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ALGEBRAIC FERMI CURVES

[after Gieseker, Trubowitz and Knörrer]

by Chris PETERS

Seminaire BOURBAKI

42eme année, 1989-90, ri 723
mars 1990

0. INTRODUCTION

We give an overview of the work [GKT2] of Gieseker, Trubowitz and Knorrer
on the theory of algebraic Fermi curves. A technical summary of the re-
sults can be found in [GKT1]. Here we concentrate more on the background
from solid state physics (to be recalled in §1) and a more leisurely account
of their main results and techniques.
In the discrete approximation one can use techniques from algebraic ge-
ometry, while even in the original independent electron approximation one
works with highly non algebraic analytic varieties where both the geometry
and the analysis are very difficult.
More results in the discrete case can be found in [Bl], [B2], [K] and [PS].
Some related results in the continuum case can be found in [BKT], [G] and
[KT]. See also §8.

1. BACKGROUND FROM PHYSICS

The following model from solid state physics is called the independent elec-
tron model. Details can be found e.g. in [AM]. Fix a lattice r c Rd (d  3)
of ions (so we assume that the ions don’t move) and a gas of electrons,
which move independently under the influence of a potential q(x) which
is periodic in r (this potential describes the total effect of ions plus elec-
trons). Each individual electron is given by its wave function which is a
S.M.F.
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superposition of solutions W : of the Schrodinger equation

with boundary conditions

Assuming that q E L2(Rd jr), (1.1) and (1.2) determine a self adjoint
boundary value problem yielding a discrete spectrum 

’

where every (the energy for crystal momentum k) depends continu-
ously on k and is called the j-th band function. It is periodic in the dual
lattice

To explain what physicists mean by Fermi-surface, let F be a fundamen-
tal domain for the lattice r and let us approximate solid matter by a box
L . F C Rd, L E Z+ containing Ldn = N electrons (n=electronic density
is kept fixed) and take the limit when L goes to infinity. In other words

restrict solutions of the preceding problem to L2-functions on the box L ~ F

having the same values on corresponding boundary points. Then the crystal
momenta belong to I‘~. The Pauli exclusion principle dictates that
each electron can be placed in exactly one energy level (two if we take spin
into account) so that the lowest energy level for the system consisting of N
electrons in the box of solid matter is the sum of the first N eigenvalues for
these momenta. The largest energy of an individual electron for this ground
state of the box has a finite limit when L goes to infinity and is called the

Fermi-energy. The surface in crystal momentum k-space with this energy
is the Fermi-surface. It separates occupied states from non-occupied states

at absolute zero. The shape of the Fermi-surface can be measured exper-

imentally. Its properties in turn predict qualitative behaviour of matter,

e.g. whether it acts as a conductor, semi-conductor or insulator.



More generally one can define the Fermi-hypersurface in Rd for energy A
as the hypersurface in the space of crystal momenta with energy precisely
A. In view of the periodicity with respect to r~ one can replace this Fermi-

hypersurface by its image in For simplicity, let us assume that

r = Zd. Then is a direct product of d circles which we can view
as unit circles in the complex plane. This leads to the description of the

Fermi-variety as

This Fermi-variety can be considered as the fiber over A of a hypersurface
inside (S1)d x R under projection onto the last factor.

Going one step further, we can consider solutions (~, A) varying in (C*)d xC,
yielding a complex analytic variety B fibered in d - I-dimensional varieties
on which the Fermi-hypersurfaces are real cycles of real dimension d 2014 1.

For d = 1 the variety B is a hyperelliptic curve which generically has in-

finitely many branch points. It has been studied by McKean and Trubowitz
in [MT]. For higher d there are some partial results available, see §8. These
are motivated by certain results in a discrete approximation, to which we
will turn in a moment. Here the analogue of the Fermi variety is an al-
gebraic variety and so one can make use of the rich arsenal of results and
methods from Algebraic Geometry.

2. A DISCRETE MODEL

In order to focus on the geometric aspects of the problem Gieseker, Knorrer
and Trubowitz turn to a discrete approximation, which we now describe.
Inside Zd one takes the lattice



where e j is the j-th standard basis vector. Introduce a fundamental domain
forF:

The vector space of complex valued r-periodic functions on Zd with the
usual inner product

Potentials q( x) are in this set in particular they are allowed
to be complex valued. Define the shift operators S; acting on functions

and the discrete Laplacian by

The corresponding discrete problem translates into

and one introduces

In [G-K-T] this variety is called Bloch variety. By the projection B -~

C onto the second factor it is fibered into varieties of dimension d - 1,



the (complex) Fermi-varieties. The fiber is denoted by Fa. The

analogue of the Fermi-surface from physics is the intersection of Fx with

(~1 ~d x ~~~ for real values of ~.

Since ~ _ the function W is determined by its A values on the
fundamental domain F’, where

Now (2.1) translates into the eigenvalue problem for the A x A-matrix
7~ one gets by writing out as acting on the A-dimensional space
{w( x), x E F}. Since this matrix has entries which are linear functions

in the variables we conclude that B(q) is an algebraic
hypersurface of degree A in ~C*~d x C given by the characteristic equation
~~~1, ... , = 0 of the matrix ?~ :

3. THE DENSITY OF STATES

In solid state physics another experimentally observable quantity plays an
important role : the (integrated) density of states. If Hn is the opera-
tor -A + q acting on the space of complex valued functions on zn with
periodicity nr, we can define the integrated density of states function as

= with

=1~(ndA) ~ number of eigenvalues of Hn less than or equal to A.

An easy computation shows that the (non-integrated) density of states func-
tion d03C1/d03BB is equal to



where 8 is the delta-function and is the (analogue of the) j-th band
function. Since the region over which we integrate is precisely the ’real’
Fermi-surface ~~ = Fx n (S1 )d x {~~ we get

is the restriction to FÀ of the relative d - 1-form 03C9 on the Bloch variety
defined by

So the density of states appears as an integral of a holomorphic d - 1-form
over a real d - 1-cycle on FÀ. Note that one can define this only for q
real valued and A real. If now A is a regular value for the projection 7r,

the fibration 7r is differentiably a product near A so the cycle ~a extends

naturally to fibres near the fibre we started with and ~ defines a germ of
an analytic function near A.

The preceding observations formed the starting point for [G-K-T] and led
to some striking results which we can now formulate.

4. MAIN RESULTS IN DIMENSION d = 2

We assume from now on that

a := a1 and b :== a2 are distinct odd primes.

(4.1) Theorem There is a Zarislci open dense set L1 C such that

B(q) = B(q’), q E Li, q’ implies that there exists some 
1,vith q’ (x, y ) = + ~y + 



In other words for generic potentials the Bloch-variety determines the po-
tential up to the obvious symmetries.

To formulate the next results, we need to introduce precise genericity con-
ditions.

(4.2) Definition

( 1) A potential q E ~2(a2/r~ is generic for the Bloch-projection B(q~ --~ C
if 7r has exactly

critical values.

( 2) A real valued potential is generic with respect to the density function if
the analytic continuation of the germ of the density of states function (3.1)
near a real value where it is analytic (that is, near a real non-critical value
of the Bloch-projection) has precisely v ramification points.

The next result states that generic potententials have good properties and
that there are many of them.

(4.3) Proposition (1) The potentials generic with respect to the Bloch
projection form a Zariski open dense subset L2 C ~2~~2~r~.
(2) A real potential which is generic for the Bloch pro jection is generic with
respect to the density of states function and conversely.
(3) Moreover for potentials in ~2 we have
- The Bloch variety is smooth.
- The Fermi curves over 4ab of the critical values of 7r have exactly one

ordinary double point and exactly two ordinary double points over the

remaining critical values.

Finally we have

(4.4) Theorem Let q, q’ E L~(Z~) be real valued potentials and assume
that the germs of the density of states functions for q and q’ near a real



point coincide. If q, q’ E L2 either B(q) = B(q’) or B(q’) = jB(q), where j
is the = (~1 1, ~2~ ~1~.

Combining the previous results we see that the density of states function
for a generic real potential essentially determines the potential.

Remark

One would also want to see from properties of the germ f at A of the density
of states function alone whether the fibre over A is smooth. In fact this

can be read off from the lattice ha generated by analytic continuation of f
inside the ring of germs of holomorphic functions at A. If some continuation

of f yields a germ which is multivalued at A, the fibre over this point
certainly is singular, so we may assume that this is not the case. The result

complementing Proposition 4.3 says that the Fermi curve over A is smooth
when ha has rank 2ab. Moreover, if this is the case, one only has to find v
branch points for f since one can show that there cannot be more of them
in this case. Concerning the proofs we make a few preliminary remarks.
The proof of theorem 4.1 is rather straightforward and uses the geometry
of a suitable compactification of the Bloch variety. We give a sketch in
section 6 after we discuss an intrinsic compactification in the next section.
The proof of Proposition 4.3 is surprizingly subtle and uses several delicate

degeneration arguments, which also play a role in the proof of Theorem
4.4. We don’t say anything about the proof of Proposition 4.3, but we

give a sketch of the long and intricate arguments employed in the proof of
Theorem 4.4.

5. A COMPACTIFICATION OF THE BLOCH VARIETY

Motivated by an idea of Mumford (see [M]), Battig in [Bl] has constructed
the following intrinsic compactification of the Bloch variety .

Consider the algebraic torus T = (C*)~ C (C*)2 x C. We let Ts be the
toroidal compactification of T corresponding to the fan ~ in R~ consisting



of the cones (with vertex the origin) over the faces of the prism of Fig. 1.

The corresponding ’cradle’ (Fig. 2) is a singular complete algebraic variety
with one-dimensional singular locus. The latter is stratified into nine T-

orbits, four of dimension 1 and five of dimension 0. The one-dimensional
orbits correspond to the codimension one cones over the four horizontal
edges of the prism. These four curves have transversal Ak type, two with
k = 2a - 1 and two with k = 2b - 1. The zero dimensional orbits in the

closures of the one dimensional orbits correspond to the zero codimensional
faces. Observe that (C*)2 x C is embedded in TE as the open chart defined
by the torus embedding where cr is the cone 0, 1). We therefore
can take the closure of B(q) in the cradle T~. The resulting variety is

always singular in the four points Pij where it meets the singular locus of
the cradle (see Fig. 2). Blow up these singular points in the cradle and form
the proper transform B(q)~ of B(q).



Before stating the next proposition, recall the notation

= group of a-th roots of unity

J1: : = the set of primitive a-th roots of unity.

(5.1) Proposition (i) The four exceptional surfaces on the blown up cra-
dle intersect the proper transform B~q)~ of B(q) in four curves These

curves are hyperelliptic. They are isomorphic in pairs. The two (isomor-
phism classes of) curves are the Bloch varieties for the one dimensional
potential obtained by averaging over each of the two coordinates.

(ii) There are precisely four other curves Qj added at infinity 
These curves are singular rational curves ordinary dou-
ble points naturally indexed by the elements of J1: x ~cb . The curve Q j
intersects the T-orbit corresponding to the one codimensional cone over the
line through po and p~ (see Fig. 1) in a point R; which is a smooth point



on B(q) .
(iii) The Bloch pro jection 7r : B(q) -~ C extends to a rational map
7f’ : B~q~~ - - -~ ~1 which is everywhere defined except at the points
R;, j = 1, 2, 3, 4. After blowing up these points we obtain the

compactified Bloch variety the map ~r’ extends as a morphism.

The four exceptional curves are sections for this fibration.

(5.2) Remark In [GKT] the compactification is described in a more

complicated, but equivalent way.

6. SKETCH OF THE PROOF OF THEOREM 4.1

Recall the definition of the Fourier coefficients of a potential q E ~2~~2~r~.
For each p = ~ p1, p2 ~ E pa x pb we set

The Bloch-variety B(q) = P(y, ~z, ~~ = 0} determines:
(i) The polynomial P(l, 1, A), whose roots are the periodic spectrum of the
Schrodinger operator,
(ii) The values at q of the function

The last assertion can be shown by looking at the equation of the Bloch-
variety near one of the points Qj (see Proposition 5.1). It turns out that

there are local coordinates (x, y, z) near Q j independent of the potential q
such that the Bloch-variety has an equation



The polynomial P( l,1, a~ belongs to the affine ab-dimensional space

P = polynomials of degree ab with -1 as leading coefficient.

Define a family of algebraic morphisms

sending q to the determinant acting on the periodic functions
L2. Of course = P(l, 1, A) and (~o = ((~(~~ ~) - ~)~ so a fibre
of po consists of precisely those potentials that are related by the obvious
action of the symmetric group ab on L2:

The subgroup 3) C 6ab generated by (n, m) - (n+1, (n, ?~) H (n, m+
1), (n, (-n, -m) has the property that any element a in it preserves
the Bloch-variety: = B(q). We need to see that for generic q
conversely B(q’) = B(q) implies that q’ = E D. To this end fix

p E x and set f = fp. This function takes the same values in the

points of a fibre of pi which are related by an element of D. To decide

whether cr E 6ab belongs to D we use

(6.1) Lemma If = f(q) for all potentials belongs to 

The proof of this lemma is relatively easy if one uses some carefully chosen

potentials.

Next, we remark that

So if {q1,..., qN} is a fiber of the points q1/~, ... , qN/~ form a fiber
of (~i and conversely. So it suffices to show that the function f separates
points in a fibre of 0) not related by an element of 23. It is easily



seen that for |~| small, the map 03C6~ is a finite dominant morphism of degree
N = ~ab ~ _ (ab)!. Note that factors as p, where p : L~ -~ is

the is the quotient map. Likewise f factors as /’ p. There is a Zariski-open
subset U of C and a Zariski-open subset Fi of P such that P E P1 if and
only if there exists E E U with P = for some q E L2 with the following
two properties:
i. The fibre of c~E 1~P~ consists of N points,
ii. The function / separates the points of the fibre of 
Since by Lemma 6.1 the function / separates the fibres of g3o it follows that
U and T~i are non-empty..

7. SKETCH OF THE PROOF OF THEOREM 4.4

Step 1 : the monodromy representation

On the Bloch variety we have an involution i given by

We first divide out B(q) by this involution, obtaining a variety Y(q) with
fibres Y(q)À. If q is generic with respect to the Bloch projection one can
show:

1) Y(q)a is smooth whenever A E D, (D a finite set
of points, called the Van Hove singularities),
2) The fibre over a finite Van Hove singularity con-
tains precisely one ordinary double point which either
is smooth on Y(q) or an ordinary double point. The

second type of singularity is called a spectral Van Hove
singularity, because it lies over a point of the periodic-
anti-periodic spectrum.



3) has four components, the non-isomorphic com-

ponents of two hyperelliptic curves corresponding
to the one-dimensional averaged potentials and two ra-
tional curves. Each of the four points where a rational
curve and a hyperelliptic curve meet is an ordinary dou-
ble point for Y 00 and smooth on Y(q). They define four

vanishing cycles which are easily seen to be homologous
and so yield a class H1 Z) for 03BB close to oo.

These facts suggest to study the monodromy representation

by means of a Lefschetz-type argument. This turns out to be surprizingly
difficult. One lets q degenerate to a generic separable potential (i.e. of the
form q1(x1) + q2(x2)) where the monodromy can be computed explicitly
and then one has to use connectedness of the set of good potentials. The
final result is as follows

(7.2) Proposition i) The monodromy representation (7.1) is absolutely
irreducible.

ii ) For A a negative real number close to 0o the smallest r-invariant sublat-
tice of H1 (Ya, Q) generated by 1 2(03B3~-r(03B1)03B3~), a E D, a) is equal

Step 2: Recovering_, ~,.

Since w is i-invariant it descends to a relative holomorphic one form for the

family denoted by the same symbol. Let a be a non bounding 1-

cycle on Ya. Displace a to a cycle on Ys for s in a small open neighbourhood
U of A, where the fibration is provided with some differentiable trivialisa-

tion. This cycle is still denoted as a. On U we have a germ f a = 03B103C9s
of an analytic function. Let 0 denote the ring of germs of holomorphic



functions near A. Analytic continuation of f Q over paths in P~ B D defines
an injection

A special loop l~ is defined as follows. First, starting from A, go to left

along the negative real axis, make a big circle which clockwise encircles all
Van Hove singularities, then go back to A along the real axis. If g E (9 we

let goo be the germ obtained from g by analytically continuation along the

loop loo.
Let q be a generic real potential and A not a Van Hove singularity. Then

is twice the density of states. Let Ha be the lattice inside 0 generated
by all analytic continuations of the density of states function 1 2f. Choose
g E HÀ such that

1 g is invariant under complex conjugation,
2 goo differs from g.

Let h := g - It can be shown that

where we take the limit along the negative real axis. So from monodromy
alone we have recovered From Proposition 7.2 we see that we can
recover Hi Z).

Step 3: Invoking Torelli’s theorem

If now q’ is another real potential with the same density of states function
near A we can define for s near A an r-equivariant isomorphism



upon setting

If one collects the periods for a basis of the regular one forms for Ys with
respect to a homology basis in a 2g by g matrix, one gets the period matrix
ns for Ys. Different bases correspond to equivalent period matrices. Recall

(7.4) Torelli’s theorem Two Riemann surfaces are isomorphic if and only
if their period matrices are equivalent.

This suggest that we should find the periods of all one forms rather than

only those for the density of states form ces. To do this we have to use

irreducibility of the monodromy representation (7.1) again together with
a deep result: the Theorem of the fixed part due to Deligne. To explain
the consequence of this theorem needed in the proof we have to recall the
notion of Hodge structure of weight w on a finitely generated ~-module H.
It is nothing but a direct sum decomposition of the C-vector space H ~Z C
into subspaces Hk,w-k of Hodge type (k, w - k) with the property that

(conjugation with respect to the natural complex struc-
ture on H 02 C).
The Z-module carries a weight one Hodge structure: 
consists of the g rows of each considered as an element of 

= written out in the basis dual to the given homol-

ogy basis.

The usual linear algebra constructions applied to Hodge structures yield
new Hodge structures. E.g. if Hand H’ carry Hodge structures of weight
w the Z-module HomZ(H,H’) carries a weight zero Hodge structure: a C-

linear 03C8 : H - H’ has type (-i, i) if C 

The consequence of Deligne’s Theorem of the Fixed Part [D, Cor. 4.1.2]
reads as follows:



(7.5) Theorem The weight zero Hodge structure on the Z-module

induces one on the sublattice of homo-

morphisms which are equivariant with respect to the monodromy represen-
tation (7, I~.

Since monodromy acts irreducibly on cohomology with complex coefficients,
Schur’s lemma implies that these equivariant homomorphisms form a rank
one lattice and Deligne’s theorem implies that they all have type (0,0),
i.e they preserve the Hodge types. But then the homomorpism a (see
(7.3)) also preserves the Hodge types, i.e the Riemann surfaces Y(q)a and

have the same period matrices and Torelli’s theorem implies that

they must be isomorphic. From this point on it is not difficult to get a

global isomorphism between the Bloch varieties B(q) and B(q’) respecting
the Bloch-projections.

8. RELATED RECENT RESULTS

8.1 Kappeler in [K] generalizes Theorem 4.1 to any dimension. His proof
is similar to the one from [GKT2] and which is presented in §6, but the
use of the compactification is eliminated since another function is used to
separate the fibres of ~E (see §6 for notation).
8.2 The density of states function can be used to distinguish the spectral
Van Hove singularities (see the beginning of §7) from the other Van Hove
singularities. So for a real potential which is generic in the sense of defini-
tion 4.2. the density of states function determines the periodic-antiperiodic
spectrum.
In the continuum case, if the lattice r is generic in the sense that there are
at most two lattice points on any sphere centered at the origin, the periodic-
antiperiodic spectrum is known to determine the Bloch variety (Theorem
6.2 in [ERT]). So in the continuum case one would like to show that the
periodic-antiperiodic spectrum can be recovered from the density of states



function alone.

8.3 Observe that in the discrete case, the Bloch variety B is the locus of

points in ~C*~d x C where the d + 1 commuting operators

have a common kernel in the space

In other words B is the support of the subsheaf ,C of the trivial bundle

B x Vd given by

Battig shows in [Bl] how for d = 2 one can extend ~C to a sheaf over his

compactification B (see §5). Moreover he rewrites the spectral problem on
certain coordinate patches in such a way that one immediately sees that

the curves Mij (loc. cit. ) are the supports of a sheaf defining the one-

dimensional problem for the potential obtained by averaging q over one of

the two coordinates.

For d = 3 Battig describes in [B2] a toroidal compactification of the complex
Fermi surface FÀ. Here one gets four curves at infinity independent of q
and twelve hyperelliptic curves independent of A, but depending on q. The

twelve curves come in three quadruples of mutually isomorphic curves and

each of these curves is isomorphic to the Bloch variety for the potential
obtained from q by averaging over two of the three coordinates.

It turns out that in the continuum case for d = 3 a certain directional

compactification exists with similar properties. See [BKT] for details (see
also [KT] for the two dimensional continuum case).

8.4 A more or less standard argument shows that the data (jC
is the sheaf considered in §8.3; it is a line bundle on B) gives back the

potential q. See [Mu, §2] and [VKN] for a related situation.



If one could characterize intrinsically from the geometry of B it would
follow that B gives back the potential. In this respect it is useful to note

that one can show that the compactified Bloch variety for d = 2 has first
Betti number zero so that a line bundle is completely characterized by its
Chern class in H2~B~. The problem however is to find a good description of
this cohomology group which would single out Chern classes coming from
potentials in this way.

8.5 Gerard in [G] studies the singularities of the resolvent r(A) of -A + q
on Rd and shows that one can analytically locally extend r(A) around a
spectral value A and the singularities one gets are Van Hove singularities.
Here one has to redefine the Van Hove singularities as being critical values
for the Bloch projection 7r restricted to a stratum of a Thom stratification
for 7r. Also the global problem is considered. A similar statement holds,
but one possibly must add some extra singularities. It would be interesting
to see whether the compactification from [BKT] can be used to see whether
these singularities actually are present, at least for generic potentials.
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