 

PROPOSITION 4.1. Either fl VnL2(m) is trivial or it is one-dimensional 
n = 0 

Furthermore, the intersection is one-dimensional if and only if V has a simple 

eigenvalue in L2(m). 

00 
PROOF. Assume that fi VnL2(m) is non-trivial, and let w ^ 0 lie in this 

II = 0 
intersection. We can write w = Vw1 = ... = Vnwn = Vnflwn+1, n = 0,1,..., so that 

w = e"ivnwn o an = e"ivn+1wn+1 o an+1. 

Hence, w o ae"lv = e~ivll+1wn o a11+1 and w o ae"lv/w = wn o crn+1/wn+1 o an+1 is 

a-(n+i) ^--measurable for each n = 0,1,2,.... (We observe that w o a.e"lv/w is 

well defined since Iwl is a~n & measurable for n > 0. In particular, since a is an 

exact endomorphism Iwl must be constant and non-zero.) 

Since a is exact we conclude that w o o.e"lv/w is constant and w o a.e"iv = 

aw for a non-zero function w. If we have a second solution w' o a.e~lv = a V 
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then w'/w is an eigenfunction for a*. However, a : X+ X+ is mixing so that 

the only eigenfunctions are the constants, i.e. w = cw' for some constant c Thus 

the intersection is one-dimensional, completing the proof of the first statement. In 

the course of this argument we saw that non-triviality (or equivalently, one-

dimensionality) of the intersection implies that V has a simple eigenvalue. This 

completes the proof. 

PROPOSITION4.2. V has an L2(m) eigenfunction (or equivalently, J i \ ^ \ n L 2 ( m ) 

is one-dimensional) if and only if V has an F+0 eigenfunction. 

PROOF. Let w G L2(m) (Iwl = 1) be an eigenfunction for V then w o a.e~iv = aw, 

say. As we observed in the proof of the previous proposition w is non-zero so we 

can write w o on/w = anelvI\ Hence wL^(g/w) = ocnL ĝ for any g e F^ . Since 

loci = 1 and L^g is I I OQ equicontinuous (by the basic inequality, Proposition 2.1) 

we can choose subsequences with a k converging to a* , say, and Lf g 

converging uniformly to g* e F^. 

In view of Theorem 2.2 (iv) we see that Lu(wg) converges to J wgdm. This 

gives the equation 
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w/wgdm = oc*g*. 

Since w is assumed to be non-trivial we may choose g with Jwgdm ^ 0 

and conclude that w is a scalar multiple of g* a.e. (m). So the eigenfunction of 

V may be chosen in F0. 

PROPOSITION 4.3. If V has no eigenfunctions (in L2(m), or equivalently, F0) 

then L^g converges uniformly to zero for all g e F0. 

PROOF. Again we can use the equicontinuity of |L"gj,g e F0 , to choose a 

nk + 
uniformly convergent subsequence Lf g-> g*, g* e F0. 

If weL2(m), then Jw.Lfkg dm->/wg*dm, i.e. JV^w.gdm -*/wg*dm . 

Since each w has the same L2(m) norm there is a further subsequence (which 

we again denote V kw) such that w converges weakly in L2(m). As this 

00 
weak limit lies in (1 VkL2(m) it must be zero by Proposition 4.1, for we have 

n = 0 

assumed V has no eigenfunctions. Thus /wg*dm = 0 for arbitrary w e L2(m) 

and so g* s 0. Thus we can conclude that L^g -> 0 uniformly for g e F0. 
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PROPOSITION 4.4. If V has no eigenfunctions (in L2(m) or, equivalently, in F 0 ) 

then L"->0 in the \\\\Q-operator topology, i.e. Lf has spectral radius p(Lf)<l. 

PROOF. Let w G D{ = {w : llwll0 < 1} then IL^I^ < Iwl̂  and by the previous 

proposition iL^wl^ converges to zero uniformly for functions in Dj, i.e. for all 

e > 0 there exists N > 0 such that I L"W 1̂  < e for all w G D1 and all n > N. 

Moreover, by the basic inequality (Proposition 2.1) applied twice: 

I Lj+Nw le < CI L^w I*, + Qn I Lf w le 

< CI L*w loo + 6n (Clwl̂ , + 6NlwlG) 

<ce+en(c+eN) 

<(2C+l)e<l 

(provided e< 1/(2C+1)) for all w e D j , when n is large. Thus II L"+N||0 < 1 , 

and the proposition is proved. 

The final thing we want to do is to relate the eigenvalue condition for V to 

one for Lf. In particular, V has an L2(m) or F0 eigenvalue if and only if Lf has 

an L2(m) or F0 eigenvalue of modulus 1. 
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To see this, assume first that Vw = aw where w e FQ (or equivalently 

L2(m)) and a is necessarily of modulus one. Thus w o a = aelvw and therefore 

Lfw = aw. Conversely, assume that Lfw = aw (lal = 1) then Lulwl> Iwl a.e. (m), 

where w e L2(m) . Since integration by m with L*m = m implies Ljwl =lwl 

a.e. we conclude that Iwl is constant a.e. (m). Because Lul = 1 and Lu(eivw) = 

aw we can use a convexity argument to deduce that eiv(y)w(y) = aw(x) for all 

y with ay = x, for almost all x. Thus Vw = aw , w e L2(m) . By Proposition 

4.2 we can assume WGFQ. 

This brings us to the main result of this chapter. 

THEOREM 4.5. For f = u + iv e F* we have p(Lf) < eP(u). If Lf has an 

eigenvalue of modulus ep̂ û  then it is simple and unique and Lf = aMLuM_1, 

where M is a multiplication operator and a e C, lal = 1. Furthermore, the rest 

of the spectrum is contained in a disc of radius strictly smaller than ep^u .̂ If Lf 

has no eigenvalues of modulus ep̂ û  then the spectral radius of Lf is strictly less 

than ep<u>. 

PROOF. Using Proposition 1.2 and Theorem 2.2 we can write u=u' + wa - w + P(u), 

where Lu, is normalised. If we let M represent multiplication by ew then this 

becomes Lf = ep'u'ML M"1, where g = u' + iv. 
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The condition that Lf has an eigenvalue of modulus ep(u) is equivalent to 

Lg having an eigenvalue of unit modulus. If Lgw = aw, w e FQ , lal = 1 then by 

our previous comments we have Iwl = 1, say, and elv = aw o a/w and therefore 

Lgq = Lu,(eivq) = awLu,(W1.q), for any q £ F ¡ . 

The spectral properties of Lg (and hence Lf) follow from those of Lu described 

in Theorem 2.2 (ii). 

The condition that Lf has no eigenvalues of modulus eP(u) is equivalent to 

Lg having no eigenvalues of unit modulus. The condition p(Lf) < ep̂ û  comes 

from p(Lg) < 1 by Proposition 4.4. 

REMARK. In the case where f = f(x0, xt) depended on only two coordinates and 

f was real-valued, Theorem 2.2 reduced to the familiar Perron-Frobenius theorem 

formatrices. If we assume in the above theorem that f = f(x0, xx) we can reduce 

the statement to Weilandt's theorem for the matrix M(i,j) = A(i,j) ef(i^ , 1 < i,j < k : 

Let N be the positive matrix with N(i,j)= I M(i,j)l > 0 and let X > 0 be the 

maximal positive eigenvalue for N. The eigenvalues for M all have moduli 

strictly less than X unless M has the form M = ei0UNU_1, where 0 < 9 < 2K 

and U = diag (e101,...,e10k) with 0 < QI9...9QK < 2n . (An account of this result can 

be found in Gantmacher [35].) 
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In the previous chapter (Theorem 3.5) we interpreted the maximal positive 

eigenvalue for Lf, when f€Fe is real valued, in terms of the pressure P(f). The 

last theorem gives us a way of extending the definition to certain complex valued 

functions and studying its regularity. The advantage of defining pressure in terms 

of Ruelle operators is that we can make use of some standard results from the 

perturbation theory of linear operators. The following result is particularly useful. 

PROPOSITION 4.6. (Perturbation theorem). Let B(V) denote the Banach algebra 

of bounded linear operators on a Banach space V. If L0 e B(V) has a simple 

isolated eigenvalue oc0 with corresponding eigenvector v0 then for any e > 0 

there exists 8 > 0 such that if L e B(V) with llL-L0ll < 8 then L has a simple 

isolated eigenvalue a(L) and corresponding eigenvector v(L) with oc(L0) = a , 

v(L0) = v0 and 

(i) L h» a(L), L h» v(L) are analytic for llL-L0ll < 8 

(ii) forllL-L0ll < 8, we have la(L) - a0l < e , and spectrum (L) - {a(L)} Q 

{z: lz-a0l > e} . 

(For a more detailed discussion of perturbation theory we refer to [8] or [44]. 

See also Appendix V.) 
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We can extend the definition of pressure to functions f e FQ (for some 

0 < 9 < 1), with the property that Lf: F0-> F0 has a simple 'maximum' eigenvalue 

X such that the rest of the spectrum of Lf is contained in a disc with radius strictly 

less than \Xl For such functions f we extend the definition of pressure by P(f) = 

log X. (Formally this definition can only be made modulo 27ri since log is multiple 

valued, although we shall ask that P(f) be real-valued when f is real-valued.) 

Locally f h> P(f) is well-defined. Furthermore, P(f) = P(g) + c whenever f,g e F0 

and f ~ g + c + 27ciM where M is continuous and integer valued and c constant. 

PROPOSITION 4.7. The domain of? (denoted dom (P) c F0) is open and f » P(f) 

is an analytic map from dom (P) into C. 

PROOF. We need only prove analyticity. Since the perturbation theorem states that 

L h> oc(L) is analytic on the open set where it is defined it suffices to show that the 

map f h» Lf, F0-> B(F0) is analytic. 

Consider the composition of maps, F0 -> F0 -> B(F0) -» B(F0) given by 

f ^ e ^ M ^ L j o M , 
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where M is the multiplication (by ef) operator, and 

f w (ix) if A (i,x0) = 1 
(LiW)(x)=^ 

10 otherwise. 

Each of these maps can be seen to be analytic. Finally, we note that L f = X Li°M 

and conclude that fi-*Lf is analytic. 

We can naturally define an extension of P : F0 IR using the above 

extension of P : F0-» IR to P : dom (P) C . Let W : FE -> F0L/2 , f h> Wf be the 

linear map from Proposition 1.2 for which f = Wf + f o a - f (with f e FQi/2 

and W s I on FQ c F0i/2). 

We define Dom (P) = W1 dom (P) c Fe(X,C), and P : Dom (P) C, f h» P(Wf) . 

Since the choice of W in Proposition 1.2 is not unique we want to show that this 

extension of P is independent of the specific choice. This requires showing that if 

f = g + w o a - w with f,g € FQ and w e F0 then w e F0 . 

If xn = yn , n > 0 then w(ax) - w(x) = w(ay) - w(y) 

w(a2x) - w(ax) = w(a2y) - w(ay). 
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Thus for all n > 0 , w(anx) - w(any) = w(x) - w(y). Since d(anx, any) -> 0 

we have w(x) = w(y), i.e. w e FQ . We can also see from the definition that when 

f ~ g + c + 2jriM (M integer valued) then P(f) = P(g) + c . We summarise as 

follows: 

PROPOSITION 4.8. The domain of P (Dom P c FE) is open and f K P(f) is an 

analytic map from Dom P into C such that f ~ g + c + 2rciM (M integer 

valued) implies that P(f) = P(g) + c (mod 27ci). 

The extended definition of pressure leads quite simply to the following 

results. 

PROPOSITION 4.9. If fe Dom P then P(fltf) > ^P(f) with equality if and only if 

f is cohomologous to f with p(Lf) = e p ^ . 

In the remainder of this chapter we shall be largely concerned with real 

functions f,g e FQ with f normalised and with Jgdm = 0 where m is the 

equilibrium state of f. In this situation we shall consider the perturbations of Lf 

given by Lf+Sg (s small) and we shall need to be more precise about the 

corresponding perturbations of the maximum eigenvalue 1 and the associated 

eigenfunction 1 for the operator Lf. 

Since 1 is a simple isolated eigenvalue of Lf, we have a projection valued 
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analytic function Q(s), defined for small complex s, such that 

and hence 

Lf+seQ(s) = Q(s)L] 'f+sg 

Lf+S*w(s) = ep<f+ss>w(s) (4.1) 

where w(s,x) = w(s) = Q(s)l . Hence ep(f+sg) is a (maximum) simple isolated 

eigenvalue for the operator Lf+Sg if s is small. 

Differentiating both sides of (4.1) at s = 0 and integrating with respect to 

m yields 

PROPOSITION 4.10. If f,g e FQ are real and if m is the equilibrium state of f 

then 

P,(0) dP(f+sg) 
ds ls=o=/gdm. 

PROOF. It suffices to note that there is no loss in generality in assuming that f,g e F( 

and Jgdm = 0, and the above computation shows that P,(0) = 0 . 

A second differentiation at s = 0 yields, after integration, 

Jg2dm + 2jgw'(0)dm = P,,(0) 
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and the same steps applied to 

Lf+sgw(s) = enP(f+Sg)w(s> 

leads to 

J(gn)2dm + 2Jgn.w'(0)dm = nP"(0) 

so that a simple application of the ergodic theorem gives 

PROPOSITION 4.11. J/ f,g e Fe are real and if Jgdm = 0 where m is the 

equilibrium state of f then 

P"(0)= lim i/(gn)2dm. 
n-> oo n 

PROOF. Modify f,g by the addition of coboundaries, for convenience, and apply 

the procedure preceding the proposition. 

If f,g G F0 are real and m is the equilibrium state of f we define the 

variance of the process {g o an} with respect to f (or m) by 

2 ^ D'vm d2P(f+tg) I d2P(f+t(g-Jgdm))| 
c f ( g ) - P ( 0 ) = — lt=Q = — Lt=o 
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= lim — J(gn-nfgdm)2dm. 
n->oo n 

We are now in a position to prove: 

PROPOSITION 4.12. Let f,g e F0 then of (g) ^ 0 w/tfz equality if and only if g 

is cohomologous to a constant Hence t -» P(f+tg) is convex - and strictly 

convex if cf (g) > 0. 

PROOF. Evidently the last statement follows from the first for if 

ÌL™\ - 0 d , . „ o > < g ) - o 
dt2 t=tn t+t0S 

so that g is cohomologous to a constant and then 

d2P(f+tg) 
dt2 = 0 , 

for all t e IR . 

It is clear that if g is cohomologous to a constant then af (g) = 0 . We 

have to prove the converse. We assume Jgdm = 0. 
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Suppose now that cf(g) = 0. By Herglotz's theorem and exponential 

convergence of correlations we may write 

JgoGngdm = JK}.n r (W 

where r is analytic on the circle K. Thus 

0 =lim i/(gn)2dm= lim 1J11 +...+ X"n-1-i\2r(X)dX 

n->oo n laoaox n-400 n 

n 2 
= lim 1 / vaoalaix wiz v(X)dX = r(l) 

by a well known property of the Fejer kernel. Also, 

rft)= Jg2dm+ X (Xn + X-n)/goangdm 
n= 1 

and differentiation at X = 1 gives r'(l) = 0. 

Since r(X) is analytic at X = 1 we therefore have, for X - 1 small, 

rft) = (k-l)2s(>0 

with s(X) analytic at X = 1. In particular 
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$ T(< \ dX< oo and 
IX-ll 

r1/2(X) 
1 -1 <=L2(K). 

This shows that r1/2 (X) is a coboundary with respect to the unitary operator given 

by multiplication by X. The cycle generated by r1/2 (X) and this operator are 

unitarily equivalent to the cycle generated by g and the operator a* induced by 

a. Consequently g is an L2(m) coboundary. By Proposition 4.2 we conclude that 

g is an F0 coboundary, which proves the first statement in the proposition. 

The central limit theorem states that if f ,g e Fe , <r̂ (g) > 0 and Jgdm = 0 

where m is the equilibrium state for f then 

Gn(y) = m {x : g n / ^ < y} N(y) 

where N is the normal distribution with variance a2 = af (g) i.e. 

« =N (y) c-y2'*2 = n(y). 
V 2nc2 
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For a proof based on the Ruelle operator cf. [82]. We shall also provide a proof 

(taken from [23]) but with an approximation estimate of the order O — and for 

generic g of order o — . Related work appears in [50], [52]. (See also [35**] 

and [76*].) 

We shall say that g is generic if the equation F(ox) = e LL̂ F(x) (with F 

measurable or F G F 0 ) has only the trivial solution t = 0, F constant. When 

f ,g G FQ , and f is normalised we have seen in Proposition 4.4 that this condition is 

equivalent to the requirement that Lf+itg has spectral radius less than 1 for all t ^ 0. 

THEOREM 4.13. Let f,g e FE and suppose G (̂g) > 0 and Jgdm = 0 where m 

is the equilibrium state of f. Then 

Gn(y) = N(y) + O ^ J 

uniformly in y, and if g is generic then 

Gn(y) = N(y) + P"'(0) 
6^n 

1 -
2 V 
2 

a 

-y2/2a2 
e +c 

1 
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PROOF. Since we are not considering asymptotics of a higher order than o [ -^=\ 

we are entitled to modify f,g by the additional of coboundaries. In other words 

there is no loss in generality in assuming that f ,g e FQ and that f is normalised. 

The proof of the Central Limit Theorem is based on a number of estimates. 

First we write 

1 = w(s) + sv(s) (4.2) 

where w(s) = Q(s)l and sv(s) = (I-Q(s))l (since w(0) =1). As 

sv(s) e (I-Q(S))FQ we have v(s) e (I-Q(s))F* and therefore -w'(0) = 

v(0) G (I-Q(0))FQ . From this we see that Jv(0)dm = 0 and conclude that 

Jv(s)dm = s\|/(s), with \|/(s) analytic. (4.3) 

We shall also need the expression 

2 2 
P(f+sg) = 2 + ̂  s3 + s4 cp(s) (4.4) 

where a2 = af (g) > 0 and cp(s) is analytic, which follows from the fact that 

P(f) = P,(0) = 0 . 
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Using (4.4) and the elementary inequality I ez+ib - (1+ib) I < Izl e'z' + y (for 

real b and complex z) we get 

I JWwJti _ ̂ n (l - it3P"'(0)) I (4.5) 

<e 
-сА 2 /2 I 

n • it 
Va e n 

t4 
Icpl 

+ 72n 

tuz 
P"'(0)\ = о '1 

ac 

uniformly for Itl < e if e is chosen small enough. The implied constant then 

depends only on e. 

From these estimates, and using the fact that 

Xn(0-/eltgn/^dm = jLj+itg/^ 1dm 

one obtains: 

For suitably small e > 0 we have 

1 „2,2, 
J 7 l ^ ( t ) - e " O t / 2 ( l - i t V - ( Q ) ) l d t = 0 ( l ) (4.6) 
0 6 ^ 
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where the implied constant depends only on e. 

We define the distribution function 

Gn(y) = m{xGX:gn(x) /^<y} 

whose Fourier transform is ^ ( t ) = Je"8 / ^ dm . If G(y) has a continuous 

derivative G'(y) whose Fourier transform y(t) satisfies y(0) = l,y'(0) = 0 and if 

G(-oo) = 0, G(oo) = 1 then a well-known inequality (cf. [31]) asserts that 

T 

I Gn(y) - G(y) I < ̂  | i I Xn(t) - y(t) I dt + ^ (4.7) 

where M is the maximum of G'(y), and T is any positive number. 

Applying (4.7), with G(y) = N(y), the normal distribution with variance a2 , 

so that y(t) = e 02t2/2 we get 

|Gn(y) -N<y>l£o( -U + - ^ - o ( - U 

which proves the central limit theorem. 
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Actually (4.6) enables us to prove the C.L.T. with a o f-̂ z- ] asymptotic 

when g satisfies the generic condition. For in this case we define 

p'"(°) u y2 \ -y2/2°2 G(y) = N ( y ) ^ ( l . L ) e ' 
6^n 

which has a derivative G,(y) whose Fourier transform is 

Y(t) = e-g2t2/2fl-(it)3p:(0)) 
v 6Vn ; 

and (4.6) shows that 

V n 

1 | l x n ( t ) - Y ( t ) l d t = o ( i ) . 

However, we shall see that 

ot/n 

1 | lX„(t)-Y(t)ldt-»0 
/— t e /n 

at an exponential rate whenever a > e 
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From this it will follow that 

l G n ( y ) - G ( y ) l < 0 ( i ) + ^ L 
Xn/ 7CGC Vn 

for all a > e which will prove the theorem. 

a/n 
It remains, then, to prove J j I ^ ( t ) - y(t) I dt 0 exponentially fast or, 

e /n 

equivalently, that J — I ^ ( t ) I dt 0 exponentially fast, 
e Jn 

But the latter integral equals 

J 1/ exp (iyg») dm I ^ = J 1/ L" 1 dm I ^ 

and since g is generic Lf+iyg has spectral radius less than 1 for all real y + 0 . 

So the proof of the theorem is complete. 

Notes 

The main result of this chapter is Theorem 4.5. This should be viewed as 
the complex analogue of the Ruelle operator theorem (Theorem 2.2). This theorem 
appeared in an article by Pollicott [711, developing a restricted version which 
appeared in the article of Parry-Pollicott [66]. However, the proof we give here 
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differs from the original. 

The statement and proof of Weilandt's theorem for complex matrices 
appears in Gantmacher's book [35]. 

A comprehensive account of (analytic) perturbation theory appears in Kato's 
well-known book [44]. A very nice account, which suffices for our needs, appears 
in the notes of Bhatia and Parthasarathy [8]. The application of this theory to the 
proof of analyticity of pressure is due to Ruelle [82]. 

Expressions for the first and second derivatives of pressure can be found in 
Ruelle's book [82] as exercises. (For the special case of locally constant functions 
these computations were independently derived (but later) by Parry-Tuncel [64].) 

Proposition 4.12 appears in Ruelle's book [82]. 

For a brief account of Herglotz's theorem and the spectral density we refer 
the reader to the appendix in [62]. 

The central limit theorem has a very long history: recent contributions in the 
context of hyperbolic systems include those by Sinai [91], Ratner [74], [75], Denker-
Phillip [27]. The basic idea of using the Ruelle operator appears in [82] (cf. also the 
articles of Keller [50] and Lalley [52].) The account given here follows [23] which is 
close to that of J. Rousseau-Egel6 [76*] and Guivarc'h and Hardy [35**] - as the 
referee pointed out. 
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P E R I O D I C P O I N T S A N D Z E T A F U N C T I O N S 

A convenient way of recording the number of periodic points of G is 

through the zeta function defined formally by: 

00 n 
C(z) = exp X I T \ (z e C) 

n= 1 n 

where Vn = X 1 = Card (Fixn) and Fixn = {x : anx = x} . 

More generally, we can 'weight' periodic orbits by some function f G Fe 

and define 

~ n 
C(z,f) = exp X - L efn(x). 

r n=l n Fi^ 

In view of Proposition 2.2 we can choose g e F \(X+) with f ~ g and 

observe that ^(z,f) = C(z»g) since fn(x) = gn(x) whenever anx = x. Thus we may 

freely suppose that f is a function depending only on future coordinates. 

The following proposition gives information on where £(z,f) is well-
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defined as a complex function. 

oo n 
PROPOSITION 5.1. The radius of convergence of X — ]L efT1(x) is e~P(f) 

n=l n xeFiXn 

oo n 
when f is real In particular, the radius of convergence of X ~~ \ 25 e h » 

n= 1 N 
where h = P(0) is the topological entropy of a. 

PROOF. We shall actually prove a slightly stronger result, namely that: 

i log X e^(x) P(f) as n + cx). n Fi^ 

For any given e > 0 and f e Fe we can choose a function g of finitely many 

coordinates with If-gl^ < e . We may assume that g depends only on x0,...,x£, 

otherwise we replace g by g o c r , for sufficiently large r. Next we can replace 

words of length £ by symbols, if necessary, to assume that g is a function of x0, x{ . 

Let A be the matrix with entries A (i,j) = A(i,j) e 8 ^ . Then 

Xe*nW= X e ^ ' ^ ^ ^ l A i " ^ Trace An = enP(g) + ^ + . . . < 

Fi^ *0-*n-lx0 g 

where epte), A,2,...,kk are the eigenvalues of Ag and IX,̂  <eP(g), i = l,...,k (if we 

assume that A is aperiodic). 
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Clearly for such g , — log egR(x) -» P(g), as claimed, 
n Fi^ 

Since e"ne S egI1(x) ^ Z e (̂x) ^ ene X e*n(x) 
Fixn Fi^ Fix,, 

we have -e + P(g)<lim - log E e ^ « < l imi log Z e ^ « < e + P(g) 
n Fi^ n FiXjj 

Finally, since P is Lipschitz, with Lipschitz constant 1, we see that -2e + P(f)< 

-e + P(g) and e + P(g) < 2e + P(f). Since e > 0 is arbitrary the result follows. 

When f is a function of finitely many coordinates we can always assume 

f(x) = f(x0, x t ) , after recoding, if necessary. We can then write: 

C(z,f) = e x p S ^ 2 e f n « 
n=l n F'̂ n 

- « p £ £ Trace AÏ = exp f £ (e"™ + ^ + - + ^ ) 
n = l 1 1 n = l 1 1 4 

(as in the proof of the above proposition). 

Hence for Izl < e"p^ , 
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C(z,f) = exp - log [(l-zeTOMl-zAj] 

1 
det(I-zAf) * 

As a special case we see that for Izl < e"h, 

C(z) = 1 
det(I-zA) 

In each case, the closed form on the right-hand side gives a meromorphic extension 

to C of the zeta function. 

Before considering the meromorphic extensions of more general zeta 

functions it is useful to make some observations that will prove useful later. 

PROPOSITION 5.2. Let f G Fe and suppose F(x) e Za, for some real constant a, 

whenever anx = x. Then f ~ f where f takes values only in Za. 
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PROOF. By taking a cohomologous function if necessary, we can assume f e F^i 

(cf. Proposition 1.2). If a > 0, say, then by adding a multiple of a we can assume 

that f > 0. Next we can multiply by a suitable negative constant so that f < 0 and 

P(f) = 0. A further addition of a coboundary allows us to assume that f e F ^ and 

Lf is normalised (cf. Theorem 2.2). By Proposition 4.9 it is easy to see that 

/ \ p( %/f i ^* f 
p(L 27ri ) = e v * a » = 1. Thus by the comments preceding Theorem 4.5 we 

a 

— f + 
can conclude that w(ox) = w(x) e a , for some W G F ^ with Iwl = 1. With w(x) = 

e2mv(x) wjiere v js reaj valued and continuous we have av o c = av + f + aM, 

where M is integer valued. This completes the proof if a ^ 0. If a = 0 then, for 

instance, f"(x) = 0 whenever onx = x and we have P(tf) = P(0) for all t e R. It 

follows from Proposition 4.10 that ^jp^ ' t 1 = ^ m = ^' w^ere m ŝ ^ e 

equilibrium state for f. Thus we can deduce that P(f) = hm(a) + Jfdm = hm(a) = 

P(0) = hm (a) , where mo is the measure of maximal entropy. In particular, f and 

0 have precisely the same equilibrium state and thus by Proposition 3.6 we deduce 

that f ~ 0. This concludes the proof. (See also Proposition 3.7.) 

Our approach to the meromorphic extension of zeta functions makes 

essential use of the following simple lemma on the spectra of Ruelle operators. 
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LEMMA 5.3. Let f G FQ be in the domain of P and suppose Lfw(f) = eP(f)w(f), 

where w(f) is nowhere vanishing (by reducing the domain of P, if necessary). 

Then there exists e > 0 and N > 0 such that for all g e D e(f) = {g : llf-glle < e} 

and all n > N there exist gn, wn , functions of x0, xt ,...,xn sucA tfiat 

lgn-glTO<K0^wn-wl<Ken 

for some constant K (depending only on f) wAere 

Lgnwn = eP(g)wn • 

PROOF. By Theorem 4.5 and the perturbation theorem, we can choose a II II0 

neighbourhood of f on which P is well defined and for which Lgw = eP(g)w , 

where w = w(g) has an analytic dependence on gGF^ . We can also suppose that 

lw(g)l > c> 0 . 

We begin by choosing functions g'n, w'n depending only on x0,...,xn such 

that Ig-g'Joo ^ lgle 6n and Iw -w ' J^ < lwle 6n . It is easy to see that 

lLgw-Lg'nw,n'^Cien 
(for some constant C{ depending only on f). 

Define wn = e'P(g)L w,n and then it is simple to show that 

78 



ZETA FUNCTIONS 

Vb 
wn 

1 
n n 
wn 

P(g) (L. w' -L„w)+e (w-w' ) v gn n g n 
Lgw-(Lgw-Lg,nw'n) 

IT. .W' -L W |P (G) |w-w 
g n g 
-IP(g)l |T T , • 

C-|LgW-Lg'„Wn'oo 
' < c 2 e n , 

for some constant C2 depending only on f and for n sufficiently large. Writing 

Vn 
wn 

ean+1 n WITH _7c < b < 7C we see that la + ib I < C39n (for some constant 

Co depending only on f). 

By construction we have, ep̂ ĝ wn = Lg, w'n = Lg, ((w'n/wn) wn) 

Lg, ((w'n/wn) wn) 

Thus with g = g' + an + ibn we have L wn = eP(s>wn and lg-gnloo < K9N , 

Iw-w I < K9N , K constant and n sufficiently large. 

COROLLARY 5.3.1. With the notation of the lemma we have 

llg-gnll0l/2<K,en ,llw-wnllQl/2<K,en , where K' depends only on f. 

PROOF. We shall only deal with the first inequality, the second being somewhat 

similar. By the lemma we know that Hg-gJI^ < K9n so that 
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™ ^ < 5 ^ < 2 K e n / 2 
ek/2 en/2 

for k = 0,l,2,...,n. Whereas 

vark(g-gn) varkg < log Ok/2 k/2 
—fn-*-]?!^9 fork>n-

So we may choose K' > 2K and then lgl0 < K' for all g in an appropriate 

neighbourhood of f. (This is similar in spirit to Proposition 1.3.) 

To analyse the domains of zeta functions it is appropriate to examine the 

series 

Z(g) = 
00 

n=l 
1 

Fixn 
egn(x), 

for g in a neighbourhood of f e FQ , where Pi^f) < 0. Our first result is 

straightforward. 

THEOREM 5.4. If f € and P ^(f) < 0 then there exists e > 0 such that Z(g) 

converges absolutely in D.(f). 

PROOF. This follows from 
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1 1 egnW I1/n < ( I e^nW)1/n - eP%) < ep^+e < 1, 

as long as P(^f) < - e and g e D£(f). 

The next result is similar to the above, except that we must deal with the 

terms X egI1W in a slightly more delicate way. 
Fixn 

THEOREM 5.5. Let f e tfien p(Lf) < ePW (Theorem 4.5). Assume that 

P(3£) = 0. 

oo , 
(i) If p(Lf) < 1 then there exists e > 0 such that Z(g) = Y, - X e8n(x) 

n=l n Fixn 
converges absolutely in D£(f). 

(ii) If p(Lf) = 1 or equivalently f ~ + ia +27riM with M e C (X, Z)), 

00 
then there exists e > 0 such that Z<(g) = Y, - ( X e«nW - enP(g)) 

n=l n Vpixn 1 
converges absolutely in D£(f). 

PROOF. The proof of part (i) is simpler than the proof of part (ii). We shall give the 

proof of part (ii) in detail and indicate the modifications needed for the first part. 
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We assume that P is defined for f e Fg (0 < 9 < 1) and suppose ^P(f) = 

P^(f) = 0. By perturbation theory there exist T|, e > 0 such that P is defined for 

g e D,£ where D'£ = { g e F*± : Ig-fll 1/2^2e} and lep<g> - ep^l < r|, and the rest 

of the spectrum of Lg : F î -+ F î is contained in {z I Izl < 1 - 2r\}. 

We can also assume that e > 0 is chosen in accordance with the lemma, i.e. 

we have functions gn,wn of X Q ^ , . . . ^ satisfying Lg wn = e P ( G V N , Lgw = eP(g)w 

and llg-gnll 1/2<K,9n/2,llw-wnll 1/2<K'0n/2 for all n > N , whenever llg-flle<e. 
0 9 

N+l 

Let 0 < a < 1 (to be specified later) and denote V = [nal Now consider n > —— , 

so that in particular V > N and n > N. If g e D£(f) then 

| X egn<*> - e"™ I < 1 1 egnW - 1 eg"(x) I + 1 X eg"°° - e ^ I 
Fi*n Fixn Fixn Fixn 

(observing that P(g) = P(gv)). 

n 
Moreover, X l egR(x) - eSv(x) I < X nK'9v ê n(x)+nK'0V, so that 

Fixn Fixn 
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n 
IIS X l (esn<*> - egv(x)) n I < 0a e**))* = 0ae£ < 1 

providing e > 0 is sufficiently small depending on a. 

On the other hand consider the finite dimensional operator Lv which is the 

restriction of Lc to functions of V + 1 coordinates. Each eigenvalue of L.. is in 

the spectrum of Lg^ : F^i -> F^i and since ep<g) is an eigenvalue of Lv and P(g) 

is close to P(f) we may suppose that the rest of the spectrum of Lv consists of 

eigenvalues of modulus less than 1 - 2rj. 

n n 
However, X e^v^ = Trace L" , so that X e^v^ - e1^^^ is the sum of 

Fixn v Fix,, 
the n'th powers of at most kv numbers of modulus less than (1 - 2r|)n, i.e. 

V gn(x\ l/n l/n 
Bml 2 . e6v̂  ; - c1^)I < ISi(kv (l-2Ti)n) = ka ( l - 2 n ) . 

Fixn 

(Here, k is the dimension of the incidence matrix A.) We now assume that a has 

been chosen sufficiently small that ka (l-2r|) < 1, and e = e(oc) satisfies 0aee < 1. 
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We have therefore shown that 
n-i n yfKn-i n yfKn-i n yfK n (p)(g) converges 

uniformly in D£(f). This completes the proof of part (ii). 

The proof of part (i) is similar, except that in this case one bounds all 

eigenvalues away from the unit circle using the upper semi-continuity of 

f \-> Lf H p(Lf) i.e. one chooses e > 0 so that for g e D£(f) we have p(Lg) < 1. A 

similar approximation argument is used, except that the term enP(g) does not appear. 

The above theorem is the crux of our analysis of the zeta functions 

£(f) = exp Z(f). We present below the result in its final form. 

THEOREM 5.6. (Extension Theorem) Let f e FQ and assume P(^f) = 0, so that 

p(Lf)<l. 

(a) If p(Lf) < 1 then there exists e > 0 such that £(g) = exp Z(g) is 

nowhere zero and analytic in D£(f). 

(b) If p(Lf) = 1 then £ can be extended to a nowhere zero analytic 

function in D£(f) if Lf does not have 1 as an eigenvalue, by defining 

C(g) = 
expZ^g) 

1-e P(g) 
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(c) If p(Lf) = 1 and Lf has 1 as an eigenvalue then £ can be extended 

to a nowhere zero analytic function in Dg(f) - {g : P(g) = 0} by defining 

C (g) = expZt(g) 

1 -e 

PROOF. By theorem 5.5 we know that in each case we have defined a non-zero 

analytic function. To show that these are actually the meromorphic extensions of 

expZ^g) 
exp Z(g) we need to check that exp Z(g) = 1-c — for $p(g) < 0, i.e. Iep(g)| < 1 . 

In this range each series is uniformly convergent and so this becomes a simple 

manipulation. 

The above theorem is far more general than we shall need for our 

applications. For the analysis of hyperbolic flows and suspended flows we shall 

need the following example: 

Ç(g) = 

EXAMPLE. Fix f € FQ with f > 0 and P(-f) = 0 and define 

Cf(s) = C(-sf) = e x p £ i I e - s f n W , 
n= 1 n 

where s e C . We have seen that this is well defined, non-zero and analytic where 

P(^{-sf)) < 0, i.e. ^{s) > 1. When s0 = l+it0, £_f has a non-zero analytic 

extension to a neighbourhood of s0 when L_̂ 1+itQ ̂ f does not have 1 as an 
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eigenvalue. When 1 is an eigenvalue we know that £_f(s) has a non-zero 

analytic extension to D^I+UQ) - {s : P(-sf) = 0} , where 

vD£(l+it0) = { S G C : ls-(l+it0)l < e} , 

for sufficiently small e>0 . To show that C_f(s) has a non-zero analytic extension 

to D£(l+ito) - {l+it0} , for sufficiently small e > 0, it suffices to show that 1 + it0 

cannot be a point of accumulation of {s : P(-sf) = 0} . If P(-sf) = 0 for infinitely 

many s accumulating to 1 + it0 then by analyticity P(-sf) = 0 in a 

neighbourhood of l + i t 0 . Hence L.^+^f wt = wt, for t near t0 so 

wt o a = e"ltfwt with lwtl = 1. We can write wt = z™1, with vt continuous and 

real-valued, then vt o a = - tf/2x + vt + Mt, Mt integer valued. If Jfd[i ^ 0, where 

|i is the equilibrium state of -f then we arrive at a contradiction since tf/2x $fd[i = 

jMtd|i can only take a countable number of values. If Jfd|i = 0 then P(-f) = 0 = 

h^(a) ~/fd|i = h^(a) . However, the entropy h^(a) cannot be zero, giving the 

required contradiction. 

Notes 

The zeta-function £(z) for diffeomorphisms is discussed in the work of 
Artin-Mazur [7] and Smale [95]. For subshifts of finite type calculations were made 
by Bowen and Lanford [9] 

The weighted zeta-function C(z»0 is studied in the work of Ruelle [80] and 
Bowen [15]. 

Theorem 5.6 (b) was proved in an article by Pollicott [71], whereas Theorem 
5.6 (c) comes from Parry's article [67] (containing also the constructions from 
Lemma 5.3 and Corollary 5.3.1). 

Theorem 5.6 (a) is implicit in the work of Bowen [15] (cf. also Ruelle's 
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article [80]). 

Ruelle proved an earlier partial version of Theorem 5.6 (c), where the 
dependence on the second variable is restricted to one-dimension, i.e. (z,s) h> £(z,sf) 
(cf. [80]). This result of Ruelle was extended by Parry-Pollicott in [66], to obtain the 
version described in the example at the end of the section. This was a preliminary 
version of Theorem 5.6. 

Under certain analytic hypotheses Ruelle was able to obtain a meromorphic 
extension of £(z,f) to the entire complex plane [79]. Similarly, in certain smooth 
settings Tangerman has shown that £(z,f) extends to the entire plane [99]. 
However, because of the lack of smoothness of the stable manifold foliations these 
results are not immediately applicable to the context of hyperbolic flows except in 
exceptional cases. For geodesic flows associated to compact manifolds with 
constant negative sectional curvatures the associated zeta-function has a 
meromorphic extension to C, using an approach of Selberg [85] (cf. [38]). 
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CHAPTER 6 

PRIME ORBIT THEOREMS FOR SUSPENDED FLOWS 

In this chapter we shall introduce suspended flows and associate to them a 

natural zeta function incorporating information about closed orbit periods. 

Information on the domains of these zeta functions can be deduced from the more 

general analysis in the previous chapter. We shall then explain the role of these zeta 

functions in deducing asymptotic formulae for closed orbit periods. 

Let a be the shift defined by A and let f e Fe(x) be stricdy positive (with 

0 < 9 < 1). We define the suspension space (relative to f) as 

Xf= {(x,y):xeX,0<y<f(x)} 

with the identification (x, f(x)) = (ax, 0). An alternative definition is Xf = XxR/Z 

where Z is the group of maps generated by (x,y) H (ax, y-f(x)). 

The suspension flow af (relative to f) is defined as the "vertical" flow on 

Xf given by af t(x,y) = (x, y+t), for small t. (This condition makes sense for 

0 < y,y+t < f(x) and can be extended using the identifications.) Equivalently, af t 

is the flow on XxR/Z induced by maps (x,y) -> (x,y+t). Clearly, these maps 

commute with the group Z. 

If f and f are cohomologous functions and f is also strictly positive it is 

easy to see that (Xf, af) and (Xf, af) are topologically conjugate, for it suffices to 

define a homeomorphism cp of XxR which commutes with the vertical flow and 
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conjugates the two maps: 

(x,y)» (ax, y-f(x)) and (x,y) h> (ax, y-f (x)). 

For example, when f(x) = f(x) + v(x) - v(ax) it suffices to define cp(x,y) = 

(x,y+v(x)). 

In view of the above observation we can replace f by a function depending 

only on future coordinates without making any essential change in the underlying 

flow. We shall do this whenever it proves convenient. 

If \i is a a-invariant probability measure then we define a af t-invariant 

probability measure [i{ by 

ai 
Fd^f = X 

f(x) 

0 
F(x,y)dy d^i(x) 

X 
f(x)d^i(x) 

In other words, |if is the normalisation of the measure on Xf obtained by 

taking the direct product of |i with Lebesgue measure on R. In fact, it can be 

shown that every Gf-invariant probability measure on Xf can be obtained in this 

way from a a-invariant probability measure |i on X. Furthermore, it is easy to 

see that af is ergodic with respect to |if if and only if a is ergodic with respect 

to |i. 
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It has been shown by Abramov [2] (in somewhat more general 

circumstances) that 

h(af t, |Xf) = Itl h(af4,|if) 

from which one obtains the natural definition of the entropy of the flow as 

h(af, |if) = h(af v |if) and the definition of topological entropy as h = h(af) = 

suph(af, ^if). 

The work of Abramov also relates the entropy of af relative to |if to the 

entropy h(a,|i) of a relative to |i by 

h(af'^) = TfdM"* 
The notions of pressure and of equilibrium state for af are defined in 

analogy to the case of the shift a. In particular, if G e C(Xf) we define the 

pressure by 

P(G) = sup {h(af, îf) + jGd|if}. 

A Gf-invariant probability measure |if is an equilibrium state of G if P(G) = 

h(af, (if) +/Gd|if. We have used P to denote the pressure for continuous functions 

on both X and Xf; the context should make it clear which pressure is intended. 
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There is a simple relationship between the two pressures and two 

equilibrium states which we state as a proposition. 

PROPOSITION 6.1. Let G e C(Xf) be a real valued function and assume that 

f(x) 

g(x) = J G(x,t)dt G F0(X) . Then P(G) = c where c is the unique real number 

such that P(g-cf) = 0 . Moreover, if m is the unique equilibrium state of g-cf 

then mf is the unique equilibrium state of G. In particular, if G = 0, (g = 0) 

then P(0) = h, the topological entropy of af, and the measure of maximum 

entropy mf for af is unique, where m is the equilibrium state for -hf. 

PROOF. By the variational principle we can see that since f > 0 the map c H P(g-cf) 

is strictly monotonic, with lim P(g-cf) = + oo , Hm P(g-cf) = - oo . In 

particular, there exists a unique constant c with P(g-cf) = 0. Consequently, 

0 = hm(a> +/(g-cf)dm > \(c) +/(g-cf)dM-

for all a-invariant probabilities |i with equality only when [i = m. 

Thus 

c = h(m)+Jgdm > h(^i)4-Jgd^i 
fdm fdu 

i.e. c = h(af, mf) +/Gdmf > h(af, |if) +/Gd|if with equality only when p. = m (or 
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|if = mf). From the definitions we see that c = P(G) and that equality only holds 

when mf = |if. 

For the special case G = 0 we see that h = h(af, mf) where m is the 

equilibrium state for -P(G)f. This completes the proof of the proposition. 

The close relationship between the pressure functions allows one to deduce 

some results for P : C(Xf) -> IR from results we showed earlier for P : C(X) -> R . 

For example, if W, G e C(Xf) , then P(G+W o afft -W+a) = P(G)+a , for a 

constant. 

As remarked earlier we can freely assume that f e F^ (by moving to a 

conjugate flow). We can also interpret af as a semi-flow on the space X^ = 

{(x,y): 0 < y < f(x), x e X+} with the usual identifications (x, f(x)) s (ax, 0) and 

for t > 0, offt(x,y) = (x,y+t), 0 < y, y+t < f(x). 

Let m be the equilibrium state for any u e F^ and let mf be the usual 

Lebesgue extension to X^, where we assume that f e F^. 

PROPOSITION 6.2. The following are equivalent: 

(i) af has an eigenfrequency a corresponding to an L2(mf) function 
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(ii) af has an eigenfrequency a corresponding to a continuous function 

(iii) w(ax) = eiaf^w(x), for some w e L2(m) 

(iv) w(ax) = eiaf(x)w(x), for some w e Fg 

(v) Lu+iafw = eP(u)w , for some w e L2(m), or F^. 

Furthermore, if any of these conditions hold then a is isolated. 

PROOF. We already know from Chapter 4 that (iii), (iv), and (v) are equivalent. 

Suppose (i) holds, and that Waft(x,y) = eiatW(x,y) a.e. (mf) for 

W G L2(mf). In particular, W(x,y+f(x)) = eiaf<x>W(x,y) where 0 < y < e, for some 

sufficiently small e > 0, a.e. (mf) and so by Fubini's theorem there exists y e [0,e] 

so that 

W(ax,y) = eiaf<x>W(x,y) a.e. (m). 

This shows (iii) to be true. 

Assuming (iv) then we have w(ax) = eiaf(x)w(x) , w e FQ . We can define 

W(x,y) = w(x)eiay and then 

W(x,f(x)) = w(x)eiaf<x) = w(ax) = W(ax,0). 
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We conclude that W(x,y) is well-defined and continuous on Xf. From the 

construction we have Wof t(x,y) = eiatW(x,y). Thus (ii) is valid. 

To see that any such a (occurring in the statement of the theorem) must be 

isolated we proceed as follows. Let X be the least period of any closed orbit of af. 

Thus o{X(x) = x for some x and w(x) = eiaX,w(x) . In particular, a e 2u / y j Z , 

2K 
and we observe that the eigenfrequencies form a discrete subgroup of -r- 2 . K 

The flow af is said to be weak-mixing if condition (i) (and therefore the other 

conditions) implies that a = 0 and the only L2 eigenfunctions are the constant 

functions. (Conversely, Gf is not weak-mixing if condition (i) is valid with a 

non-zero.) 

We return to our consideration of zeta functions, and consider the 

implications of Gf being weak-mixing or not. From our comments at the end of 

the previous chapter we know that if f e FQ with f > 0, P(-f) = 0 then Ç_f(s) is 

nowhere zero analytic extension to %is) = 1 Furthermore, Ç_f(s) has a nowhere 

zero analytic extension to ^(s) = 1 except for those s0 = l+it0 where wa = e_itofw 

has a solution w e FQ , w ± 0. By Proposition 6.2 above the weak-mixing 

assumption implies that this equality only holds when t0 = 0 . Thus when af is 

weak-mixing then Ç_f(s) has a non-zero analytic extension to !^(s)>l, except for 

s= 1. 
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Next we show that s = 1 is a simple pole for £_f(s). We know that 

C_f(s)(l-eP(~sf)) is non-zero and analytic in a neighbourhood of s = 1 so we need 

only observe that 

LEP(-sf) t_eP(-f-.0 
lim = hm 
s->l s-1 s->0 s 

dP(-(l+s)f) 
ds 1 s=° 

= -Jfdm^O 

where m is the equilibrium state for -f. 

Summarising we have: 

THEOREM 6.3. If af is weak-mixing with f e Fe, P(-f) = 0 then £_f(s) has a 

non-zero analytic extension to ?Ris) > 1, except for a simple pole at s = 1. 

COROLLARY 6.3.1. If cf is weak-mixing, f eF0 , P(-f) = 0 then 

£'(s)/£(s) = —j + cx(s) where a(s) is analytic for ^(s) > 1 . s 1 
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We can formulate a more general version of Theorem 6.3. Assume f, g, k e 

Fe, where f >0 and c > 0 is the unique real number satisfying P(g-cf) = 0. Of 

particular interest will be the special case g(x) = J G(x,y)dy, k(x) = J K(x,y)dy 

and c = P(G). 

THEOREM 6.4. If Gf is weak-mixing then 

f(x) f(x) 

£(s,z) = exp X 
n=l n xeFixn exp (gn-csF+zkn) 

is a nowhere zero analytic function for mis) > 1, z in a neighbourhood of 0 

(depending on s), with a nowhere zero analytic extension to !^(s) = 1 (s # 1), 

for sufficiently small Izl (depending on s). 

Furthermore, £(s,z) (l-ep(g~csf+zk)) has a nowhere zero analytic extension 

to s= 1, Izl sufficiently small (depending on s). 

PROOF. This is essentially a corollary of Theorem 5.6. We need only check that 

s = l+it0, t0 # 0 does not occur as a singularity, for Izl sufficiently small. If this 

were the case then Lg_(1+it ĉf would have 1 = ep(g~cf) as an eigenvalue. But, as 

explained in Chapter 4, this would correspond to Cf having an eigenfrequency -tQc 

(by Proposition 6.2). Since we are assuming af to be weak mixing we conclude 

that t0 = 0. For s = 1 we have, also by Theorem 5.6, £(s,z)(l-eP(g-csf+zk)) is 
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nowhere zero and analytic in an (s,z) neighbourhood of (1,0). 

COROLLARY 6.4.1. If £2 denotes the derivative in the z coordinate then 

C2(s>0) 
C2(s>0) 

/ kdm 1 
qffdm (s-1) 

/Kdmf 

+ oc(s) 

c(s-l) + a(s) 

where a(s) is an analytic function in %is) > 1, and m, mf are the equilibrium 

states of g-cf, G respectively (and c = P(G)). 

PROOF. Taking the logarithmic derivative (with respect to z) of £(s,z) gives 

d . log C(s,z) I z=0= 
Co(s,0) 

C(s,0) 

3 P 
dz 

(g-csf+zk) z=0 

-B[g-csf) 
- 1 ) 

+ cc0(s) 

for s close to 1. Since 

(i) lim 
s->l 

0 
dz 

P(g-csf+zk) 
z=0 Jkdm, 

where m is the equilibrium state of g-cf, and 
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(Ü) lim 
S->1 

-P(g-csf) 
e 

s-1 

1_ _ 3e-p<g-cfs) 
" 3s s=l 

-3P(g-cfs) 
|s=1 =/cfdm 

we see that 
C2(s>°) Jkdm/cffdm 
C(s,0) s-1 

+ a(s) = 
jKdmf 

c(s-l) 
+ a(s) 

where a is analytic in $ls)>l. This completes the proof. 

For the special case G s K s O we retrieve the zeta function of a single 

complex variable 

ç,_hf(s) = exp ¿U - LA 
ht n=l n xeFix,, 

00 
p-hfn(x)s 

where P(-hf) = 0, i.e. h = P(0), the topological entropy of the flow af. We 

proceed to show that this zeta function can be expressed in other ways. 

It is easy to see that there is a one-one correspondence between closed orbits 

{x,Gx,...,an-1x} for G .X-+X and closed orbits x of the flow af. Let X = X(x) 

denote the least period of the closed orbit t, i.e. af ^(x,0) = (x,0), and it is the 

least such ?t>0. Then clearly X(x) = f(x) + f(ox)H—+f(on-1x) = F(x) , where n 

is the least positive integer such that anx = x. 

We can give an alternative expression for the zeta function as follows: 
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C-hf(s) = exP 
00 

n=l 

1 
. n Fixn 

e-hfn(x)s 

00 
= exp n=i n 

1 00 e-hkfn(x)s 

k 3 X = X k= 1 
n least 

= exp 
00 

T n=i k 

e-hkfn(x)s 

= exp -
T 

flog(l-e"h^s) 

T 
(l-e_h>"(T)s)) 

(These manipulations can be performed for 2&s) > 1 where C.^s) converges.) 

This final form is close to the classical definition of a zeta function, and 

provides the motivation for the terminology. 

Before proceeding to prove the distribution result for closed orbits of the 

flow Gf it is instructive to consider the analogous, and simpler, problem for the 

shift a :X->X. 

As we observed in Chapter 5 we can express the zeta function for a in the 

simple closed form ÇA(z) = 
1 

det (I-zA) 
We can gain insight into the distribution 

of closed a-orbit periods from the meromorphic domain of £A(z). 
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Following the derivation above we can express £ A in the form 

CA<Z) = I 1 ( 1 - W , 

T 

where X(x) is the least period of a closed orbit x for a. Consequently, 

oo X(x)n 
C(z) = exp X X , for Izl < 1/p 

A T n=l n 

where h = log P is the topological entropy of a and p is the maximal eigenvalue 

for A. 

Since det (I-zA) = (1-Pz) Y\ (1-^z), where the other eigenvalues of A 
i 

satisfy \X^ < P for an aperiodic matrix, we see that CA(z) (1_Pz) is non-zero and 

analytic in {z : Izl < eE/P>, for some e > 0. 

Thus £'A(z)/CA(z) = £ A ^ z * ^ - 1 = B / 1 - Bz + a(z) 

where a(z) is analytic in {z I Izl < ee/p} . 

For notational simplicity we denote by x' a multiple closed orbit xn(n>l). 
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(By a multiple closed orbit xn we mean a closed orbit t of least period X(x) 

counted multiply as a closed orbit of period n^(x).) We write A(x') = A,(x) and 

X(x') = n?t(x). 

We therefore see that, 

C (Z) 1 1 00 
- A _ = I X A(x')zx« = i X P"2" + «(z). 
CA(z) z z n=i 

Hence, 

00 
X z11"^ Z A(x')-pn) = a(z) 
n=l U(T')=n / 

In particular, the radius of convergence of this series is at least ee/P . For a 

possibly smaller e > 0 , we deduce that 

— ( X A(x')-ßnWo as i w оо. рП U(T')=n r ) 

For x > 1 we define 

V(x) = 
X(7)<x 

Л(х') = 
X 

n = 1 >.(?)=n 
A(x')-ßn + ß 

(ßX-D 
ß - 1 
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Clearly, 

V (x) 
ßx+*ß 

ß - 1 
cßx 

ex 
e 

(6.1) 

for some constant C > 0, by rearranging the above expressions. 

Next we introduce 7t'(x) = I 1, which is simply the number of closed 
X(t)<x 

orbits whose period is less than or equal to x and we proceed to relate Tt'(x) and 

¥(s): 

(a) V(x)= £ W) 
HT) <x 

X 
Y (T) 

<x7t'(x); 

(b) If x= yy with Y > 1 then, 

7l'(x)= ît'(y) + 
у<Л.(т) < X 

1 

= ii (y) + 
Mx) <x У 

y (x) 

7̂С'(У) + ¥(x) 
У 
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X.TC'M yy.7C,(y) y\(/(x) 
so that < 1 

7C,(y) 
We want to show that —; > 0 whenever y' > 1 , from which (together with p yy 

(6.1)) it will follow that lim ^ W < _ ) ^ 
x-> + oo pX p - 1 

when y > Y > 1 , for then we shall have (again by (6.1)) 

lim x.7i'(x)<yiim 

P* X-» + oo y-H-oo I 

i y _ ^ 
(Y-Y')y 

(y) B y'y^ + 7ita _V£_ . (6.2) 
x-̂ -foo pX p - i 

Furthermore (6.1) and a) imply 

P , l i m ^ 
p - 1 PA 

(6.3) 

and since y > 1 can be chosen arbitrarily close to one the two inequalities (6.2) and 

(6.3) will complete the proof of the following theorem. 

P P 
THEOREM 6.5. % (x) ~ p-^j . as x -» oo , 
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The step required to complete the proof is the following: 

LEMMA 6.6. If y > 1 then r (y)/ Byy -> 0 as y oo . 

PROOF. We know that £A(z) converges for lzl<l/(3 so 

C m (1/By) 1 -
1 

C xy (t) 
\4 

xqi mx 
1 + 1 

yx (t) 

> 1 + 1 
BYYJ 

\w'(y) 

> 1 + yx (t) 
yx (t) 

yx (t) 
yx (t) 

Thus -iC(y) 
Cm 

is bounded for every y > 1, and so we deduce rc'(y) 
B 

-> 0 for every y > 1 . 

Having dealt with the closed orbits for o we return to the analogous 

problem for the closed orbits of af. 
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We shall assume that f > 0 and that af is weak-mixing. We define for 

each closed orbit x of af the norm of x to be N(x) = eĥ T> where h = P(0) is 

the topological entropy of af. 

00 
Since C(s) = C_hf(s) = exp X X - N(x)"sn 

n= 1 t n 

we can take the logarithmic derivative to get 

^i^-ZXlogNCxXNCx)"511 
C(s) n-i x 

-1 
+ a(s) s -1 

where a is analytic in f̂ (s) > 1. 

Defining S(x) = X log N(x) = X n log N(x) (where n = 
N(T)n<x N(t)<x 

largest integer such that N(x)n < x) we see that 

logx 
logN(x) i.e. the 

^i}=-Jx"sdS(x )= f l r + a(s) 
C(s) 1 s -1 

We shall need the following Tauberian theorem. 
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THEOREM6.7. (Ikehara-Wiener Tauberian Theorem.) (See Appendix I.) 

00 
Assume that the Steiltjes integral J x"s dS(x) is defined and analytic in !£(s) > 1 

l 
with an analytic continuation to !̂ (s) > 1 except for a pole at s = 1 with residue 

00 
1 (i.e. J x"s dS(x) = — - oc(s), with cc(s) analytic in ^s) > 1) then 

i s - 1 

S(x) ~ x as x-> + oo. 

By Theorem 6.3 and Corollary 6.3.1 we know that in our case £'(s)/£(s) 

has the correct analytic domain and, as a logarithic derivative, the pole at s = 1 

must have residue 1 . Hence S(x) ~ x by applying the above theorem. 

We conclude 

x ~ S 
N(x)<x 

logx 
logN(x) log N(x) < log X.7C(x) 

where TC(X) = X 1. Hence lim ^ logx > 1 . 
N(x)<x x 

We want to obtain an asymptotic upper bound on TC(X). Let y > 1 and write 
1 /7 

y = x < x. Then 
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n(x) = n(y)+ I l<*(y)+ I 
y<N(.)<x N(T)<X logy 

logN(x) 

^(y ) + Io?y-S(x) 

= rc(y)+_L_S(x). 

„ t ft(x) 7l(y) , YS(x) 
So l o g x — ' y l o g y + -!---^-x Y x 

y 

We shall show that n(y)/yy -> 0 as y -» + oo, whenever y > 1 (or equivalently, 

rc(y)/y^ is bounded for each fixed y' > 1). It will then follow that 

v - t ^(x) . _ 7C(y)logy _/7U(y)xlogy 
hmlogx <y, since hm — — = lim I 7\ — = 0 x v Y w *y Y~Y y y y y y 

and lim X - + xx X S (x) = 1 by the Tauberian theorem. Since y > 1 was arbitrary we have 

lim log x —̂— < 1 . This is the desired asymptotic upper bound on TC(X) . To 

complete the proof we need to establish the following lemma. 
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LEMMA 6.8. If y> l then —^ is bounded for every large y. 
Y 

y 

PROOF. For y > 1 observe that 

C(Y)= 11(1 - N ( T ) V > 11(1 + N(x)"Y) 

> I l ( H y ^ ^ H y - ^ ^ 
N(t)<y Y 

y 

71 (v) 
Thus for all y large, —— is bounded by £(Y) . Collecting together 

above estimates gives our main result. 

THEOREM 6.9. (Prime Orbit Theorem). If f G Fe is strictly positive and af 

weak-mixing then n(x) *~ ——— as x -> oo , where n(x) = X 

logX N(T)<x 

hx 
Equivalently, #{x : (̂x) < x} ~ . 
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The asymptotic formula 7i(x) X 
logx 

gives some additional information on 

the distribution of X(x) in remote intervals. Specifically, we can use Stieltjes 

integration with respect to 7t(x) to get 

yiad7t(y) , and after some easy manipulations one obtains 
N(x)<x eiah (t) 1 

ia 
X eiah^~--^--7c(x). 

N(T)<X (1+ia) 

Hence 

hx 
eiah>.(T) ^ çiahx ® 

x<X(x)<x+\ hx 

h(l+ia) , e -1 
1+ia 

and 

hx 
X l ~ ( e h - l ) . x<X(i)<x+l hx 

Thus 
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2* e iahx t h(l+ia) 4̂  x<X(i)<x+i e (e -1) ——— ____——— 
£ i (eh-lXl+ia) 

x<X(x)<x+i 

If we choose ah = Ink , k e Z then we get 

X 2mkX(z) 
x<X(i)<x+l 27iikx n 

~ e ^ h + 27cik 
I 1 

x<X(z)<x+l 

hehy 
and the latter is the Fourier transform of the probability density — translated 

(eh-D 
through an angle 2rcx . 

In particular, if we let x-» + oo (through Z) then we see that 

hehy 
{k(x) : x < X(x) < x + 1} is distributed as the probability density 

(eh-D 

Notes 

The suspended flow construction is classical in ergodic theory. Suspended 
flows over subshifts of finite type occur throughout the symbolic dynamics of 
Bowen [15] and Ratner [73]. 
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Abramov's work is contained in two articles published in 1961 [1], [2]. 

Proposition 6.1 occurs in the article of Bowen and Ruelle [17]. 

The equivalence of (i) and (ii) in Proposition 6.2 was shown by Bowen in 
[15], by a somewhat different method. 

Theorem 6.3, and Corollary 6.3.1, occur in the article of Parry and Pollicott 
[66]. The first part of Theorem 6.4 occurs in an article of Pollicott [71], whereas the 
second part occurs in an article of Parry [67] (as does Corollary 6.4.1). 

The asymptotic analysis of \|/(x) and n'(x) are taken from the article of 
Parry [65], dealing with locally constant suspended flows - but the method is 
standard in number theory. 

Theorem 6.9 and the preceding lemmas are taken from the article of Parry 
and Pollicott. The proof is modelled on the classical proof of the prime number 
theorem, for which good references are [30], [54]. The Ikehara-Wiener theorem is 
proved in [30], [103], for example - and a proof is presented in Appendix I, for the 
convenience of the reader. 
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CHAPTER 7 

EQUIDISTRIBUTION THEOREMS FOR SUSPENDED FLOWS 

In the previous chapter we showed that there exists a very simple asymptotic 

formula for the number of closed orbits of a weak mixing suspended flow. Here we 

show that these closed orbits exhibit a regularity in a spatial sense. In particular, we 

show them to be equidistributed relative to the measure of maximal entropy, in a 

very natural way. We shall also prove weighted versions of these results 

corresponding to more general equilibrium states. 

We continue with the assumption that af is weak mixing where f e Fe is 

strictly positive. Let G, K e C(Xf) be such that 

f(x) 
g(x)= J G(x,t)dtGF e k(x) = J K(x,t)dt G F, 

f(x) 

I 

In Chapter 6 we introduced the zeta function in two variables 

Ç(s,z) = exp X 
n=l n Fix̂  
00 л egn-csfn+zkn 

where c = P(G) > 0, and showed in Corollary 6.4.1 that 
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T1(S) = 
Us,0) 

«s,0) 

JlCdm, 

c(s-l) + a(s) 

where a(s) is analytic in !£(s) > 1 and mf is the equilibrium state of G. 

The demonstration that C_hf(s) has an Euler product presentation (in 

Chapter 6) can be easily modified to show a similar result for £(s,z). In particular, 

if $£s) > 1 and Izl is sufficiently small (depending on s) then 

fe) = L I D - ^ G ^ ^ K ^ Y 
T 

where A,G(x) = J G and A,K(x) = J K denote the integrals around the closed orbit x 

relative to Lebesgue measure. Hence, 

C(s,z) = exp - I log (1 -&№<*W> &№<*W>&№<*W>y 

= exp X Z - e(*G(T)-csX(T)+%W)n 
S i * n 

Logarithmically differentiating with respect to the z coordinate at z = 0 we get 
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oo 
^ = 1 1 ) 1 ^ ) ^ * e (yg) (t) m 

n=l x 
/Kdm, 

= ^ r r + a ( s ) -

Our first step is to simplify this expression by showing that 

00 
I £ V T ) e ( ^ > - c ^ 
n = 2 x K 

is analytic in ^(s) > 1 - e, for some e > 0. 
Since c = P(G) we know that P(g-cf) = 0 by Proposition 6.1. It is easy to 

see that g-cf ~ -g' where g' is a strictly positive function, say g' > 3ce llfll̂  > 0 . 

By Proposition 1.2 g-cf is cohomologous to a function of future coordinates and 

by the proof of Theorem 2.2 this function is cohomologous to one for which the 

corresponding Ruelle operator is normalised which suffices to prove the function is 

strictly negative. We can therefore assume that ^G(x) - cX(x) < -3ecX(x) < 0 . 

Furthermore, we can assume for convenience that K>0, and with 

^(s) = u > 1-e we can estimate, 

00 I^KWe("G(T)"CU"(T))n^W-
n = 2 

2(XG(x)-cuX(T)) 

XQ(X)-CUK(Z) 
1-e 

<CAK(x)eXGW- a« АзС0-Л(т)(1-2е) АзС0-Л(т)(1-2е) АзС0-Л(т)(1-2е) 
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n 1 C1 yK (t) CX.(T) (l+£) 

(for some constant C1 > 0, provided u > 1-e) 

Thus 

I I ^ ^ e ^ - ^ ^ S C , 5>K(t)e»oWHBX(,)(1+e) 
n = 2 x T 

SC. £ I^We |XG(X)^)(1+£) ,M = C1n(l+E)<». 
m = 1 x 

Therefore we have the following (without necessarily assuming K > 0). 

PROPOSITION 7.1. Tl-Cs) = L XK(X) eKG™-CSK™ = 1 + a (s) wftA a,(s) 1 T C(S-l) A 
analytic in mis) > 1 . 

Again assume (for convenience) that K > 0, then defining 

S(x) = ]T \K(x)eXoix) we have 
cX(t) e <x 

il1(s)= Jx-sdS(x). 

We can apply the Ikehara Wiener Tauberian theorem to the above 

proposition and deduce that 
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jKdmf 
S(x) ~ x. c , as x-» oo . (7.1) 

Taking the ratio of this quantity with the same expression with K = 1 gives 

the following estimates (without necessarily requiring K > 0). 

PROPOSITION 7.2. eMx)e<x 
XK(x)e 

*G(x) 

Mx)e 
Mx)e 

XG(T) 
jKdmf, as x-> oo 

or equivalently, 

Mx)e 
AK(x)e 

M x ) 

X(T)<X 
^(x)e 

Mx)e 
/Kdmf, as x -> oo . 

This is a weighted uniform distribution result, where the weights e G T 

determine the limiting measure, the equilibrium state of G. 

From (7.1) we can also deduce that 

(̂T)<X A,K(x)e 
^G(T) 

cx 

c |Kdmf 
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from which we obtain 

cx 
X M i ) eX°(T) - — (ece-l)/Kdmf 

x<?t(T)<x+e K C J F 

and therefore we can again divide by the corresponding quantities for K = 1, to 

deduce the following: 

PROPOSITION 7.3. X<A,(T)<X+E 
/-K(x)e 

XG(x) 

X<X,(T)<X+E 
y (o -s) 

yo -(t) 
»JKdmf as x -» oo . 

When G = 0 tfien mf is the measure of maximal entropy and we have 

an unweighted uniform distribution theorem. 

PROPOSITION 7.4. If mf is the measure of maximal entropy then 

hx 
X XK(x) —/Kdmf, as x o o 

X(x)<x h 

and 
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X V x > 
—— >JKdmf, 35 x-4 oo 

X X(x) 
x<X(x)<x+e 

w/iere h = P(0) is the topological entropy of the flow. 

We can give a slightly different formulation of these equidistribution results. 

Clearly, we can write 

X ^ e ^ ) > i X X K ( x ) e ^ , 
X(T)<X X(X) x X(x)<x K 

If we choose any y > 1 and set y = x/y then as with the estimates for Theorem 

6.9 we have 

X(x)<x X(x) 
K(X)C^G(T). 

X(z)<y X(X) 

K(X)C^G(T). 1 
y y<Mx)<x 

JKdmf, 35 x-4 

If we choose 1 < y' < y, then we estimate 

lim 
cx 

x cx ; x e I(T)<X A(X) 

(T)<X A(X 
e °(T) < Y lim 

y 
y 

c(Y-y)y X(x)<y 
JKdmf, 35 x-4 

+ Ylim-cx 
x cx nA(x)<x 

^K(X) 

119 



W. PARRY, M. POUICOTT 

= 0 + ^Kdmf. 

is bounded for all y, by estimates on the zeta function.) In 
k(x)<y Yk (t) e yG (t)/eys 

particular, we arrive at the following equidistribution results: 

x<X(t)<x+e 
( M T ) A ( T ) ) B 

<X(t) 

x<X(x)<x+e 
e 
<X(t) -*jKdmf. 

In the special case G s 0 then mf is the measure of maximal entropy and 

X<A.(l)<X+£ 
U t ) A ( t ) 

Jkdmf. 

X<X(T)<X+£ 
1 

Throughout this chapter we have assumed P(G) > 0. However, as we shall 

see in Chapter 11, the case P(G) = 0 is important. For this case we write G§ = G + 8 

where 8 > 0 is constant so that PCGg) = 8 > 0 , Applying Proposition 7.3 to Gs 

we obtain 
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x < X(T) < x+e 
XK(x)e 

M*) «KT) 
e 

x< X(T)< x+e 
X(T)e 

jKdmf 
e 

>jKdmf 

where mf is the equilibrium state of G (which, of course, is the equilibrium state 

of G5). We get upper and lower estimates for the above ratio by replacing the 

exponent X(x) by x and x + e. For example, the ratio is bounded above by 

e6e. x < \(T) < x+e 
\K(T)e 

jKdmf 

x < A.(T) < x+e 
jKdmf jKdmf 

Since 8 > 0 is arbitrary we see that Proposition 7.3 holds when P(G) > 0 . 

Notes 

Spatial equidistribution results for closed orbits of suspended flows were 
originally due to Bowen [14], [15]. Bowen proved these for hyperbolic flows 
(without actual asymptotic estimates) and thus for suspended flows (by using the 
embedding result in [11], say). The approach we take is based on [67]. 
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CHAPTER 8 

GALOIS EXTENSIONS AND CHEBOTAREV TYPE THEOREMS 

In Chapter 6 we presented an asymptotic formula for closed orbits of a 

suspended flow which has certain similarities with the prime number theorem. 

Another classical result from number theory is the Chebotarev theorem; this 

theorem gives asymptotic formulae for the way in which primes in a given number 

field split in a finite extension field. We shall consider an analogous situation for 

hyperbolic flows where instead of field extensions we consider covering or 

extension spaces. Our aim is to study the distribution of the lifts of closed orbits in 

terms of the associated Galois group. 

Following our usual notation, (X,a) will be a subshift of finite type. With 

G a compact Lie group we wish to define a G-extension of a. Since G has a 

faithful representation in the group U(d) of unitary d x d matrices (for some d) 

we may suppose that G is a closed subgroup of U(d). For a continuous function 

a : X -> G we define 

varn a = sup {la(x) - a(y)l Ix. = y., lil < n } 

where I I denotes the Euclidean norm of a matrix. 

For 0 < 0 < 1 let U(d,6) = {a : a is continuous and varn a < K9n , for n e Usl 

and some constant K} . 
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We suppose a e U(d,0) and define d : X -> X , where X = X x G , and 

6(x,g) = (o»x, a(x)g) . We shall call a a (Galois) G-extension of a. The 

transformation d commutes with the (free) action of G on X , g : (x,h) h> (x,hg); 

thus we can identify o = a/G. We assume, throughout this chapter, that a is 

topologically transitive. 

Given a suspension flow at = af t , f e F0 being strictly positive, we can 

define in a similar spirit a (Galois) G-extension of this flow. Specifically, we 

define an extension of f to f: X R by f(x,g) = f(x) and let 

Xf = {(x,g,t) G X x IR : 0 < t < f(x,g)}, 

where we identify (x,g, f(x,g)) ~ (S(x,g), 0). We define the G-extension flow 

locally by af t(x,g, u) = (x,g, u+t) and extend it using the above identifications. 

As in the discrete case G acts on Xf by g : (x,h,t) (x,hg,t) and since this 

action commutes with df t we can identify af t/G = cf t . In the special case where 

G is finite a : X -> X is a subshift of finite type, and af t is a suspension flow. 

We write % : Xf -4 Xf, where 7c(x,g, t) = (x,t). Given a closed orbit x for 

oft of least period X(z) we observe that for p e X f with rc(p) = p G x we have 

n(&f x,(T)P) = P- ™ s f°H°ws from the simple identity af T7C = n&{ t. 

In particular, there exists a unique element g e G such that gp = df ^(p) . 

If we choose another point in Xf which projects to p e x <= Xf then it must be of 
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the form hp, for some h e G. Since the action of G commutes with the flow we 

have df ^ h p = hgp = (hgh_1)hp . Thus the action of hgh"1 takes the lift hp of p 

to d~U(x)hP • 

Hence to any closed af-orbit x in Xf we can associate a well-defined 

conjugacy class [g] in G, called the Frobenius class of x. We shall denote the 

Frobenius class of x by [x]. 

In this chapter we shall be interested in how closed orbits are distributed 

according to their Frobenius classes. This involves some modifications to the 

analysis of the previous chapters. Whereas the proof of the prime orbit theorem 

uses zeta functions modelled on the Riemann zeta function we shall introduce for 

this type of analysis analogues of Artin's L-functions. 

Let R% : G -> U(d) be a finite dimensional unitary representation of the 

compact Lie group G, with character % : G -» C (i.e. % = trace Rx). We define the 

L -function of % by 

L(s,x) = 
T 

det I 
RJT] 

N(T) S 

-l 
exp 

00 

n = 1 n r n (t) sn 
'tfM ) 

which can be seen to converge for !^(s) > 1 by comparison with the zeta function 

C(s). 
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The L-function only depends on the conjugacy class of Rx which is 

determined by the character % . Thus although [x]n only determines an element of 

G up to conjugacy it uniquely determines the value %[x]n . Functions on G which 

are constant on conjugacy classes, such as characters, are usually called class 

functions. 

Given two characters %v%2 we note that 

00 
logL(s,%1 + %2) 

Xt(M )+X2(M ) 

n=ln x N (xr 

= log L(s, Xt) + log L(s, x2). 

We therefore have the following: 

PROPOSITION 8.1. For characters %1,%2 wehave 

L(s,x1 + x2) = L(s,%1) L(s,%2). 

Furthermore, L(s, %Q ) = £(s) where % 0 is the trivial (principal) character 

corresponding to the one-dimensional representation g -> 1 for all g e G , By 

analogy with the zeta function we can use the correspondence between cr-periodic 

orbits {x,ax,...,an_1 x} and af-periodic orbits x of least period X(x) = F(x) 

to write: 
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L(s,x) = exp X 1 J X(an(x))e"shfn(x) (8-D 
n=l n Fixn 

where ocn(x) = a(an"1x)...oc(ax) a(x). 

To analyse the domain of (8.1) it is convenient to move to the setting of 

one-sided shifts. As we have seen in Proposition 1.2 it is possible to assume, 

without loss of generality, that f is a function depending only on future 

coordinates. There is a similar result we can apply to the function a : X -> G to 

show that, without loss of generality, we may assume that a depends only on 

future coordinates. 

PROPOSITION 8.2. If a G U(d,9) then there exists ye U(d,6*) such that: 

a' = (y © a)"1 ay e U(d,0*) 

depends only on future coordinates (i.e. a'(x) = a,(y) if xn = yn for n > 0). 

Hence, for any character and anx = x, we have 

X(oc'n(x)) = %(Y(x)_1 an(x) y(x)) = x(an(x)). 

The proof of this proposition (which is modelled on that of Proposition 1.2) 

is given in Appendix II. 

127 



W, PARRY, M. POLLICOTT 

In particular, we see that we may replace a by a' in (8.1) and assume f,oc 

depend only on future coordinates. The benefit of this is that we can introduce a 

suitable variant of the Ruelle operator. 

Let F+(d,9) be the space of continuous functions k : X+ -» Cd for which 

varnk < K9n, for some K > 0, where 

varnk = sup (lk(x) - k(y)l : x{ = y{, 0 < i < n-1}. 

(Here I I denotes the Euclidean norm on Cd.) 

The space F+(d,0) becomes a Banach space with respect to the norm: 

"k"e = lkloo + lkle where 

Ikloo = sup {lk(x)l: x e X+} , lkle= inf {K : varnk < K9n} . 

For a unitary representation R : G -» U(d) we define 

(LsRw)(x)= X e-shfWR(a(y))w(y). ay = x 

As for the case of zeta functions (in Chapter 5) we can construct a meromorphic 

extension of L(s,%) by first studying the spectrum of LsR . By mimicking the 

proofs of Chapter 4 we first get the following extension of Theorem 4.5. 

THEOREM 8.1. For s = u+it and R a unitary representation in U(d) we have 

p(LsR)<ep(-uhf). 
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Since by Proposition 6.1 we know that P(-hf) = 0 and P(-uhf)<0 for 

u > 1 we deduce that p(Ls R) < 1 for u > 1 and p(Ls R) < 1 for u > 1. 

As R is unitary we have X e~shfIl(x)x(a (x)) bounded by d X e~uhfT1(x) 
Fixn Fixn 

when s = u + it. Consequently if u > 1 then we have in analogy with Theorem 5.4 

that L(s,%) converges to a non-zero analytic function. For the case u = 1 we have 

the following version of Theorem 5.6: 

THEOREM8.2. Assume u = 1 and p(LsR)<l. Then there exists e > 0 such 

that L(s,%) is nowhere zero and analytic in D£(s) = {z e C : Is-zl < e) . 

It remains to consider the possibility that p(LsR) = 1 for u = 1. We can 

modify the proof of Theorem 4.5 to get the following result. 

THEOREM 8.3. If u = 1 , p(LsR) = 1 and<R(s) = 1 then LsR has a (simple) 

eigenvalue of modulus one. 

Assume that s = l+it0 , then there exists w e F+(d,8) such that 

^d+it0),RW = elbw» b G R, by the above theorem. We can assume for simplicity that 

R = , where % is irreducible. 

By the usual convexity-type argument (as in Chapter 4) we conclude that 
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e"htof R(cc)w = eibwoa . (8.2) 

To see this we must go through the usual argument of assuming 51 e_hf̂ ŷ  = 1, 
ay = x 

by changing f by a coboundary, as in the proof of Theorem 2.2, and then 

M = lL(1+it()XRwl < ^ x e-W(y) lR(oc(y)).w(y)l < Iwl, 

which can only be satisfied with the validity of (8.2). Define F(x,g) = R(g)-1w(x) 

so that F(ax,a(x)g) = e~htoF<X)~IBF(x,g). By comparing the coordinates of this 

equation and using the topological transitivity of 8 we see that F(x,g) = 

R(g)_1w(x) = 8(x,g)w0 for some constant vector w0 and continuous function 0. 

Hence, by fixing x = x0, we deduce that R is one-dimensional since R is 

irreducible. Thus: 

e-iht0f X (a) W = eibw o a, w e FQ . (8.3) 

Summarising we have: 

PROPOSITION 8.3. If L(s,x) has a pole on $is) = 1 then R% is one-

dimensional (i.e. Rx = %). 

Assuming (8.3) is satisfied we have two possible cases: 

Case (a): (eib ¿ 1 ) . The identity (8.3) is incompatible with the general criteria of 
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zeta functions having poles at s = l+it0 , by Theorem 5.5. In particular, we see 

that this case is void. 

Case (b): (eib = 1). As e_ihtof x(a)w = woa we define F : X -> C by F(x,g) = 

X(gA)w(x) to obtain 

Fd(x,g) = e - * 1 ^ F(x,g). (8.4) 

Finally, if we define H : Xf-» C by H(x,g,t) = e^V F(x,g) then we have Hdf t = 
e- iht ot H. 

If we make the additional assumption that af t is topologically weak-mixing (i.e. 

Haf t = eiaH, has no non-trivial continuous solutions) then this condition is 

contradictory, and this second case is also void. 

THEOREM 8.4. If aft is topologically weak-mixing, then for any non-trivial 

irreducible character L(s,%) is nowhere vanishing and analytic in !£(s) > 1. 

When % is trivial L(s,%) reduces to £(s) and we know £(s) has a simple 

pole at s = 1 by Theorem 6.3. 

If af t is not topologically mixing then the situation is slightly different. 

We shall postpone a discussion of this case until we have explored the implications 

of the above theorem for the distribution of closed orbits. 
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Distribution of Frobenius classes. We can use Theorem 8.4 to prove the 

following result about the distribution of closed orbits for af according to their 

Frobenius classes: 

THEOREM 8.5. (Chebotarev theorem, weak-mixing case.) 

if df is topologically weak mixing then for each continuous class function 

F e C(G,C) we have 

J L F([x])^7c(x)/F(g)dg (8.5) 
N(T)<X 

where dg denotes the Haar measure on G. (We recall that a class function is 

constant on conjugacy classes in G i.e. F(ghg_1) = F(h) forallh, g e G.) 

PROOF. The method of proof is similar to that of the prime orbit theorem in Chapter 

6. It suffices to prove (8.5) for linear combinations of characters since these span 

the space of class functions. Without loss of generality we may also assume F > 0. 

If X s 1 is the trivial character then /%dg = 1 and 

L'(s,Y) 
US,Y) 

C'(s) 
c (g) 

00 

n= 1 T 
logN(t) 

Nix)5" 
(8.6) 
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By Theorem 6.3 we see that this is analytic for *K£s) > 1, except for a simple pole at 

s = 1. 

For % £ 1 we have f%dg = 0 and the logarithmic derivative takes the form: 

L'(s,X) 
Us,X) n=l X 

<x(Mn) 
logN(x) 

N(x)Sn 
(8.7) 

Assume that F = 
N 

i = 0 ' ai%i » with Xo = ^- We see that J Fdg = a0 and from 

(8.6) and (8.7) we get: 

00 

n= 1 T 
logN(x) 

N(T)™ 
F([x]n) = 

a0 
s - 1 + W (s) (8.8) 

where \\r(s) is analytic in the region 4&s) > 1. 

As in Chapter 6 we may write the lefthand side of (8.8) as Jt sdrtF(t) , 

where JiF(t) = 
Hlxf)<t 

log N(x) F([x]n). By applying the Ikehara-Wiener Tauberian 

theorem (Theorem 6.7) 

Jtp(t) ~ ant = (| Fdg)t. (8.9) 
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Following the arguments in Chapter 6 we see that (8.9) implies N (t) t F([x]) ~ 

(fFdg)Tc(t). 

We return now to the situation where af is weak-mixing but 6} is not 

weak-mixing. Regarding the expression (8.3) (in case (b)) we cannot automatically 

discount non-trivial solutions. 

In particular, if anx = x then %(an(x)) = eiafn(x), where a = ht0 . Since 

we can write \(%) = P(x) this expression is equal to %([x]) = eia^T^, for all closed 

orbits x of af. 

Conversely, if %([x]) = eiaX,(T), for all closed orbits x then we can deduce 

W(GX) Jc(a(x)) = eiaf(x)w(x), for some w e Fe , by Proposition 3.7 of Chapter 3. 

We shall call a one-dimensional representation % : G C special if there 

exists some real number b such that %([x]) = e l b ^ , for all closed orbits x. The 

set of such characters is an abelian group. We write %b for such a character. 

The values b correspond to eigenfrequencies for af, and so the existence 

of non-trivial characters %b entails df being not weak-mixing (with b = ht0 in 

case (b) above). 
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Since we assume af is topologically transitive the map b h> %b is well 

defined. For otherwise we could find a non-zero character % with %([x]) = 1, or 

equivalently w(ax). %(a(x)) = w(x) for some w G F^, as explained above. By 

defining f(x,g) = %(g)w(x) we have a G-invariant function on X and therefore, 

this function must be constant, i.e. % must be trivial, giving a contradiction. 

Consider those b G IR which give rise to the trivial representation 1 : G -> C 

(i.e. the kernel of b h> %b). Any such b will satisfy elb^T) = 1 for all closed orbits 

x and as before, we can deduce w(ax) = elbf^w(x) , for some w G FQ . If we 

define F : Xff -» R by F(x,t) = eibtw(x) then Faf t = eibtF , i.e. b is an 

eigenfrequency for af. In conclusion: 

PROPOSITION 8.4. If af is topologically transitive, a necessary and sufficient 

condition for the existence of non-trivial special characters is that af is not 

weak-mixing. There is a homomorphism from the eigenfrequencies of af to the 

special characters, whose kernel consists of the eigenfrequences of a f . 

If af is not weak-mixing then we would not expect a simple asymptotic 

formula like (8.5) to be valid. If %b is a (non-trivial) special character we can 

write 

X XB(W)= X eib^>. 
N(T)Sx' ü N(T)<x 
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By our estimates in Chapter 6 this expression is asymptotic to 
ib 

x *(x). d+ib) 

When 6} is not weak-mixing L(s,%b) = £(s-ib/h) and since £(s) has a 

simple pole at s = 1 clearly L(s,%b) must have a simple pole at s = 1 + ib/h 

which explains the non-uniformity of distribution when af is not weak mixing. 

There is one very simple situation where the assumption that af is weak-

mixing forces a f to be weak-mixing. This is the case where G is a finite group. 

In particular, we have the following version of Theorem 8.5. 

THEOREM 8.6. (Chebotarev density theorem - finite extension case.) 

If G is finite and af is a topologically transitive G-extension of af 

then for each class function F: 

Z F([T])~TC(x)jF(g)dg. 
N(T)<x 

In particular, for each conjugacy class C of G 

# {x : N(x) < x , [x] = C} - n(x) CardC 
CardG ' 

(The asymptotic formula for 7c(x) is given in Chapter 7, and depends on whether 

af is weak-mixing or not.) 

We have deduced Theorem 8.6 from the general case of Theorem 8.5. 
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However, it is possible to give a direct proof in keeping with the original 

Chebotarev theorem (for finite extensions) in number theory. We shall briefly 

indicate the main ideas. 

Since G is finite so is the set of irreducible characters. If we define 

Cc(s)= rid-NCc)-)-1 
W-c 

then with 

L(s,%) = F t det (I-R^xl) e"shX<T>) 

we have: 

C M / y a - H X x a r t ^ . t a f . c . for g E C. 

(By expanding the logarithmic derivatives and using the orthogonality of the 

characters.) 

When X ^ 1 the analogue of Theorem 8.4 applies and we have £'c(s)/£c(s) 

id 
is analytic for $ls) > 1, except for a simple pole at s = 1 with residue -j—: 

IGI 

(coming from the zeta function £(s) = L(s,l) when % = 1). Theorem 8.6 then 

follows closely the derivation of the original prime orbit theorem in Chapter 6. 
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Notes 

The results in this chapter are based on the article of Parry-Pollicott [68]. 
Earlier results for constant curvature geodesic flows are due to Sunada [98] and 
Sarnak [84], and for variable curvature geodesic flows the results were proved by 
Adachi-Sunada [3]. 

The motivation for these extension results is the Chebotarev density theorem 
in number theory (cf. Cassels-Frohlich [22]). 

The case of extensions by compact Lie groups, which forms the bulk of the 
chapter, was dealt with in sections 9 and 10 of the article of Parry-Pollicott [68]. 

The finite extension case, which we briefly describe at the end of the chapter 
as a corollary to the compact case, is analysed in detail in [68]. 
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CHAPTER 9 

APPLICATIONS TO HYPERBOLIC FLOWS 

To date we have concentrated on analysing zeta functions and proving 

distribution results for closed orbits in the context of suspended flows. In this 

chapter we shall show how these ideas and results can be transferred to the "more 

natural" setting of hyperbolic flows. These include as special cases Axiom A 

flows (as studied by Smale) and Anosov flows (as studied by the Russian school), 

and in particular the canonical example in ergodic theory - the geodesic flow on the 

unit tangent bundle of a compact manifold with negative sectional curvatures. 

The transition from the theory of suspended flows to that of hyperbolic 

flows follows standard lines based on ideas of Bowen, Ratner, Ruelle, Sinai and 

others. The idea is to introduce Poincaré sections for the flow with an additional 

"Markov" property. This enables the Poincaré map between the sections to be 

closely modelled by a subshift of finite type. The return time between the Poincaré 

sections then corresponds to a roof function. In this way we can model the 

hyperbolic flow by a suspended flow, of the type we have already described. For 

the convenience of the reader we have summarised this standard, but somewhat 

complicated construction, in Appendix III. 

In studying properties of a hyperbolic flow the basic procedure we follow is 

to establish the corresponding result for an associated suspended flow, and then to 

transfer the result back to the hyperbolic flow. In the preceding chapters we have 
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established a number of results on zeta functions and closed orbits for hyperbolic 

flows. In this chapter we shall establish the corresponding results for hyperbolic 

flows. 

We begin by recalling the definition of a hyperbolic flow (pt: A -> A on a 

basic set A: 

Let cpt: M -» M be a C1 flow on a compact C°° manifold and let A c M 

be a cp-invariant compact set such that 

(i) There exists a splitting TtM = E°0EseEu such that 

(a) there exist constants C,A,>0 with IID9J gll, lDq).ty I ^ Cc-^t ^ 0 

(b) E° is one-dimensional and tangent to the flow. 

(ii) A contains a dense orbit. 

(iii) The periodic orbits in A are dense (and A consists of more than a 

single closed orbit). 

(iv) There exists an open set U 3 A such that A = fl cptU. 
t = -00 

We observe the connection with Smale's work on Axiom A flows: A C1 

flow cpt: M M on a compact manifold satisfies Axiom A if the non-wandering 

set Q = { x e M : for each neighbourhood U 3 x, there exists tn /* +00 with 

(ptnU n U ^ 0} satisfies (i) and (iii) above. In particular, Smale showed that for an 

Axiom A flow Q is a finite union of basic sets, hyperbolic closed orbits and 

hyperbolic fixed points. 
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PROPOSITION 9.1. (pt: A -> A has a unique measure of maximal entropy which we 

denote by m. 

(The proof of this result is given in Appendix III.) 

We say that the hyperbolic flow of (pt: A -> A is (topologically) weak-

mixing if there is no non-trivial solution to Fcpt = eiatF, a e R, F e C(A). We 

denote the topological entropy of (pt: A-> A by h((p) = sup {h^cp^ : |i is a 

cp-invariant probability measure}. 

We summarise below how a suspended flow (of finite type) associated to a 

hyperbolic flow via the Markov sections closely models the original flow. For the 

reader's convenience we have sketched the proofs of these results in Appendix III, 

where references can also be found for complete proofs. 

LEMMA 9.1. We can associate to a hyperbolic flow (pt: A A a suspended flow 

aft:Xf-»Xf and a continuous map 7t:Xf->A such that 

(i) n is surjective and cpt7C = rcaf>t. 

(ii) 7i is bounded-one, and one-one on a residual set 

(iii) n is an isomorphism (with respect to the unique measures of 

maximal entropy) and in particular, they have the same topological entropy 

h(af) = h(cp) = h . 

(iv) (p is topologically weak-mixing if and only if af is topologically 

weak-mixing. 
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At the measurable level a f t : Xf -+ Xf is a perfect model for (pt: A -» A, 

namely an isomorphic representation and at the topological level (pt and af t are as 

close to being conjugate as one can reasonably expect. (In general, we cannot 

expect 7C to be a homeomorphism since Xf is always one-dimensional, whereas 

A need not be.) 

We want to present the main results of these notes for hyperbolic flows and 

we begin with the results for zeta-functions. 

Let x denote a closed (p-orbit of least period X(%). There is a denumerable 

infinity of closed orbits and we define the zeta-function to be the function of a 

complex variable s e C given by the Euler product: 

U s ) = (l-e-5^))"1. 
RT 

(We shall show below that this converges to a non-zero analytic function for %£s) > 

h(cp)0 

Of course, the map n does not, in general, give a one-one correspondence 

between closed orbits for cp and of and so an identification of the zeta function 

£<p(s) and £0f(s) is generally impossible. However, there is a very explicit 

relationship of the following form: 
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LEMMA 9.2. There exists a finite family of suspended flows af. (i=l,...,N) with 

h(af.) < h(af) = h(cp) such that 

Ccp(s) - C (8) 

P 

i = 1 
C is (s) 

1 = P+l 
^fi(s) 

N 
(9.1) 

(The proof is outlined in Appendix III.) 

By the results of Chapter 6 we see that CafXs) *s non-zero and analytic for !£{s) > 

h(cp) - e = max {h(cfi)}. (This also proves our claim that £<p(s) is non-zero and 

analytic for %is) > h(cp).) In particular, Lemma 9.2 and Lemma 9.1 (iii), (iv) give 

the following analogue of Theorem 6.3. 

THEOREM 9.1. 

If cp is topologically weak-mixing then £<p(s) has a non-zero analytic 

extension to a neighbourhood of ^(s) > h(cp), except for a simple pole at s = h. 

There is a weighted version of the zeta-function, which we define as 

follows. Let F : A -> IR be a C" function. We define 

U(s,F) = 
T 

_̂_ê F(T)-sX(T)̂ i 
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ад 
where X^(x) = J F((ptx)dt, for any point x e x. 

o 

We define the pressure P(F) = sup fli^i) + /Fd|i. : |i is (p-invariant 

probability measure}. 

The natural generalisation of Lemma 9.2 is also true: 

LEMMA 9.3. There exists a finite family of suspended flows af. and functions F{ = 

FojCj (where rc^Xf.^A is as defined in Appendix IE) with P(Fi)<P(F) and 

p 
I T CafW 

Ccp(s,F) = Caf(s,F o n) - . (9.2) 

E [ CafW i = P+1 *i 

This leads to the following extension of theorem 9.1. 

THEOREM 9.2. £q>(s>F) is non-zero and analytic for $(£s) > P(F) except for a 

simple pole at s = P(F). 

We turn now to the three distribution results for closed orbits. (For the 

suspended flow these are contained in Chapters 6, 7 and 8.) There are two 
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alternative methods for establishing these results for hyperbolic flows. The first 

approach is to repeat, almost verbatim, the proofs in Chapters 6, 7 and 8 for 

suspended flows after replacing the necessary conditions on the zeta-functions for 

suspended flows by the corresponding results for the hyperbolic flow in Theorems 

9.1 and 9.2. The second approach is to show that counting functions for the 

hyperbolic and associated suspended flow are asymptotic. This is true since the 

(negligible) difference is due to closed cp orbits which pass through the boundaries 

of Markov sections. 

Our first result is the analogue of Theorems 6.9 and 6.5 for hyperbolic 

flows. Let TC'(X) be the number of closed orbits of least period X(x) < x, x > 0. 

THEOREM 9.3. (Prime orbit theorem for hyperbolic flows.) 

(a) If cpt: A A is a topologically weak-mixing hyperbolic flow then 

7l'(tV 
hx 

e hx ' 

(b) If (pt : A -» A is not weak-mixing then 

*'(t)~ 
ax 

eh- l 

hit] 
e 
[t] 

(where [t] denotes the integer part of t). 

We consider next the appropriate analogue of the equidistribution theorems. 
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In view of the above result and Lemma 9.1 (iii) we have the following version for 

hyperbolic flows. 

THEOREM 9.4. (Equidistribution theorem for hyperbolic flows.) 

Let cpt : A -> A be a hyperbolic flow and let G : A -> IR be a Holder 

continuous function with equilibrium state m. If F e C(A) then 

y (x) < t 
^F(t).e 

y x (t) 

|Fdm as t-> oo ; and 

X(T)<t 
X(x)c y x (t) 

XCr)<t 

y x (t) 
y x (t) 

y x (t) 
e 

y x (t) 
e y x (t) 

Fdm, as t h» oo. 

We observe that if |i is the unique equilibrium state for the suspended flow Gf and 

G o n: Xf -» IR then by Lemma 9.1 (iii) we have /Fdm = J(F o 7c)d(i, which makes 

the deduction from Chapter 7 straightforward. 

COROLLARY 9.4.1. Let cpt: A A be a hyperbolic flow with unique measure of 

maximal entropy m. If F e C(A) then: 
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X(T)<t 
y x (t) 

-»JVdm, as t-> oo; and 

X(z)<t 
MV 

1 
*'(t) x(^<t X(x) 

y x (t) 
-»/Fdm, as t-> 00 . 

Finally, we want to give the Chebotarov density theorem for hyperbolic 

flows. 

Let G be a compact Lie group and let (pt : A -» A be a (Galois) G-

extension of the hyperbolic flow cpt: A A with projection % : A -> A . Given a 

closed orbit i c A and p e x there exists for a lift p e A (rc(p) = p) a unique 

element g e G with gp = (px(x)P e ^ • We call the conjugacy class [g] in G the 

Frobenius class of x, which we denote by [x]. We have the following analogue of 

Theorems 8.5 and 8.6. 

THEOREM 9.5. (Chebotarov theorem for hyperbolic flows.) Let cpt: A -* A be a 

Galois G-extension of a hyperbolic flow cpt: A A. 

(a) If cp is weak-mixing then for every continuous class function 

F e C(G,C) (i.e. F(hgh"1) = F(g), for all h e G) we have 

*'(0 \(<z)<t — Z X F([x])->JV(g)dg, as t -> oo . 
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(b) If (p,cp are topologically transitive and G is finite then for every 

class function F e C(G,C) we have 

-77A X F(W)-^/F(g)dg, as t->oo. 

(In part (b) the condition that cp is weak-mixing forces both cp and the associated 

G-extension of the suspended flow af to be weak-mixing. In part (a) cp is weak-

mixing if and only if df is weak-mixing, cf. [15] for details.) 

Applications to geodesic flows: In the three distribution theorems given above we 

have dealt with hyperbolic flows. A special case is the geodesic flow cpt: M M 

on the unit tangent bundle of a compact manifold V with strictly negative sectional 

curvatures. These geodesic flows are always weak-mixing. There is then a one-

one correspondence between the closed orbits and the (directed) closed geodesies. 

(The least periods of the orbits being the lengths of the closed orbits.) 

Thus n'(x) is the number of closed geodesies on V of least period at most 

x, and Theorem 9.3 gives n'(x) ~ e^/hx. (This result for closed geodesies was 

originally proved by Margulis [57].) 

Let F : V -> IR be a continuous function. If p : M -> V is the natural 

projection of the unit tangent bundle onto the manifold, then we can apply Theorem 

9.4 to F o p to deduce: 
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-V, X LFd£->JVd(p*m) ir(t) tiy)<xJy J VK 

where y denotes a (directed) closed geodesic of least period £(y),/7Fd£ denotes 

the integral of F around the geodesic y with respect to one-dimensional Lebesgue 

measure, and p*m is the projection of the measure of maximal entropy. 

Finally, let Mk denote the bundle of k-dimensional (oriented) frames over 

V. (The special case M1 = M is the unit tangent bundle.) We define an extension 

cpt: Mk -> Mk of cpt: M -» M by parallel transport of the frame around the geodesic 

associated to the orbit of cp. The flow cp is a G = SO(n-l) extension of (pt: M -> M , 

where n is the dimension of V. Each closed geodesic y gives rise to a conjugacy 

class [y] in G corresponding to the holonomy group (i.e. the elements of G which 

come from parallel translations of a frame around y). From Theorem 9.5 we see 

that whenever cp is weak-mixing we have, for any continuous class function 

F e C(G,C): 

1 
71'(t) £(y)<x 

F([y])-> Fdg. 

There are geometric criteria on V for the associated frame flow cp to be 

weak-mixing (cf. [20] for example). 
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Application to twisted orbits. Let cpt: A A be a hyperbolic flow on a basic set. 

We denote the k-dimensional frames corresponding to Eu k (where k = dim Eu) by 

F and write F = A © B, according to the orientation of the frames. We say that a 

closed orbit x is twisted if Dcp̂ (T)Ax = Bx (and Dcp^x)!^ = Ax) for x e x . 

There is a natural Z2-extension (pt: A -> A of cpt defined by the effect of 

D(pt on the orientation of Eu . 

Clearly, cp is topologically weak-mixing if Eu is not orientable. Theorem 

9.5 (b) then shows that closed orbits are equally distributed between those which are 

twisted and those which are not. 

Notes 

Lemmas 9.1 and 9.2 appear in the work of Bowen [15]. 

Zeta functions for Axiom A flows were introduced in [95] based on the 
Selberg zeta function for geodesic flows. The definition we give follows Ruelle's 
[80] which is a close analogue of the Riemann zeta-function. 

Theorem 9.1 (a) appears in [15] and Theorem 9.1 (b) was proved in [66] as a 
generalisation of a result in [80]. 

Theorem 9.2 can be deduced from [67] and [71]. 

Theorem 9.3 was proved by Parry and Pollicott. Earlier asymptotic results 
for geodesic flows were proved in [42] and [57]. Less precise growth rates were 
proved in [92] and [15]. 

Theorem 9.4 was first proved in [14]; the proof we present may be found in 
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Theorem 9.5 is due to Parry and Pollicott [68]. This work was motivated by 
the earlier work of Adachi and Sunada [31. 

The application to frame flows is described in [68]. 
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CHAPTER 1 0 

FURTHER EXTENSION RESULTS 

We have now completed the derivation of the main theorems concerning the 

asymptotic formulae for closed orbits. For their proofs it was sufficient for us to 

know the analytic domain of the appropriate zeta-functions in a neighbourhood of 

the line %is) = h. However, with only a little more work one can prove a much 

stronger result on the meromorphic domain of zeta-functions (although in general 

this will not lead to additional asymptotic results). The original extension (Theorem 

5.6) required relatively weak estimates on the spectrum of the Ruelle operator 

(Theorem 4.5). Our improved estimates will result from a more detailed analysis of 

this spectrum. Using the notation of Chapter 4 we shall consider the Ruelle 

operator Lf: F^-* FQ corresponding to f = u+iv e F^. 

Let T : B -> B be a bounded linear operator on a Banach space B. The 

essential spectrum esp (T) of T consists of those X e sp(T) c C for which any 

of the following three equivalent statements is valid: 

(i) Range (M-T) is not closed in B 

(ii) X is a limit point of sp(T) 

oo r 
(iii) U ker(Al-T) is infinite dimensional 

r= l 
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(cf. Browder [21]). In particular, esp(T) does not contain isolated eigenvalues of 

finite multiplicity. 

The essential spectral radius is defined to be pe(T) = sup {ftJ : X e esp(T)}. 

There is a useful formula for pe(T) due to Nussbaum [60]: 

PROPOSITION 10.1. pe(T) = lim llTnll1/n, where llT|le = inf {llT-Kll : K : B -> B is a 
n-> oo e 

compact operator}. 

Our first result deals with the spectrum of Lf. 

THEOREM 10.2. For f = u+iv e the spectrum of Lf : FQ F^ consists of two 

distinct parts: 

(i)Tfie essential spectrum consisting of the whole disc {z e C : Izl < 6ep^} . 

(n)Isolated eigenvalues (of finite multiplicity) contained in the annulus 

{zeC:9ep<u><lzl<ep<u>}. 
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PROOF. We can assume LU is normalised (i.e. eP(u) =1). We begin by showing 

that pE(LF) < 0. For n > 1 let C denote a cylinder of the form C = {z eX+AI zi = x{, 

0 < i < n - l } , where A(xi? xi+1) = 1, 0 < i < n - 2 . We can write ICI = n, and 

associate to each cylinder C an element xc e C E X + A £ . (The specific choice made 

will be unimportant.) 

We define an operator En : FQ-> F^, n > 1, by En(f)(x) = Kj = n %c(x).f(xc), 

where the sum here is clearly finite. 

We can make the following explicit estimates: 

(i) I f -E^OL < sup { sup lf(x)-f(xc)l} < lfl0 en 
ICI=n LX€C J 

(ii) lf-En(f)le<lfle 

(since for k > n, vark(f-En(f)) = vark(f) and for k < n, vark(f-En(f)) < lfle 6n , 

by estimate (i)). 

The operator En : F^ -> F^ has a finite dimensional range, and hence is 

compact. Therefore Kn = L" En : F^ F^ , n > 1, is also compact, since the 

composition of a compact operator with a bounded linear operator is again compact. 

By the basic inequality (Proposition 2.1) we have 
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II (Lj - Kn) h lle = II Lj (h - En(h)) lle < (C+l) I h - En(h)\w + 0* I h - En(h) l0 

< (c+i) Ne en + ihi0 en < (c+2) iihiie en. 

Thus by Proposition 10.1 we have pe(Lf)< lim II L" - ll1/n < 6 . 
n-» oo 

Part (ii) of the theorem follows from the definition of essential spectrum and our 

estimate pe(Lf) < 0 . Assume that IXI < 0 and choose h e FQ such that h ^ 0 but 

00 
Luh = 0. We can define g e FQ by g = X e~ivI1 h ° °n^n an(̂  observe that 

n = 0 
Lf(g) = Xg. 

Thus for a judicious choice of h with g # 0 we have X lies in the (essential) 

spectrum of Lf. By the compactness of the spectrum we see that Izl = 0 also lies in 

the (essential) spectrum. This completes the proof. 

This result on the spectrum leads to a meromorphic extension of the zeta-

00 
function £(f) = exp X X efnW. The principle is essentially the same as that n _ i n n n_ 1 O x = x 

in Chapter 5. However, since we have very precise information on the spectrum of 

the Ruelle operator from Theorem 10.2 it is appropriate to translate this into an 

extension result for £(f) with as much care as possible. 

To prepare for the main result of this chapter we choose p > 0 such that Lf 
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has no eigenvalues of modulus pep where P = P(!^f). Clearly p can be chosen as 

close to 0 as we wish, and there are only finitely many eigenvalues (each with 

finite multiplicity) of modulus greater than pep . Moreover the projection Q onto 

the part of the spectrum of Lf inside {z : Izl < pep} commutes with Lf and QLf 

has spectral radius strictly less than pep . 

Evidently Lf can be expressed as 

Lfw= I X « Z v ^ p l i p w + QLjW 
N 

(10.1) 

where \® (i = 1,...,N) are the eigenvalues of Lf with modulus greater than pe*\ 

va belong to the corresponding eigenspaces, |ip belong to the dual eigenspaces 

and \i® (v^j = 5i jS^ p . The matrices Lw, of course, are in Jordan normal form 

and the multiplicity of the eigenvalue Xw is V(,) = trace Lw. Iterating (10.1) we 

have 

N 
Lf w = 2 № 

i=l 
EXx (i) (i)m (i) ^^Tm 

va La,ß^ßw + QLfw-

157 



W. PARRY, M. POLUCOTT 

Fixing m > 0, we denote by L~ the sum over all permissible words of 

length m such that the periodic concatenation *n* = T] v T] v ... is permissible and 

we denote by the sum over all permissible words of length m. Define r|# = r\* 

when r|* is permissible and otherwise define T|# arbitrarily subject to r| v r|# 

being permissible. Finally we let the word ti stand for the cylinder it defines so 

that is the characteristic function of the set of points which begin with r|. 

We shall be especially interested in 

Cm=SefmW = i;expfm(Ti.). 

Notice that 

Lf ^ ( x ) = exp f m(r\ v x) if r| v x is permissible 

= 0 otherwise, (10.2) 

and therefore 

C n = + (QLy (Tl v r,-) ](n vn) 

l , [î ^ ^ v®(n v vT) + (QLy (Tl v r,-) ] + ( Q L y (Tl v r,-) ] 
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N 

i= 1 
y (x) m 

xiy 
,(i)m 

y (x) m 
(\ 

.„V0(TIVTI*)X^ X y (x) m (TIVTI#) 

,(0) 
w -

,(1) 
Sn 

X2) where 

.(0) N 

i=l 
y (x) m 

ix 
y (x) 

N 

i=l 
y (x) 

xisys 
y (x) m V0(TIVTI*)X^V0(TIVTI*)X^ 

(T|VT1#). (T|VT1#). (T|VT1#). 

Our aim is to estimate JO) JL) J2) 
'm *»m ' 

LEMMA 10.3. There is a constant such that 

, „(1) < const. (pep)m. 

PROOF. One first verifies 

(T|VT1#). (I) M (i)m (i) (T|VT1#). 
ß 

from which we obtain 
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y (1) 
ym 

N 

i=l 
y i (m) 

ix 
(i)m.(i)/ 
y i (m) 

(i) 
ixus ^ ( T I V T I ^ X t J 

N 

1 = l u 
xu (iV fk0l(k) v 11(1)*).^ J (x) 

N 

i=l a 
..(O^m (i) fk0l(k) v 11(1)*).(i) 

where Km is of finite rank and since II Ln - II < const. (pep)n the lemma is 

proved. 

(2) 
LEMMA 10.4. There is a constant such that I £m I < const. m(pep)m . 

PROOF. Let fj(m-k), r\(k) denote the words formed from the first m-k symbols 

and the last k symbols of the word T| of length m, respectively, so that 

r| = fj(m-k) v T|(k) . We need to assign, once and for all, a sequence to follow 

(permissibly) each symbol i - clearly i# will do. Moreover for every r| of length 

m and for every 1 < k < m, rj(k) v T|(l)# is permissible. 

We define for 1 < k < m the functions 

xn(k)« - exp - fk0l(k) v 1 1 ( 1 ) * ) . ^ J (x) 

and for 2 < k < m 
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Yn(x) - X ^ C x ) - X^.^Cx) 

= X ^ x ) {exp ff(n(k) v x) - f(Ti(k) v T|(l)*)] - 1} 

if T](k) v x is permissible 

= 0 otherwise. 

We also define Y (1) = Xn(1). 

It is easy to show that 

II X ^ j lle < const, and II Y ^ j lle < const. 9k 

where the constants are independent of m, rj, k. 

Evidently 

£ exp f m(Ti v tKD^.CQX^di v n*) = ^ ( q l J x J (t i v r f ) = C (2) m, 

and hence 

C = X exp f m(Ti v TtfmCQX^XTi v i f (1)) 

+ X exp fm(Ti vtj(1)*) {(QXn)(ti v rf) - (QXn)(ri v ti(1)*)} 
1 

= A + B, say. 
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Notice that 

m 
A= X exp fm(n v Tl(l)#) { X2 ( Q X ^ - QX^. j ) ) + Q X ^ (r\ v îl(l)*)} 

m 
= X X exp fm0l v tKD^.CQY^)) (ti v n(D#) 

k = 1 T| 

m 
= E I I exp^CtìCm-^vTiC^vTiarMQY^XfìCm-^viiC^vTiCl)*), 

k = 1 T](k) Ti(m-k) lv ' 

and also notice that 

X n (m-k) expf^CfìCm-^vTiC^vTiCinXQY^XtìCm-^vTlCk) vti(1)#) 

= Lj1"k(QY11(k))(Ti(k)vTl(l)#). 

So we conclude that 

m 
A = X X exp fk(Ti(k) v tl(l)#).(Lj1"k(QYî.(k))(Ti(k) v ti(1)*) 

k = 1 T|(k) v ,v 1 1 

and 

A < X X exp #k(îl(k) v Tl(l)#)JI L™q II llYn(k) lle < const. m(pep> 
k = 1 Ti(k) ,v 
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On the other hand we have 

IBI < X exp *P(Ti v ti(1)*)J (QX )(tj v xf) - (QX )(n v x\{Vf) I 

< X exp ^ ( t i v ti(l)#) IIQII IIX_.IL9m < const. (0ep)m. 

The lemma is therefore proved. 

We are now in a position to prove 

THEOREM 10.5. For f G FQ and 

00 n 
Z(z,f) = X \ X expF(x) = X ^ Cn 

n=l n Fixn n=l n 

the function exp - Z(z,f) extends to an analytic function in the region of C x 

where 6 Izl < e"p^ . 

PROOF. Let V{ be the multiplicity of the eigenvalue X. where IXil>pep>6ep 

i= 1,...,N then 

Z(z,f) = X \ X expF(x) = X ^ CnZ(z,f) = X \ X expF(x) = X ^ Cn 
n=l n Fixn n=l nn=l n Fixn n=l n Z(z,f) = X \ X expF(x) = 
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and by lemmas 10.3 and 10.4 the latter series converges when Izl pep < 1. On the 

other hand, exp 
00 

n=l 

n 
z n 

y (x) 
yx extends to the analytic function 

N 

i=l 
(l-z^)Vi. We 

conclude therefore that 

exp - Z(z,f). 
N 

i=l 
L(i-zU "Vi = cp(z,f) 

extends to an analytic function in the region Izl pep(^ < 1. In other words, 

cp(z,f) 
N 

i=l 
Vi = cp(z,f is the required extension when Izl peP(^ < 1. Finally we 

observe that we may choose p > 8 as close to 9 as we please. That 

cp(z,f). 
' i - i 

N 
Vi = cp(z,f is analytic follows from Appendix V. 

At the end of Chapter 5 we gave an application of our original extension 

(theorem 5.6) to the zeta-function C_f(s) = exp 
00 

n=l 
1 
n Fixn 

r e-sfn<x>, where s e C, 

for f e FQ with f > 0 and P(-f) = 0. We can improve this result by using 

Theorem 10.5 as follows: 

COROLLARY 10.6. £_f(s) has a non-zero meromorphic extension to the half-plane 

^(s) > 1 - e , where e > 0 is given by the identity P(-(l -e)f) = I log 8 I. 
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(We recall that since f > 0, t h> P(-tf) is a strictly monotonic descreasing 

homeomorphism of the real line, and clearly I log 01 > 0.) 

We can give a fairly simple example to show that the meromorphic extension in the 

above corollary (and hence the theorem) is essentially sharp with respect to the 

given data. 

EXAMPLE l. Given e > 0 and 0 < 0 < 1 we can construct a : X A -> XA and f e Ft 

with f > 0 such that £_hf has an essential singularity at s = s0 e R with 

Uog0l<P(-sohf)<llog0l + e. 

Let a : Xn -> Xn be the full shift on n-symbols, i.e. Xn = N(l,2,...,n} . 

Let pm , P > 0 (m > 0) be such that I p - Pm I < C0m for some constant C > 0. We 

00 

o 

define f e Ft by: 

f(x) = 
ßm if xi?t n , 0 < i < m - l , and xm = п. 

ß if Xj^n, for all i > 0 . 

For sufficiently small a > 0 we can choose pm, P > 0 as 
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logn-alog[(l+em/m)/(l+e(m'1}/m-l)] if m>2 

Pm= { logn-alog(l+e) if m= 1 

i log n if m = 0 

and P = log n. 

m m-1 
Since I log [(l+6m/m) / (l+G^Vm)] I < — + ^ — this sequence satisfies 

m m-1 
the required condition. 

Assume akz = z and that the gaps between the occurrence of the symbol n 

are k^...,!^ where k1+...+kr= N and then 

i 
f*(z) = (k-N) p0 + X (pt + p2+...+pk.). 

For s e C we can define g e C (X2) by: 

-spm+log(n-l) , if x i = l ( 0 < i < m - l ) , x m = 2 

g(x) = { -sp0 , if xQ = 2 

-sp+log(n-l) , if Xj = 1 for all i> 0 . 

We clearly have the simple identity 

166 



FURTHER EXTENSIONS 

£ e-sfV). £ egk(x) 

akx = xeXn okx = xeX2 
(10.9) 

For any N > 0 we can define a square matrix by 

Rj n = 

-sp0 -spt 
e (n-l)e . . 
-sß0 

e О S B1 л 

О (n-l)e 

О 

-SPN-I -SE (n-l)e (n-1) 1 

-sßN-l -sß 
. (n-l)e (n-l)e p 

so that X egk(x) = trace ( P ^ , provided N > k. 
O X = X 

For !̂ (s) large we can find the explicit expression: 

1/Cf(s) = e x p - X r £ e8k« (using (10.9)) 
k=lK a x = x 

= lim exp - X r trace (Pn^ 
N-*oo k= 1 

lim det(I-PN) 
N-»oo 

lim (l-(n-l)e-sß)(l-2; ( n - D e - ^ - ^ - í n - D N e - ^ o ^ N - i ) 
N->oo V k = 0 ' 

(l-(n-l)e-sP) ( l - ¿ (n-l)k e-^'+ßk)) 
k=l 
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oo 
= (l-(n-l)/ns) ( 1 - X (n-Dk / nS(k+1) (l+6k/k)as - Vns) 

V k=l 1 

The entropy h corresponds to the first positive pole, i.e. 

00 
1= £ (n - l^ /n^+Wd+OVk^ + n-11. 

k=l 

To find an extension for Ç_f(s) it suffices to find an extension for 

00 
F(S) = X (n-Dk / nS(k+1)(l+9k/k)as. 

k=l 

oo 
We can write F(s) = — Y [(n-l)/ns]k[(l+ek/k)as - 1] + „ ( n " 1 } . (1-n)/n), For 

S - ̂ ™. ZR R n k=l n (l-(n-l)/n) 

k as 
0 < s < h we can bound A< [(1+e/k) -l1 < b , A ,B>0andso : 

s8 /k 

A < G(s) < B where F(s) = sG(s) + (n-1) 
n llog(l-e(n-l)/nS)l n S(l-(n-l)/nS) 
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s Consider s = st such that 0(n-l)/n 1 = 1 then as s \ s t we have lG(s)l -> + oo , 

but (s-Sj) G(s)-»0. We conclude that each of these functions, but particularly 

L f(s) must have an essential singularity at s. = lof̂ n ^ - Ji^i^i # 

Since a : Xn -» Xn has topological entropy log n it is clear from 

Abramov's theorem that h(af) approaches 1 as n increases. We let h = h(af), 

then P(-hf) = 0 and ^_M(s) has an essential singularity at s0 = s ^ h . 

Thus P(-s0hf) = P(-sxf) < log n -st (log n - a) 

riog(n-i) iiogei] /л . = log n - —¡ : (log n - a) 
0 logn logn 4 0 ' 

= iiogei+iog J L U ^ i M . 
Vn~V logn 

We can assume that n is sufficiently large that (n-1) 9 > 1 and log (n/(n-l)) < e /2 

and then a > 0 can be chosen sufficiently small that a log [(n-1) 9]/log n < e /2 . 

Thus P(-s0f) < I log 9 I + e , as required. 

The results in this chapter show that the zeta functions always have a non

zero meromorphic extension beyond the region where they naturally converge to 

non-zero analytic functions. A natural question is to what extent is this extension 

also analytic. In particular, for the case of the zeta function £-hf(s) (af weak-

mixing, f > 0) is the extension to 1 - e < mis) < 1: Is C_hf(s) analytic (except for 
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the simple pole at s = 1)? The next example gives a negative answer. 

Example 2 . Let X2 = \ \ {1,2} and consider f: X2 -> IR defined by: 
o 

f(x) = 
roc if XQ = 1 

p ifxQ = 2 

where a, P > 0 and a /P is irrational. By direct computation we can see that 

1L e_sfk(x) = trace (P(s))k , where P(s) = 
a x = x 

fe-as ^ 

-as -Bs 
e e , 

00 *—̂  00 
Thus C.f(s) = exp X T e (x) = exP X r trace (PCs))1' 

k=l* a x = x k=l 

1 
det(I-P(s)) 

= l / ( l -e-as-e-Ps) . 

The topological entropy h(af) for af can be determined from the position 

of the first positive pole for £_f(s), i.e. e~ah + e~Ph = 1. The poles for £-hf(s) are 

determined by the simple condition: e"ahs + c"̂ 18 = 1. We observe that the 

assumption a / p is irrational implies that C-hf(s) ^as no ot^er P°^es on = * 

other than s = 1. In particular, we can deduce that af is weak mixing (cf. 

Theorem 6.3). 
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Consider the trigonometric polynomial Q(s) = e_ahs +e~Phs - 1. For e > 0 

we see that for any 1-e < c < 1 the function t H Q(cr+it) (t e R) takes values 

arbitrarily close to zero. Since Q(s) is a complex almost periodic function this 

implies that Q(s) has zeros arbitrarily close to any line mis) = a (or equivalently, 

C_hf(s) has poles arbitrarily close to this line). (Cf. [24].) 

In particular, we can conclude the following: The zeta function C.^s) has 

poles at s = G„ +iL, where cr < 1 and cr P 1. 
* n n' n n 

The corollary 10.6 and the two examples above all describe the domain of 

zeta-functions C_hf(s) ^or susPended flows af . In keeping with our general 

philosophy these can be used to give results for hyperbolic flows. In particular, 

given a weak-mixing hyperbolic flow we can reduce the analysis of its zeta 

function £(s) to that of appropriate zeta-functions for suspended flows (Appendix 

IH). Conversely, to construct (counter) examples of hyperbolic flows it is 

frequently easier to construct first suspended flows with the appropriate properties 

and then to use the "embedding theorem" to construct corresponding examples of 

hyperbolic flows (Appendix III). 

In view of these two approaches we can simply translate the corollary 10.6 

and examples 1 and 2 from the context of suspended flows to that of hyperbolic 

flows to deduce the following result. 
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THEOREM 10.7. 

(i)Let (pt: M M be a weak-mixing hyperbolic flow (with topological 

entropy h > 0) then there exists e > 0 such that £(s) has a non-zero 

meromorphic extension to mis) > 1 - e . 

(ii) There exist examples of hyperbolic flows for which £(s) does not 

extend meromorphically to the entire complex plane. 

(iii) There exist examples of hyperbolic flows for which £(s) does not 

extend analytically to the strip 1-8 < mis) < 1, for any 8 > 0 . 

In parts (i) and (ii) of Theorem 10.7 it is difficult to give a useful 

quantitative estimate for the size of the extension, or the position of essential 

singularities. This is simply because the characterisations in the suspended flow 

setting do not conveniently translate into appropriate terms for hyperbolic flows. 

Notes 

The definition of the essential spectrum and essential spectral radius is 
originally due to Browder [21]. 

Proposition 10.1 is due to Nussbaum [60]. 

Theorem 10.2 is due to Pollicott [72]. A similar result for interval maps by 
Keller appears in [51]. 

Theorem 10.5 and its related lemmas and Corollary 10.6 are due to Haydn 
[36]. Our account is based on a version of Haydn's proof provided by Ruelle. Prior 
to Haydn's result there were weaker versions of this theorem due to Ruelle [82] and 
Pollicott [72]. 
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Example 1 is taken from Pollicott's article [72], which in turn is a 
development of earlier examples of Gallavotti [34] and Pollicott [71]. 

Example 2 was discovered independently by Ruelle [83] and Pollicott [71]. 

Finally, Theorem 10.7 can be found in [36]. 
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CHAPTER 1 1 

ATTRACTORS AND SYNCHRONISATION 

In the preceding chapters we were mainly concerned with results for general 

hyperbolic flows. As we shall see it is sometimes appropriate to take into account 

the ambiant manifold M. 

A basic set A for a hyperbolic flow cpt : M -> M is called an attractor if 

there exists some open neighbourhood U 3 A such that A = ^ (ptU. 

This amounts to a strengthening of the hypothesis A = ^ (1^ (ptU in the 

definition of a basic set. The geodesic flow for a manifold with negative sectional 

curvatures is an example of a hyperbolic flow with A = M so that with the choice 

U = M it is clearly an attractor. 

The complementary notion is that of a repellor A where one requires an 

open neighbourhood U 3 A such that A = fl cptU. There is a trivial 

correspondence between repellors and attractors, in that if \|/t : A -» A is the 

hyperbolic flow given by \|/t = (p_t (i.e. by reversing the time direction) then an 

attractor for 9 is a repellor for \\f and vice versa. 
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In chapter 9 we described equilibrium states for Holder continuous functions 

on basic sets. Of particular importance was the measure of maximal entropy 

(associated to the function F = 0). 

For attractors there is a second, more geometric, canonical equilibrium state. 

For each point x e A and t > 0 we can consider the map Dcpt: TXM -> T ^ M 

and its restriction Dcpt: E" E^X . We define Xu(x) = lim^ j log Det (DcpjE^), 

which we call the expansion coefficient of 9 at x e A. Thus we have a well-

defined map Xu : A -» R. When cpt is C2 it is known that the splitting x h> © E^ 

is Holder continuous (cf. [39]) and so we see that x h» Xu(x) is Holder continuous. 

The value Xu(x) has an intuitive interpretation as the infinitesimal 

expansion along the unstable bundle as the point x moves along its orbit. We can 

associate to -Xu a unique equilibrium state m supported on A. This measure is 

called the Sinai-Ruelle-Bowen measure (S.R.B.-measure). 

We define the basin of attraction B(A) c M of an attractor cpt: A -» A by 

B(A) = {x G M : d((ptx,A) -> 0 as t -> + 00} (or equivalently, B(A) = U Ws(x)). 

The following result gives the most important characterisation of m: 
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THEOREM li.i. For almost all x e B(A), with respect to a Riemannian volume on 

T 
M, we have ^ jF((ptx)dt-»/Fdm as T-> + oo, whenever F e C°(M). 

o 

PROOF. 

Let U c B(A) be an open set with (1 (ptU = A and let F e C°(A). For 
t = 0 

any 8 > 0 let E(5) = {x e U : fiml ̂  J F(cptx)dt- JVdm I > 8}. We want to show 

that the volume of E(8) is zero, then the result is immediate. 

We choose e > 0 sufficiently small that for d(x,y) < e and 0 < t < 1 we have 

lF(cptx) - F(cpty)l < 8/4. If we define Cn(a) - {x e U : I ^ jF(q>tx)dt -/Fdm I > a}, 

a > 0 , then 

E(8)c 
oo no 

N = On = N 
sxc 1 » (H.l) 

and 
OO 00 

N = On = N cni aix 
7 

ax qixu .3 
'v4 5) (11.2) 

We fix N > 1 and construct a family of finite subsets Sn c Cn(8/2) n A, n > N, 

such that Sn is a set of maximal cardinality satisfying: 
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(i) Bx(e,n)nBy(e,k) = 0 , x e S n , y e S k , N < k < n 

(ii) Bx(e,n) n Bx<e,n) = 0, x,x' e Sn , x ^ x' 

where Bx(e,T) = {y e M: d((ptx, cpty) < e , for all 0 < t < T}. Choose e > a > 0 

such that B A(a) = {y e M : d(y,A) < a} c U . 

LEMMA 11.2. BA(a)n U Cn£s)< U U Bx(2e,k). 
n = N 4 k = NxG^k 

PROOF OF LEMMA n.2. If y e BA(a) n CnCj 48), n > N, and y e W^(e), with 

z e A, then z e (1^(8/4) n A. By the maximality of {Sm} we conclude that 

Bz(e,n) n Bx(e,k) ^ 0 for some x e Sk, N < k < n. Therefore, 

y e W^(e)cBz(e,n)cBx(2e,k). 

The proof of the following technical lemma can be found in [17]: 

VOLUME LEMMA. For every e > 0 there exists A= A(e)>l with 

4 Volume(BY(£,T)) 
-i-< ^ < A , for all XG A , T > 0 . 

exp - j\u(q>tx)dt 
0 
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Combining these two lemmas we see that: 

Volume (BA(a)n (J Cn4 8)) 
n = N 4 

00 ^ 
<A £ Z exP- f^u(9tx)dt. (11.3) 

k = N x € Sk 0 

We next define VN = U U„ Bx(e,k), where the union, as we have observed, 

is disjoint. 

k = N x € Sk 

LEMMA 11.3. lim volume (VN) = 0. 
N -* oo 

PROOF. For x e Sk c Ck(8/2) we have Bx(e,k) c Ck(8/4) , from the definition 

of e > 0. Thus VN c [} Ck(8/4). (11,4) 
k = N 

Since m is ergodic, m(E(8/4)) = 0 by the ergodic theorem. Thus 

( 00 +00 \ 

D U Ck(5/4) (by (11.2)) 
N = Ok «= N 1 

00 
= lim m( U Ck(8/4)). 

N-•+00 vk = N t 

О = m(E(5/4)) > m 
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and the result follows from (11.4). 

By the volume lemma we can write: 

oo k 
m(VN) > A X X exP - fXu(cptx)dt-> 0 as N-> oo , 

k = N x € Sk 0 

and substituting directly into (11.3) we conclude that 

Urn Volume (BA(a)n Q c J y S ^ O . 
N^co n = N V4 ' 

Therefore, by (11.1) we have Volume (B A(a) n E(8)) = 0 . To remove the B A(a) 

we observe that: 

(i) <ptE(8), for all t > 0 

and (ii) (ptU c BA(a) for all sufficiently large t , 

so we deduce that Volume (E(8)) = 0 . 

To complete the proof of the theorem, we need a uniform result for 

F e C°(M). By a standard argument it suffices to take a countable dense family 

{Fn}<C°(M) and the union of the sets E(8) still has zero volume. 
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If A = M and there exists a (p-invariant measure V which is equivalent to 

the volume then by comparing the above Theorem with the usual Birkhoff ergodic 

theorem we see that V is the SRB-measure. Therefore, for the geodesic flow 

example the SRB-measure is precisely the Liouville measure. 

We now have two canonical measures for C2 attractors; the measure of 

maximal entropy jx, and the SRB-measure m. In certain special cases these two 

measures will coincide, but generically they will be different. When these two 

measures are the same we shall say that the flow is synchronised. A trivial 

sufficient condition for a flow on an attractor to be synchronised is that the function 

A,u is constant. 

EXAMPLE 1. Consider the hyperbolic toral automorphism 

(x,y) + Z2 -»(2x+y, x+y) + Z2, 

and let r : R2/Z2 -* R+ be a constant function. For the associated suspended flow 

cpt: M -> M the manifold M is an attractor for which Xu is constant, and 

consequently the measure of maximal entropy and the SRB-measure M are both 

equal to the (normalised) Lebesgue measure on M. 

EXAMPLE 2. Let S be a compact surface of constant negative curvature K = - 1 . 

Such surfaces have an associated geodesic flow q>t: M -> M on the unit tangent 

bundle M to S. This is a hyperbolic flow with A = M (cf. Appendix IV). The 

algebraic presentation of this flow takes the form M = G/T where ± I e T c G = 

SL(2,R) and T is a co-compact subgroup. The flow is written 9t(gT) = gtgT, 

where gt = diag (el,e_t) (cf. Appendix IV). 
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The unstable manifolds for cp are the orbits of the horocycle flow 

corresponding to the matrix ht = ^ * j , t e IR. By simple algebra we see gths = 

h tgt. Letting s -> 0 we have Det (D(ptl = el. Thus Xu(x) = lim - log (el) = 1. 
se t 0 1 

We conclude that Xu = 1 and the two canonical measures coincide, and are equal 

to the Liouville (or Haar) measure on M. 

When the two canonical measures are not coincident it is possible to 

reparameterise the flow so that the resulting flow is synchronised. 

Let a : A-> DR+ be a strictly positive continuous function and define a map 

t 

k : A x IR IR by k(x,t) = Ja(cpux)du . This map has a unique 'inverse' defined by 
0 

k(x,£(x,t)) = £(x,k(x,t)) = t for all x e M, t e R. We define a new flow \|/t: A A 

by \|/t(x) = cp£(x,t)(x). This flow has the same orbits in A as the old flow cpt: A -> A, 

but with a different parameterisation. At each point x G A we have Dx\|/ = 

oc(x)"1 Dx(p, by the chain rule. In particular, oc(x)"1 represents the 'change in 

velocity' between the two flows. 
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For any (p-invariant probability measure V there is a corresponding 

dv' oc(x) 
\|/-invariant probability measure V' with V ~ V' and such that — (x) = J adv . 

Using Abramov's theorem we can related the entropies of the measures V and V' 

(with respect to the flows cp and \|/, respectively) by h(\|/,V') = h((p,V)//ocdV. 

If T is a closed orbit for (p of least period X(x) then it is again a closed 

orbit for \\f of \iMeast period 
Y 5X° 

0 
a(cptx)dt (x G x). 

PROPOSITION 11.4. If a Ck hyperbolic flow (pt : A -> A is reparameterised by a 

Ck function a : A-»IR+ then the resulting Ck flow is also hyperbolic. 

00 

PROOF. We define a function z : A x Es -+ DR by z(x,t) = a(x) J l(——) du, 

which converges to a continuous function since £ e Ex . We introduce a new 

bundle F = + z(x,£) ^ : £ e Ex }. To show this bundle is invariant under \(/t 

we want to show D\|fsl£ = F^ x or equivalently, D\|/s(£+z(x,{;) ^ ) = 

D(pt̂  + z(cptx,D(pt^)E^x where t=£(x,s) and s = k(x,t), as before. 
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To establish this identity it suffices to differentiate both sides, and the 

equality corresponds to (^+z^)(a) = az \ where we differentiate with respect to 

(x£) h> (cptx, Dcpt̂ ). The validity of this equality comes from substituting the above 

definition of z. The D\|/ invariant bundle Fs can easily be seen to be uniformly 

contracting. 

Similarly, it is possible to construct a D\|Mnvariant bundle F11 which is 

uniformly expanding (for example, by repeating the above construction with (p_t 

replacing (pt). Therefore, \|/t : A -> A has the hyperbolic splitting TAM = E°©FS©FU. 

The other properties required for \|/ to be a hyperbolic flow follow immediately 

from those for (p. 

,u « u 

We can relate the expansion coefficients k^, k : A -+ IR+ for the flows cp 

and y , respectively, using the above proof of the proposition as follows: 

0 DVs 0 The maps v h> v + z(x,v) ^ l • D(ptv + z(cpx, Dcp£) E ^ h> Dcprv have 

jacobians G(x), Det^DxjHF^j, G((ptx)~1 respectively and the composition 

vh>Dcptv hasjacobian Det ^DcpjE" j . 
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If we write (pu(x,t) = J^(cpux)du = log Uac (D<D I E^) I and 
o 

s 
\|/u(x,s) = f Xy(\|fux)du = log Uac (D\|/SIF" ) I then we deduce that 

o 

cpu(x,t) = Vu(x,s) + g(x) - g(cptx), 

with g = log lG(x)l, and 

\|/u(x,s) = cpu(x,£(x,s)) + g(\|/sx) - g(x). 

We return to the problem of reparameterising a flow so that the new flow is 

synchronised. It is useful to make the following standing assumptions: The flow 

(pt: M -> M is of class C2 and the hyperbolic splitting TAM = E° © Es 0 Eu is 

C1 (and thus so is the map Y Uy : A -> R+). 

We come to our main result on synchronised flows: 

THEOREM 11.5. For a hyperbolic flow (pt: A A on an attractor, with the above 

properties, reparameterising by a(x) = KAu(x) for any K > 0, gives a C1 

synchronised flow. 

PROOF. With the choice a(x) = KAu(x) we have \|^(x,s) = cpu(x,£(x,s)+g(\)/sx)-g(x) 

= Kt + g(\|/tx) - g(x). In particular, the weighting associated to each closed orbit x 

takes the form \j/u(x,A,(x)) = KX(x) (x e x). However, if we lift this to a modelling 

suspension we see that the functions whose equilibrium states correspond to the 
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measure of maximal entropy and the SRB measure have the same values around 

closed orbits. It follows by Livsic's theorem (Proposition 3.7) that these functions 

differ by a coboundary. Therefore, we conclude that the equilibrium states on the 

suspension and thus the canonical measures on A coincide. Thus the flow \|/ is 

synchronised. 

In chapter 9 we considered various distribution results for closed orbits x 

relative to their least periods X(x). (In particular, the spatial distribution of these 

orbits is relative to the measure of maximal entropy.) However, we can now 

consider a parallel analysis where we replace the least period of x by the weight 

y (x) 
Фи(т) = J X,%tx)dt, 

о 
which represents the total expansion in the unstable direction 

around the orbit x. By the preceding theorem we can also interpret it as the least 

period of the closed orbit x relative to the new flow \|/, when K = 1. This latter 

interpretation allows us to reformulate some of the asymptotic formulae for 

hyperbolic flows (from chapter 9). 

THEOREM 11.6. Let (pt: A -> A be a hyperbolic flow on an attractor and let 7iu(t) 

= Card {x : (pu(x) < t} , for t > 0 . Then 

either ?cu(t) ~ eVt 

or 7Cu(t) ~ e e 
e - 1 [t] 

(depending on whether y/ is topologically weak-mixing). 
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Here we have used the fact that h(\\f) = 1. 

THEOREM 11.7. Let cpt: A -» A be a hyperbolic flow on an attractor with SRB 

measure \i. 

y p (t) c 
e 

x<X(T)-x + £ — — -»jFd^, as x-* + «>, forall FeC°(A) . 
-<P CO ^ e 

x < X(T) < x + e 

This follows immediately from remarks at the end of Chapter 7. 

The hypothesis that the splitting E° © Es © Eu is C1 was largely made for 

convenience. It is satisfied for certain well-known examples, the most important 

being geodesic flows for negatively curved surfaces. However, as was observed by 

Plante, it is frequently false. In these cases many of the results of this chapter 

remain valid, except that we must deal with the possibility that \|/ : A -» A is only 

Holder continuous, which proves to be only a technical complication. 

Notes 

The SRB measure originated in the work of Sinai on Anosov systems and 
Gibbs measures in 1972 [94]. Ruelle extended Sinai's work to the context of Axiom 
A attracting diffeomorphisms [81]. Finally, Bowen and Ruelle developed the 
parallel theory for Axiom A attracting flows in 1975 [17]. It is in this last article that 
the proof of Proposition 11.1, including a proof of the omitted 'Volume Lemma' can 
be found. 

The idea of synchronisation may be found in [69]. 
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A good reference for the algebraic definition of the geodesic and horocycle 
flows is Cornfeld, Fomin and Sinai [25]. 

The proof of Proposition 11.4 for Anosov flows is due to Anosov and Sinai 
[6]. The modifications for the general case appear in the appendix to [69]. 

The distribution results for weighted orbits are due to Parry [69]. 
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CHAPTER 12 

CHEBOTAREV THEOREMS 

FOR SOME NON-COMPACT GALOIS EXTENSIONS 

In Chapter 8 we considered equidistribution results for compact Galois 

extensions of flows of finite type and in Chapter 9 we applied these results to 

compact Galois extensions of hyperbolic flows. Here we shall consider certain 

non-compact Galois extensions. 

The canonical case will be a Galois extension by Zd, d > 1. Let a : XA -> XA 

be an aperiodic subshift of finite type. Consider the extension a : X A x Zd-*XA x Zd 

defined by a(x,z) = (ax, g(x) 4- z), z e Zd, where g : XA-» Zd is a locally constant 

function. Without loss of generality we may assume g is a function of two 

variables, i.e. g(x) = g(x0, x^. 

Since Zd is an abelian group we need only consider the case of one-

dimensional representations (i.e. characters) % : Zd -> {z e <C : Izl = 1}. Following 

the approach in chapter 8 we introduce an L-function associated to the suspended 

flow <jftt: Xf -> Xf defined by a strictly positive function f e F0 . 

We define 
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L(s,x) = exp £ ~ X X(gn(x))e-shfnW (12.1) 
n = 1 n anx = x 

where f*(x) = f(x) + f(ax) +••-+ fia^x), gn(x) = g(x) + g(ax) +-••+ g(an~1x) and 

h = h(Gf) is the topological entropy of the flow. The complex function (12.1) can 

be seen to converge to a non-zero analytic function for !£(s) > 1 by comparison 

with the usual zeta-function (cf. Chapter 6). 

Since % o g : XA C satisfies \% o g| = 1 we can write % ° g(x) = e27rikW, 

for some function k e F0 (determined up to an element of C(XA,Z). By 

Proposition 1.2 we can replace f by a function in FQ which differs, at most, by a 

coboundary, and in particular defines the same L-function. (We shall maintain the 

same notation.) 

We write L(s,%) = £(-shf + 27rik), where £ is the general zeta-function 

studied in Chapter 5, and by theorem 5.6 we note the following: 

PROPOSITION 12.1. L(s,%) has a non-zero analytic extension to a neighbourhood of 

^(s) > 1 except for poles s = 1+it where k - thf / 2u is cohomologous to an element 

of C(XA,Z). 

The characters % : Zd -> C are elements of the torus dual space Zd = Rd/Zd 

of Zd. The map L(s,%) can easily be seen to be analytic (on the torus) using 
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the identity L(s,%) = £(-shf+27cik)) and Theorem 5.6. When we take %= Xo to be 

the principal (trivial) character then L(s,x0) = £(s) reduces to the usual zeta-

function. Since £(s) has a simple pole at s = 1 we see that (s,%) h> L(s,%) is 

singular at (l,x0)-

To proceed we shall make two assumptions about the domain of L(s,%) 

which we shall later justify in certain cases. 

(I) L(s,x) is analytic at (l+it,%) ± (ljfo) • «(s) > 1. 

(II) In a neighbourhood of (l,%o) the pole s= s(%) for L(s,%) (with 

s(x0) = 1) is smooth as a function of % and Vs(%) I x=%^ = 0 and 

det.V2 ^(s(x))lx=x^<0, where V and V2 denote the gradient 

and the Hessian matrix, respectively. 

The logarithmic derivative of L(s,%) is 

L,(s,Z)/L(s,%) = 
00 

k = 1 
1 

. k k 
G X = X 

Y(gk(x))hf*(x)e-Shfk«. (12.2) 

If oc,P e ZD then we have an orthonormality relation: 

„n n R /Z 
%(-a)x(P) d% = 1 if a = 6 

= 0 if a?t p 
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(integrating with respect to Haar measure). 

If we fix oc e Zd then applying this orthonormality relation to (12.2) gives: 

ri(s) = S r X hfk(x)e-shfkW 
k = 1 k k 

o x = x 
X(g (x)) = a 

d d 
IR /г 

X( -a ) L'(s,X) 
Us,X) d y (12.3) 

(where ri(s) converges for ^(s)>l) . 

By assumption (I) and the compactness of Rd/Zd we see that t|(s) is analytic in a 

neighbourhood of {1+it : t ^0} . If we choose a small neighbourhood U of x0 

then 

J / V L (s, X) ;L(s,x) * 
if 

is analytic in a neighbourhood of the half-plane $is) > 1, by Proposition 12.1 and 

assumption (I) again. It remains to analyse the contribution to r|(s) from 

%(-oc) L (s, X) dx d%, for small neighbourhoods U of x0 and s close to 1. 
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For % e U, we can use the notation of (II) to write 

Lïsjf) 
U.s.%) 

A 
(s-s(x)) 

+ F(s,x), (12.4) 

where A ̂  0 and F(s,%) is analytic for mis) > 1 and the hypotheses on % h> s(X) 

in assumption (II) allows us to apply the Morse lemma: We may introduce 

coordinates (G^...^) e U c [R<yZd satisfying s(%) = 1- (ê H—1-0̂ ) (with 

X = (9lv..,9d)). In particular, we can write: 

L'(s,x) 
Us,X) 

B 

(s-i)+(e1+-+ed) 
G(s,x) (12.5) 

where B 4 0 and G(s,x) is analytic for ^(s) S 1 , by substituting into (12.4). To 

summarise, we have: 

PROPOSITION 12.2. T|(s) is analytic for ^(s) > 1, except for a singularity at s = 1 

of the same order as 

A(s) = B B 

(s-i)+e1+...+ed) 
de^-dOd. 
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We may restrict attention to neighbourhoods U of the form U = {(01,...,6d) : 

01+...+GT<e2} , for e > 0 arbitrarily small and the evaluation of A(s) becomes an 

exercise in integration. 

LEMMA 12.3. 

(i) For d = 1, A(s) = C^s-l)"172 

(ii) For d = 2, A(s) = C2 log (s-1) 

(iii) For d = 3, A(s) = C3(s-l)1/2 

(iv) For d > 4, A(s) = Cd(s-l)(d"2)/2 

(up to lower order terms) with Cd constants independent of U. 

Now we have familiarised ourselves with the behaviour of r|(s) in the 

domain !£(s) > 1 we are in a position to study 

RCA(T) = R 1 

where the summation is restricted to those x e Fixk for which ehf (x) < t and 

X(gk00) = a- T^e function 

Va(t) = I,hfk(x), 

where the summation is similarly restricted, is a Stieltjes function for Ti(s). In other 

194 



1.D EXTENSIONS 

words 

TI(S)= Jt-sd\Ka(t) 
1 

for $is)> 1. 

To use the method of Chapter 6 to derive asymptotic formulae for na we 

need to invoke a more general Tauberian theorem than the one due to Ikehara and 

Wiener. The following is due to Delange (cf. [26]). 

THEOREM 12.4. Let \|/(t) > 0, t > 0 be monotone non-decreasing with r|(s) = 

00 
J rs d\\f(t) analytic for %£s) > 1 except for a singularity A(s) at s = 1 (see 
i 

Lemma 12.3). 

g0(s) 
(i) If A(s) = x + gt(s) where go,gi are analytic for !£(s) > 1 

(s-l)P 

with C = g0(l) * 0 and (J e IR - {-Z+ } rten \|f(t) — 
npjdogt)1^ 

(where T(s) denotes the gamma function). 

(if) J/ A(s) = C log (s-1) + g(s) where gx (s) is analytic for !£(s) > 1 

and C ^ 0 tfieii w(t) - . 
Y logt 
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By combining Lemma 12.3, Proposition 12.2 and Theorem 12.4 we can arrive at 

asymptotic estimates of ya(t) in all cases except d = 2v, with V > 2. However, 

we can deal with these missing cases as follows: 

We introduce the function: 

00 
§(s) = I r £ nv(hfk(x))^i e-shfkW , for fltfs) > 1 , 

k = 1 okx = x 
k 

X(g (x)) = a 
then since we can write 

d 
ds 

v , LYS.YÌ 

LYS.YÌ 

00 

k = 1 

1 
k 

a x = x 
Y(gk(x)) (hf*(x)We-sh{k« 

we have the identity 

Ç(s) = 
d d 

ID t~W 

LYS.YÌ d 
ds 

os 
LYS.YÌ 

L(S,x) ps 

by the orthonormality relation. 

As before we can choose coordinates (81,...,8D) e U c Rd/Zd in a neighbourhood 

U of %o t0 arrive again at the identity (12.5). However, since 2v = d we can 

explicitly integrate 
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1 

u (s-i)+ e1+...+eH 
dei...ded = c 

S-l + G(s) 

where U = {(0lv..,9d) : ei+...+ 0d < e2} , C ^ 0 and G(s) is analytic on a 

neighbourhood of !£(s) > 1. 

If we denote pa(t) = X 'n^hf^x))^1 then the Ikehara-Wiener Tauberian 

theorem applied to 

00 
« s ) « Jr*dpa(t) 

1 

which is analytic for %£s) > 1, except for a simple pole at s = 1, gives pa(t) ~ Ct. 

By a repeated application of the Abel summation formula we can deduce that 

Va(t)~Cdt/(logt)v. 

We summarise our conclusions as follows: 

PROPOSITION 12.5. 

(i) For d = 1 , y0(t) - qt /Oog t)l/2 

(ii) For d = 2 , \|/a(t) ~ C2 t/log t. 
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(Hi) For d > 3 , Va(t) - Cd -¡¿^6/2 • 

It is more natural to obtain asymptotic estimates for 7Ca(t) = Fixk 1. By odifying 

the arguments at the end of Chapter 6 one derives the following: 

THEOREM 12.6. Under assumptions (I) and (II): 

(i) For d= 1 , ^ ( 0 - ^ ^ 3 / 2 

(ii) For d= 2 , Wa(t)~C2 ^ 2 

(Hi) For d > 3 , rca(t) - Cd Wa(t) (logt) d/2+1~C2• 

We return now to examples for which the hypotheses (I) and (II) are 

satisfied. We observe that when % = %0 assumption (I) requires the flow to be 

weak-mixing (cf. Chapter 6). 

Let (pt: M -> M be a geodesic flow for a compact surface S of negative 

curvature, with genus g>2 . The first homology group for S is H1(S,Z)^Z2s. 
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Let Tlv..,Tk be Markov sections for the flow. For any fixed point s e S 

we choose curves oĉ  : [0,11 -> S, 1 < i < k, with 0^(0) = p and oc^l) in the 

projection of T j c M to S. Whenever A(i,j) = 1 we choose geodesic arcs Yij 

from the projection of Tj to the projection of Tj, and associate a closed curve c^ = 

aj ° Yij ° ai based at p . 

Let a : X A -> XA be the associated subshift of finite type, with suspended 

flow afft: X^-> X^. We define an extension a : X A x 2 2 ^ X A x Z28 by a(x,g) = 

(ax,g+g(x)), where g(x) = [c^] e H^S.Z) a Z2* . 

One can see that conditions (I) and (II) are satisfied as follows: For (I) we 

observe that L(l+it,%) = £(-(l+it)f + 27cik) has a pole for t ^ 0 if and only if % is 

a special character (in the sense of Chapter 8). However, this imposes constraints 

on the lengths of closed geodesies {^(x)} which can easily be discounted. For (II) 

we begin by observing that s(%0) = 1 and &(%) < 1 from condition (I) so that we 

immediately have ^^(Z)'x=x0 = 0- Rather than only showing VI s(%)lx=%o = 0 we 

can see that I s(%) s 0 for geodesic flows. This is a consequence of the existence 

of an involution i : M -» M which reverses the direction of the geodesies. Since i 

carries closed orbits to closed orbits of the same period and % ° i = X we deduce 

L(s,%)= L(s,%) and the claim follows. 

Finally, we can write at the symbolic level det. V2$$(X)\X=XQ = Ca2(-hf) < 0, 

where C < 0. However, this must be a strict inequality since otherwise f is 
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cohomologous to a constant, which puts constraints on lengths of closed geodesies 

{^(x)} and this again can be discounted. Applying part (iii) of Theorem 12.6 we 

deduce: 

THEOREM 12.7. Let S be a compact surface of negative curvature with genus g > 2 

and closed geodesies y of length l(y) representing an element [y] e H^SjZ) . 

For any element oce H^SjZ) 

eht 
Card{y:[y]= a, £(y)<t}-C—t 

t 

(for some constant C > 0). 

Finally we want to compare Theorem 12.7 to a result of S.M. Rees on 

Fuchsian groups. (But see also the notes to this chapter.) 

, 2 , 2 1 dx + dy 
Let D2 denote the unit disc { z e C I Izl < 1} and let ds2 = =— 

4 ( l - ( x V ) ) 2 

denote the Poincaré metric on D 2 . We recall that a Fuchsian group is a finitely 

generated discrete subgroup T c Isom (OD2 , ds2) of the isometries of (ID2 , ds2). 

The disc ID2 has constant curvature K= - 1 , relative to the metric ds2 , so that the 

same is true of the quotient surface S = (D2 / T , with respect to the induced 

metric. 

Let T0 < r be a normal subgroup then there is a corresponding covering 
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surface OD2 -> S -> S, where S = DD2/r0 . We shall make the following two 

assumptions on T and r0 : 

(i) S = ID2 / T is a compact surface ; 

(ii) T/r0 as Zd , for some d > 1 . 

(In particular, S is non-compact, and does not even have finite area.) 

Let cpt : M -> M denote the geodesic flow on the (compact) unit tangent 

bundle M of the surface S. This flow is hyperbolic (cf. Appendix IV). Let 

Tlv..,Tk denote a family of small Markov sections for (pt:M-»M and let 

cpt : M -> M denote the geodesic flow on the unit tangent bundle M of the (non-

compact) covering surface S . If n : M -> M is the canonical projection 

(corresponding to the projection map S S) then we can lift the sections Tĵ  ,...,Tk 

to M. We denote this new family by (Tin) , 1 < i < k and n e Zd. This 

construction is similar to that in Chapter 8. 

Next we want to introduce a complex function, associated to the groups T 

and r0 , called the Poincaré series. We fix a point in ID2 (which, without loss of 

generality, we can take to be OG ID2) and let d(gO,0) denote the distance of the 

point 0 from its image gO under the action of g e Isom (ID2) relative to the 

Poincaré metric. We define: 

P(s,T)= X e-sd(g°'°) 
ge r 
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P(s,ro)= X e-sd(g°.°) 

where s e t . (These series can readily be shown to converge in the half-plane 

^ s ) > l . ) 

The group T0 is said to be of divergence type if the limit of P(s,r0) does 

not exist as s \ 1, and of convergence type otherwise. 

THEOREM 12.8. T0 is of divergence type if and only if T/T0 s ZD with d = 1 or 

2 (cf.1761). 

The behaviour of P(s,r0) is closely related to that of the function T\(s) 

(with the choice a = 0). We can write 

f|(s) = X ^ ) e"sVt) 

where x denotes a closed orbit for 9 of least period A,(x). In particular, fj(s) will 

have the same divergence and convergence properties at s = 1 as T](s) (because of 

the standard argument about contributions from boundaries of sections and 

"auxiliary shifts") and we observe that h = 1 (cf. Appendix III). To relate fj(s) 

and P(s,r0) we observe the following: 

(i) There is a natural bijection between closed orbits x for cp and 
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conjugacy classes [g] in T0 . Furthermore, there exists c > 0 such that 

\k(x) - d(0,gO)l < c (The bijection comes from the isomorphism rc^S) ^ r 

and c < 2 diameter(S).) 

(ii) There exist constants A,B > 0 such that the number of elements 

ri(g) in the conjugacy class satisfies: A < n(g) / y(t) ̂  B. 

(For (ii) we note that by an observation due to Milnor the length X(x) is related to 

the word length, for a fixed set of generators, which by a result of Nielson is related 

to r|(g).) 

Clearly, (i) and (ii) show that fj(s) and P(s,T0) have the same divergence 

properties as 8 \ 1 . However, the behaviour of fj(s) (or more precisely T|(s)) is 

given by Lemma 12.3. In particular, we see that these functions diverge if and only 

if d= 1,2. 

We can now consider the consequences of the subgroup T0 being of 

divergence type or not. Let S = DD2/r then we say the associated geodesic flow 

cpt:M->M (on the unit tangent bundle M of S) is 'ergodic' if the only 

cpt-invariant subsets of M are those of zero measure (relative to the volume) or 

their complements are of zero measure. 

These properties are related by the following: The geodesic flow cpt: M->M 

is ergodic if and only if T0 is of divergence type cf. [96]. 
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In these cases there exists a unique probability measure m on the unit circle 

K called the Patterson measure, such that the action of the group r0 : K K 

satisfies g*m = Ig'lm, where g e T0 and the prime denotes differentiation [70]. 

In the case of T this measure can be constructed from the symbolic 

dynamics of Series, as follows: Series constructs an interval transformation f: K->K 

such that when f is restricted to certain arcs I(y) c K it corresponds to the action 

on K of an associated generator g € r [89]. 

Let L : C°(K) -» C°(K) denote the Ruelle-Perron-Frobenius operator 

defined by: 

( L w ) ( x ) % X x ^ , w e C 0 ( K ) . 

We know the following standard result for expanding interval maps: There exists a 

unique probability measure m such that L*m = m, and m is equivalent to 

Lebesgue measure (cf. [25]). 

It is easy to see that L*m = m implies that f*m = If 1m. In view of the 

construction of f: K -> K we see that m is precisely the Patterson measure. 

To complete this chapter we shall state a more general version of Theorem 

12.7 due to Katsuda and Sunada. 
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Let (p t :M-»M bea C00 Anosov flow which is weak-mixing. The 

winding cycle O for cp is a functional on 1-forms w such that O(w) = 

Jw(X)d|i, where X is the vector field generating the flow and |i is the measure of 

maximal entropy. The covariance form 8 is defined by 

t 
S(w,w) = lim 1 / [ fw(X)((pux)du - tO(w)]2 d\i(x). 

We can identify characters % e Horn (H^M.Z), C) with elements of H^M.Z) 

(and 1-forms by deRham). 

PROPOSITION 12.9. V2x=%o^(x) = 4n28 and VIS(x)lx=X() = O (cf Katsuda and 

Sunada [46]). 

Let b be the rank of H* c H1 (M,Z) corresponding to the subgroup 

H* c H^M.Z) generated by closed orbits. 

THEOREM 12.10. If® vanishes on H* then 

ht 

Card {% : [x] = a , X(x) < t} - C b/2 +1 for each a e H 

(for some constant C > 0). 

Notes 

The results in this chapter on non-compact extensions are intended to 
complement the results in Chapter 8 on compact extensions. Most of the material 
we present is derived from work of Katsuda and Sunada [45], [46]. These authors 
give a fairly comprehensive analysis, part of which we summarise at the end of the 
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chapter. Preliminary results for geodesic flows appeared in [47]. 

The result of Mary Rees on divergence type appears in [76]. (The referee 
has kindly pointed out that Guivarc'h also obtained this result. See [35*].) The 
Patterson measure was introduced in [70] and the connection between divergence 
type and ergodicity is described in [96] and [97]. The role of the Ruelle operator in 
describing the Patterson measure is explained in the last section of [88]. 
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THE IKEHARA-WIENER TAUBERIAN THEOREM 

We need some standard facts from the theory of the Fourier integral. (See, 

for example [48].) 

For f G L1 (R) the Fourier transform is defined by 

00 
f(x)= JgWe-^dy 

-00 

00 
f(0)= Jg(y)dy. 

-00 

(LI) The Fourier transform f is uniformly continuous and lim f(x) = 0 
Ixl -> CO 

(the Riemann-Lebesgue lemma). 

(1.2) When f,f G L^R) then 

-Lf(-x) = f(x). 

If f is integrable and g is bounded or integrable, or if f,g are measurable 

and non-negative their convolution f*g is defined by 
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00 

f*g(x) = J f(x-y) g(y) dy . 
-00 

(1.3) When f ,ge L!(IR) then 

f*g = f.g • 

We shall use the Fejerkernel 

KN(x) = 1 
2TCN 

sin(Nx/2V 
sin(x/2) 

i2 
eLi(IR),N= 1,2,... 

whose Fourier transform is 

(L4) KN(t) = 1 -
N 

when ltl<N 

= 0 when ltl>N. 

(1.5) If felJflR) then f*KN->f in the L^R) norm as N-»oo. 

(1.6) LEMMA 

/ / (p e L°°(IR) and (p(x)-> A as x -> oo fften g*cp(x) -> Ag(0) 35 x->oo 
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for all geUflR). 

PROOF. Evidently 

00 00 
|g*(p(x) - Ag(0)l = I Jg(x-y) (p(y)dy - Jg(x-y) Adyl 

-00 -oo 

x/2 00 
< I J g(x-y) (cp(y)-A)dyl 4- J lg(x-y)l lcp(y)-Al dy 

-oo x/2 

x/2 oo 
< llcp-All̂  J lg(x-y)l dy + e J lg(x-y)l dy (if x is large) 

-oo x/2 

oo 
^Hep-All*, JlgOOldu + ellglli 

x/2 
and this latter expression converges to e llgllj as x-»oo. 

(1.7) WIENER'S TAUBERIAN THEOREM (Weak version) (cf. [103].) 

J/(p€L°°(IR) and KN*cp(x) -> A as x->oo for each N= 1,2,..., then 

g*cp(x) -* Ag(0) as x->oo for a// g e L^R), 

PROOF. We have the following inequalities, 

lg*cp(x) - Ag(0)l < lg*q>(x) - KN*g*(p(x)l + lKN*g*cp(x) - Ag(0)l 

<% - K^gl^ llcpll̂  + lKN*g*cp(x) - Ag(0)l. 
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If N is large then llg - KN*gll1 is small and by the lemma, for fixed N , 

lKN*g*(p(x) - Ag(0)l -> 0 as x -> oo . 

Hence lg*cp(x) - Ag(0)l -»0 as x -> oo . 

(1.8) THE IKEHARA-WIENER TAUBERIAN THEOREM (See, for example [103].) 

Let a(x) be a monotonic non-decreasing and continuous from above with 

a(l) = 0. Suppose 

00 
x~sdoc(x) = — + (p(s) 

for f£j(s) > 1, where the integral is absolutely convergent and where the 

continuous function cp(s) converges uniformly on bounded intervals as %£s) \ 1 

so that cp(l+it) is continuous. Then a(x) ~ Ax as x -> oo . 

PROOF. Integration by parts yields J x"sda(x) = x"sa(x)] + s J x"s_1a(x)dx and 

the hypotheses ensure that x~soc(x) = 0 , when ^(s)>l . Hence 
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J x"sdcc(x) = s J e~(s~1)xoc(ex)e~xdx. 

In particular 

00 00 
— f x"sdx = s f e-(s"1)xdx 
s-1 J J l o 

so that 

**> = f e-(s-1)x(a(ex)e-x-A)dx. 

With p(s) = y(s)/s we have 

p(l+e+it) = J e"itx e"ex (a(ex)e'x-A) X 00 dx 
-oo [O.oo) 

and defining \|/£(x) = e~£x (oc(ex)e~x-A) X CO , p£(t) = p(l+e+it) and A£(x) 
tO.oo) 

Ae~£x X to for e > 0 , we see that for e > 0 
t0,oo) 
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\j/£(t) = A£(t) + pe(t). 

(Note that \|/e, A£ e L^IR) when e>0.) 

A0 is bounded and we shall now prove that \|/0 is bounded. 

Notice that for fixed N , V£.KN = A£.KN + pe.KN 

so taking inverse transforms we have 

N 
ye*KN(x) = Ae*KN(x) + ^ J p(l+ef it) [ 1 - e i x t dt 

and by the monotone convergence theorem 

N 
Vo*KN(x) = A0*KN(x) + J - J p(l+it) [ 1 - eixt dt. 

The limit of this last integral is zero, as x oo, by the Riemann-Lebesgue lemma. 

Hence 

00 
lim \|/0*KN(x) = lim J KN(x-y)A dy 
X -> oo X -> 00 Q 
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x 
= lim jKN(u)Adu 

X -> oo 

= A. 

Let a>0, then 

x+a 

lim \|/0(x)e"a J*KN(x-y)dy 

X oo x 

x+a 
< lim jKN(x-y)\|/0(y)dy 

x-> cox 
< lim \|/0*KN(x) = A . 

X -> oo 
(Here we have used the fact that y0(y)ey is increasing with y.) 

We see therefore that lim \|/0(x) is finite so that oc(ex)e~x is bounded. 
X -> oo 

From the above we have \|/0 - A0 is bounded and 

N 
(Vo - A0)*KN(x) = JL J p(i+it) [ 1 - ̂ j eixtdt 

which tends to zero as x oo by the Riemann-Lebesgue lemma. Hence, by the 

WienerTauberian theorem \|/0*f(x)-» Af(0) as x-»oo when f e L ^ R ) . 
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Now let f = f { and f = f 2 in turn where fpf2 are non-negative with 

00 00 
supports in [-e,0] and [0,e] respectively and J f1(x)dx = J f2(x)dx = 1. We use 

-00 -00 
the fact that ey\|/0(y) is increasing. Clearly \|/0(y) < ee\|/0(x) if x-e < y < x and 

e"e\|/0(x) < \|/0(y) if x < y < x+e . Hence e"ef2*\|/0(x) < \|/0(x) < e^+YoCx) . 

Therefore 

e"eAf2(0) < lilD \|/0(x)<Hm \|/0(x)<eEAf1(0). 
X -» oo X -» oo 

Thus lim \|/0(x) = A. In other words oc(ex) ~ Aex as x -> oo . 
x -y oo 
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UNITARY COCYCLES 

This appendix is devoted to the proof of Proposition 8.2 which says, in 

effect, that a continuous unitary matrix valued function defined on X is 

cohomologous to another such function which depends only on future coordinates if 

the initial function has n'th variations decreasing to zero at an exponential rate. 

To be precise let (X,a) be a shift of finite type and let U(d) denote the 

group of d x d unitary matrices equipped with the usual topology. If F : X -> U(d) 

is continuous we define its n'th variation by 

varnF = sup (lF(x) - F(y)l: x. = y{, lil < n} 

where 11 denotes the Euclidean norm on matrices. For 0 < 0 < 1 let 

U(0,d) = {F : X -> U(d): F is continuous and for all n > 0 

varnF<K0n for some constant K}. 

Here we prove the following analogue of Proposition 1.2: 

(II.l) THEOREM. Let F e U(0,d) then there exists G,F e U(0*,d) such that 

F'(x) = F'(y) whenever xi = y{ for all i > 0 and such that 
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F(X) = G(GX)'1F(X)G(X) . 

We shall first need the following elementary 

(H2) LEMMA. Let U0,...,Un, u0,...,un, V0-Vn, v0-vn be unitary matrices of 

the same dimension. Then 

IU0"*UnU»-U0 " V0-"Vn v«-vo" 

k k n n 
< X lUrVJ+ X lu v̂-lH- X IU.-U-I+ X lVrv.|. 

i = 0 i = 0 i = k+1 i = k+1 

PROOF. To see this one uses the fact that the norm of a unitary matrix is 1. For 

example 

IU0-UnUn-U0-V0-Vnvn-vol 

<IV0U^-U^un-ulUov0 - Uj-U^un...Ull 

+ IUi-U%n-u1-V1'-\vn...v1l 

< IV0u"o-H + IU0VQ - II + lUj-U^ un...Ul - Vr\ vn...Vll. 

In this way we see that the initial quantity is dominated by 
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. 1 lvi-ui>+. S0 lvi-ui'+^+fun un-uk+i - \ + r \ v - W • 

The last term in this latter quantity, however, is dominated by 

n n 

£ lUrUil+ I IVj-Vil 
i = k+1 i = k+1 

as can be seen by the introduction of the identity matrix, using the triangle 

inequality and performing elementary manipulations. 

As in the proof of Proposition 1.2, for each state i let .i 
Jn 

v0 

-00 
be an 

allowable sequence such that JQ = i and define, for each x e X, (p(x) e X by 

<p(x)n = xn for n > 0 and (p(x)n = (i=x0) for n<0 . Define the function 

Gn:X-»U(d) by 

Gn(x) = F(x)"1...F(anx)-1 F(an<px)-.F((px). 

Consider two points x,y e X such that d(x,y) < 62k i.e. x{ = y{ whenever lil < 2k. 

Clearly 

lF(onx) - F(any)l < HFlleG2k-n for n < 2k 

lF(an9x)-F(an(py)l<llFll0e2k-n for n<2k 
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and lF(anz) - F(ancpz)l < llFllG0n for all n and z. 

Writing Un = F(anx), un = F(an(px), Vn = F(any), vn = F(an(py) and applying 

lemma n.2 we see that 

lGn(x) - Gn(y)l <2llFlle(e21S-..-+0k) + 2llFll0(ek+1 + 9k+2+...) 

k k+1 
^ 2IIFIL + 2IIFIL 

0 1-0 0 1-9 

<4l lF l l e^ . 

From this inequality it is clear that {Gn} is a uniformly equicontinuous sequence of 

functions which converges to a continuous function G. Moreover G also satisfies 

the inequality 

ek 
lG(x)-G(y)l<4llFllel^ 

for d(x,y) < 62k, so that G e U(9*,d). 

Now define 

F'n(x) = Gn(ox)-,F(x)Gn(x) 

= [F(ax)-,-F(cn+1)-1 F(an<pax)•••F((pcx)]-, F(x)F(x)1-F(anx)-,F(cn(px)-F((px) 

= F((pax)l-F(on(pax)-1F(on+lx)-F(ax)F(x)F(x)-l-F(onx)-,F(on9x)-F((px) 
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= F(cpox)_L-F(an9ax)-1F(on+lx)F(an(px)-F((px). 

Apart from the central term in this last expression, namely 

F(ancpax)-1F(an+1x) 

we have a form which depends only on the future coordinates of x. It is a simple 

matter to show that the exceptional central term is increasingly negligible as n -> oo, 

so we see that F,N converges to a function F' such that 

F = (G o G)_1.F.G 

and such that F(x) = F(y) whenever x{ = y{ for all i > 0. The proof of Theorem 

II. 1 is therefore complete. 
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APPENDIX III 

HYPERBOLIC DYNAMICS, MARKOV PARTITIONS 

AND ZETA FUNCTIONS 

In this appendix we shall collect together several results on hyperbolic 

systems and symbolic dynamics which were needed in the main text. We shall state 

the principle results and refer the reader to the appropriate sources. In most cases 

we shall attempt to present a sketch of the proofs which convey the main ideas, 

without becoming too involved in technical details. 

§1. Markov partitions and symbolic dynamics. An important feature of 

hyperbolic systems is that they can be effectively modelled by symbolic dynamics, 

i.e. subshifts of finite type for hyperbolic diffeomorphisms and suspended flows for 

hyperbolic flows. We have been principally concerned with hyperbolic flows. 

However, the construction of the symbolic dynamics for these flows is more 

complex than that for hyperbolic diffeomorphisms. For this reason we shall begin 

by describing the constructions for hyperbolic diffeomorphisms as a precursor to 

the flow case. 

§1.1. Axiom A diffeomorphisms. Our account is a summary of Bowen's work in 

[10]. Let M be a C°° compact Riemannian manifold and let f : M -> M be a C1 

diffeomorphism. 

DEFINITION. We call a point x e M wandering if there exists an open 
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neighbourhood U of x such that fnU n U = 0 for n > 1. The non-wandering 

set Q is the complement of the union of the wandering points and is closed and f 

invariant. 

The diffeomorphism f satisfies Axiom A if: 

(a) Q is hyperbolic, i.e. there exists a continuous splitting T^M = Eu © Es 

into a Whitney sum of Df-invariant sub-bundles and there exist C > 0 , 0 < A, < 1 

such that 

llDf»(v)ll < CMIvll for v 6 Es, n > 0 and llDf-n(v)ll < CMIvll for v e Eu, n > 0 . 

(b) The periodic points of f are dense in Q. 

(in.l) PROPOSITION. (Smale spectral decomposition). 

The non-wandering set Q has a decomposition Q. = \)^Q{ where the 

Qj are closed, f^-invariant disjoint sets and flQj is transitive. 

n(i) . • 
One can also decompose each Q.{ as Qj = ^ QJ where the fi^ are closed and 

disjoint with f(aD = Q j+1 ) (1 < j < n(i)-l) and f(Q"(l)) = q ! . Moreover P1® : o|-> o | 

is topologically mixing. 

The above proposition allows us to restrict our attention to f: iQj -»£2j. 

More generally, one can consider any diffeomorphism f : M -» M with a 
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closed invariant set A c M such that: 

(a) f: A-» A is hyperbolic; 

(b) f: A -» A is transitive; 

(c) the periodic points of flA are dense in A; 

00 
(d) there exists a neighbourhood U => A with A = (1 f^U). 

n s - 00 

We call f : A -» A a hyperbolic diffeomorphism, and our principle 

examples are f : Qj-» Qj . Henceforth we shall assume that A is not a single 

closed orbit. 

STABLE AND UNSTABLE MANIFOLDS AND LOCAL PRODUCT STRUCTURE. The 

splitting of TAM is reflected in the existence of certain submanifolds in M itself 

which exhibit expansion and contraction under the action of f. For e > 0 we 

define the (local) stable manifold for x e A by 

WeW = (y e M : d(fnx, f*y) < e for all n > 0} 

and the (local) unstable manifold for x e A by 

we00 = (y £ M : d(f "nx, f"ny) < e for all n > 0} . 

Hirsch, Pugh and Shub [39] showed that for e > 0 sufficiendy small W^(x) 

and w"(x) are C1 embedded discs with TxW^(x) = and TxW"(x) = E " . 
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There exists 8 = 8(e) > 0 such that whenever d(x,y) < 8, x,y e A then 

W^(x) n w"(y) ^ 0 . Furthermore, this interesection is a single point of A, which 

we denote by [x,y]. This property defines a so called local product structure, and 

correspondingly a local map (x,y) -»[x,y]. 

MARKOV PARTITIONS. The underlying idea is to cover A by a finite number of 

closed sets, numbered from 1 to k, say. A point x e A with orbit ...,f_2x, f_1x, 

+00 
x, fx, f^x,... will give rise to a sequence from J~J {l,...,k} , where the ith term of 

-00 

the sequence will correspond to the index of the set containing f lx. We want to 

choose sets which give rise to particularly simple sequences which accurately model 

the diffeomorphism f: A -» A . 

DEFINITION. A set R c A is called a rectangle if whenever x,y e R then [x,y] e R 

and proper if R = (int R ) . 

k 
We want to construct a 'partition' of proper rectangles {Rj}i= x for A, in the 

sense that A = 5 Rj and int R{ n int R- = 0 for i ^ j . In order that the 
i = 1 

+00 
sequences in J3(l, . . . ,k} corresponding to f-orbitsin A should take a particularly 

-00 
simple form we require an additional condition: 
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k DEFINITION. The proper rectangles {Ri}"=1 forma Markov partition for f : A-> A 

if 

(a) For x e int R, with fx e int Rj then f(Ws(x,Ri)) c Ws(fx,Rj) 

and (b) For x e int R{ with f 'x G int Rj then f ^ W ^ x . R ^ c W ^ r t , ^ ) 

where we write Ws(x,Ri) = W*(x) n R{, Wu(x,Rj) = w"(x) n R{. 

(Note. We shall always concern ourselves with the case diam.(Ri)<<e<<diam.(Q).) 

(III.2) PROPOSITION. For a hyperbolic diffeomorphism f : M M there exists an 

arbitrarily small Markov partition for A. 

PROOF, (cf. [10]) We can assume X < 7 , otherwise we replace f by fN with A,N < 7 . 

Let TI > 0 be a constant, to be specified later. As a first approximation let / R ° \ 

be a finite cover for Q where R{ = [Si , 1^ J, with Si , Ui being closed subsets 

of (local) stable and unstable manifolds, respectively, with diam (S^ u U ĵ < r | . 

Generally, | R J will not be a Markov partition. For a second 

approximation (incorporating first order corrections) we choose 
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s \ = sf u {[s°, fSj0]: int R° n f(int R.J) # **} and 

u } - u J u { t f n j J . l f l : i n t R ? n ^ i n t F j ) ^ } 

and set r ) = [s j , u j ] . Here s | S° , uj => and [ J is always well-defined if 

r| is small enough. 

Inductively we define, for each k > 1 : 

Sii = S?_1 u M"1'fSj-1]: int Ri ° f(int RJ} * 0) and 

Uf - uf"1 u { [ f l ^ 1 , uf"1]: int R° n f (int r J ) + **} and R* = [S* , U*]. 

k k-1 k k-1 Hence S- S- , UV 3 U. and [, ] is well-defined, again, if r| is small 

enough. By construction: diam S. , diam U* < TI.K (l+C(2X)4C(2^)2-h") which 

can be made arbitrarily small by our choice of r|. (Here K > 0 is a constant 

independent of k.) 
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Therefore, we can take S7= U SJ.UT- U Uf and set R ' , - ^ . ^ . 
1 v = n 1 1 V = 0 i L 1 1J 

The rectangles R\ satisfy a 'Markovian' condition, but do not necessarily have 

disjoint interiors nor are they necessarily proper. To overcome the first problem we 

take suitable intersections of overlapping rectangles from R'j to arrive at a family 

{R"j}. Furthermore, since the intersection is relative to the interiors of rectangles 

the family {R'̂ } is the desired proper Markov partition. 

The above 'proof, due to Bowen [10], is a generalisation of Sinai's proof for 

Anosov diffeomorphisms [92]. There is an alternative proof, also due to Bowen, in 

[16] (cf. also [90]). 

Let \ ^i} i = 1 be a 'small' Markov partition. We define a 0-1 k x k matrix A by: 

[1 if f(intR.)n(intR.)?M 
A(i,j) = { J 

10 otherwise. 

and we let a : X. -» XA be the associated subshift of finite type. 

00 
(III.3) PROPOSITION. The map n : XA -> A defined by n(x) = fl f"nRXn is 

well-defined. 
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m 
PROOF. Let Bm(x) = fl f"nRx for m>0. Clearly BmDBp for p > m and n = - m n 

diam Bm < KXm for some constant K > 0. Therefore TC(X) is at most a single 

point. We show rc(x) is non-empty inductively: Assume for x6XA that Bm(x) ^ 0. 

Choose w e f"1Bm(ax), z e fBm(o_1x), then [w,z] e Bm+1(x). In particular, 

Bm+1(x) ^ 0. Proceeding inductively, Bp(x) ^ 0 for all p > 0 and therefore 

7c(x) ̂  0. 

The effectiveness of a : XA -> XA in modelling f: A -> A is summarised in 

the following theorem: 

(m.3) THEOREM (Bowen). 

(i) n is Holder continuous and surjective. 

(ii) n is one-one on a set of full measure (for any ergodic measure of full 

support) and on a dense residual set 

(iii) n is bounded-one. 

(iv) fn = no. 

PROOF. 

(i) Since diam Bm < Klm we see that n is Holder continuous with Holder 

exponent a = (log X/log 0) where 0 < 0 < 1 is chosen in defining the metric on 

XA. Since X. , and hence 7c(X ), is compact and 7t(X ) is dense we see that n is 
A A A 

surjective. 
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(ii) n only fails to be one-one when fnx G 3R, for some n where 

00 
3R = U 3R: . Since 3R is closed and nowhere dense, U P3R has a dense 

1 n = - 00 
residual complement, by the Baire Category theorem. 

If 3sRi = |XG 3Ri: Wg(x,Rj) n int R{ ± 3uRi = |XG dR{: wJ(x,Rj) n 

intR: ^ 0J then 3R: = 3SR: u 3uRj . If 3SR = U d% , 3UR = U 3UR> then 
1 J i = l i = l 

f3sR c 3SR and f_13uR Q 3UR. Since 3SR, 3UR are nowhere dense they have zero 

measure for any ergodic measure of full support. 

2 
(iii) We shall show Card 7T1(x) < k2 . Otherwise, choose {x®}^1 G n'\x) 

to be distinct. Next choose N > 0 sufficiently large that {(x^--MXN^}f=+i1 are 

distinct (2N+l)-tuples. But (by the pigeon-hole principle) there must be 1 < i < j < 

k2+l with x ĵL = x®j and x^ = x!?. We can choose yW G (1 f"a int RS) , 
AN 1N a = -N xa 

N 
y(i) G fl f-a int RyCi) by the Markov condition. Then [f«yCi) , f* y(0] G 

a = -N Aa 

fa+N \\^(f-Ny(J), RxGX) c Rx0) and [f̂ yCJ), fayO)] G F*-N w"(f$i), RX<J) c Rx(i) for 

-N<oc<N. Thus (x^, . . . ,x^ = (x-nv,,,xn) > contradicting our hypothesis. 
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(iv) This follows directly by construction since frt(x) = ff fi f-»R, I = 
Ml = - OO N/ 

oo 
(1 f"nRx A = TC(OX). 

n = -oo Xn+1 

It is easy to see that since f : A -> A is transitive then so is a : X -> X. If 

Alv..,An are the irreducible component matrices of A then for each l < i < n , we 

can write A{ = A ^ — Q a " ^ , where A"j(l < i < n, 1 < j < n(i)) are cyclically 

moving classes of symbols. We take £lx = 7i(X ) (1 <i <n) and Oji = n(X :) 
Ai AiJ 

(1 < j < n(i)) (cf. [16] for more details). 

The original proof of Proposition (III. 1 ) by Smale involved stable manifold theory. 

§1.2, Hyperbolic and Axiom A flows. The above approach for Axiom A 

diffeomorphisms can be used for Axiom A flows by adapting these constructions to 

the Poincaré map on certain transverse sections to the flow. Let M be a compact 

C00 manifold and cpt : M M a C1 Axiom A flow. 

DEFINITION. We call a point x e Q wandering if there exists an open 

neighbourhood U of x such that (pt U n U = 0 for all sufficiently large t > 0. 

The non-wandering set Q is the complement of the union of the wandering points 

and is closed and cp-invariant. 

The flow cp satisfies Axiom A if 
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(a) Q is hyperbolic, i.e. there exists a continuous splitting TQM = 

E ° © EU©ES into a Whitney sum of Dcp-invariant sub-bundles and there exist 

C > 0 , \ > 0 such that: 

HDcpt(v)ll < Ce-Hlvll, for v e Es, t > 0 ; 

HDcp_t(v)ll < Ce-̂ llvll, for v e Eu, t > 0 

and E ° is one dimensional and tangent to the orbits of cp. 

(b) The closed orbits are dense in Q. 

(III.5) PROPOSITION (Smale spectral decomposition). We can decompose Q = 

O^Qj, where are closed, (p-invariant disjoint sets and <p\Q{ is transitive. 

The original proof used stable manifold theory (cf. [15]). 

The above proposition allows us to restrict attention to (pt : Qi -> Qi. 

More generally, we can consider any differentiable flow on a closed 

invariant set A c M such that: 

(a) cpt : A -» A is hyperbolic; 

(b) (pt : A -» A is transitive; 

(c) the periodic orbits of cplA are dense in A; 
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(d) there exists a neighbourhood U 3 A with A = t = xx fl cpt(U). 
t - -00 

We call cpt: A -» A a hyperbolic flow, and our principle examples are 

cpt: Qi -> Q. Henceforth we shall assume that A is neither a single closed orbit or 

a fixed point. 

STABLE AND UNSTABLE MANIFOLDS AND LOCAL PRODUCT STRUCTURE. As for the 

case of diffeomorphisms the hyperbolic splitting of TAM under the flow gives rise 

to stable and unstable manifolds. An additional 1-dimensional sub-manifold is 

contributed by E°. 

For e > 0 we define the (local) stable manifold for x e A by 

W^(x) = {y 6 M : d((ptx, cpty) < e, for all t > 0 and d((ptx, (pty) -» 0 as t -> +00} 

and the (local) unstable manifold for x e A by 

w"(x)={yeM : d((p_tx,(p_ty) < e, for all t > 0 and d((p_tx,q>_ty) 0 as t-» +00}. 

For e > 0 sufficiently small these form C1 embedded discs with TxW^(x) = 

Es x and Txw"(x) = E^ (cf. [39] and [90]). 
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The local product structure for hyperbolic flows refers to the following 

property: for every 8 > 0 there exists X] > 0 such that whenever x,y e A with 

d(x,y)< J] there exists unique Iti < 8 such that Wg((ptx) n w"(y) ^ 0. 

Furthermore, the intersection is a single point of A which we denote by <x,y>. 

MARKOV SECTIONS. The basic idea is to construct transverse sections for the flow 

which have a special Markovian property. We require that the Poincaré map 

(induced by the flow) on these sections should transform them in a similar way to 

that of a hyperbolic diffeomorphism and a Markov partition. 

We choose C1 transverse sections {D^u t £ M and subsets Sj c int Tj c 

Tj c (int Dj) n A. We assume that . U (p[o,o]Si = A , for some real number a > 0 

and we choose Ti = ri(5) according to 8 « dist (D^Dj). If (x,y) e T{ x T{ the 
j 

image <x,y> need not lie in Tj . However we may project <x,y> to [x,y] e T{ 

along the orbits of the flow (providing a is sufficiently small). 

DEFINITION. A set R c Tj is a rectangle if whenever x,y e R then [x,y] e R and 

properif R = (int R). 

We want to construct sections {Rj} c 0 T{ which satisfy U 9[o,a] ĵ = A » 

say, and (int Rj) n (int Rj) = 0 for i ^ j . 
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Generically, a point x e A will generate a sequence in YL Jd" as it 
-00 

traverses sections under the flow. Here HnxeintRx , where H : I J R ì - » U R ì is 
n J J 

the Poincaré map. In order that these sequences correspond to a subshift of finite 

type we impose an additional condition. 

DEFINITION. The proper rectangles {Ri}ui are Markov sections for cpt:A->A if 

(a) For x e int Ri with Hx e int Rj then H(Ws(x,Ri)) c Ws(Hx,Rj), and 

(b) For x e int Ri with H"1x e int Rk then H-1(W*(x,Ri)) c W^H'x.Rk), 

where we write Ws(x,Rj), Wu(x,Rj) for the projections of wj (x ) ,wj (x) onto 

Ò r , . 
j = 1 J 

The Poincaré map is discontinuous, so it is preferable to replace H as 

follows. We choose T » a such that Ce~W'°0« 1. We can choose open sets 

{UJ such that IjSj c IJlL c IjTj and each IL is sufficiently small that 
i j i J 

^ U j c 9[0,a]Sia) and 9-TUjc9[0,crfSk(j)-
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This gives maps H* : Uj-» and Hj : Uj -> SKQ (by projecting along orbits of 

the flow) which are continuous on their domains and 'hyperbolic', for suitable 

1 < i(j), k(j) < k. The final refinement is to replace {Uj} by a smaller cover {Vj} 

(whose diameter is small compared with the Lebesgue number of {Uj}). Then for 

each £ choose j = j(£) with V£ c Uj(£). This induces H+ : V£-* SJQ , H~ : V£-+ SKQ . 

Working with these maps we can repeat the constructions of Proposition 

(IIL2) to find rectangles {Rj} which are Markovian with respect to H+, H- : JJL R{ -» 

JJ- R j . (The rectangles can be made disjoint by flowing backwards or forwards 

incrementally under the flow.) If H+, H~ correspond to at most n iterates of 

the Poincaré map H : J^LR^ JJLRj we may replace {R^ by 

{ H - ^ n—nR^n—nHnRin} (again made disjoint, if necessary, by flowing for an 

increment of time). These final sections are Markovian (with respect to H). 

(IIL6) PROPOSITION. For a hyperbolic flow cpt : A -» A there exist (arbitrarily 

small) Markov sections for the flow. 

The only minor complication in the above proof is that in constructing {Rj} 

from {V£} the new Markov sections may interfere with the Poincaré map on the 

old sections, i.e. encroach on the area between sections. (This would complicate the 

final step.) However, by a few extra technical assumptions this possibility can be 

eliminated (cf. [15] for full details). 
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We define a subshift of finite type c : XA -* XA by the k x k matrix 

fl if H(intR.)n(intR.)#0 
A(iJ) = U u • 10 otherwise 

and define n : XA -» UTj by tc(x) = fl H n(intR ) . By analogy with the 
A i n = -oo Xn 

diffeomorphism case: 

(m.7) PROPOSITION. 7C is a well-defined map. 

Let r(x) = inf {t > 0 : (ptK(x) g RXl> for x e XA. We ca/i define a 

suspended flow at: XA-» XA and extend n : XA-» A by rc(x,t) = (ptrc(x). 

The effectiveness of CJ| in modelling cp is summarised in the following 

theorem. 

(H1.8) THEOREM (Bowen). 

(i) K is continuous and surjective 

(ii) n is one-one on a set of full measure (for any ergodic measure of 

full support) and on a residual set 

(Hi) K is bounded-one 
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(iv) 7tCJt= Cpt7C (for all t G R). 

The proof of this theorem parallels that of theorem (III.3), by working with 

c : XA -> XA and H : ILT: -» ALT-. (For full details, cf. [15].) 
A A i i 

Since cpt : A -» A is transitive it is easy to see c : X -» X is transitive. 

§2. Zeta-functions. To construct meromorphic extensions of zeta-functions for 

hyperbolic systems it is convenient to work at the level of symbolic dynamics. We 

can define zeta-functions for the symbolic systems which are explicitly related to 

the zeta-functions for the hyperbolic systems they model. By proving results on 

their domains at the symbolic system level we can infer results about their domain 

for the hyperbolic system. 

As before, it is instructive to study the diffeomorphism case before 

considering the situation for flows. 

§2.1. Zeta-functions for hyperbolic diffeomorphisms. 

Let f : A A be a hyperbolic diffeomorphism. 

DEFINITION. The zeta-function for f : A -* A is the complex function 
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00 n 
£(z) = exp 2^ zn Card (x : (n x = x) , z e C . 

n = 1 n 

(This converges to a non-zero analytic function for Izl < e_h , where h is the 

topological entropy of f: A -» A as explained in Chapter 6.) 

The zeta-function for a : XA -» XA is the complex function defined by 

W n 
L(Z) = exp zn Cart ( x : o x = o) , Z G C . 

n = l n 

(The zeta-function is again well-defined for Izl < e_h .) 

The zeta-function for a : XA -» XA is clearly a simpler object since 

Card {x : onx = x} = trace (An) and so £(z) = exp 
00 

n = 1 

zn 
n 

trace (An) = 1 
det(I-zA)' 

In general there is not a one-one correspondence between closed orbits for 

f and a (and so we cannot expect to identify the zeta-functions for a and f). 

The problem arises from periodic points for f lying on the boundaries of Markov 

partitions. However, Manning produced a combinatorial argument to account for 

these (see for example [33], [90]). Assume f̂ x = x e Tx r v - n T ^ then x is the 

image under % of distinct periodic points x1,...^"1 with periods Nlv..,Nm with 

nlN:(i = l,...,m). Furthermore i 
x1 

m 
ri=l *0J 

m 
i= 1 
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(HI.9) LEMMA. For each j e Z, xj # xjs x̂  where 1 < r < s < m . 

The proof is very similar to that of Theorem (IIL3)(iii), except now m < k . 

In particular, although f̂ x = x, we can only deduce that the (ordered) 

family of rectangles R J (j = l,...,m) is a permutation of R j (j = l,...,m) . Let y 
*n xo 

denote the associated permutation and y = (Yi,...»Yd) be the decomposition into 

cycles. (Clearly the number of xi of period exactly n is precisely the number of 

1-cycles.) Cycles of different lengths correspond to xi whose periods are 

multiples of n. To compensate for this we need to introduce more subshifts. We 

let x Q 2*Ti,",,Tk* denote an (unordered) set of rectangles with non-empty 

intersection and Ixl the number of rectangles in x. For pairwise disjoint x^.../^ , 

with XiU—uxn containing rectangles with non-empty intersection (i.e. the 

rectangles in the union contain a common point), we denote x = (x^...^). 

Given an n-tuple of positive integers i = (ilv..,in), where n = n ^ , with 

lil = i^-'+ijj < k we want to define a subshift <j(i) : XAQ-» XAQ whose symbols are 

elements x with IxJ = L , 1 < j < n. The matrix A(i) is given by: 
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AG)(t,x> 

11 if for each 1 <j<n , there exists a permutation with A^RJ.R^^) = 1 

(1 < i < I), where Xj = { R ^ X } , x'j = { R ^ . . Д ^ } 

0 otherwise. 

There is a unique map : xA(i)-> Л corresponding to к : ХД -> Л . 

(ШЛО) LEMMA (Manning). 

Forf*y = у G A , X(-l)n(i)+1 Card{(a(i))nx = x e Хд(1): rc(i)x = y} = 1. 
i 

This only involves pairing indices i = (^....ДП) and i' = (i^...,^ , m - lil). 

This gives a cancellation (because of the difference in sign of (-l)n(i)+1, (-1)ПС0+1) 

except for i = (m), which contributes the 1. 

The next proposition follows directly from this lemma. 

(111.11) PROPOSITION (Manning). £f(z) = [ Д Ca(i)(z) / П £GG)(Z)] Co(z) • In 
lifodd lileven 

i Ф (m) 

particular, £f(z) has a meromorphic extension to С as a rational function. 

There is a slightly simplified version of the proof above (due to Bowen) 

given in ([18]). 

240 



MARKOV PARTITIONS 

§2.2. Zeta functions for hyperbolic flows. 

Let cpt : A -+ A be a hyperbolic flow restricted to its non-wandering set. Let 

at : XA-» X*A be a suspended flow modelling cp . 

DEFINITION. The zeta function Car(s) for a t : XA XA is the comPlex function 

C r(s) - J ^ l - e - 8 ^ ) " 1 , s e C, where the Euler product is over all closed orbits % 

X 

for . (This converges to a non-zero analytic function of s for %(s) > h, where 

h is the topological entropy of ar.) 

One may also write this as 

00 
Ç r(s) = exp - £ l o g (l-e-sX<T>) = exp X S ( e - ^ ^ / n . 
° x x n = 1 

The zeta function for (pt : A -> A is defined similarly. Each ar-periodic orbit x 

corresponds to a periodic orbit {x,Gx,...,Gn_1x} of least period n, say, with X(z) = 

rn(x) = r(x) + r(ox) +•••+ r(on-{x). 

Therefore, I r(s) = exp X S r ( 2 ^ — ) 
a x = x 
k = least period 
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00 
= exp X — 

m= 1 m 
£ esrmW 

m 
с x = x 

)n 

(where we take m = kn). 

As in the case of diffeomorphisms there is not a one-one correspondence 

between closed orbits for cp and aT, and so ^ r and £9 cannot be immediately 

identified. The difficulty arises with (p periodic orbits passing through the 

boundaries of Markov sections. Bowen showed how Manning's combinatorial 

argument for the discrete case could be modified for flows. (There are extra 

complications for flows over and above those for diffeomorphisms. We want to use 

the Poincaré map on sections to apply Manning's lemma. The disjointness of the 

sections suggests the need for a slightly more involved construction.) 

For each rectangle R;(i = l,...,k) let P{ = {cpt7t(x) : t e [0,r(x)), x0 = i} be 

the "parallelogram" swept out by R;. Given an index i = (ilv..,in) (an n-tuple of 

positive integers with lil = itH—hin < k) we define a set of symbols T = 

(Ra ; x ,̂...,xn) with T1,...,xn c 2{RlRk*, disjoint, but whose sets have a common 

intersection, and Card X: = i:(j = l,...,n), with Ra c $ X: . Furthermore, we 
j = 1 

require that Ra , be the 'leading rectangle' in the natural sense. We define a 

transition matrix indexed by x by 
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A © * * * ) - / 1 i f j ^ T J ' j ^ X J differbyRP'RY w i t h A < V R V = 1 

^0 otherwise. 

There is a corresponding subshift oi : X (I) -» XaCi) and induced maps r^: xA(j)-» R+ • 

T ^ X ^ - A . 

(in.12) LEMMA (Bowen, after Manning). For a closed (p-orbit x of least period I 

we have 

1 = £(-l)n(i)+1 Card{%• : TCjdj) = x, X^) = fl 

(where Xj denotes a closed orbit for cr ). 

The proof is essentially the same as that of Manning's lemma (except that 

there are slightly more details to pay attention to). 

The following result follows directly from the above lemma. 

(in.13) PROPOSITION (Bowen, after Manning). 
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СФ(*)=( M 0 , ) ( s ) / N ç0(i)0o)ç0(s), 
Iii odd I ile ven i* (m) 

where Ça(s) corresponds to cKi) with i = (m). 

(We refer the reader to ([15]) for full details of proofs.) 

Notes 

§1.1. Anosov diffeomorphisms were originally introduced by D.V. Anosov, under 
the name of C-diffeomorphisms, in 1962 [5]. Smale proposed the generalisation to 
Axiom A diffeomorphisms, see for example his 1967 survey paper [95]. 

The stable manifolds and local product structure were examined in a series 
of papers by Hirsch, Pugh, Shub, et al., culminating in their 1975 book [39]. 

The construction of Markov partitions for Anosov diffeomorphisms was 
done by Sinai in 1968 [92]. This followed the highly illustrative but special case of 
two-dimensional toral automorphisms studied by Adler and Weiss. The 
generalisation to Axiom A diffeomorphisms is due to Bowen [10]. There is an 
alternative approach using the 'shadowing property' in Bowen's 1975 book [16]. 
Ruelle proposed a further generalisation to Smale spaces in his 1978 
Thermodynamic Formalism book. 

§1.2. Anosov flows were introduced by Anosov (as C-flows) and were studied 
extensively by him in his thesis, published in English in 1967 [5]. They were 
intended to be generalisations of geodesic flows on compact surfaces with strictly 
negative sectional curvatures. Smale proposed the more general Axiom A flows. 
See, for example, his survey paper [95]. 

The stable manifold theory and local product structure are dealt with in the 
work of Hirsch, Pugh, Shub [39]. 

For 3-dimensional manifolds the symbolic dynamics for Anosov flows were 
constructed by M. Ratner in 1969 [73]. The generalisation to any dimension by the 
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same author followed in 1973 [75]. Bowen's construction of symbolic dynamics for 
Axiom A flows, extending his own work on Axiom A diffeomorphisms, appeared 
in the same year [15]. 

§2. The question of rationality of £(z) for Axiom A diffeomorphisms was 
originally posed by Smale in his article [95]. The problem was completely solved by 
A. Manning in his 1972 Ph.D. thesis. Earlier partial results, include those by 
Guckenheimer and Williams. For topological approaches, based on some form of 
Lefschetz fixed point theorem, see for example Franks [32] (cf. also Fried's paper 
[33]). The extension of Manning's proof to flows is due to Bowen [15]. 
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GEODESIC FLOWS 

Probably the single most important example of an Axiom A flow is the 

geodesic flow on the unit tangent bundle of a compact manifold with strictly 

negative sectional curvatures. We now want to give some indication as to why 

these flows satisfy Axiom A (where the entire unit tangent bundle is the non-

wandering set). 

Assume M is an n-dimensional C00 compact Riemannian manifold whose 

Riemannian metric <,> has strictly negative sectional curvatures. The geodesic 

flow c p ^ ^ M - ^ M (on TjM = {(x,v) e TM : <v,v>x = 1}) is defined as 

follows: 

Given (x,v) G ^ M let y : IR -> M be the unique unit speed geodesic 

through X G M in the direction v at time t = 0 (i.e. y(0) = x, y(0) = v) then set 

cpt(x,v) = (y(t),y(t)). (Thus (pt moves the tangent vector from y(0) to y(t) along 

the geodesic determined by v.) 

To establish hyperbolicity we need a better understanding of D(pt: T(TtM) -» 

T(TtM). For convenience we shall consider TM rather than T{M. 

The map n : TM -» M given by rc(x,v) = x has a derivative Drc(xv): 

T(xv)(TM)->TxM . We can define a second (linear) map K: T(xv)(TM) -> TXM 

247 



W. PARRY, M. POLUCOTT 

by first choosing for % e T(x v)(TM) a curve Z : (-e,e) -> TM tangent to £ at time 

t = 0. For the composite curve a = n o Z : (-e,e) -» M, say, we can set = VaZ 

(i.e. the covariant derivative of Z along a at time t = 0). 

For each (x,v) e TM we can decompose T̂ x v)(TM) = (Ker D71) © (Ker K) 

(cf. [5] for a detailed account). 

Using the Riemannian metric <,> for M we can define a metric for TM 

by <frl>(x.V) = <Dn^ Djcti>x +<K§, Kti>x , for Sji € T(xv)(TM). 

Returning to the flow, we have for every point (x,v) e TM an associated 

geodesic y with y(0) = x, y(0) = v. Given £ e T(x v)(TM) we associate with it the 

Jacobi field along y such that Y^(x) = D7t£, V Y^(x) = K£. The map % » Y^ 

is a linear isomorphism from T̂ x V)(TM) to Jacobi fields on y (where y is 

determined by (x,v)). 

The derivative of the flow Dcpt : T(TM) -> T(TM) is described by 

D7rfD9^)] = Y^(y(t)) and K[Dcpt£)] = (VYY5)(Y(t)). 

To check the hyperbolicity condition it is convenient to introduce an adapted 

frame field for the geodesic y i.e. a system of parallel orthogonal vector fields 

ti(t)9...9tTfi) along y with y tangent to en(t) at t = 0. A C00 vector field Y on 

y is identified with an (n-l)-tuple (y^Ov.^y^W) of C00 functions y i : DR-> IR 

n-l n-l 
(i=l,...,n-l) by Y(y(t))= SyiCOejCt) and V Y(y(t)) = £ y ' ^ t ) . 

i=l 1 i=l 
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The sectional curvatures of M (with respect to < , » have an important 

influence on Jacobi fields Y, and hence on Dcpt. Let R denote the curvature 

tensor for M. (Recall R(X,Y)Z = [VXY, VyX] - V[XY]Z.) We can define an 

( n - l ) x ( n - l ) matrix by R-ft) = <R(en(t), e^t)) en(t), ej(t)>, for each t € R. A 

perpendicular Jacobi vector field on y is defined by t h> Y(y(t))x, where x e R11"1 

and Y(y(t)) is a solution of the ( n - l ) x ( n - l ) matrix differential equation 

Y"(Y(0) + R(t)Y(Y(t)) = 0. 

(For a surface, this reduces to a single differential equation, where R(t) is the 

curvature of the surface at y(t).) 

Since the solutions to this equation are uniquely determined by the initial 

conditions, there are 2(n-l) independent perpendicular Jacobi vector fields. 

The entries R^ for the matrix R are sectional cuvatures for the manifold 

M, which by hypothesis are all strictly negative. This is the main point since the 

solutions either decay exponentially fast (in (n-1) dimensions) or blow up 

exponentially fast (in (n-1) dimensions) cf. [5]. In our previous discussion this 

corresponds to the hyperbolicity of (pt: TtM TjM. 

CONSTANT CURVATURE AND FUCHSIAN GROUPS. There are alternative, 

somewhat more canonical, ways of constructing suspended flows in the case of 

geodesic flows for compact surfaces of constant negative curvature. The origins of 

this approach lie in the work of Morse and Nielsen [59]. The refined version we 
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shall describe is due to Series some of the initial steps having evolved from joint 

work with Bowen. Cf. [19], [87]. Closely related work is due to Adler and Flatto [4]. 

Assume that S is a compact surface of constant curvature K = - 1. Let 

cpt : N -> N be the associated geodesic flow on the unit tangent bundle N = TjS. 

The universal cover S for S, with the metric lifted from S, can be identified with 

the interior of the unit disc D = {z e <C : Izl < 1} with the Poincaré metric ds2 = 

j (dx2+dy2)/(l-(x2+y2))2, where z = x+iy. The deck transformations for the 

projection K : D S form a discrete group T of orientation preserving isometries 

of (D,ds). Such a group is called a Fuchsian group. For the Poincaré metric every 

isometry takes the special form of a linear fractional transformation of the 

type g : z h» (az+b)/(5z+a) where a,b e C, lai2-Ibi2 = 1. 

The geodesies in (D,ds) take an especially simple form. As a point-set they 

are circular arcs in D which meet the unit circle K = {z : Izl = 1} perpendicularly. 

In particular, a pair of distinct points (x,y) e K x K-diag. (K x K) determine a 

unique (directed) geodesic y in D by specifying its asymptotic points, i.e. y(+oo) = 

y, y(-oo) = x. 

Clearly we can identify S = D/T. However, there is a canonical 'copy' of 

S in D. 

For any g e T we call C(g) = { z e D : lg'(z)l =1} the isometric circle of 

g. (This set is a geodesic arc in D.) Since (g_1g),(z) = 1 = (g'̂ XgzJ.gXz) we 

observe that gC(g) = C(g"1). There exists a (non-unique) special choice of (finitely 
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many) generators r 0 c r such that, in particular, the compact region of R exterior 

to all of the arcs (C(g): g e rQ} represents a copy of S in D (with piecewise 

geodesic boundaries). R is called a fundamental region of T. 

Let y denote a directed geodesic on S then y will have many lifts to D. 

Assume, for the sake of argument, we choose a lift y on D with y n R ^ 0. Let 

y have base points (x,y) G K X K (i.e. y *s forward asymptotic to y, say, and 

backward asymptotic to x). 

The geodesic flow 9l:T1S->T1S 'lifts'to a geodesic flow c p ^ ^ D - ^ D 

on the unit tangent bundle T{D of D. Consider the action of cpt on the lifted 

geodesic Y- If v is a tangent vector for R n y then the geodesic flow cpt will 

transport v to the boundary of R and then into a new region gR, g e T0 , say. 

Observe that the action of g"1 moves this region back to R and that Y *s 

replaced by g~*y with new base points (g"1x, g_1y). The 'Markov partition' and 

'symbolic dynamics' we want to describe are association with this action on K x K. 
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Series shows how to construct a (finite) partition of K into intervals (or 

arcs) {1(g): g e r0} (in particular, 1(g) lies in the part of K interior to C(g)) and 

defines f": K -* K by f" 11(g) = g. (There is a minor ambiguity at the finite set of 

endpoints.) Without loss of generality assume that R was chosen with boundary 

pieces which meet perpendicularly (cf. [89]), then relative to a suitable sub-partition 

fl^u i °f GO?): 6 G r0} the endomorphism f" : K -» K becomes Markov, and we 

can write y= ^A(f*")"nIv , say. Similarly, we can define a second endomorphism 

f" : K -* K by f" I J(g) = g (for a partition {J(g) : g e ro» which is Markov 

relative to some subpartition ty} *= { of (J(g): g e r0}, and we can write x = 

f \ (f-)~nJ . 

The sequences z = (..., x2, xp x0, y0, yp...) correspond to a (two-sided) 

shift XA . For z e XA we can associate the directed geodesic y with base points 

(x,y). For "most" geodesies y n R ^ 0 and we define r(z) = length ( y n R ) e [R 

and let 7c(z) e TtD I dR be the tangent vector to y as it enters R. (For a detailed 

account of all cases, including the case y n R = 0, cf. [89]). We extend to 

%: X^-» N by rc(x,t) = (pt7i(x) (with obvious identifications). Finally, we have the 

following analogue of Lemma 9.1: 
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(IV.l) THEOREM (Series) 

(i) 71 is continuous and surjective. 

(ii) n is one-one on a set of full measure (for every ergodic measure of 

full support) 

(iii) n is bounded-one (in fact, utmost 4-to-one) 

(iv 7CÔ  = <pt7t. 

Notes 

The proof that geodesic flows for compact manifolds with negative sectional 
curvatures are Anosov was proved by D.V. Anosov in his thesis [5]. 

Coding geodesies by generators, for surfaces of constant negative curvature, has 
historical roots in the work of Nielsen, Hadamard, Koebe and Morse. The 
foundations for the ergodic theory of geodesies flows were laid by Hedlund [37] (see 
also [41]). 

The systematic account we describe is basically due to C. Series. This 
started with a collaboration with Bowen, which was completed after his death in 
1978 [19]. However, a version of the symbolic dynamics as we describe it did not 
appear until her later 1981 paper [87]. In another paper Series gives an alternative, 
and perhaps more appealing, way of constructing the intervals on K [89]. 
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PERTURBATION THEORY FOR LINEAR OPERATORS 

Here we present a brief account of the analytic perturbation theory referred 

to in earlier chapters. Complete details may be found in Kato's book [44] or 

(sufficient for our needs) in Bhatia and Parthasarathy's lecture notes [8]. 

Let B be a complex Banach space. A map f : C -» B is said to be analytic 

if £ o f: C -»C is analytic in the usual sense for any bounded linear functional 

£ : B -»<C. If Bt , B2 are complex Banach spaces then g : B1 -> B2 is said to be 

analytic if g o f : C -» B2 is analytic for any analytic map f : C -» B { . These 

notions may be localised and in particular one may define real analyticity for maps 

of open subsets of real Banach spaces into real Banach spaces. 

Let L : B -» B be a bounded linear operator on a complex Banach space (if 

B were a real Banach space we could take its complexification and extend L 

accordingly) and define 

Sp(L) = { U C : (Xl-L) is not invertible} 

to be the spectrum of L. 

If the closed bounded set Sp(L) = I u I is decomposed into disjoint 

255 



W. PARRY, M. POLUCOTT 

non-empty sets £ , E2 and if T is a closed simple curve in C disjoint from 

sp(L) which has in its interior and £^ in its exterior then the bounded linear 

operator n : B -» B given by 

Tí = - 1 
2ni ¿ (z-L)'1dz 

is a projection i.e. Ildl = 1 and n2 = n. Moreover we can write B = B{ © B2 

where B1 = 71(B) B2 = (I-7i)B are closed L invariant subspaces and spCLlB^ = £ > 

sp(LlB2) = l2 . 

Assume now that £ = R } consists of a single simple eigenvalue isolated 

(by T) from the rest of the spectrum of L then for any bounded linear operator 

L' : B -* B sufficiently close to L the spectrum of L' may be written sp(L') = 

X'̂  u where Y! ^ = iX'} consists of a single simple eigenvalue isolated from 

E'2 by T. The projection n associated with £ = {X} is called the 

eigenprojection of X and the map V -> n' which associates the eigenprojection to 

the operator is analytic in a neighbourhood of L. 

As a consequence the map L' -» X' which associates the eigenvalue X' to 

the operator V is analytic in a neighbourhood of L. A further consequence is that 

X'2 remains within a preassigned neighbourhood of 5^ if L' is sufficiently close 

to L. 

Finally we remark that if X is an isolated eigenvalue of L of finite 

multiplicity n, then for sufficiently close operators V the spectrum of V within 
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T will consist of eigenvalues X\,...,\'n and L' -> n' will again be analytic. 

However one cannot assert that individual eigenvalues are analytically dependent on 

L' but only that Trace L; = X\+-+'k'n and det V = X\-X'n are analytic. 
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RÉSUMÉ 

Ce volume a pour sujet principal trois théorèmes qui décrivent, dans leurs contextes 

appropriés, la distribution dans "l'espace, le temps et la symétrie" d'orbites fermées 

pour les systèmes hyperboliques. Chacun des résultats est dérivé par des méthodes 

inspirées de la théorie analytique des nombres, et implique aussi l'analyse d'une 

fonction générale zêta. La fonction zêta en question est une fonction génératrice 

pour les orbites fermées et pondérées de la suspension d'un déplacement de type fini 

(ou d'un flot hyperbolique). Pour déterminer les propriétés analytiques et 

méromorphiques de cette fonction zêta, on étudie les valeurs caractéristiques d'un 

opérateur "Ruelle-Perron-Frobenius" associé. 

Les chapitres précédents étudient les propriétés de base de déplacements de 

type fini, le théorème Ruelle-Perron-Frobenius, les états d'équilibre et la pression. 

De là, on passe aux relations entre les propriétés spectrales de l'opérateur ci-dessus, 

et aux orbites périodiques d'un flot suspendu. Les méthodes classiques (théorème 

d'Ikehara) nous permettent ensuite de prouver, dans des conditions modérées, une 

formule asymptotique pour le nombre d'orbites fermées, et aussi un résultat 

d'équidistribution spatiale (pondérée) pour les orbites fermées. On prouve aussi un 

analogue du théorème de Chebotarev, dans le contexte d'extensions de groupe 

compactes de flots hyperboliques. 

Les autres sujets abordés sont 

(i) le transfert des résultats d'un contexte symbolique à un contexte de variétés, 

(ii) un résultat optimal pour les extensions méromorphiques de la fonction zêta, 

(iii) les changements de vélocité et la relation entre la mesure Sinai-Ruelle-

267 



RÉSUMÉ 

Bowen, et la mesure d'entropie maximale, finalement 

(iv) les théorèmes de type Chebotarev pour les extensions Z d , et la mesure 

Patterson-Sullivan. 

On conclue avec des appendices sur le théorème d'Ikehara, les cocycles 

unitaires, les partitions de Markov, les flots géodésiques et la théorie des 

perturbations. 
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