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INTRODUCTION 

INTRODUCTION 

On trouvera dans ce volume les articles issus du colloque international 
sur la théorie de l'homotopie qui s'est tenu au Centre International de 
Rencontres Mathématiques de Luminy du 11 au 15 juillet 1988. 

La théorie de l 'homotopie a connu dans les années 80 des 
développements spectaculaires; le but du colloque était de faire le point sur 
un certain nombre de ces développements et leurs perspectives: deux thèmes 
principaux ont été particulièrement évoqués pendant le colloque et se 
retrouvent dans la plupart des articles de ce volume: 

- l'étude de l'homotopie des espaces fonctionnels, notamment 
lorsque la source est l'espace classifiant d'un groupe fini ou de Lie, dont la 
solution des conjectures de Segal et de Sullivan a montré la richesse. Au plan 
des méthodes, l'accent a été mis sur les suites spectrales d'Adams instables 
et sur les modules instables sur l'algèbre de Steenrod. 

- l'utilisation et la construction de modèles algébriques de 
l'homotopie, particulièrement performants en homotopie rationnelle, mais 
aussi à présent avec des coefficients plus généraux, à savoir des corps 
quelconques ou des sous-anneaux appropriés de Q. 

Ce colloque a permis de réunir une bonne part des spécialistes 
américains et européens du sujet, et a bénéficié à ce titre d'un soutien 
important de la National Science Foundation et du Centre National de la 
Recherche Scientifique dans le cadre de leur accord de coopération; il a 
également bénéficié de l'aide financière des Universités de Paris VII, Paris-
Sud et Nice, et bien entendu de celle de la SMF sous la forme de la 
subvention accordée par le Conseil Scientifique du CIRM et de la publication 
du présent volume. 

Les organisateurs tiennent à exprimer leur reconnaissance à toutes ces 
institutions, ainsi qu'au personnel du C.I.R.M., grâce auquel cette semaine a 
été - comme toujours - aussi riche en échanges scientifiques et humains 
qu'agréable sur le plan matériel. 
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INTRODUCTION 

INTRODUCTION 

This volume contains papers submitted at the international conference 
on Homotopy Theory held at the C.I.R.M. in Marseille-Luminy from July 
11 to 15, 1988. 

Striking progress has been achieved in homotopy theory during the 
eighties. The purpose of this conference was to survey some of these 
achievements and their prospects: two main subjects were especially 
discussed during the conference and can be found in most contributions to 
this volume: 

-The study of the homotopy type of function spaces, in 
particular when the domain is the classifying space of a finite group or a Lie 
group, whose richness has been revealed by the proofs of Segal's and 
Sullivan's conjectures. Among the methods used in this field, unstable 
Adams spectral sequences and unstable modules over the Steenrod algebra 
were emphazised. 

-The use and construction of algebraic models of homotopy 
types, which have proven themselves especially fruitful in rational homotopy 
theory, but also now with more general coefficient rings, namely arbitrary 
fields and suitable subrings of Q. 

A fair number of the experts in the field from America and Europe had 
the opportunity to meet at this conference, which was indeed largely 
supported by the NSF-CNRS cooperation agreement. Financial support was 
also provided by the Universities of Paris VII, Paris-Sud and Nice, and by 
the Mathematical Society of France through the grant distributed by the 
Scientific Committee of the C.I.R.M. and through the publication of this 
volume of Astérisque. 

The organizers of this conference are pleased to express their warmest 
thanks to all sponsoring institutions, and to the C.I.R.M. staff who did their 
usual best to make that week a most profitable and pleasant one. 
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ANICK David J. & DROR-FARJOUN Emmanuel - On the space of 
maps between R-local CW complexes. 

Over a subring R of the rationals, we construct a simplicial 
skeleton for the space of pointed maps between two R-local simply-
connected CW complexes. The construction makes use of an R-local DG 
Lie algebra model for spaces. 

AVRAMOV Luchezar & FÉLIX Yves - Espaces de Golod. 
Nous considérons des fibrations nilpotentes F —» E —» B, où E et B 

sont des CW complexes finis simplement connexes. Un espace X est dit 
de Golod s'il existe un entier n tel que le revêtement n-connexe de X ait 
le type d'homotopie rationnelle d'un bouquet de sphères. Cette notion 
topologique correspond à celle des anneaux de Golod en algèbre locale. 
Nous montrons que si la base B de la fibration est un espace de Golod, la 
série de Poincaré de la fibre F est rationnelle. 

BAKER Andrew - Exotic multiplications on Morava K-theories and 
their liftings. 

For each prime p and (finite) integer n>0, there is a ring spectrum 
K(n) called the n-th Morava K-theory at p . W e discuss exotic 
multiplications upon K(n) and their liftings to certain characteristic zero 
spectra Efn). 

BROWN Edward H. & SZCZARBA R.H. - Continuous homology and 
real homotopy type II. 

In our earlier paper "Continuous homology and real homotopy 
type", we studied localization of simplicial spaces at the reals and 
established an equivalence between the category of free nilpotent 
differential graded commutative algebras of finite type over the reals, 
and nilpotent simplicial spaces of finite type localized at the reals. In this 
paper, we extend these results by eliminating the nilpotent condition on 
the algebraic side, thus proving a conjecture of Sullivan. The main 
technical work consists in introducing local coefficients into continuous 
cohomology, continuous de Rham cohomology, the Serre spectral 
sequence and the constructions involved in real homotopy type. 

CRABB Michael C. - The Fuller index and T-equivariant stable 
homotopy theory. 

In 1967, F.B. Fuller introduced a remarkable index for counting 
periodic orbits of smooth flows. It has become apparent in recent work 
of J. Ize and E.N. Dancer that the natural setting for Fuller's index is 
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T -equivariant homotopy theory, where T is the circle group. This 
paper describes their work in the conventional framework of equivariant 
stable homotopy theory over a base and index theory for fixed-points of 
maps and zeroes of vector fields. 

D R O R - F A R J O U N Emmanue l & SMITH Jeffrey - A geometric 
interpretation of Lannes' functor T. 

In this paper we prove a version of a conjecture of Lannes 
concerning the mod. p cohomology of the space of maps from B Z / p Z 
to a rather general space X. This gives a topological meaning to an 
algebraic functor for modules over the Steenrod algebra, defined by 
Lannes. That functor has proven very useful in understanding spaces of 
maps from classifying spaces. As a corollary we get new proofs of 
several results of Lannes. 

D W Y E R Wil l iam G. & WILKERSON Clarence - Spaces of null 
homotopic maps. 

We study the null component of the space of pointed maps from 
B7C to X when n is a locally finite group, and other components of the 
mapping space when 7C is elementary abelian. Results about the null 
component are used to give a general criterion for the existence of 
torsion in arbitrary high dimensions in the homotopy of X. 

GOERSS Paul G.- Andre-Quillen cohomology and the Bousfield-Kan 
spectral sequence. 

This paper undertakes to exploit the observation that the non-
abel ian homologica l algebra of Quil len and, in part icular , the 
commutative algebra cohomology of Andre and Quillen provides a 
framework for discussing the unstable Adams spectral sequence of 
Bousfield and Kan. We take this observation in a variety of directions; 
for instance, we show that the long exact "transitivity sequence" in 
Andre-Quil len cohomology is related to the homotopy long exact 
sequence of a fibration, and we show that a product in Andre-Quillen 
cohomology can be used to compute the Whitehead product in 
homotopy. 

HENN Hans-Werner. - Cohomological p-nilpotence criteria for compact 
Lie groups. 

We introduce the concept of a p-nilpotent compact Lie group and 
discuss various group theoretical characterisations of such groups. These 
characterizations are then used to generalize cohomological p-nilpotence 
criteria for finite groups due to Atiyah and Quillen to the case of 
compact Lie groups. 
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MARKL Martin - The rigidity of Poincaré duality algebras and 
classification of homotopy types of manifolds. 

We prove that Poincaré duality algebras are characterized by a 
certain rigidity property. As a consequence of this fact, we show that the 
k-isomorphism class of a Poincaré duality algebra H* of top dimension 
n is uniquely determined by the factor H*/Hn , provided k is 
algebraically closed. Using this and usual methods of descent theory, we 
obtain a description of the set of k-isomorphism classes of Poincaré 
duality algebras with the same given isomorphism class of H*/Hn, for 
any field k of characteristic zero. These results are then applied to the 
study of homotopy types of simply connected Poincaré duality spaces. 

MAY J. Peter - Some remarks on equivariant bundles and classifying 
spaces. 

A number of results are given on the relationship between 
equivariant and non-equivariant bundles and their classification. The 
bundles dealt with are the projections to orbits E —•> E/IT, where IT is a 
normal subgroup of a compact Lie group T and E is a II -free T-
space.The base space has an action by G = 1711, and such bundles are 
classified by a G-space B(I1, T). Information about the homotopy type of 
this G-space gives information about the set of equivalence classes of 
such bundles with base a given G-space X . The bundle theory 
considerably simplifies when G acts freely on X, and the main theme is 
the study of the transformation on bundle theories induced by the natural 
projection EG x X—> X. 

VIGUÉ-POIRRIER Micheline - Homologie de Hochschild et homologie 
cyclique des algèbres différentielles graduées. 

Pour toute algèbre différentielle graduée libre (T(V), d) sur un 
corps commutatif quelconque, nous donnons une description explicite de 
deux complexes: l'homologie du premier est l'homologie de Hochschild 
de (T(V), d) et celle du second est l'homologie cyclique de (T(V), d). 
Ces complexes servent aussi de modèles pour calculer l'homologie (resp. 
Thomologie équivariante) de l'espace des lacets libres sur un espace 
simplement connexe. 

WOJTKOWIAK Zdzislaw - Maps between p-completions of the Clark-
Ewing spaces. 

Let Zp denote the ring of p-adic integers. Let W c= GL(n,Zp) be 
a finite group such that p does not divide the order of W. The group W 
acts on K((Zp)n, 2). Let X(W,p,n)p be the p-completion of the space 
K((Zp)n, 2) x w EW. We classify homotopy classes of maps between 
spaces X(W,p,n)p . 
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ZARATI Said - Derived functors of the destabilization and the Adams 
spectral sequence. 

In this note we prove the following 
Theorem - Let X and Y be two pointed CW complexes such that 
(i) H*(X; F2) = 22I , where I is an injective unstable module 
(ii)H*(Y; F2) is gradually finite and nil-closed. 

Then the Adams spectral sequence for the group [ S ^ X ^ ^ Y ] 
degenerates at the E2 term. 

This theorem is deduced from the theory of the higher Hopf 
invariant introduced by Lannes and the author, and from the relationship 
between the Ext groups and the derived functors of the destabilization. 
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ON THE SPACE OF MAPS BETWEEN R-LOCAL CW COMPLEXES 
by 

D.J. Anick1 and E. Dror Farjoun 

1. Summary of Results and Notations 

The papers [A1,A2] introduced and studied a differential graded 
Lie algebra (dgL) associated as a model to certain spaces. Building 
on that work, we construct in this note a simplicial skeleton for the 
space of pointed maps between two H-local simply-connected CW 
complexes (R ^ Q). The construction entails two steps. First is 
the construction, in the category of dgL'«, of a cosimplicial 
resolution and an associated "function complex" valid in a range of 
dimensions; and second is the connection with the topological mapping 
space via the above-mentioned models. 
1.1. A function complex for dgL's. Let R = Z[(p - l)!]""1 <= q for 
a prime p, and let L, M be free r-reduced dgL's over R having 
all generators in dimensions below rp (r > 1). We will construct a 
simplicial set, to be denoted hpjn(L,M), which serves in a range of 
dimensions as a function complex in the sense of Dwyer and Kan [DK], 
Our construction is explicit, in terms of generators and 
differentials; it is something which could be implemented on a 
computer. When L and M arise as models for finite spaces X and Y, 
this means that a simplicial model for the pointed mapping space Y 
is computable in a range of dimensions. 
1.2* The range of dimensions. When X and Y are R-local r-connected 
CW complexes (r > 1), whose dimensions m̂  and mv are bounded 
above by m and by rp respectively (m < rp), we may associate to 
them the dgL models Lx and Ly. Then Y has the d-type of 
hom(Lg,Ly), where 

d = min(rp - 1, r + 2p - 3) - m . 

"^Partially supported by a National Science Foundation grant. 
S.M.F. 
Astérisque 193 (1990) 15 
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Beyond dimension d, hom(Ly) is s t i l l defined, but its 
connection with the geometry becomes much hazier. 
1.3. Relation to tame homotopy. In view of [D] and [DK], one may 
associate to a pair of tame spaces (S,T) a function complex in the 
category of simplicial Lazard algebras. This function complex is 
homotopy equivalent (as a simplicial set) with the pointed mapping 
space T . When T is not tame, however, it is not obvious how one 
would obtain information about T through this technique. The desire 
to handle the non-tame case motivated this paper. Instead of 
requiring spaces to be tame, we require them to be R-local, and we 
restrict the dimensions where their cells may occur. 

(The referee has proposed that Dwyer's functor may be able to be 
specialized suitably to the category of r-connected simplicial sets 
generated in dimension < m. This specialization, call it S, might 
yield information about T when S belongs to CW . To accomplish 
this, one would attempt to use S in largely the same way that we 
have used L in this paper.) 
1.4. Notations. We work over a fixed subring R of the rationale, 
and we denote by p the least non-inverted prime, i . e . , 
p = inf {n«z+|n~1«R} . In general, then, Z[(p - l)!]""1 c R c q. 
As in tame homotopy, the relevant dimension ranges vary with a 
connectivity parameter r, where r > 1. Following [A1,A2] we 
introduce several categories. 
O SS denotes the category of simplicial sets. 
O TOP is the category of pointed topological spaces and pointed 

continuous maps. 
O CWn(R) denotes the full subcategory of TOP, consisting of r 

r-connected R-local CW complexes of dimension < n. "Dimension" 
means as an R-local cell complex, e.g., the local n-sphere 
belongs to 06CW°(R) even though it has topological dimension 
n + 1. 

O HoCWn(R) is the category obtained from CWn(R) by collapsing r r 
(pointed) homotopy classes of maps. 

D DGL(R) is the category of connected dgL's over R. A dgL is free 
if it is free as a Lie algebra (ignoring the differential); in 
this case we write it as (L(V),5), where the R-module of 
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generators V =̂ ¥jLv̂  is free and positively graded, and the 
differential 5 has degree -1. 

a DGL™(R) denotes the full subcategory of DGL(R) whose objects 
have the form (L(V),6) where V = .e V., i .e . , they are free 
with all generators occurring in dimensions r through m, 
inclusive. 

O L denotes the model, introduced in [Al], which carries 
CW™+1(R) to DGL™(R) when m < rp. 

1.5. Distinguished morphisms in DGLm(R). The category DGL™(R) 
cannot be made into a closed model category, but we will find it 
convenient to distinguish three classes of morphisms anyway. Call 
fetforDGL™(R) a weak equivalence if it induces an isomorphism on 
homology of universal enveloping algebras. It is a cofibration if it 
splits as an inclusion of free Lie algebras (ignoring the 
differential), and it is a fibrat ion if it is surjective in 
dimensions above r. Trivial fibrations are simultaneously 
fibrations and weak equivalences. 
2- Function Complexes in DQ1*(R) 

We will now investigate the possibility of doing homotopy theory 
in DGL̂ (R). The dimension limitation, viz., the "m" in DGL™(R), 
spoils our hope of doing so in the sense of Quillen [QJ or even Baues 
[B]. We cannot dispense entirely with the bound m, because dgL's 
exhibit a variety of undesirable behaviors when generator dimensions 
are permitted to exceed rp. On the other hand, the canonical 
constructions of turning a map into a fibration or cofibration tend 
to increase the dimensions of generators, and thus they eventually 
bump us out of any fixed DGL™(R). 

An alternate approach is suggested in [T] and [Al]. We may 
define for m < rp a homotopy relation on morphisms by utilizing a 
certain cylinder construction, which raises by one the maximum 
generator dimension. The gap between m and rp then offers us a 
"breathing space" in which we can perform the standard constructions 
approximately (rp - m) times, and thus higher homotopy information 
is obtainable up to dimension (approximately) rp - m. This cylinder 
construction, known as the Tanre cylinder, is recalled next. 
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2.1. The Tanré cylinder. This is developed in [T] and [Al] so we 
provide here only a brief overview. Given a dgL L = (L(V),6) in 
DGL™(R), where m < rp, Tanré associates to it another dgL in 
DGL*+1(R)f denoted IL = (IL(V),IG). Taking the set of weak 
equivalences to be as in 1.5, the dgL IL is a valid cylinder object 
on L in the sense of [Q] or [B]. In particular, I comes with 

natural weak equivalences jn>Ji: id -+ u l an<* if ^ ír3 M are two 
morphisms in DGL°(R), then f and g are nomotopic if and only if 
fug factors through IL. Collapsing homotopy classes gives us a 
category which we denote by ffoDGL™(R). 

We remark that I is not a functor, although If: IL IM 
exists non-canonically for each f: L -» M in iforDGL̂ (R). However, 
I does satisfy the weak naturality condition If©jp(L) = JQ(M)of, 
IfoJ1(L) = Jx(M)of. 
2.2. Constructing the cosimplicial resolution. We construct next an 
initial segment of a cosimplicial resolution for objects in DGL™(R). 
We shall use it to define a function complex between two such dgL's. 
We follow as closely as possible the standard procedure, due to Dwyer 
and Kan [DK], for constructing cosimplicial resolutions in any closed 
model category. By a cosimplicial resolution for an object A we 
mean a (not necessarily functorial) diagram 

(1) A ^ A1k ^ A2A . . . ¿nA . . . 
satisfying the usual cosimplicial identities. In (1)» each arrow is 
a weak equivalence; the coface maps are cofibrations, while the 
codegeneracies are fibrations. (See [DK, Section 4.3] for a precise 
definition.) 

Let us review the Dwyer-Kan construction for a closed model 
category C. Given an object A, a cylinder on A is an object IA 
which provides the first stage of a cosimplicial resolution for A. 
That is, IA fits into a diagram 

(2) A Z=5 AuA S-> IA SL, A 
such that c is a cofibration, q is a trivial fibration, and both 
composites are the identity on A. This I( ) need not be a 
functor, but we do assume the compatibility of jQ = ci^ and 
j^ = ci^ with any If. Typically I arises by factoring the 
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folding morphism A»A V A into a cofibration followed by a trivial 
f ibrat ion. 

Assuming one has such an I, let AQ be the identity functor 

and let A be the functor A A = AnA. Then let A be the push-

out of A 4— A A —» IA A. It is obvious how A A serves as the 
first stage in the cosimplicial resolution (1). 

Inductively, suppose the first (n - 1) stages of (1) have been 
constructed. Let F^ be the functor from the category of faces of 
the simplicial complex AU and inclusions among them (see 3.2) to 
C, which takes a k-simplex to A A, and an inclusion to the 

appropriate arrow of (1). Let A A be colim(FA) and let A A be 
the push-out of 
(3) A <— AnA • Î nA . 

We wish to perform the Dwyer-Kan construction in the category 
DGL̂ (R), which is not a closed model category. Let us check 
precisely which axioms are used. Assuming the existence of I, we 
need: closure under finite colimits for diagrams of cofibrations; 
that the push-out of a (resp. trivial) cofibration exists and is a 
(resp. trivial) cofibration; that two out of three of f and g 
and gf being weak equivalences makes the third a weak equivalence; 
and the left lifting property for cofibrations with respect to 
trivial fibrations. When we take I to be J, the category DGL™(R) 
satisfies these four axioms, for m < rp. 

However, as we have noted, the Tanre cylinder construction I 
applied to a dgL L having some m-dimensional generators will have 
some (m+1)-dimensional generators. Inductively, AnL lies in 

DGL™+n(R). This dimension shift, along with the constraint 
m + n < rp, is what confines us to an initial segment of a 
cosimplicial resolution (1). 
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We have actually verified 
LEMMA 2*3. When m + n < rp, there are constructions 

An, 4 N+1 DGLm(H) -. DGLm+n(R). 
Applied to a dgL LeOoDGL̂ CR), they come with homomorphisms that 
provide the first rp-m stages of a cosimplicial resolution (1) for 
L. 
Definition 2.4. For LeOoDGL1" ( R) , MeOfcDGL(R), let An be as in  r 
Lemma 2.3 for n < rp - m. Define the function complex between L 
and M, denoted hom(L,M), to be the simplicial set consisting of 
HomnQî Rj(̂ nL,M) in dimension n when n < rp - m, and consisting 
of degeneracies only, above dimension rp - m. 
Remark 2.5. Definition 2.4 may depend upon choices made during the 
construction of AnL. The results that we are interested in will 
hold regardless of which choices were made. More importantly, the 
definition depends upon m and r, in the sense that the relevant 
dimension range will vary according to which DGL™(R) we view a 
given L as lying in. In practice, of course, we will want to use 
the largest possible r and the smallest possible m. In this 
paper, the intended r and m will always be apparent from the 
context. 

3_. Constructing the Simplicial Map 

Having constructed hom(L,M) for dgL's, we turn our attention 
to its connection with the pointed mapping space Y . We have 
mentioned the dgL model L for pointed R-local CW complexes. We 
will define a simplicial map L from a skeleton of Y to 
hom(L(X),L(Y)). 
3.1. The model L. In [Al] the first author showed that for any 
XeOfcCW™+1(R) with m < rp there exists LeObDGL™(R) such that UL 
is an Adams-Hilton model for X. We write L(X) for this L. One 
has a similar assertion and notation for maps. The passage from X 
to L is not functorial, since X does not canonically determine 
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L; nor does a map f: X Y uniquely determine L(f), even after 
L(X) and L(Y) have been fixed. However, L(f) is determined up to 
homotopy, and hence L(X) is determined up to homotopy type. In 
spite of this indeterminacy, the function complex between such models 
always does the right thing up to a certain dimension. 

The main advantage of L as a model for X is that it is built 
directly from a cellular decomposition of X, so it is fairly small 
and accessible to computations. 
3.2. Review of Y . The pointed mapping space Y may be viewed as 
the simplicial set 
(4) YX = {HomTOp(|4n|KX,Y)}nj0 . 
Here An is the standard simplicial complex whose geometric 
realization is the standard n-simplex, and K denotes the 
half-smash. The subcomplex of An obtained by removing the 
n-simplex is denoted, as usual, by An. 

Denote by ad(An) (resp. sd(.4D)) the first barycentric 
subdivision of An (resp. 4n). Whenever X€OoCW™(R), then an easy 
Kunneth formula argument shows that |sd(4N)|KX and |sd(4n)|><X 
belong to OfeCW™"hn(R) (cf. 4.4 for a discussion of CW structures). 
As long as m + n < rp, a model L(|ad(AU)|*X) exists for |4n|*X. 
LEMMA 3.3. For Xc06CWm(R), m + n < rp, one can choose models such 
that there are isomorphisms 
(5) L( |sd(<dn) |KX) « ADL(X) , and 

L( |sd(> + 1) |KX) « >+1L(X) . 
Furthermore, the model L applied to the coface and codegeneracy 
maps 

\sd(An) |KX |sd(̂ in + 1) |KX 
may be taken to be the coface and codegeneracy homomorphisms 
mentioned in Lemma 2.3, for L = L(X). 
Proof. This is easily deduced by induction on n. At each stage, L 
can be chosen to commute with colimits of inclusions of CW complexes 
[Al, Theorem 8.5i], with cylinders [A2, Lemma 5], and with push-outs 
in which one map is CW and the other is an inclusion into a cylinder 
[A2, Lemma 6]. 
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PROPOSITION 3.4. Let X€ObCW™(R) where m < rp, and let 
Y€06Cw£D(R). There is a homomorphism of simplicial sets 
(6) 2: (YX)rp""m - hom(L(X) ,L( Y) ) . 
The source of (6) is the (rp-m)-skeleton of the simplicial set ( 4 ) . 

X f p—JH /S 
For each f€(Y ) , L(f) may be interpreted as a valid L-model 
for f. 
Proof. We build L dimension by dimension. Assume we have the 
simplicial map 

Ln~l: (YX)n""1 hom(L(X) ,L(Y) ) . 
For each element f: |4n|xX -» Y, view f as a map from the CW complex 
|sd(^iN)|KX' to Y. Consider 
(7) AQL(X) by *5) » L( |sd(^n) |KX) LF, L(Y). 
This composite belongs to the dimension n part of hom (L(X),L(Y)) 
if n < rp - m. Thus we may extend Ln~l to Ln: (YX)n -+ 
hom(L(X)•L(Y)) by defining Ln(f) to be the composite (7). The 
only subtlety is the requirement that Ln is to be a simplicial map. 
i .e . , compatible with faces and degeneracies. This in turn requires 
that we utilize the flexibility inherent in our choices for L(f). 

We are supposing that Ln * is simplicial, i .e . , these choices 
have been made compatibly below dimension n. Given f:\AU|KX -» Y, 
let f denote the restriction f: |sd(«dN)|KX Y, and for 0 < i < n 
let f±: |sd(<dn-1) |KX Y denote the further restriction to the ith 
face of |^n| half-smashed with X. By our inductive assumption, 
the L(fi) are compatible with faces; by [Al, theorem 8.5j] their 

colimit serves as a valid choice for L(f). Lastly, use [Al, theorem 
8.5h] to extend this choice for L(f) to some valid model L(f). By 
Lemma 3.3, the resulting choice for L(f) remains compatible with 
faces and degeneracies. 
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PROPOSITION 3.5. Let X€OfcCW*(R), Ye06CW P̂(R), where 
t = min(rp - 1, r + 2p - 3). Then L induces a bijection 

ir0(L): TT0(YX) ^ tr0(hom(L(X),L(Y))). 
t + 1 ~ If instead XeObCVir (R), then ^Q(L) is a surjection . 

Proof. For L, M€OfeDGL̂ p_1 (R) , fug: Lit L M extends over IL if 
and only if it extends over <d1L. Thus wQ (hom(L.M) ) coincides with 
the (Tanre-induced) set of homotopy classes [L;M]. Also, this 
diagram commutes: 

(8) 

*0(YX) " ,,vx,i, VL) 
— wQ((Y ) ) H0(hom(L(X),L(Y))) 

fis as 

[X;Y] [X; Y] 
U). 

[L(X)îL(Y)] 

where we have put m = rp - 1. By [A2, Theorem 3] the arrow (L)s 
of (8) is a bijection. When dim(X) = t + 1, use (Y ) in place of 
(Y )y1 in (8); then the upper left arrow and (L)s are surjections, 

/\ 
hence so is TTQ(L). 

4. The d-tvpe of Y 

We conclude by showing that the simplicial map L of (6) is a 
homotopy equivalence in a range of dimensions. We fix the notation 
(9) t = min(rp - 1, r + 2p - 3). 
4.1. Simplicial d-type. Let A and B denote simplicial sets, and 
let d > 0. A d-eouivalence is a simplicial map g: A -* B such that, 
for every choice of base point 3Q€(A)Q , g induces a bijection on 
7T for n < d and a surjection on w ,. We say that B and B1 have n o 
the same (d-l)-type if and only if there is a simplicial set A 
which comes with d-equivalences B ft r T IA B'. "Same (d-l)-type" is 
an equivalence relation because, if B" «— A £-» B +-£rf ft A* B' are 
d-equivalences, letting A" be the fiber-homotopy pull-back of g 
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and g' leads to d-equi valences A «- A" -•A*. (For an alternate 
approach to (d-l)-type, see [B, p. 364].) Note that the skeleton 
inclusion Â  -* A is always a d-equivalence. Lastly, the condition 
on 7TQ amounts to the requirement that g induce a bijection on 
path-components (resp., a surjection, if d =0) . 

Two spaces having the same d-type tells us that their homotopy 
groups nn( ) are isomorphic for n < d, but it tells us much more 
than this. For instance, the spaces S and CP xS have 
isomorphic 7î  for all n; they have the same 2-type (S «- S vS -» 

CP xS ) but not the same 3-type. 
We assert (see 4.7) that Y and hom(L(X),L(Y)) have the same 

d-type, for a certain d. 
4.2. Relative homotopy in DGLm(R). We need the concept of a 
relative homotopy, for dgL's. First let us review the concept for 
spaces. Let W be a pointed space and let X be a subspace; we fix 
a pointed map +: X Y. Denote by HomTOp(W,Y)̂  the set of all 
extensions of * over W. Two maps in HomTOp(W,Y)# are nomotopic  
rel X. denoted f j g, if and only if there is a homotopy F: Wx[0,l] 

Y such that F|Wx0 = Flwxl = *• and F<w»s) = *(w) for W€X' 
Denote by [W;Y]̂  the set of j-equivalence classes. We will be 
especially interested in the case where W is a CW complex and X 
is a subcomplex. 

Let L -> K be a cofibration in DGL™(R) , m < rp; we identify L 
with a sub-dgL of K. Let MeO&DGL(R), and fix a dgL homomorphism 
A: L -» M. Denote by HomDGL(R)M Â tne set of a11 extensions of 
A over K. 

Although we have stressed that the Tanre cylinder I is not 
natural, there is a cofibration JL IK which extends the given 
cofibration LuL -» KuK. Let q : IL L denote the trivial 
fibration which extends the fold map LuL L. Two dgL 
homomorphisms in HoiDDGL(R) ^ K* M̂  A are noino*opic re* L • denoted 
f a g , if and only if there exists F: IK -» M whose restriction to 

A 
KuK is fug and whose restriction to IL is AqT. Denote the set of 
^-equivalence classes by [K;M] . A A 
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PROPOSITION 4.3. Let W€OoCW*(R), let X be a subcomplex, and let 
Y€06CWrp(R) . Fix a map *: X -> Y and fix a model r 
A = L(#): L(X) L(Y). Then L induces a bijection 
(10) flo(L): [W;Y]# -> [L(W);L(Y)JA , 
in which a a-class [f] is sent to the a-class [L(f)J. If instead 
W€05CW*+1(R), then (10) is a surjection. 
Proof. One may easily adapt the proof of [A2, Theorem 3] to cover 
this situation as well. One needs only to be careful always to 
choose L(f) for f: W Y so as to extend the model A for f | x . 
4.4. Homomorphisms induced by L. We intend to study the 
homomorphisms induced by the L of (6) on homotopy groups. Let 
X«06CW™(R), m < rp, and Y€06CW^P(R). Fix a map X Y and view 
YX as the simplicial set (4); thus *€(YX)Q. Fix n > 0 and take 
as base point the 0*n vertex v^e|sd(jn +^)|. Henceforth, when we 
write S N , we will intend S N to be viewed as the CW realization 
|sd(4 n +*)| with base point v̂  ( i .e . , as a CW complex, S N has one 

* n+1 n cell for each non-degenerate simplex of ad(A )). Let W = S KX. 
The CW structures on S N and on X give us a CW structure on W; 
note that W€OfeCWin+n (R) . We identify X with the subcomplex v.xX r u 
of W. Clearly, [W;Yl makes sense. 

We consider the same setup in DGL^P(R). Let LeOfcDGL™(R), 
m < rp, M€O60GL(R). When m + n < rp, AnL is defined, and we may 
include L into AnL "at the 0 t h vertex" (see (1)). Thus L is 

viewed as a sub-dgL of K = An+lL, and [K;M]̂  makes sense for any 
given A: L M. When L = L(X), we may by Lemma 3.3 identify K 
with L(W). Then the inclusion of the sub-dgL L into K is a 
valid L-model for the subcomplex inclusion X W described above. 

Now let X€ObCWm(R), m < rp, Y€OfcCw£p(R), as above. Choose an 
L as in Proposition 3.4. Let A = L(*), which is a valid L-model 
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for *. For n < rp - m, consider the diagram 
HoiPss(iin+1.v0; (YX)rp~m,*) (1-L> HOBSS(/+1,V0; horn (L(X),Z.(Y)),A) 

al 
Ho'»ss^n+1'vo; yX» *) 

(11) »{ {* 
Ho-TOp(|>+1|KX Y), HomDGL{H)(>+1f.(X),i.(Y))A 

= | J* 
HomTOp(W,Y)# LL - - -. HomDGL(H)(L(W),Z-(Y))A . 

Because all the vertical arrows in (11) are bijections, there is a 
unique L' which makes the diagram commute. The following lemma 
follows easily from the construction of L. 
LEMMA 4.5. For any choice of L as in Proposition 3.4, the functii 
L• of (11) satisfies this: for any f€HomTQp(W,Y)̂  , L'(f) is a 
valid L-model for f. 

The reader may now check that the equivalence relations that w< 
have on the various sets in (11) are compatible with the arrows, am 
lead to the diagram 

irn((YX)rp"m,#) L • n (hom(L(X),L(Y)),A) 
la* 

trn(YX,*) 
(12) |» 

HomTOp(W,Y)̂ /(?) HomDGL(R)(f,!+lL(X)'L(Y))A/(S> 
T (L')# r [W;Y]̂  1 > [L(W);L(Y)]A . 

The following two facts are also clear. 
LEMMA 4.6. (a) In (12), (L')# coincides with Ho(L) of (10). (b 
In (12), is bijective if m + n < rp and surjective if 
m + n = rp. 
THEOREM 4.7. Let XeOdCW™(R), m < t + 1, Y€0/>Cw£P (R) . Put 
d = t - m (cf. (9)). The simplicial map L of (6) is a (d+1)-
equivalence. Consequently, the simplicial sets Y and 
hom(L(X),L(Y)) have the same d-type. 
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Proof. The condition on 7TQ is actually given by Proposition 3.5. 
When t - ID > n > 0, (D# of (12) is bijective, by 4.3 and 4.6. 
When n = t - m + 1, (L)# of (12) is surjective, again by 4.3 and 
4.6. 

References 

[A1] D.J. Anick, "Hopf Algebras up to Homotopy", Journal A.M.S., Vol. 
2 No. 3(1989), 417-453. 

[A2] D.J. Anick, "R-Local Homotopy Theory", Proceedings of the 1988 
homotopy theory conference in honor of H. Toda, Kinosaki, Japan, 
to appear. 

[B] H.J. Baues, Algebraic Homotopy, Cambridge Studies in Adv. Math. 
15, Camb. Univ. Press, 1989. 

[D] W. Dwyer, "Tame Homotopy Theory", Topology 18(1979), 321-338. 
[DK] W. Dwyer and D. Kan, "Function Complexes in Homotopical 

Algebra", Topology 19(1980), 427-440. 
[Q] D.G. Quillen, Homotopical Algebra. L.N.M. 43, Springer-Verlag, 

1967. 
[T] D. Tanré, Homotopie rationnelle: Modèles de Chen, Quillen. 

Sullivan, L.N.M. 1025, Springer-Verlag, 1983. 
[W] G.W. Whitehead, Elements of Homotopy Theory. Graduate Texts in 

Math. 61, Springer-Verlag, 1978. 

Department of Mathematics, MIT, Cambridge, MA 02139, USA. 
Department of Mathematics, Hebrew University, Jerusalem, Israel. 

27 



Astérisque

L. L. AVRAMOV

Y. FÉLIX
Espaces de Golod

Astérisque, tome 191 (1990), p. 29-34
<http://www.numdam.org/item?id=AST_1990__191__29_0>

© Société mathématique de France, 1990, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1990__191__29_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Espaces de Golod 
L.L. Avramov* et Y. Félix** 

Un c.w. complexe fini 1-connexe X est appelé un espace de Golod si pour un certain n le 
revêtement n-connexe Xn de X a le type d'homotopie rationnelle d'un bouquet de sphères. La 
terminologie provient de l'analogie algèbre locale-homotopie rationnelle ([2]) : la notion 
constitue en fait la transposition en topologie de celle d'anneau de Golod généralisé, introduite 
dans [1]. Les espaces de Golod X jouissent de nombreuses propriétés : 
- l'algèbre H.(QX,<Q) est cohérente (résulte de [5, Théorème 3]); 
- tout H*(QX,(Q)-module, qui admet une résolution finie par des H*(QX,(Q)-modules libres, 

N-1/2 
en possède une de longueur 1 + X rang^ (TC2i+l(X)) (résulte de [5, Théorème 2]); 

i=l 
- la série de Poincaré Pox(t) est rationnelle [3, Corollaire (4.2)]. 
Pour tout espace vectoriel gradué de type fini V on désigne par IVI(t) la série formelle 
I* dimCVOft et pour tout c.w. complexe de type fini Y on pose PY(0 = IH*(Y,Q)l(t). 

Le but du présent texte est la démonstration de la propriété suivante des fibrations à base 
un espace de Golod, qui généralise la dernière propriété énoncée ci-dessus. 

P 

THEOREME. Soit F —» E —» B une fibration, avec E un c.w. complexe fini \-connexe. 
Supposons que B soit un espace de Golod alors la série de Poincaré de F est rationnelle. 

Plus précisément, il existe un polynôme Denfi(t) à coefficients entiers, tel que Denfi(t) 
PFO) soit un polynôme pour tout E. En plus, Dene(t) peut être calculé à partir de légalité 

PflB(t) = [ n ( l + t ^ - l ^ ^ i ^ / D e n g ^ 
2<2i<n 

où n est tel que le revêtement n-connexe B' deB a le type d'homotopie rationnel d'un bouquet 
de sphères. 

* Recherche financée en partie par le Contrat № 884/88 avec le Ministère de la Culture, la 
Science et l'Education. 

Chercheur qualifié au FNRS. 
S.M.F. 
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Exemples : Une première famille d'espaces de Golod est fournie par les espaces formels 
de dimension finie dont la cohomologie est une algèbre graduée de Golod généralisée. Parmi 
ceux-ci on trouve tous les squelettes finis de produits d'espaces d'Eilenberg-MacLane, cf. [6]. 

Une seconde famille est fournie par les algèbres de Lie graduées de dimension finie, L. 
On note L <V> (respectivement L <{xi)i€i>) l'algèbre de Lie libre sur un espace vectoriel 
gradué V (respectivement sur un ensemble de générateurs {xi}iei). A une présentation L = L 
<{xi}iel>/({yj}jej) on associe l'application 

VjejS1^2 A VieiS,xi,+1 

qui envoie la classe fondamentale de S1^^2 sur le produit de Whitehead des classes 
fondamentales des s'xi'+1 correspondant à y y Notant par X la cofibre de g, on a par 
[4, Théorème 2] la suite exacte d'algèbres de Lie 

0 —» L <V> -» rc.(QX) ® Q -> L ->0 

qui montre bien que X est de Golod. 
La démonstration repose sur les deux propositions suivantes extraites de [3]. Pour rester 

self-contained nous en donnerons une démonstration. 

PROPOSITION 1 [3, Théorème (4.1)]. Soit F —» E —» B une fibration avec 7C*(B) ® Q et 
H*(E;Q) de dimension finie, alors 
(1) H*(F;Q) est un H*(GB\Q)-module noethérien. 

(2) La série de Poincaré de F est une fonction rationnelle de la forme 

p(t) / n (i-t2i)rank7l2i+l(B) , où p(t) est un polynôme. 
i>l 

PROPOSITION 2 [3, §4, Lemme 3]. Soit Y, une algèbre de Lie graduée connexe de dimension 

finie sur un corps et V un UL-module gradué de type fini (V = 0 Vp), alors la série de Hilbert 
p>0 

deV 
IVI(t) = S dim Vntn 

n̂O 

est une fonction rationnelle de la forme p(t) / Il (l-t2i)^m L2i , où p(t) est un 
i>l 

polynôme. 
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Démonstration proposition 1 : (1) La suite spectrale de Serre de la fibration QB —» F —» E 
est une suite spectrale de H*(£2B,Q)-modules. Le terme 2E = H*,(QB) ® H*(E) est un 
module noethérien. Il en est de même de chaque PE. Comme H*(E) est de dimension finie, PE 
= °°E pour p assez grand. D en résulte que H*(F,(Q) est un module de type fini. (2) résulte de 
la proposition 2. • 

Démonstration proposition 2 : elle calque de près la démonstration classique de Hilbert de 
la rationalité de IVI(t) lorsque V est un module gradué de type fini sur un anneau commutatif de 
polynômes. 

Nous travaillons par récurrence sur dim L. Si dim L = 0, V est de dimension finie et le 
résultat s'en déduit. Supposons le résultat vrai pour les algèbres de Lie de dimension p et soit L 
une algèbre de Lie graduée de dimension p + 1 et V un UL-module de type fini. Le générateur 
x de degré maximal est donc dans le centre et on a une suite exacte de L-modules gradués 

(*) o - > K - > v i v - > c - > o . 

(1) Si x est de degré impair, on pose K' = xV. Par Poincaré-Birkhoff-Witt, K' est un L-
module contenu dans K, donc un L/(x) module lui aussi. L'hypothèse de récurrence appliquée 
à la suite exacte 

0 - > K - > V - > K ' - » 0 

montre que IVI(t) = IKI(t) + r,xl IK'l(t) est rationnel de la forme souhaitée. 

(2) Si x est de degré pair, la suite exacte (*) donne l'égalité 

(l-t,xl) IVI(t) = ICI(t) - t'x'lKI(t). 

Comme xK = 0 et xC = 0, K et C sont en fait des modules de type fini sur L/(x), et on conclut 
par l'hypothèse de récurrence. • 
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Démonstration du théorème : Comme B est un espace de Golod, nous avons un 
diagramme commutatif de fibrations, avec TC*(B") ® Q < oo où B* désigne le recouvrement 
n-connexe de B : 

F — F 
*l i 

E* -* E »̂ B" 
i 4Q | 
B* —» B -» B". 

p 

Par la proposition 1, H*(E',Q) et H*(B';Q) ont des séries de Poincaré rationnelles de 
dénominateur q(t)= Il (i-t2iJ»**2i*l(B). Le morphismc de fibrations 

3£2i+l£n 

F -> E' 
l i 
E — E 

q J, iv 
в -> В" 

P 

induit un diagramme commutatif 

v 
QBxF F 

Clp x r ^ l T 
OB"xE' -> E' v' 

où v et v' désignent respectivement les opérations d'holonomie de l'espace des lacets de la base 
sur la fibre dans les deux fibrations. Il en résulte que I = Im H*(r,Q) est un sous H*(QB";dé
module de H*(E';Q). Il est donc de type fini. 11 l(t) est donc, par la proposition 2, une fraction 
rationnelle de dénominateur q(t). 

Revenons à la fibration F —» E' —> B'. Par [3, Proposition (8.1)] elle détermine une suite 
spectrale 

2Ep>q=Toi«*<nB''C>(Q,H.(F;(Q))q => Hp̂ CE.Q). 
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Comme B' a le type d'homotopie rationnelle d'un bouquet de sphères, H*(QB',(Q) est l'algèbre 
associative libre sur la désuspension s-1 H*(B',<Q) de l'homologie réduite de B. Donc pour 
calculer le terme 2E de la suite spectrale, on peut utiliser la résolution bien connue de 
<Q = H.(ŒB*,Q)/H*(QB',<Q), en tant que H.(QB',Ç)-module à droite. 

di 
0 -» s-1 H*(B',Q) ® H*(QB',Q) -> H*(QB',Q) 

Ceci donne la suite exacte d'espaces vectoriels gradués 
91 

0 -> °°Ei,* -» s"1 H.(B',(Q) ® H*(F,Q) -» H*(F,<Q) -» °°E0,. -» 0 

et les égalités °°EPJ* = 0 pour p * 0,1. En d'autres termes, on a le triangle exact d'espaces 
vectoriels gradués 

H*(r,Q) 
H*(F,<Q) H.(E',<Q) 

3l ô 

s-l H.(B',Q) ® H*(F,Q), 

où 5 est un homomorphisme de degré -1. 
Un simple jeu sur les séries de Poincaré donne alors 

(**) pF(t) = 
(i+t-i) 11 ко - t-i pE-(t> 

1 -t-i(PB-(0-l) 

Comme 11 l(t), PE'(t), et PB'W sont toutes des fonctions rationnelles de dénominateur q(t), on 
trouve bien Pp(.t) sous la forme p(t)/DenB(t), avec p(t) un polynôme à coefficients entiers, et 
DenB(t) = q(t) (1-rl (PB<0-1) ) e Z[t]. 

Reste à calculer PfiB(t). Dans ce cas la suite exacte d'homotopie rationnelle de la fibration 
QB' —» QB=F —» E'=QB" a un connectant nul, puisque B' est rationnellement un bouquet 
de sphères. 

Ceci implique la surjectivité de H*(r,<Q). La formule (**) devient 

PQB(0 = 
POB"(0 

1 -t-i(PB(t)-D 
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Comme PnB«(t) = n (i+t2i-l)nink TC2Ì(B) / q(t) par p0incaré-Birkhoff-Witt, on a bien la 
2<2i<n 

formule voulue. • 
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EXOTIC MULTIPLICATIONS ON MORAVA K-THEORIES 
AND THEIR LIFTINGS 

ANDREW BAKER 

Manchester University 
Abstract. For each prime p and integer n satisfying 0 < n < oo, there 
is a ring spectrum K(n) called the n th Morava A'-theory at p. We 
discuss exotic multiplications upon K(n) and their liftings to certain 
characteristic zero spectra E(n). 

Introduction. 
The purpose of this paper is to describe exotic multiplications on 

Morava's spectrum K(n) and certain "liftings" to spectra whose coef
ficient rings are of characteristic 0. Many of the results we describe are 
probably familiar to other topologists and indeed it seems likely that they 
date back to foundational work of Jack Morava in unpublished preprints, 
not now easily available. A published source for some of this is the paper 
of Urs Wiirgler [12]. We only give sketches of the proofs, most of which 
are straightforward modifications of existing arguments or to be found 
in [12]. For all background information and much notation that we take 
for granted, the reader is referred to [1] and [7]. 

I would like to express my thanks to the organisers of the Luminy 
Conference for providing such an enjoyable event. 
Convention: Throughout this paper we assume that p is an odd prime. 

§1 Exotic Morava jRT-theories. 
Morava K-theory is usually defined to be a multiplicative complex 

oriented cohomology theory K(n)*( ) which has for its coefficient ring 

K(n)+ = Fp[vn, v"1] 

where vn G A~(n)2p»_2, and is canonically complex oriented by a mor-
phism of ring spectra 

aK(n). Bp y K^ 

The author would like to acknowledge the support of the Science and Engineering 
Research Council, and the Universities of Manchester and Bern whilst this research 
was in undertaken. 
Asterisque 191 (1990) 
S.M.F. Typeset by „4vf̂ -TfeX 
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which on coefficients induces the ring homomorphism 

a?(n) : BP* —> K(n)* 

<7* K(N) (Vk) = vn if k = n, 
0 otherwise. 

Here we have BP* = Z(p)[vfc : fc > 1] with Vk € BP2pk_2 being the k th 
Araki generator, defined using the formal group sum 

\p]BPX = Y^BP fax'") . 
0<k 

As a homomorphism of graded rings, we can regard a^n^ as a quotient 
homomorphism 

<rf(n): v^BP* —+ v^BP+JMn = K(n)m 

where A4n = (v^ : 0 < k ^ n)<v~1BP* is a maximal graded ideal of the 
ring v~1BP*. Thus we can interpret K(n)* as a (graded) residue field 
for this maximal ideal. 

Clearly this ideal J\4n is not the only such maximal ideal and we can 
reasonably look at other examples and ask if the associated quotient 
(graded) fields occur as coefficient rings for cohomology theories is an 
analogous fashion. Notice that Adn contains the invariant prime ideal 
In = (vk : 0 < k < n — 1) and the formal group law FK^ therefore has 
height n. One way to construct K(n)-theory is by using Landweber's 
Exact Functor Theorem (LEFT) [6] in its modulo In version [14]; this 
allows us to make the definition 

K(ny() = K(n). ® P ( „ ) . W ( ) 

on the category of finite CW spectra CWf, where P(n) is the spectrum 
for which 

P(n)+=BP./In. 

We thus concentrate on maximal ideals №<v~xBP* containing the ideal 
In. We then have 

T H E O R E M (1.1). Let M1 < v^BP* be a maximal (graded) ideal con
taining In. Then there is a unique multipHcative cohomology theory 
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K(A4')*( ), defined on C W , for which there is a multiplicative natural 
isomorphism 

K(M')*( ) es K{M')+ ®P(n). P (n )*( ) 

and where K(A4')* = v~xBP*j M* is the coefficient ring. 
The proof is immediate using LEFT. 
Of course, if there is an isomorphism of graded rings, K(JA')* = 

i^(.M/7)*, then we need to decide if the two theories arising from A4' 
and Ai" can. be naturally equivalent. 
THEOREM ( 1 . 2 ) . Let M\ M" < v^BP* be graded maximal ideals con
taining In and let f: K(J\4f)* —• K(J\4")* be an isomorphism of graded 
rings. Then there is a natural isomorphism of. multiplicative cohomology 
theories on CWf, 

/: K(M'T()—> K(M"Y{) 

extending f if and only if the the formal group laws f*FVn 1]BP*IM' and 
FVn 1]BP*IM' are strictly isomorphic over the ring K(A4")* 

The main observation required to prove this result is that these two 
formal group laws are associated to two complex orientations induced 
by the composite of the morphisms of ring spectra BP • v~xBP • 
K(M"). 
COROLLARY ( 1 . 3 ) . The theories K(M')*( ) and K(M"Y( ) are rep-
resentable by ring spectra K(A4') and K(J<A"), which are unique up 
to canonical equivalence in the stable category Moreover, K{M) and 
K(J\4") are equivalent as ring spectra if and only if the formal group 
laws f*Fv"*BP*IM' and FvnlBP*lM" are strictly isomorphic over the 
ringK(M")*. 

Let us now consider such ring spectra K(№) where K(A/i')* = K(n)* 
as graded rings. By a result from [12] (see also [5]) these are precisely 
the ring spectra having the homotopy type of K(n) (not necessarily mul-
tiplicatively). Thus, such ring spectra are classified to within equivalence 
as ring spectra by the set of maximal ideals A4' modulo strict isomor
phism of the associated formal group laws over K(SA')*. We call the 
multiplicative cohomology theory associated to such a ring spectrum an 
exotic Morava K-theory. 

Let us consider such a spectrum K(Af'), where K(.M')* = K(n)+ as 
graded rings. Then we have the following modification of a result of [13], 
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T H E O R E M ( 1 . 4 ) . As an algebra over K{n)*, we have 

K(M%(K(M')) ~ K(M')*{t'k : k > 1 ) ® AK(n)„(a'0,..., a'n-1) 

where \t'k\ = 2pk — 2, \a'k\ = 2pk — 1, and there are polynomial relations 
of the form 

t>k? - *4P )/(p-1)*fc = M * i , • • • ><fc-i) 

over K(n) + . 
The symbol I^K{n)^ denotes an exterior algebra over K(n)* on the 

indicated generators. 
To prove this result, we rework the proof for the case of K(n) (see 

[13], [7]) and define the generators t'k by using the identity 

r>0 

K(M') (v' t'r p' X Pr + s) = 
r>0 
s>n 

A (a M') (t'r V' s Pr X pr + v) 

where 
[p] F k (M') X = 

s > n 

K(M') (v' 0 X P'). 

The exterior generators axe similarly derived. 
We can interpret the algebra 

K(M'). (t'k : k > l) 

as representing the strict automorphisms of the group law FK^M'^, in a 
way analogous to the case of K(n) (see [7]). 

§2 Liftings of exotic Morava .K-theories. 

Recall that there is a ring spectrum E(n) for which 

E{ny()^E(n)*®BP.BP*{) 

on CWf . Here we have 

E(n)* = v^BPJivn + k : k > 1 ) . 
We showed in joint work with Urs Wiirgler (see [4]) that the Noetherian 
completion E(n) of E(n), characterised by the formula 

Efc)\ ) = lim (E(ny( )/IknE(n)*( )) 
k 
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on CWf , is a summand of the Artinian completion vn 1 BP of vn 1 BP 
and indeed there is a product splitting 

v^BP ~ J J E2d(v)i^n) 
V 

of (topological) ring spectra for v ranging over a suitable indexing set 
and d a suitable numerical function. The algebra underlying the proof 
is intimately related to liftings of Lubin-Tate group laws, i.e. group 
laws over Fp algebras classified by homomorphisms from K(n)+. In this 
section we describe the analogous situation for liftings of exotic Morava 
iiT-theories of the form K(Ai') as in §1. 

Now if K(A4')* = K(n)+ as a ring, then the natural homomorphism 

OM' -.V^BP—> K(M')* 

given by 

0M'(vk) = 
r(k/n) CkVn ' } if n I k 

0 otherwise 

for k > n and integers c&. Here, the numerical function r is given by 

r(m) = 
(pmn - 1) 
(Pn - 1) 

and we set c& = 0 = r(k/n) whenever k is not divisible by n or k = 0. 
Now consider an ideal of the form 

J = (vk - cfct#fc'n> + gk : k > n) c M! < v~xBPm 

and satisfying 
J + In = M'. 

Here gk E M axe certain elements chosen so that the last condition 
holds. Set E(J)* = v~XBP*/J. 

We now define a cohomology theory 

E(JY() = E(J)m ®BP.BP*() 

on CWf . This is a cohomology theory by Landweber's Exact Func
tor Theorem, and is moreover multiplicative and canonically complex 
oriented by the obvious natural transformation 

B P ' O — E(jy(). 
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Furthermore there is a canonical multiplicative natural transformation 

E(jy()—> K(M'y (). 

We can form the Noetherian completion 

Ejj)\ ) = Hm (E(jy( )/IknE{jy{ )) 
k 

and also the Artinian completion of v^BP with respect to the maximal 

ideal M', VnXBP(M') (see [4]). Then we have 

T H E O R E M (2.1). There is a splitting of topological ring spectra 

vñLBP(M') ~ •£?<">)E(J) 

w 
where w ranges over an appropriate indexing set and e is a numerical 
function. 

The proof is a modification of that in [4] which rests on the fact that in 
the ring v~xBP* O Bp BP+BP ®BP+ v ^ B P . , the generators tk satisfy 
relations modulo M of the form given in the statement of (1-4). Of 
course, in the case where A4' = A4 — (vk : 0 < k ^ n), this shows that 

E(n) is just one amongst many ring spectra splitting off of v^BP in 
this way. 

In [12] and [5] it was proved that any ring spectrum whose homotopy 
ring is isomorphic to K(n)* agrees with K(n) up to equivalence as a 
spectrum. In fact we can lift such results to show 

T H E O R E M (2.2). Let F be a complex oriented topological ring spectrum 
such that as graded topological groups 

nJF)^ E(nY, 

and there is a maximal ideal Al' <v~1BP* for which there is a morphism 
of ring spectra F • K(Ai') which is surjective in homotopy. Then 
there is an ideal J C Ai' such that there is an equivalence of topological 
ring spectra F ~ E(J). 

The proof of this makes use of a tower  

• E(J)/Ik+1 —• E( J)/Ikn —. • E(J)/In = K(M') 

of Aoo module spectra over E(J) generalising that constructed in [3], 
together with the existence of an A00 structure on E( J) (see §3) . 
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§3 ACQ structures on exotic Morava JT-theories. 
In [8] it was shown that for any odd prime p, the standard ring spec

trum structure on K{n) admits uncountably many distinct Aoo struc
tures in the sense of [9], [10] and [11]. One can similarly ask if this 
is true for any of the exotic structures discussed in our earlier sections. 
In fact, by (1.4), the arguments of [8] can be used in the more general 
context. Indeed, this is also true for the results of [3] and the liftings 
E( J) which have unique topological Aoo structures, and the natural mor-
phisms of ring spectra E(J) > K(J<4') admit Aoo structures whichever 
of the AQO structures is put on K(JW). 

One consequence of the existence of Aoo structures is that there are 
Kiinneth and Universal Coefficient spectral sequences for Aoo module 
theories over these ring spectra. For example, if M is a (topological) 
A^ module spectrum over E(J), then for any spectrum X, there is a 
spectral sequence 

E?(X) = E x t t ^ ( £ ( J ) , ( X ) , M . ) =>• M°+\X). 

Such spectral sequences promise to be of great use in calculations. 
§4 Some examples. 

We end by considering two examples of cohomology theories which are 
related to exotic Morava iiT-theories as discussed in the earlier sections. 
These are essentially the only known periodic theories which have (or 
are suspected to have) geometric descriptions, and remarkably they both 
appear to be naturally related to the original versions of Morava K(l) 
and K{2) and its liftings, rather than truly exotic versions. 
JBT-theory. Consider the case of complex iT-theory localised at a prime 
j9, K*( ) = KUj?p)( ). Then reduction modulo p gives a theory K/p*( ) 
satisfying 

K/P*( ) = © K(l)*+2k( ) 
o<fc<(p-i) 

as multiplicative theories where we define the product on the direct sum 
by requiring that there be an isomorphism of rings 

K/p* 9- Kil)^]/(up^-1 - v±) 

when evaluated on a point. Thus 

Kjp~ \J Y?kK{\) 
o<fc<(p-i) 
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as ring spectra, where the wedge is given an appropriate algebra spectrum 
structure over K{\). Lifting this result gives an equivalence K ~ E(n) 
which is known to arise before p-adic completion. 
Elliptic cohomology. Let E££ be the spectrum representing the ver
sion of elliptic cohomology whose coefficient ring is the ring of modular 
forms for SL2 (Z) meromorphic at infinity (see [2]), localised at a prime 
p > 3 . Then in [2] we showed that if J5p_i denotes the (p — 1) st Eisen-
stein function, then there is an equivalence of ring spectra 

Ell-/ (p, Fp-1 ) = V M2zj' (a') K (2). 
oc 

where EU/ (p, Ep^) is the reduction of E it modulo the ideal (p, i^p-i) in 
an appropriate sense. This lifts to a splitting of topological ring spectra 

Ell- (p, Fp-1 ) = V Mzj' (a') E (2). 
oc' 

In both cases the wedge is finite, and we need to impose appropriate 
algebra spectra structures over the bottom summands. 

It would be of interest to find "naturally" occurring examples involving 
truly exotic versions of Morava iiT-theories. Of course, for the examples 
given we can take an exotic K(l) or K{2) and use this to impose an exotic 
multiplication upon either mod p jftT-theory or elliptic cohomology, but 
it is then unclear whether the resulting multiplicative theories have any 
geometric descriptions. 
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CONTINUOUS COHOMOLOGY AND REAL HOMOTOPY TYPE II 
EDGAR H. BROWN AND ROBERT H. SZCZARBA 

Introduction. 
In our earlier paper "Continuous Cohomology and Real Homotopy Type" [3], we 

studied localization of simplicial spaces at the reals and established an equivalence 
between the category of free nilpotent differential graded commutative algebras of 
finite type over the reals and nilpotent simplicial spaces of finite type localized at the 
reals. In this paper, we extend these results by eliminating the nilpotent condition 
on the algebraic side, thus proving a conjecture of Sullivan [8]. (See Theorem 1.2, 
Part (iv), below.) The main technical work consists in introducing local coefficients 
into continuous cohomology, continuous de Rham cohomology, the Serre Spectral 
Sequence, and the constructions involved in real homotopy type. 

We also obtain information about secondary characteristic classes of G foliations 
in the sense of Haefliger [1,3,4,6], namely that when G is compact, the continuous 
cohomology of the appropriate classifying space injects into the ordinary cohomology. 
This result is stated and proved at the end of Section 2. (See Proposition 2.5). 

Our main results are stated in Section 1. The remainder of the paper is devoted 
to proving these results. 

1. Statements of Results. 
We begin by recalling some of the notation and definitions from [3]. 
Let CA denote the category of differential (degree +1), graded, commutative (in 

the graded sense), locally convex topological algebras with unit over R and AT 
the category of compactly generated simplicial spaces. Let £2£ denote the space of 
C°° differential p-forms on the standard ç-simplex Aq in the C°° topology. Then 
ÇIP = {ÇIP} is in AT, fig = {Q,P} is in CA, and Ci = {£1?} is in AC A Define 
contravariant functors A : CA —• AT and A : AT —• CA by 

1 The first author was partially supported by the National Science Foundation. 

Astérisque 191 (1990) 
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A(A)g = (A, ilq) = the simplicial space of algebra mappings A —* 
*A(X)P = (X, Qp) = the vector spaces of continuous simplicial mappings X —• flp. 
The simplicial structure on 12 gives A(A) a simplicial structure and the algebra 

structure on Q, gives one on M^X). We view A(A) as the simplicial realization of A 
and *A(X) as the algebra of differential forms on X. 

For X G AT and any topological abelian group G, let Cq(X] G) be the space 
of continuous mappings u : Xq —» G with u o SJ = 0,0 < i < q — 1, and define 
* : C«(X; G) — G*+1 (X; G) by 

Su = ^(-i)'"u o a,. 

Here, S{,dj denotes the face and degeneracy mappings of X. The continuous coho-
mology of X with coefficients in G is defined by 

Hm(X;G) = H.(C*(X;G);6). 
The usual deRham mapping defines an isomorphism 

V> : H*(J(X);d) —> H*(X;R) = H* (X). 
(See Theorem 2.4 of [3].) 

We next describe homology of A G C*4with local coefficients. Suppose L is a finite 
dimensional Lie algebra which acts on a finite dimensional vector space V via a Lie 
algebra homomorphism 7 : L —• g£(V) = Hom(V, V). Let C*(L) denote the usual 
cochain algebra on X, that is, CP(L) is the space of alternating, multilinear functions 

u:Lp = Lx Lx - xL- + R 
with d : Cp(L) -> G*+1(L) given by 

du(£u... ,^+1) = ^(- l ) i+M[^,^] ,^i , . . . A . . . l j ,€p+i) 

For A G CA we define X-local coefficients on A as follows. Let l\,... be a basis 
for L, ^J,... the dual basis for L*, and suppose A : C*(L) —* A is a C.4mapping. 
Define dA:A®Vr-+A®Vby 

n 
dA(a ® v) = da ® v + ^ aA(£J) ® ^v. 

*=i 
where £{V = j(£i)(v). It is easy to check that d\ is independent of the choice of 
basis, that d?x = 0, and that d\ is functorial in both A and V. Let H+(A\V\) = 
H*(A®V,dx). 
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Remark 1.1. If A = C*(L), A = identity, j : L —> g£(V), and J : C*(L) <g> V -» 
C*(L;V) is the standard isomorphism, then Jd\ = dyJ where dy : CP(L; V) —* 
C'+1(-^; V) is given by 

c?7u; = duj + 7 Aw. 

Here, 7 is considered as a g£( V)-valued 1-form on L and the wedge product 7 Aw is 
defined using the action of g£(V) on V. 

Suppose now that A G C-4is free and of finite type; that is, A is the tensor product 
of a polynomial algebra on even dimensional generators with an exterior algebra on 
odd dimensional generators and each A7 is a finite dimensional vector space, j > 0. 
According to Proposition 7.11 of [2], we can find a basis ¿1,... , tn for A1 such that, 
for 1 < i < m, 

dt{ = ^2 ajk IJK 
l<i<j<m 

and for m < i < nydti is a polynormal generator for A. One easily sees that, if A 
and J9 are free and of finite type, then A(A <g) B) = A(A) x A(B) and if A = R[x, y] 
with dx = y, then A A is contractible in AT. Hence, up to homotopy type, A(A) is 
unchanged by dividing A by the ideal generated by {ti,dti \ i > m}. Henceforth, we 
include the condition n = m in the notion of free and of finite type. 

Given A as above, let L be the dual vector space to A1 and let ax,... , am be the 
basis for L dual to ¿1,... ,tm. Then L is a Lie algebra with 

m 
[oLj,OLK] = 2^aJfca,-. 

«=i 

The inclusion 
A : C*{L) ~ R[ti,... ,tm]cA 

defines Z-local coefficients on A. As in [3], we define i : A —> A(A(A)) by i(a)(w) = 
u(a). Then z'A : C*(L) —» A(A(A)) defines L-local coefficients on *4(A(A)). Finally, 
if A^ denotes the subalgebra of A generated by ¿1,... ,tm, then C*(L) is naturally 
isomorphic to A^K 

The following result is stated in [8] as "Theorem" 8.1. 

THEOREM 1.2. Suppose A € CAis free of finite type, and that A(1) = C*(L) as 
above. 

(i) Let G = GA be the connected, simply connected Lie group with L(G) = L. 
Then 

7n(AA^) ~ G fori = 1, 

~7Ti(<2) fori>l. 
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(ii) Let V be a finite dimensional vector space on which L acts and X : C*(L) —» A 
the inclusion map. Then the mapping i : A^ -* A(A(A^)) induces an isomorphism 

U : H.(AV>;VX) - Hm(^A(A^));ViX) * H*(AA^;ViX}. 

(Hi) Let A be the quotient algebra of A by the ideal generated by A^. Then 
A<J> C A induces a fibre map A(A) -+ A(A<J)) with fibre A(A) C A(A). (Note 
that A is free, nilpotent, and of finite type and hence the homotopy type of A(A) is 
described in [3].) 

(iv) For any action of L on V, the mapping i : A —> A^A(A)) induces isomorphisms 

im : H.(A; Vx) —> H*(A(A(A)); ViX) ^ #*(A(A); ViX). 
In [8], Sullivan gives a very brief sketch of (i) and(iii) and, asserts that (ii) is "a 

reformulation of the theorem of Van Est". No proof is given for (iv). We give a 
detailed proof of (iv) in general and of (ii) when G = GA in the universal cover of a 
compact group. Actually (i) follows from Proposition 2.4 and (iii) follows from results 
of Section 5. In Section 2, we give an analysis of A(C*(£)) (see Theorem 2.3 and 
Proposition 2.4). Section 3 deals with local coefficients and the de Rham theorem. 
Proposition 2.4, the de Rham theorem with local coefficients, and an unpublished 
result of Graeme Segal are used in Section 4 to prove (ii) when G is the universal 
cover of a compact group. The result of Segal is that the continuous cohomology and 
the ordinary cohomology of the singular complex of a CW complex are isomorphic. 
We give Segals proof in Section 7. 

The development of the proof of (iv) is as follows: Suppose A 6 CA is free and of 
finite type. Then A = *7A<n> where A<°> = R and A<n> = A(n_1) [x[n),..., x[n)] and 
the x*n) have dimension n. We compute £T*(A(A); VJA) by computing H*(A(A(n)); Vix) 
using induction on n. In Section 6, we use Proposition 2.4 to prove Theorem 5.3, 
namely that 

A(A[xu...,xk])-+A(A) 

is a fibration with fibre A(R[xi,..., Xk]). In Section 6 we develop the Serre Spectral 
Sequence for continuous cohomology with local coefficients and apply it to the above 
fibration to prove the inductive step in the proof of (iv). 

Recall that, for A, B € CA> a function complex T{A, B) G AT was defined in [3] 
(following [2]) by ^(A, B)q = (A, £lq <8>i3), the space of continuous differential graded 
algebra mappings from A to £lq & B. If A and B G CA are free and of finite type 
and h : A^ —> B^ is a map in CA define *̂(A, B\ h) to be the simplicial subspace 
of "̂(A, B) whose q simplicies are maps u : A —• Og (8) B which give a commutative 
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diagram 
A(1) h E(1) 

i 3 
A u R, O B 

where i : A^ —> A is the inclusion and j(b) = 1 <g) b. 
Similarly, for X, Y G AT, T(X, Y) G AT is given by T{X, Y)q = (X x A[^],F), the 

space of simplicial mappings from XxA[q] toY where A[q] is the simplicial model for 
the standard ^-simplex. If h : A(1) -» Bw is as above, let T(AB,AA;A(h)) be the 
simplicial subspace of F(AB, A A) whose g-simplicies are mappings / : A[B] x A[q] —• 
A (A) for which the diagram 

A[B] x A[q] 
/ 

A(A) 

3 Mi) 

A(B^) A(h) A (A (1)), 

is commutative, where j(s,u) — u \ A(B^). Just as in [3], Theorem 1.20, we prove 
THEOREM 1.3. Suppose A,B G CA are free and of finite type and h : A(1) —• Bw 
is a mapping in CA Then A : T{A, B) J*(A5, AA) defines a weak equivalence 

A : F(A, B] h) -> ^(A5, AA; Ah). 

The proof of this result is given at the end of Section 5. 

2. The Simplicial Space A(C*(L)). 
We give here an analysis of the simplicial space A(C*(L)) and prove an indepen

dence result for characteristic classes of G-foliations. Although the results of this 
section are stated for finite dimensional Lie groups, they do hold more generally for 
infinite dimensional Lie groups which are regular (in the sense of Milnor [7]) and for 
which the Lie algebra L(G) is reflexive. In particular, they hold for G = Diff(Af), M 
compact, where L(G) is the Lie algebra of vector fields on M. 

Let X be a manifold, G a Lie group, and let (X, G) be the space of C°° mappings 
/ : X -> G. Let G act on (X,G) by (gf)(x) = gf(x) and let Q}(X;L) C Q}{X,L) be 
given by 

fr(X; L) = {w G ^(X; L) \ dw - w A w = 0}. 
Define p : (X, G) -> Q\X- L) by p(f) = -f^df where 

(f-'dfXv) = dLjfodfiv) G TGe = L(G) 
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for v G TXX. It is easily checked that p(g • /) = p(f) for any / G (X, G), g G G, and 
that d(p(f)) - p(f) A /3(/) = 0. Thus, p defines 

p:(X,G)/G^Cl1(X;L). 

Similarly, we define a : (X, G) -+ (C*(£), O (X)by cr(/)(<*) = /*(a) for a G 
C1(L) = L* where a G 121(G) is the invariant 1-form defined by a. Then a(g • /) = 
cr(/) so 5- defines 

a : (X,G)/G ^ {C'{L),Ü*{X)). 

Finally, we define ^ : O (X, L) Hom(L*; O1^)) by ^(ti;)(a)(t;) = a(u;(v)). One 
easily checks (see [5]) that xj? defines a bijection 

t/> : n1(X;L)^(C*(L),n*(X)). 

THEOREM 2.1. Suppose X is simply connected. Then each of the mappings p and 
G defined above are bijections and the diagram 

(X,G)/G —"-^ fr{X;L) 

A I< 

(C*(L),Sl*(X)) 
is commutative where C(.w) — i/>(—w). 

Remark. If the spaces above are given the C°° topologies, then each of the mappings 
in the diagram is a homeomorphism. 
PROOF: The fact that the diagram of Theorem 2.1 commutes is an immediate con
sequence of the definitions. Since i¡) : ft(X;L) —> (C*(Zr), £l*(X)) is a bijection, it 
follows that C : &(X;L) (C*(£), £l*(X)) is a bijection so Theorem 2.1 will be 
proved if we can show that p : (X,G)/G —• 01(-X";L) is a bijection. This is an 
immediate consequence of the following. 

LEMMA 2.2. Let U be a neighborhood ofxGX and suppose w G O1 (U, L) satisfies 
dw = w A w. Then there is a neighborhood Uo C U of x and a unique C°° function 
f : Uo —> G such that f(x) = e and w = f_1df. 

For a proof of this lemma, see [9]. 
Let AG denote the simplicial space of C°° singular simplices of G. Setting X — 

A9,g = 0,l,2,...,in the previous discussion yields simplicial mappings 

a : AG —> AC*(L) 

a : AG/G — AC*(I) 

As an immediate consequence of Theorem 2.1, we have 
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THEOREM 2.3. The mapping a : AG/G -» AC*(L) is a simplicial homeomorphism. 
The next result proves part (i) of Theorem 1.2. 

PROPOSITION 2.4. The mapping cr : AG —• AC*(L) is a twisted cartesian product 
with fibre and group G where G is the simplicial group with Gq = G for all q and 
with the identity as face and degeneracy mappings. 

By Theorem 2.3, it is sufficient to show that the natural mapping 7r : AG —> 
AG/G is a twisted cartesian product with fibre and group G. To accomplish this, 
define r : AG/G -» G by r([T]) = T(Vl^(VQ)"1 and h : AG —• (AG/G) xr G by 
h(T) = ([T],T(v0)) where T € (AG/G)q and u0,vi,...vq are the vertices of Aq. 
Then r is a twisting function and h is a simplicial homeomorphism such that the 
diagram 

AG h (AG/G) xrG 

7T T 
AG/G id AG/G 

is commutative. 
We conclude this section with a result concerning characteristic classes of G folia

tions (in the sense of [5]). According to Haefliger [5], if L is the Lie algebra of a Lie 
group G, then AC*(L) is a classifying space for G-foliations transverse to fibres of 
a product. The following can be interpreted as an independence statement for the 
continuous cohomology characteristic classes of these foliations. 
PROPOSITION 2.5. Let G be a compact Lie group with Lie algebra L. Then the 
homomorphism H*(AC*(L)) H*(AC*(L)6) is injective. 

Here, AC*(L)6 is the simplicial space AC*(L) in the discrete topology. 
PROOF: By Theorem 2.3, it is enough to prove that i* : H*{AG/G) -> H*((AG/G)6) 
is injective. To do this, we consider the commutative diagram 

C*(AG/G) 3 G*(AG)G G*(AG) 

k 
G*((AG/G)*) C*(AG6)G C*(AG6). 

The mapping j is an isomorphism and k is a homology isomorphism by Theorem 
4.9. Using the Haar integral, we can construct a cochain mapping r : G*(AG) —• 
C*(AG)G with r£ = id. (See Proposition 4.4.) It follows that the composite k£j is 
injective on homology so i* is injective on homology. 
REMARK : The analogue of Proposition 2.5 with local coefficients can be proved using 
the techniques developed in Section 4. 
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3 . Local Coefficients and the de Rham Theorem. 
In this section, we describe local coefficients systems in several different ways. We 

also prove a local coefficient version of the continuous cohomology de Rham theorem. 
Let G be a Lie group with Lie algebra L and let V be a finite dimensional vector 

space. Suppose G acts on V via a representation r : G —* GL(V) so that L acts on 
V via a representation 7 : L —» g£(V). In Section 1, we defined a local L system on 
A € CA to be a CAmap A : C*(L) A and a differential 

dx : Ap®V -+ A*+1 <g>V 

given by the formula 

dx(a ® v) = (da) <g> v + (-l)p ^ aA(€J) <g> ¿,1; 
t 

where {^} is a basis for L, {£*} the dual basis for L*,a G Ap and £{V = 7(£t)(u). We 
now translate this into a more familiar form. 

Let V be as above and define £l(V) to be the simplicial topological differential 
graded vector space given by 

ft;(V)=n*(A«;V), 

the smooth differential p-forms on Ag with values in V. For X £ AT, let A(X, V) 
be the differential topological graded vector space with 

JP(X;V) = (X,W(V)), 

the space of simplicial mappings from X to £lp(V). It is easy to see that A(X, V) = 
A(X) <g) V. Note that AC*(L) can be considered to be contained in O1 (L). 

Suppose A : C*(L) —> A(X) is an CA map and let </> = </>x be the composite 

X i A(A(X)) A-̂ } A(<7*(L)) C Q1^) (L) 

where j(x) (u) = u (x). Then <j> £ A -̂X^X) and one easily checks that d<f>(x) + 
<j>(x)A(j>(x) = 0 for all x E Xq. We define d+ : A(X; V) -> A(X, V) by 

d̂ u; = du> + <£Au>. 

Then d\ = 0 and we have 
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PROPOSITION 3.1. Let i : A(X) <8> V —• V) be the isomorphism defined by 
i(to <8> v)(x) = u>(x)v. Then id\ = d< .̂ 
PROOF: If u> e JP(X), v e V, and x e Xq, then 

tcfA(w (8) v)(x) = i((du;) <8> v + (-1)" ^ wA(<J) (8) ^v)(a?) 
< 

= (cfc;)(*)t, + (-1)" ^a>(s)A(£?)(*)^ 
t 

= (dw)(x)v + (-l)po;(x)^(x) 

= d<f>i(uj <g> v)(#). 
since <f>(x) = £A(^ 

i 
We next reformulate these notions into an equivariant setting. Let A be the com

posite 
X i A(J(X)) A^ AC*(L) 

and let X be the pullback 
X > AG 

p Br 

X 
A 

AG*(L) 
where à is defined in Section 2. Let G act on -4(-X", V) by 

(gcv)(x,T)=gu;(x,g-1T) 

where x G Xq,g G G, and T € (AG)q and let JJ : J{X, V) -» V) be given by 

H(CJ)(X, T) = T • u>(x) 

for a; G .4(X, V) and (x, T) G X. Here 

T • o;(x)(u;1,... , wp) = (TT)(y) • {u(x){wx ,... , u;,)) 

where Y : G —• G£(V) is the homomorphism defined by the action of G on V, 
?/ G A*,wi,... ,Wp G TAJ, and (TT)(y) acts onw(i)(«;i,... ,u;F) G V. 

PROPOSITION 3.2. The map H defines an isomorphism of J(X, V) onto J(X, V)G 
with Hdfi = dH. 

PROOF: The verification that gH(u>) = H(w) is straightforward. To see that H is 
an isomorphism, let O : AC*(L) —> AG be the composite 

AC*(L) AG/G AG 
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where a : AG/G —> AC*(L) is the simplicial homeomorphism defined in Section 
2, fi[T] = T(v0)"1T, and v0 is the initial vertex of Aq. Then H'1 : A(X, V)G 
*A(X, V) is given by 

Я-*(«)0О = 0(\{х)Г*и,{х,0{\{х))). 
In order to prove that Hd<t> = dH, we need the following, which will also be useful in 
the next section. 
LEMMA 3.3. Let M be a manifold, V a finite dimensional vector space, f G 
Q°(M; GL(V)) 
C £l°(M;g£(V)), and u e ft^M; V). Define Af G Q1(M;g£(V)) by Af = fxdf. 
Then 

d(fw) = f(dw + A/A w). 
The proof is straightforward. 
To prove Hdj, = dH, consider w G ̂ X , V), (x, T) G Xg C Xq x AGG, and let 

/ : Aq —> GL(V) be the composite 
AG T G r GL(V). 

Then 0(x) = A / since A(x) = a(T) = T~*dT and we have 
( i f^ ) (x ,T) = (^T).^o;(x) 

= F - (W (X) + A/ACJ(X)) 

= d(f-u,(x)) = dH(u>)(x,T). 
by Lemma 3.3. 

We conclude this section by reviewing the usual definition of local coefficients. 
Let t : Xi —> G be a continuous function satisfying t(d\x) = t{p2x)t{dox) for 

xeX2. Define ^ • C*(J*T; V) -» C*+1(A:; v) hY 

(Stu)(x) = (t (ax, x)u(d0x) + 
n+1 

i = 1 
:(-i)««(a,x) 

for x G -^p+i. Then Sf = 0 and we define 

ff*(X;Vt) = -ff.(C*(X;tO;M-
Suppose A : C*(L) —> .4(.X") with 0, 0, and X as above. Define * = t\ by 

tA(*) = O(*00)(»i) 
where i>o, Vi,... ,vq are the vertices of A' and let G act on C*(X; V) by 

(gu)(x,T) = gu(x,g-1T). 

Define K : C*(X; V) -> C*(X; V) by K(u)(x,T) = T(v0)u(x). 
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PROPOSITION 3.4. The function K maps C*(X, V) isomorphically onto C*(X, V)G 
with Kdt = dK where t = t\. 

PROOF: It is easy to see that K"1 is given by 

K-^uXx) = u(x,Q(X(x))). 

The remainder of the proof is similar to the proof of Proposition 3.2 and we omit it. 
Let £ = V <g> id : J(X, V) -> C*(X, V) where # : A(X) C*(X) is defined in [3]. 

We now have the following local coefficient version of the de Rham Theorem. 

THEOREM 3.5. The map V> induces an isomorphism 

^. : H.{AX;V)G) -> H»(C'(X;V)°) 

and hence an isomorphism 

(K-^H), : H.(JiX,V),dt) - H,(C*(X,V),dt) 

where <f> = <f>\ and t = t\. 
PROOF: In the proof of Theorem 2.4 of [3], natural mappings <f> : C*(X) —> -4(-X") 
and 7 : AP(X) —• AP~1(X) were constructed satisfying ip<f> = id and dj+jd = <t>ip—id. 
Tensoring everything in sight with V gives the desired result. 

4 . The Proof of Theorem 1.2 (ii). 
We now prove part (ii) of Theorem 1.2 in the case where G = GA is compact. 
Let G be a connected, simply connected Lie group G with Lie algebra L. Suppose 

L acts on a finite dimensional vector space V via a homomorphism 7 : L —> g£(V). 
Viewing 7 in C1(X; g£V), define a differential dy on C*(L; V) by 

d-f(a) = da + 7A a 

as in Remark 1.1. Similarly, we define a differential c?»T on >4(AC*(L); V") by 

di~f(uj) — dcj -f (¿7) A co 

where i : C*(L; g£(V)) -> J(A(C*(L)); gl{V)) is the canonical map. The wedge 
product (¿7) A LO is defined using the pairing 

J(AC*(L); g£(V)) <g> -4(AC*(£); V) -> ^(AC*(L); V). 

According to Remark 1.1, part (ii) of Theorem 1.2 is a consequence of the following. 
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THEOREM 4.1. HG is compact, then the mapping 

i : (C*(£; V); dy) -+ (X(AC*(£); V); diy) 

induces an isomorphism on homology. 
The remainder of this section will be devoted to proving this result. 
Define F : G*(L; V) —> J{AG/G\ V) by F(a <g) v)(T) = (T*a) ® v where v e V, 

T e AG, a 6 CP(L), and à € ftp(G) is the left invariant p-form defined by a. Define 
7 = Fj € A (AG/G; flr£(V)) where # is defined as above with V replaced by g£(V). 
Let 

<£y : ̂ (AG/G; V) — ^+1(AG/G; V) 

be given by d^(u) = du + 7 A u where c? is the usual differential on J?(AG/G) and 
7 A v is the wedge product defined using the pairing 

ft*(A*; g£(V)) <g> ft*(A*; V) -> ft*(Ag; V). 

LEMMA 4.2. For any a G G*(L; V),Fd7(a) = d^F(a) and the diagram 

4AC*(L);V) 

1 <7* 

G*(£; ^ ) - ^ ^ A G / G ; F ) 
commutes. 

PROOF: We first verify that the diagram commutes. It is enough to do this when 
V = R in which case each of the mappings is an algebra homomorphism. Since C*(L) 
is generated by one dimensional elements, we need only show that <j*i(a) = F(a) for 
aGL* = CX(L). If T : A9 —• G, we have 

o*i(a)(T) = i(a)(*(T)) 
= <r(T)(a) = a(T~xdT) 

Now T-1dT is the X-valued 1-form on Aq given by (T_1dT)(u) = dLT(t)-idT(u) 
where u is a tangent vector to Ag at t E Aq and L^t)-1 : G —» G is left translation 
by T(t)"1. Thus, a(dLr(t)-idT(tx)) = a(dT(u)) so that a(r"1cfr) = T*(a) and the 
diagram commutes. 

To prove Fdya = d^F(a), we note that dF = Fd so it is enough to show that 
F(7 A a) = 7 A F(a). If7 = /?®Aasan element of G^L) ® g£(V) - G1(L; ̂ (V)) 
and a = ai <g) v as an element of C * (L) V G*(L; V), then 

#(7 A a)(T) = F(0 A ai <g> A(v))(T) 
= T*(^ A a i ) 0 

= (#(7) A F(a))(T) = 7 A F(a)(T). 
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The general case now follows from the fact that any 7 G C1(L\g£(V)) and a G 
G*(L; V) are sums of elements of the form considered above. 

Since a is a simplicial homeomorphism, a* is an isomorphism of differential graded 
vector spaces and i will be a homology isomorphism if and only if F is a homology 
isomorphism. To prove F a homology isomorphism, we will define mappings which 
give the following commutative diagram of differential graded vector spaces: 

(C*(L;V);d^) —L_» (^AG/G; V); dy) 

' 1 [ ' 

(4-3) (0*(G;V)°;d) — ^ - (J(AG; V)a; d) 

-VI ' M 

(ft*(G;V);d) —F—̂  (J(AG;V);d) 

Here, j and j are inclusion mappings. 

PROPOSITION 4 . 4 . Suppose that, in the commutative diagram (4.3), ¡1 and fx are 
isomorphisms, F is a homology isomorphism, rj = id, and rj = id. Then F is a 
homology isomorphism. 

PROOF: It is clearly enough to prove F a homology isomorphism. Now, rj = id 
implies that j+ is infective. Thus (Fj)~* (jF)* is infective and it follows that F* 
is injective. To prove F* surjective, consider u G lf*(«4(AG; V)G; d) and let v = 
r+F"1 j*u. Then F±(v) = u so F+ is surjective and thus an isomorphism. 

We now proceed to define the mappings in diagram (4.3) and prove that the hy
potheses of Proposition 4.4 are satisfied. We begin by defining an action of G on 
0*(G; V) and on -4(AG; V) which give the middle row of (4.3). 

The Lie algebra homomorphism 7 : L —* g£(V) determines a unique Lie group 
homomorphism r : G —> GL(V) with 7 = dT : L = TGe -> TGL(V)e = g£(V). 
(Recall that G is assumed simply connected.) Define actions of G on ft*(G; V) and 
on A(AG; V) as follows. For g G G,w G n*(G; V), let G OP(G; V) be given by 
gw = Tig^L^w). Similarly, for u : AG -» №(Aq;V) G JP(AG;V),g G G, and 
T G (AG),, let 0tx be the element of ^4P(AG; V) given by (gu)(T) = T(g)u(g~1T). 
Then n*(G;V)G and *4(AG; L)G denote the cochain complexes of elements fixed 
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under the action of G with the standard differential d. It is straightforward to show 
that d(gu) = g{du) for u e ft*(G; V) or u € A(AG; V). 

Define F : ft*(G; V) -» A(AG; V) by F(w)(T) = T*w for w E ft*(G; V), T € AG. 
Then F(dw) = dF(w) is immediate and 

FfouO(T) = T*(gw) 
= TT(g)L*g-iW 
= (id <g> T(g))(T* <g> id)Xj-iu; 
= r ( y ) ( V * r ) ^ = (^F(u;))(r). 

Thus F induces F : (ft*(G, V)G,d) — (A(AG; V)G,d). 
Define mappings 

r : ft* (G; V) -» ft*(G; V) f : A(AG; V) -+ A(AG; V) 

by 
K«0 = jT 9wi Ku)(T) = jG(gu)(T) 

for it; E ft*(G; V), u E -4(AG; V), T € AG, and the integral is the Haar integral on G 
normalized so that the volume of G is one. 
PROPOSITION 4.5. For any g E G,u> E ft*(G; V),u E ^(AGjV), we haveg(r(w)) = 
r(tt>) and g(r(u)) = f(u). Furthermore, dr = rd, df = fd, and fF = Fr. 

The proof of this proposition is straightforward. For example, to prove that Fr = 
fF, we simply use the definitions: 

(Fr(w))(T) = T*r(w) 

= r* JGT(9)l;^W 

T(g)T*L^xv, 

= G T{g)(Lg-iTYw 

= y r ( ^ № ) ( V , T ) = (fJ'(u,))(r). 

It follows from Proposition 4.5 that 

r(ft*(G; V)) C ft*(G; V)G, f(A(AG; V)) C A(AG; V)G. 

Thus, we have established the existence of the lower rectangle of mappings in (4.3). 
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To obtain the upper rectangle in (4.3), we need first of all to define a second action 
of G on n*(G;V) and *4(AG; V). For w G ft*(G,y) and g G G, let g * w be the 
element of ft*(G; V) given by 

g * w = L*g-Xw. 
Similarly, for u G (AG; V), let g * u G *4(AG; V) be defined by 

(g*u)(T) = u(g-1T) 

for T G AG. Then d(g * tu) = g * du> for w G ft*(G; V) or u; G A(AG; y) and we 
let ft*(G; V)G* and A(AG; V)G* denote the subspaces of elements fixed under these 
actions of G. Of course, C*(L; V) can be identified with ft*(G; V)G*. The next result 
gives the corresponding identification for A(AG; V). 

LEMMA 4.6. The natural mapping p : AG —• AG/G induces an isomorphism 

p* : A^AG/G; V),d^) -> (J(AG;V)G*,d-y) 

of differential graded vector spaces. 

The proof is trivial. 
In order to define the mappings ¡1 and ft of diagram (4.3), we first define related 

mappings. Let 

77 : ft*(G; V) -+ ft*(G; V), fj : *4(AG; V) -» A(AG; V) 

be defined by r](u) = T • LO , fj(u)(T) = (T o T) • u(T). 

LEMMA 4.7. The mappings 77 and 77 are bijective. Furthermore, we have i](g*uj) = 
grj(u) and fj(g * u) = gfj(u) for any g G G, u> G ft*(G; V), and u G *4(AG; V). 

PROOF: The inverses to 77 and 77 are defined just as 77 and 77 are denned using 
r-1 : G —> GJ^V^r-^) = r(y)"1, in place of I\ The verification of the two 
equations of Lemma 4.7 are similar; we do only the second, leaving the first to the 
reader. Thus, for g G G, u G *4(AG; V), and T G AG, we have 

(gfj(u))(T) = T(g)fj(u)(g-1T) 

= T(g){Tog-^T)u(g^T) 

= (T(g)T(g-l)ToT)u(g-*T) 

= {ToT)u(g-1T) = ri(g*u)(T). 

As indicated above, any element a G G*(L; V) can be considered as a left invariant 
form OL G ft*(G;F). In particular, 7 G C 1 ^ ; ^ ^ ) ) determines 7 G ft1^;^')) 
where j(X) = j(dLg-iX) for Ar G TG5. Define 

d7 : ft*(G;F) — ft*(G;F) 
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by dytv = dw + 7 A w. Define 7 G -4(AG; < (̂V)) by 7 = F7 where F : ft*(G; V) 
-4(AG; V) is given by F(u;)(T) = T*tu, (see Proposition 4.5), and let 

d^ : J(AG;V)-> J(AG; V) 
be defined by d^u = du + 7 A u. Then c?? = 0 and <i? = 0 and we have 
LEMMA 4.8. For w G £l*(G;V) and u G J^AG\V), we have drj(w) = rf(d^w) and 
dfj(u) = fj(dyu) 
PROOF: Again, the verifications of the two equations are similar so we carry out 
only the proof of the second equation. Thus, 

(dijf(«))(r) = d«(u)(D) 
= d((roT)u(T)) 
= r o T(d«(T) + A(r o T) A «(T)) 

by Lemma 3.3. Now, iiX e TAf, we have A(roT)(X) = dLr(T(t)-i)dTdT(X). Iden
tifying 7 : L -* gt{V) with dT : TGe -»• TG£(V)e, we have dT = dLT(T(t))'rdLT(t)-i 
(since r is a homomorphism) and 

A(r o T)(X) = jdLT(t)-xdT(X) 
= j(dT(X)) 
= FftXX) = y(X). 

Then 
d(fj(u))(T) = (r o T)(d«(T) + 7 A u(T)) 

= (fj(d^)u)(T). 
According to Lemmas 4.7 and 4.8, 77 and fj induce isomorphisms 

r, : (ft*(G; V)G*;d,) -» (<r(G;V)G;d) 
ijf : MAG; F)G*; d^) - (.4(AG; V) G; d) 

of differential graded vector spaces. Let fj, and p. be the composites 
Ii: (C*(L; V); d 7) ~ (1T(G; V)G*; d») i (N) G? VF) G ; d) 
PL : (A&G/G;V);d^) £ (^(AG; V)G*; d>) X (^AG;V)G;d) 

If F : Q*(G; V)G ^(AG; V)G is the restriction of F : fi*(G; V) -> -4(AG; V), then 
diagram (4.3) is easily seen to be commutative. 

We have now established the commutative diagram (4.3) of differential, graded 
vector spaces. Moreover, the mappings fi and /2 are isomorphisms. Thus, according 
to Proposition 4.4, the proof of Theorem 1.2, part (ii), will be complete if we can 
show that F is a homology isomorphism. For this we need the following. 
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THEOREM 4 .9. Let X be a CW complex, AX the singular complex of X in the 
compact open topology, and AX6 the singular complex of X in the discrete topology. 
Then the natural mapping j : AX6 —> AX induces an isomorphism 

H*(AX) £ H*(AX6) = H*(X). 

We are indebted to Graeme Segal for the proof of this result which we give in 
Section 7. 

To see that F : Q,*(G; V) —* A^AG\ V) induces an isomorphism on homology, 
consider the following commutative diagram 

n*(G; V) F 4(AG; V) 

0 0 
C*(AG6;V) i C*(AG;V) 

Here all differentials are the ordinary untwisted differentials,v is defined in [3], 
Section 5, and t/> is the usual deRham mapping. Now, tp is a homology isomorphism 
by Theorem 2.4 of [3], j* is a homology isomorphism by Theorem 4.9 above, and if? 
is well known to be a homology isomorphism. Thus F is a homology isomorphism 
and Theorem 1.2, part (ii) follows from Proposition 4.4. 

5. Fibrations. 
Suppose G is a connected, simply connected Lie group with Lie algebra L, A G CA, 

and A : C*(L) —> A is a map in CA Let X be a graded vector space with basis 
x\,... ,xjfc, deg Xj = n,j = 1,... ,n, and let {£{} be a basis for L. Let A[X] = 
A[xi,... , Xk] be the free algebra over A on xi,... ,Xk and suppose A[X] has a dif
ferential d with dA C A and such that 

(5.1) dXi = ^HtyXm + d 

where b{m G R, c{ e An+1 and {£?} is the basis for L* dual to (ei) The relation 
dPxi =0 yields 

(5.2) dCi = Y,^rK^)cm 

Let X* be the dual space of X, {#*} the basis for X* dual to (xi) and define 
/i : L 0 X* -+ X* by 

Kb ® 4 ) = rK^)cm 

The equation d2 = 0 implies that /i defines an action of L on X* as a Lie algebra. 
Therefore, we have a corresponding action of G on X*. 
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Let G G AT be given by Gq = G, Si = Si = id for all q, i and set P = Ai*[X] x G. 
(Here, R[X] G C4with dJf = 0.) We make P into a simplicial topological group and 
define an action of P on A(R[X]) by 

(v,#)(v',sO = (v + g-v',gg') 
(v,g)u; = v + gu 

for 0,0' G Gg = G, v,v',u G A(R[X))q C Qn(A*;X*). 
In [2], Section 5, we defined a map /i0 : flp(Aq) —* Qp_1 (A9) satisfying dfio-\-fi0d = 

id, /io-Sj = SjfiQ for j > 0, and fiodi = oio for i > 0. We extend this map to a 
mapping 

ц0 : ÜP(A9;X*) -+ SI"-1 (Ая ; X*) 
with these same properties by ô(<*> <8) #) = A*o(̂ ) ® x and define c : X —* An+1 by 
c(xi) = c,. 
THEOREM 5.3. The simplicial space A(A[X]) is a twisted cartesian product A( A) x r 
A(i£[-Y]) with group P and twisting function r : AAq —• Pq-\ given by 

r(u) = №oA)(u1)-1((90/i0 - nQdQ)(G(uo\)uoc), G(u o AXvi)"1) 

for u G AAq = (A, Q,q) and vi is the second vertex of Aq. Here O is defined in Section 
3 to be the composite AC*(L) ^ AG/G B AG where 0(T) = Tv TM^T. 
PROOF: We identify (X,£lq), the space of linear mappings from X to ft™, with 
Qn(Ag; X*) by v .—• ^«(xtK, v : X -> ft£. If u G A(A)g, then woe 6 (X,ft£+1) = 
ftn+i(A*;X*) and uo X e A(G*(£)) C ^(A^-L). Thus 

A(A[X])q = (A[X],Slq) 
= {(u, t;) G A(A)q x (X,ftJ) | *;(**) = EftJm(ti o A(^)M*m) + u(*)} 
= {(u, v) G A(A)g x ftn(A«; X*) | dv = (u o A) A v + u o c} 

Note that 

A(*[>r]), = (R| X|, O), 
= {t> : X -* ft, | dv = 0} 

= {«€ ftn(A«;JT) | dv = 0}. 

Define / : A(A), x A(JJ[A-]), -» A(A[X]), by f(u, v) = («,*;') where 

v' = 0(w o A)-1(/i0(C(u o A)w o c) + v) 
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where P([T\) = T(v0)-1T. In order to insure that (u,i/) € A(A[X])q, we need to 
show that dv' = (uoA)Au'+uoc. If (% = <9(u o A) G (AG%, then 

d*/ = DQ,"1 • Oo(Q) • u o c) + v) + O0_1 • (d^o(Q) • o c) + du) 
= -Cg"1 • DA • Of ^^(O • ti o c) + v) + OQ"1 • (Cb • t* • c - /i0(d(Q) • u o c))) 
= -O^dOo Au' + woc - Cf1 - /i0«Ob - woe)) 

since DQF1 = -QR^OBQR1-
We now need the following results. 
If uo A G AC*(£)g is considered an element of ftj(£) (as in the discussion following 

Theorem 2.10), we have 
LEMMA 5.4. dCb = —OQ • u o A. 

PROOF: Identifying AC*(L)q with ft^A^-L), we have 

-O0-1dO = p(Q>) 
= P (O (O A)) = u o A 

by the definition of the mappings involved. 
COROLLARY. O0_1dC\) = -uoA. 
LEMMA 5.5. d(uoc) = uoAAuoc. 
PROOF: The element in On+1(Ag;X*) corresponding to u o c is E(u o c)(xi)x* = 
Sw(ci)a?J. Thus 

d(u o c) = dStx(c,-)x* 
= Eiz(dci)a;* 
= E&S'rauo A(€*)U(CmK 
= (Eu o A(^)^)(E« o c(xm)a4) 
= u o A A w o c. 

COROLLARY. d(Cb • u o c) = 0. 

PROOF: 

d(Cfo - uoc) = (dOo) A u o c + Qo - duo c 
= — OQ - UO A AUOC + Q) - UOAAUOC = 0. 

It follows from the two corollaries above that dv' has the required form. 
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Define / -1 : A(A[X])q A(A)q x AR[X]q by / -1 (","') = (u,v) where 

u = G(u o A)v' - (*o(0(u oA)-uoc). 

It is easy to check that Z""1 is actually an inverse for / . We now determine the 
twisting function r. 

For (u, v) 6 AAq x AR[X]q, set d0(u,v) = (d0u,v). Then /(d0(u,v)) = (a0w,v') 
where 

v' = O(d0(u o A))-1(/i0(C?(ao(w o A)) • d0(u o c)) + v) 
Furthermore, dof(u,v) = (9oti,3ou') where 

a0v' = d0O(u o A ^ ^ M ^ C " o A) - u o c) + d0u) 

Thus, if d0v' = v, we have 

v = O(d0 (u o A)) • d0 G{u o A)"1 (d0 fi0 (Q(u o A) • u o c)+d0v) - /x0 (0(3O (u o A)) • 30 (u o c)) 
It is easy to see that g-fj,o(u>) = fj.o(g-u>) and <9(#o<*) = 0(a)(vi)~"19oO(a) for g £ G, 
w £ ft*(A*; X*), and a € AC*(£). It follows that 

v = O(u o o \)(v1)~1((dofi0 ~ f*od0)(0(u oA)-uoc) + C>(u o AX^i)"1^*) 

so that 

r(u) = (Q(u o AXwO'̂ CSoMo - Hodo)(0(u o A) • iz o c),0(u o A)^)"1). 

The verification that dif = fdi for i > 0 and Sif = fsi is routine and left to the 
reader. 

We conclude this section with a proof of Theorem 1.3. The proof of Theorem 5.3 
of this paper can easily be extended to show that 

(5.6) F(R[X), B) — J\A[X], B) — J\A, B) 

is a twisted cartesian product and hence a fibration in AT. (Theorem 5.3 corresponds 
to the case B = R.) For example, identifying (X, Q.q <g> B) with Q(A9; X*) ® J5)n, we 
have 

J\A[X,B)q = {(u,v) e J\A[X),B) x (Q,(Aq;X*) ® B)n | dv = uAv + uc}. 

The pullback of (5.6) to T(A, B\ h) C F(Ay i?) yields a fibration and a commutative 
diagram 

W * ] , * ) > HA[X],B;h) • F{A, B; h) 

1 - I 1 
?{AB, AR[X]) • J\AB, A(A[X\); Ah) > J\AB, AA; Ah) 
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If we write A — UAn, then induction, the diagram above, and the fact that Ai is a 
weak equivalence gives the theorem for A = An. A limit argument as in the proof of 
Theorem 2.20 of [3] yields the desired result. 

6. The Continuous Cohomology Serre Spectral Sequence with Local 
Coefficients 

Suppose that E = B xT F is a twisted cartesian product in AT with group 
P and suppose 7To(P) = Po- In [3], Section 8, we constructed a local system 
r = r I Bi —> P0, on action of Po on C*(F; P), and a map 

A* : C*(B; G*(P; R)) — C*(B xr F; R) 

which was filtration preserving with respect to the obvious nitrations. In 
general, A* is not a cochain mapping (relative to the usual differential 8 on 
C*(B xT F\ R) and the twisted differential 8T on C*(P; C*(P; R))) but it 
does in fact induce an isomorphism on E^q for r < 2. (See [3], Section 8.) 
Furthermore, if F is splittable, this map gives an isomorphism 

El>9(B xrF)~ H*(B; H*(F; P)). 

Suppose now that L, G, and V are as in Section 3 and t : B\ —* G is a local 
system. If, in the above paragraph, one replaces R by V,6 on C*(E;V) by 
6tp,p : E -+ P, and 8r by St,f : B1 -> P0 x G,f(6) = (r(6),<(&)), then the 
statements remain true with the same proofs as in Section 8 of [3]. Hence we 
have 

THEOREM 6.1. IfFis splittable, then the Serre spectral sequence for H*(B x T 
F; Vtp) converges in the usual way and A* induces an isomorphism 

E™ ~H*(B;H<(F; V)-T). 

We next apply Theorem 6.1 to A(A[X]) = A(A) xr A(R[X]). Let A : 
C*(L) ->Abea map in CA and recall that 

i = iA : A ® V -> (A(A)) <g> V 

is given by i(a <g) v) = i(a) <g> v where i(a)(f) = /(a). 

LEMMA 6.2. If IA induces an isomorphism 

iA : H*(A (8) V, dx) H*(A(A(A)), d^ 
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then the same is true for iA[X] ' A[X] <g) V —• A¥(A(A[X])) <8> V. 
PROOF: Let ^ = K^^H : J(A(A)\V) -> C*(AA;V) be the mapping de
fined in Section 3 (see Theorem 3.5) and let 

i = $i : A <8> V -+ C*(AA; V). 

It is sufficient to prove Lemma 6.2 with i replaced by i and d0 by dt. Define 
a filtration on A[X] <g> V = A <g> P[X] <g> V by 

Fp = {a ® w <g> v \ dim a > p). 

Exactly as in [3], Lemma 9.4, one checks that i is filtration preserving and 
hence induces a mapping of the corresponding spectral sequences. 

We prove Lemma 6.2 by showing that i for A[X] induces an isomorphism 
at the E2 level. As in [3], Section 9, the Ei term for A (8> R[X] <8> V is 

E™ = Ap ®R[X]* ®V 

and for A(A[X]), 

E™ = C*(A(A),tf*(A(P[X];F))). 

In both cases, d2 is the appropriate local coefficient differential. Furthermore, 

i : R[X] (g) V -> C*(A(R[X]); V) 

induces an isomorphism on homology, this being the untwisted version of our 
theorem which we proved as Proposition 2.8 in [3]. By hypothesis 

IR[X] <8> %A E2 -+ E2 

induces an isomorphism. Thus we must show that i>A[X] induces this map. 
The map induced by IA[X] is the composition 

A[X] (8) V -1+ C*(A(A[X]),V) C*(A(A) xr A(R[X])) 
- i* Y,Cp(A(A),C*-*(A{R[X]),V)) 

where rj is induced by the usual Eilenberg-Zilber map CP(X) <g> Cq(X) —» 
Cp+q(X) involving shuffles of degeneracy maps. 
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For any X, x G X, and w G ftn(X; V), 

фш(х) = К~1ОфНш(х) 
= фНи(х,(Э(ф(х))) 

= / Ни{хуО{ф{х))) 

= / С(ф(х)ш{х)). 

For u G An(A),v G Aq(R[X]), and (a,/9) a (p, q) shuffle, 

f(sau,spv) = (sau, sa((9(uA)_1 fj,oO(u\)uw) + sad}(uA)-1S^U 

The first terms in each factor are sa degenerate, thus will be 5a degenerate 
when evaluated on an element of A[X] 0 V and hence will drop out when we 
integrate. Suppose a G Ap, e G R[X]q and z G V. Then 

if*rj(a 0 e 0 2r)(u)(v) = A.G/ A P + 1 saO(u\)(sau(a)(saO(u\)'~1 spv(e))z 

= f OiuXXz^i^OiuX)-1 f t)(c) 

where £ G (i?[X],Q) is defined by v G J(Aq;X). Similarly 

i$iA ' A ® R[X] <g> y -+ G*(A(A), C*(AJJ[X], V)) 

is given as follows: Note first that the group in question is 7r0(G x P) = G x G 
which acts on R[X] <g) V by 

(0i>02)(e<8>*) = (eflr2,0i*)-

Since G acts on the left of X*, it acts on the right of R[X] and on the left of 
A(R[X]). For u G A(^) the O in this case is (C(uX), O^X)'1 ) (see Section 
5). Hence 

фгА(а <g> e (g) z)(u) = f еО(иХ) 1 (g) <?(uA)u(a)z 
JAP 

and 

iil)iA{a <g> e (8) z •)(ti)(v)= / / (0(tiA)-1v)(e)0(uA)u(a)z 
Ja« Jap 

where G(uX) G ft°(A*; G), u(a) G ftp(A*),v(e) G W(Aq). Comparing this 
with 
if*rj(a <g> e ® Z)(U)(?J) we see they are equal and the lemma is proved. 
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We conclude this section with a proof of Theorem 1.2, (iv). Let A € CA 
be free and finite type so that A = LL4(n), A(n) = A(n_1) [Xn], A0 = R. By 
Theorem 1.2, (ii), i induces an isomorphism 

Hm(AM; Vx) ~ Hm(A(A(AW) <g> ViX) 

By Lemma 6.2 and induction on n, i induces an isomorphism 
ff.(A(n) ® V,dx) » ff.(^(A(AW))®V,dA) 

and hence the same holds for A. 

7. The Proof of Theorem 4 .9 . 
We give here the proof of Theorem 4.9 which was communicated to us by 

G. Segal. 
Let X be a paracompact space and A(X) the singular complex of X in the 

compact open topology. Thus, H*(AX) is the continuous cohomology of the 
simplicial space A(X) and iiP(A(X)5) is the singular cohomology of X. Let 
U be a covering of X which has a partition of unity (Yvi U 6 tf\ subordinate 
to it. Let A(X,IA) C A(X) be the simplicial subspace consisting of those 
T : A* -* X with T(Aq) C U for some U e U. 
LEMMA 7.1. The inclusion mapping A(X,U) C A(X) induces an isomor
phism 

H*(A(X,U))^>H*(A(X)) 
on continuous cohomology. 
PROOF: Let Cq(X) be the singular chains on X with integer coefficients, 
sd : Cq(X) —• Cq(X) be the usual subdivision mapping, and D : Cq(X) —• 
Cg+i (X) the chain homotopy with dD + Dd = sd — id. The maps sd and 
D are natural and obtained from the first barycentric subdivision of Aq. Let 
sdn be the nth iterate of sd, idq : Aq —• Ag the identity map considered as an 
element of Ag(Ag), and write 

sdn(idq) = J2±T? 
i 

where Rn £ Aq(Aq). Note that the diameter of r^(Aq) approaches 0 as n 
approaches infinity. 

Let p : R —> R be a smooth non decreasing function with p(x) = 0 for x < 0 
and p(x) = 1 for x > \ . Define continuous functions y>n : A{X) —> R by 

c^(T) = p(min £ mm(A|7(T(if (t))))) 

The following may be verified by inspection. 
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LEMMA 7.2. The functions (pn : A(X) —> R satisfy the following. 
(i) (pn is continuous. 
(ii) For each T G A(X), there is an integer N = NT with yn(T) = 1 for n > N. 
(iii) If(fn(T) / 0, then there is a U € U with 

T(r?(Aq)) C supp XuGU 

for all i. 

Remark. The functions if>n = ipi — ipn-i ,*4>o = ^o, define a partition of unity 
subordinate to the covering {An(X,£/),n > 0} where 

An(X,U) = {Te A(X) | sdnT € Cq(A(X,U))}. 

Let sd* : Cq(A(X)) C*(A(X)) and £>* : C*(A(X)) -» C^^ACX)) 
be induced by sd and Z>. We show Hq(A(X)) « Hq(A(X\U)). Suppose 
u G C*(A(X)),£u = 0 and v € C*"1 (A(X;U)) with ^ = tion A(X;U). We 
define vn G Cg_1 (An(X;U)) with £vn = u on An(X\U) by induction on n. 
Let i?o = v and define 

t>n+i = scTt;n — D*u. 

Then, if Svn = w, 

£vn+i = scTtz — (sd*u — u — D*6u) 
= u 

We modify the vn so that they fit together to give an element of Cq~1(A(X)). 
If we Cq(An(X;U)), define <pnw by (<pnw)(T) = <pn(T)w(T). Since sup <pn C 
An(X,£/), we have y>nw G C*(A(X)). Let t G Cq^(A(X)) be denned by 

* | A"(X; U) = tn=Vn- S(J2 v'D'vi - ^ ( 1 - <p*)DmVi) 
*<n t>n 

Since <pl(T) = 1 for i" large, the above sum makes sense. Note that Stn = u 
and that 

6D*Vi =sdv;-v; -D*U 
= vi + 1- Vi 

Hence, for T G An(X;£/) and AT large, 

tn(T) = (VN+i + « E <^IT t;,)(T). 
t<iV 
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It follows that t„+i(T) = tn(T)y t is well defined and St = 0. 
Suppose v G Cq(A(X;U)) and Sv = 0. Let U G Cq(A(X)) be defined by 

u I AN(X,£/) = un = sdnv - 8(^T,<piD*sdiv - ^ ( 1 - VJ^JD^V) 
t<n »>n 

Then for T G An(X,U) and N large 

u„(T) = sdN+xv - S^Y^V*D*sdiv) 
i<N 

Thus it is well defined and U = UQ=V — Sz on A(X\U). This completes the 
proof of Lemma 7.1. 
PROOF OF THEOREM 4.9: We verify that H*{A{X)) satisfies additivity and 
the 
Eilenberg-Steenrod axioms on pairs of CW complexes. Homotopy, additiv
ity and the dimension axiom are obvious. Excision follows from Lemma 7.1. 
To verify exactness one needs to show that if (X, A) is a CW pair, then 
u G Cq(A(A)) can be extended to v G Cq(A(A)). Let U be a neighbor
hood of A, r : U —* A a retraction, and a : X —* [0,1] a mapping with support 
in U and with f(a) = 1 for a G A. Define v G Cq(A(X)) by 

v(T) = (mm o-(T(*)))u(r <g) T) 

This completes the proof of Theorem 4.9. 
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THE FULLER INDEX AND T-EQUIVARIANT STABLE HOMOTOPY THEORY 
by M.C. CRABB 

0. Introduction 
In a remarkable paper [8], published more than twenty years ago, 

Fuller introduced an index which counts periodic orbits of smooth 
flows. Let w be a smooth vector field defined on a (finite-
dimensional) closed manifold X and 9t: X -* X, (t € IR) , the corres
ponding flow (so that 0Q = 1 and 6fc = w(6t>, where the dot denotes 
differentiation). Suppose that U1 is an open subspace of (0,°°) *X 
such that the set 
(0.1) F = {(T,x) e u1 | 6Tx = x} 
is compact. To such a field w and open set \J , Fuller associates a 
(6-valued index, which vanishes if F is empty. 

In 1985, Ize [10] and Dancer [6] observed, independently, that 
the natural setting for Fuller's index is IT-equivariant homotopy 
theory, TT being the circle group (R/Z. My purpose here is to 
describe their work from the viewpoint of algebraic topology using 
the standard methods of equivariant fixed-point theory over a base. 

The relevance of the !IT-equivariant theory is not hard to see. 
Indeed, if (T,x) Ç F, (0.1), then the compactness of F implies that 
(T,6tx) ç F for all t € IR and, also, that x is not a stationary 
point of the flow (w(x) V 0). So we can define a fixed-point-free 
circle action on F by: 
(0.2) [t].(T,x) = (T,6tTx), 
for t e IR, [t] = t +Z € tR/Z. The Fuller index is , in a sense to be 
made precise, a count of this set F, with the fixed-point-free 
IT-action, over the base (0,°°). 

Each point (T,x) 6 F determines a periodic solution y(t) = 9tx, 
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of period T, of the differential equation: 
(0.3) y " W(Y) = 0, 
or, by re-scaling, a solution a: IR -» X, a(t) = etTx, of period 1 of: 
(0.4) a - Tw(a) = 0. 
It is convenient to make no distinction in notation between a map 
a: IR -> X of period 1 and the corresponding loop a: \R/7L = T£ -* X. 
Then we can think of solutions of (0.4) as zeros of a vector field 
on the infinite-dimensional manifold M = LX of smooth loops TT -> X in 
the following way. (See, for example, Atiyah [1] and Bismut [3] . ) 

Recall that the tangent space T̂ M at a point a 6 M, a:0T-»X, 
can be identified with the space of smooth sections of ot*TX over 3C. 
So we can regard t H> w(a(t)) as a tangent vector w(a) G T M, and the 
vector field w on X thus defines a vector field, of the same name, on 
M. The circle acts on M by rotating loops: ([t].a)(u) = a(t+u), 
for t,u € IR. This IP-action has a generating vector field, s say, 
given by differentiation: 
(0.5) s(a) = a. 
The zero-set of s, or the fixed subspace M , is the space X of 
constant loops. 

Now we have a family vT = s - Tw, T > 0, of 3F-equivariant vector 
fields on M, parametrized by (0,°°) , and the zero-set of vT is 
precisely the set of solutions of ( 0 . 4 ) . Let be the open subset 
{(T,a) € (0,~) XM | (T,a(t)) € X3 for all t € IR} of (0,°°) x M. Then 
the zero-set 
(0.6) {(T,a) € U00 | vT(a) = 0} 
is equivariantly homeomorphic to F, (0 .1) and ( 0 . 2 ) , and so compact. 

The problem is to define an index for such a family of vector 
fields vT with compact zero-set in some open subspace of (0,°°) x M. 
There are technical difficulties in infinite-dimensions: in order 
to apply the Leray-Schauder theory (as described in [ 9 ] , for example) 
it is necessary to replace vT by a "renormalized" field satisfying 
a certain compactness condition. This analysis, which is joint 
work with A.J.B. Potter, will appear elsewhere. In this paper, 
following Dancer [ 6 ] , I shall concentrate on the analogous 
finite-dimensional problem, which illustrates all the algebraic 
topological features of the Fuller index. This is done in Section 

72 



FULLER INDEX & T-EQUIVARIANT STABLE HOMOTOPY 

2. Section 1 reviews the, now standard, equivariant index theory 
over a base for zeros of vector fields and fixed-points of maps, 
developed by DoId, Becker and Gottlieb in the mid seventies. 
Acknowledgments. It is a pleasure to record my thanks to Dr A.J.B. 
Potter for introducing me to the Fuller index and for numerous 
conversations on that subject. This research was supported by the 
SERC (grant 171/114/AD53) at Aberdeen University. 

1. The vector-field index 
This section contains an outline, in a form tailored to the 

applications, of the Poincare*-Hopf index theory for vector fields. 
Whilst this theory can be viewed as a special case of the Lefschetz 
fixed-point theory, it seems worth maintaining a conceptual 
distinction. We confine the discussion to the non-equivariant 
theory. The modifications needed to produce the G-equivariant 
index theory, for a compact Lie group G (acting smoothly on 
manifolds), are technical rather than conceptual. The treatment 
here is strongly influenced by the work of Dold (as in [7] and the 
references there). A detailed account can be found in [12]. 

Consider first a (continuous) vector field v defined on an open 
subset U of a (finite-dimensional) Euclidean space V, and suppose 
that the zero-set 
(1.1) Zero(v) = {x e U | v(x) = 0} 
is compact. The basic index, l'(v,U) say, is a stable map S° -> U+ 
(where the subscript "+" denotes adjunction of a disjoint basepoint). 
It is defined by an explicit geometric construction in the style of 
Pontrjagin-Thom as follows. 

We can regard the vector field v simply as a map v: U -> V. 
Let N cz V be an open neighbourhood of Zero(v) such that N is compact 
and N c U, and choose a (finite) open ball B, centre O, in V so 
small that v(x) £ B for all x C N-N. Using a superscript "+" for 
one-point-compactification, we define a map q: V+ -* (V/(V-B)) A U+, 
by q(x) = [v(x),x] if x E N, q(x) = * (basepoint) if x £ N. Then, 
identifying V/(V-B) = B with V+ by radial extension, we obtain a 
well-defined homotopy class V+ V+A U+, which represents the stable 
map I (v,U) : S° -» U+. 
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1.2 REMARK. At this level the vector-field and fixed-point 
problems are indistinguishable. The construction just described 
defines the Lefschetz fixed-point index of the map f: U -> V given by 
f (x) = x-v(x). The zeros of v are the fixed-points of f. 

Two fundamental properties of the index are evident from the 
construction. 
1.3 PROPERTIES OF THE INDEX. 
(a) Suppose that U1 is an open subset of U containing Zero(v). 
Then T(v,U) = i °¥(v,U'), where i is the inclusion. 
(b) Suppose that U is a disjoint union of open subsets X} and U2. 
Then T(v,U) = i*o¥(v,U<) + î °T(V/U2) ' where i* and i^ are the  
respective inclusions of U1 and U2 in U. 

Composing T(v,U) with the map S° -> U+ which collapses U to a 
point, we obtain a stable map S° -> S° or, in other words, an element, 
I(v,U) say, of the stable cohomotopy ring o)°(*). (The symbol "03" 
is used for unreduced stable homotopy.) This class I(v,U) is the 
traditional Poincare*-Hopf index. Of course, in this case it is 
just an integer and determined by S-cohomology. The definitions 
have been formulated in this way so as to generalize directly to the 
equivariant bundle theory. 

Next we recall the computation of the index for a field with 
isolated zeros. Suppose that Zero(v) lies in the interior of the 
unit disc D(V) in V and that D (V) c U. Then I(v,U) € ca°(*) is the 
stable homotopy class represented by the map of spheres: 
(1.4) S (V) -» S (V) : x » 1 v(x) , 

|v(x)| 
(so in this case the classical degree). With the additivity of the 
index, (1.3) (b), this determines I(v,U) when Zero(v) is discrete. 

In the differentiable case, the index of a non-degenerate zero 
lies in the image of the J-homomorphism. Suppose that the vector 
field v is continuously differentiable (C1) with Zero(v) = {0} and 
the derivative (Dv) (0) : V -> V invertible. Then (Dv) (0) defines an 
element "sign det" of KO*1 (*) = *Z/2, and I(v,U) is the image of this 
class under the J-homomorphism 
(1.5) J : KO_1(*) - o>°(*r e №(*) 
to the group of units o)°(*)* = {±1} in the stable cohomotopy ring. 
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The first extension of the theory is from Euclidean space to a 
(finite-dimensional, smooth) manifold. Let v now be a vector field, 
with compact zero-set, on an open subset U of a closed manifold M. 
The index l'(v,U), a stable map S° U+, is defined by embedding M in 
Euclidean space V. Let v be the normal bundle of the embedding and 
choose an open tubular neighbourhood M 5= N c V, where N is an open 
disc-bundle in v. Write r: N -+ M for the projection. Then we can 
identify the tangent-bundle TN with r*(iM©v) and extend v to a 
field v on r-1U, with the same zeros, by: v(x) = (v(rx) ,x) 
€ TrxM®vrx- Tne index 1 {v,13) is defined as the composition 
r+ o T(v,r"1U) : S° -> (r~1U)+-*U+. 
1.6 REMARK. Let A ci u be a compact manifold of codimension zerc 
with Zero(v) c A- 8A. (Such a manifold can always be obtained as 
i|> 1 [c,°°) , where c is a regular value, 0 < c < 1 , of a smooth function 

: U DR. which is 1 on a neighbourhood of Zero(v) and 0 outside a 
compact set.) Then we can form the relative, stable cohomotopy, 
Euler class of TA with respect to the nowhere-zero section v on 8A. 
This is an element of the stable cohomotopy of the relative Thorn 
space (A,8A)"TA: y(xA,v|8A) £ co° (A, 3A;-TA) in the notation of [ 5 : 1 ] . 
By duality this group is identified with u)0 (A) and the relative 
Euler class gives a stable map S° -* A+. Its composition with the 
inclusion A+ -» U+ is equal to the index T(v,U). (This can be 
established by arguing from the definitions: the duality between 

—T A 
(A,3A) and A+ is itself defined using Gysin maps and so, 
ultimately, by the Pontrjagin-Thom construction. Compare the proof 
of ( 2 . 5 ) . ) 

From !E(v,U) we again obtain a Poincare*-Hopf index I (v,U) F co°(*) 
by mapping U+ to S°. (By including U+ in M+ one also obtains an 
intermediate index, sometimes called a transfer, in a>Q (M) . ) 
1.7 REMARK. In this case the vector-field index is related to the 
fixed-point index as follows. Choose a Riemannian metric on M. 
Then, for all sufficiently small e > 0, the fixed points of the map 
x *-> expx(-ev(x) ) : U -» M are the zeros of v and its index is I (v,U) . 

We begin the bundle theory by considering a trivial bundle 
p: BxV" -> B, where B is a compact ENR and V an Euclidean space. 
Write x(p) for the bundle of tangents along the fibres of p. (Here 
it is simply the trivial bundle with fibre V.) Suppose that v i s a 
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section of T(p) , defined on an open subset U c B x v, with compact 
zero-set. Thus v is a family of vector fields v /̂ parametrized by 
b e B, defined on open subsets = {x e V | (b,x) £ U} of V. 
Carrying out the construction of the basic index fibrewise, we obtain 
a stable map over B : B * S° U+B, where U+B = U JI B is obtained by 
adjoining a disjoint basepoint in each fibre. We denote this index 
over B by YB(v,U). Composition with the map U+B -*• Bx s°, induced 
by p, which collapses each fibre of U to a point, gives a stable map 
over B : B x s° -+ B x s° , that i s , an element, IB(v,U) say, of u)° (B) . 

Again, we can easily treat families of isolated zeros. If 
Zero(v) 5 B x (D (V) - S (V) ) c BXD(V) c u, IB(v,U) is represented by a 
self-map, given on fibres by ( 1 . 4 ) , of the (trivial) sphere-bundle 
B x s(V) . When v is C1 (in the sense that it is differentiable on 
fibres with its derivative Dv continuous on U) , if Zero(v) = Bx {0} 
and each (Dv̂ ) (0) : V -» V is invertible, then IB(v,U) is the image 
under 
(1.8) J : KO-1(B) -* o)°(B)" c o>° (B) 
of the K-theory class determined by the automorphism (Dv)(0) of the 
(trivial) vector bundle Bxv over B. 

From the vector bundle we can proceed to a trivial bundle 
p: B x M -* B with fibre a closed manifold M. If v is a family of 
vector fields defined on an open set U c BXM, (that i s , a section 
of the pull-back T(p) of TM), with Zero(v) compact, indices 
TB(v,U): B x s° -> U+B over B and IB(v,U) e (o° (B) are defined by 
embedding the bundle of manifolds in a vector bundle (such as 
B x v B) . 
REMARK 1.9. By including U in M we get a stable map over B: 
B x s -» B x M+ or, equivalently, a stable map B+ -> M+ lifting 
IB(v,U) : B+ - S°. 

We shall need a form of relative index. Suppose that A 5 B is 
a closed sub-ENR such that there are no zeros of v over A: 
p 1A D Zero(v) = 0. Then we can replace U by the smaller open 
neighbourhood UHp 1 (B-A) of Zero(v). This gives us representatives 
of Ig(v,U) : B x s° B x s° which are trivial (not just null-homotopic) 
over A and so a relative index I ̂ B ̂  (v,U) 6 o)°(B,A). (As in (1.9) 
we get a stable l i ft B/A -» M+, too.) 
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These constructions are functorial in the base B. If 
a: B1 -* B is a map from a compact ENR B1 , v lifts to a vector field 
v' on U' = (a x 1)_1U c B' x M. Then lL , (v1 ,U' ) is the pull-back of 
TB(vfU) and IgMv1^1) = a*IB(v/U) F (o0(B,). This includes, as a 
special case, the homotopy invariance of the index. 

The final generalization is from a trivial bundle to an 
arbitrary manifold over a compact ENR B. Let p: E -> B be such a 
manifold over B, with fibre a closed manifold. (The usual examples 
are trivial bundles B x M -* B as above and locally trivial smooth 
fibre-bundles.) If v is a section of T (p) on an open set U <= E, 
the indices TB(v,U) : B x s° -> U+B and IB(v,U) F to0 (B) are defined 
whenever Zero(v) is compact. (We also have stable transfer maps: 
B x s° -» E+B over B and, factoring out basepoints, the induced map 
B+ E+.) 

The index theory over a base provides a natural framework for 
discussion of the global bifurcation theory of Rabinowitz [11]. 
(Developments and variants of the original result abound; see [2] 
and references there.) Suppose that B is a compact (smooth) 
n-manifold and consider, to be definite, a trivial bundle 
p: B x M B, with M closed. Take a collar neighbourhood of the 
boundary 3B = 3B x {0}: 3B x [0,~) c B, and let j : 3B -* B - 3B be the 
embedding x (x,1). One of the fundamental lemmas of cobordism 
theory asserts that the coboundary map 6: co° (3B) -* o>1(B/3B) 
coincides (up to sign) with the Gysin map j , . 

Let v be a family of vector fields (on M) defined on an open 
subset U c B x M. If that part of the zero-set of v over 3B is 
compact, we can form the index I^B(v,unp 13B) F o)° (B) . 
1.10 LEMMA. If̂  Zero(v) is compact, then 

j ,I3B(v,unp"13B) = 0 F o)1(B,3B). 
This is clear from the identification of jf with ±6. The 

class j,I^B(v,unp 3B) is , essentially, the bifurcation invariant of 
Bartsch [2]. (If B is a submanifold of IR or, more generally, is 
framed, then we can map OJ1(B,3B) to (on-1 (*) by the Gysin map.) 

Now suppose that A c B - 3B is a compact submanifold of co-
dimension zero and write i: 3A -* B for the inclusion. Assume that 
Zero(v) flp 1 (B-A) is compact. Then (1.10) applied to the manifold 
B-A yields, by transitivity of Gysin maps: 
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(1.11) i,I3A(v/unp 1 dA) = j ,I3B(v/unp"18B) € a)1(B,3B). 
Repeated application of (1.10) and (1.11) establishes: 
1.12 LEMMA. Suppose that Zero(v) is compact and that U fl p 1 (B-A) 
is a disjoint union of open subsets P and Q of (B-A) x M. Then 

i,I3A(vfPnP"13A) = j,IaB(v/Qnp"18B). 

2. A finite-dimensional analogue 
Some familiarity with OT-equivariant homotopy will be assumed. 

Background and notation can be found in [4], to which frequent 
reference will be made. 

Throughout this section M will be a finite-dimensional closed 
IP-manifold and s will denote the generating vector field of the 
circle action. Let ft c M be an open IT-subset on which IP acts 
without fixed points, and suppose that w is an equivariant vector 
field on ft such that the set H = {x € ft | w(x) € CRs (x) } , of points 
where w is parallel to the flow, is compact. Building on the work 
of Dancer [6], we shall construct an index fc(w,ft) € OD1 (E ^) , where 
E^ is the classifying space of the family 3f of finite subgroups of 
TP, [4: 1.13]. 

Consider the family of vector fields v̂  (u € IR) on ft given at 
x € ft by: 
(2.1) vu(x) = Vis(x) + w(x). 
The zero-set of v̂  is compact, and, for large p > 0, is empty if 
|u| > p. So we have a fibre-bundle CR x M -> IR and a vector field v, 
along the fibres on the subspace U = CRxft, with compact zero-set. 
Restricting to the compact subspace B = [-p,p] 5 (R, we can form the 
TT-equivariant relative Roincar̂ -Hopf index I /T> (v,B*ft) in the 
group u),jp(B,9B), which is canonically identified with W-1 (*) = w1T (*) . 
The resultant class is clearly independent of p and should be regar
ded as an index with compact supports over the base IR. Since 
ft = 0, we can use the classifying map ft -» Ê f to l i f t the index, as 
in (1.9), to an element 
(2.2) £(w,ft) € (D (̂E7 ) . 
(In fact, we have aj'Pt*) = oo'FtE T) ©ID,!*).) 
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The group co^ET) is a direct sum n̂̂ 1 Ean/ [4:2.10]. So the 
index £(w,£3) is given by a sequence of integers. (These integer 
invariants are implicit in [10].) 

A weaker index is obtained by mapping, via the Hurewicz homo-
morphism, to integral homology: u>1(E'&) -» H (Ef ) = fl), 
Ea a K Za /n, [4:2.11]. (This gives Fuller's original fl)-valued n n n ' ^ ^ 
index, [8].) 

One can also simply forget the TT-equivariance, mapping 
Jf(E # ) -> co1 (E # ) = (*) = 7Z/2 : £anan K EaR (mod 2) . (Such mod 2-
indices are standard tools in bifurcation theory; see [2] for a 
recent account.) 
2.3 REMARK. It follows from (2.7) and (2.10) below that the 
homology Hurewicz image of £(w,ft) agrees with Dancer's index [6]. 
However, he restricts attention to gradient vector fields. Thus M 
has a TT-invariant Riemannian metric g and w = grad V for some 
TP-invariant C -̂f unction I/J : M -> CR. Since \f) is constant on orbits, 
we have g(s,w) = (dip) (s) =0. So H is just Zero(w) , and 
Zero(v )̂ = 0 if u / 0. 

The index £ has the following properties, which it inherits 
from the vector-field index. 
2.4 LEMMA. (i) If_ ŵ  (A € [0,1]) is a continuous family of vector  
fields on Q such that { (A ,x) € [0,1] xfi | w (̂x) €[Rs(x)} is compact,  
then £<w°,Q) = ^(w1,^). 

(ii) If 0 is an open subset of Q with E c ft', then 
£(w,ft') = £(w,ft). 

(iii) IJ[ Q is a disjoint union of open sets ^ and 2̂ , then 
£(w,ft) = £(w,̂ 1) + £(w,^2). 

If the TT-action on M is fixed-point-free (M = 0), we may take 
Q = M. The index £(w,M) is , by (2.4) (i) , independent of w and can 
be expressed in terms of Euler characteristics as follows. We 
write TT(n) for the subgroup Ê /Z of IT = IR/E of order n > 1 . 
2.5 PROPOSITION. If MT = 0, we have 

£(0,M) = I xc(M№(n))/ap).on, 
where M(̂ (n)) is the set of points in M with stabilizer of order n 
and xc denotes the Euler characteristic with compact supports. 
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Outline proof. An invariant <5(M) is introduced in [4] as the 
Euler characteristic of the normal bundle, x, to the orbits in M, 
and £(M) is calculated, [4:5.2], as the righthand expression in 
(2.5). It i s , therefore, sufficient to show that £(M) = £(M,0). 
This is done by direct inspection. We adopt the notation of [4:5]. 

The dual in a)1 (M) of the Euler class y(x) € UĴ M ) can be 
described as follows. Recall that duality is defined by Gysin maps. 
In particular, if M is embedded in a IT-module V with normal bundle v, 
the Pontrjagin-Thom construction gives a map V+ -> Mv, which "̂TT — T M 0 represents the fundamental class in u)Q (M ) , dual to 1 € oô M) 
= a)JL(M+). More generally, if C is a vector bundle over M, the 
composition V -> M -> M ^ with the inclusion gives the dual in 
a)̂ '(M̂ "TM) of the Euler class y(£) G a>£,(M~C) . For c = T we take the 
smash product with the identity on IR+ to get a map (IR0V) + -> V+ A M+. 
Using the same embedding of M in V to construct the index of the 
vector field v, as in (1.9), we obtain a second map (IR©V)+ V+ AM+. 
One checks that the two are homotopic. q 

In the classical Poincare*-Hopf theory it is easy, as we have 
seen, to compute the index of a vector field with isolated zeros. 
To treat the analogous case here of a field w for which the set 5 is 
a finite union of isolated orbits, we begin with a slightly more 
general problem. Suppose that ft' is an invariant open subset of a 
closed Tr(k)-manifold M1, k > 1, and w' an equivariant vector field 
on ft1 with compact zero-set. Put 
(2.6) ft = 1Txrjr(k) ft1 c= M = TTXrjr̂ ) M', 
and let w be the vector field on ft induced from w'. (Thus w lifts 
to 0©w' on the k-fold cover IT x ft1 of ft, and E = TT x^kj Zero(w') is 
compact.) 
2.7 PROPOSITION. The index <g(w,ft) of the field w on the mapping 
torus is the image under the induction map: 

ir(k) , , TT(k) ~ , TT, * 0)Q (*) (E y ) cca1(*) 
of the vector-field index Itw'^ft') of w1. 

Since group-theoretic induction from the subgroup TT(k) to IT is , 
in essence, the construction ITx^^j- , the result is no surprise. 
The induction map in stable homotopy sends A'n to an: 
(2.8) a>J(k) (*) = ^nlk22^ "* W1T (Esv) =®^nrn 
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where a1 is the class of TT(k)/TT(n) in the Burnside ring, n 
Outline proof of (2.7). Write B = [-p,p] for any p > 0 and 
C = TT/TTfk) . The construction of the field v on B x o, c B x M over B 
can be described as follows. We have a smooth fibre-bundle 
p: M -» C and the field w is a section, on c M, of the bundle x (p) 
of tangents along the fibres. On the trivial bundle Bx c -> B we 
have a field t: t = us at u € B. There is a splitting 
TM = p*xB © T(p) (in general defined up to homotopy, in this case 
given) and v = t©w. 

The zero-sets of t and w are compact (and, for t, disjoint from 
3B x c) . So we can form the indices Ic(w,ft) € 0)̂ .(0) and 
I/o <v.p.v (t, Bxc) . The latter may be regarded, (1.9), as a stable 
map, f say: (R ^ B/9B -* C . In this situation one can establish 
the generalized multiplicativity formula: 
(2.9) I (B 3B) (t@w,Bxfi) = ic (w,ft) .T(B̂ 3B) (t,BxC) . 

Now recall that induction is defined as the composition: 
(*) (D̂ dT/TTCk) ) -* ô 1 (*) of the canonical identification and 

the Gysin map determined by the left-invariant framing of TT/TTfk) . 
The proof is completed by observing that the first map lifts 
I(w1,̂ 1) to ln(w,Q) and by checking that the second is induced by f. 

c • 
The proposition (2.7) gives the following prescription for 

computing <£(w,ft) when E is a finite union of isolated orbits. A 
tubular neighbourhood of a component C of E in ft can be written in 
the form '3rxrjI.(]c) where Q* is an open disc, with centre 0, in some 
ir(k) -module V and C co rresponds to IT x»jp̂ ]̂ j 0* On this neighbourhood, 
if i t meets no other component of 5, w is , up to addition of a 
constant multiple of s (and permissible homotopy, (2.4) (i)) , induced 
from a field w' on ft1 with a single zero at 0. The contribution of 
C to £(w,ft) is determined, according to (2.7), by the index of w'. 

In homology the induction map: 
(2.10) Ĥ (k) (*) = 'ZZ -» Ĥ (E y) = $ 
is just multiplication by 1/k. So the recipe above gives the 
contribution of the isolated orbit C <= E to the ^-valued index as 
1/k times the non-equivariant index of w1. (This was Dancer's 
starting point in [6].) 

If, further, w' is C1 with Dwf (0) = L (say) : V -* V non-
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singular, then I(w', O) is the image under the J-homomorphism, (1.5), 
J: KO—1,, . (*) -* k)™/̂  (*)" of the class determined by L. Write d 
and d' for the elements of the group {±1} (= 2/2) defined by: 
dd1 = sign(det L) , d = sign (det L1P(k) ) , where LT(k) : V'3r(k) - v'ir(k) is 
the restriction of L to the fixed submodule. The group K0̂ (k)(*) is 
isomorphic to'S/2 if k is odd, *2Z/2(B2Z/2 if k is even, and the class 
of L is given, respectively, by d and (d,dl). In each case J is 
injective, and straightforward calculation yields: 
2.11 PROPOSITION. The index £(w,Œ) of a non-degenerate (isolated)  
orbit of a C1-field w as described above is equal to: 

do, when k is odd; k 
dâ  if d* = +1 , â̂ a]<:/2~ak̂  — d' = "~1 ' when k Is even. • 

As a final computation of the index we describe a basic 
bifurcation theorem, following Dancer [6: p.339] and Ize [10: p.759]. 
Consider a continuous family ŵ  (X £ [0,1]) of IT-equivariant vector 
fields defined on the whole of M, and write v for the family 
v* = ys + wA, (X,y) € [0,1] x[R, on p: [0,1] x [R X M [0,1] x|R. We 
impose the following conditions on the zero-set Z = Zero(v). 
2.12 HYPOTHESES. (i) The closure (Z-z'11)" is compact. 

(ii) The "bifurcation set" IT = ((Z-Z ) ) is discrete and 
disjoint from d [0,1] x (R x M . 

(iii) For each point (X,y,x) €11, x is an isolated zero on M of 
wA. 
2.13 PROPOSITION. Under the assumptions (2.12), we have 

fCŵ M-M11) - £(w°,M-Mar) = I^ i l iT) , 
where i (TT) £ wt (Ef ) is the local index described below. 

Outline proof. It will be convenient to label a point TT £ IT as 
(X ,y fX̂ ) , and to write V for the tangent space of M at x .̂ Put 
B = [0,1] x [_pfp]f where p > 0 is chosen to satisfy: (Z-Z ) c 
[0,1] x (_P/P); and let A(TT), for TT € II, be the closed disc of 
radius e, centre (X^,y^), in CR with the Euclidean norm. The 
radius c > 0 is chosen such that: A(TT) C B - BB, A(TT) flAdr1) = 0 if 
U ,y ) ¥ U ,,y ,),- for TT , TT 1 £ n. Set A = UA(TT), TT £ II. 

For e sufficiently small, (2.12) guarantees that we can find 
tubular neighbourhoods: V7T ^ M °f each point x € M such that, for 
appropriate inner products: 
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(2.14) (i) the closed unit discs DfV̂ ) are disjoint in M 
(DfV̂ ) n DiV .̂ ) = 0 if x̂  ¥ x7rf ) ; (ii) (A(TT) X S (V̂ ) ) n = 0; and 
(iii) (3A(TT) X D ^ ) ) fl (Z-Z11*) =0. 

The field v is thenf by (ii) and ( i i i ) , nowhere zero on 
3A(TT) x s (V̂ ) and gives, as in (1.4) , a map: 3A (TT) x s (V̂ ) -•S(V7r). 
This determines a stable homotopy class in Ü)̂ (3A(TT)) = a)̂ ,(*) © co,̂ 1 (*) , 
and we denote its second component by i (TT) . From (2.14) (ii) we see, 
by considering fixed-points, that: \ (TT) e û íECF) c o),̂  (*). 

Next we use (1.12) , choosing open sets P and Q such that: 
P 3 Ẑ 'n p"1 (B̂ A) and P => 3A x D (V ) , Q z> (Z - Z11) fl p"1 (B̂ A) . (To fit 
the precise form of the lemma, we can replace B by a slightly smaller 
disc with smooth boundary.) The index j,I^B(v,Qnp 1BB) in 
ü3̂ ,(B,3B) = u^1 {*) is clearly (̂w1 ,M-MT) - £(w° ,M-M']r, . On the 
other hand, Î A(v,PDp~13A) can be expressed as a sum 
I3A(v,Rnp"13A) + I9A(v,Snp"13A) , where R = U(A(TT) X (DfV̂ ) -SiV^))) 
and S is an open subset of A x M such that: R n S = 0 and SO Z is the 
compact set {z € Zlrnp"1A | z t R}. By (1.10), we have 
i, I9A (v,Snp""1 3A) = 0. But the term i, Î A (v,Rílp"1 3A) is exactly 
IUTT). " • 

When the family w is C1 (that is , differentiable on fibres with 
the derivative continuous on [0,1] x M), there is an elegant 
description (to be found in [10],[6] and earlier work) of the local 
index i (TT) at a "non-degenerate" bifurcation point TT in terms of 
spectral flow. To explain this, we need some notation. For n ^ 1, 
let En be the complex TT-module (D with [t] f! CR/Z acting as multiplic
ation by e27rint. Recall that any real TT-module V splits functori-
ally as a direct sum: 

(2.15) V- ^ ( J ^ E » ^ V<»>, 
where V̂ n̂  is the (D-vector space of CR-linear TT-maps: En V. Now, 
at a zero x € M of wA the derivative of wA defines an endomorphism, 
L(X,x) say, of the tangent space TXM. If x f M , we can split 
L(X,x) into components: L(X,x)'iron TXMAR, L(X,x)*n* on (T̂ M) (N) . 
The non-degeneracy conditions at TT € II are the following. 
2.16 HYPOTHESES. (i) Put A = det(L(X ,x )1C) . We suppose that 
A ¥ 0 (which implies (2.11)(iii)). 

(ii) By the implicit function theorem, for sufficiently small 
6 > 0 there is a unique continuous path y: (X -6,X +6) -» MT such 

TT TT 
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that: Ŷ TJ-) = X1T and w (̂y(A)) = 0. Write Xyn for the characteristic 
polynomial: X^(z) = det(z- (2Tm) _1L (A ,y (A ) )<n) ). We assume that 
there exists n, 0 < n < 6, such that, for all n > 1, 

X^(-iu) ¥ 0 when 0 < |A-Aj2 + lu-V^ I 2 < r)2. 
Let vn denote the net flow of roots of Xyn through -iu from the 

left to the right of the imaginary axis as A increases through A . 
(To be precise, choose a small closed disc Df centre -iu, in C such 
that x 77 has no roots in D - {-iu}. Then the number of roots z of 
A n 

Xn with z £ D and Re(z) > 0, counted with multiplicity, jumps by vn 
as A increases through A .) 
2.17 PROPOSITION. Under the assumptions (2.16)f the local index  

i (TT) € o)1 (E y ) is equal to 
-7 sign(A)v .a £ © TLo . u n n n 

Outline proof. We continue the notation in (2.13). Taking e < r\ , 
we find that the field v has a non-degenerate (so isolated) zero at 
y(A) over (A,u) £ 3A(TT) and may assume, by making suitable choices, 
that v has no other zeros in 3A(TT) XD(V^) . The derivative of v at 
(A,y,y(A)) is the automorphism uS(y(A)) +L(A,y(A)) = T(A,y), say, 
of T ^̂ M, where S is given by the TT-action (that i s , the derivative 
of s) . 

The index I~ , x (v,D (V ) - S (V ) ) , which defines T (TT) , is the 3A (TT) ' TT TT ' 
image under 
(2.18) J : KÔ1 OA(TT) ) -+ a)̂ ( 3 A ( TT ) ) * 
of the class £ determined by the vector-bundle automorphism: 
T (A , y ) on Ty(A)M at (A,y) £ 3A(TT). 

Now we have KÔ,1 (3A(TT) ) = KÔ1 (S1 ) = KÔ1 (*) © KÔ2 (*) . The 
component of I in KÔ ,1(*) = 7L/2 (= {±1})is easily seen to be sign (A). 
Corresponding to the decomposition (2.15) there is a splitting: 
(2.19) KO^U) = KO~2<*) ®^^n>1K"2 (*) . [En] . 

— 2 
Here the component of % in KO (*) is trivial. The remaining 

components are obtained from (2.20) below: if we identify 
K~2(*) = TT (U(»)) with'2 by "degree (det) " , the nth term is 
vR.[En]. Finally, we can read off the result from (2.18), since 
J[E ] = 1 - an (under the current sign conventions) . q 
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2.20 APPENDIX. Suppose that p , x G [-1,1], is a continuous 
family of monic complex polynomials, with no roots on the unit circle 
S1 c <C, such that: (i) p°(z) ^ 0 if 0 < | z | < 1 , and (ii) pX(z) f 0 
if x / 0, z 6 ilR, |z| < 1 . Then the degree of the map S1 -» €-{0}: 
x + iy h px(-iy) is equal to the difference of the number of roots of 
p1 and of p"1 in the region {z € C | Re(z) > 0, |z| < 1}. 
Proof. One easily reduces to the case in which all the roots of px 
lie in £he real interval (-1,1). (First discard roots z with 
|z| > 1, then deform the remaining roots within the unit disc to the 
real axis using the homotopy: ht(a+ib) = a + ib(1-t) , 0 < t < 1 .) 
Now one can order the roots and so reduce to the linear case: 
px(z) = z - ax with ax € 1R. 
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A Geometric Interpretation 
of Lannes' Functor T. 

E. DROR FARJOUN AND J. SMITH 

1. Introduction. In this note we are concerned with a question raised by [Lannes 2.3]. 
In what follows R will denote a finite field of the form Z/pZ, homology and cohomology 
are always taken with coefficient in R and denoted by H*X etc. For a space X let {RsX}a 
denote the Bousfield-Kan localization tower. We denote by Br the classifying space of 
the underlying abelian group of R. Let P9X denote the s-Postnikov section of X, By a 
"space" we mean a Kan complex or a C.W. complex. 

1.1 Theorem: If H*X < oo for all t > 0, then TH*X S lim, H*{PsR,X)Br, where T is 
Lannes9 functor (see below). If, in addition, X is nilpotent then TH*X = lim 

H*(PsX)Br = UmH^iP.RooX)^ 
The proof of this theorem yields a new proof for Lannes theorem 1.5 below that 

essentially asserts 1.1 for dimension zero and was a the motivation for his question [Lannes 
2.3]. The proof of theorem is based on the following technical proposition: 

1.2 Proposition: Let G —• E —• B be a principal fibration where G is a (topological or 
simplicial) group. Assume that in each dimension the R-cohomology of the mapping spaces 
EB* and BB* is finite. Then if the relation TH*W ^ H*WB* is satisfied by W = E and 
W = B then it is also satisfied by W = G. 

Remark: The finiteness assumption, noted by the referee, is necessary in order to use 
cohomological Eilenberg-Moore spectral sequence. 

Corollary: If W is a nilpotent space of finite type with 7TiW = 0 for i >> 0 or a R-
localization thereof then 

TH*W ^ H*WBr. 

S.M.F. 
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Further, as a direct corollary of 1.1 and 9.3 of [Bousfield] one gets the following 
interesting special case due to Lannes [4]. 

1.3 Corollary. Let HXX < oo for all i > 0 for nilpotent space X of finite type. Assume 
that a given algebraic component TCH*X ofTH*X is finite in all dimensions and vanishes 
in dimension one. Then TCH*X S H*X*T S H^^R^X)** 

where X^r is the corresponding component. 
Another example where the main result (1.1) implies a result on H*map(Br,X) is 

when the latter has a finite homotopy group in each dimension. 

1.4 Corollary: Let X be nilpotent space of finite type with 7TiX finite. Assume that for 
a given f : Br —• X the groups 7r»map(Br, PnX)/„ are finite for all t,n > 0. Then 
H*map(BTiX) = TCH*X where Tc is algebraic component of T that corresponds to /. 

The referee also notes that theorem 1.1 gives a new proof of the following result 
[Lannes, 0.4]. 

1.5 Corollary: If Y is a nilpotent space with Hn(Y,R) finite for all n, then the natural 
map 

[Bt,Y] s [BtyRooY] -* HomK{H*Y,H*Bt) 

is an isomorphism of profinite sets. 
Proof: This follows directly from 1.1 above in light of the algebraic fact [Lannes 3.5] and 
the old result of [Dror] about the tower RSY. 

The authors would like to thank W. Dwyer for his suggestion to consider the tower 
RSX as a starting point for a geometric interpretation of T, and to H. Miller for several 
useful discussions. The authors would also like to thank the referee for his careful reading 
and for correcting a non-fatal error in an earlier version of this paper. The referee notes that 
if one considers the fibration CIX * X for X being the infinite wedge of RP°°/RP2n+2 
over the integers, the formula in 1.2 holds for W = QX but not for X itself. Therefore 
one cannot turn around 1.2 to conclude that either E or B satisfy the property TH*W = 
H*WBt, assuming the other two spaces do. 

2 First examples. 
Let U denote the category of unstable modules over the algebra A of Steenrod reduced 

powers relative to a prime p — char R. Let K denote the category of unstable >?-algebra. 
In [Lannes] a left adjoint T is defined to the functor — <g> H*Br, where the latter is taken 
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either as a functor from U to itself or from K to itself. If one regards an element A 6 K 
as an element of 1/, the value of T does not change. Thus the defining property of T is 
homc{TM,N) = homc{M, N <g> H*BT) where C is either U or K. 

2.1 Three basic properties [Lannes]: (i) T is exact, (ii) T commutes with tensor 
products, (iii) T commutes with direct limits. 

2.2 Motivation: It can be seen from 1.1, 1.2, 1.3 that the construction of T is motivated 
by attempts to describe the cohomology of XBr = map(i?r, X) in terms of H*X, when the 
latter is given as an object in K. Lannes proves the relation between the homotopy class 
[BT,X] and (TH*X)° and X as in 1.3, see [Lannes 7.1.1]. [Miller] proves it for dimX < oo. 

2.3 Example. It is easy to calculate directly from the adjointness relation that if V is a 
finite dimensional vector space over R then 

TH*K(V,n) ^ <g> H*K(V,i) ^ H*map{BT,K(y,n)). 
n>i>0 

Here map(X,Y) denotes the space of maps X —• Y otherwise denoted by 7X. Similar 
calculation holds for a finite products of K(Vi,rii) with dimnVi < oo. However it turns 
out that for homotopically large space one cannot, in general, interpret TH*X as the 
cohomology of map(Br9X), (see 2.5 below). 
2.4. Example. An important class of spaces on which T behaves nicely are finite Postnikov 
pieces of nilpotent spaces. The prime examples of such spaces are K(Z, n) spaces for n > 0. 
Proposition: For anyn > 0 there is an isomorphism TH*K(Z, n) = H*map(Bri K(Z, n)). 

Proof: For p = 2 we show by a direct computation that TH*K(Z, n) ^ H* n X(Z/2Z, 2t). 
For p > 2 the argument is similar. Now since H*K(Z,n) = P{S% \ I admissible with 
ei(I) > 2 and e (I) < n — 1) a map of the algebra H*K(Z, n) over A is given by the image 
of the generator in dimension n. Thus 

homK{K(Z,n),K) = ker/3 : Kn Kn+X 

where K is any object in K and 0 is The Bockstein operation. Now compute: 
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hornK(TH*K(Z,n),K) S homK(H*K{Z,n),K® H*BT) 

~ ker/3 : K <g> H*Br)n — (if <g> IT*5r)n+i 
= fcer/? : 0 Jf. <g) #r 0 if. <g> if y£r 

*+y=n. i+y=n.+ l 
= © = 

3 even 
|n/2] ^homK{H* n K{Z{2Z,i)9K). *=i 

This together with the adjointness property of T completes the proof. Similarly let Zp 
denotes the p-adic numbers ZP = invlim Z/pKZ. Then [B - K VI 6.4] one has an R 
homology equivalence K(Z,n) —*• K(Zp,n) for all n > 0. There is a pro-isomorphism on 
iE-homology of K(Z,n) (K(Z/pKZ, n))n. Therefore 

H*K(Z,n) = H*K(Zp,n) = lirnkH*K(Z/pKZ,n) 

Moreover it follows by a spectral sequence argument that the tower {map(Br^ K(Z/pKZY k))}* 
is an J? completion tower for the function complex map(Br, K(ZY n)), since all function 
complexes involved here are i2-nilpotent. Again using comparison of spectral sequences 
converging to homology we see that there is an .R-homology (hence i2-cohomology) equiv
alence map(Bry K(Z,n)) —> map^Br, K(ZP,n)). Therefore the P-cohomology of the last 
range is isomorphic to the limit of the P-cohomologies limhH*map(BT, K(Z/pKZ,n)). 
But since the functor T commutes with direct limits we get the desired example: 

TH*K{Zp,n) « H*map{Br,K(Zp,n)). 

The second example of K(ZPI n) is in reality equivalent to the first using the isomor
phism of cohomologies H*(BT, Z) = H*(BT, ZP). Since the function complexes hom(BTy K(Z, n)) 
and hom(Br,K(Zpyn)) are built out of these cohomology groups, the map Z —• ZP in
duces a homotopy equivalence between them. Now since TH*K(Zyn) = TH*K(ZP, n) 
one satisfies 2.4 if and only if the other does. 
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2.5 Example. It is not haxd to check that if V is an infinite dimensional vector space over 
R then 2.3 fails to hold. 

Similarly, let RBT be the free (simplicial) IE-module generated by 2?r, then R has non-
trivial homotopy groups in all dimensions and H°map(BriRBT) is larger then T°H*BT 

which is countable. 
3. Proof of 1.2. The main observation of this note is (1.2) from which (1.1) and (1.3) 
follow. We use the Eilenberg Moore spectral sequence (EMSS) to gain information on H*W 
as an object in Zi, i.e. as an unstable module over the Steenrod algebra A. D. Rector, L. 
Smith, A. Heller and others showed that there is a natural action on the Eilenberg-Moore 
spectral sequence Er(W —> E A B) by A making the differentials ^-linears and such that 
Eoo is a graded .̂ -module associated to a filtration: 

3.1. H*W D • • • 2 F~2 2 F'1 2 F° 2 0 2 0 2 • • • of H*W by X-submodules. We shall 
need the following result of [Dwyer] that gives a necessary and sufficient condition for a 
strong convergences of the spectral sequence: For every n the above filtration of HnW is 
finite iff TTIB operates nilpotently on Hx (fibre) for all t. 

3.2 Observe that if p : E —• B is a fibre map with B not necessarily connected and with 
TTI(J3, *) operates nilpotently on If* (p~ *•(*)), then EMSS of (* —* B <— E) will be identical 
to the one associated to the connected component of * G B and therefore will likewise 
converge strongly to ff*(p_1(*)). This is because the functor TorH+B appearing in E2 
'eliminates' all the components of H*E not hitting the component of * G B in H*B, due 
to the trivial action of off base point elements in H*B on H*(b) = R. 

Claim: If L is any space of then the Eilenberg-Moore spectral sequence for the fibre 
square 

map(L,W) —> map(L,E) 
(3.3) i i u 

map(L>*) —* map(L,B) 
induced by the fibration in (3.1) converges strongly. 

Since map(£, *) = * the above pull back square is, in fact, a fibre map u with a non-
connected space map(2/, 6) as the base and with map(L, G) as the fibre are the component 
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of the null homo topic maps in the base. 
3.4 Lemma: If G —• E —• B is a principal fibration of spaces where G is a group, then 
for any space L the map map(£,2£) —• mapfL,^;^), where the range is the space of maps 
L —• B liftable to E, is a principal fibration with the group being map(Z,, G) and the action 
is pointwise. 

Proof: One checks directly that the pointwise action is a transitive action of map(L, G) 
on the fibres of the above maps. 

It follows from the above that the EMSS of (3.3) converges strongly, and as argued 
above the J£*-terms are the same for the fibrations map(L, E; null homolopic on B) —> 
map(Z,, B\ null homotopic). 

Now we wish to compare the Eilenberg-Moore spectral sequence of (3.4) to the spectral 
sequence gotten by applying T to the Eilenberg-Moore sequence of the given fibration 
W -» E A B. Let Er(u) be the spectral sequence of the fibration u. 

For each r > 1 and s <0 the Z - graded objects E±* ̂ E^* are unstable modules over the 
Steenrod algebra since the first one is, being the cohomology of the space 

BxBx---xBxE (product taken s times). (Notice, however, that if we grade {E™} by 
the total degree p + q, we do not get an unstable module, but rather a stable one - e.g. Sqx 
can operate non-trivially on elements of bi-degree (—$,s), for any s > i > 0.). Therefore, 
we can form a spectral sequence {TEr; Tdr} by applying T to each E~a'*(u) as an object 
in U, to get another object in U namely TE~°'*. 

3.5. Claim. TEr{u) converges to TH*W in the sense that TE^(u) is associated graded 
^-module to the ^-filtration TFi with lim TF% = TH*W. 

To see why notice (2.1) that T is exact so it converts an exact couple to an exact 
couple, and since all the terms in spectral sequence E^*(u) are A- modules in U and all 
derivations .4-maps one can apply the functor T to get another spectral sequence. Since 
T is a left adjoint it commutes with direct limits so that H*W = lim Fx implies what we 
need. 

Let Er(u) be the spectral sequence of the fibre-square (3.4) for L = BT. One can 
construct a comparison map TEr(u) —• Er(u) using the adjointness properties of T: the 
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evaluation map BT X map(Br, X) —* X induces [Lannes] a map 

TH*X -+ H*map(BT, X). 

Therefore there is a natural map of ¿l-modules 

TEr(u) Er(ü). 

Claim: Under the assumption of lemma 1.2, this map is an isomorphism. 

Proof: First notice that if K £ K and M, N 6 U are Hf-modules then T(A ® JB) = 
TA ® TB. This is because A® B is the cokernel of a difference map A® K® B —• A®B 

of the two operation of K. Now T commutes with ® in U so TW, TAf are T^T-modules and 
again by commutation and (right) exactness of T (2.3) we get the tensor product. Next 
notice that since the unstable A-model Tora [M, N) is the s - homology group of a chain 
complex consisting in degree s of M&K&K&...& K & N and since T preserves tensor 
products one has for all s > 0. 

T{Tor'K{M,N)) = Tor*TK(TM,TN). 

By assumption on the space E and by (2.3) we get the desired result. Thus we have an 
isomorphism for r = 2 thus for all r. 

It follows that one has an isomorphism TJS?oo(u) = ôo(tZ). Now we get for each 
submodule in the filtration an isomorphism: 

TF^u) ^ F^ü) 

and taking direct limits, noting again that T commutes with direct limits, we get the 

desired result by comparison of spectral sequence, namely 

TH*W = H*map{Br,W). 

Thus using the bar construction of the EMSS we saw that E['* is an unstable module 

over A. This proves 1.2. 
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4. Proof of 1.1 and 1.3. If Hx X < oo for all i, then n^P^R^X < oo for all s,i > 0 where 
PB is the Postnikov section. This means that the space PnRsX satisfies the conditions 
of (1.2) and we have TH*PSRSX = H*map(Bri PSRSX). But since HiX -> {HiRaX} 
is a pro-isomorphism of towers [Dror] of finite groups, we have II*X = lim II*PtiRliX 
therefore (2.3)(iii) TH*X ^ lim TH*P9RaX = lim H*map(Bri II*P.R^X), This gives 
1.1. 

Now one uses the following lemma of [Bousfield 9.3]. Consider a tower of fibrations of 
pointed i2-nilpotent spaces {Xm} 

4.1. Lemma. If {Hi{Xm,R)} m are pro-trivial for i < 1 and pro-constant for all i, then 
lim Xm = XQO is simply connected and the map H^X^, R) —• {H^X ^ R)} is a pro-
isomorphism for all i. 

We use (4.1) with Xm = PmRmX. 
Notice that if {Hm} is an inverse tower of finite groups with A^ = lim Am a finite 

group then the map A^ —> {Am}m is a pro-isomorphism, because lim1 (—) vanishes on 
tower of finite groups and lim is left exact. Consider the tower Hi{Xfr)c = (Hx(Xfr)* 
where (—)* denotes the iE-dual. By 1.2 this is a tower of finite groups since one considers 
only a component (Xfr)c for which Tc is finite in all dimension. Therefore Ho(XfT)c = R 
the tower H\(Xfr)c is pro-trivial, being pro-isomorphic to (T}H*(X))*. Therefore by 
lemma 4.1 the tower {Hi(X^r)c}s>0 is pro-isomorphic to Hi[lim (XfT)c). 

Since for any tower Ym+i —• YM —* • • • YQ of fibrations taking inverse limit 
commutes with taking function complex map(L, —) the desired conclusion follow from 
lim (Xs)Dr ~ (lim X9)Dr = XBr, since X is assumed to be iE-nilpotent. 

4.2. Proof of 1.4. By [Lannes 7.1.1] we have again H°map{Br,X) ^ T°H*X so that 
as in 1.3. TCH*X is a well defined component corresponding to [/] 6 [JBr, X]. We have 
XfT = lim map(Br,PnX)fn where fn is the obvious composition Br f X —* PnX. 
Since all the relevant homotopy groups are finite, one gets vanishing lim1 - term and 
thus TTiXfr = lim 7Ti(map (BT, PnX)y fn). But, again this means that there is a 
pro-isomorphism nXfT = {7rt-(map(Br,PnX), fn)}n for each i, so that the constant tower 
XfT is pro-equivalent to the tower {PnX)f*}n. Thus, they have the same R - cohomology. 

But the R - cohomology of the latter is pro-isomorphic to TH*X as needed. 
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Spaces of Null Homotopic Maps 
WILLIAM G. DWYER AND CLARENCE W. WILKERSON 

§1. INTRODUCTION 
In 1983 Haynes Miller [7] proved a conjecture of Sullivan and used it 

to show that if w is a locally finite group and X is a simply connected 
finite dimensional CW-complex then the space of pointed maps from the 
classifying space Bit to X is weakly contractible, ie. Map+(J37r, X) ~ * . 
This result had immediate applications. Alex Zabrodsky [11] used it to 
study maps between classifying spaces of compact Lie groups. McGibbon 
and Neisendorfer [6] applied Miller's theorem to answer a question of 
Serre; they proved that if X is a simply connected finite dimensional CW-
complex with H*(X, Fp) ^ 0 then there are infinitely many dimensions 
in which TT*(X) has p-torsion. 

The goal of this note is to use the functor Tv of [2] to generalize Miller's 
theorem and some of its corollaries to a large class of infinite dimensional 
spaces (see [5] for closely related earlier work in this direction). This 
generalization comes at the expense of working with one component of 
the function complex Map^U-zr, X) at a time. 

Fix a prime number p. 
THEOREM 1.1. Let n be a locally unite group and X a simply connected 
p-complete space. Assume that H*(X, Fp) is finitely generated as an al
gebra. Then the component of Map*(I?7r, X) which contains the constant 
map is weakly contractible. 
REMARK: There is a standard way [7, 1.5] to relax the assumption in 1.1 
that X is p-complete. 

Theorem 1.1 is actually a special case of a more general assertion. 
Recall that an unstable module M over the mod p Steenrod Algebra A P 

is said to be locally finite [4] if each element x 6 M is contained in a finite 
A P submodule. If R is a connected unstable algebra over A P then the 
augmentation ideal I(R) is by definition the ideal of positive-dimensional 
elements and the module of indécomposables Q(R) is the unstable A P 

module I(R)/I(R)2. An unstable algebra i? over A P is of finite type if 
each Rk is finite-dimensional as an Fp vector space. 

Both authors were supported in part by the National Science Foundation. The first 
author would like to thank the University of Chicago Mathematics Department for its 
hospitality during the course of this work. 
S.'tf.F. 
Astérisque 191 (1990) 97 
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THEOREM 1.2. Let ir be a locally unite group and X a simply connected 
p-complete space such that H*(X,FP) is of finite type. Assume that 
the module of indécomposables Q(H*(X, F P ) ) is locally finite as a mod
ule over A P . Then the component of Maps(s(B7r, X) which contains the 
constant map is weakly contractible. 

REMARK: Theorem 1.1 does in fact follow from Theorem 1.2, since if 
H*(X, F P ) is finitely generated as an algebra then Q(H*(X,Fp)) is a 
finite A P module. 
REMARK: Theorem 1.2 has a converse, at least if p = 2 (see Theo
rem 3.2). There is also a generalization of 1.2 that deals with other 
components of the mapping space Map+(i?7r,X) (see Theorem 4.1) but 
for this generalization it is necessary to assume that 7r is an elementary 
abelian p-group. 

Given 1.2, the arguments of [6] go over more or less directly and lead 
to the following result. A CW-complex is of finite type if it has a finite 
number of cells in each dimension. 

THEOREM 1.3. Suppose that X is a two-connected CW-complex of finite 
type. Assume that H*(X, FP) ^ 0 and that Q(H*(X, F P ) ) is locally finite 
as a module over A P . Then there exist infinitely many k such that 7Tfc(X) 
has p-torsion. 

REMARK: The example of CP00 shows that it would not be enough in 
Theorem 1.3 to assume that X is 1-connected. 

Some instances of 1.3 were previously known; for instance, if X = BG 
for G a suitable compact Lie group then the conclusion of 1.3 can be 
obtained by applying [6] to the loop space on X. However, Theorem 1.3 
applies in many previously inaccessible cases; for example, it applies if X 
is the Borel construction EG x ^ F of the action of a compact Lie group 
G on a finite complex Y or if X is a quotient space obtained from such 
a Borel construction by collapsing out a skeleton. 

We first noticed Theorem 1.1 as part of our work [1] on calculating 
fragments of Tv with Smith theory techniques. The proof of 1.1 given 
here does not use the localization approach of [1]; it is partly for this 
reason that the proof generalizes to give 1.2. 

Organization of the paper. Section 2 recalls some properties of the 
functor Tv. In §3 there is a proof of 1.2 and in §4 a generalization of 1.2 
to other components of the mapping space. Section 5 uses the ideas of 
[6] to deduce 1.3 from 1.2. 

98 



SPACES OF NULL HOMOTOPIC MAPS 

Notat ion and terminology. The prime p is fixed for the rest of the 
paper; all unspecified cohomology is taken with Fp coefficients. The 
symbol 14 (resp. JC) will denote the category of unstable modules (resp. 
algebras) [2] over Ap. If R 6 JC then 14 (R) (resp. JC(R)) will stand for 
the category of objects of IA (resp. JC) which are also i?-modules (resp. 
i2-algebras) in a compatible way [1]. 

For a pointed map / : K —• X of spaces we will let Mapstc(jRT, X)f 
denote the component of the pointed mapping space Map* (K,X) con
taining / . The component of the unpointed mapping space containing / 
is Map(K,X)f. 

§2 THE FUNCTOR TV 

Let V be an elementary abelian p-group, ie., a finite-dimensional vector 
space over Fp, and Hv the classifying space cohomology H*BV. Lannes 
[2] has constructed a functor Tv : 14 —> 14 which is left adjoint to the 
functor given by tensor product (over Fp) with Hv and has shown that 
Tv lifts to a functor JC —* JC which is similarly left adjoint to tensoring 
with Hv. 

PROPOSITION 2.1 [2]. For any object R of JC the functor Tv induces 
functors 14(R) -> 14(TV(R)) and K(R) JC(TV(R)). The functor Tv is 
exact, and preserves tensor products in the sense that if M and N are 
objects ofl4(R) there is a natural isomorphism 

TV(M ®R N) TV{M) ®Tv(*} TV(N) 

Now suppose that 7 : R —> Hv is a /C-map. The adjoint of 7 is a map 
TV(R) —> Fp or in other words a ring homomorphism 7 : TV(R)° —* Fp. 
For M € U(R), let T^(Ad) be the tensor product Tv(M) ®Tv{R)o Fp, 
where the action of Tv(R)° on Fp is given by 7. Note that T^(R) e /C. 

PROPOSITION 2.2 [1, 2.1]. For any K-map 7 : R —> Hv the functor 
T7V(-) induces functors 14(R) -+ 14(T^(R)) and fC(R) -+ K(T^(R)). 
The functor T^ is exact, and preserves tensor products in the sense that 
if M and N axe objects ofli(R) there is a natural isomorphism 

T7V(M ®ii N) ^ T7V(M) <g>Tv(jR) T7V(7V) . 

The following proposition is a straightforward consequence of the above 
two. 
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LEMMA 2.3. Suppose that a : Ri —» R2 and /3 : R2 —• Hv are mor-
phisms of JC, and let 7 : R1 —* i fv denote the composite /3 • c*. 

(1) If a is a surjection and M G U(R2) is treated via OL as an object 
ofU(Ri), then the natural map T^(M) —• T^(M) is an isomor
phism. 

(2) If M E U(Ri) then the natural map Tj{R2) ®T^{R1) Tjf(M) -> 
Tj(R2 ®R1 M) is an isomorphism. 

There is a natural map \x : TV{H*X) H*Map(BV,X) for any 
space X. li g : BV —* X is a map which induces the cohomology homo-
morphism 7 : H*X —• Hv then Ax passes to a quotient map 

\x,9 : T^(H*X) -+ H* Map(BV,X)g . 
A lot of the geometric usefulness of Tv is explained by the following 
theorem. 
THEOREM 2.4 [3]. Let X be a 1-connected space, g : BV —• X a map, 
and 7 : H*X —• Hv the induced cohomology homomorphism. As
sume that H*X is of Unite type, that T^H*X is of finite type, and 
that TV H*X vanishes in dimension 1. Then \x,g Is a& isomorphism. 

For any object M of U the adjunction map M —• Hv ®pp TV(M) can 
be combined with the unique algebra map Hv —• Fp to give a map M —• 
TV(M); call this map e. (If M = H*X for some space X, then € fits into a 
commutative diagram involving Ax and the cohomology homomorphism 
induced by the basepoint evaluation map Map(J3V, X) —+ X.) 
THEOREM 2.5 [4, 6.3.2]. The map e : M —+ TV(M) is an isomorphism 
iff M is locally finite as a module over Ap. 

If R G /C, M G IA(R) and 7 : R —• Hv is a /C-map, we will denote 
the composite M A TV(M) -> T^(M) by e7. Theorem 2.5 leads to the 
following result, which we will need in §4. 
PROPOSITION 2.6. Let M be an object ofU(Hv) and t : Hv Hv the 
identity map. Then eL : M —• T^(M) is an isomorphism iff M splits as 
a tensor product Hv ®Fp N for some N G U which is locally finite as a 
module over Ap. 
PROOF: The fact that eL is an isomorphism if M has the stated tensor 
product decompositon follows directly from 2.3(2), 2.5 and [2, 4.2]. Con
versely, under the assumption that eL is an isomorphism Proposition 2.4 
of [1] guarantees that M splits as a tensor product Hv ®FP N for some 
N G U; the fact that N is locally finite is again a consequence of 2.3(2) 
and 2.5. 
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§3 THE NULL COMPONENT 

In this section we will prove Theorem 1.2. Before doing this we will 
recast the conclusion of the theorem in a slightly different form. 

LEMMA 3 . 1 . Let K be a finite pointed CW-complex, X a 1-connected 
space, and f : K —+ X a pointed map. Then Map*(K,X)f is weakly 
contractible if and only if the inclusion of the basepoint in K induces a 
weak equivalence Map(/f, X)/ —> X.. 

PROOF: AS in [7, 9 .1 ] the inclusion * —• K gives rise to a fibration 
sequence Map* (If, X)/ —» Map(if, X)/ —• X. 

The arguments of [7, §9] now show that Theorem 1.2 follows directly 
from the following result. 

THEOREM 3 . 2 . Let V be an elementary abelian p-group and X a 1-
connected p-complete space such that H*X is of finite type. Let f : 
BV —> X be a constant map and <j> - H*X —• Hv the induced cohomology 
homomorphism. Consider the following three conditions: 

( 1 ) QH*X is locally finite as an Ap module 
(2 ) the map E0 : H*X —• T^H*X is an isomorphism 
( 3 ) the inclusion of the basepoint * —BV induces a weak equivalence 

Map(BV,X)f -+ X. 
Then ( 1 ) ( 2 ) (3). Moreover, if p = 2 then ( 3 ) ( 1 ) . 

REMARK 3 . 3 : It is likely that the three conditions of Theorem 1.2 axe 
equivalent for any prime p; the proof would depend on the odd primary 
version of the results in [9]. 
PROOF OF 3 . 2 : First consider the implication ( 1 ) = = » ( 2 ) . Let R = H*X 
and let I C R be the augmentation ideal. Pick s > 0. The fact that the 
action of R on Is/Is+1 factors through the augmentation R —> Fp im
plies that the action of TV(R) on TV(IS/I*+1) factors through the map 
TV(R) —• TV(FP) = Fp induced by augmentation; since this last map is 
adjoint to <f> : R —> H*(BV) it follows from 2 . 3 ( 1 ) that the quotient map 
Tv(Is/r+1) -* T%(IS/IS+1) is an isomorphism. Moreover, I s a s a 
quotient of (J//2)®5, is the union of its finite Ap submodules so by 2 .5 the 
map 6 : Is/Is*1 —* Tv(Is/Is+1) is an isomorphism. Putting these two 
facts together shows that E0 : I s — » T% (Is/Is+1) is an isomorphism. 
By induction and exactness, then, the map E0 : R/Is+1 —• T^ (R/Is+l) is 
an isomorphism. The map T^(R) —* T^(FP) = Fp induced by augmen
tation is an epimorphism, so by exactness TY(I) vanishes in dimension 0 . 
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By Lemma 2.2 and exactness, T^(IS+1) vanishes up to and including di
mension s, and hence again by exactness the map T^(R) —> Tv (R/Is+1) 
induced by the quotient projection R —+ R/Is+1 is an isomorphism up 
through dimension s. It follows immediately that e0 : R —• T^(R) is an 
isomorphism. 

The implication (2) (3) is an easy consequence of Theorem 2.4. 
For (3) = ^ (1), assume p = 2. According to [9, proof of 3.1] condition 

(3) implies that the loop space cohomology H*(QX) is locally finite as 
an Ap module, ie., in the terminology of [9], that H*(QX) G A îlfc for all 
k. According to [9, 2.1(iii)], this implies that E^QH+X G Afih for all k. 
This amounts to the assertion that Y^^QH^ X (or equivalently QH*X) 
is locally finite [9, proof of 3.1]. 

§4 OTHER MAPPING SPACE COMPONENTS 

In this section we will give a generalization of Theorem 1.2 to map
ping space components other than the component containing the constant 
map; this generalization is limited, however, in that it deals with elemen
tary abelian p-groups rather than with arbitrary locally finite groups. 

Given an elementary abelian p-group V, call an object M of U(HV) 
f-split if M is isomorphic to Hv ®pp N for some N EU which is locally 
finite as a module over Ap. Suppose that 7 : R —• Hv is a map in K 
with image S C Hv and kernel I <Z R. Say that 7 is almost f-split if 

(i) S is a Hopf subalgebra of HV, and 
(if) for each s > 0 the tensor product Hv ®s (Is/Is+1) is f-split as an 

object of U (Hv). 
Recall from 3.1 that Map* (iiT, X)f is weakly contractible iff evaluation 

at the basepoint gives an equivalence Map(iiT, X)/ = X. 

THEOREM 4 .1 . Let V be an elementary abelian p-group and X a 1-
connected p-complete space such that H*X is of finite type. Let g : 
BV —+ X be a map and 7 : H*X —+ Hv the induced cohomology homo-
morphism. Consider the following three conditions: 

(1) 7 is almost f-split 
(2) the map e1 : H*X —> T^H*X is an isomorphism 
(3) the inclusion of the basepoint * —• BV induces a weak equivalence 

Map(BV,X)g -+X. 
Then (1) = > (2) (3). Morever, if p = 2 then (3) = > (2) (1). 

REMARK 4.2: As in the case of Theorem 3.2, LI is likely that the three 
conditions of Theorem 4.1 are equivalent for any prime p. 
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LEMMA 4.3. Let K be a pointed CW-complex, X a, pointed O-connected 
space, g : K —* X a map, and f : K —* X a constant map. Assume 
that there exists a map m : K x X —> X which is lx on the axis * x X 
and g : K —• X on the axis K x *. Then the basepoint evaluation 
map e/ : Map (K,X) f —* X is a weak equivalence if and only if the 
corresponding map eg : Map(i^, X)g —* X is a weak equivalence. 

PROOF: Construct a commutative diagram 

K K 

a b 
K X X 

(pr1?m) 
K x X 

in which a(k) = (&,*), b(k) = (k,g(k)) and pr\ is projection on the first 
factor. Since the lower horizontal map is a weak equivalence, it follows 
that the induced map c : Map(if, K x X)a —• Map(2f, JiT x X ) 6 is a weak 
equivalence. It is clear that c commutes with the natural projections from 
its domain and range to Map(iiT, K)i, where i is the identity map of K. 
The lemma follows from the fact that the domain of c is Map(iiT, K)i x 
Map (K,X) f while the range is Map(/C, K)i x Map(K,X)g. 

LEMMA 4.4. Let K be a pointed CW-complex, X a pointed O-connected 
space, g \ K -+ X a map, and f \ K X a constant map. Assume 
that the basepoint evaluation map eg : Map(iT, X)g —* X is a weak 
equivalence. Then the basepoint evaluation map ej : Map(K,X) f —• X 
is also a weak equivalence. 

PROOF: The map m required in 4.3 is provided up to weak equivalence 
by the evaluation map K x Map(if, X)g —+ X. 

LEMMA 4.5. Let V be an elementary abelian p-group, R a connected 
object of K, 7 : R —> Hv a map, and 4> : R —-• Hv the trivial map 
(ie. the map which factors through the augmentation R —> Fp). Assume 
there exists a map JJ, : R —* Hv ®Yp R which gives 1R when combined 
with the augmentation map of Hv and j : R —• Hv when combined with 
the augmentation map of R. Then e0 : R —• T^(R) is an isomorphism if 
and only if €j : R —* T^(R) is an isomorphism. 

PROOF: This is essentially the proof of 4.3 with the arrows reversed. 
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Construct a commutative diagram 

HV HV 

OC g 

Hv <g>Fp R ins u HV <g>FP HV 

in which OL is the product of lHv with the augmentation of Ry /3 is 
(ljyv) • 7, and in\ is the map from Hv to the tensor product obtained 
using the unit of R. Since the lower horizontal map is an isomorphism, 
it follows that the induced map x : T^(HV ®Fp R) T^(HV ®Fp R) is 
an isomorphism. It is clear that % respects the natural structures of its 
domain and range as modules over Tiv(iJv), where ¿ the identity map 
of Hv. The lemma follows from the fact [1, 2.2] that the domain of x is 
TY{HV) ®Fp T?(R) while the range is T^(HV) <g>Fp T%(R). 

LEMMA 4 . 6 . Let V be an elementary abelian p-group, R a connected 
object of K, 7 : i? —• Hv a map and <f> : R —• Hv the trivial map. 
Assume that e7 : R —•» T^( i2) is an isomorphism. Then e0 : R —* T^(i?) 
is aiso an isomorphism. 

P R O O F : The map /J, required in 4 .5 is provided by the map R —• Hv ®pp 
T ^ ( J R ) which is adjoint to the identity map of T^(R). 

REMARK 4 . 7 : It follows from 4 . 5 , 4 .6 and 3.2 that at least if p = 2 the 
three conditions of 4 .1 are equivalent to a fourth, namely, that QH*X 
is locally finite as an Ap module and there exists a K map H*X —• 
Hv ®FP H*X which satisfies the conditions of 4 . 5 . 

LEMMA 4 . 8 . Let V be an elementary abelian p-group and v : S —-• Hv 
the inclusion of a subalgebra over Ap. Then eu : S —• T^(S) is an 
isomorphism if and only if u includes S as a Hopf subalgebra of Hv. 

P R O O F : Suppose that ev is an isomorphism. In this case the adjunction 
homomorphism S —• Hv ®FP T^(S) provides a map As : S —• Hv ®FP S 
which fits into a commutative diagram 

S As Hv ®Fp s 

v ¿(8)1/ 

Hv 
A HV 

HV <g>FP HV 
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T^{HV) is injective, and it follows from naturality and the fact that 
Hv _^ T^(HV) is injective [2, 4.2] that S T^(S) is injective. By 
2.3(1) the map e„ : S —» Tj/(5) is an isomorphism and hence (4.8) S is a 
Hopf subalgebra of Hv. 

By exactness the map Is —• T^(IS) is seen to be an isomorphism if 
s = 1 and a monomorphism if s > 1; this first fact, though, combines with 
the tensor product formula (2.2) and exactness to show that Is T^(IS) 
is an epimorphism for s > 1. Thus by exactness and 2.3(1) the maps 
ev : Is/J5+1 — ( I s /Is+1) are isomorphisms. The proof is finished by 
running in reverse the argument used above at the end of the proof of 
(1) = • ( 2 ) . 

§5 TORSION IN HOMOTOPY GROUPS 
In this section we will use a slight variation on the ideas of [6] to prove 

Theorem 1.3. 
Let Z denote the ring of integers, Zp the additive group of p-adic 

integers, and Z/pn the cyclic group of order pn. The group Z/p°° is by 
definition the locally finite group obtained by taking the direct limit of 
the groups Zi/pn under the standard inclusion maps. 
LEMMA 5.1. For any finitely-generated abelian group A the cohomology 
group Hh(BZi/p°°, A) is isomorphic to Zp <g) A if k > 0 is even and is 
zero if k is odd. The natural map A —* Zp (g) A induces isomorphisms 
Hk{BZ/p°°,A) S Hk(BZ/p°°, Zp ® A) for all k > 0. 
SKETCH OF PROOF: One way to do this is to calculate the homology 
H*(BZ/p°°, Z) as a direct limit limnif*(J3Z/pn, Z) and then pass to co
homology by using the universal coefficient theorem. The key algebraic 
ingredient is the fact that 

Extz(Z/p°°, Z) ^ Extz(Z/p°°,.Z;) = Zp . 

Let PnX stand for the ra'th Postnikov stage of the space X and kn+1(X) 
for the Postnikov invariant of A' which lies in JHrn+1(Pn_iX, 7rnX)(see [10, 
IX]). 
LEMMA 5.2. If Y is a loop space QX and Y has finitely-generated homo
topy groups, then the Postnikov invariants of Y are torsion cohomology 
classes. 
PROOF: This follow from [8, p. 263]. In effect, Milnor and Moore show 
that the rationalized Postnikov invariants 

kn+1(Y) ® Q e Hn+\Pn-XY, 7rn(Y) ® Q ) 
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where i is the identity map of Hv and we have used the fact [2, 4.2] that 
et : HV — HV is an isomorphism. It is easy to see that AHV is the Hopf 

algebra comultiplication map on Hv. It now follows from the fact that 
the comultiplication on Hv is cocommutative that As(S) C S®&p S and 
thus that S is a Hopf subalgebra of Hv. 

Suppose conversely that S is a Hopf subalgebra of Hv, and let <f>: S —» 
JH"v be the trivial map which factors through the augmentation 5 —• Fp. 
The Hopf algebra .ffv is primitively generated, and the associated re
stricted Lie algebra of primitives [8, 6.7] is a free abelian restricted Lie 
algebra on a finite collection of generators (in dimensions 1 and 2). It fol
lows from [8, 6.13—6.16] that S is primitively generated and is isomorphic 
as an algebra to a finite tensor product of exterior and polynomial alge
bras; in particular, Q(S) is a finite unstable Ap module. By the proof of 
(1) = ^ (2) in Theorem 3.2 the map €</, : S —• T^(S) is an isomorphism. 
Since the comultiplication of S produces the map /a required for Lemma 
4.5, an application of this lemma finishes the proof. 
PROOF OF 4 .1 : Let R denote H*X9 I the kernel of 7 : R -> Hv, S the 
image of 7 and v : S —> Hv the inclusion map. We will use / to stand 
for a constant map BV —> X and <f> for the cohomology homomorphism 
induced by / . 

(1) = ^ (2). The assumption that S is a Hopf subalgeba of Hv implies 
by 4.8 that €„ : S -+ T^(5 ) and hence (2.3(1)) e7 : 5 T^(S) are 
isomorphisms. Pick s > 1 and let M = Is /J*+1. If we can show that 
67 : M = T^(M) we will be able to finish up by imitating the proof of 
(1) = > (2) in Theorem 3.2. By 2.3(1) it is enough to show that eu : M ^ 
Tj^Af). Proposition 2.6 ensures that eL : Hv ®s M -+ T?(Hv ®s Af) 
is an isomorphism, where ¿ is the identity map of Hv By 2.3(2) and [2, 
4.2] , however, the map e¿ is 6 ®s eu, so the desired result follows from 
the fact that Hv is free [8, 4.4] and therefore faithfully flat as a module 
over S. 

(2) (3). This is an immediate consequence of 2.4. 

(3) (2). By Lemma 4.4 and Theorem 3.2 the map E0 : R T^(R) 
is an isomorphism. The evaluation map m : BV x Map(BV,X)g —• X 
induces a cohomology homomorphism JJL : R —> i J v ®Fp -R which satisfies 
the conditions of 4.5, so the implication follows from the conclusion of 
4.5. 

(2) = > (1). This implication does not in fact require the assumption that 
p = 2. The map T^{R) —• T^(5) is surjective and it follows immediately 
from naturality that 67 : S —> T^(5) is surjective. The map 7 ^ ( 5 ) —• 
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are zero. Under the stated finite generation assumption this implies that 
the Postnikov invariants themselves are torsion. 
PROOF OF 1.3: Let S1 be the set of all k such that itk(X) <g) Zp ^ 0 and 
52 the set of all k such that ir^X contains p-torsion. The set 5i is non
empty (because iJ*(J\7, Fp) ^ 0) and clearly contains £2. Suppose that £2 
is finite. In that case we can find an integer k in Si such that no integer 
j greater than k belongs to £2- Let Y = Qk~2X. (Note that because 
X is 2-connected the integer k is greater than 2 and Y is a loop space.) 
By Lemma 5.1 the space Map+(jBZ/p°°, P\Y) is contractible and hence 
MBV*(BZ/P00,P2Y) ^ Map*(jBZ/p°°, Jf(7r2y,2)). Because of the way in 
which k was chosen we can thus, by Lemma 5.1 again, find an essential 
map / : BZ/p°° —> P2Y which remains essential in the p-completion 
(P2Y)p. The obstructions to lifting / to a map g : BZ/p°° —• Y are 
the pullbacks to BZ/p°° of the Postnikov invariants of Y [10, p. 450]; 
by Lemma 5.2 these obstructions are torsion, but by Lemma 5.1 and 
the choice of k they lie in torsion-free abelian groups. Therefore the 
obstructions vanish, and the lift g exists. The composite h of g with the 
completion map Y —• Yp is non-trivial because the composite of h with 
the projection map Yp —• P2(Yp) = (P2Y)p is essential. The adjoint of 
h is then non-zero element of TTK-2 Maps4e(5Z/p°°, X), an element which 
by Theorem 1.2 cannot exist. This contradiction shows that S2 is infinite 
and proves the theorem. 
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André-Quillen Cohomology 
and the Bousfield-Kan Spectral Sequence 

by Paul G. Goerss* 

In this paper we investigate the Bousfield-Kan spectral sequence [6], 
[8] 

(1) ExtsUA(H*X, H*Sf) 7rt-sXp 

where H*X = if*(X, Fp) is cohomology with coefficients in the prime field 
Fp, UA is the category of augmented unstable algebras over the Steenrod 
algebra, Sf is the ^-sphere and, Xp is the p-completion of the pointed space 
X. This spectral sequence, an unstable Adams spectral sequence, is a major 
tool in attempts to compute or understand the homotopy groups of spaces. 

Because UA is not an abelian category, Extuj^H*X, H*S4) must be 
defined using a cotriple and, hence, a simplicial resolution of the algebra 
H*X. Our first point is to notice that if sUA is the category of simplicial 
objects in VÍA, then there is a contravariant functor 

(2) H^A : sUA -> nnFp 

to the category of bigraded Fp vector spaces that generalizes ExtuA in 
the following sense: if A is an object in UA, then we may regard A as the 
constant simplicial object that is A in every simplicial degree and every face 
and degeneracy operator is the identity. Then we will have the equation 

(3) [fr^A]tStfa*^(A , jr ,S<) 

where [Ü^^A]* denotes the elements of degree t in the graded vector space 
H°QAA. 

* The author was partially supported by the National Science Foundation 
Astérisque 191 (1990) 
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For A G sUAj HQAA is a cohomology of A in the sense of Quillen [17]; 
in fact, this is the sort of cohomology of algebras that has been studied 
extensively by Andre and Quillen [1], [18]. Hence the title of the paper. 

We will take the observation of the existence of HQA in two directions. 
The first is this: the category of simplicial objects sUA has a structure of a 
closed model category and, as such, we can do the usual homotopy theoretic 
constructions. In particular, if / : A —• B is a morphism in slAA, then / has 
a homotopy cofiber M(f) and there is a long exact sequence in cohomology 
similar to the one that Quillen called a transitivity sequence [18]: 

(4) •.. -> H^A - H%AM(f) H2tABH*lfH%AA - .... 

Here we need the full generality of sUA. For, even if / : A —• T is a mor
phism of constant simplicial algebras of the type considered in equation (3), 
M(f) is not necessarily such an object. In fact, if we define the homotopy 
of an object A G sUA by 

TT*A = H+(A,d) 

where d is the alternating sum of the face operators in A, then for a mor
phism / : A —* r of constant simplicial algebras 

7r.M(/)^Tor^(Fp,r). 

We extend the long exact sequence in cohomology to the homotopy 
spectral sequence. The Bousfield-Kan spectral sequence is an example of 
the homotopy spectral sequence of a cosimplicial space. Given a fibrant 
cosimplicial space Z, there is a spectral sequence [8] 

7VS7TtZ Kt-sTot(Z) 

where Tot(Z) is a kind of "codiagonal" of Z given by the mapping space of 
cosimplicial spaces 

Tot(Z) = map(A, Z) 
where A is the cosimplicial space that in cosimplicial degree s is the standard 
s-simplex A[s]. Now if Z is a cosimplicial space, then H*Z is a simplicial 
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object in Li A and we will notice that we can extend the Bousfield-Kan 
spectral sequence to a spectral sequence 

(5) [HsQAH*Z)t =• Kt-sTot{Z)p. 

If X is a space and Z = X is the constant simplicial space, then H*Z = 
H*X is a constant simplicial algebra we can combine equation (3) with 
equation (5) to obtain the spectral sequence (1). 

In particular, if / : Z —• Y is a morphism of cosimplicial spaces, we will 
define a new cosimplicial space F so that H*F = M(f*) — the homotopy 
cofiber of /* in slAA — and so that there is a homotopy fibration sequence 
of spaces 

Tot(F) -+ T o t W / ^ T o t ( j ) TotiY)?. 
Further, there will be a diagram of spectral sequences 

- [HsQAH*Z]t -> [H*QAH*Y]t [HglH*F\t -

-• wt-sTot(Z)p -H. Tott_sTot(Y)p 7r*_s_iTot(F) 

where the top row comes from the long exact sequence (4) and the bottom 
row is the long exact sequence of the fibration sequence. The hard work 
here is to produce the commutative diagram of spectral sequences 

[H*QAH*Y]t 
11 

& HglH*F\t -

7r*_s_ Tot(Y)p a 7r*_s_iTot(F) 
This is done in section 5. 

There are other ramifications to the idea that sUA is a closed model 
category. Among them are the notions of universal infinite cycles and uni
versal differentials for the spectral sequence (5). Although these were noted 
by Bousfield and Kan [6] and have been extended by the work of Bousfield 
[3], and are related to Barratt's desuspension spectral sequence, as rediscov
ered by Hopkins, they have not been systematically studied from our point 
of view. We undertake this study, beginning in section 3, but extending our 
computations into further sections. 
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The universal cycle, for example, is a cosimplicial space FpS(s, t) whose 
cohomology is relevant to the Quillen cohomology of equation (2) in the 
following way. There is an object K(s, <)+ G sUA that corepresents coho
mology in the usual way: there is a universal class i 6 [HQAK(S, t)+]t and 
an isomorphism 

[A,K(s,t)+]sUA-^[HaQAA]t 
given by 

/ — r (0-
[ ? ]sUA denotes the morphisms in the homotopy category associated to 
the closed model category on sUA. Then, we have for the universal cycle 
F* S(s,t), a weak equivalence in sUA 
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H*FpS(s,t)^ K(s,t)+ 

and, hence, an equation 

H*QAH*FpS(s,t) S H*QAK(s,t)+. 

Furthermore Tot(FpS(s,t)) ~ SP~S. Hence we get a spectral sequence 

H*QAK(s,t)+^ir*Sp-s 

that is universal in the following sense. Suppose that, for a fibrant cosim
plicial space Z, 

<* G [H*QAH*Z)t 
survives to £"00 in the spectral sequence (5), and detects 

x e 7rt-sTot(Z)p. 

Then there is a morphism in sUA 

f:H*Z-+K(p,q)+ 

corepresenting a and the resulting map 

H*QAf : H*QAK(syt)+ - H*QAH*Z 
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will fit into a diagram of spectral sequences, at least when t — s > 1: 
H*K(s,t)+ TT*TO*(Z)P 

HQAF 
H^AH*Z TT*TO*(Z)P 

where, under the map 7T^Si^s —> 7r*Tot(Z)p the identity map passes to 
x. This is discussed in section 3 and the computation of HQAK(S, £)+ is 
considered in section 9. 

The second direction we take the existence of the Quillen cohomology 
functor HQA is this: if HQA is truly a cohomology theory, it should support 
products and operations. This is, in fact, the case. The work of Bousfield 
and Kan [7] can be interpreted to prove the existence of a commutative 
bilinear product 

[ , ] : HQAA ® HQAA - Hgt'+1A 

satisfying the Jacobi identity and adding internal degree. In the spectral 
sequence this product will converge to the Whitehead product; that is, there 
is a commutative diagram of spectral sequences 

[HsQAH*Z]t <g> \H^AH*Z\t, => 7ct.sTot(Z) ® izt,_s,Tot{Z) 
i I , 1 J. [ , ] 

[Hg/+1H*Z}t+t, *i+t'-i.+s)-iTot(Z) 
where the right vertical map is the Whitehead product in homotopy. 

If we specialize to the prime 2, there are also operations. These are 
homomorphisms 

P* : HSQAA - Hgl+1A 
doubling internal degree, and satisfying an unstable condition, a formula 
relating the Whitehead product to the operations, and a set of relations 
among themselves. In particular, we might call these operations "divided 
Whitehead products" because Pl = 0 if i > s and 

Ps(x) = [x,x]. 

The exact statement of the various relations is given at the beginning of 
section 7. 
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An interesting fact about these operations is that they do not, in gen
eral, commute with the differentials in the Bousfield-Kan spectral sequence. 
We prove this by examining the universal example mentioned above; in fact, 
portions of sections 7, 8 and 9 are devoted to investigating the operations 
in the spectral sequence of the universal infinite cycle: 

H*QAK(s,t)+ ^ir.Sp-a. 

At this point the reader might think that the work to be done here 
is highly theoretical, and this is largely the case. However, the last two 
sections of this paper are devoted to tools for computation, and there we 
make a serious attempt to compute and understand in detail the functor 
HQA. We will use a composite functor spectral sequence due, in principal, 
to Haynes Miller [19] to begin computing the cohomology of the univer
sal examples mentioned above and to undertake other projects, including 
trying to understand to what extent the Bousfield-Kan spectral sequence 
(1) satisfies the Hilton-Milnor Theorem. It turns out that we need the full 
generality of HQA to address this question, even if we are only trying to un
derstand ExtuA- There are other tools available for computation, among 
them the work of Andre [1], and [12], which owes a debt to the work of 
Miller [19, Section 4]. 

There are also numerous examples scattered throughout, and clearly 
marked as such. These are intended to provide some concreteness to our 
work and to explain the relevance on the project to the work of others. In 
particular, see section 4. 
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An Outline of the Contents 

Part I: Quillen Cohomology in the Bousfield-Kan Spectral Sequence 
1. The Bousfield-Kan spectral sequence I: we define some relevant 

categories and the spectral sequence of study. 
2. The Quillen cohomology of unstable algebras: we define and ex

plore HQA, produce cofibration sequences, and the long exact sequence in 
cohomology. 

3. The Bousfield-Kan spectral sequence II: we generalize the spectral 
sequence and explore various examples, including universal infinite cycles 
and differentials. 

4. Fibrations and the Bousfield-Kan spectral sequence: we produce the 
fibration sequence and the diagram of spectral sequences (6) above. 

5. The homotopy spectral sequence and twisted products: we give 
the complete definition of the homotopy spectral sequence of a cosimplicial 
space and prove some of the claims of section 4. 

Part II: Products and Operations in Quillen Cohomology 
6. Products in Quillen cohomology: we define and interpret the White

head product in HQA. 
7. Operations in Quillen cohomology: we define the operations PL, 

prove various properties, and make an initial attempt to understand them. 
8. Miller's composite functor spectral sequence: we define a spectral 

sequence that relates the classical Andre-Quillen cohomology of commuta
tive algebras to HQA, then we see how products and operations fit into the 
spectral sequence. 

9. The cohomology of abelian objects: we compute HQA applied to 
some universal objects, including those of section 3, and show that the 
operations PZ don't commute with differentials. 

Notation and conventions: Because cohomology algebras are more in
tuitive than homology coalgebras, we work with the former. However, we 
sacrifice generality, especially in convergence statements about homotopy 
spectral sequences. Therefore, we often make finite type hypotheses. A 
graded Fp vector space is of finite type if, for every n, the elements of 
degree n form a finite vector space. 
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A space is a simplicial set, usually pointed; that is, the space comes 
equipped with a chosen basepoint. If we are in a situation where the spaces 
are not pointed, we say so. 

Fp is the field with p elements for some prime p, A is the mod p 
Steenrod algebra, and all homology and cohomology of spaces is with Fp 
coefficients. 

If C is a category, then sC will denote the category of simplicial objects 
in C and nC will denote the category of graded objects in C. In particular, 
nFp will denote the category of graded Fp vector spaces and nnFp the 
category of bigraded vector spaces. 

If V is a simplicial vector space, we define 

TT*V = H*(v,d) 

where 
d = 

s 

i=0 
(-lydi : Vs - y5_! 

is the alternating sum of the face operators. If V is a cosimplicial vector 
space, we set 

7r*F = H*(v,d*) 
where d* is the alternating sum of the coface operators. These definitions 
can be extended to any category with a forgetful functor to the category of 
vector spaces, graded vector spaces, or abelian groups. If V is a simplicial 
graded vector space, the 7r*V is a bigraded vector space. We refer to the 
elements of [7r5y]* as being of external degree s and internal degree t. 
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Part I: Quillen Cohomology 
and the Bousfield-Kan Spectral Sequence 

1. The Bousfield-Kan Spectral Sequence I 
This preliminary section is devoted to the definition of the basic object of 
study and to establishing notation. The Bousfield-Kan spectral sequence 
[6, 8] is an Adams-type spectral sequence passing from the homology of a 
space X to the homotopy of its p-completion Xp. A good introduction to 
this spectral sequence is given in Section 1 of Miller's paper [19]. 

We begin by defining some categories. Fix a prime p and let Fp be 
the field with p elements. We let UA be the category of unstable algebras 
over the Steenrod algebra. Thus H € UA is a graded, commutative, sup
plemented Fp algebra that supports an action by the Steenrod algebra and 
so that the two structures are related by the Cartan formula and by the 
unstable condition: if p > 2, then 

Pn(x) = f 0, if deg(x) < 2n; 
[ xp, if deg(x) = 2n. 

and if p = 2, then 

Scf(x) = 0, if deg(x) < n; 
x2, if deg(x) = n. 

The symbol deg(x) means the degree of x as an element of the graded 
algebra if; the vector space of elements of degree n will be denoted by H71. 

If X is a pointed (based) space, then iJ*X = H*(X, Fp) is an object 
of U A. 

There is a simpler, associated category Li - the category of unstable 
modules over the Steenrod algebra A. This is the full sub-category of the 
category of modules over A specified by the conditions that M G U if 

(3€Pn(x) = 0 if deg(x) < 2n + e 

Sqn(x) = 0 if deg(x) < n. 
tl is an abelian category. 
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The augmentation ideal functor I : Lí A —+ LI has a left adjoint U; for 
example, 

H*S2k+i ^ [/(E2fc+iFp) 
where E2fc+1FP is the trivial A module of dimension 1 over Fp concentrated 
in degree 2k + 1. 

Next consider the forgetful functor J : U —* nFp where nFp is the 
category of graded Fp vector spaces. This, too has a left adjoint P : nFp —• 
ZY; indeed, if V is of finite type, then 

P{V) = PH*K(V*) 

where the right hand side is the primitives in the indicated Hopf algebra, 
V* is the graded vector space dual, and K(V*) is a generalized Eilenberg-
MacLane space with ir*K(V*) = V* 

As a consequence of the existence of P, the augmentation ideal functor 
I :UA —> nFp has a left adjoint G; namely 

G = U o P or G(V) = U(P(V)). 

If V is of finite type, then G(V) ^ H*K(V*). The composite functors 

G = G o I : UA UA 

P = PoJ :U-+U 
both have the structure of a cotriple on the respective category; that is, 
there axe natural transformations 

eH : G(H) -+ H and eM : P(M) ^ M 

T)H : G{H) G2(H) and rjM : P(M) -+ P2(M) 
and these are related m such a manner that we may form the simplicial 
objects G.{H) G sllA and P.(M) G sU. For example, 

Gn(H) = Gn+\H) 
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and 
d% : Gn —• Gn—i 

is defined by 
di = Gi€Gn~\ 0<i<n 

and 
Si:Gn(H)^Gn+1(H) 

is given by 
Si = GlrjGn~\ 0 < i < n. 

Both G.(H) and P.(M) are augmented simplicial objects in the sense that 
e induces maps 

eH : G0(H) -+ H and eM • Po(M) M 

such that edo = ed\. More than this e induces isomorphisms 

TT*G.(H) ^ H and TT*P.(M) ^ M 

concentrated in external degree 0. The retraction that guarantees these 
isomorphisms is given by the inclusions in nFp 

IH -* IG(H) and M P{M) 

adjoint to the identity. 
Thus e : G.(H) —+ H and e : P.(M) —• M may be regarded as acyclic 

resolutions in the relevant category and we may define Ext - the right 
derived functors of Horn in the category - by 

ExtsUA(H,K) = 7rsHomUA(G.(H),K) 

and 
Extl((M, N) = 7rsHomu(P.(M),N). 

We need 7r* because these Horn functors are contravariant. 
To obtain a spectral sequence with i?2-term of the form ExtuA, Bous-

field and Kan proceed as follows. If X is a space (that is, a pointed simplicial 
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set), let FP(X) denote the simplicial vector space on the simplicial set X 
and let FpX = Fp(X)/Fp(*) where * G X is the basepoint. Then Fp( ) 
has the structure of a triple on the category of spaces and one obtains (in 
a manner dual to the process above) an augmented cosimplicial space 

X^FpX 

where FpX = Fp o . . . o FpX with the composition taken s+1 times. Since 

ir*FpX = H*X 

and FpX is a simplicial vector space, we have that 

H*FpX G{H*X) 
as an unstable algebra. Thus for any space Y and if*X of finite type, we 
have isomorphisms 

<Ksntmap*(Y,FpX) Si 7r5[£*y,FpX] 

= s^HomuA (H* ^F^X.H^Y) 
since simplicial vector spaces are Eilenberg-MacLane spaces. So 

(1.1) Tr^tmap^Y, FpX) Exti,A(H*X, H*Y?Y) 

wherever this makes sense; that is, for t > 0 if s > 1. 
Now, Bousfield and Kan noticed that given a fibrant cosimplicial space 

Z\ there is a spectral sequence 

(1.2) 7CS7TtZ- 7Tt-sTot(Z') 

where Tot(Z') is the simplicial set of cosimplicial maps 

Tot(Z-) = map(A,Z*) 

where A is the cosimpHcial space with As = A[s], the standard ^-simplex. 
The definition of this spectral sequence will be spelled out in section 5. If 
we define the p-completion of a space X by the equation 

Xp = Tot(FpX) 
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and set Z' = ma^(7,FpZ), we have that 

(1.3) Tot map*{Y,FpX) = map+(Y,Tot(F'pX)) = map*(Y,Xp). 

Combining (1.1), (1-2), and (1.3) we obtain the Bousfield-Kan spectral se
quence: 

(1.4) Extii^H+X.H^Y) <Kt-smap*(Y,Xp) 

We insist, to make the conclusions above, that H*X and H*Y be of finite 
type. Convergence of the spectral sequence of (1.4) is not automatic, but 
follows when H*Y is finite. See [8]. 

The relationship between X and Xp is not evident either. There is a 
natural map 

V : X -+ Xp 
and under various hypotheses on the fundamental group of X, rj is an 
isomorphism in homology with Fp coefficients and the induced map 

7Tnr} l 7TnX —• 7TnXp 

is a suitably defined Fp completion. This will be true if, for example, X is 
simply connected or nilpotent. See [8] for details. 

One of the purposes of this paper is to explore ExtuA- An initial step 
is the following result, deceptive in its simplicity: 

Proposition 1.5: Let M 6 U and K 6 VIA. Then there is a natural 
isomorphism 

Ext*UA(U(M),K) Ext*u(M,IK) 
where IK £ U is the augmentation ideal of K. 

This is proved in [5], among other places. 
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2. The Quillen cohomology of unstable algebras 
The purpose of this section is to extend the definition of ExtjjA to a larger 
category and, therfore, obtain greater flexibility for calculation. 

Let sUA be the category of simplicial unstable algebras over the Steen-
rod algebra. We already have an example of an object of this category: 
G.(H) with H G UA. Another example — admittedly a trivial one — is 
a constant simplicial object: if H G UA, then we may regard H as an ob
ject of sUA by letting Hn = H for all n and setting all face a degeneracy 
operators to be the identity. 

The initial observation is that sUA has a structure of a closed model 
category in the sense of Quillen. There axe weak equivalences, fibrations 
and cofibrations satisfying the axioms CM1-CM5 of [17]. We now supply 
the definitions. Notice that for A G sUA, we have that 7r*A is a bigraded, 
supplemented, commutative Fp-algebra, that 7r0A G SUA, and that for each 
n > 0, 7cnA G U. Furthermore, 7r0 A is a quotient of AQ and the quotient 
map 

4̂-0 —• KQA 

defines a map of simplicial algebras 

6 : A —» TTQA 

where 7ToA is regraded as a constant simplicial algebra. If A = G.H as in 
the previous section, then this augmentation is the one given there: 

G.H -+ TTQG.H ^ H. 

If / : A B is a morphism in sUA, we obtain a diagram 

A с TTQA 
F DXF 

B C 7ГоВ 

and hence a canonical map in sUA 

(f,€):A-+B xnoB 7T0A 
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where the target is the evident pullback. The morphism / will be called 
surjective on components if this map is a surjection. 

Definition 2.1:1.) A morphism / : A —> B in sUA is a weak equiva
lence if 

7T*/ : 7r*A —• 7r*B 
is an isomorphism. 

2.) / : A —> B is a fibration if it is a surjection on components; / is an 
acyclic fibration if it is a fibration and a weak equivalence. 

3.) / : A —• B is a cofibration if for every acyclic fibration p : X —• Y 
in sUA, there is a morphism B —+ X so that is the following diagram both 
triangles commute: 

A —> X 
If S 1* 
B -> y. 

As specializations of these ideas we have fibrant and cofibrant objects. 
We write Fp for the terminal and the initial object of slAA. Then we say 
that A G slAA is cofibrant if the unit map rj : Fp —• A is a cofibration. 
Similarly, we say that A is fibrant if the augmentation € : A —> Fp is a 
fibration. Every object in sUA is fibrant, so we say no more about this 
concept. 

The following now follows from Theorem 4, pll.4.1 of [17]. 

Proposition 2.2: With the notions of weak equivalence, fibration, 
and cofibration defined above, slAA is a closed model category. 

Of course, cofibrations are somewhat mysterious objects and difficult 
to recognize at this point. We will now be more concrete. 

Let G : n¥v IAA be the left adjoint to augmentation ideal functor /. 
This functor was discussed in the previous section. We will call a morphism 
/ : A —> B in sUA almost-free if, for every n > 0, there is a sub-vector 
space Vn C IBN and maps of vector spaces 

Si : Vn —> Vn-i, 1 < i < n 
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<?i : Vn —• Vn+i, 0 < i < n 
so that the evident extension 

An <g> G(Vn) —• Bn 

is an isomorphism for each n and there are commutive diagrams, with the 
horizontal maps isomorphisms: 

for i > 1 and 

An ® G(Vn) BN 
s1 O G6) di 

An_!®G(K-l) •Bn_i 

An ® G(Vn) Bn 
s1 O G6) 12a 

An+i®G(K+i) B n + 1 

for i > 0. Only do is not induced up from nFp. The following result (which is 
implicit in Quillen, section II.4) can be proved exactly as the corresponding 
result in section 3 of [19,20]. 

Theorem 2.3: Almost-free morphisms are cofibrations. 

Proposition 2.4: Any morphism / : A —• B in sUA may be factored 
canonically as 

A i X- p B 
with i almost-free and p an acyclic fibration. 

We will prove Proposition 2.4, as the construction will prove useful 
in the later discussion. To begin, let H G UA. Then we may define the 
category H/UA to be the category of objects under H; that is, objects 
K G UA equipped with a morphism H —> K in UA making K into an 
if-algebra. The augmentation ideal functor I : H /UA —• nFp has a left 
adjoint 

GH(V) = H®G(V). 
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This pair of adjoint functors yields a cotriple GH:H/UA —• H/UA and, sis 
in the previous section, this yields an augmented simplicial object 

GHK K 

for any object K G H/UA. If H = Fp, this is exactly the situation of the 
previous section. 

Now, let / : A —» B be a morphism in sUA. Then the last paragraph 
yields an augmented bisimplicial algebra 

(2.5) GAB -+ B 

with 
G^B^-i(G^Y)P+1^B^R 

Let 
GAB = diag(GAB) 

be the resulting diagonal simplicial algebra. Thus, we have factored / : 
A S as 

(2.6) A GAB S. 

The first map is almost-free, the second map is a fibration, and the con
struction is canonical and functorial in / . We need only show that GAB —• 
B is an acyclic fibration. But, since GAB is the diagonal simplicial algebra 
of GAB, we may filter GAB by degree in q to obtain a spectral sequence 
converging to TT*GAB. But since 7r*GfqBQ == BQ, and the isomorphism is 
induced by the augmentation, the result follows. 

The great strength of the construction of (2.6) is precisely that GAB is 
the diagonal of a bisimplicial algebra. This allows the construction of many 
spectral sequences. 

As a bit of notation, if / = rj : Fp -+ B we abbreviate GFPB as G B in 
keeping with the conventions of the previous section. 

Indeed, consider the case where H G UA is regarded as a constant 
simplcial algebra and we take the morphism / to be the be the unit map 
Fp —* if. Then the construction of (2.6) yields an acyclic fibration X —» H 
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with X cofibrant. The reader should note that X = G.(H), as in the 
previous section and that the acyclic fibration is the augmentation 

G.(H) -» H. 

The next obvious subject to bring up is the definition of the homology 
of an object in the model category slAA — after all, if sUA is supposed 
to be a good place to do homotopy theory, it must have a good notion of 
homology. However, in order to make sure that our constructions are well-
defined, we need technical lemma on homotopies. For this, of course, we 
need the definition of homotopy. Notice that in sliA, tensor product is the 
coproduct and if A G sUA, then the algebra multiplication 

p, : A ® A —> A 

is the "fold" map; that is, multiplication supplies the canonical map from 
the coproduct from A to itself. Factor p as a cofibration followed by an 
acyclic fibration 

A® A-UCy(A)-^A. 
By Proposition 2.4 this may be done functorially in A. Cy(A) is a cylinder 
object on A. Then two morphisms /, g : A —* B in slAA are homotopic if 
there is a morphism H making the following diagram commute 

A® A i Cy{A) 
i fVg I H 
B B 

where / Vj = p(f ® g). If / = g and we let H be the composite 
Cy(A)^A-^B 

we obtain the constant homotopy from / to itself. The reader is invited 
to prove that homotopy defines an equivalence relation on the set of maps 
from an object A to an object B. 

We can specialize these notions somewhat. If h : C —• A is another 
morphism in slAA and f,g:A-+B are two maps, then we say that / and 
g are homotopic under C if fh = gh and there is some homotopy from / to 
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g which restricts to the constant homotopy on fh. If q : B —* D is a map, 
then there is a corresponding notion of a homotopy over D. 

The following, then, is the lemma that we need to show that our def
initions of homology and cohomology will be well-defined.The proof is in 
[18] as Proposition 1.3. 

Lemma 2.7: Let / : A —> B be a cofibration and p : X —* Y be an 
acyclic fibration. Then any two solutions B —> X in the diagram 

A —+ X 
if S 1* 
B Y 

are homotopic under A and over Y. 
In the following A denotes the Steenrod algebra. 

Definition 2.8: Let A G sUA. Define H®AA as follows. Choose an 
acyclic fibration 

p: X -> A 

with X cofibrant in sUA and set 

H?AA = TT*(FP <gu QX). 

Define HQAA by 

H*QAA = {H?AA)* = HomFp(H?AA,Fp). 

Remark 2.9: It is a consequence of Lemma 2.7 that H®AA is well-
defined and functorial in A. It is also a consequence of Lemma 2.7 that 
if 

/: A-+B 
is a weak equivalence in sUA then 

H?Af:H^AA H?AB 
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is an isomorphism. 

Example 2.10.1.) Let X be space. Then we may regard JFPX as a 
constant simplicial algebra in sUA. Then, as mentioned above, the aug
mented simplicial algebra 

G.H*X -+ H*X 

is an acylic fibration in sUA and G.H*X is an almost-free and, hence 
cofibrant object in sUA. Then we have 

HQAH*X ^ HornF (H?AH*X, Fp) 
^ 7r*HomFp(Fp ®A G.H*X, Fp) 

by the universal coefficient theorem for fields. Therefore, we have, in inter
nal degree t, 

[H^AH*X]T = TT*HomFp(Fp ®A QG.H*X, E*FP) 
S Tz*HomUA(G.H*X, H*SF) 
^Ext^X(H+X^H+S1) 

Thus HQA is one way to generalize ExtuA. 
Example 2.10.2.) As an example of a simplicial algebra with inter

esting higher homotopy, we offer the bar construction. Let H € UA and let 
B{H) be the bar construction on H. Then B(H) £ sUA and 

w+2(H) ^for?(FP,FP). 

This bigraded algebra is a Hopf algebra, a divided power algebra, and more. 
We will see below in (2.15) that 

HsQAB(H)t & Ext£l(H,H*St). 

This offers a new perspective for computing ExtuA-

We end this section with an example of the flexibility that general 
objects in sUA supplies. This is the long exact sequence of a cofibration in 
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sUA - a long exact sequence related to Quillen's transitivity sequence [18]. 
Let / : A —» B be a morphism in sUA. Using the construction of (2.6), 
form the commutative square 

G.A ^ G.B 
I PA l PB 
A f B 

and factor G./ as an almost-free map followed by an acyclic fibration 

G.A^->X^->G.B. 

Then define the mapping cone of the morphism / by the equation 

M(f) = FP®E A X-

M(f) is almost-free and, hence, cofibrant. Lemma 2.7 implies that M(f) 
is unique up to homotopy equivalence and functorial in / up to homotopy. 
(A homotopy equivalence is a weak equivalence with a homotopy inverse.) 
We could use the construction of (2.6) to make M(/) strictly functorial. 

Proposition 2.11: There is a long exact sequence in homology 
ttQA f 

... _> H?AA -—> H®AB - H?AM(f) - H?AA - . • 

and a long exact sequence in cohomology 

• - - - H%fA - HQAM(/) - H^ABH^!h^AA - • • •. 

Proof: The cohomology result is obtained from the homology result 
by dualizing. To prove the homology result, notice that since G.A is almost-
free and i is an almost-free morphsim, the sequence of simplicial algebras 

GA^-+X-+FP ®GA* 

yields a short exact sequence of simplicial vector spaces 

0 Fp ®A QGa Fp ®A QX -+ Fp ®A Q(FP ®ÛA X) -+ 0 
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Since p : X —• G.B is an acyclic fibration and the composition of cofibra-
tions is a cofibration, we have that 

TT*FP ®A X S H?AB 

and the result follows. 

The higher homotopy of M(f) is often non-trivial, even if TT*A and 
ir*B are concentrated in degree 0. For computational purposes, we have 
the following result, from [17, Theorem II.6.b)]. Let / : A —+ B be a 
morphism in sUA. 

Proposition 2.12: There is a first quadrant spectral sequence of al
gebras 

Tor;*A(Fp,7T*B)q 7Tp+qM(f). 

Notice that if / : H —•» K is a map of constant simplicial objects in 
slAA, then this result implies that 

тг.М / =Tor" (FP,K . 
Of particular interest is the case where B = FP is the terminal object 

in sUA and / = 6 : A —• FP is the augmentation. Because the cofiber of a 
the map to the terminal object deserves to be called a suspension, we define 
the suspension of A by the equation 

EA = M(e). 

Since H?AFP = 0, 2.11 says that there are isomorphisms 

H^IZA = H^A n > 1 

(2.13) H&EA = H&A n > 1 

and 
H®AY,A = 0 = H^LA. 
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The suspension has other properties that are worth recording here. For 
example, from [12] we have that there is a homotopy associative coproduct 

I/J : EA —• EA <g> EA 

that gives 7r*EA the structure of a Hopf algebra that is connected in the 
sense that 710EA = Fp. This coproduct can be used to turn the spectral 
sequence, obtained as a corollary to Proposition 2.12 
(2.14) To<*A(Fp, Fp) =• TT*EA 

into a spectral sequence of Hopf algebras. 
To specialize even further, if we regard H G UA as a constant simplicial 

algebra, then the spectral sequence of (2.14) collapses and we obtain an 
isomorphism of Hopf algebras 

TT^H ^Tor?(Fp,Fp). 
Finally, the work of Miller [19,Section 5;20] implies that if B(H) is the bar 
construction, then there is a weak equivalence is sUA 
(2.15) EH ->B(H). 
Thus (2.13) and (2.10.1) sustain the claims of Example 2.10.2. 

2.16: The homotopy category. Associated to sUA and the closed 
model category structure we have on sUA there is an associated homotopy 
category. This category has the same objects as sUA and morphisms 

[A,B]MA = HomSUA(X,B)/ ~ 
where ~ denotes the equivalence relation generated by homotopy and p : 
X —> A is an acyclic fibration with X cofibrant. Lemma 2.7 implies that 
[A, B]SUA is well-defined. A morphism in the homotopy category may be 
represented by a diagram 

A p X f B 
and an isomorphism in the homotopy category is such a diagram where / 
is a weak equivalence. This homotopy category is relatively simple because 
every object in sUA is fibrant. 

Notice that for / : A —• 5, the mapping cone M(f) is well-defined in 
the homotopy category and that EA is co-group object in the homotopy 
category. 
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3. The Bousfield-Kan Spectral Sequence II 
In this section we show that the Quillen cohomology of the previous section 
is the E2 term of a more general spectral sequence than that described in 
section 1. This spectral sequence will converge to the homotopy groups of 
the total space of a cosimplicial space that is often interesting in applica
tions. We end the section with some examples: a universal infinite cycle 
and a universal r-cycle. 

If X is a (pointed) space, let X —• F'pX be the augmented cosimplicial 
space of the first section. Then if we let Z = Z' be a fibrant cosimplicial 
space. Then we may use the functor Fp( ) to define an augmented bi-
cosimplicial space 

(3.1) Z - ¥pZ-

by setting 
(FPZ-)(M) = F;+1Z* 

and letting the augmentation Zf —* FpZl define the augmentation for (3.1). 
Define F'pZ by the equation 

FpZ = diag{FpZ). 

Thus 
(FpZy - Fp+1Z°. 

The augmentation of (3.1) induces a canonical map of cosimplicial spaces 

77 : Z -» FpZ. 

Now let us consider the induced map of simplicial algebras 

H*r} : H*FpZ H*Z. 
An examination of the definitions of (2.5) and (2.6) demonstrate that we 
have a natural commutative square with the vertical maps isomorphisms: 

H*FpZ ^-2 H*Z 
(3.3) i * i = 

G.H*Z p H*Z 
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In particular, we have proven the following result. 

Lemma 3.4: In the category sUA 

H*rj : H*FPZ -+ H*Z 

is an acylic fibration with H*F'PZ almost-free. 

The following result now delineates the affect of the construction (3.2) 
in homotopy. 

Lemma 3.5: Let Z be a fibrant cosimplicial space. Suppose that 

7rsHTZ = 0, t - s <1 

and, for all n and sufficiently large s, 

7rsHS+NZ = 0. 

Then 
Tot{rj) : Tot(Z) Tot(FPZ) 

is the Bousfield-Kan Fp-completion of Tot(Z). 
We postpone the proof to record a corollary of the previous two lemmas. 

Corollary 3.6: Let Z be a fibrant cosimplicial space so that 7r5fl"*Z is 
finite for all s and TTs^Z = 0 or all t - s < 1 and -KsHS+NZ = 0 for all 
n and sufficiently large s. Then there is a convergent spectral sequence 

[HsQA(H*Z)]t => Kt_sTot(Z)p. 

Proof: This is the homotopy spectral sequence of the cosimplicial 
space F'pZ: 

TrsKTFpZ => Trt-sTot(Z)p. 
We must notice that under the finiteness hypotheses listed, we have 

TrswTFpZ « TcsHomFP(FP ®A H*FpZ,H*St) 
a [HsQA(H*z)]t. 
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The result now follows from Lemma 3.5. 

Remark: If Z is not a fibrant cosimplicial space, we still get a spectral 
sequence 

H^AH*Z 7r*Tot(FpZ) 
because FpZ is fibrant, being group-like in the sense of Bousfield and Kan 
[8, X.4.9]. But we are not able to identify the the abuttment with the Fp-
completion of Tot(Z). Indeed, Tot(Z) may be unintersting, but Tot(FpZ) 
might be of great interest. We will give some examples below where this 
generality is of importance. 

To prove Lemma 3.5, we need the following result of Bousfield [2, The
orem 3.5]. 

Theorem 3.7: Let Z be a fibrant cosimplicial space. Then there is a 
natural second quadrant spectral sequence 

7TSHtZ Ht-aTot(Z) 

If 7rsHiZ = 0 for t — s < 1 and 7rsHs+nZ = 0 for all n and sufficiently large 
s, the spectral sequence converges and Tot(Z) is simply connected. 

Proof of Lemma 3.5: By the tower lemmas of Bousfield and Kan [8, 
IIL6.2] Tot(FpZ) is Fp-complete. Theorem 3.7 and Lemma 3.4 imply that 

H*Tot(Z) H*Tot(FpZ) 

is an isomorphism. The result now follows from the universal property of 
Fp-completion. 

We complete this section with a sequence of examples to justify the 
generality. 

Example 3.8: Let X be a pointed, fibrant space and let Z' = X be 
the constant cosimplicial space on X\ that is, Zs = X for all s and every 
coface and codegeneracy map is the identity. Then the construction of (3.2) 
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and the spectral sequence of Corollary 3.6 yield the Bousfield-Kan spectral 
sequence of the first section. To identify the E2 terms of these two spectral 
sequences we use Example 2.10.1. 

Example 3.9: This example contructs a universal infinite cycle for 
the spectral sequence of Corollary 3.6. 

We begin with some remarks on simplicial unstable algebras. If V is 
a simplicial graded Fp-vector space, then we may define a trivial simplicial 
algbra V+ as follows. For each n, give Vn the structure of a trivial A-module 
and let 

[V+]n = Vn © Fp 
be the trivial algbera; that is, the augmentation ideal of [V+]n is Vn and 
(Vn)2 = 0. The face and degeneracy maps of V+ are the obvious ones and 
a moment's thought will demonstrate that 

ir„(V+) <* (7T.V0 + 

where (7r*V)+ is the evident bigraded trivial algebra. 
In particular, we let K(p, q) be the simplicial graded vector space with 

*.lT(p,g)~E*Fp 

concentrated in TTP — we will say that the non-zero bidegree is in external 
degree p and internal degree q. For any object A 6 sit A, choose an acyclic 
fibration p : X —• A with X cofibrant. Then, in the language of 2.15, we 
have 

[A, K(p, q)+]sUA [Fp ®A QX, K(p, q)]snFp 
(3.10) ^ Homnn¥p(7r*(Fp ®A QX), ic+K(p9 q)) 

= (HPQAA)q 

where [A, B]c means the homotopy classes of maps in the relevant category. 
The second isomorphism in (3.10) follows from the fact that a homotopy 
class of maps in the category of simplicial vector spaces is completely de
termined by the map on homotopy. 
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The conclusion to be drawn from (3.10) is that the functor H^A( )Q 
is a corepresentable functor — as any functor we label cohomology should 
be — arid that K(p, #)+ G sUA acts as an Eilenberg-MacLane space in this 
category. Therefore, HQAK(P, q)+ is a good thing to compute. If we can 
do the computation for all p and q we will have computed the "algebra" of 
cohomology operations. 

The next point of this example is that if p < g (or q — p > 0), then 
there is a cosimplicial space 5(p, q) so that iJ*5(p, q) = K(p, g)+ in sUA. 
Let Д be the cosimplicial space with A[s] the standard s-simplex and let 
skn( ) be the n-skeleton functor. Then, for q — p > 0, let 

S(p,p) = A/skp-гА 

and 
S(p,q) = i:4-rS(p,p). 

In [6] it was shown that i?*5(p, q) = K(p, g)+ and that S(p,q) has the 
following universal property. There is a class i 6 7rp7r95(p, q) that is the 
universal infinite cycle in the sense that if Z is a fibrant cosimplicial space 
and z € 7cp7rqZ survives to Eoo in the homotopy spectral sequence 

7TS7rtZ 7Tt-8Tot(Z) 

then there is a morphism of cosimplicial spaces 

f : S(p,q) ^Z 

so that 
7Г*7Г./(0 = Z. 

We will see this in section 5. Now S(p,q) is not evidently fibrant; however, 
we can preform the construction (3.2) nonetheless and obtain 

V ' S(p9q) -> FpSfaq). 

Lemma 3.5 will no longer be valid, however. But, F'pS(p,q) is a fibrant 
cosimplicial space — being group-like — and Theorem 3.7 and the fact 
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that Tot(F'pS(p, q)) is p-complete imply that if q — p > 1, then there is a 
homology equivalence 

S«-p-+Tot(FpS(p,q)); 

that is, Tot(JF'pS{p,q)) is the Fp completion of the sphere Sq~p. Therefore, 
we obtain a spectral sequence 

(3.11) [H QA K(P,,P) +]1 *t-.S*-> 

where we, as is customary, confuse the sphere with its Fp-completion. This 
spectral sequence is related to Barratt's desuspension spectral sequence 
[see 2, Section 4] and also [15, Section 3]. This spectral sequence is also 
universal in the following sense. Let Z be a fibrant cosimplicial space and, 
with q — p > 1, 

* e ^7rqFpz & [HpQAH*z}q 
a permanent cycle in the Bousfield-Kan spectral sequence. Then, by the 
remarks made on 5(p, q) above, the*e is a morphism of cosimplicial spaces 

f:S(p,q)- + FpZ 

so that 7r*7r*/̂ ) = z. Then there is a commutative diagram 

S(p,q) f FpZ 

FpS(p,q) f1 FpFpZ. 

Since we have that 
H*rj : H*FpFpZ -+ H*FpZ 

is a weak equivalence in slAA. 

r,:FpZ^ FpFpZ 

induces an isomorphism of spectral sequences. Thus, if we confuse 

t € np7TqS(p,q) 
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with its image under 7r*7r+77 in 

^nQFpS(p,q) 2 [H^AK(p,q)+]q 

we obtain a diagram of spectral sequences 

[H*QAK(p,q)+]t =• TT,_s5^^ 
(3.12) i H*QAf I T*TOT(Fp/) 

[HSQAH*Z]t 7rt-sTot(Z)p 

so that HQA/(I) = z. 
Thus we conclude that not only does K(p, g)+ corepresent cohomology, 

but that this phenomenon extends in a precise way to the Bousfield-Kan 
spectral sequence as well. 

Example 3.13: There is also a universal r-cycle. Let A and skn( ) be 
as in the previous example and set, for r > 2, 

D(r,p,p) = skp+r-iA/skp-iA 

and for q — p > 0 
D(r,p,q) = ^-PD(r,p,p). 

These cosimplicial spaces have the following universal property: there are 
classes 

i E 7Tp7rqD(r,p,q) 

and 

t? e 7rp+r7r9+r_i£>(r,p,g) 

so that ¿ survives to Er in the homotopy spectral sequence and 

dr(t) = tf. 

This differential is universal in this sense: if Z is a fibrant cosimplicial space 
and x G 7rp7rqZ survives to Er in the homotopy spectral sequence for Z, and 
if 

dr(x) = y, 
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then there exists a morphism of cosimplicial spaces / : D(r,p,q) —• Z so 
that 

7r*7r*/(0 = x and 7r*7r*/($) = y. 
D(r,p,q) may not be fibrant, so the homotopy spectral sequence for this 
cosimplicial space must be adjusted as follows: there is a fibrant cosimplicial 
space D(r, p, q) and a homotopy spectral sequence 

7rs7rtD(r,p,q) 7rt-sTot(D(r,p,q)). 

However, this technicality will be avoided completely below. 

Bousfield and Kan [6] have computed the homology spectral sequence 

7rsHtD(r,p,q) Ht-Sb(r,p,q). 

Let 
h : 7r*7C*D(r,p,q) —• TZ*H*D(r,p,q) 

be the map induced by the Hurewicz homomorphism. Then 7r*if*Z?(r,jp, q) 
is of dimension 3 over Fp with basis 

1 e 7r°H0D(r,p7q) 

h{i),h{ti)e>K*H*D(r,p,q). 
Since h induces a map of spectral sequences 

drh(i) = h(d). 

Thus the homology spectral sequence 

>K*H*D{r,p,q) H*Tot(FpD(r,p,q)) 
» 

implies that Tot(F'pD(r,p, q)) is contractible — if q — p > 1. 
Therefore, in the homotopy spectral sequence, q — p > 1, 

[HsQAH*D(r,p,q)]t Trt-sTot(FpD(r,p,q)) 

139 



GOBRSS 

we have E00 = 0. Incidentally, 

H*D(r,p,q)9*(H*D(r,p,q))+. 

Finally, arguing as for 3.12, we see that if Z is a fibrant cosimplicial 
space and x,y £ HQAH*Z are so that drx = y, then there is a map of 
spectral sequences 

H%AH*D(r,p,q) <K*Tot{FpD(r,p,q)) = 0 
I HQAf i 

H%AH*Z 7r*Tot(Z)P 

This should imply the existence of many formal differentials. 

4. Fibrations and the Bousfield-Kan Spectral Sequence 
In this section we discuss certain fibration sequences of cosimplicial spaces, 
demonstrate the relationship between these and fibrations of spaces, and 
show how these behave with respect to the spectral sequence of the previous 
section. We close with some examples from the work of Mahowald. This 
section is one of the major justifications for the generality of the previous 
two sections. 

The first remark to make is that there is another way to generalize the 
construction, for a space X 

X^ FpX 
of the first section. This will produce a relative version of this cosimplicial 
space. We do this by producing a triple on the category of spaces over 
a fixed space Y. This construction is the object used in [11] to define a 
fibre-wise completion of X. 

Fix a pointed space Y and let / : X —• Y be a map of pointed spaces. 
Define 

(4.1) (FP)YX = YxFpX 

and give (FP)Y( ) the structure of a triple with the following structure 
maps. Define 

rj : X - (Fp)YX 
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by 
TJ = f xV:X ^Y x FpX 

where the second 77 is 77 : X —• FpX — the unit of the triple Fp( ). Define 

e : (FpfYX - (Fp)YX 

to be the composite 

Y x Fp(Y x FpX)1X^2Y x F ^ X ^ y x FpX 
where 7T2 is the projection onto the second factor and e : FpX —* FpX is 
the structure map for the triple Fp( ) . 

One easily checks that there are commutative diagrams 

X n YxFpX = (FP)YX 
if I"* 
Y ^ Y 

where TTI is projection onto the first factor and 

(FP)YX = YxFp{YxFpX) -U Y x FpX = (FP)YX 

y y 

and, thus, ((Fp)yr, 77, e) is a triple on the category of spaces over Y. This is 
the category whose objects are maps / : X —• Y and whose morphisms are 
commutative diagrams. Let 

(4.2) X - (FP)YX 

be the resulting augmented cosimplicial space over Y. Notice that if we 
prefer, we could say that there is a map of cosimplicial spaces 

(4.3) (FP)YX - Y 

where Y is regarded as a constant cosimplicial space. Notice that the con
struction (4.2) is natural in the map f : X —>Y. 
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Therefore, we can generalize this relative construction to cosimplicial 
spaces. Suppose that 

f'-Z^ Y 
is a map of cosimplicial spaces, with Y not necessarily a constant cosimpli
cial space. Then we can form the bi-cosimplicial space (Fp)yZ with 

(FP#'*>Z = ( F ^ Z * 

with the obvious vertical and horizontal coface and codegeneracy maps. 
Define 

(4.4) (Fp)yZ = diag(Fp)fZ. 

The augmentation of (4.2) yields an augmentation 

i : Z -+ (FP)'YZ 

and the projection of (4.3) yields a natural projection 

p : (FP)YZ Y 

so that the composite 
Z ^ (FP)YZ- P^ Y 

is the original map / : Z —• Y. 

Lemma 4.5: There is an isomorphism 

U :TT*H*Z^ **Hm(PP)'YZ. 

Proof: By (4.4), there is a spectral sequence 

7rV#.(Fp)£Z v'+IHm(PP)YZ. 

But 
nsH4FP)^Z = 7r*ir.(Fp)y.Z1 = HMZ\ ifs = 0; 

0, if s > 0. 
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and the result follows. 
Remark 4.6: In actual fact, much more is true. There is a commuta

tive diagram. * _ .* 
H*Y H*(FP)'YZ -U H*Z 
H*Y i GH YH*Z p H*Z 

where the bottom row is the factoring of the morphism /* : H*Y —• H*Z as 
an almost-free map followed by an acyclic fibration constructed in Section 
2. Thus p* is almost free in sUA. 

Now suppose that Y is a group-like cosimplicial space. Then for any 
cosimplicial space Z and any map / : Z —-> Y, one easily checks that (Fp)'YZ 
is group-like and that 

p : (FP)YZ -» Y 
is a (level-wise) surjection of group-like objects in the category of cosimpli
cial spaces. Any such is a fibration in the category of cosimplicial spaces. 
If we let * denote the initial object in the category of cosimplicial spaces, 
then we may define the fiber F(p) of p by the pull-back diagram 

F{P) - (Pp)yS 

* -» Y. 

Lemma 4.7: If F(p) is the fiber of p : (Fp)'YZ —*• Y with Y group-like, 
then F(p) is group-like and there is a natural isomorphism 

H*F(p) £* FP ®if.r H*(FP)YZ. 

Proof: For each s, 

(FP)YZ = ( F ^ 1 ^ = Y* x Fp((Fp)Y,Z*). 

Thus, for each s, there is a fibration sequence induced by p: 

F(p)s -y^Ysx Fp((FpyA,Ss)^Y°. 
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In particular, 
F{P)S = Fp{{Fp)sY.Zs) 

and the result follows. 

Because F(p) is fibrant, Tot(F(p)) is a meaningful object from the 
point of view of homotopy theory. In particular, there is a fibration sequence 
in homotopy 

(4.8) Tot(F(p)) — Tot((Fp)YZ)T^Tot{Y). 

This follows from [8,p.277]. 
Now consider the case of an arbitrary map of fibrant cosimplicial spaces 

/ : Z —• Y. Applying the functor F'p( ) to this map, we obtain a map of 
group like cosimplicial spaces 

Fpf : FpZ - FpY. 

If we apply the construction of (4.4) we obtain a factoring of Fpf: 

FpZ -U X = (FpyfpYFpZ JU FpY 

where p is a fibration and 

U : ̂ H,F'PZ TZ*H*X 

is an isomorphism. This last implies that there is a homotopy equivalence 

Tot{FpZ) - Tot(X). 

Let F(p) be the fiber of p : X —» F'pY. Then, in light of Remark 4.6, Lemma 
4.7, and the material before Proposition 2.12, we have that 

K*n,F(p) ̂  H*QAM(f*) 

where M(/*) is the mapping cone of /* : H*Y —• H*Z in sUA. Therefore 
there is a spectral sequence 

[HsQAM(r)]t => *t-mF(p). 
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Thus we obtain a fiber sequence up to homotopy 
Tot(F(p)) -> Tot(Z)*tot^ ToHJ)p 

and a long exact sequence of E2-terms: 

[HsQAM(r)]t - [HQAH*Z]t-^[HQAH*Y]t—+[Ha£2M(f*)]t 

We would like the morphism d to be induced by a morphism of spectral 
sequences. In the next section we will prove the following result. 

Theorem 4.9: There is a diagram of spectral sequences 
[HaQAH*Y]t 7rt_sTot(X)p 

la [s 
[HglM(f*)]t *t-s_.xTot(F(p)). 

where 6 : 7rt^sTot(X)p —> 7rt^s^1Tot(F(p)) is the boundary map induced 
from the homotopy fibration sequence 

Tot(F(p)) - T o t ^ / ^ t o t TotiY),,. 

We close the section with a sequence of examples applying this tech
nology. 

Example 4.10: Let Z = * be the initial object in the category of 
cosimplicial spaces. (Remember that all our spaces and morphisms axe 
pointed.) Let Y be fibrant cosimplicial space so that irsHtY = 0 for t—s < 1 
and 7rsHs+nY = 0 for all s and sufficiently large n. Then there is a natural 
weak equivalence 

Tot(F(p)) ~ QTot(Y)p 
because Tot(Z) is contractible. On the other hand, 

e = /* : H*Y -+ H*Z = FP 

so M(/*) = HH*Y in the terminology of 2.13. Therefore, 

d : [H*QAH*Y]t - {HgjM(f*)]t - [ f f g E f f * n 
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is an isomorphism for all s and £, and we get a commutative diagram of 
spectral sequences, where the vertical maps are isomorphisms: 

[H^AH*Y]t 7rt-sTot(Y)p 
id id 

[Hs+^H*Y]t TTt.s^nTotiX)? 

Also, the Hurewicz map induces a map of spectral sequences 

[HSQAZH*Y]T => irt_snTot(Y)P 
i i 

[ttS YjH*Y]* =• Ht-sQTot(Y)P. 

This of particular importance if Y = f-'PX for some pointed space X. Then 
(2.12) implies that 

[irSBH*Y]T Torf *X(FP,FP), 

and, of course, 

[HsQAZH*Y]t ^ ExtH-jKH'XtH'S*). 

The upshot, then, is a diagram of spectral sequences 

Ext^iH+X^H+S1) TT,_5QXP 
(4.11) I I 

Cotor?*X(FP, Fp)* Ht-snXp. 

The homology spectral sequence is easily seen to be isomorphic to the 
Eilenberg-Moore spectral sequence. A similar construction has been used 
by Bousfield and Curtis [5] and Bousfield and Kan [6]. 

It is worth pointing out that the spectral sequence of (2.12) 

Torw*H*Y(FP,FP) TT.EJTY 

collapses for other examples than the example of Y = F°pX; for example, it 
will collapse for either of the examples 3.8 or 3.13. 
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Example 4.12: In this example, we investigate the suspension homo-
morphism. Let Fp( ) be the underlying functor of the triple described in 
section 1. Then there is an evident natural map 

XKFpX -+ FpXkX 

and this, in turn, induces a map of cosimplicial spaces 

ek : FpX - QKFpXkX. 

Since Tot(QKZ) = QkTot(Z) for any fibrant cosimplicial space Z, and since 

irs7ctnKFpXkX & 7r57rt+fcFpSfcX 

we obtain a diagram of spectral sequences 

Exttt^H+XiH+S1) 7rt-sXp 
I 7R*7R*efc i Ek 

Ext^A(H^kX, H*Sf+k) vt-s+ki:kXp. 

where Ek is the suspension homomorphism. 
Now, from the work of Mark Mahowald, it is known that, for the case 

X = 5n, the algebraic suspension homomorphism 7r*7r*efc fits into a long 
exact sequence. The work we have done here allows us to give name — 
from the point of view of homological algebra — to the third term in this 
long exact sequence and, perhaps, more flexibility for computation. The 
following lemma will help us to identify the E2 term of various spectral 
sequences. 

Lemma 4.13: Let Z be a cosimplicial space so that, for every 5, Z3 is 
homotopy equivalent to an Eilenberg-MacLane space and TT*ZS is a graded 
FP vector space. Then, for all s and t1 we have that the homomorphism 
induced by the augmentation 

7TS7rTZ 7T57r,FpZ 

is an isomorphism. 
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Proof: FpZ = diagFjZ where F™Z = F?+lZi. If we filter irJF^Z 
be degree in q, we obtain a spectral sequence 

7T97rP7T+FP'-Z =• 7rp+%.FPZ. 

Because of the hypotheses on Zq, we have 

7TP7r.F:Z« Si TT.Z«, i fp=0; 
0, if p > 0. 

The result follows. 

The hypothesis of Lemma 4.13 applies to both Z = F'pX and, espe
cially, Z = ClkFpVkX. Therefore, 

[HsQAH*FpX}t 9£ ExtlA(H*X,H*S*) 

and 
[H%AH*nkF'pEkX]t ¥ ExtsUA{H^kX,H^St+k) 

and we obtain a long exact sequence 
- [H*QAM(e*k)]t -etx Ex^A^X^S1) 

^kExtsUA{H*EkX,H*St+k) - [Hs^jM(et)]t -

And if C(Ek) is the homotopy fiber in the homotopy fibration sequence 

C(Ek) -• X-^nkXkX 

then Theorem 4.9 implies that there is a diagram of spectral sequences 
ExtsUA{H*T,kX,H*Si+k) wt+k-s^Xp 

[HsQAH*FpX}t 7rt_s_1C(£'fc)p. 
Since there are techniques for computing HQAA from knowledge of 

7T*A (see [13]), it would be nice to know 7r*M(e£). In principal, this can be 
done as follows. First of all, 

TT*H*FPX 9* H*X 
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concentrated in external degree 0. On the other hand 

K*H*nkFpY,kX 

can (and this is the part that is only in principal) be computed using the 
derived functors of Lannes's mapping object functors [16]. For example — 
and here we offer only the prime 2, k = 2, and X = Sn: 

7r*iTfi2F25n+2 ^ A(in) ® r[x2n+1, rr2n+2, Vj] 

where 

in E 7r0HnQ2F'2Sn+2 

xj e 7niy^2F25n+2 
and 

Vi G 7r2i+1i?2>(4"+5)fi2F21S"+2, j > 0. 

A and r denote the exterior and divided power algebras respectively. 
Once 7r*H*QkFpTikX is computed, one can appeal to the spectral se

quence of (2.12) to compute TT*M(e£). In the case of 

el : iT Q2Fp5n+2 -+ H*FpSn 

this spectral sequence will collapse. 
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5. The homotopy spectral sequence and twisted products 
The purpose of this section is two-fold. First, we explain in detail how the 
homotopy spectral sequence of a fibrant cosimplicial space is constructed 
and, second, we use this explanation to prove Theorem 4.9. This theorem 
defines a boundary map in a "long-exact sequence" of spectral sequences. 
We begin with the first project. 

Let Z be a fibrant cosimplicial space. If Y is a cosimplicial space, let 
map(Y, Z) be the space of maps between Y and Z. The n-simplices of 
map(Y, Z) are maps of cosimplicial spaces 

where A[n] is the standard n-simplex. If Y, Z are pointed, let map*(Y, Z) 
denote the space of pointed maps between Y and Z. The n-simplices of 
this space axe pointed maps of cosimplicial spaces 

where + denotes a disjoint basepoint. 
If Z is pointed and fibrant, there is a homotopy spectral sequence 

where Tot(Z) = rnap(A, Z) and A is the cosimplicial space that is A[n] in 
cosimplicial degree n. This spectral sequence is a tower of fibrations 

A[n] xY Z 

A[n]+ AY —> Z 

7rs7rtZ ict-aTot(Z) 

(5.1) 
Tot3(Z) 

T 
F3Z 

Tot2(Z) 
T 

F2Z 

Toti(Z) 
î 

FXZ 

Toto(Z) 
I I 

F0Z 

Here 
Totn(Z) = map(sknAyZ) 

where skn( ) is the n-skeleton functor and the fibrations 
Totn(Z)-+Totn-^Z) 
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are determined by the inclusion skn^iA —• sknA. Thus the fiber is the 
mapping space 

FnZ = map*{sknAj'sfcn_iA, Z). 

Here and elsewhere we make the convention that 

X/sk-!Y = X+. 

Bousfield and Kan have given a description of FnZ. Let 

MnZ Ç Zn x • • • x Zn 

be the matching space given by 

MnZ = {(z°, z1,..., zn) I sizi = sj-1z\ 0 < i < j < n} 

where the s* are the codegeneracies in Z. There is a natural map 

s : Zn -> M n-lz 

given by 
s(z) = (s°z,s1z,...,sn^1z). 

The condition that Z be fibrant is equivalent to the condition that s be a 
fibration for all n. Let NnZ be defined by the fibration sequence 

(5.2) NnZ -*Z->M' z. 

Bousfield and Kan now prove [8,X.6], using the fact that 

[sknA/skn-x A]71 = Sn 

that we have natural isomorphims 

FnZ ^ QnNnZ 

and 

(5.3) 7rtQ NnZ 9i 7rt+nNnZ *Ê Nn7rt+nZ 
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where Nnirt+nZ is the nth group in the normalized cochain complex of the 
cosimplicial group 7r*+nZ. Furthermore Bousfield [10.4 of 3] shows that the 
composite 

7rtFnZ -+ 7rtTotn(Z) Kt^Fn+iZ 
induced by the fibrations of (5.1) is equivalent, under the isomorphisms of 
(5.3) to 

(5.4) (-1)*0 : Nn7rt+nZ -> N^TTt+nZ 

where d is the boundary operator of Nirt+nZ. Thus if we use the tower 
(5.1) to define a spectral sequence with 

E{* = irt-sFsZ ^ Ns7rtZ 

then the spectral sequence reads, because of (5.4), 

E£'* = 7rs7rtZ 7rt-sTot(Z) 

where we have used the identification 

Tot(Z) = limTotn(Z). 

This is the spectral sequence under Tot(Z). We can build the same spectral 
sequence from a tower over Tot(Z). This is often more convenient, especially 
as it allows one to use pointed mapping spaces at all times. First notice 
that 

Tot(Z) = map*(A+,Z). 
Call this Tot°Z. If n > 1, define 

Totn(Z) = map.(A/sfcn_iA,Z). 

The fibration sequences 

skn-xA —• A —> A/sfcn_iA 
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give rise to a diagram of fibration sequences 
FnZ 

i 
Totn+1(Z) -+ Tot(Z) -H. Totn(Z) 

i 1= i 
Totn(Z) -> Tot(Z) -> To*n_i(Z) 

FnZ 
and, hence, to a tower of fibrations 

(5.5) 
Tot2(Z) 

F2Z 

pi Totx(Z) 

FiZ 

Po Tot°(Z) 
| k0 

F0Z 

= Tot(Z). 

If we apply homotopy to this tower of fibrations, we obtain a spectral se
quence with 

E\,f = -Kt-sFgZ 
and standard arguments show that we have produced a spectral sequence 
isomorphic to the usual one. 

The universal examples of section 3 are easily explained using the 
tower (5.5). Notice that, if x G ̂ -KtZ is an infinite cycle detecting a G 
TTt-sTot(Z), then there is a diagram 

st-s 
II 

St-s 

fs 

f 
TotsZ 

i 
Tot(Z) 

k. FSZ 

so that the homotopy class of / is a and so that k3f3 represents x. The 
adjoint of the map 

/, : Sf-S -» mop.(A/*fca_iA,Z) 

yields a map 
S(s, t) = S*-s A A/sfcs_! A Z 

demonstrating the claim that S(s, t) forms some sort of universal infinite 
cycle. The universal differential can be discussed in the same way. 
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We now turn to the discussion of the boundary maps between homotopy 
spectral sequences. To isolate the key point in the argument, we make the 
following definition. 

Definition 5.6: A fibration sequence of pointed cosimplicial spaces 

F i Z p Y 

is called a twisted product if there are isomorphisms of pointed simplicial 
sets, n > 0, 

en :Zn -+Yn x Xn 

and commutative diagrams 
Zn > Yn x Fn 

i P _ i PI 
yn — ) yn 

where pi is the projection, and so that 

(<f x <f )G n = G n + 1 d \ i > 0 

and 
(si x s*')en = e n -V, i > o 

where d1 and Si are the appropriate coface and codegeneracy operators. 
Only d° does not commute with the O n and provides the twisting. 

One easily checks that a twisted product is a fibrations sequence of 
cosimplicial spaces. 

Lemma 5.7: Let / : Z —* Y be any morphism of cosimplicial spaces. 
Then the fibration sequence 

E (p) — (Fp) f, y F, Z — F P Y 

of Section 4 is a twisted product. 
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Proof: This is a matter of examining the definitions. Indeed, if Y is a 
space, then (Fp)r( ) = 7 x Fp( ) and this splitting extends to the fibration 
sequence. 

Remark: The class of twisted products contains more than the exam
ples provided by this lemma. Indeed, if F —• Z —+ Y is a twisted product 
and X is a pointed space, than 

map*(X,F) —• map*(X, Z) map*(X,Y) 

is also a twisted product. 

Proposition 5.8: If F ^ Z-^Y is a twisted product, then there are 
isomorphisms of spaces 

NNZ-=^NnY x NnF 

for all n > 0 and a diagram 

NNZ NnY x NnF 
i Np I Pi 

NnY NnY. 
Proof: The matching spaces MNZ and the fibration sequences 

NNZ -> ZN-^ MN~1Z 

that define the spaces NNZ depend only on the codegeneracies of Z. Since 
0n . ̂ n_jz_^Yn x Fn commutes with codegeneracies, the result follows. 

Corollary 5.9: In the normalized cochain complex NTT*Z there is an 
isomorphism 

Nnw*Z ^ Nn7r*Y x Nn7r*F 
and the isomorphism commute with the projection to Nw^Y. There is a 
long exact sequence 

• TS7TtF -+ 7TS7rTZ -> 7TS7CfY~—-*7rS~^~^TTfF -+ - - • 
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Proof: The isomorphisms follow from Proposition 5.8 and the isomor
phism of (5.3). The long exact sequence is now induced by the short exact 
sequence of co chain complexes 

0 -+ NTT*F Nir+Z -+ NTC*Y -» 0. 

Remark 5.10*1.) One easily checks that the long exact sequence 
obtained by combining Lemma 5.7 with Corollary 5.9 is the same as that 
obtained in Proposition 2.11 and used in Theorem 4.9. 

2.) The map d : -KsTvtY —• 7rs^17rtF has a canonical description on 
the cochain level given as follows. If ot G ics7TtY is the residue class of the 
cocycle y G Ns7TtY, then 5.9 identifies an element z G Ns7ztZ that passes, 
under the isomorphism, to (y, 0). The coboundary dz passes to (0, w) for 
some w G Ns+17rtF and da is the residue class of w. 

In light of Lemma 5.7 and Remark 5.10.1, Theorem 4.9 is subsumed in 
the following result. 

Theorem 5.11: Let F —• Z —* Y be a twisted product of fibrant 
pointed cosimplicial spaces. Then there is a diagram of spectral sequences 

7TS7TfY =• 7Zt-sTot(Y) 
id Is 

7ra+17rTF 7r,_a_iTa*(JF) 

where 6 is induced by the fibration sequence of spaces 

Tot(F) -+ Tot(Z) Tot(Y). 

This follows from the following omnibus lemma. We use the notation 
of (5.5). 

Lemma 5.12.1.) There are maps 

fn : 7r*QTotn(Y) -> 7r*Totn~*~1(F) 
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and 
dn : n*Q2FnY -> QFn+1F 

and a commutative diagram 
iv*Sl2FnY -> 7r*QTotnY -» Tr^To*"-1!- e 7r._i«2Fny 

J, 5n J, fn J, /**—1 J, ŵ 
TT^FH+IF -> 7r+To^+1(^) 7r*Totn(F) e 7r*_iOFN+1F 

where the rows arise from the fibration sequences induced from (5.5). 
2.) Under the isomorphisms 

7r;fi2Fny ^ iVn7r2+n+2y and Tr.-fiFn+i-F = Nn+17ri+n+2F 

the map c?n induces the map 

d:7rn7r,Y->7rn+17r,F. 

The proof will occupy the rest of the section. The delicate point is to 
produce fn and dn in a natural enough way to demonstrate the commu-
tivity of the diagram of 5.12.1. We give the technique we will use, which 
exploits Proposition 5.8. Let li,l(VS*) be the homotopy category of pointed 
cosimplicial spaces [8,X]. 

Definition 5.13: An object D e ?ft(V<S.) will be called a dj'* model 
if there is an isomorphism in H,l(VS*), 

D(s, t, 1) = £*-ssfcsA/sks-.!A -> D. 

We can conclude that there is prefered generator 

is 6 NantD 

and 
0^dise N^TTtD. 

We call D a di model if there is an isomorphism in ?il(VS*) 

Vk D{sk,tk,l)^D 
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for some finite indexing set {k}. A map / : D —• Dr between di models 
will be called a projection/injection if under the prefered isomorphisms in 
?tl(VS*) f corresponds to a projection onto one wedge summand followed 
by inclusion to another. 

The key fact we will use use is this. 

Lemma 5.14: Let F —• Z —• Y be twisted product of pointed fibrant 
cosimplicial spaces and let D be a cofibrant d\ model. Then the map 

7r*map*(D, Z) —• ir*map*(D,Y) 

is split surjective. Furthermore, this splitting is natural with respect to 
projection/inclusions D —* D' of d\ models. 

Proof: Let 
Vk D(sk9tk,l)->D 

be the given isomorphism in ?#(V<S*). Using this and [8,p.277] we obtain 
isomorphisms 

7Г»map*(£>, Z) = xfc 7r.map.(£)(sfc, tk, 1), Z) 
Si Xfc ir*ntkNSkZ. 

The result now follows from Proposition 5.8. 

The lemma we use to construct the maps of 5.12.1 is the following. 

Proposition 5.15: Let A —* D —•* C be a cofiber sequence of cofibrant 
pointed cosimplicial spaces and let D be a di model. Let F —* Z —> Y be a 
twisted product of pointed fibrant cosimplicial spaces. Then there is a map 

7r*map*(C,Y) —> 7r*map*(-A,F). 

This map is natural with respect to diagrams 

A 
i 

A! 

-* D 
I* 

-> D' 

-+ C 
I 
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where g is a projection/inclusion of di models. 
Proof: Let i : D —+ C and p : Z —> Y be the given maps. Then there 

is a pull-back diagram of fibrations 

map*(i,p) —> map*(D,Z) 
i i 

map* (C, Y) —• map* (Z), Y) 
where map*(i,p) is the mapping space with n-simplices pointed commuta
tive diagrams 

A[n]+AD -» Z 
i lAi I P 

A[n]+AC -+ Y 
The splitting of the previous result yields a splitting 

7r*map*(C, Y) —> 7r*map*(z,p). 

The result follows by composing with the natural map 

7r*map*(i,p) —• 7r*map*(A, F). 

The naturality clause follows from the naturality clause of 5.14. 
The proof of 5.12.1 now depends on making a good choice of cofibration 

sequences. Because the category of pointed cosimplicial spaces is a closed 
model category, we can make the following assertions. Let 

Ax -+ B1 
i Ì 

A2 B2 

be a homotopy commutative diagram of cosimplicial spaces. Then there is 
a commutative diagram 

(5.16) 

A1 - Xx -> Fi 
i i i 

Z2 —• —* 
i i i 

Zz —• -X3 —> I3 
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where the rows and columns are cofibration sequences and the square 

Ax - Xx 
i i 

Z2 • X2 
is equivalent to the original square in the sense that there are weak equiv
alences 

X\ —• B\ X2 —• B2 Z2 —• A2 
and the diagrams 

Ai Ax Z2 X2 
X X X X 

Z2 —• A2 A2 —> B2 
Ax Xx 
1= i 
Ax - Bx 

commute and the following diagram commutes up to homotopy 

Xi —• X2 
i i 

Bi —• B2. 

The diagram produced depends on the choice of homotopy. If the orig
inal square commutes exactly, then there is a canonical choice of homotopy: 
the constant homotopy. 

We can now turn to the proof of Lemma 5.12. 

Proof of Lemma 5.12.1: For every n > 0, there is a cofibration 
sequence 

sknA/skn-iA —» A/skn-xA —» A/sknA. 
By using a functorial mapping cylinder construction, this cofibration se
quence yields a sequence 

A/skn-\A -> A/sknA-^+B(n, n + l) 
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where B(n,n + 1) ~ £sA;nA/sfcn_i A and is, hence, a d '̂n+1 model. In fact, 
if tn+i G iVn+17rn+iA/sknA is the generator, then under the induced map 

NXn : JVn+17rn+1 A/sknA — 7Vn+17rn+1B(n, n + 1) 

we have that 
iVAn(*n+i) = dtn 

where ¿n G iVn7rn+i J3(n, n + 1) is the generator. 
Now, inclusion of skeleta induces a diagram 

sfcnA/sfcn_iA -» A/sfcn_iA -+ A/sknA 
i i i i 

skn+1A/sknA —• A/sknA —• A/sfcn+iA 

where 7 is the constant map. Then, because the mapping cylinder construc
tion is functorial, we get a commutative diagram with 7' constractable: 

A/sknA yn B(n,n + 1) 
A ^ ' A/skn+1A B(n + l,n + 2) 

Then, by applying the construction of (5.16) to this square, we obtain a 
diagram 

A/sknA -> £>(n,n + l) -+ 5(n ,n+l ) 
i IT" i i 

(5.17) 5(ra + 2,n + 2) J9(rc + l,rc + 2) -+ S(n + l,n + 2) 

D'(n + l,n + 2) J-± Z a Dn(n,n + 2) 

where 
5.17.1) in Hl(VS*) we have isomorphisms S(s, t) ^ E ^ A / ^ - i A in 

?il(VS*) and, under these isomorphisms, the map i is isomorphic to the 
projection 

EA/sfcn_iA -> £A/sfcnA; 

5.17.2) £>(M) and D'{s,t) are dj'* models; and 
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5.17.3) there is an isomorphism in ?#(V<S*) 
Z S D(n + 1, n + 2) V SD(n, n + 1) 

and j is isomorphic to the inclusion. 
Then, applying Proposition 5.15, we obtain, for any twisted product 

F —• Z —• Y of fibrant cosimplicial spaces, a diagram 
-K*map*(D'{n,n + 2), Y) —• 7r*map*(D'(n + l,n + 2),F) 

i I 
(5.18) 7r*map*(S(ra + l , n + 2),Y) —• Tv*map*{S(n + 2, ra + 2), F) 

I 1 
7r*map*(5(n, n + 1), Y) .—• 7r* map* (A/sfcn A, F). 

Now we use 5.17.1-3) and the fact that for cosimplicial spaces A and JB, we 
have 

7r*map*(EA, B) = 7r*f2map*(A, i?) 
to define the maps fn and c?n. Indeed, 

-K*map*{Df(n,n + 2), Y) = 7r*map*(E2sfcnA/sfcn_i A, Y) 
= n*ClFn+iF. 

and 
7r*map*(D'(n + 1, n + 2), F) ^ TT*map*(Esfcn+iA/sfcnA, F) 

= n*ClFn+iF. 
So the first row of (5.18) and these isomorphisms defines dn. For /n, use 
the fact that for a fibrant cosimplicial space W 

7r*map*(S(s,t),W) 7r*map*(Et"sA/sfcs_iA, W) 
= Tttf-'TofW. 

and the bottom row of (5.18). 
The diagram (5.18) now demonstrates the commutivity of the three of 

the four squares of the diagram in 5.12.1. To get the final commutative 
square, recapitulate this argument, beginning with the square 

S(n + 2,ra + 2) JD(n + l,n + 2) 
I I i 

£>'(n+l,n + 2) F Z. 
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This completes the proof of 5.12.1 and leaves only the following. 

Proof of 5.12.2: Let 

(5.19) D'(n + 1, n + 2)-£+Z-*-KD'(n, n + 2) 

be the cofibration sequence of 5.17. We examine / and g in homotopy. 
Because of the commutative square 

D{n + l,ra + 2) S(n + l,ra + 2) 

Z a Z}'(ra,n + 2) 

we understand the composition pj: if in+i G iVrn+17rn+2-D(n + l,n + 2) is 
the generator, then, by (5.4) 

N(gj)in+1 = -din 

where in E iVn7rn+2-C>/(n?n + 2) is the generator. Thus, if 

jn e Nn7rn+2Z 

and 
in+i e ivn+17rn+2z 

are the generators obtained from the isomorphisms in TïlÇVS*) 

Z &S £>(ra + 1, n + 2) V E£>(ra, n + 1) = £>(n + 1, n + 2) V D'{n, n + 2) 

and if tn+i 6 Nn~t~17rn+2D'(n + 1, n + 2) is the generator, then we have 

Ng(jn) = in 
and 

Ng(jn+1) = -<9*n. 

And, because the composition gf is constant, we conclude that 
Nf(in+1) = jn+i + djn. 

The result now follows because dn is obtained from 5.19, using 5.15, and 
because of the canonical description of d given in Remark 5.10.2 
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Part II: Products and Operations in Quillen Cohomology 

In the last four sections of this paper, we will define and explore the 
Whitehead product and the operations that appear in the E2 term of the 
Bousfield-Kan spectral sequence. Then we will discuss to what extent these 
products and operations commute with the differentials and, hence, are 
reflected in the homotopy groups of spaces. Sections 8 and 9 axe devoted 
to methods of computation and calculations in the universal examples of 
section 3. For these final sections we will restrict attention to the prime 2, 
although many of the results immediately generalize to other primes. What 
has not been generalized are the operations of section 7. 

6. Products in Quillen cohomology 
In this section, we expand on some work of Bousfield and Kan and show 
that there is a product in the spectral sequence 

H^AH*Z w+Tot(Z)2. 

This product will satisfy the Jacobi identity and abut to the Whitehead 
product in homotopy. In the next section we will show that there are 
Steenrod operations related to this product. 

To begin with, it is useful to make the following definition: 

Definition 6.1: A cosimplicial space Z is a F2-Hke if each Zs is a 
simplicial F2 vector space for each s, and the coface and codegeneracy 
maps 

d* : Z*-1 -> Z\ l < i < s 
and 

s* : Zs+1 -> Zs, 0 < i < s 
are all maps of simplicial vector spaces. Only d° is not necessarily a map 
of simplicial vector spaces. In addition, a morphism of F2-like cosimplicial 
spaces is a map / : Z —* Y of F2-like cosimplicial spaces so that each 

fs:Zs-+ Ys 
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is a morphism of simplicial vector spaces. 

Remark 6.2: In light of the constructions of Section 3, given any 
cosimplicial space Z, we can form the augmented cosimplicial space Z —• 
f-'2Z and F'2Z is F2-like. Since 

H*QAH*Z 7r*Tot(Z)2 

is the homotopy spectral sequence of V'2Z all the subsequent results apply to 
the this generalization of the Bousfield-Kan spectral sequence. For example, 
see (6.6) below. 

Also, if Z is F2-like and H*Z8 is of finite type for each s, then 

7T*Z~ (F2 ®A QH*Z)* 

so 
7Г*7Г*<5Г = HQAH*Z. 

In [7], Bousfield and Kan demonstrate how to put a Whitehead product 
into the homotopy spectral sequence of an F2-like cosimplicial space. Define 
a map, for each s, 

C : Z8 A Z8 ZN+3 

by 

(6.2) C(ti A v) = d°(u + v) - (d°(ti) + dP(v)). 

Here we use the fact that ZSJTX is a vector space. Notice that £ measures 
the deviation of d° from being a vector space homomorphism.This allows 
one to define a pairing 

u;* : 7rTZS ® 7rT,ZS 7rt+t,Zs+1 

as follows. Define a map 

A : 7rtZ8 ® 7iy Z5 7rI+T,Z8 A 
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by the smash product pairing and let u>* be the composition 

7rTZS ® 7rT,Zs-^7rT+T,ZS A Z5^TTW,Z5+1. 

The following can now be proved exactly as in Chapter III of [7]. 

Theorem 6.3: Let Z be an F2-like cosimplicial space. Then the 
pairing CJ* induces a product in the homotopy spectral sequence 

7TS7TTZ [HAQAH*Z\T =• 7Vt-sTot(Z) 

abutting to the Whitehead product 

[ , ] : 7r*Tot(Z) <g> 7r*Tot(Z) -+ TT*TO*(Z). 

That is, there is a product 

[ , ] : [HsQAH*Z]t ® [HiAH*Z)t, - [H^'+1H*Z]t+tr 

and a diagram of spectral sequences 

[HSQAH^Z]T ® [H^AH*Z)TF => <Kt-sTot(Z)®>Kt,„s,Tot(Z) 
I [ , 1 | [ , 1 

[HOA *lH*zh+t> 7rt+t/_(s+5/)_1Tot(Z) 

Remark 6.4: More technically, this should be phrased as follows. Let 
{E3,IZ} denote the homotopy spectral sequence. Then there exist natural 
products 

[ , ] : ES/Z®Es7!'i' Z -+ Ei+a'+1'i+i'z 
so that 

1.) the product on E\Z is induced by u;*; 
2.) dr[w, v] = [dru, v] + [u,drv]; 
3.) the product on ER+\Z is induced by the product on ERZ and the 

product on EQOZ is induced by the product on ERZ, r < oc; 
4.) the product on £"00 is also induced by the Whitehead product on 

7r*Tot(Z). 
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Bousfield and Kan also prove the following result. 
Proposition 6.5: The product 

[ , ] : [H*QAH*Z)t <g> [HQAH*Z]ti - [H*Q+AS'+1H*Z]t+t, 

is commutative, bilinear and satisfies the Jacobi identity 

i [y, *]] + [y> \z, x]\ + [z> ix> V]] = °-

It follows that the product on ERZ also satisfies the conclusion on 
Proposition 6.5. 

In particular, let us consider the case where we are analyzing the cosim
plicial space F2Z where Z is a fibrant cosimplicial space. Then the homotopy 
spectral sequence reads 

H^AH*Z 7r*Tot(Z)2. 

Therefore we obtain from the above results a commutative bilinear product 

(6.6) [ , ] : HSQAH*Z ® H^AH*Z -* Hg/+1H*Z. 

This product adds the internal degree and abutts to the Whitehead product 
in the homotopy groups 7r*Tot(Z)2. 

Notice that the product on HQAH*Z is defined for any cosimplicial 
space Z because F'2Z is always F2-like. We just have to be careful what the 
spectral sequence abuts to. See the examples at the end of section 3. 

The rest of this section is devoted to studying the product (6.6). 
The first thing to notice is that this product is actually intrinsic to 

HQA{ ) and does not depend on the existence of a cosimplicial space. To 
see this, let A £ sUA be an almost-free unstable simplicial algebra. Then 
for all s > 0 

As = G{VS) 
for some graded vector space Vs. Of course, G : nF2 —+ UA is the left 
adjoint to the augmentation ideal functor. The vector space diagonal 

A : Vs Vs 0 Vs 
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yields, after applying G, a coproduct 
ips = GA : As = G(VS) G(VS) ® G(Va) = Aa®A3 

that gives As the structure of a commutative, cocommutative Hopf algebra 
with conjugation in UA. In particular, for any A G UA 

HomUA{As,A) 
is a group; indeed 

HomUA(As,A) S* #om^(G(K), A) 
^ifomnF2(V5,/A) 

and all isomorphisms are group isomorphisms. Hence HorridA(AS^ A) is an 
F2 vector space. Now, because A is almost-free, 

di : As —• A5_i, 1 < i < s 
and 

si : As —-> As+i, 0 < i. < s 
are maps of Hopf algebras. Only do is not necessarily a map of Hopf aleg-
bras; hence, it makes sense to measure the deviation of do from being a 
Hopf algebra map. Define 

f : As -+ As-i ® Aa_i 
to be the product, in the group HomuA{As, A5_i ® A5_i), of 

(d0 ® d0)V>s *• As —• As_i ® As_i 
and 

t/'s-ido : As —• As_i ® As_i. 
The morphism £ actually factors through a subalgebra of A5_i ® A5_i. For 
A, r G ZYA, define the product A Xp2 T 6 ZVA by the pull-back diagram (of 
simplicial graded vector spaces) 

A xp2 T -* T 
i I* 
A T F2 
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If X and Y are pointed spaces, then 

H*(X V Y) = H*X xp2 H*Y. 

There is a natural map Л®Г-»Лхр2Г given by 

и ® v I—> (urje(v), r]e(u)v) 

and we may define Л Л Г by the pull-back diagram 
Л Л Г Л®Г 

F2 n Л хр2 Г. 
If X and Y are pointed spaces, then 

H*(X Л Y) ^ H*X Л iTY. 

Finally, notice for A E s£/*4 almost-free, there is a factoring 

(6.7) 
As a A5_i Л As_i 

i 
As —• As-i®As-i 

To see this, one need only check that the two composites 

and 

As^->As-i ® As-i^As-i 

As-^->As-i <g> As-i^As-i 
are the trivial map 

rje : As —• An-1 

For the morphism 6 ® 1, say, this is equivalent to showing that 

(c ® l)(d0 ® d0)̂ s = (c ® l)^-id0 : A5 -> A s-1. 
But this is obvious. A similiar argument can be given in the other case and 
that completes the definition of the map £ of (6.7). 
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Notice that is A = H*Z where Z is an F2-like cosimplicial space, then 
(6.8) f = C : H*Z* H*ZS'X A H+Z3-1. 

Thus we have algebraically copied the topological construction. 
To define the product on cohomology of the simplicial unstable algebra 

A G SUA, we need the following lemmas. Let Q( ) denote the indécompos
ables functor. 

Lemma 6.9: For A,T G UA, there are natural maps 

Q(A AT)-* QA ® QT 

and 
F2 <8U Q(A AT) -> (F2 <8>A QA) ® (F2 ®^ Qr). 

Proof: The map A A T —> A ® T induces a map 
/(A AT) —• 2*A <g) iT 

where /( ) is the augmentation ideal functor. The result follows by inves
tigating this map. 

For the next lemma, we need some notation. If /, g : AA —• A with 
A G slAA almost-free, let / * g denote the product of / and g in the group 
HomuA(ASY A); that is, / * g is the composite 

AS^AS ® AS^A ® A -+ A 

where the last map is multiplication. Notice that 

(6.10.1) Q(f * g) = Qf + Qg; QAS -> QA 

and 

(6.10.2) F2<guQ(/ * g) = F2<guQ/+F2<8uQ0 : F2<8uQA5 F2®AQA. 

Thus, the next result will allow us to compute boundary homomorphisms 
in various chain complexes. 
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Lemma 6.11: Let A € sUA be almost-free. Then if 

£; AS —• As-i A As-x 

is the map of (6.7), we have 
1.) {di A d;)£ = £di+i, i > 1; and 
2.) (d0Ado)£ = [£do]*[№]. 
Proof: These are simple consequences of the simplicial identities; we 

will do 2.) 
It is sufficient to show that for 

£ : AS —• As-i ® A s-1 

we have the equation 

(d0®d0)£ = [^o]*[^x]. 

This is because the map 

HomuA(AS, As-2 A A5_2) —• HomuA(AS, As_2 ® As_2) 

is an injection. However, 

f = [(d0®d0)^]*[V>d0] 

where the coproducts ipa and ips-i are abbreviated to ^. Now, since A is 
almost-free, the coproduct if; commutes with di for i > 1: 

(dz- ® d;)^ = i > 1. 

Thus we may compute, using the facts that HomyA(AS, A) is an F2-vector 
space and that dod± = dodo: 

[(do ® d0)£] * [f dx] = [(d0 ® d0)V] * [(do ® d0V>do] * [(d0 ® d0)2V>] * [V'dodo] 
= [(d0 ® d0)^d0] * [tl>d0do] 
= £d0. 
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The result follows. 

We now use £ to define a product in the cohomology of a simplicial 
unstable algebra. Let A 6 sUA. Since A is weakly equivalent to an almost-
free object, we may assume that A is almost-free. Applying Lemma 6.9, we 
know that £ induces maps of degree —1: 

(6.12.1) Q£:QA^ QA® QA 

and 

(6.12.2) F2 ®A f : F2 ®A QA F2 ®A QA ® F2 ®A QA. 

By (6.10) and Lemma 6.11, we know that these are maps of chain complexes. 
We can use the second to define a product 

[ > ] : HQAA ® HQAA ~* HOA+LA 

as the map induced by the map of cochain complexes 

(F2(guQA)*®(F2<guQA)* — {F2®AQA®F2®AQAY¥2^4 F12A \F2®AQA)\ 

The first map is the canonical homomorphism from V* ® W* —» (V (g) W)* 
and we use the Eilenberg-Zilber Theorem to give a natural isomorphism 

H*[(F2 ®A QA)* ® (F2 <gu QA)*] ^ tf^A <g> ^ ^ A . 

Notice that if A = H*Z for some F2-like cosimplicial space, then 

7r.Z= (F2 0.4 QA)* 

and, thus, in light of 6.8, this product agrees with the one given by Theorem 
6.3. 

The following is obvious. 

Proposition 6.13: The product 

[, ]:H*QAA®H«QAA^ Hgf+1A 
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is bilinear, commutative, and adds internal degree. 

More importantly, perhaps, the product is commutative on the chain 
level. We record this fact in the following result. If V is any vector space, 
let T : V ® V —> V ® V be the switch map T(u ® v) = v ® u. The next 
result follows from the definitions. 

Lemma 6.14: We have equality between the following morphisms: 

Q£ = TQ£ : QA —• QA ® QA 

and 

F2 ®̂ 4 Q£ = TF2 <g)A Q£ : F2 ®^ QA -+ F2 ®^ ® F2 ®^ QA. 

7. Operations in Quillen Cohomology 
Whenever one has a cohomology theory with a product that is commutative 
on the cochain level, then one has naturally defined Steenrod or divided 
product operations. Hence the results of the last section will yield "divided 
Whitehead squares." The purpose of this section is to define and explore 
the properties of these operations. In particular, we will note at the end 
of the section that these operations do not, in general, commute with the 
differentials in the Bousfield-Kan spectral sequence. 

We will prove the following result. 
Theorem 7.1: Let A £ sUA be a simplicial unstable algebra. Then 

there are natural homomorphisms 

P* :Н%ЛА^ H%+Î+1A 

so that 
1.) there is an unstable condition: 

P\x) = 0 if i<2 or i > q 

and 
Pq(x) = [x,x] 
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where [ , ] is the product of the previous section; 

2.) for all y £ HQAA and all i, there is a Cartan Formula: 

[x,Pi(y)]=0; 

3.) there axe Adem Relations for j > 2i: 
j+i-2 pjp* = J2 (r2*"J"71>)pt"+i—P*. 

s=j-i+l \ S 1 s 

Remark: If an element x £ HQAH*Z with 5 = 0 or 1 survives to Eoo 
in the homotopy spectral sequence and detects an element ot £ -K*Tot{Z)2 
it is not immediately apparent what detects the Whitehead product [a, a], 
since [x,x] = Ps(x) = 0. This will be the case, for example, if Z = 5n 
regarded as a constant cosimplicial space and 

i £ [H^AH*Sn]n ^ Ext°UA(H*Sn,H*Sn) 

detects the identity map. Since [i, i] = 0 in the E2 term, the Whitehead 
product of the identity 1 £ 7rn5n with itself must be detected by an element 
in Ext^A(H*Sn,H*St) with t - s = 2n - 1 and s > 2. If n ^ 2k - 1 for 
some fc, then it is known that 5 = 2. 

There are several ways to define the operations P2. The classical way 
is to appeal to the following lemma. If V is a simplicial F2-vector space, 
let C(V) be the chain complex obtained by setting C(V)n = Vn and d = 
52r=o di ^ et T denote any switch map interchanging factors. 

Lemma 7.2: Let V and W be simplicial F2-vector spaces. Then there 
are higher Eilenberg-Zilber maps: 

Di : C(V ® W) -> [C(V) ® C(W))n+i 

so that 
1.) DQ is a chain map and a chain equivalence; and 
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2.) for i > 1 
dD¿+ Did = A - i + TDi-iT. 

These axe standaxd and essentially unique. See [10]. 
We use these maps to define the operations. First assume A € slAA 

almost-free, 

F2 ®A Q€ : F2 <8>A QA —• F2 ®A QA ® F2 <gu QA 

be the chain coproduct of degree —1 defined in (6.12.1). Define a function 

S* : (F2 ®A QA)* -> (F2 ®A QA)* 

of degree i + 1 by setting, for a of degree q 

(7.3) S¿(<*) = (F2 <8U Q0* -̂í(<* ® a) + (F2 (gu Q0*^í-¿+i(« ®dA 

Here we let D,- = 0 if z < 0. The one easily checks, using Lemma 6.14, that 

(7.3.1) aSl'(a) = (F2 <gu Q0*D*q+i-i(da ® 5a) = 5*(5a). 

Let 
P* = TT* <?< : HQAA - HQAA. 

If A G sZY>t is not almost-free, choose an acyclic fibration X —> A and define 
the operations in HQAX = HQAA. 

Since Do is the Eilenberg-Zilber chain equivalence, the following is clear 

Pq{x) = [x9x]. 

This is paxt of Theorem 7.1.1. 
Now, in order to establish the properties of the operations and to prove 

certain other facts about the structure of the functor HQA( ) , we establish 
the connection between this cohomology of Simplicia! unstable algebras and 
the ordinary André-Quillen cohomology of simplicial commutative algebras 
over a field. We will use only the field F2, but much of what say here will 
hold at other primes as well. 
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Let A be the category of graded, commutative, supplemented F2 alge
bras and let sA be the associated simplicial category. There is a forgetful 
functor IAA —» A. As with slAA, sA is a closed model category with a 
distinguished sub-catgeory of abelian objects and, hence, there is a notion 
of homology and cohomology. This goes back to Andre [1] and Quillen [18]. 

To be specific, we first say that weak equivalences, fibrations, and cofi-
brations are defined exactly as they were for sUA in Section 2. In particular, 
we have a notion of almost-free objects defined using the symmetric algebra 
functor 

S : nF2 —• A 
left adjoint to the augmentation ideal functor J. Then for A 6 A, we obtain 
an augmented simplicial object 

S.A —• A 

from the cotriple S = S o I. Then, as in (2.5), we obtain, for A G sA, an 
augmented bisimplicial algebra 

S. .A — A 

and, if we set S. A = diagS.^.A, then we have an acyclic fibration 

S.A —• A 

in sA with S.A almost-free and, hence, cofibrant in sA. This is all gone 
into in detail in [19] and [20]. Therefore, we define 

(7.4) H?A = ir+QS.A 

and 
H%A = ic*(QS.Ay. 

The appropriate analog of 2.7 implies that these are well-defined functors 
of A, independent of the choice of S.A. Indeed, we may replace the acyclic 
fibration S.A A by any acyclic fibration X —> A with X cofibrant in sA. 
HQ( ) supports a great deal of structure; indeed, HQ is a functor from sA 
to the category W defined in the following definition. 
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Definition 7.5: Let W be the subcategory of bigraded F2-vector 
spaces defined as follows: W = {W*} is an object in W if 

1.) there is a commutative bilinear product 

[ , ] : Wp ® Wq -> Wp^q+1 

that adds internal degree and satisfies the Jacobi identity; 
2.) there are homomorphisms 

p* : Wq —• Wq+i+1 

doubling internal degree, such that if i < 2 or i > q 

P{ = 0 

and if i = q 
Pl(x) = [x9x] 

and if j > 2i, then 

pi pi _ J^ (2S " 3; 7 1>\pi+i-5p5 
s=j—i+l ^ S * ' 

and for all y and i 
[x,F*(y)] = 0; 

3.) there is a quadratic operation 

P : W° -» W1 

doubling internal degree and so that for all 

x,y E W° 
/3(x + y) = (3(x) + (3(y) + [x, y] 

and for all x 6 W and y € W° 

[P(y),x] = [y, [y,x]]. 
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A morphism in W preserves this structure. 

Theorem 7.6: [14] Andre-Quillen cohomology defines a functor 

HQ : sA —• W. 

The product and operations in HQ( ) are defined in exactly the same 
fashion as the product and operations in HQA( ). In fact, we note the 
following fact: if A G sUA is almost-free, then under the forgetful functor 
sUA —* sA, A passes to an almost-free object in sA. Thus we have, by the 
remarks after the definition of H®, that 

TT*QA = HfA 

and the quotient map 
QA -> F2 <8U QA 

induces a map 

(7.7) HfA -> i f ^ A . 

This fact will be exploited in the following sections. 
Now, however, we wish to exploit Theorem 7.6. To do this, we define 

a functor IAA —+ A that kills all Steenrod operations except possibly the 
squaring (or top) operation. Let A G IAA. Define 

J(A) C A 

to be the ideal generated by all elements of the form 

Sq\x) = Sq*1 •--Sqt'ix) 

so that 
e(7) = z'x — ¿2 is < deg(x) 

and Sq1 in the augmentation ideal of A. J(A) is a functor of A and we may 
set 

0A = A/J(A). 
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Notice that J(A) is not necessarily invariant under the action of the Steen-
rod algebra; hence 0 defines a functor 0 : UA —* A, but not a functor to 
UA. 

Let G : nF2 —» UA and S : nF2 —* A be the left adjoints to the 
augmentation ideal functors. The next result describes a few properties of 
the functor 0. 

Proposition 7.8:1.) For V G nF2 there is a natural isomorphism 

QG(V) 9* S(V); 

2.) for V G nF2, there is a natural isomorphism 

F2 <gu QG(V) 9£ QOG(V); 

3.) for A 6 sUA almost-free 

HQQA & H*QAA; 

4.) if A : UA x UA —• UA is the smash product defined in the previous 
section, then for all V, W G nF2 there is a ntural isomorphism 

S(G(V) A G(W)) ~ eG(V) A BG(W). 

Proof: Parts 1.) and 2.) are obvious. For part 3.), if A G sUA is 
almost-free, then part 1.) implies that QA is almost-free in sA. Hence 

H*QAA^TT*(F2 <gu QA)* 
Si TT*(Q0A)* by part 2.) 
Si HQQA 

For part 4.), the definition of A implies that the following isomorphisms are 
sufficient to imply the result: 

e(G(V) <g> G(W)) S QG(V © W) 
S 5(V © by part 1.) 
Si S(V) ® S(W) s GG(F) ® GG(W) 
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and 

e(G(V) xp2 G(W)) 9é SG(V) xF2 BG(W) 

by direct calculation. The result now follows. 
We can now prove the result stated at the beginning of the section. 

Proof of Theorem 7.1: We may assume that A € sUA is almost-free. 
Let 

£ : A A A A 
be the comultiplication map used to define the product and operations in 
H*QAA. Then 

@f : GA —• 0(A A A) = ©A A ©A 

is used to define the product and coproduct in HQOA. Here we use Proposi-
ton 7.8.4. The result now follows from Theorem 7.6 and Proposition 7.8.3. 

A similar argument now proves the following result, independent of the 
work of Bousfield and Kan. 

Proposition 7.9: The product 

[ , ] : HQAA <g> HQAA - HQAA 

satisfies the Jacobi identity: for all x, y, z E HQA-A 

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. 

Now let / : A —> B be morphism in sUA and 

d : HQAA - Hg*M(f) 

the boundary map in the long exact sequence of the resulting cofibration 
sequence, as in Proposition 2.11. Since one the f the focuses of this paper 
has been on how this map behaves with respect to the homotopy spectral 
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sequence, we would like to know how it behaves with respect to the product 
and operations. 

Lemma 7.10:1.) Let x E HQAA. Then, for all i 

dP\x) = P\dx). 

2.) For all x E H*QAA and y E H*QAM(f) 

[dx,y] = 0. 

Proof: The map d is the connecting homomorphism obtained from a 
short exact sequence of cochain complexes. See 2.11. Part 1.) follows from 
investigating formula (7.3.1) and part 2.) follows from the naturality of the 
homomorphism Do of Lemma 7.2. 

Corollary 7.11: Let A E slAA and let EA be the suspension of A. 
Then for all x, y E H^^A 

P\x) = 0 for i > deg(x) 

and 
[x,y] = 0. 

Proof: This follows from the fact that 

d : HSQAA - H&ZA 

is an isomorphism and the previous lemma. 

To obtain some initial understanding of how the operations behave 
in the homotopy spectral sequence, we consider the universal examples of 
section 3 

H*QAK(p,q)+^Tr*S*-P 
where the sphere is completed at 2 and we assume that q — p > 1. Let 
i = LP,Q E HQAK(P, g)+ be the universal class. If p = 1, the Theorem 7.1.1 
implies that 

P\t) = 0 

181 



GOERSS 

for all i. Thus, if 
jeHrQAw-4<{\,q)+ 

is the suspension of this class, Lemma 7.10 implies that 

(7.12) P\j) = 0 

for all i. By considering the results of section 4, we see that there is spectral 
sequence 

i7^Ep-1/^(l,g)+ =• TC+W^S*-1. 

Now, in the homotopy category associated to sUA, let 
e:E*-1Jîr(l,ç)+-*Jr(p,g)+ 

corepresent j G HQ^YF 1 K(l,q)+. The results of sections 4 and 5 yield a 
diagram of spectral sequences which is long exact on the E2 terms 
(7-13) 

- H*QAM(e) -U H*QAK(p,q)+ H*QA?,^ K{l,q)+ -

7Г.С(р- 1) 7Г.С(р- 1) 7Г.С(р +7Г.СP-1 S v-1 

where -E7p_i is the suspension homomorphism and C(p— 1) is the homotopy 
fiber. Now (7.12) implies that 

e*P\ip,q) = 0 

for all i; hence, for each i, 2 < i < p there must exist a non-zero class 

Vi € [HPQ+Ai+1M(e)hq 
so that 

f(yi) = p*(*M) 
where / is the map in (7.13). We now investigate the behavior of the class 
yi in the diagram of spectral sequences induced by the Hurewicz homomor
phism 

H*QAM{e) Tr.C(p-l) 
I h* I h 

7r*M(e)* =• H*C(p - 1) 
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where the lower spectral sequence is the homology spectral sequence of 
section 3. In fact, we will prove the following result. It is known from the 
calculations of [14, Appendix B] that /i*y* ̂  0. 

Proposition 7.14: The class h*yi survives to E^ in the homology 
spectral sequence 

7r*M(e)* HmC (p-l) 
and detects the unique non-zero class in 

H2q-(p+i+i) C(p - 1). 

What is more, we will identify this non-zero class and show that it 
often cannot be in the image of the Hurewicz homomorphism 

h:7c*C(p-l)-+H+ C(p-l). 

We will thus conclude the following corollary: 

Corollary 7.15: If p > 3 and q — p is an odd number, then yp-i does 
not survive to EQQ in the homotopy spectral sequence 

H*QAM(e)^7t*C(p-l). 

Then we will use the calculations of the next two sections to prove that 
a similar statement can actually be made about Pl(iPyq)] in other words, 
since ip>q survives to in the spectral sequence 

H*QAK(p,g)+^^S^ q-p 

and detects the identity, the operations Pl don't necessarily commute with 
the differentials. 

The computation necessary for proving Proposition 7.14, begins with 
a familiar, but disguised calculation: most homotopy theorists have used 
the Eilenberg-Moore spectral sequence to compute H*W(p — 1) and the 
same computation — bigraded, if you will — is used to compute 7r*M(e)*. 
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First we compute 7r*Ep 1K(1, This is done by double induction on the 
succesive spectral sequences, 0 < m < p — 1, 

Tor-*£m*(i,<z)+ (F2,F2) 7r*Sm+1/i:(l,g)+ jm™4"̂ *-1. 

Both these spectral sequences must collpase for every m for vector space 
dimension reasons. Here we use the fact that we know iJ*f2m+1 Sq~~x. Next 
we investigate the succesive spectral sequences 

Tor7r*^p'9>+(F2,F2) 7r*M(e) H*C(p- 1) 

and conclude from our knowledge of H*W(p — 1) that both these spectral 
sequences must collapse. 

In particular, we can make the following conclusions. If 

RP™ = RPm/RPn"1 

is the stunted real projective space with cells in dimensions n through m, 
then we know that there is map 

(7.16) E ^ - ^ R P ^ J W(p - 1) 

and for 2q — 2p — 1 < k < 2q — p — 3 

HkC(p-1)& F2 

generated by the image of the non-zero class in jyJbE^-1RP2i;. Thus, 
the map of (7.14) induces an isomorphism on homotopy groups in a range 
of degrees. 

Now, if 2 < i < p, then 2q - 2p- 1 < 2q - (p+ i + 1) < 2q - p - 3 and 
there is a unique class, 2 < i < p, 

Xi e np+i+1M(e)*2q 

that detects the non-zero class in 

i?2<z_(p+i+i)W(p- 1) 
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in the homology spectral sequence. Finally, in the diagram 
H*QAM(e) M H*QAK(p,q)+ 

I h* 
7r*M(e)* 

there is a class y, € HQAM(e) so that 

f(yi) = P\cp,q) € [HpQ+Ai+1K(p,q)+]2q 
and 

h*yi = Xi. 
The first statement was asserted and proved above, and the second state
ment follows from the fact (proved in [14]) that h*yi ^ 0. This completes 
the proof of Proposition 7.14. 

Proof of Corollary 7.15: Notice that the map 
E^-p-iRP*:;; -+ W(p - 1) 

which is an equivalence in a range of degrees k < 2q — p — 3, demonstrates 
that very often the non-zero class in HkW(p— 1), 2p— 2p— 1 < k < 2q—p—S 
is not in the image of the Hurewicz map. In particular, if p > 3 and q — p 
is odd, and if z G H2^q^p^"1C(p — 1) is the non-zero class, then Sq1^ ̂  0. 
Thus, the non-zero class in H2(q-p)C(p — 1) is not in the image of the 
Hurewicz homomorphism. Hence there exists an r so that dryv-\ ^ 0. 

In fact, we make the following remark, which is perhaps more philoso
phy than mathematics. If we regard 

H*QAK(p,q)+^Tr.S«-r 
as a desuspension spectral sequence — and we will explore this point more 
in the next few sections — we could say that the elements Pl(tp,q) are the 
"cells" of E9""p-1RP^Zp in Toda's desuspension long exact sequence 

• *n(Z*-''-1BPqqZ1p) - TTn^-P^TTn+p-!^-1 - • • • 
valid for n < 2p — p — 3. This sequence is derived from the fiber sequence 
of (7.13) using the inclusion of (7.16). 
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8. Miller's Composite Functor Spectral Sequence 
Because the functor F 2 ®A Q{ ) — the main object of study in this paper 
— can be written as the composite functor 

F2®AQ{ ) = F2<gu( )OQ( ) 

it is no surpise that there is a composite functor spectral sequence converg
ing to HQAA for A £ sUA. The purpose of this section is to explore this 
spectral sequence — due, in principal, to Haynes Miller — and to prepare 
the way for the computations of the next section. 

If A G sUA, we may define H^A and HQA — the homology and 
cohomology based on the indécomposables functor — in a manner analogous 
to H?AA and H*QAA. Let 

p : X —> A 

be an acyclic fibration in sUA with X almost-free. Then we let 

HfA = 7T+QX 

and 

(8.1) H%A = n*(QX)*. 

Actually, we defined H^A and HQA in the previous section, and we 
must show that this new defintion agrees with this one. This is proved by 
Miller in [19, Section 2]. In fact, the forgetful functor slAA —> s A carries 
almost-free objects to almost-free objects, and the appropriate analog of 
Lemma 2.7 for the category s A implies that the two definitions agree with 
each other. 

So let X —» A be an acyclic fibration with X almost-free in sUA. Since 
Xm is an unstable algebra for each m, QXm is an unstable A module and, 
hence, H^A is an unstable A module for each m. More is true, however. 
Since for x G X1^, Sqn(or) = x2, we actually have that HQA is a suspension 
in the category of unstable A modules. We now give this category a name. 
Let IAQ Ç U be the full sub-catgeory specified by the condition that M G UQ 
if an only if for all x G Mn, 

Sq*x = 0 for i > n. 
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The suspension functor defines an isomorphism of categories 
(8.2) E :U-=-+UQ. 

The above remarks now imply that we have a functor for each m 

(8.3) H%( ):sUA-+UQ. 

Because of the isomorphism of categories given in 8.2, homological algebra 
in UQ is basically the same as homological algebra in hi. Indeed, if M £ ZYo, 
then there is a natural isomorphism 

(8.4) Extiio{M^tV2) ^x^(S-1M,S1-1F2) 

for all s and t. To see this, note that the if P : nF2 —* U is left adjoint to 
the forgetful functor F, the composite 

P = PoF : U U 

forms a cotriple and 

Extsu(N,E*F2) S 7rsHomu(P(N),Y:iF2). 

Furthermore, 
P' = E o P o E-1 : U0 U0 

forms a cotriple on Uo and 
£a^o(M, E*F2) <* 7r5ifom^0(P,(M),EtF2). 

A simple comparison of the two defintions, using the fact that E is exact, 
now yields the equation (8.4) above. 

Let us write Homuo(M, F2) and Exty^M, F2) for the graded vector 
spaces with, in degree t, 

HomUo{M,F2)t = Homuo(M, E*F2) 

and 
Ext'Uo (M, F2)T = ExtsUo (M, E*F2). 

187 



GOERSS 

The following is basically the spectral sequence of Miller's, found in section 
2 of [19]. 

Theorem 8.5: For A G sUA^ there is a spectral sequence of graded 
vector spaces 

Ex%o(H?A,F2) ^Hg?A. 
Proof: Our proof is no different than Miller's, or the proof given for 

any composite functor spectral sequence. We may assume that A is amost 
free in sUA. Form the augmented bi-cosimplicial vector space 

(8.6) A : HomUo (QAq, F2) C™ = HomUo (P'pQAq, F2) 

and note that 

HomUo(QAq,F2) & HomnF2(F2 ®A QAq,F2) ̂  (F2 ®A QAq)\ 

Filtering C' ' by degree in we obtain a spectral sequence with 

E2,Q = HomUo(QAq,F2), if p= 0; 
0, if p > 0. 

This is because QAm is projective in IAQ. Here we use the fact that, since A 
is almost-free, Am = G(V) for some graded vector space V and QG(V) = 
Pf(V). Therefore, the spectral sequence has the form 

E2,Q — HqQAA, ifp = 0; 
0, if p > 0. 

Thus A, as in (8.6), induces an isomorphism 

A* : H^AA^ H*C'\ 

Therefore, filtering C'' by degree in p, we obtain a spectral sequence abut
ting to HQAA with 

E™ Si HomUO{PpH?A,F2). 
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This is because 
HomUo{P'{ ),F2) 

is an exact functor. Hence 

E™ ~ ExtpUo(H?A,F2). 

This finishes the proof. 

Notice that the differentials in this spectral sequence are of the form 

dr : E™ -* E^™-7-*1. 

Before proceeding, let us do an example. 

Example 8.7: Let us use this spectral sequence to begin to compute 

Ext*UA(H*Sn,H*St). 

The spectral sequence in this case reads 

ExtpUo(HfH*Sn,Ttt¥2) [H£?H*Sn]t ^ Extp+£(H*Sn,H*St) 

where H*Sn is regarded as a constant simplicial algebra in sUA. H^H*Sn 
has been known for years (see [4]): 

H®H*Sn ^ F2 

concentrated in degree ra, 

H®H*Sn ^ F2 

concentrated in degree 2n, and 

HfH*Sn = 0 if q > 2. 

Thus the spectral sequence becomes a long exact sequence 

> EÇ-^Jl+E^0 -> Extpu+2(H*Sn,H*Sn) — E**1'1 • • -
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which, using the relationship between ExtUo( , ) and Extu( , ) described 
above, yields a long exact sequence 

-> Exl fr1^-1**, f2 Ef-1F2)^S^+2(Eri-1F2, E ^ F a ) 
-+ Extffi(H*SN,H*SI) 
— J5x^+1(E2ri-1F2,E<-1F2)-^ 

This is easily seen to be the algebraic EHP sequence, much studied by 
Mahowald and others, perhaps most exhaustively in [9]. 

Next notice that there is an edge homomorphism 

(8.8) e : HQQAA — JE°" C HomUo (H?AA, F2) C HQQA. 

Since 
flomWo (QA, F2) ^ HomnF2 (F2 <gu QA, F2) 

one easily sees that this edge homomorphism is given by the dual of the 
map 

H?A -+ HfAA 

induced by the quotient map 

QA -+ F2 0^ QA. 

Now we know that HQA and HQAA support a great deal of structure, 
including the product and operations as defined in the previous two sections. 
Furthermore, we will know that the edge homomorphism of (8.8) preserves 
the product and operations — see 8.14 below. Thus, it makes sense that the 
product and operations in HQA should induce a product and operations 
in the composite functor spectral sequence and these should abut to the 
product and operations in HQAA. In preparation for the computations of 
the next section, we show that this is in fact the case. 

We will use the techniques of Singer [21], modified slightly. The mod
ification is necessary, as our product is non-associative and induced by a 
chain map of degree —1, instead of degree 0. Let 

C = C> = HomUo(P!QA.,F2) 
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be the bi-cosimplicial vector space used to define the spectral sequence in 
(8.5). In order to apply Singer's line of argument, we must define a product 

C : C ' ® C ' ^C"* 

so that, if A is the augmentation of (8.5), then there is a commutative 
diagram 

(F2 <8U QA)* ® (F2 ®A QA)* YOY C ® C 
(8.9) 1? It" 

(F2 ®A QA)* -±+ C 

Here £' = (F2 ® )* where F2 ® Q£ is as in Lemma 6.14. But this is simpy 
done. Let P : 14. —-> IA be the cotriple used above to define Extu> Then, for 
M, N £U, there is a canonical map 

P(M ® iV) —• P(M) ® P(N). 

Since the cotriple PF :UQ -+ UQ is defined by the equations P' = EoPoE"1, 
we can then define, for A G slAA almost-free, a map 

C : P'.QA -+ P'QA ® P'QA 

by the composition 

P'PQAQ ̂ Pq(Q(Aq-1 A Aq-!)) 
-* P'P{QAQ-X®QAQ-X) 
-> P;QAq.i ® ^ Q ^ - i 

where f is the as in (6.7) and we use (6.7) for the second map. Then we 
apply the functor Homu0{ , F2) to obtain £" satisfying the requirements of 
(8.9). 

The following lemma is needed to use Singer's results. Let V be a 
bisimplicial vector space — for example, we could let V = P[QA or P[QA® 
P[QA, where we take the degree-wise tensor product. Let 

dh : Vp,q - Vp.lA 
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and 
dv : Vp,q - Vp^ 

be the horizontal and vertical boundary operators obtained by taking an 
appropriate sum of face maps. Let £ be as above. Then 

C : (P!QA)p,q -> (P!QA ® P'.QA)^. 

Lemma 8.11: Q commutes with the horizontal and vertical boundary 
operators: 

dht = Cdh and dvt = Cdv-

Proof: C actually commutes with the horizontal face maps, by the 
naturality of the construction of (8.10). That £ commutes with vertical 
boundary operator is a consequence of 6.11. 

The following results are now a direct consequence of Singer's work. 
Let {ERA} denote Miller's composite functor spectral sequence. 

Proposition 8.11: For 2 < r < oo, there is a commutative, bilinear 
product 

[ , ] : E™A ® EÍ"' A -* E^ESZP'^Q,+1A 

so that 1.) dr[x,y] = [dra:,î/] + [ar,dry]: 
2.) the product of ER+\A is induced from the product on ERA: 
3.) the product on E^A is induced by the product on ERA, with r < oo 

and is induced by the product on HQAA. 

More informally, we can say that there is a diagram of spectral se
quences 

Extlío{H^A,F2)®Ext{ío{H^AiF2) =• HgfA ® H^'A 
I [ , ] i [ . ] 

Ext%*'(H?+q,+1A,F2) Hgf+*+'+1A 
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There axe also operations. Some of these are only defined up to in
determinacy, which we now define. Let {ErA\ be the composite functor 
spectral sequence. Define 

B™A C E™A, s>r 

to be the the vector space of elements that survive to Ep,qA and have zero 
residue class in Ep>qA. An element y G EpqA is defined up to indeterminacy 
s if y is a coset representative for a particular element in EpqA/Bp'qA. 

Proposition 8.13: For 2 < r < oo, there are operations 

P2 : E?'qA E*'q+i+1A, 0<i<q 

and operations of indeterminacy 2r — 2 

P{ : E™A Ep+i~q,2q*lA, q<i<P + q 

so that 
1.) Pp+q(x) = [x,x] modulo indeterminacy; 
2.) if dr(x) = y then 

drP\x) = P\y), 0 < % < q - r + 1; 
d i - ^ r - ^ i x ) p i x = P\y), q-r + l<i<q; 

d2r-iPi{y) = P\y), q<i<P + q 
modulo appropriate indeterminacy; 

3.) the operations on ErA are determined by the operations on ErtA 
for r' < r < oo, up to indeterminacy; and 

4.) the operations on EooA are determined by the operations 

P* : H«QAA - H&A. 

In other words, for 0 < i < q there is a diagram of spectral sequences 
ExtpUo(H?A,F2) =• daHgfA 

Ex%o(H^+1A,F2) Hqa^+1A 
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and a similar diagram for q < i < p + q. 
Remarks: 1.) Notice that there is never any indeterminacy at E2A. 

Also notice that Pl(x) € ERA determines a well-defined element in E2R-\A. 
Hence Pl : E^A —• E^A is well-defined. 

2.) In 8.13.2 it is assumed that Pl(x), i > q — r + 1 survives to an 
appropriate ESA so that the statements make sense. 

Singer's work implies the following result about the edge homomor-
phism 

e : H*QAA - HQA 
of (8.8). 

Proposition 8.14: The edge homomorphism commutes with products 
and operations: 

e[x,y] = [e(x),e(y)] 
and 

eP\x) = P\e(x)). 

We now turn to understanding the operations at EiA: 
P' : Extlo (H?A, £*F2) -.• Ext^ (H?+i+1A, F2), 0 < i < q. 

For this we need to understand how the operations commute with the action 
of the Steenrod algebra. Notice that for every g, HQA is a right module over 
the Steenrod algebra; that is, the is an action of the Steenrod operations 

(.)Sq* : [HQQA)N - [H&AU-J. 

The following lemma relates the Pl to the SqJ. 

Proposition 8.15: For A G sUA and x,|/G HQA 

[x,y]SqJ'= Y, \*$tf,V&?\ 
a+b=j 

Pl'(x)Sq2i = P*'(xSqJ') 
Pi(x)Sq2j+1 = 0. 
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Proof: We return to the definition of the operations given in section 
7. Let x G F Q A be the residue class of the the cycle a G QA*. Then P%(x) 
is the residue class of ^D*_{(a <g) or), where we write £' for (F2 ® QE)* 
The naturality of f and the higher Eilenberg-Zilber maps, and the Cartan 
formula for Steenrod operations now imply that 

[CD^iia ® e*)]SqJ' = CD^i ® «Sq>'~ ® «Sq>'~f-aa) 
0<a<i 

= rZ>*_i(aSq-'/2 ® «Sqi/2) 

+ a r ^ - * + i ( S «Sqa(8)«SqJ'-a) 
°<a<i/2 

where Sq^2 = 0 is j if odd. The formula involving the product is proved 
the same way, using DQ. 

To apply this, we dualize the operations P% and obtain operations 
acting on the right 

(O-P* : H°.i+1A - HfA 
that halve the internal degree in the sense that they are identically zero 
on elements of odd internal degree. Interpreting Proposition 8.15 in this 
context, we have 

(8.16) (xSq2i)F* = Sq^xP*). 

Thus (-)-P1 is not quite a morphism in UQ. This can be rectified as follows. 
Let 

be the doubling functor. That is, for M EU 

with the Steenrod algebra action given by 

Sq2'>(a:) = <j>(Scj(x)) 
Sq2j+1cfi(x) = 0 
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where <f> is the isomorphism between (<&M)2m and Mm. Notice that <& 
restricts to a functor $ : UQ —> UQ . 

Then, equation (8.16) implies that (-)-P2 induces a homomorphism in 
UQ 

Pi : H^i+1A - ®H®A 
and, hence, a natural map 

p\ : ExtpUo($H?A,Z2iF2) - ^ o ( ^ + i + 1 ^ , £2<F2). 
We will define a canonical map, for M G UQ 

Sq0 : ̂ o ( M , E ' F 2 ) - ExtpUo{$M,Y,2tF2) 
and then appeal to Singer's work to claim that 

P* = tf oSqo 
where P% is as in (8.15). 

The map Sq0 is a familiar one to those working with stable Ext — 
there it is also known as Sq0. Let M G UQ. The natural map of graded 
vaector spaces 

M -» P'M 
adjoint to the identity PrM —• PfM determines a map of vector spaces 

$M -> <&P'M 
and, hence, a natural morphism in UQ 

P'$M $P'M. 
This, in turn, determines a map of simplicial objects in UQ 

P'$M $P'M. 
Since $ is an exact functor, we get a composite 

Ext^M, £'F2) S 7rpHomu0(^P!M^2tF2) 
(8.17) -> 7rpHomUo(P!$M, E2*F2) 

^^o($M,E2<F2) . 
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This composite is Sq0. The following is now immediately obvious from 
[Proposition 5.1 of 21]. 

Proposition 8.18: There is an equality of homomorphisms 

P< = p\ O Sqo : ExtpUo (H?A, £<F2) - ExtpUo (H?+i+1A, £2<F2) 

for 0 < i < q. 

9. The cohomology of abelian objects 
In this section we make some calculations with Miller's spectral sequence, 
including a computation — in terms of unstable Ext groups — of the E2 
term of the homotopy spectral sequence associated to the universal exam
ples of section 3. 

We begin by defining abelian obejects and recalling the Hilton-Milnor 
Theorem in the category sUA. Let A, B £ slAA* Then their tensor product 
A (g) B is the categorical coproduct of A and i?; their product A Xp2 B was 
defined in section 6. A £ sUA is an abelian group object if 

HomsuA{B,A) 

is an abelian group for all B £ sUA. This turns out to be equivalent to the 
following: A is an abelian group object if there is a morphism 

fi : A Xf2 A —* A 

in stiA and a commutative diagram 

A® A f A Xf2 A 

A m A 

where f(a (g) 6) = (arj€(b), rje(a)b) and m is the algebra multiplication. One 
easily sees that this implies that 

A*±M+ 
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where M G SUQ is a simplicial object in the category UQ and 

( )+ : sUo —• sUA 

is the functor that sets, for N G sU0 

N+ = N 0 F2 

with F2 the unit, iV the augmentation ideal and N2 = 0. Thus, in particu
lar, we have for an abelian object A = M+ 

HomsuA(B, A) ^ HomsUo(QB,M) 

where B is the indécomposables functor. Hence the functors ( )+ : SIAQ —> 
slAA and Q : slAA —» sZVo form an adjoint pair. Finally, notice that for 
Mi,M2 G sZ4 

(Mi)+ xF2 (Af2)+ S (Mi x M2)+. 
The Hilton-Milnor Theorem discusses the homotopy type of 

E[(Afi)+ xF2 (M2)+] ^ S [(Mi x M2)+] 

in sUA, where S : sUA — sU A is the suspension functor of section 3. 
We need some further notation. The category sUo is a category of mod

ules and, as such, is equivalent to a category of chain complexes. Therefore, 
it is easy to construct a suspension functor 

a : SUQ —> SUQ 

so that there is a natural isomorphism 

7rnaM = 
7rn_iM; if n > 1; 
0; if n = 0. 

Now let L be the free algebra on two elements xi,#2. Let B be the 
Hall basis for L [22, p. 512]. Then b G B is an iterated Lie product in the 
elements x\ and x2. Let 

¿(6) = the number of appearances of x\ in b 
j(b) = the number of appearances of x2 in b 
£(b) = i(b)+j(b) 
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and if Mi, M2 G sUA, define M(b) G sUA by 

(9.1) M(b) = ^6>-1M®i(6) (g) M®i(b) 

where N®k means the tensor product of N with itself k times. 

Theorem 9.2 (Hilton-Milnor) [12]: Let MX and M2 be objects in SUQ. 
Then there is a weak equivalence in sUA 

S[(Mx)+ xF2 (M2)+] -> ®fc€iE[M(6)+]. 

Remarks 9.3.1) The relationship to the usual Hilton-Milnor Theorem 
for spaces is given by the following: if X and Y are spaces, then H*Y,X = 
(H*ZX)+ and 

iTEX V £Y S H* MX° + xF2 (iT£y)+. 

Then, regarding i/*£X V Ey as a constant simplicial algebra, we obtain a 
simplicial unstable algebra 

E(iT EX V Ey) 

and, by example 4.8, a spectral sequence 

H^E(F*SX V Ey) 7r*fi(EX V Ey). 

On the one hand 
?r+n(EJ V Ey). 

is computed using the classical Hilton-Milnor Theorem, and on the other 
hand 

i f ^ E ^ * EX V Ey) 
is computed using Theorem 9.2 and the next remark. 

9.3.2) Notice that if A, B G sUA, then there is a natural isomorphism 

F2 <8U Q(A ® S) ^ F2 <8U 0 F2 <8u QB 
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and, hence, a natural isomorphism 

H*QAA ® B 9* H*QAA x H*QAB. 

Thus there is a sequence of isomorphisms 

H*QAWI)+ xF2 (M2)+] ~ ff*+1E[(M1)+ xf2 (M2)+] 

and 
iy^E[(M!)+ xF2 (M2)+] = xbeLH*QAi:M(b)+ 

and 
j?a!41sM(6)+^H^M(6)+. 

In particular, this serves to compute 

ExtUA(H*?:XVXY,F2) 

as a product of JHQ^M(6)+ where, in sUo 
M(b) = ^(6)"1(5*EX)®i(6) <g> (H*XY)®JW 

is sUo. A priori, one might have expected this Ext group to split as a 
product of Ext groups. This turns out not to be the case — HQA turns oû  
to be the necessary generalization in this case. The reader is encouraged, as 
an example to consider the case where X = Y — Sn for some n. Compare 
9.3.4 below. 

9.3.3) To compute HQAM+ for M G SUQ — that is, to compute the 
cohomology of abelian objects in slAA — it is sufficient to compute HQAN+ 
for all N G sUo indecomposable in the sense that it has no non-trivial 
direct summands. Notice that one needs the full generality of the Hilton-
Milnor Theorem and the preceeding remark even if one is only interested 
in ExtUA(M+, F2) with M G Wo-

9.3.4) In particular, if 2}(r,p, q) is as is example 3.13, we have a weak 
equivalence in slAA 

H*D(r,p,q) ~ K(p,q)+ xFj K(p+r,q + r - 1)+. 
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Thus, to compute HQAH*D(r,p, q) — of interest because it is the E2 term 
of the universal r-differential in the Bousfield-Kan spectral sequence — it 
is sufficient to compute 

H*QAK{s,t)+ 

for all s and t. This follows from Theorem 9.2 and the fact that there is a 
weak equivalence in SUQ 

K(s, t) ® K(s\ tf) ~ K(s + s', t + t') 

and 

aK(s,t) ~K(s + l,t). 

This project will occupy the rest of the section. 

So saying, let M+ G sUA be an abelian object. We look to Miller' 
spectral sequence 

ExtsUo(H?M+,F2) Hs+rM+ 

for our computations. This is plausible because Hf-M+ is known. In fact, 
we will record HQM+ and dualize. Let W be the category of Theorem 7.5. 
If A e sUA, then H^A € W. 

The forgetful functor W —+ nnF2 from W to the category of bigraded 
F2 vector spaces has a left adjoint 

U : nnF2 W 

and one of the main theorem of [14] implies the following. 

Theorem 9.4: If M 6 SUQ with 7r*M of finite type. Then 

H*QM+ ^ ?7(7r+M*). 
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Now, HQM+ is a right module over the Steenrod algbera and this 
structure is a conséquence of Theorem 9.4 and the formulas 

(9.5) 

[*,y]Sqfc= £ W.»^'] 
i+j=k 

P*(:r)Sq2fc = Pi(xSqfc) 
P'(o;)Sq2Ar+1 = 0 

/3(x)Sqfc = /3(*Sqfc/2) + Yl [̂ SqSxSqfc-1] 
%<k/2 

where Sqfĉ 2 = 0 if k is odd. The first three formulas are in Proposition 
8.15; the fourth is in [14, Section 4]. 

Example 9.6: Consider the example of M = K(p,q). For p = 0 we 
have K(0, ç)+ = H*Sq regarded as a constant simplicial algebras and 

H°QK(0,q)+~F2 

concentrated in degree q and generated by a class t and 

4Jir(0,9)+SF2 

concentrated in degree 2q and generated by /3(0- Miller's spectral sequence 
for this example was calculated in 8,7. 

If p > 0 and i 6 HQK{p,q)+ is the non-zero class of degree g, then a 
basis for HQK(P, q)+ as a bigraded F2 vector space is given by the elements 

(9.6.1) PllPi2 --Pis(i) 

where 2 < i± < 2it+\ for all t and 2 < is < p. Furthermore, the equations of 
(9.5) imply that for each s HQK(P, g)+ has the structure of a trivial module 
over the Steenrod algebra. 

In particular 

(9.6.2) H*QK(l,q)+~F2 
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concentrated in bidegree (1, q). In this case, then, Miller's spectral sequence 
must collapse and we have 

[H°QAK(l,q)+]t - Ext^^F^F*^F^F*2) 
Si ExtfrH^^Fo, E * - ^ ) 

Thus the spectral sequence 

H*QAK(\,q)+^**S*-1 

quaranteed by 3.11 is, in fact, the same spectral sequence one obtains from 
Proposition 1.5 and the Bousfield-Kan spectral sequence. 

The final result of this section expands on these computations. 

Theorem 9.7: For all p > 1, the composite functor spectral sequence 

ExtsUo(HtQK(p,q)+,F2) => HgtRfaqU 

collapses. 

Before proving this, we establish some notation and state a lemma. We 
have a prefered basis for HQK(p,q)+; namely, all, elements of the form 

Pi(t)=pii • ••Pi*(i) 

with 2 < it < 2it+i for all t and 2 < ik < p. Call such J allowable, and let 
£(I) = s and e(J) = ik. 

If M is a trivial module over the Steenrod algebra, then 

ExttiM,^^) Si xm £<(SmF2,SiF2) O M2 

Where Mm C M axe the elements of degree m. Hence, since (H®A)* = 
H*QA, 

ExtsUo(HtQK(p,q)+,F2) Si xm ExfUoÇSmF2,F2)®H1QK(p,q)+. 
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If i € [HQK(,p, q)+]q is the fundamental class, then the properties of the 
operations P% imply that 

P\t) = J * •. .F*(0 € [HpQ+h+-+i"+kK(p,q)+y,n<1. 

Thus, if (P7(t)) C H*2K(p,q)+ is the sub-vector space generated by P1(*,), 
we have 

(9.8) ExtsUo{H?K(p,q)+,F2) Si X/ i?a^o(£2'('V2,F2) ® (P7(0) 

where the product is taken over all allowable / so that 

(9.8.1) e(J) <p 

and 

(9.8.2) p + ¿1 + • • - + ik + k = 

/ can be empty, in which case PJ(t) = t and e(7) = 0. 

Proof of 9.7: First, since 

(9.9) E%* Si Ext*Uo (H?K(p, q)+, F2) = 0 

for t < p and the differentials have the form 

dr : Е°/ J£S + r,t + 1 1 

all differentials vanish on Epp for all r > 2 and all p > 1. 
Second, we have 

E^a Si HQK(P, q)+ 

and this vector space is spanned by elements of the form PT(t)- Thus, from 
8.13.2 and 8.14, we have that all differentials vanish on E^'a for r > 2. Also, 
if 0 ̂  PT(i) e E°,a, then P7(i) ^ 0 in HxQAK{p, q)+. Let 

f:K(p,q)+ -^K(a,b)+ 
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be the morphism in the homotopy category of slAA (see 2.16) corepresenting 

PI(i)eH%K(ptq)+. 

Of course 
a = p + ii + ix H h ik + k 

and 
b=2Mq. 

The morphism / , then induces a diagram of spectral sequences 

Ext*Uo(H?K(a,b)+,F2) Hs^K(a,b)+ 
l&f i H*QAf 

Ext°Uo(HtQK(p,q)+,F2) => Hs^K(p,q)+. 

Then (9.9) for (a, 6) implies that all differentials vanish on 

i ^ 0 ( £ 2 ' ( ' V 2 , F 2 ) ® <p'(t)> C ExtsUo(HtQK(p,q)+,F2). 

The result now follows from (9.8). 

The following is a consequence of Theorem 9.7 and the equation (9.8). 

Corollary 9.10: There is an isomorphism of vector spaces for p > 1 

H%AK(p,q)+ <* x7 i*r^0(£2'(J)*F2,F2)® ( P ' W > 

where the product is over all allowable / so that e(I) < p and 

s + p + ¿1 H ik + k = n. 

Of course, by 8.4, we have 

£a^o(£™F2,£fF2) S Sx^(Era-1F2, E*-1F2) 

and the latter is a familiar, if somewhat intractable, object. Finally the 
action of the operations 

P* : H£AK(p,q)+ - H^+Ai+1K(p,q)+ 
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can be computed up to filtration using 8.8 and 9.10. 
We now say in what sense the spectral sequence 

H*QA(p,q)+ X S (q - 1) 

is a desuspension spectral sequence. We assume that p > 1. Then , as in 
(7.13), we obtain a diagram of spectral sequences 

H*QAK(p,q)+ TT.^-P 
1 e* 1 £P-1 

H*QAZr-*K(l,q)+ TT.ÍP-1^-1 

where Ep-i is the suspension homomorphism. Using Corollary 9.10 and 
the fact that 

e*P\tp,q) = 0 

— where ip^q G [HQAK(p, q)+]q is the generator — we see that e* is surjec-
tive; indeed it is isomorphic (under the isomorphisms of 9.10) to projection 
onto the factor 

Ext*Uo(X«F2,F2). 

Since 
£a^o(£«F2,F2) S Exttt(B"-1F2,FT2) 

and the latter is the E2 term of a spectral sequence for computing 7r*.S9_1, 
the other factors in HQAK(P, g)+ are present to correct the computation 
to a calculation of 7r*Sq~p. 

We end this paper with a calculation that demonstrates that not all 
the operations Pl commute with differentials in the Bousfield-Kan spectral 
sequence. Let a : 5n_1 —• 5n_1 be the identity map and let 

h0 G^4(SNF2,EN+1F2) 

be the element detecting 2a G 7rn_iS'n~1. Then we can let 

PP(i)h0 e ^0(E2gF2,E2*+1F2) ® (P*(i)) 

stand for the non-zero class. 
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Proposition 9.11: Let p > 3 and q — p be an odd number. Then in 
the spectral sequence 

H*QAK(P,q)+^n*S<*-*> 

there is a differential 
d2P?-l(l,) = PP(L)ho. 

Proof: We refer to the calculations of Corollary 7.15 and consider the 
diagram of spectral sequences of 7.13: 

H*QAM(e*) => Tr.C(p-l) 
if i 

H*QAK(p,q)+ => TT^-P. 

Corollary 9.10 implies that there is a unique class yi G ilQ^M(e*) so that 

/(y,-) = i*(0-

Corollary 9.10 also implies that 

0 # yPh0 G [H2Qp+2M(e*))2q+1 

and that 
[H*QAM(e*)]t = 0 

for t — s = 2{q — p) and s < 2q. Hence the calculation given in the proof of 
7.15 implies that 

d>2yP-i = yPh0. 
The result follows. 
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COHOMOLOGICAL p-NILPOTENCE CRITERIA 
FOR COMPACT LIE GROUPS 

Hans-Werner Henn 

Introduction 
In [Ql] Quillen discussed cohomological criteria for p-nilpotence of fi

nite groups. He proved that for odd primes p a finite group G is j9-nilpotent 
if and only if the restriction map from the mod p cohomology H*(G;FP) 
to the mod p cohomology H*(GP;FP) of a p-Sylow subgroup Gp is an F-
isomorphism. Recall that a map A B of graded F p algebras is called 
an F—isomorphism if and only if a G Kerny? implies an = 0 for some n and 
for each b 6 B some power is in the image of <p [Q2]. Furthermore Quil
len sketched a proof of the following result which he attributed to Atiyah: 
If p is any prime and J5P(G;FP) —* H*(GP;TFP) is an isomorphism for all 
sufficiently large i, then G is p—nilpotent. 

Quillen's main result in [Q2] can be interpreted as follows: For a com
pact Lie group G with classifying space BG the .F-isomorphism type of 
H*(BG;FP) is determined by the sets Rep(V, G) of G-conjugacy classes of 
homomorphisms from elementary abelian p-groups V to G [HLS]. In par
ticular, one can rephrase Quillen's p-nilpotence criterion in the following 
form: For an odd prime p a finite group G is j9-nilpotent if and only if 
inclusion induces a bijection Rep(V,Gp) —Rep(y, G) for all elementary 
abelian /^-groups V ([HLS; Prop. 4.2.3.]). 

If G is a compact Lie group with maximal torus T, normalizer NT, 
Weyl group W(G) = NT/T, then Gp will denote the preimage of Wp in 
NT. In this case Gp will be called a />-Sylow normalizer and is known to 
be a good substitute for a p-Sylow subgroup. 
S.M.F. 
Astérisque 191 (1990) 
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In this paper we give for odd primes a characterization of those compact 
Lie groups G for which Rep(V, Gp) —• Rep(V, G) is a bijection for all V, or 
equivalently H*(BG]WP) —> H*(BGP;FP) is an F-isomorphism (Theorem 
2.1.). The possibility of such a characterization was already mentioned in 
[HLS, Sect. 4.2.5.]. It seems appropriate to call such groups p-nilpotent 
compact Lie groups. We will also generalize Atiyah's criterion to the com
pact Lie group case (Theorem 2.5.). Our interest in such characterizations 
comes from the importance of BGP for the study of the (stable) homotopy 
type of BG. 

The paper is organized as follows. In section 1 we give the precise 
definition of a p-nilpotent compact Lie group and discuss some properties 
of such groups. We do not intend a systematic group theoretical study of 
this concept but will rather concentrate on properties which are relevant 
for our cohomological characterizations. These characterizations are stated 
and proved in section 2. 

The author would like to thank L. Evens and L. Schwartz for helpful 
discussions on this subject. This work was started while the author stayed 
at Northwestern University. He is grateful to the DFG and Northwestern 
University for supporting this stay and to the people at Northwestern for 
providing a pleasant and stimulating atmosphere. 

1. p—nilpotent compact Lie groups 
1.1 DEFINITION. A compact Lie group G is called p-nilpotent if and only 
if there is a finite normal subgroup N of order prime to p which together 
with Gp generates G. 

1.2 REMARKS. 
(a) For finite groups this reduces to the classical definition of p-nilpotence. 

Then N consists of all elements of order prime to p and G/N is iso
morphic to Gp, i.e. G is a semidirect product iVxi Gp. In this case N 
is also called the normal p complement of Gp in G. 

(b) In the compact Lie group case G is in general not a semidirect product. 
For example, if G = (51, x,y \ [x.S1] = [j/,51] = x3 = y3 = 1, 
[a*, y] = £ with £ a primitive 3rd root of unity in 51) and p ^ 3, then 
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Gp = S1 and the normal subgroup N = (x, y) shows that G is p-
nilpotent. However, N H Gp ^ { 1 } and hence G ^ N>\ Gp. It is also 
obvious that G is not a semidirect product iVx Gp for some other N<G. 
Our definition of p-nilpotence above will be justified by the results 
below, which together with this example show that it would not be 
adequate to require the existence of a finite normal p-complement in 
the compact Lie group case. 

1.3 PROPOSITION. Let G be a compact Lie group and p be any prime. 
Then the following statements are equivalent. 

(a) G is p-nilpotent. 

(b) Rep(<2, Gp) —1—> Rep(Q, G) is a bijection for all p-groups Q. 

(c) If Q is any finite p-subgroup of G, then NG(Q)/CG(Q), the quotient 
of the normalizer of Q in G by the centralizer of Q in G, is a finite 
p-group. 

(d) Each finite subgroup H of G is p-nilpotent. 

(e) G is a finite extension of a torus, i.e. there exists an exact sequence 
T • G » 7r with 7r finite, and G has a finite p-nilpotent subgroup H 
with H/H PI T = 7T and Tp = {t G T \ V = 1 } C H. 

(f) G is an extension of a torus by a finite p-nilpotent group TT and the 
conjugation action of the normal p-complement v of TTp in 7r is trivial 
on T. 

Proof, (a^ =» (b): Onto is equivalent to saying that any p-subgroup Q of G 
is conjugate to a subgroup of Gp, i.e. that the Q—set G/Gp has a nonempty 
<2-fixed point set (G/Gp)Q. This follows from x((G/Gp)«) = x(G/Gp) # 
0 mod p where \ denotes Euler characteristic (cf. [HLS; Prop. 4.2.1.]). 

To show that i is 1 — 1 consider the projection Gp —Gp/Gp f] N = 
G/N. It suffices to show that 7r induces an injection on Rep(Q,?). So let 
ai, a2 be two homomorphisms with -KOL\ — g-KOL^g^1 for some g 6 Gp. By 
factoring out the kernel we may assume that irai is mono. Identify Q with 
its image in Gp/GpnN. Then a± and g^g"1 are sections of 7r~1(Q) Q. 
Now Kern7r = Gp D N is a subgroup of T of order prime to p and hence 
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i71(Q,Gp n N) = 0, i.e. ai and got^g 1 are even conjugate by an element 
in Gp H N and we are done. 

(b) =» (c): For any group G the automorphism group Aut(Q) acts on 
Rep(Q, G). If Q is a subgroup of G, then NG(Q)/CG (Q) identifies naturally 
with the isotropy subgroup of the inclusion Q c—• G, considered as an element 
in the Aut(Q)-set Rep(Q,G). 

Now (b) implies that we can assume that Q is a subgroup of Gp and 
that it suffices to show that NGP{Q) / C GP{Q) is ap-group. So suppose that 
x G NGP {Q) has order prime to p in NGP(Q)/CGP(Q)- AS in [HLS, sect. 
4.3.] we may assume that x itself has order prime to p, i.e. x G T. Then 
one sees as in [HLS, Lemma 4.3.3.] that x acts trivially on the quotient of 
Q by its Frattini-subgroup (f> (Q) and hence trivially on Q (cf. [H, Satz III 
3.18.]). Therefore x is in CGP(Q) and we are done. 

(c) (d): If Q is a subgroup of H, then iV/f (Q)/G# (Q) is a subgroup of 
NG(Q)/CG(Q) and hence the Frobenius criterion [H, Satz IV, 5.8.] implies 
that H is p-nilpotent. 

For the remaining implications we need a Lemma. For a natural number 
£ let Te denote {t G T \ te = 1}. 

1.4 LEMMA. Let G be an extension of a torus T by a finite group TT of 
order \7r\. Then there is a finite subgroup F of G with F/F D T = 7r and 
F n T = TM. 

Proof. Interpret the (class of the) extension T ^ G » n as an element 
[e] G H2(TT;T) and use that \TT\ - [e] = 0 together with the long exact coho-
mology sequence arising from the short exact sequence Tĵ i T ^>> T of 
7r-modules. 

• 

We continue with the proof of Proposition 1.3. 

(d) =» (e): Assume that G is not a finite torus extension. Then G(x), 
the connected component of 1, is not abelian and hence contains a compact 
connected nonabelian Lie group of rank 1, i.e. either 50(3) or SU{2). Now 
50(3) contains A4, the alternating group on four letters, as symmetry group 
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of a regular tetrahedron. As neither A4 nor its twofold cover in SU{2) are 2-
nilpotent, we may assume that p is odd. Next consider G := NTnG(i). This 
is a finite torus extension, so there is a finite subgroup F as in Lemma 1.4. 
Let H be the finite subgroup of G, generated by F and Tp (finite because 
Tp is normal). If G(i) ^ T, then the Weyl group W(G(i)) is nontrivial. 
Pick a reflection in W(G(i)) and represent it by an element r £ H. Then r 
defines a nontrivial element of order 2 in N~(TP)/C~(TP) and hence H is 
not p-nilpotent. 

We conclude that G(i) is a torus and G is a finite torus extension. Now 
let F C G be as in 1.4. Then H = (F, Tp) is the finite group with the desired 
properties. 

(e) =>> (f): If N is the normal p complement of Hp in H, then N/N H T 
is the normal p complement of 7rp in 7r. Therefore it suffices to show that N 
commutes with T. Now N and Tp are both normal in H and have trivial 
intersection, hence they commute. Finally, a smooth automorphism of T 
which fixes Tp is clearly trivial, if p is odd, or has order at most 2, if p = 2. 
Hence N commutes with T and we are done. 

(f) => fa): Let G' be the preimage in G of the normal p complement 
v. Then Lemma 1.4 gives a subgroup Ff of Gf with.F'/Ff C\T = v and 
F' OT = T\v\, where \v\ is the order of z/. Clearly, is a finite group of 
order prime to p which together with Gp generates G. However, F1 need 
not be normal. 

Therefore consider the subgroup N = (F'^T^*) C G. This is still a 
finite group of order prime to p. We claim that iV is normal. For this it 
suffices to show that gFrg~x C N for all g G G. So let x be in F'. Then 
gxg"1 = yt for some y € i7", t G T, since z/ is normal in 7r. It suffices to 
show that *M = 1 . This follows because the order of elements in F' clearly 
divides \v\2 and because y commutes with t by assumption. 

This finishes the proof of 1.3. 
• 

2. Cohomological p— nilpotence criteria 
Before we state our main result we recall that a subgroup V of Gp is 

said to be weakly closed in Gp with respect to G if gVg"1 C Gp, g € G, 
implies ffT^ff""1 = V. 
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2.1 THEOREM. Let G be a compact Lie group and p be an odd prime. 
Then the following statements are equivalent. 
(a) G is p-nilpotent. 
(b) Rep(V, Gp) —» Rep(V, G) is bijective for all elementary abelian p-groups 

V. 

(c) Let V be any normal elementary abelian p-subgroup of Gp which 
contains Tp. Then V is weakly closed in Gp with respect to G and 
NG(V)/CG(V) is a finite p-group. 

2.2 REMARKS. 
(a) We recall that condition 2.1.(b) is equivalent to the map H*(BG;FP) —• 

H*(BGp;Fp) being an F isomorphism. In fact, a transfer argument 
shows that this map is mono for all compact Lie groups G. If G is 
also p-nilpotent then the Leray-Serre spectral sequence of the fibration 
B(N PI Gp) -+ BGP -> B{Gp/Gp n N) = B(G/N) with mod p acyclic 
fibre shows that H*(BG;FP) —> H*(BGpjFp) is also onto and hence a 
genuine isomorphism. 

(b) In the finite case condition 2.1.(c) above gives just Quillen's group theo
retical version of his p-nilpotence criterion ([Ql, Thm. 1.5.]). The proof 
of implication (c) (a) below is essentially a careful modification of 
the proof of Theorem 1.5. in [Ql]. 

(c) For p = 2 there are examples of compact Lie groups G which satisfy 
conditions 2.1.(b) and 2.1.(c) but which are not 2-nilpotent. G = 
SU(2) is an example of a connected group and G = Qs X Z /3 the 
semi direct product of the quaternion group with ZZ/3 (cf. [Ql]), is an 
example of a finite group. 
A cohomological criterion for p-nilpotence that works for all primes 

will be given below in Theorem 2.5. 

Proof of Theorem 2.1. 
(a) =» (b): This follows from Proposition 1.3. 
(b) (c): Clearly, (b) implies that a normal elementary abelian p-

subgroup V of Gp is weakly closed with respect to G. The proof of Propo
sition 1.3. ((b) (c)) shows that NG(V)/CG(V) is a p-group. 
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(c) =» (a): If G is not a finite torus extension, then we see as in the proof 
of Proposition 1.3. ((d) (e)) that NG(TP)/CG(TP) contains a nontrivial 
element of order 2 in contradiction to our assumptions. 

Therefore G is a finite torus extension. Denote G/T by 7r and let F be 
a finite subgroup of G with T fl F = T\n\ and F/F fl T = 7r as in Lemma 
1.4. By criterion (e) of Proposition 1.3. it suffices to show that the finite 
group H = (F,TP) is p-nilpotent. 

We pick a p-Sylow subgroup Hp of H which is contained in Gp. 

2.3 LEMMA. Let V be any abelian subgroup of H (resp. Hp) which contains 
Tp. Then V is normal in H (resp. Hp) if and only ifV is normal in G (resp. 
Gp), provided p is odd. 
Proof. Suppose V is abelian and contains Tp. Then V commutes with Tp 
and hence with T (p is odd!). Therefore, if H normalizes V, then (i?, T) = G 
normalizes V. Similarly with Hp and Gp. The converse is trivial. 

• 

We return to the proof of 2.1. ( (c) (a) ) 

Lemma 2.3 implies that any normal elementary abelian p-subgroup V 
of Hp containing Tp is weakly closed in Hp with respect to H. Furthermore, 
NH(V)/CH(V) is a subgroup of NG(V)/CG(V), in particular a p-group. 

Therefore, the p-nilpotence of H is a consequence of the following slight 
generalization of Quillen's Theorem 1.5. in [Ql]. 

2.4 PROPOSITION. Let p be an odd prime and G be a finite group with p-
Sylow subgroup Gp. Let U be a normal elementary abelian p-subgroup of G 
and assume that each normal elementary abelian p-subgroup V of Gp con
taining U is weakly closed in Gp with respect to G and that NG(V)/CG(V) 
is a p-group for such V. Then G is p-nilpotent. 

Proof of 2.4. The proof is almost the same as in [Ql]. For the convenience 
of the reader we repeat the main steps. 

The hypothesis of 2.4. are inherited by all subgroups of G which contain 
Gp. Therefore we can do induction on the order of such subgroups. 
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Let V be a subgroup of Gp which contains U and is maximal with 
respect to being elementary abelian and normal in Gp. Then V is a maximal 
elementary abelian subgroup of G (cf. [Ql, Prop. 4.1.]) and hence CG{V) 
is p-nilpotent by [H, Satz IV, 5.5.]. Now there are two cases: 

Case 1: V is normal in G. Then G is p-nilpotent because CG(V) is 
p-nilpotent and G/CG{V) = NG(V)/CG(V) is a p-group. 

Case 2: V is not normal in G. Then let W be a maximal G-normal 
subgroup of V which contains U. Define subgroups V\ of V and N of G by 

Vx/W = V/W H Z(GP/W) (Z denotes the center) 
N = NG(V1). 

Then everything works precisely as in [Ql]. 
- N contains Gp and is properly contained in G, hence N is p-nilpotent 

by induction. 
- Vi/W is a central subgroup of Gp/W which is weakly closed with 

respect to G/W. Therefore, Grun's Theorem implies HX(G/W) -̂ U 
HX{N/W) and the cohomology 5-term exact sequences of the group 
extensions W G » G/W, W ^ N » N/W yield HX{G) 
HX{N) . 

- Finally, Tate's if1-criterion [T] implies that G is p-nilpotent. 
• • 

The following result generalizes Atiyah's p-nilpotence criterion and is valid 
for all primes. 

2.5 THEOREM. Let G be a compact Lie group and suppose inclusion in
duces an isomorphism Hl(BG; Fp) Hl(BGp; Fp) for all sufficiently large 
i. Then G is p-nilpotent. 
Proof. By a transfer argument (cf. [CI] for the existence of a stable transfer 
map) there is a p-local stable splitting BGP^BG V X for some p-local 
connected X with bounded above and finite type mod p homology. Now Gp 
is a finite torus extension. Let F be a finite subgroup of Gp as in Lemma 
1.4. If Tpoo denotes the subgroup of T consisting of all torsion elements 
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of order a power of p, then the inclusion (Tpoo, F) «—• Gp induces a mod p 
homology equivalence and therefore there is for each n a finite p-subgroup 
Fn of (Tpoo^F) such that inclusion induces an epimorphism Hi(BFn;Fp) —• 
Hi(BGp]lFp) for all i < n. In particular, there exists n such that there 
is a stable map BFn —• X (after localizing at p) which is onto in mod p 
homology. Now the solution of the Segal conjecture [Ca] forces X to be 
trivial because there are no nontrivial stable maps from BFn to any positive 
dimensional sphere. We conclude that Hl(BG;Fp) —> Hl(BGp;Fp) is an 
isomorphism for all i. 

For 2 — 1 we get 
(2.6) 

Jf^JSGjFp) S Hom(#iOBGO;Fp) ^ Hom(TTiCBG);Fp) ^ Hom(7r0(G);Fp) 

and therefore we have a bijection 
(2.7) Hom(7r0(G);Fp) Hom(7r0(Gp);Fp). 

Because of Theorem 2.1 (cf. remark 2.2) we may assume p = 2. The 
determinant of the adjoint representation of a 2-Sylow normalizer G2 on the 
Lie algebra LT defines a homomorphism ^(G^) F2. If T is properly 
contained in G1, the connected component of 1 G G, then the reflections in 
the Weyl group W{G^) show that (p restricts nontrivially to 7To(Cr2 nG(i)) 
and can therefore not come from 7To(G) . It follows that T = G(i) and G is 
a finite torus extension. 

Now (2.6), (2.7) and Tate's iJ1-criterion imply that 7r0(G) = G/T is 
2-nilpotent. By Proposition 1.3.(f) it suffices therefore to show that odd 
order elements of 7TQ(G) act trivially on T. 

Our hypothesis implies certainly that H*(BG;WP) —• H*(BGP;FP) 
is an i^-isomorphism, hence Rep(V, Gp) —+ Rep(V, G) is bijective for all 
elementary abelian p-groups V and therefore NG(TP)/CG(TP) is ap-group 
by the proof of Proposition 1.3.((b) (c)). For p = 2 it follows that odd 
order elements of TT0(G) act trivially on T2 and hence on T (cf. proof of 
Proposition 1.3. ((e) (f)) ). This finishes the proof of 2.5. 

• 
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THE RIGIDITY OF POINCARÉ DUALITY ALGEBRAS AND 
CLASSIFICATION OF HOMOTOPY TYPES OF MANIFOLDS 

MARTIN MARKL 

INTRODUCTION 

This paper is devoted to the study of homotopy types of simply connected rational 
Poincaré duality spaces. We will frequently use the language and results of rational 
homotopy theory, a good common reference is the book [14]. 

So, let X be a rational Poincaré duality space of the (top) dimension n, i.e. a simply 
connected space, whose rational cohomology algebra is a Poincaré duality algebra of 
the formal dimension n; see §3. It is well-known (see also §3) that X has the rational 
homotopy type of a space of the form Y Uh eni where Y is a simply connected CW-
complex of dimension < n and h : Sn~l = den —• Y is a continuous map. The space V, 
defined uniquely up to rational homotopy type, will be called (with some inaccuracy) 
the skeleton of X and will be denoted by X<n. If X is a simply connected n-dimensional 
manifold, the construction above can be described even more geometrically: take X \ 
2?", where B" is a (sufficiently small) n-dimensional open disc. It is easy to remark that 
the n-dimensional manifold with boundary, X \ 2?n, has the same rational homotopy 
type as the skeleton X<n} constructed above. 

Recall that two simply connected spaces X and Y are said to have the same k-
homotopy type, where k is a field of characteristic zero, if their Quillen minimal models 
[14; m.3.(l)] are isomorphic over k; this fact will be denoted by X ~k Y. Of course, 
for k = Q we get the usual definition of the rational homotopy equivalence. 

Fix an n-dimensional rational Poincaré duality space X (simply connected by def
inition). The aim of this paper is to give a description of the set PDS^(X) of all 
k-homotopy types of rational Poincaré duality spaces Y whose skeleta Y<n have the 
same rational homotopy type as the skeleton X<n of X, when X is formal. It is inter
esting to point out that the set PDS±{X) is, according to rational surgery results [3], 
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for n ^ 0 (mod 4) naturally isomorphic to the set Man^X) of all k-homotopy types 
of n-dimensional compact simply connected manifolds M with M<n ~ Q X<n, 

The first attempt towards the description of PDSk(X) was made in [12], where 
it is stated [12; Theorem 1] that the rational homotopy type of a rational Poincaré 
duality space is uniquely determined by the rational homotopy type of its skeleton, if 
the cohomology algebra of X is fixed. Here we will always suppose that X is formal, 
the hypothesis taken by M. Aubry [1,2]. 

We give here a complete description of the set PDS^(X) in terms of usual algebraic 
objects - Galois cohomology and induced maps - when X is formal. Using this descrip
tion, we are able to prove, for example, that the k-homotopy type of a rational Poincaré 
duality space is uniquely determined by its skeleton provided that k is algebraically 
closed. We prove also that the set PDSk(X) (and hence also Man±(X)) is finite for 
fields satisfying [£ : k] < oo (for example for k = R, the case of real homotopy types). 
As an example of explicit calculations we construct a large class of Poincaré duality 
spaces X for which the set PDS^{X) consists of the k-homotopy type of X only, k 
arbitrary. On the other hand, we give an example of a manifold M, for which the set 
PDSQ{M) is infinite. 

The algebraic counterpart of the description of PDS^(X) is the following classifi
cation problem: let H* be a Poincaré duality algebra of formal dimension n, how to 
describe the set PDA^(H*) of all isomorphism classes of Poincaré duality algebras H'* 

with H'*/H'n H*/Hn. Our approach to the study of the set PDAh(H*) is based on 
a rigidity property of Poincaré duality algebras over an algebraically closed field and 
on the usual method of descent. We hope that this approach can be used even in more 
general situation - for the classification of all Gorenstein rings R having the "skeleton9 
R/Socle{R) fixed (see [15]). 

Our paper is organized as follows. In the first paragraph we prove a rigidity theorem 
for Poincaré duality algebras. The proof of this statement is based on a deliberate use 
of the deformation theory; note that this machinery has already been systematically 
used in rational homotopy theory in [4]. As a by-product we obtain a characterization 
of Poincaré duality in terms of Harrison cohomology. These results are in the next 
paragraph applied to the solution of our classification problem for Poincaré duality 
algebras. The main result of this section is Theorem 2.7. In the third paragraph the 
algebraic theory is applied to the study of the set PDS±(X) as introduced above, a 
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description is given in Theorem 3.2. Notice that both Theorem 3.2 and the forthcom
ing examples explicitely describe the effect of the ground field k on the structure of 
PDSk(X), hence all the material of this paragraph can be considered as a contribution 
to the study of descent and non-descent phenomena in rational homotopy theory in 
the spirit of [10]. 

I would like to express here my thanks to §tefan Papadima for drawing my attention 
to the possible use of descent methods. Also the formulation of the condition iii) of 
Theorem 1.5 is due to him. I wish also to acknowledge my indebtedness to the referee 
for useful comments and references. 

l. RIGIDITY OF POINCARÉ DUALITY ALGEBRAS 

As usually, by a Poincaré duality algebra (over a field k) of the formal dimension 
n is meant a (finite dimensional) graded commutative k-algebra H* = 0,>o H* such 
that Hn is isomorphic to A;, Hx = 0 for i > n and the bilinear form B : H* 0 H* —• k 
of degree —n defined by 

B(x,y) = 
z.y G к ~ Ял for deör(x) + c%(y) = n 
0 otherwise 

is nondegenerate in the usual sense. All Poincaré duality algebras (and Poincaré duality 
spaces) in this paper are supposed to have the same formal dimension equal to a given 
natural number n. 

1.1. For a graded commutative algebra A* denote: 

B(A') = 
all bilinear forms B : A* 0 A* —> k of degree —n such 

that B{x,y) = (-l)^(x)^(»)J9(y,x) for x>yGA* 
M{A*) = {BG B{A*);B{xy,z) = B{xyyz) for x,y,z € A*}, 
P(A*) = {BeM{A*);B is nondegenerate on A>0$A>0 J and 
G(A*) = Aut(A*) = the group of graded automorphisms of A*. 

Notice that all the sets above have the natural structure of a (not necessarily irre
ducible) algebraic variety. The geometry of M(A*) is extremely simple—as all the 
defining equations are linear, it is isomorphic to an affine space. The set P(A*) is 
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plainly Zariski-open and dense in M{A*). The group G(A*) acts naturaly from the left 
on 8(A*) by 

+{B)(s,y) = B(4-l(z),+-l(9))-

Clearly G{A*)M(A*) C M{A*) and G{A*)P(A*) C P{A*). The action of G(A*) is 
plainly continuous in the Zariski topology. 

We call an algebra A* a fragment, if it is of the form 

A* = H<n := H*/Hn 

for a Poincaré duality algebra H*. The algebra H<n will be called the skeleton of H*. 
Here J5T<n is defined as a quotient, but after having chosen a section, we may as well 
consider it as a subset of H*. 

It is interesting to remark that it is allways possible to decide in finitely many steps 
whether a given graded commutative algebra A* is a fragment or not. To this end, 
find at first a basis of the affine space M(A*). Our algebra A* is then a fragment if 
and only if the polynomial function, representing the determinant, is not equal to zero 
on M(A*) identically. 

This characterization problem for fragments is the special case of the problem of 
deciding when a given local ring is a factor of a Gorenstein ring by the socle, see [15]. 

1.2« For a fragment A* consider the set M(A*) of all graded commutative algebras H* 
with H* = 0 for i > n, Hn ~ k and H^n isomorphic to A*. For H* € M{A*) choose 
an isomorphism r : Hn —• k and define B € M(A*) by B(x,y) = r(x.y) € k. The 
form B is defined canonically up to a nonzero multiple from k. Keeping in mind this 
ambiguity, we can write H* = (A*, B). Notice that H* is a Poincaré duality algebra if 
and only if B€P(A*). 

1.3. Let A* = H<n be a fragment and denote by PDA± (H* ) the set of all isomorphism 
classes of Poincaré duality k-algebras having the skeleton isomorphic to A*. We claim 
that the presentation 1.2 induces a bijection between PDA±(H*) and the orbit space 
P(A*)/G(A*) provided that k algebraically closed. 

To verify this, notice at first that each algebra from PDA^(H*) is isomorphic to an 
algebra H'* with Hf*<n = A*. Hence we can suppose immediately that H'*<n = A* for 
each H'* € PDA*(H*). Let J5P* = (A*> B') and H»* = (A*, B") be two algebras from 
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PDA\i(H*) and suppose that they are isomorphic. This means that there exists an 
isomorphism <f>: A* —• A* and a nonzero a € k such that B"(<fr(x)y$(y)) = aB9(xyy). 
If we choose £ € k such that En = a and define g € ilttt(i4*) by g(x) = E-deg(x) x, 
we see that B"{$ o jf(x),^ o g(y)) = 2J'(x,y), i.e. B* and 2?" are in the same orbit of 
G(A*). On the other hand, it is easy to check that forms belonging to the same orbit 
define isomorphic algebras. 

1.4. Before formulating the central result of this section, recall some necessary facts 
about the Harrison cohomology [13]. Let A* be a graded commutative algebra and 
M* a graded ji*-module. Define on ®mii* a new grading, putting deg(ai 0 • • ® 
am) = 1 + E H ^ t e ) - l) and denote by Cms (A M*) the set of all linear maps 
/ : <g)mii* —• M* of degree p such that /(ai,...,Om) = 0 whenever some a, = 1, 
1 < t < m. The differential 6 of bidegree (1,1) on C*<*(A*,M*) is defined by the 
formula 

6f(ax,..., 0,̂ +1) = ai/(o2,..., am+i) + {-lpm+l) f{ai,..., OmJOm+i-h 
m 

+ J ^ M i ^ / f a l 1 • • • i <V<V+1, • • •,<*m+l), 

where u{j) = ;£'=1(<feflr(at) - 1). The cohomology of the complex (C**(ii*,M*), S) is 
the usual Hochshild cohomology of A* with coefficients in M*. Consider the subspace 
CgJ^iA*;M*) of C ^ P ^ M * ) consisting of all cochains of Cm*{A*yM*) which are 
zero on decomposable elements of the shuffle product in 0A* (see [14; p.18]). The 
subspace CJ^,^*,M*) can be shown to be 5-stable and the associated cohomology 

Harr^M 'jM*) := H M C S A H ^ C ^ A * , M % 6 ) 

is called the Harrison cohomology of the graded commutative algebra A* with coeffi
cients in Af*. 

For a given fragment A* and an algebra H* € M(A*) there are two natural A*-
modules: the "reduced" algebra H* (= the ideal of the natural augmentation H* —• k) 
with the action given simply by the multiplication and Hn with the trivial action 
(l.h = h and A>0.Hn = 0). The inclusion t: Hn -> if* is a morphism of A*-modules 
and it induces the map 

t* : Harr(A*;ff») Harr(j4*;H*) 
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in Harrison cohomology. In the following theorem we give three equivalent conditions 
on H* E M(A*) to be a Poincaré duality algebra, where A* is a fragment. Recall that it 
means by definition that we a priori assume the existence of a symmetric nondegenerate 
bilinear form on A*. 

THEOREM 1.5 (RIGIDITY THEOREM). Suppose that the ground Geld k is alge

braically closed of characteristic zero. Let A* be a fragment and let H* be a graded 

commutative algebra with Hl = 0 for i > n, Hn ^ k and JT<n isomorphic to A* (in 

other words, H* 6 M(A*)). Let B 6 M(A*) be the bilinear form corresponding to H* 

as in 1.2. Then the following three conditions are equivalent: 

i) H* is a Poincaré duality algebra, 

ii) the point B € M(A*) is rigid under the action of G(A*)\9 

iii) the map i : Harr*>l(A*]Hn) — Eair*>l(A*\H*) is sero. 

Proof. Define FB : G(A*) -+ M{A*) by FB{g) = g(B). Let us try to describe the 
tangent map TeFB : TeG(A*) -> TBM{A*) at the unit e of G(A*). As the algebra A* 
has finite dimension, we have T€G(A*) Der{A*) (the set of derivations of the algebra 
A* of degree 0). The set M(A*) is isomorphic to an affine space (see 1.1), hence we can 
identify TBM{A*) with At (A*) itself. Using these identifications, we can easily obtain 

TAW**) = - W ( x ) , y ) + B(x,^y))). 

This means that the map TCFB is epic if and only if for each / £ M(A*) there exists a 
derivation <f> € Der(A*) with 

(1.6) f(*,y) = B{4(z),y) + B{z,+(y)) 

for deg(x) + deg(y) - n. On the other hand, we can obtain immediately from the 

definitions that 

Z Harr (A* Hn) = 
bilinear forms / : A* ® A* —* Hn of degree zero 

such that f{x,y) = (-1)^0(*)<M»)+«/(J,, *) 
and f{xy,z) = (-l)*»M/(*,¥Jr) 

fThis means by definition that the orbit G(A*){B) contains a Zariski-open neighbourhood of B, see 
|5] or [91 
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and that 

Gkm(A*>^*) ~ jlinear maps <f>: A* -+ H* of degree aeroj, 

while 

6+{z,y) = xfly) + (-l)<M*>+<M»^(x)y- (-l)^(*)^(iy). 

Therefore *.(/) = 6$ in CH„(A*tH*) if and only if 

(1.7) 

f(z,y) = z$(y) + (-l)»*(x)y = B(zj{y)) + ( - l )»^(x) , j , ) 

for deg(x) + deg(y) = n and 

( - l J ^ M f a f ) = x#y) + (- l)^*)+<M*)^)y 

for dey(x) + <fe?(y) < n 

The correspondence / «—• / , /(x,y) = (-1) deg (y) f (x,y) clearly defines an identifi
cation of Z£l„{A%Hn) and X(A*). Writting in (1.7) (-1) deg (y) /(*,*) instead of 
/(x,y) and (—lJ^W^t*) instead of ^(x), we can easily verify that the map t. is sero 
if and only if for each / 6 M(A*) there exists a linear map ^ : A* —• H* of degree sero 
such that 

(1.70 
/(x, y) = B(x, 4>{y)) + £(y, #x)) for d*7(x) + dc^(y) = n and 

^(xy) = x4>(y) + ^(x)y for de^(x) + <fe$(y) < n. 

Notice that the second equation in (1.7') means that <f> is a derivation of the algebra 

A*, i.e. <f> E TCG(A*). Comparing (1.6) and (1.7*) we see that the following statement 

is valid. 

LEMMA 1.8. The map TtFs is an epimorphism if and only if u is zero. 

Proof of i) iii). Suppose that H* is a Poincaré duality algebra and prove (1.6). 

Let / 6 M(A*). As the form B is nondegenerate, the formula 

(1.9) B(<f,(z)ty) deg (x)/n ̂ f(z(x,y) 
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defines a linear map <f>: A* -* A* of degree zero. By (1.9) and the symmetry of B, 

(1.10) 

B{x,№) = (-l)deg(x) d e g ( y ) ^ ^ B ( m , ' ) 
= Шя1 

ft 
(-1) \deo(x)deg(v) f (x,1) 

= deaív)  n •Я*, у). 

By (1.0) and (1.10), for deg(x) + deg(y) = n, 

B(xMv)) + B{4>(z),y) =deg (x) + deg (y) + ^ ) . / ( x , y ) = /(z,y), 

which is (1.6). It remains to show that 4> is really a derivation of degree sero. This is, 
because B is nondegenerate, equivalent to 

(i.ii) 
B{x*{y),z) + B(*(x)y,z) = B{*(xy),z) 

for each x, y, z € A* with deg(x) + deg(y) + deg(z) = n. 

We easily deduce from (1.9) and (1.10) that 

B(Hxy),z) =deg (x) + deg (y) ̂ ± ^ . f (x,y) 

and that 

*(*(«)* s) = m*),V») = ^ - / f r f * ) = ̂ deg(x) f(xy,z), 
B{x<f>{y),z) = (-deg ( x ) ( y ) l ^ l ' M ' K B M y l z z ) 

= ib*xl.{-l)4"ix)J"iv)f{y,xz) 
= d e g ( y ) ^ - f ( x y , z ) 

Using these formulae, it is easy to verify (1.11), hence TCFB is epic and A* is zero by 
Lemma 1.8. 

Proof of iii) ==> ii). Notice that the points e € G(A*) and B G M(A*) are regular. 
If iii) is satisfied, the map TeFs is epic by Lemma 1.8 and Im(Fs) = G(A*)(B) 
contains an open neighbourhood by standard arguments of the algebraic geometry, see 
for example [9; Lemma 23.5]. 
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Proof of ii) ==> i). Suppose that B is rigid and let U C G(A*){B) be an open 
neighbourhood of B. Then both U and P(A*) are nonempty open subsets in the affine 
space M{A*), hence P(A*)nU ^ 0. They are both G(A*)-invariant and G(A*) acts on 
U transitively, consequently, U C P{A*)> therefore B € P{A*)y i.e. H* is a Poincaré 
duality algebra. 

2. CLASSIFICATION THEOREMS FOR POINCARÉ DUALITY ALGEBRAS 

Our classification is based on the fact that Poincaré duality algebras over an alge
braically closed field are uniquely determined by their skeleton. 

THEOREM 2.1. Let A* be a fragment and suppose that the ground Geld k is alge

braically closed of characteristic zero. Then 

#(P(A*)/G(A*)) = 1, 

in other words (see 1.3), the following statement is true: 
Let H* and H9* be two Poincaré duality algebras over an algebraically closed Held 

of characteristic zero such that H<n is isomorphic to H!£n. Then the algebras H* and 

H9* are isomorphic, too. 

Proof. As M(A*) is an affine space, there exists at most one open orbit of G(A*) in 
M(A*). On the other hand, the orbit of every point B € P(A*) is open by Theorem 
1.5 ii). Therefore all points of P(A*) are in the same orbit, in other words, G(A*) acts 
on P(A*) transitively and #(P{A*)/G(A*)) = 1. 

2.2. Warning: Being g : H<n H*n an isomorphism, then the isomorphism of H* 

and H9*, whose existence is guarranteed by Theorem 2.1, is not necessarily an extension 
of g. 

Example 2.3. Let V be a k-vector space and fix an even number d > 0. Let A* be a 

graded algebra defined by A0 = k, Ad = V and A' = 0 otherwise, having the obvious 

product. Every nondegenerate symmetric bilinear form J? on V defines a Poincaré 

duality algebra H* of the formal dimension n = 2d with H<n = A* (see 1.2), this is 

the simplest nontrivial example of a Poincaré duality algebra. 

Clearly, P{A*) consists of all symmetric nondegenerate bilinear forms on V and the 
quotient P(A*)/G(A*) is the set of all equivalence classes of nondegenerate symmetric 
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bilinear forms on V. If the field k is algebraically closed, Theorem 2.1 says that there 
exists exactly one equivalence class of nondegenerate bilinear forms on V. This result 
is classical. 

2.4. Now, starting from the classification over algebraically closed fields, we can try to 
obtain a general result using the usual description of the descent by Galois cohomology, 
see [11]. Let us introduce the following notation and terminology. 

Let K be an extension of k and let M be an object (vector space, algebra etc.) 
defined over k. Denote MK = M ®k K. Two objects M and N, defined over k, are 
said to be K-isomorphic (M k N)} if there exists a K-isomorphism between the 
K-objects MR and JNTK- Fix now a Poincaré duality k-algebra H* and let A* = iT<n 
be its skeleton. The central object of our study is the following set 

PDA^H*) = k-isomorphism classes of all Poincaré 
duality k-algebras H'* with H»n ^k A* 

Unfortunately, this set is not approachable to apply the descent method directly. We 
are led to consider also the following sets (i denotes the algebraic closure of k): 

Ék = k-isomorphism classes of Poincaré duality 
k-algebras H'* with H'* ~t H* 

Ék = k-isomorphism classes of graded commutative 
k-algebras A" with A" ~t A* 

and define the map Fk : J5?k E* by Fk(H'*) = #'*<». The sets Ek and JEk are 
related with PDAk{H*) as follows: 

LEMMA 2.5. Let k be a field of characteristic zero. Then there exists a natural 
correspondence between the elements of PDA*(H*) and algebras IP* € satisfying 
F±{H'*) ~k A* 

Proof. By Theorem 2.1, H'* ̂  H* for each H» € PDAk(H*), the rest is trivial. 

The following description of the descent for graded algebras can be obtained by a 
slight modification of the proof of [11; Proposition 1 in 111.1.1], see also the comments 
to the proof given in the russian version of this book (Mir 1068). 
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PROPOSITION 2.6. Suppose that K is a Galois extension of k. Let M* be a graded 

k-algebra and denote by £(K/k) the set of all It-isomorphism classes ofk-algebras AF* 

with M'* ~K M*. 

Then the elements of the set £(K/k) are in a natural one-to-one correspondence 

with the Galois cohomology group H1 (G(K/k); Auf K(-MK)), where the action of the 

Galois group G(K/k) on AutK(M^) is defined by s(f) = (1 ® s) o fo (1 0 a)"1. 

Using the explicit description of the correspondence in the previous proposition, we 
can infer easily from Lemma 2.5 the following classification result. 

THEOREM 2.7. Let k be a Geld of characteristic zero and denote by i the algebraic 

closure of k. Let A* = H<n be a fragment defined over k. Then there exists a natural 

one-to-one correspondence between the set PDA^H*) of all ÌL-isomorphism classes of 

Poincaré duality It-algebras H'* with if<n £*k A* and the set 

Ker{ik : ̂ (Gfk/k); Aut^H^)) Hl(G(k/\), Autk(A*k))) 

where the map ik is induced by the natural homomorphism 

j : AutiiHi) -> Autk(Al) 

given by the restriction. 

We close this section with the following corollary of Theorem 2.7. 

COROLLARY 2.8. Suppose that [S : k] < oo. In this case there exists only Gnitely 

many isomorphism classes of Poincaré duality h-algebras having a given skeleton (i.e. 

#(PDAk(H*)) <oo). 

Proof. A field satisfying the condition [£ : k] < oo is of type (F) in the sense of [11; 
EIA], hence ff^Gfk/k); Attts(J5T|)) is finite [11; ffl.4.3] and the corollary follows from 
Theorem 2.7. 

3. APPLICATIONS TO THE RATIONAL HOMOTOPY TYPE 

By a rational Poincaré duality space (of the formal dimension n) is meant here a 
simply connected CW-complex X such that H*(X;Q) is a Poincaré duality algebra 
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(of the formal dimension n). We show that X has the rational homotopy type of 
a space of the form Y uk en, where Y is a CW-complex of the dimension < n and 
h: S11"1 = den - • F a continuous map, as promissed in the introduction. 

To this end, suppose that (£(Z,/Lt),d) is the Quillen minimal model of X, where 
the generator p} deg(fx) = n - 1, corresponds to the "orientation class" of X in 
Hn(X;Q). Let Y be a space corresponding to the minimal algebra (C{Z)1d\C{Z))J we 
can clearly suppose that Y is a CW-complex of dimension < n. Let h € *n-i{X) be 
an element corresponding (up to a nonzero rational multiple if necessary) to [d(|i)j € 
Hn-*{Z(Z),d\C(Z)) ~ *w_i(JT) ® Q. It follows easily from [14; HI.3.(6)] that Y Ufc 
en ~Q X and Y is what we call the skeleton of X and denote by X<n. It is also clear 
that H*(X<n;k) ~ H*(X;k)<n, see [14; 111.3(9)]. 

3.1. Observe that X is formal if and only if X<n is. Indeed, if AT is formal, then the 
minimal model (£(£,/*), d) can be chosen so that d is quadratic [14; 11.7(5)]. Then 
also the minimal model (C{Z),d\£(Z)) of X<n is quadratic and X<n is formal again 
by [14; 111.7(5)]. On the other hand, if X<n is formal, the formality of X follows easily 
from [12; Theorem 1], [1,2]. The central result of our paper now reads: 

THEOREM 3.2. Let k be a fieid of characteristic zero and let X be a formal rational 
PoincarS duality space of the top dimension n. Then there exists a natural one-to-one 
correspondence between the set PDS±(X) of all i-homotopy types of rational PoincarS 
duality spaces Y of the top dimension n, such that the skeletons X<n and Y<n have 
the same rational homotopy type, and the set <f>H(Ker(iq))9 where the map 

in : ̂ ( W l i ^ ^ Q ) ) ) - + ffW/k); A«ts(ir(X;S))) 

is induced by the natural homomorphism G(i/k) -+ G(Q/Q), and the map 

*Q : ^(G(Q/Q); ArfQ(JR(X;Q))) — ^(G(Q/Q); Au*Q(F*(X;Q)<n))) 

is induced by the homomorphism AutQ(H*(X;Q)) -* AutQ(H*(X)Q)<n) given by 
the restriction. 

The proof is postponed to the end of this section. Although the description in 
Theorem 3.2 seems to be unmanageable, it provides us with a few of corollaries. 
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COROLLARY 3.3. If the field k is algebraically closed, the k-homotopy type of a 

formal Poincaré duality space is uniquely determined by the rational homotopy type 

of its skeleton. 

Proof. If k = k, then the group C?(k/k) is trivial, hence the map 4>h in 3.2 is trivial, 

too. Therefore #(PJ?5k(X)) = 1. 

COROLLARY 3.4. If [k : k] < oo and X is a formal rational Poincaré duality space, 

then the set PDS^X) is finite. Especially, there exists only finitely many real homo

topy types of rational Poincaré duality spaces with a given (formal) rational homotopy 

type of the skeleton. 

Proof. By the same argument as in the proof of Corollary 2.8 we can easily see that 

the set Hl{G(i/ky,Autt(H*{X;i))) is finite. The rest follows from Theorem 3.2. 

Remember that, for n ^ 0 (mod 4), every rational Poincaré duality space (simply 

connected by definition) has the rational homotopy type of a compact simply con

nected manifold [3]. Consequently, Theorem 3.2 and the corollaries give in this case a 

description of the set Man^(X) of all k-homotopy types of simply connected compact 

manifolds M with M<n ~ Q X<n. 

In the following example we construct a compact, simply connected manifold M for 

which the set Afanq(M) is infinite. 

Example 3.5. Let us denote by Af the 6-dimensional simply connected compact man
ifold P3(C)#P3(C). Clearly, H*{M;Q) « Q[u,v]/(uv,u3 - v3), deg(u) = deg(v) = 2. 
It is also not hard to verify that A/<© has the rational homotopy type of P2(C) y P2(C) 
(the one-point union) and that 

/R(Mc.;Q) a Q[«, «]/(««, «3,„3) = {Q[«,•]/(«•,u3 - «3)}<6. 

As every 1-connected 6-dimensional manifold, the space M is formal [6]. 

Every rational Poincaré duality algebra H'* with JI<6 Jff*(M<e; Q) is of the form 

Q[t*, v]/(uv, aw3 -pvz) for some nonzero a, /3 € Q. Notice that for such an algebra H'* 

there always exists a manifold N with H*(N;Q) ^ Hl* and JV<6 ~ Q Af<6. Indeed, 

let N be a formal rational homotopy type corresponding to H'*, as 6 £ q (mod 4) we 

can assume that N is a manifold. Then JV<6 is again formal by 3.1, and JV<6 ~ Q Af<$ 

since J5r*(JV<c;Q) ~Q H*(M<t;Q) by the construction. 
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It can be easily verified that the algebra Q[u, v]/(uv, auz - /Jv3) is isomorphic 
to the algebra Q[u, v]/(uv, a'u3 — /9'v3) if and only if either ab/c or Vf, is of the 
form 93 for some rational number q € Q. Consequently, there exist infinitely many 
Q-isomorphism classes of such algebras. According to the remarks above, the set 
AfanQ(P3(C)#P3(C)) is infinite. 

On the other hand it can be easily seen that ManR(P3(C)#P3(C)) consists of the 
real homotopy type of P3(C)#P3(C) only. 

3.6. Now we aim to describe a family of manifolds (Poincaré duality spaces), whose 
rational homotopy type is uniquely determined by their skeleton. Let H* be a Poincaré 
duality algebra and consider the canonical map / : Aut(H*) —• Aut(H<n) given by 
the restriction. Recall that this map plays an important role in our classification 2.7 
and 3.2. As the subset H<n C H* generates H* as an algebra, every automorphism 
of H* is uniquely determined by its restriction on H<ni hence the map ; is plainly a 
monomorphism. Suppose that the algebra H* can be represented in the form 

(*) H* ~ AV/I,where I={fu..., /,) and deg(fi) ± n for 1 < t < s. 

We claim that in this case the map ; is also an epimorphism. 
To prove this, consider an element g E Aut(H<n). Since clearly 

I T < N * A V * / ( / I +(AK*)*»), 

our map g lifts to some g G Aut(AV*) with g(I<n) C I<n- Because of (*) this implies 
plainly that g(&n) C &n. Since H>n = 0, we know that I>n = (AV*)^, therefore 
in fact g(I) C 7. This means that g projects to an element / € Avt(H*) which clearly 
satisfies j(f) = g. 

Suppose now that X is a formal rational Poincaré duality space whose rational 

cohomology algebra satisfies (*). Then the map ÌQ in Theorem 3.2, induced by /, is 

an isomorphism and <f>H{Ker{i.^)) consists of one element only. Thus we have proved: 

PROPOSITION 3.7. The rational homotopy type of a formal rational Poincaré duality 

space, whose rational cohomology algebra can be represented as in (*), is uniquely 

determined by the rational homotopy type of its skeleton. 

The condition (*) is clearly satisfied by all exterior algebras, hence the conclusion of 

3.7 is valid for a product of odd-dimensional spheres. 
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Example 3.8. Consider the complex grassmannian G{piq) of complex p-planes in 
CP+«, G(pfq) ^ U(p -f q)/V(p) x U(g). This is a formal one-connected compact 
manifold of dimension 2pq. We claim that the cohomology of G(p,q) can be represented 
as in (*) provided (p,q) ^ (2,2). At firat, clearly G(n, 1) s G(l,n) s P*(C) and the 
usual description 

2P(P»(C);Q) ~ Q[c1]/(cf+1)ldŝ c1) = 2, 

has the requisite form. It is not hard to see that the presentation 

B*(G(Piq);Q) = Q[d,..., cp, ci,...,<]/((! + • • • + cp)(l + . •. + c'q) = 1), 

dê (ci) = 2i,deg(cj) = 2;, for 1 < t < p, 1 < ; < g, 

satisfies (*) for (p,q) / (n, 1), (l,n) and (2,2). Hence, by Proposition 3.7, the rational 
homotopy type of G(p,q) is, for (p,g) ^ (2,2), uniquely determined by <2<2p?(/>,<?). 
On the other hand, the same method as in Example 3.5 can be used to show that 
there exist infinitely many rational homotopy types of 8-dimensional rational Poincaré 
duality spaces X with X<S ~Q G(2,2)<8. 

Proof of Theorem 3.2. Let H* = H*{X\Qù and let us denote by PDAK/Q(H*) 

the set of all k-isomorphism classes of rational Poincaré duality algebras J5P* with 
H%N s*Q H^N. Consider now the map A : PDSH(X) PDAH/Q{H*) defined by 
\(Y) = H*(Y;Q). 

LEMMA 3.9. The map A : PDS±(X) -> PDAU/Q(H*) defined above is an isomor
phism. 

Proof of the lemma. Notice that every rational homotopy type Y E PDS±(X) is 
formal. Indeed, Y<N is formal as Y<N ~Q X<NY hence Y is formal by 3.1. 

A is an epimorphism. For H'* € PDA\L/Q(H*) let Y be a formal rational homotopy 
type with H*(Y;Q) ~Q H'\ Since H*{Y<n;Q) ~Q H'*<N H*<N and both Y<N 

and X<N are formal, Y<N ~Q X<NI i.e. Y G PDSK{X). Plainly A(F) = Hn 

A is a monomorphism. Suppose A(F) = A(Z), i.e. IT*(y;Q) S*k H*(Z;Q). As 
the spaces Y and Z are formal over Q, they are formal also over k [7]. Since their 
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cohomology algebras are isomorphic over k, they have the same k-homotopy type, in 

other words. Y = 2 considered as the elements of PDS^X). We point out that the 

Lemma 3.9 fails in general without X being formal. 

To obtain a description of the set PDA\,/Q(H*)Ì consider the following commutative 

diagram (the notation is the same as in 2.4) 

E\ —-—• J5k 
(зло) ek | |ek 

Eq ———• Eq. 

Using the correspondence of Proposition 2.6 (compare also Theorem 2.7), it is easy to 
identify (3.10) with the diagram 

ЛЧ<7(ЬЛМ«.Ь(Я£)) ns tf4G(I/k);A«.b((^Js) 
(З.И) !•*<„ 

Я Ч Е Д / Д М « М Я * ) ) AS H4G(QmAutQ№<n)s) 

where all the maps are induced in the clear way. Our theorem now follows from (3.11) 
and the evident fact that 

PDAk/Q{H*) = Jm(®k : PDAQ(H*) - PDAk(H*)) 

where, by Lemma 2.5, PDAk(H*) = 2^1((Я^л)к) and PDAq(H*) = F$l(H$u). 
Using the tools developed in the proof above, namely the diagrams (3.10) and (3.11), 

we can obtain also the following classification. 

THEOREM 3.12. Let к be a Held of characteristic sero and let X bea formal rational 
Poincaré duality space. Then there exists a natural one-to-one correspondence between 
the set of all "k-homotopy types of rational Poincaré duality spaces Y with Y<n ~k X<n 
and the set 1т(фн) f] Ker(ik). 
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Some remarks on equivariant bundles and classifying spaces 
by J. P. May 

Let 17 be a normal subgroup of a topological group V with 
quotient group G; subgroups are understood to be closed. A principal 
(TT;D-bundle is the projection to orbits E -* E/TT of a TT-free T-space 
E. (Function spaces excepted, our T-spaces are to be of the homotopy 
type of r-CW complexes, and similarly for other groups.) For a G-space 
X, let BG(TT;D(X) denote the set of equivalence classes of principal 
(TTiD-bundles over X. For a space X, let B(TT)(X) denote the set of 
equivalence classes of principal TT-bundles over X. Let XQ denote the 
Borel construction EG XQ X associated to a G-space X. We write 

BG(TT;r)(EG x X) = B(TT;r)(XG) 
to emphasize that this set depends only on XQ as a space over BG. 
Equivalently, B(TT;D(XG) is the set of equivalence classes of free 
T-spaces P with a given equivalence P/TT = EG x X of G-bundles over 
P/r = XG- We shall see that the calculation of this set reduces to a 
nonequivariant lifting problem, and we think of it as essentially a 
problem in ordinary nonequivariant bundle theory. In fact, in the 
classical case T = G x TT, passage from P to P/G specifies a natural 
bijection 

8: £(TT;G x TT)(XG) -> B(TT)(XG). 
The projection EG x X —> X induces a natural map 

*: BG(n;D(X) -* B(TT;D(XG). 

S.M.F. 
Asterisque 191 (1990) 
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In the classical case, $ = 0$ is just the Borel construction on bundles. 
One of our goals is to determine how near the passage \P from 
equivariant bundle theory to ordinary bundle theory is to 
being an isomorphism. For example, we shall obtain the following result, 
which is essentially just an exercise in covering space theory. 

THEOREM 1. // r is discrete, then v SG(TT;D(X) -> B(U;TXXG) is a 
bijection for any G-space X. If TT (but not necessarily G) is discrete, 
then $: SG(TT;G X TT)(X) -> B(TTXXG) is a bijection for any G-space X. 

We shall see that the following deeper result is a consequence 
of the Sullivan conjecture. The phrase "(strong) mod p equivalence" will 
be explained in due course. 

THEOREM 2. Let G be an extension of a torus by a finite p-group. If 
r is a compact Lie group, then the natural transformation 
w SG(TT;D(X) —* S(TT;D(XQ) is represented by a mod p equivalence of 
classifying G-spaces. Therefore, if TT is a compact Lie group, then 
$: &G(TT;G * TT)(X) —> S(TT)(XQ) is represented by a mod p equivalence 
of classifying G-spaces. If G is a finite p-group, then the 
transformations !? and $ are represented by strong mod p 
equivalences of classifying G-spaces. 

Restricting TT instead of G, we obtain the following theorem, 
which is the main result of [7]. 

THEOREM 3. // G and TT are compact Lie groups with TT Abelian, 
then $: SG(TT;G X TT)(X) -* BCUXXQ) is a bijection for any G-space X. 
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In a preprint version of this paper, the following assertion was 
claimed as a theorem. 

ASSERTION 4. Under the hypotheses of theorem 3, there is also a 
natural bijection 

BG(TT;G x TT)(X) = B(TT)(X/G) * Nat(n0(X), Rn). 

The fact that this assertion is false was discovered by John Wicks, 
a student at Chicago, who showed that, with TT = S1 and G = Z2, it 
implies an incorrect calculation of characteristic classes. Since the 
nature of the assertion and the mistake in its proof may be of interest, 
we shall discuss these matters in an Appendix. 

The three theorems above are direct interpretations of results 
about equivariant classifying spaces, namely Theorems 5, 9, and 10 
below. There is a universal example E(TT;D -* B(TT;D of a principal 
(TT;D-bundle. Up to T-homotopy type, the T-space E(TT;D is 
characterized by the requirement that, for Q C T, the fixed point 
space E(TT;D^ be contractible if Q D TT = e and empty otherwise. 

By universality, we have a natural bijection 
(*) BG(TT;r)(X) a [X, B(TT;r)]G, 
where homotopy classes of unbased G-maps are understood. In 
particular, we have natural bijections 

BG(TT;D(EG x X) s [EG x X, B(TT;r)]G = [X, Map(EG, B(TT;r))]G. 
Let p: XG —» BG be the evident bundle and let q: T —> G be the 
quotient homomorphism. Let [XG, BT]/BG be the set of homotopy 
classes of maps f: XG —>BT such that Bqof = p and define 
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Sec(EG, BP) to be the G-space of maps cp: EG —» Br such that 
Bqocp = p: EG —• BG. A central idea in this paper is the modelling of 
classifying spaces by such spaces of sections. We introduce this idea by 
observing that the previous bijections are equivalent to 
(*) B(TT;r)(XG) = [XG, BH/BG = [X, Sec(EG, BD]G. 

This should be clear from the equivalent bundle theoretic 
descriptions of the left sides already given, but we want to see it directly 
on the classifying space level. Since Er is TT-free, the universal 
property of E(TT;D gives a T-map v: ET —* E(TT;D, unique up to 
T-homotopy. The T-map (Eq,-u): ET —» EG x E(TT;D is clearly a 
T-homotopy equivalence, where T acts through q on EG, and it is a 
fiber r-homotopy equivalence provided we choose a model for ET such 
that Eq: Er —> EG is a T-fibration. Passing to orbits over Y by first 
passing to orbits over TT and then over G, we obtain a homotopy 
equivalence 

Br EG xG B(TT;D = B(TT;DG 

over BG. (Lemma 11 at the end will generalize this equivalence.) We 
have an evident G-homeomorphism Sec(EG, XQ) = Map(EG, X) for any 
G-space X, and there results a G-homotopy equivalence 

Sec(EG, BD ^ Sec(EG, B(TT;DG) = Map(EG, B(TT;D). 

Via the projection EG —» pt and use of a chosen homotopy inverse 
to E1 we obtain a G-map 

oc: B(TT;D Sec(EG, BD 
which induces the transformation * under the isomorphisms (*) and 
(*0. In order to prove Theorem 1, we model E(TT;D as a space of 
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sections and use this model to obtain an explicit description of oc. In the 
classical case r = G * TT, we agree to abbreviate 

EG(TT) = E(TT;G x n) and BG(TT) = B(TT;G x TT); 
here Br = BG x BTT and therefore Sec(EG, BD = Map(EG, BTT). 

THEOREM 5. Let r act through q: T —> G on EG and by conjugation 
on the space Sec(EG, ED of maps <p: EG -* Er such that Eq°<p = id. 
Then Sec(EG, ED satisfies the fixed point criteria characterizing 
E(TT;D, hence the orbit space Sec(EG, ED/TT is a model for B(TT;D. 
With this model, oc: B(TT;D -* Sec(EG, BD is the G-map induced by 
SecO'd, p), -where p: Er —> Br is the universal r-bundle. If r is 
discrete, then oc is a homeomorphism. If r = G * TT, then 
MapiEG, ETT) is a model for EG(TT), MapiEG, ETT)/TT is a model for BQTT, 

oc: B(TT;D -* MapiEG, BTT) is induced by p: ETT -* BTT, and oc is a 
homeomorphism if TT is discrete. 

When r is discrete, elementary covering space theory shows that 
any map cp: EG —> Br such that Bq«>cp = p lifts to a section cp: EG —> Er 
of Eq and that any two such lifts are in the same TT-orbit. The last 
homeomorphism is seen similarly, and Theorem 1 is an immediate 
consequence of these homeomorphisms. 

To prove Theorem 5, we need a kind of topological analog of the 
standard comparison of projective and acyclic resolutions. 

LEMMA 6. Let G be a topological group, let X be a free G-CW 
complex, and let Y be a nonequivariantly contractible G-space. Then 
the space MapG(X,Y) of G-maps X —> Y is contractible. 
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PROOF. If X = G x K for a space K, then MapG(X, Y) = Map(K, Y) 
and the conclusion is clear. Since MapG(?, Y) converts pushouts to 
pullbacks, G-cofibrations to fibrations, and colimits to limits, the 
conclusion follows in general by use of the cell structure on X. 

PROOF OF THEOREM 5. Recall that we have a fiber T-homotopy 
equivalence (Eq,tO: Er -* EG * E(TT;D over EG. Applying the functor 
Map(EG, ?) and restricting to the fiber over id £ Map(EG, EG), we 
obtain a r-homotopy equivalence 

Sec(EG, ED -» Map(EG, E(TT;D). 
Let Q C T. Since EG is TT-trivial and E(TT;D is TT-free, there are 
no Q-maps EG -* E(TT;D if Q n TT * e. If Q fl TT = e, then Q acts 
freely via q on EG while E(TT;D is Q-contractible since E(Q;D^ is 
contractible for all A C Q. Therefore MapQ(EG, E(TT;D) is contractible. 
The compatibility of Sec(id, p) with the earlier map oc is checked by 
an easy diagram chase. 

To prove Theorem 2, we must first obtain a nonequivariant 
description of the fixed point maps oĉ . At least if V is a Lie group, the 
fixed point structure of the G-space B(TT;D is given as follows [6, Thm 
10]. Let Nr*Q and ZpQ be the normalizer and centralizer of Q in T. 
If Q fl IT = e, then an easy check shows that TT n Nr-Q = TT n ZpQ; 
we agree to write TT̂  for this intersection. 

THEOREM 7. For H C G, B(TT;r)H = 11 BTT&, where the union runs 
over the TT-conjugacy classes of subgroups Q c T such that 
Q D TT = e and q(Q) = H; B(7T;nH is empty if th ere are no such 
subgroups Q. 

244 



EQUIVARIANT BUNDLES & CLASSIFYING SPACES 

LEMMA 8. For Q C T such that Q (1 TJ = e and q(Q) = H, define 
p.: H X TT& —> r by id(q(X), n) = Xrc and note that qop. = i°n±. The 
restriction of c*H to BTT^ is the adjoint of the classifying map 

B/UL: BH x BTT& = B(H xU^) -> BH 

PROOF. Let oc: EG x E(TT;D —> Er be a r-homotopy equivalence over 
EG inverse to (Eq,iO. Since the adjoint of oc is obtained from oc by 
passage to orbits and since BTT̂  = E (n ;D^ /n^ as a subspace of 
B(TT;D, it suffices to observe that the restriction of oc to the free 
contractible (H x TT^)-space EG x E(TT;D^ is |jt-equivariant: 

oc(yq(X), XTC) = oc(yq(ixA), XATT) = oc((y,x)ATr) = (cx(y,X»ATT 
for y 8 EG, x e E(TT;DQ, X e Q, and TT e TT̂ . 

Given this interpretation of oĉ , Theorem 2 follows directly from 
the application of the Sullivan conjecture to the study of maps between 
classifying spaces given by Dwyer and Zabrodsky [3] and Notbohm [10]. 
We say that a map f: X —» Y is a mod p equivalence if f induces an 
isomorphism on mod p homology. We say that f is a strong mod p 
equivalence if the following conditions hold. 
(i) f induces an isomorphism TUO(X) —> TTO(Y); 

(ii) f induces an isomorphism TTI(X,X) -* Tri(Y,f(x)) for any x e X; 

(iii) f induces an isomorphism H*(Xx,Zp) -* H*(Yf(x),Zp) for any 
x 8 X, where XX and Yf(x) are the universal covers of the 
components of X and Y containing x and f(x). 

We say that a G-map f: X —» Y is a (strong) mod p equivalence if 
fH: xH -» YH is a (strong) mod p equivalence for each H C G. The 
results of Dwyer and Zabrodsky and of Notbohm admit the following 
interpretation (their G and TT playing opposite roles from ours). 
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THEOREM 9. // r is a compact Lie group and G is an extension of a 
torus by a finite p-group, then the G-map oc: B(TJ;D —» Sec(EG, BD is 
a mod p equivalence. If G is a finite p-group, then oc is a strong mod 
p equivalence. 

When r = G x TT, Sec(BH, BD = Map(BH, BIT) and the second 
statement is Dwyer and Zabrodsky's [3, 1.1] while the first result is 
Notbohm's [10,1.1]. When G = Zp, the result is [3, 4.5]. The result for 
general extensions follows from the result for trivial extensions exactly 
as in the deduction of [3, 4.5] from [3, 4.4]. Incidentally, as observed 
by Notbohm [private communication], the components of oĉ  induce 
injections but not surjections on the fundamental groups of 
corresponding components when G is an extension of a non-trivial 
torus by a finite p-group. 

Of course, Theorem 2 is a restatement of Theorem 9. Some 
discussion of the significance of the represented form of the result is in 
order. For G-spaces Y, [9] constructs a functorial "fundamental 
groupoid G-space TTY" and a natural G-map %: Y —» TTY. For 
H C G, %H: YH -> (TTY)H induces a bijection on components and an 
isomorphism between the fundamental groups of corresponding 
components, while each component of (uY)H has trivial higher 
homotopy groups. For y e Y ,̂ let Yy be the homotopy fibre of % 
regarded as a based map with respect to the basepoints y and %(y). 
Then (Yy)H is the homotopy fibre of the restriction of XH to the 
component of Y*~* containing y. Clearly Yy is G-simply connected, in 
the sense that all of its fixed point spaces are simply connected. We can 
p-adically complete G-simply connected (or G-nilpotent) G-spaces and 
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characterize the completion in terms of the usual homological 
characterization of completion on H-fixed point spaces for all H [8]. If 
f: Y —* Z is a strong mod p equivalence, then the map Tif: TTY -> TTZ 
and the p-adic completions fp : (Yy)p —* (Zf(y))p for у e YB are all 
G-homotopy equivalences and so induce bijections on application of the 
functor [X,?]G-

The following result is the represented equivalent of Theorem 3 and 
was proven in [7]. (The maps studied in [7] were defined a bit 
differently, but an easy diagram chase gives the conclusion in the form 
stated.) Recall that a G-map f: Y -» Z is said to be a weak 
G-equivalence if each f̂ : Y^ —* Z^ is a weak equivalence and that 
f*: [X, Y]Q —* [X, Z]Q is then a bijection for any G-CW complex X. 

THEOREM 10. // 77 and Г are compact Lie groups with TT Abelian, 
then oc: BQCTT) Map(EG, BIT) is a weak G-equivalence. 

As a final remark, we give an equivariant generalization of the 
usual Borel construction model for the classifying space of an extension. 

LEMMA 11. Let Л с TT с Г, where Л and TT are normal subgroups 
of the topological group Г. Then, as (Г/ТТ)-spaces, 

В(ТТ;Г) ^ ЕСТТ/Л; Г/Л) * JT/A В(А;Г). 
PROOF. For Q c T , Q П TT = e if and only if both Q П A = e and 
Э П (ТТ/Л) = e, where Э is the image of Q in ТТ/Л. Therefore, as 
Г-spaces, 

E(TT;D s Е(ТТ/Л; Г/Л) * Е(Л;Г) 
by the characteristic behavior on fixed point sets. Now pass to 
TT-orbits by first passing to Л-orbits and then to (TT/A)-orbits. 
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APPENDIX 

Let G and TT be compact Lie groups. A TT-bundle over X/G 
may be regarded as a G-trivial (TT;G x TT)-bundle, and it determines a 
(TT;G x TT)-bundle over X by pullback. This gives a natural map 

C: B(TT)(X/G) — BG(H;G X n)(X). 
When TT is Abelian, the false proof of Assertion 4 to be described here 
would show that C is a naturally split injection. 

The complementary factor would be Nat(-iiQ(X), R^), which we 
proceed to define. Let O be the topological category of orbit 
G-spaces G/H and G-maps between them. Let hO be its homotopy 
category. For any n and any G-space X, there is an evident 
contravariant functor irn(X): hO —» Sets which sends G/H to irn(X^). 
There is also a contravariant functor R :̂ O —» Sets which sends G/H 
to the set of TT-conjugacy classes of Lie group homomorphisms H —» TT; 
R^ factors through hO since homotopic homomorphisms lie in the 
same TT-conjugacy class by the Montgomery-Zippin theorem [2, 38.1]. 
Let Nat(iTQ(X), R^) be the set of natural transformations TTQ(X) ->R 

A principal (TT;G x TT)-bundle over G/H determines and is 
determined by an element of Rn(G/H). A principal (TT;G x TT)-bundle 
over X determines a natural transformation TTQ(X) —• R^ by pulling 
the bundle back along G-maps G/H —» X which represent elements of 
TTQ(X^). This gives a natural map 

p: B(TT;G x n)(X) -» Nat(u0(X), Ru). 
When TT is Abelian, the false proof of Assertion 4 would show that p is 
a naturally split surjection. A left inverse X would construct a global 
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bundle over X from compatible bundles over the domains of the 
representative G-maps G/H —» X. Given X, a natural bijection 

B(TTXX/G) x Nat(TT0(X), Rn) - BG(TT;G X TT)(X) 

would be obtained by using the Abelian structure of TT to add bundles 
in the images of the transformations C and X. 

The following is the represented equivalent of Assertion 4. 

ASSERTION 12. There is a weak G-equivalence 
BTT x K(Rn,0) -> Map(EG, BIT), 

where G acts trivially on BTT. 

To explain this assertion, we must say a bit about diagrams of 
G-spaces and about Eilenberg-MacLane G-spaces K(TT,0). Define an 
0-space to be a continuous contravariant functor from 0 to the 
category of spaces; a map of 0-spaces is a natural transformation. A 
G-space X determines the 0-space $X specified by ($X)(G/H) = XH. 

Conversely, by Elmendorf [4, Thml], an O-space T determines a 
G-space *PT and an 0-map e: $$T —> T such that each component 
map e: (\PT)H —*T(G/H) is a homotopy equivalence. In particular, with 
H = e and T = $X, the G-map e: \£$X —* X is a weak G-equivalence. 
With the evident notion of homotopy in the category of O-spaces, a 
slight refinement of [3, Thm 2] gives an adjunction on the level of 
homotopy classes of maps 
U ) [X, *T]G s [*X, T]0 
when X has the homotopy type of a G-CW complex. 
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A space Y is homotopically discrete if each of its components is 
contractible, that is, if the discretization map 8: Y —> TCQY is a 
homotopy equivalence. A G-space Y is homotopically discrete if each 
Y*~* is homotopically discrete. These are the K(TT,0)'S referred to above, 
where n is a continuous functor from 0 to discrete spaces or, 
equivalently, a functor from the homotopy category hO to sets. Given 
such a functor TC, we can construct K(TC,0) by setting K(TC,0) = $TC; 
(-L) and the discreteness of TC then give 

[X, K(TC,0)]G = [$X, Trie = Nat(ir0(X), TC). 
Since we obviously have [X, BTTIQ S [X/G, BTT], it is now clear that 
Assertion 12 implies Assertion 4. 

For a G-space X, the discretization maps of fixed point spaces 
specify an O-map 8: $X —»TCQ(X), and application of $ therefore gives 
a natural G-map X = $ $ X —» K(TCQ(X),0). It seems reasonable to expect 
this map to admit a section, but it usually doesn't. To obtain a section, 
it would suffice to obtain a right inverse TCO(X) —» $X to 8, but there 
is usually no such natural choice of basepoints of components of fixed 
point spaces. This train of thought leads to a 

"PROOF OF ASSERTION 12". The intuition is that there should be such a 
section of 8 when X = Map(EG, BTT). With the standard functorial 
construction of EG, we have the two continuous covariant functors B 
and B' from 0 to spaces specified on objects by B(G/H) = EH/H and 
B'(G/H) = EG/H. We may identify $X with the contravariant functor 
Map(B', BTT). Therefore 
(A) Map(EG, BTT) s *$Map(EG, BTT) = *Map(B', BTT). 
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On the other hand, passage to classifying maps defines an O-map 
p: Ru -> Map(B, BTT). By [7, Prop. 4], 

B: Hom(G, n) -» [BG, BTT] 
is a bijection. Therefore iroMapCB, BTT) = Rn and we have a map 
(B) *p: KCR̂ O) -> *Map(B, Bn). 
It seems reasonable to expect there to be a weak G-equivalence 
(C) *Map(B, BTT) = $Map(B\ Bn). 
Given this, $p would transport under the equivalences (A) and (C) to 
give the desired section 

X: KCR̂ O) — Map(EG, BTT). 
Letting C BTT —* Map(EG, BTT) be induced by the projection EG —» pt 
and cp be the product on Map(EG, BTT) induced by the product on the 
topological Abelian group BTT, the composite 

cpo(c,x): BTT x K(Ru,0) -> Map(EG, BTT) 
would then be a weak G-equivalence (compare [7, p.173]). 

In fact, (C) fails. The obvious way to try to prove (C) would be to 
exploit the equivalences B(G/H) = EH/H -» EG/H = B'(G/H) induced by 
the inclusions EH —> EG. However, these equivalences fail to define a 
map B —» B" of O-spaces. The requisite naturality fails, as we see by 
taking H = e and observing that the map from the point Ee into EG 
cannot be a G-map. 

Assertion 12 would imply an incorrect calculation of the 
characteristic classes of principal (TT,G x TT)-bundles in Bredon 
cohomology. For a commutative ring k, a k-module valued coefficient 
system is a contravariant functor from hO to the category of 
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k-modules. Write ExthO for the Ext functor in the resulting Abelian 
category of hO-k-modules. For a contravariant functor 
TT. hO —» Sets, let kic denote the hO-k-module obtained by letting 
krc(G/H) be the free k-module generated by TT(G/H). Let G and TT be 
compact Lie groups with TT Abelian and let M be an hO-k-module, 
where k is a commutative ring such that H*(BTT; k) is k-free. Then 
there is a universal coefficients spectral sequence converging from 
H*(BTT; k) ®k Ext^ptkR^, M) to HQ(BG(TT); M) [11]. Assertion 12 
would imply that E2 = Em in this spectral sequence, and this 
conclusion is usually false. 
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HOMOLOGIE DE HOCHSCHILD ET HOMOLOGIE 
CYCLIQUE DES ALGÈBRES DIFFÉRENTIELLES 

GRADUÉES 

Micheline Vigué-Poirrier * 

La notion d'homologie de Hochschild pour une algèbre associative A sur un anneau commutatif 
unitaire k est bien connue, [Me]. Elle est notée HH*(A) et définie par HH*(A) = TOTa®a°p (A, A) 
où Aop est l'algèbre opposée de A . 

Cette notion a été étendue à la catégorie des algèbres associatives différentielles graduées sur 
un anneau commutatif k (notée &-ADG) par plusieurs auteurs, [B1],[G]. 

La notion d'homologie cyclique, notée HC*(-) , est apparue plus récemment ; on trouvera un 
exposé complet dans [LQ] pour le cas des algèbres ; et pour la catégorie A;-AD G dans [Bl] ou [G]. 

Ce papier contient une généralisation à la catégorie &-ADG (où k est un corps quelconque) du 
résultat de Loday-Quillen du calcul explicite de l'homologie de Hochschild et de l'homologie cyclique 
pour une algèbre tensorielle. Nous fournissons un algorithme de calcul précis de l'homologie de 
Hochschild et de l'homologie cyclique pour une algèbre différentielle graduée libre. Le résultat 
général s'énonce ainsi : 

Théorèmes 1.5 et 2.4 Soit (A, d) = (T(V),<f) une algèbre différentielle graduée libre sur un 
corps commutatif k . Alors, on a des isomorphismes d'espaces vectoriels gradués : 

(1) HH*(A,d) = i2*(A0 (A ® où Vn = Vn-i, S\A = d, 6(a ® v) = da <g> v - S(a,dv) + 
(-1)M+I*l(au - (-1)H-Mt;a) et S est l'application k-linéaire : 

p-1 
S(a, vx • • • vp) = (-l),a| l)c,"t>à+i • • • vpavx • • • Vi-i ® v{ 

i=l 
+ (-l)|a,av! •••Vp-i <g)vp . 

(J8; #0*04, d) = JJ*(fc[u] 0 ( i ® i ® t0,£>) où |u| = 2 ,D = 0 sur k[u] ,D = 8 sur 
A 0 (k[u] <g> (A ® F)) et 

Z>(un <g> vi • • • vp) = un (8) c?(vi • • • vp) + wn_1 ® [ui • • • ® vp 
p-i 

+ ^ ( - l ) ^ ' • • • vpv1 • • • v,-_i <g> vi] 
¿=1 

si n > l,p > 1 . 

La motivation d'un tel travail est double : d'une part, il est facile de montrer que si (A, d) est 
une ADG quelconque, alors il existe une ADG libre (T(V),<f) et un morphisme p : (T(V), d) —• 

* URA au CNRS D 0751 
S.M.F. 255 
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(A, d) qui induit un isomorphisme en homologie, et, par un résultat classique, [Bl], les ADG (A, d) 
et (T(V), d) ont des homologies de Hochschild et cycliques isomorphes ; le calcul, dans le cas général, 
se ramène donc, au calcul pour les ADG libres. D'autre part, en topologie algébrique, le calcul 
de l'homologie (resp. l'homologie équivariante)de l'espace des lacets libres sur un espace donné 
X se ramène à un calcul d'homologie de Hochschild (resp. cyclique) d'invariants topologiques 
liés à X, [BF],[G], [J]. Enfin, la théorie de Morse permet de montrer des résultats concernant la 
géométrie d'une variété riemannienne à partir uniquement de l'étude de la cohomologie de l'espace 
des lacets libres sur cette variété. Ceci explique notre recherche d'un "modèle" permettant de 
calculer l'homologie de l'espace des lacets libres sur un corps k quelconque. En caractéristique 
0 , le problème a été complètement résolu dans [SV], en travaillant dans la catégorie des algèbres 
commutatives différentielles graduées. En caractéristique p non nulle, il est possible, dans certains 
cas, de travailler encore dans la catégorie des algèbres commutatives graduées, [HV]. 

Le plan de l'article est le suivant : Dans le § .1, nous donnons quelques rappels d'algèbre 
différentielle homologique, et nous définissons un complexe dont l'homologie calcule l'homologie de 
Hochschild. Dans le § .2, nous définissons sur le complexe précédent un opérateur /3 de degré -f 1 ; 
le complexe mixte ainsi obtenu permet de calculer l'homologie cyclique, cf. [K]. Dans le § .3, nous 
donnons une méthode de calcul de l'homologie (resp. de l'homologie équi variante) de l'espace des 
lacets libres sur un espace X , à valeurs dans un corps commutatif k , à partir de la donnée de 
l'algèbre C*(Q,X, k) des chaînes sur l'espace des lacets SIX ou de l'algèbre des cochaînes C*(X, k) . 
Si X est un espace simplement connexe de L-S catégorie 1 , alors on a une formule explicite pour 
l'homologie (resp. l'homologie équivariante) de l'espace des lacets libres sur X . Elles coïncident 
avec celles données par Hsiang et Staffeldt [HS], et Burghelea [Bl] pour X une suspension et k 
un corps de caractéristique 0. Cette formule figure aussi dans [CC]. Pour les sphères, un calcul 
analogue se trouve dans [H]. Notre modèle permet de calculer explicitement l'homologie de l'espace 
des lacets libres sur X = CP2 . 

Un problème reste ouvert. Peut-on montrer, en utilisant le modèle du § .3, la célèbre conjec
ture : 

Conjecture : Soit X un espace simplement connexe tel que H*(Xyk) soit de dimension finie 
(k corps quelconque). 

Alors, la suite des nombres de Betti de Vhomologie de Vespace des lacets libres à valeurs dans 
k n'est pas bornée si et seulement si H*(X, k) ne peut pas être engendrée par un seul élément en 
tant qu 'algèbre commutative graduée. 

Cette conjecture a été complètement résolue en caractéristique 0 , [SV]. En caractéristique 
p zfi 0 , elle a été résolue dans certains cas, voir [HV]. 
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§.1. Homologie de Hochschild d'une algèbre différentielle graduée libre 

Les définitions de base en algèbre homologique différentielle se trouvent, par exemple, dans 
[HMS],[FHT1]. 

Tous les espaces vectoriels sont définis sur un corps commutatif k et sont Z-gradués, avec la 
convention que Mn — M-n si ©„M" est un A:-espace vectoriel gradué. La valeur absolue du degré 
d'un élément x est notée \x\ . 

On dit que (A, d) est une A:-algèbre différentielle graduée (en abrégé ADG), si A = (BnezAn 
est un A:-espace vectoriel gradué, muni d'une structure d'algèbre associative unitaire sur k telle que 
An • Am C An+m • De plus, d est une dérivation de A;-algèbre de degré ±1 vérifiant cP = 0 . Dans la 
suite, on considérera uniquement, ou bien des algèbres différentielles graduées A* avec An = 0 pour 
n < 0 et d de degré — 1 , ou bien des algèbres différentielles graduées A* avec An = 0 pour n < 0 et 
d de degré +1 . Une ADG de ce dernier type sera étudiée comme une ADG (A_#, uniquement 
graduée en degrés négatifs et munie d'une différentielle de degré — 1 . Si V = 0n€zVn est un 
A:-espace vectoriel gradué, on note T(V) l'algèbre associative libre construite sur V . Si (A, d) est 
une ADG, on définit l'ADG (Aop,dop) par Aop ~ A , aop-bop = (-l)W'W(ba)op,dop(aop) = (da)op . 

L'application Fg : (A 0 Aop) 0 A —• A définie par Fg(a 0 pop,~r) = (-l)W'Waj/3 munit A 
d'une structure de (A (8) Aop)-module différentiel gradué à gauche. 

L'application Fd : A 0 (A (8) Aop) -> A définie par Fd(~f, OL 0 (3op) = 

(-1) l/»l(l«l+M) /^7« munit A d'une structure de (A 0 Aop)-module différentiel gradué à droite. 

Définition 1.1 [B1],[G]. Soit (A*,<i*) une algèbre différentielle graduée telle que, ou bien 
An = 0 pour tout n < 0 , ou bien An = 0 pour tout n > 0 et AQ = k , alors on définit l'homologie 
de Hochschild de (A.,d.) , notée HH*{A*,d+) par HH*(A+,d+) = TorA<8>A°*(A, A) . 

Définition 1.1.' Soit (A*,c?*) une algèbre différentielle graduée telle que A° = k ,A* = 
®n>oAn , et d* de degré +1 , on définit l'homologie de Hochschild HH*(A*,d*) par 

HH*(A*,d*) = HH-m(A—,d—) . 

La définition du foncteur Tor dans la catégorie différentielle se trouve, par exemple, dans 
[FHT1] et ne sera pas rappelée. 

Si (A, c?) est une algèbre différentielle graduée vérifiant les hypothèses de la définition 1.1, on 
a alors HH*(A,d) = H*(A ®A<S>A°I> P) où P —• A est une résolution quelconque semi-libre de A 
par des (A 0 Aop)-modules différentiels gradués à gauche. Rappelons que si R est une algèbre 
différentielle graduée, un i2-module est dit libre si c'est un R# -module libre sur une base de cycles 
(où R# est l'algèbre graduée sous-jacente à R), et un i2-module P est dit semi-libre s'il est une 
réunion croissante de sous-modules 0 = P_i C Po C • • • tel que chaque Pi/Pi—i soit libre. 
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Dans le cas particulier où A = T(V) , avec V gradué en degré 0 et d = 0 , rappelons le résultat 
de Loday-Quillen (lemme 5.1), on a une suite exacte de (A 0 Aop)-modules : 0—* A <g> V <g> A ^ 
A ( g ) i - ^ A - v 0 o ù m(a 0 a1) = aa! , b'(a 0 v 0 a') = av 0 a1 — a 0 va' , ce qui leur permet de 
calculer facilement l'homologie de Hochschild et l'homologie cyclique de T(V) . 

Nous supposons maintenant que (A, d) = (T(F), d) est une ADG libre vérifiant les hypothèses 
de la définition 1.1. Nous utilisons une version graduée de la résolution de [L-Q] pour construire 
une résolution semi-libre de A par des (A 0 Aop)-modules différentiels gradués. 

Il est immédiat de vérifier que, si W = ®nWn est un A;-espace vectoriel gradué, alors A®W<g>A 
est un (A 0 Aop)-module différentiel gradué à gauche, si on pose (a 0 P°p) * (a 0 w 0 a') = 
(_1)I/'I'[M+H+Kllaa(g)ly(g)a,i9 , pour a,/?,a,a' € A,w € W . On a : a®w®a' = (-l)la'l'M(a0 
a'op) • ( I 0 w ®1) . 

Soit A = T(V) une algèbre tensorielle graduée, posons V = ®Vn où Fn = Vn_! . On définit 
m : A 0 A —• A par m(a 0 a') = aa' , e : A —• A (g) A par £(a) = a 0 1 ,6' : A 0 V 0 A —• A 0 A 
par b'(a (g) v (g) a') = (—l)'a''(at; (g) a' — a <g> va') et 5 : A(g)A-> A ® 7 ® i par ,s(a (g) vi • • • vp) = 
X^fJ11(-l)1+^-'*=i+1 *v*'avi • • • Vj_x 0 ^ 0 vn+1• • • vp - OiVX • vp_i 0 ûp 0 1 , si a € A , vi • • vp € 

rp(F) , et s = 0 sur A (g) . 

5/ m 

Lemme 1.2 5<nt Ze diagramme suivant : A (g) V <g> A } A (g) A ( * A 6', s, m, e ont 

été définis ci-dessus. Alors 
1) me = ldA , Vs + em = IdA(8»i , s6' = 1*1,4® V®A 

2) La suite 0 —> A0V0A —• A(g)A —• A —• 0 est une résolution de A par des (A(g>Aop)~modules 
gradués. 

• II est facile de vérifier que 6', m, e, 5 sont des morphismes de (A (g) Aop)-modules gradués. De 
plus, 1) se montre immédiatement et prouve que (e, s) est une homotopie entre Id et 0 , ce qui 
donne 2). • 

Soit maintenant (A, a*) = (T(V), d) une ADG libre; nous allons définir une différentielle d\ sur 
A (g) (g) A qui fasse de (A 0 V (g) A, d\ ) un (A (g) Aop)-module différentiel gradué et qui fasse de V 
un morphisme de modules différentiels gradués. 

Si a, a' e A, v G V , on a : a (g) v (g) a' = (-l)la'H*l(a (g) a,op) • (1 (g) v 0 1) . Il suffit donc de 

définir di(l 0 û 0 1) et de l'étendre par : 

(_l)|a,H^l^1(a ® « ® a') = d(a 0 a'op) - (1 ® v ® 1) + (-l)lal+la'l(a 0 a'°*>) • d^ l (g) v (g) 1) . 

On a db'(l (g) v (g) 1) = ¿(1; (g)l — 1 0 v) = ch; 0 1 — 1 0 du , mais 1 0 v (g) 1 = —s(l 0 t?) , donc 

db'(l 0 v 0 1) = -d&'s(l 0 t7) . D'après le lemme 1.2, d6'(l 0 v 0 1) = -d ( l 0 v) + dem(l ®u) = 
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—l®dv+em(l<g>dv) = V(—s(l®dv)) . Posons di(l<g)u<g)l) = — s(l®dv) , soit dis(l®v) = s(l<g>dv) . 

(*) dx(a ®v<S>a') = da<8)v<8>a' + ( - l ^ + ^ a <g> v <g) da! + (-l)'al+la'HH+i5(a <g> (efo)a') . 

Lemme 1.3 (1) La formule (*) définit une différentielle d\ sur A (g) V (g) A qui en fait un 
(A (g) Aop)-module différentiel. 

(2) On a Vd\ — dJb1 et sd = d±s où d désigne la différentielle produit sur A (g) A . 

• (1) est vrai par construction et (2) est vérifié sur k (g) V (g) k , donc partout. • 

Posons Pn = (A <g) A)n 0 (A (g) F (g> A)n , P = 0nPn , £>,A0A = d > *>(0 = <*i(0 + ( -1)K*(0 
si f e A ^ V ^ A . On définit $ : (P, £>) —• (A, d) par $ = m sur A <g> A , $ = 0 sur A (g) F (g) A . 

Théorème 1.4 Soit (A,d) = (T(V),d) «ne AZ?<2 Zi&re, et aotf $ : (P,Z>) -* (A, d) défini 
ci-dessus, alors ((P,D),$) est une résolution semi-libre de (A, c?) par des (A (g) Aop)-modules 
différentiels gradués. 

M D est un morphisme de (A (g) A01,)-modules puisque c?l5 b1 , et d le sont. Si £ E A (g) V <g) A , on 

a 
D(D(0) = D(d1(0 + (-l),e,ft'(0) = <*i o * ( 0 + (-l)KI+1fc'di(0 

+ (-l)K'dft'(O = (-l)K'[dft'«) - fc'*(0] = 0 , 

donc D2 — 0 . Il est clair que (P, D) est un module semi-libre. Il reste à montrer que : 
i2*(P, D) —• H*(A,d) est un isomorphisme. Cela découle d'un argument classique de suites spec
trales compte-tenu des lemmes 1.2 et 1.3. • 

Par définition du Tor différentiel, on a : 

TorA0A°P(A,A) = Hm(A ®A®A°* P,d®A®A°p D) . 

Il est facile de vérifier que l'application d : A ®A®A°P [(A (g) A) 0 (A <g> V <g) A)] —* A 0 (A (g) V) 
définie ci-dessous est un isomorphisme de A:-modules gradués. 

0(ct ®A®A*P (ft® V)) = (-l)l6'W'a'+l*l]fc'a6 , si 6, 6', a € A 

0(а ®A®A°r (Ь ® ti ® b')) = (_1)1ь'К1«1+1*1+1*|]&'аЬ ®vsiv€V . 

Théorème 1.5 5ottf (A, d) = (T(V),d) une algèbre différentielle graduée libre sur un corps 
commutatif k telle que, ou bien V = 0n>o^n > ou bien V = 0n<-i^n > posons V = ®Vn 
et Vn = Vn-i . Alors il y a un isomorphisme de k-espaces vectoriels gradués : HH+(A,d) ~ 
H*(A 0 (A (g) V),S) où la différentielle S est donné par 6\A = à, ,S(a (g) v) = da <g) v — S(a,dv) + 
(-l)lal+l*l(at; - (-iya^va) . L'application S : A (g) A -+ A (g) V est k-linéaire et définie par 
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S(a, vi . . . vp) = (-l)|a,Ef=i1(-l)et>«+i .-.Vpavi ...Vi-! 0 Vi + (-l)lalav1 ...Vp.! ® vp et ef- = 
(|vi+i| + . . . + M ) ( |a | + |t;i| + .. . + |v,--i|) , M f l 6 M 6 V . 

• Il suffit de transporter à A0(A0 V) , à l'aide de l'isomorphisme 0 , la formule de la différentielle 
<2 <E>A<g>A°p D . En particulier, S(a,dv) — 
(-l)'°l0(a ®A®Aop s(l 0 dv)) . • 

Pour tout m > 1 , définissons la permutation cyclique rm : V®171 —* y®m par rm(ui 0 . . . 0 
vm) = (-l)\vrnH\vi\+:.+\vm-1\]Vm 0 . . . (g)Vm_1 et on pose r0 = Id . 

Remarque i.6* L'application 5 : V0m 0 V®p -* F®™**"1 0 F définie pour m > 0 ,p > 1 , est, 
au signe près, égale à : 

a o [Id + (rTO+1 0 /c?) o (/d 0 rp) + (r£+1 0 Id) o (7d 0 r*) + . . . + ( r ^ 0 Je?) o (Id 0 r^"1)] 

où a est l'isomorphisme Vr®m+*> —• y®(™+p-i)(g)y qui envoie vi . . . vm+D_ivm4-» sur v\ . . . i>m4-»-i<8) 

Vm+p . 

Le théorème 1.5 s'énonce ainsi dans le cas où d = 0 . 

Théorème 1.7 Soit A = T(V) tme algèbre tensorielle graduée sur un corps commutatif k 
quelconque, avec, ou bien Vn = 0 pour n < 0 , ou bien Vn = 0 n > 0 , alors l'homologie de 
Hochschild H H*(T(V)) se décompose en la somme directe de deux k-espaces vectoriels gradués : 
0 (V®"7(Id - rm)) et 0 Ker(Id - rm) , où Ker( )„ = Ker( )„_a) . 

m>0 m>l 
§.2. Homologie cyclique d'une algèbre différentielle graduée libre 
[B1],[BV],[G],[J]. 

Soit (A, d) une algèbre associative sur un corps commutatif k vérifiant les hypothèses de 
la définition 1.1. On définit le complexe de Hochschild bigradué (CPyq(A),dyb) , p > 0 , par 

Cpg = 0 Aio 0 A^ 0 . . . 0A^ ,d(aiQ 0 . . .®aip) = (-l)p £fc=o(-1),'0+ +ifc-la<0 ®ah .. . 0 
to+*i".+»p=g 

da^ 0 . . . 0 aip , si a .̂ € A .̂ . 

b(aio 0 . . . 0 aip) = 5^(-l)*aio 0 . . . 0 aikaik+1 0 . . . 0 aip 
k=o 

+ ( - i ) ^ .+ .«+Vi )a . ? f l . o 0 . . . 0 al-,_1 

Proposition et Définition 2.1 (CM(A), c?, 6) est un complexe bigradué appelé complexe de 
Hochschild bigradué. L'homologie du complexe total associé (C* = 0n£nîd+&) (oùCn = ® ^p,g) 

p+q=n 
est isomorphe à l'homologie de Hochschild de (A,d) . 

Soit N : CPig -> CM défini par JV = £^+1((-l)prp+i)fc , où Tp+1(al0 0 ah . . . 0 aip) = 
(_l)*P(*o+-.H-*p-i)a.p 0 aio .. . 0 flp.j . Soit s : Cp>q —> Cp+i>g définie par ,s(a0 <8> - - ® ap) = 

1 (8) a0 0 • • • 0 ap . Posons B : CPtq —• Cp+lyq , B = (Id - (-l)p+1rp+2) osoN . 
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On vérifie que B2 = Bb + bB = Bd + dB = 0 . On peut former le bicomplexe : 

b+d b+d b+d 

C2 
в 

Ci в Co 

6+d 6+d 

Cl в Co 

Ь+d 

Co 

dont le complexe total sera noté k[u](S>BC , ([K]), où k[u] est l'algèbre de polynômes à un générateur 

de degré 2. 

Définition 2.2 L'homologie du complexe total k[u](g>BC associé au complexe de Hochschild bi-

gradué est appelée homologie cyclique de l'algèbre différentielle graduée (A,d) et notée HC*(A, d) . 

Remarque : Si A = ® AN , on retrouve la définition de [Bl] ou [G]. Si A = ( ® AN, d) , 
n>0 n>0 

AQ — k, d de degré +1, alors iifC*(A_*, est uniquement graduée en degrés négatifs ou nuls et 

coïncide avec l'homologie cyclique négative HC~(A, d) introduite par Jones, [J]. 

Rappelons brièvement la définition de la résolution standard de Hochschild de A comme 

(A <8> Aop)-module différentiel, (voir [Mo],§.6). Posons pour n > 0 , B'n^ = A <g) (A®N) (g) A , et 

6' : B'n + —• B'n_1 + est défini par : 

b'{a <g> (Ai (g) • • • (8) An) <8) a') = aAi (8) A2 • • • <8> An <8> a' 

+ y^(-l)*6gAi(g)- • -<8>А*Л*+1 <g> • • - (g An (8) a' + (-l)na (8> Ai • • • An_i (8) Ana' 
Àr=l 

Soit 2% = ®nB'n ou #n = ®v+q=nBpq et : Si -> A définie par $JB^ = 0 si p > 1, 

$jBj(a<8)/?) = OJ/? si a G A, /9 G A; alors ( (^ ,d+6 ' ) , est une résolution semi-libre de A appelée 

résolution standard de Hochschild. 

Revenons au cas où (A, d) = (T(V),c?) et généralisons, au cas différentiel gradué, les résultats 

de [K] §.3 : considérons le diagramme : 
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b' B[ „ = A <8> A <8> A 
b' 

B^, = A (8) A m 
A 0 

id id 

A®V ® A 
6' 

s 
A® A 

m 

e 
A 0 

où la ligne du bas est la résolution ((P, £>),<$) du §.1. 

Posons j ' = 5 o 6' , c'est, par définition, un morphisme de (A (g) Aop)-modules différentiels 
gradués, qui rend commutatif le diagramme ci-dessous. Il définit un morphisme explicite de la 
résolution standard de Hochschild vers la résolution définie au §.1. Tensorisons chacune des deux 
résolutions par A<g)A<g>A°p , on obtient le diagramme commutatif suivant : 

C2,*(A) = A (g) (A®2) ь Ci,* = A® A b A 0 

3 id 

0 A®V 1 A 0 

Le morphisme j n'est rien d'autre que Id <&A<%>A°P j ' , après avoir identifié A ®A®A°P Pi* (A) 
au complexe de Hochschild bigradué et A ®A®A°P P à, E1 = (A (g) F, ¿1) E0 = (A, d) où 
6(a (g) v) = (-1)1*1+1*1 [av - (-ljH'Mva] et ^ ( a <g) v) = da (g) û - 5(a, dv) . 

On a donc construit un morphisme X entre le complexe de Hochschild bigradué (C**(A),d, b) 
et le complexe défini au théorème 1.5 : on a X(x) = 0 si x G Cp5* et p > 2 , X(x) = j(x) si x G Ci,* 
et T(x) = x si x G Co,* = A , et il est classique que X induit un isomorphisme en homologie. On 
a : j(a (g) 1) = 0 et 

j(a (g) vx • • • vp) = avi • • • vp^ <g> vp 

+ 2(.i)[l^+il+»-+l^l]-[l«l+KI+».+l^|]t;.+1 .. . VpaVl... vi-1 0 c. 
j=i 

si a G A , vi G V . 

Posons /? = > o P : A ^ A < g ) V e t / ? = OsurA<g>F. On a /2(1) = 0 

f3(vi • • • vp) = vi • • • (g) vp 

+ l](-1)l,Vt+1 ,'"+M][K |4""+MWl • • • VpVl • • • Vi-i <g> Vi 
1=1 

Lemme 2.3 L'application X de (C**(A), 6, P) sur ( E1,* = (A ® V ,® A 1) b Eo,* = (A,d), B) 
est un morphisme de complexes bigradués qui commute aux opérateurs B et /3 et qui induit un 
isomorphisme entre les homologies cycliques correspondantes. On a : 

HC*(A, d) = H*{k[u) ®fi (A © A (g) V, £)) 

262 



HOMOLOGIE DE HOCHSCHILD & HOMOLOGIE CYCLIQUE 

• Démonstration identique à celle du lemme 3 de [K]. • 

On déduit du lemme 2.3, le théorème suivant : 

Théorème 2.4 Soit (A, d) = (T(V),d) une algèbre différentielle graduée libre sur un corps 
commutatif k telle que ou bien V = 0n>o^n y ou bien V = 0n<-iV„ . Soit (A 0 (A (8) V),<5) le 
complexe défini au théorème 1.5. Alors Vhomologie cyclique de (A, d) est isomorphe à Vhomologie 
du complexe (k[u\ (8) (A 0 A (g) V),D) où \u\ = 2 , D = 0 sur k[u) , D = S sur A 0 (A (g> V) , 
D(un (8) (a (8) v)) = un <g> £(a <8> t>) « n > 1 , 

Z?(un (8) a) = wn <g> da + wn""1 (8> (vi • • • <8) ûP 

+ ^(-i)[l^+il+-+l^l][l«il+-+l«'«l]t,.+r . ,VpVv . Vi_x (g) VÌ) 
i=l 

si a = vi • • • vp , et n > 1 . 

Rappelons que, si V = 0pVp est un espace vectoriel gradué, alors pour tout m > 1, V®m est un 

espace vectoriel gradué, V0m = ®p(V®m)p , et les groupes d'homologie ifn(Z/mZ, V®m) où Z/mZ 

agit sur V®m via rm , sont des A:-espaces vectoriels gradués; on a Hn(Z/mZ, V®m) = @pHnfP(m) 
où HniP(m) = In)P(Z/mZ,y0m) est le nièmegroupe d'homologie de Z/mZ agissant sur (V®"1),, 

via rm . On peut alors énoncer : 

Théorème 2.5. 5ozt A = T(V) une algèbre tensorielle graduée sur un corps commutatif 
quelconque k. Alors Vhomologie cyclique réduite HC*(A,0) = HC*(T(V),0)/HC*(k) est donnée 
par : 

HCn(T(V),0)= 0 0 Hp,q(m). 
m>l p+q=n 

• Dans le cas particulier où la différentielle est nulle, le complexe défini au théorème 2.4 se 

décompose ainsi : %](g)(A®i®F) = fc[u]0 ^ 0 ^ où 3=1 = k[u] ®T+(V) F1 = k[u]®T(V)® 
V , D = 0 sur T+(V) , £>(>n ® vi • • • vm) = î /n-V(vi • • • Vm) si n > 1 et m > 1 , Z>(un <g> a <g> v) = 

un(- l )H x (au - (-l)lvlfa'va) s i n > 0 , a e A , t ; € F . On a D(J*) C ^ et D{J*) C F* . 

Reprenons les notations introduites dans la remarque 1.6, on a : D(un (8)a) = txn_1 ^^Lô* croTrn{°ù) 
si a € y®m et £>(>n <g> a <g> û) = (-l)^un(Id - rm+i) o <j_1(a <g> v) si a G F0m . 

La formule du théorème 2.5 résulte du calcul classique des groupes d'homologie d'un G-module 

lorsque G est le groupe cyclique Z/raZ , [Me]. • 

Corollaire 2.6 Soit A = T(V) une algèbre tensorielle graduée sur un corps commutatif de car
actéristique 0 , alors Vhomologie cyclique réduite JÏC**(T(V), 0) est isomorphe T+(V)/[T( V), T(V)] 
où [T(V),T(V)] est le sous-espace engendré par les commutateurs gradués. 
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• Si le corps est de caractéristique 0 , les groupes d'homologie de Z/mZ agissant sur y®m 
sont nuls en degrés homologiques strictement positifs, d'où le corollaire à partir du théorème. Ce 
résultat figurait déjà dans [BF]. • 

Remarque. Si A = T(V) est graduée uniquement en degré 0 , alors les groupes d'homologie 
HniP(Z/m2:, y®771) sont nuls si p > 0 , et le théorème 2.5 redonne la proposition 5.4 de [LQ]. 

§.3. Homologie de l'espace des lacets libres sur un espace topologique 

Le point de départ de cette étude est le résultat de Burghelea-Fiedorowicz [BF] et de Goodwillie 
[G] qui dit : 

Théorème 3.0. Soit X un espace connexe par arcs, pointé, et k un anneau commutatif, alors 
il existe des isomorphismes de k-modules gradués : 

(1 ) HHm(C+(ÇlX), k) ~ H*(Xsl, k) 

(2) HC*(C*(ÇIX\ k) ~ H? (Xsl, k) 

Rappelons que Xs est 1 'espace des lacets libres sur X muni de la topologie compacte ouverte, 
et que C(Q,k) est la fc-ADG des chaînes singulières sur l'espace des lacets de Moore de X . Enfin 

H* 1 (Xsl, k) désigne l'homologie équivariante de l'espace des lacets libres sur lequel le groupe S1 
agit par rotation des lacets; par définition, H + 1 (Xsl, k) est l'homologie, à coefficients dans k , de 
l'espace de Borel associé à cette action et noté Xs* x 51 ES1 . 

Dans toute la suite, on supposera que k est un corps commutatif et X est simplement connexe. 
Rappelons le résultat de Adams-Hilton [A-H], il existe une Ar-ADG libre (Ax = T(W),dx) et 
un morphisme Ox Ax —* C*(QX) qui induit un isomorphisme en homologie, de plus Wp ~ 
Hp+i (X, A;) . Le calcul de l'homologie (resp. équivariante) de Xs* se ramène donc au calcul de 
l'homologie de Hochschild (resp. cyclique) de l'ADG libre (Ax,dx) • Le point de vue dual de 
celui de [BF] et [G] consiste à considérer la fc-ADG C*(X, k) des cochaînes singulières de -Y et à 
regarder son homologie de Hochschild (resp. cyclique). Dans [HV], Halperin et l'auteur montrent 
que HH*(C*(ÇIX), k) et HH*(C*(X,k)) sont des espaces vectoriels duaux, et donc, d'après le 
théorème 3.0, l'homologie de Hochschild de (C*(X, k)) est isomorphie à la cohomologie de J s \ 
Dans [J], Jones démontre que l'homologie cyclique négative HCZ* de C*(X, k) est isomorphe à 
la cohomologie équivariante de Xsl , donc l'homologie cyclique de C*(X, k) définie au §.2 est 
isomorphe à la cohomologie équivariante de Xs* . 

La moralité de cette étude est que le calcul de l'homologie ou de la cohomologie (resp. équiva
riante) de Xsl se ramène au calcul de l'homologie de Hochschild (resp. cyclique) de C**(OX, k) ou 
de C*(X, k). D'après un résultat classique, (théorème I, [Bl]), on peut remplacer C*(£IX, k) par 
son modèle de Adams-Hilton, ou la cobar construction de Adams [A], et C*(X, k) par un modèle 
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libre dans la catégorie fc-ADG. Alors les théorèmes 1.5 et 2.4 fournissent des complexes calculant 
l'homologie et l'homologie équivariante de l'espace des lacets libres. 

Soit X un espace simplement connexe tel que H*(ÇIX, k) soit une algèbre tensorielle graduée 
T(V) , pour le produit induit par la composition des lacets, alors nécessairement Vp est isomorphe 
à Hp+i(X, k) pour tout p > 1 . Les théorèmes 1.7 et 2.5 s'énoncent ainsi : 

Théorème 3.1. Soit X un espace simplement connexe et k un corps commutatif tel que 
H*(Q,X,k) soit isomorphe à une algèbre tensorielle graduée. Posons V* = H*+i(X, k) . Alors 
pour tout n > 0 

(1) Hn{Xs\k) = HHn(C*(QX,k)) est la somme directe de ®m>oV®m/(ld - rm) et 
®m>iKer(Id — rm) où rm est la permutation cyclique agissant sur V®m . 

(2) H^(Xs\k)/Hn(BS1\ k) = HCn(C*(nX),k) est la somme directe 

0 ®,-+i=n#,-,i(m) 
m>l 

où Hij(m) est la composante de degré j du ieme groupe d'homologie de Z/mZ agissant sur V®m 

Remarque. Le calcul de l'homologie cyclique des sphères est trivial à partir du résultat 
ci-dessus. Plus généralement, le théorème 3.1 permet de calculer l'homologie (resp. l'homologie 
équivariante) de l'espace des lacets libres sur n'importe quel espace simplement connexe de L-S-
catégorie 1 , (L-S signifiant Lusternik-Schnirelman), comme le font remarquer les auteurs de [FHT2] 
dans l'introduction de leur article. Le premier exemple intéressant d'application des théorèmes 
1.5 et 2.4 est l'espace X = CP2 , en caractéristique p > 2 . En effet, le modèle de Adams-
Hilton est (Ax,dx) = T(ei,e3) avec |ei| = 1 ,|e3| = 3 ,dei = 0 ,de3 = 2e\ . On calcule 
d'abord H*(Ax,dx) = H*(QX) : on montre que c = e3ei -h eie3 est un cycle et n'est pas un 
bord, ainsi que toutes les puissances de c; de plus e\cp — cve\ est un bord, pour tout p > 0; 
donc H*(ÇIX) contient l'algèbre commutative k[ei\/e\ (g) k[c] . A l'aide de la suite spectrale de 
Serre du fibre • -> ÇîS5 —> fiCP2 -+ S1 -> • • • associée à S1 -+ S5 -> CP2 , on montre que 
H*(QX) = k[ei]/e\ (g) k[c] . On utilise alors le modèle exhibé au théorème 1.5 pour calculer 
l'homologie de Hochschild de C*(fLY) , on vérifie facilement que dim^„((CP2)s ,k) = 1 pour 
tout n > 0 . 
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MAPS BETWEEN p-COMPLETIONS OF 
THE CLARK-EWING SPACES X(W,p,n) 

by 

Zdzisiaw Wojtkowiak 

Abstract. Let Zp denote the ring of p—adic integers. Let W C GL(n,Zp) be a 
finite group such that p does not divide the order of W. The group W acts on 

K((Zp)n,2). Let X(W,p,n)p be the p—completion of the space 

K((Zp)n,2) x EW. We classified homotopy classes of maps between spaces 

X(W,p,n)p. 

0. INTRODUCTION 

Let Zp denote the ring of p—adic integers. Let Yp denote the p—completion of 
a space Y. 

Let T be a torus and let W C GL^CTJSZ ) be a fintie group. The group W 
acts on the space (BT)p. Let 

X(W,p,T) := ((BT)p x w EW)p 

where EW is a contractible space equipped with a free action of W. 

The aim of this paper is to apply the program from [1] to study maps between 
spaces X(W,p,T). The starting point was an attempt to generalize one result of 
Hubbuck (see [8] Theorem 1.1.). The plan of work will follow closely that of [3] 
and [13]. 

Example. Let G be a connected, compact Lie group, T its 
maximal torus and W its Weyl group. If p does not divide the 
order of W then (BG)p « (BT xw EW)p. 

This example suggests the following defintion. 

S.M.F. 
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Definition. Let us set X = X(W,p,T). We shall call T a maximal 
torus of X and W a Weyl group of X. 

The projection (BT)p x EW—> (BT)p ><w EW induces a map 
i : BT —> X. We shal I call i : BT —• X a structure map of X. 

We point out that in [5] A. Clark and J. Ewing studied cohomology algebras of 
spaces (BT)p x^EW. We warn the reader that our notation is different from 
the notation used in [5]. The space X(W,p,T) is the p—completion of the Clark-
—Ewing space X(W,p,rank T). 

Through the whole paper we shall assume that p is an odd prime. We need this 
assumption to show Proposition 1.1. It is clear that this assumption is not essen
tial, however we were not able to overcome technical difficulties for p = 2. 

Now we shall state our main results. 

Let us set X = X(W,p,T) and X7 = X(W7,p,T7). 

THEOREM 1. Assume that p does not divide the orders of W and 
W7. Then for any map f :X—»X' there is a map T : (BT)p—*(BT7)p 
such that the diagram 

X f X7 

i i 

(BT)P 
E3 (BT')p 

commutes up to homotopy. Moreover we have: 

a) if T7 : (BT)p—>(BT7)p is such that f o i is homotopic to 
i7 o TL' then there is w 6 W7 such that w o Y ' is homotopic to 7, 
b) for any w € W there is w7 6 W7 such that Haw is homotopic 
to w7 o 7. 

The group W acts on ^(T) ® Zp, hence W acts on ^(T) ® R for any 
Zp—module R. 
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DEFINITION 1. Let R be a Z —algebra. We say that a homomor-
ph ism of R—modu les 

<f>: T . m e R - 4 r , ( T ' ) » R 

is admissible if for any w G W there is w' 6 W; such that 
^ o w = w' o <p. 
We say that two admissible maps <p and ^ from TT^T) ® R to 
T1(T/)®R are equivalent if there is w G W' such that 
w O (p = 

It is clear that the relation defined above is an equivalence relation on the set of 
admissible maps from x-̂ T) ® R to T1(T/)®R. We shall denote by 
Ahom (̂T,T/ ) the set of equivalence classes of admissible maps from x̂ (T) ® R 
to ^ ( T ^ ^ R . 

Let us notice that the map induced by 7 from Theorem 1 on fundamen
ts groups is admissible for R = Zp. This map is unique up to the action of W', 
so any map f : X —• X' determines uniquely an equivalence class of *"̂ (7) in 
Ahomz (T,T') which we shall denote by #(f). 

P 
THEOREM 2. Let us assume that p does not divide the orders of 
W and W'. Then the natural map 

X: [X,X']—*Ahomz (T,T') 
P 

is bij ective. 

For any space Y we set 

H*(Y,Qp) := H*(Y,Zp) ® « , 

where 4}p is a field of p—adic numbers. 

THEOREM Z. Let us assume that p does not divide the orders of 
W and W'. Then the natural map 
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* : [X,X'] —. Hom(H*(X',Qp), H*(X,Qp)) 

¿5 infective. 

We denote by K°( ,R) the O**1—term Qf complex K—theory with R—coefficients. 

Let Qr be the set of operations in K°( ,R). The functor K°( ,R) is equipped 

with the natural augmentation K°( ,R) —• R. Let Hom^ (K°(X/ ,R),K°(X,R)) 

be the set of R—algebra homomorphisms which commute with the action of ¿7̂  
and augmentations. 

THEOREM4. If p does not divides the order of W and W' , then 
the natural map 

i> : [X,X'] Hom^ (K°(X' ,Zp),K°(X,Zp)) 
P 

¿5 bijective. 

We can formulate our results in a nice categorical way. 

We shall define a category Zp — Rep in the following way. Objects of the cate
gory Zp—Rep are representations p : W —• GL(M) where M is a free, finitely 
generated Zp—module, W is a finite group and p does not divide the order of 
W. It remains to define morphisms in this category. If 0 : W —> GL(M) and 
0/ : W' —>GL(M') are two objects of Zp — Rep, we say that a homo-
morphism of Zp—modules f : M —* M ' is admissible if for each w € W there is 
w' G W such that f o w = w/ of. We say that two admissible homo
morphisms f and g from M to M ' are equivalent if there is w G W ' such 
that f = w/ o g. We shall denote by Ahom(0,0') the set of equivalence classes 
of admissible homomorphisms from M to M'. The set Ahom(#,#7) is the set 
of morphisms from 0 to 0' in the category Zp— Rep. The category Zp — Rep 
is equipped with the product defined in the following way: 

(0:\y—• GL(M)) © (0':W'—4GL(M')) = 0®0' : W x W7 —>GL(M©M'). 

The product of morphisms is defined in the obvious way. 

We denote by Ht(p) the category whose objects are spaces X(W,p,T) such 
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that p does not divide the order of W. Morphisms in Ht(p) are homotopy 
classes of maps. The category Ht(p) has products defined in the obvious way. 

THEOREM5. There is an equivalence of categories 

R : Zp — Rep —• Ht(p) 

with products. 

THEOREMS. In Theorems 1,2,3 and A we can drop the assumption "p 
does not divide the order of W' " if X' = (BG)p, where G is a 
connected, compact Lie group. 

COROLLARY7. Let X = X(W,p,T) and let p be a prime not dividing 
the order of W. Let us assume that the natural representation 
of W on ir^(T) ® Qp is irreducible - Then there is a finite num
ber of self-maps Ip...,In of X such that for any f:X—>X there 
is k for which f o 1̂  is an Adams tfa—map i. e. the map induced by 

2i i f o I, on H (X,Q ) is a multiplication by a. The number n is K p 
smaller or equal to the number of elements of Aut(W)/Inn(W) 
which preserve the natural representation of W on 7r̂ (T) ® Qp. 

Example, (see also [3]) 
Let X = BSU(n)p. The Veyl group of SU(n) is EQ. If n±6 then 
Aut En = Inn Efl and for n = 6 the outer automorphism does not 
preserve the natural representation of Eg on ^(T) ® Qp. This 
implies that the self-maps of BSU(n)p are Adams j>a—maps. 

We point out that Corollary 7 can be view as a generalization of a result of 
Hubbuck (see [8] Theorem 1.1.) The example is a special case of the result of 
Hubbuck. However, it concerns maps between p—completed spaces BSU(n)p 
while Hubbuck is dealing with classical spaces BG. 

We would like to thank very much A. Zabrodsky who during the Barcelona con
ference on algebraic topology 1986 shared with us his unpublished papers and 
notes. We would like to express our gratitude to the referee for his patient rea
dings of the manuscript, for his useful suggestions which allowed us to generalize 
substantially our results, and for pointing out several misprints in the manus-
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cript. 

1. THELANNES T FUNCTOR FOR SPACES X(W,p,T) 

Let X = X(W,p,T). Let us assume that p does not divide the order of W. In 
this section we shall compute the cohomology of the mapping space map(BV,X) 
and its connected component map|(BV,X) where V is an elementary abelian 
p—group and f : BV —> X is a map 

It follows from [5] (see Proposition on p. 425) that 

H*(X,Fp) = H*(BT,Fp)W . 

The map f : BV —> X induces a map f* : H*(X,Fp) —> H*(BV,Fp). Let us 
notice that Im f* is contained in the kernel of the Bockstein homomorphism. 
Hence it suffices to look at the polynomial part of H (BV,Fp) when extending 
f* to H*(BT,Fp). It follows from [2] Proposition 1.10 that there is 
g* : H*(BT,Fp) —• H*(BV,Fp) such that f* = g* o i* where 
i* : H*(X,Fp) —• H*(BT,Fp) is the inclusion induced by a structure map 
i : BT —>X. 

For a torus T, the solutions in T of tp = 1 make up a subgroup T(l). The 
map g is induced by a homomorphism <p : V —> T(l). This follows from [9] 
Theorem 0.4. Let Af : V ® T(l)* —>Fp be an adjoint map of <p. The group W 
acts on Hom(V ® T(l)*,Fp) through its action on T(l)*. Let Wf be the iso-
tropy subgroup of Af. 

PROPOSITION 1.1. Let X = X(W,p,T). Let us assume that p does not 
divide the order of W. Let V be an elementary abelian \>—group 
and let f : BV—>X be any map. Then we have an isomorphism 

* * Wf H*(maPf(BV,X);Fp) = H*(BT,Fp) 1 . 

PROOF: For a vector space U over F let us denote by P(U) the polynomial 
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algebra on U, by A(U) the exterior algebra on U and by A(U) the symmetric 
algebra on U divided by the ideal generated by all polynomials x^ — x for 
x G U. The polynomial xP — x splits completely over F . Hence we have an iso
morphism of Fp—algebras A(U) = © *^p- ^e point out that A(U) is 
concentrated in degree zero -

Let us notice that we have the following natural identifications 

and 
H*(BT,Fp) = P(T(1)*) 

H*(BV,Fp) = P(V*) ® At/T^V*). 

To simplify the notation let us set A := A(V ® T(l)*) and 
H := H*(BT,Fp) = P(T(1)*). It follows from Corollary 2 in [4] that for any un
stable Ap—algebra M and any A p—algebra homomorphism 
h : P((Z/p)*) —> M ® H*(BZ/p,Fp) we have 

h(t*) = mt3#e ® 1 + my^ ® v*. 

This implies that we have a natural isomorphism 

*M : Hom(H;M ® H*(BV)) « Horn (A ® H;M). 

where Hom( ; ) is in the category of unstable Ap—algebras. If h(t ) = 

m^ ® 1 4- I my3#c ® v* then *M(h)([v €> t*] ® 1) = £ my+ • v*(v) 
v*6V* v*6V* 

and *M(h)(l®t*) = mt+. 

Hence it follows that 

(*) TV(H) = A ® H. 

If M = Fp then we have an isomorphism 
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*F : Hom(H;H*(BV)) » Horn (A ® H;F ). The group W acts on H and A 
P P 

through its action on T(l) . The isomorphism (*) and the fact that the functor 
Ty(-) is exact implies that 

(**) TV(HW) = (A ® H)W 

(see [4] Proposition 3). 

Let f* : H*(X,Fp) —> H*(BV,Fp) be the map induced by f on cohomology. 
Let A : Tv(H*(X,Fp)) —• Fp be the adjoint map of f* and let 
T: Tv (H) —>Fp be the adjoint map of g* We recall that 
g* : H*(BT,Fp) —• H*(BV,Fp) is such that f* = g* o i*. The restriction of T 
to V ® T(l)* is equal to Ap where 

Af : V ® T(l)* —> Fp is an adjoint map of <p : V —• T(l). 

It follows from [6] 2.3 Theorem and the equality (**) that 

H*(maPf(BV,X),Fp) « Tv(H*(X,Fp)) ® F * (A ® H)W ® F . 
T°(H*(X,Fp)) A 

If V* ® T(l) = M W/W' , as a W-set then A « © F fW/W'l as a W-mo-
VT W' p 

dule. This follows from the isomorphism A(U) = © . F^ mentioned at the be-
aGU* p 

ginning of the proof. For any W' C W, Fp[W/W/]W « F The maps T and 
A induce *X : A —> Fp and *X : = © Fp —• Fp. The algebra homomorphism 
*X is the identity on one's of Fp's and it is zero on all others. We recall that the 
isotropy subgroup of Aj is W^ The fact that 5f restricts to Aj on V ® T(l)* 
implies that H is the identity on Fp[W/Wf]W. Hence we have the following iso
morphisms 

W" 
(A ® H)W ® Fp « (Fp[W/Wf] ® H)W ® Fp « H f . a 

A FP 
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2. MAPS FROM BP TO X 

Let T be a torus. For a torus T the solutions in T of tp = 1 make up a 
subgroup T(n); let T(GD) = U T(n). Let us set M = ^(T) ® Z . Let 

n p 
W C GL^ (M) be a finite group. The action of W on M extends to the action 

P 
of W on M ® fj . The lattice M in M ® Q is invariant therefore W acts also 
on M ® Q/M . Observe that M ® Q/M = T(a>). From the action of W on T(GD) 
we can recover the original action of W on M if we take the induced action of 
W on (H2(BT(GD);Z ))* . Hence any finite subgroup of GLZ (M) can be re-
alized as a subgroup of Aut(T(a>)). 

PROPOSITION 2.1. Let W be a finite subgroup of Aut(T(co)) . Let 
us assume that p does not divide the order of W . If P is a fi
nite p—group then any map f : BP —> (B(T(ao)x W))p is induced by a 
homomorphism <p : P —> T(CD)XW . 

We were informed that a similar result was also known to W. Dwyer. This propo
sition is an analog of the theorem of Dwyer and Zabrodsky (see [7] 1.1. Theo
rem). The proof will follow closely the proof of the Dwyer and Zabrodsky theo
rem contained in [14] , which depends very much on [10] . 
Let us set G = T(m) x W . 

LEMMA 2.2. Let V = Z/p , let ip : V—>G be a homomorphism, let GQ 
be the central izer of im<p in G and let ^ : V — • GQ be the map 
induced by <p . Then the map 

maPB«,0(BV>(BG0>p) > mapB^(BV,(BG)p) 

is a homotopy equivalence. 

PROOF: It follows from Proposition 1.1 that 
W 

H*(mapB (BV,(BG)p),Fp) * P 0 where P « H*(BT,Fp) and 
WQ = GQ/T(OD) is the isotropy subgyqup of cp : V —> T(GD) . In the same way we 
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get 
* W0 H (mapB^ (BV,(BG0)p),FP) = P . Hence the map considered by us is a ho-

motopy equivalence. • 

LEMMA 2.3. Let P be a p—group, let Z/p = V be a subgroup of the 
center of P . Let (p:V—*G be a homomorphism, let GQ be the 
centralizer of im <p in G and let <p^ : V—» GQ be the induced 
homomorphism. Let 

[BP,(BG)p](B*0 = {f 6 [BP,(BG)p] : f,BV ~ Bp} 

and let [BP^BGQ)^] (B^Q) be defined in an analogous way. Then 
the inclusion map i : GQ—»G induces a bisection 

(*) [BP,(BGQ)P] (B<pQ) 1 [BP,(BG)P] (B<p) . 

PROOF: We have a flbration BV —• BP —• B(P/V) . Let 
BV —• E P / V —> E(P/V) be the fibration induced by pulling back over 
pr : E(P /V) —> B(P/V) . The group P / V acts on EP/V through maps homo-
topics to the identity and the space EP/V is a model for BV. It follows from 
Lemma 2.2 that the map 

mapp/v(E(P/V)>mapBv?o(EP/V>(BG0)p)-.mapp/v(E(P/V)JmapBv?(EP/VI 
0 (BG)p)) 

is a homotopy equivalence. There is a bijective correspondence between 
P/V-maps E(P/V) —•mapB^(EP/V,(BGQ)P) and maps 
E(P/V) x EP/V—>(B(3Q)P which composed with 
E ( P / v / x EP/V —> E(P/V) x EP/V are nomotopic to By7Q. The same bi-
jection holds if we replace <p^ by (p and GQ by G. This implies that the in
duced map on Tg is the map (*). This finishes the proof. 

LEMMA 2.4. (see [15] 1.5. Lemma) Let (p : L—>K be a simplicial map. 
Let V (̂L,X) be the subspace of the space map.(L,X) of pointed 
maps from L to X consisting of maps f:L—>X such that 
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f p-1(k) ~ * for every k E K . Let map^y? i(k),X) be the path com-
ponent of the constant map in the space of pointed maps 
map.(y7~~1(k),X) . Let us assume that for every k € K , the space 
map^yT^kJjX) is weakly homotopy equivalent to *. Then tp in
duces a weak homotopy equivalence 

/:map.(K,X)-^-4V^(L,X) . 

PROOF OF PROPOSITION 2.1: Let us assume that P = Z/p . It follows from 
[2] Proposition 1.10 that f* : H*(BG,Fp) —> H*(BP,Fp) factors through 
H*(BT(oo),Fp). But any morphism H*(BT(œ),Fp) —> H*(BP,Fp) is of the form 
B̂ 7 (see [9] Theorem 0.4). Hence f is induced by a homomorphism. 

Let us suppose that any map f : BP —> (BG)p is induced by a homomorphism if 

the order of P is less or equal to p11""1 . 

Let the order of P be equal to pn and let f : BP —• (BG)p be a map. Let 
V = Z/p be contained in the center of P and let i : V —* P be the inclusion. 

Assume that the composition 

BV —— • BP —- > X 

is null homotopic. We want to show that f is homotopic to f2 o Bpr where 
pr : P —> P/y is the natural homomorphism and f̂  : B(P/y) —• X is a map. 
First we show that the space of pointed maps homotopic to * map f̂BV.X) is 
weakly contractible. This space is p—local because BV and X are p—local. Let 
mapcongt(BV,X) be the connected component containing a constant map of 
map (BV,X). It follows from Proposition 1.1 that 

H*(maPconst(BV'X>'Fp) = H*(BT(m),Fp)W . 

The last group is of course H (X,Fp) . Hence the evaluation map 
mapCQnst(BV,X) > X is a weak homotopy equivalence and consequently the 
space nap (̂BV,X) is weakly contractible. Lemma 2.4 implies that f is homo-
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topic to f1 o Bpr . By the inductive assumption f̂  is induced by a homomor-
phism. 

Let us suppose that foBi is induced by a homomorphism <p : V —y G and 
(p(V) # 0. Let GQ be the centralizer of <p(V) in G . It follows from Lemma 2.3 
that up to homotopy there is a unique map ÎQ : BP —> (BGg)p such that 

BP ——• (BGô p —* (BG)p is nomotopic to *and F0 RESTRICTED TO BV IS 
induced by <p. Let p : GQ —* GQ/<P(V) be the natural projection. The compo
sition 

BV BP F0 
(BGo)P 

(Bp) p 
(BGQMV))p 

is null—homotopic hence (Bp)p o fg factors uniquely as 

BP Bpr B(P/V) fl B(G„MV))p . 

This follows from the previous discussion. 

One has the homotopy pullback 

BP F0 
(B(G0>p 

Bpr (Bp) p 

B(P/V) fl (B(G0/vKV)))p 

because <p(V) is contained in the center of GQ . By the inductive assumption 1^ 
is induced by a homomorphism <p^ : P/V —> GQ/<P(V) • We have a pullback of 
groups 

P v G0 

Pr P 
P/V *>1 GQ/^(V) . 

After applying the functor (B ) we get a homotopy pullback 
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BP 
(B*)T 

(BGo)] 

Bpr (Bp)T 

1 (B*>1 ) T, 1 
B(P/V) L-E_+B(G0/¥?(V))p 

The map fQ is homotopic to (B^)p hence f is homotopic to (Bp)po(B^)p 

COROLLARY 2.5. Let T ' by any torus. Then any map 
g : BT'(CD) —• (BG)p is induced by a homomorphism a : T/(GD) —* T(a>). 

PROOF. It follows from Proposition 2.1 that for any n the restriction of g to 
BT'(n), gn:BT/(n)—>(BG)p is induced by a homomorphism. Let 
Sn = {/3 : T'(n) —• G I (B/?)p ~ gn}. The restriction of /3 : T'(n) —> G to 
T'(n—1) maps SQ into S Each set Sn is non-empty and finite. This im
plies that lim Sn is non-empty. Hence there is a homomorphism 

n 
a:T/(œ)—>G such that a induces g and factorizes through T(GD). 

• 

3. PROOFS. 

We start with the following lemma. 

Lemma 3.1 Let X = X(W,p,T), let i : BT (co) —• X be a structure map of X 
and let w : BT(CD) —• BT(GD) be a map induced by w 6 W. Then the maps i 
and iow are homotopic. 

Proof, Let w : BT(OD) * EW —• BT(GD) X EW be w on BT(a>) and a trans
lation by w—* on EW. Observe that w is a covering transformation of the pro
jection pr : BT(OD) x EW —• BT(QD) * EW. The composition 

W 
BT(GD) x EW Pr ) BT(QD) x EW —•+ (BT(OD) X EW)n is homotopic to i. 

W W p 
Hence i and iow are homotopic. a 

PROOF OF THEOREM 1: 
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It follows from Corollary 2.5 that foi is induced by a homomorphism 
<p : T(GD) —• T7(a>). We set T = (B^)p. n 

The proof of point a) is the same as the proof of Theorem 1.7 in [1]. Point b) 
follows from a) and Lemma 3.1. • 

PROOF OF THEOREM 3: 
Let f,g : X—>X7 be two maps such that H*(f,Qp) = H*(g,Qp). Let 
i : BTp —> X be the map induced by a structure map i : BT —»X. Corollary 
2.5 implies that foi and goi are induced by two homomorphisms 

<p& : T(OD) —> T 7 (<D) x w 7. We must show that <p and ¥ are conjugate. 

For a finite group x let R(*r) be its complex representation ring. Let 

R(T(GD)) := l̂ m R(T(n)) and R(T7(CD) x W) := Hm R(T7(n) x W7). 

The Chern character ch : K ( ;Z ) —• | | H ( ;Q ) is injective for spaces 

BT(oo) and B(T,(aj)xW/) = BT/(a)) x EW. The group R(T(OD)) is mapped 

injectively into K°(BT(a));Zp). Hence we have 

R(^) = R(¥) : R(T7(CD) x W7) — R(T(GD)). 

For each subgroup S = Z/pn of T(a>) the restrictions of <p and to S are con
jugate by an element of W7 because S is cyclic. The fact that W7 is finite 
implies that the restrictions of if and to any subgroup Z/p™ of T(a>) are con
jugate by some element of W7. Once more the fact that W7 is finite and the 
set of subgroups of the form Z/p® in T(a>) is uncountable if rank T > 1 im
plies that <p and are conjugate by an element of W7. Hence foi and goi are 
homotopic. It follows from [12] Theorem 1 that f and g are homotopic. 

PROOF OF THEOREM 2: 
We set #(f) = TTjC?) where ¥ is the map from Theorem 1. The injectivity of x 
follows from Theorem 3. Next one observe that K°(X7;Zp) = K°((BT7)p;Zp)w. 
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Then the proof of surjectivity is the same as in Theorem 1.5 in [13]. It is a 
standard application of Theorem 1 from [12]. • 

PROOF OF THEOREM 4: 
The fact that ψ is injective follows from Theorem 3 and the injectivity of Chern 
character. The proof of surjectivity is the same as in Theorem 1.5 in [13]. a 

PROOF OF THEOREM 5: 
Theorem 5 is a direct consequence of Theorem 2. • 

PROOF OF THEOREMS: 
Let G be a connected, compact Lie group. Observe that any map 
BT(OD) —• (BG)p is induced by a homomorphism T(OD) —> G what is an imme
diate consequence of [7] 1.1. Theorem. This was the crucial point to prove Theo
rems 1,2,3 and 4 for X' = XfW'^T'). The proofs of Theorems 1,2 and 3 for 
X7 = (BG)p are the same. Observe that K°((BG)p;Zp) = K°((BT)p;Zp)W. 
Hence the proof of Theorem 4 carry over to the case X7 = (BG) . 

PROOF OF COROLLARY 7: If the natural representation of W on 
^(T) ® Qp is irreducible then ^(T) : ^2((BT)p) —+ T2((BT)p) is an isomor
phism or a trivial map. The correspondence w —> w' from Theorem 7 point b) 
is then an isomorphism. The rest is obvious. a 

Whilst writing this paper we were partially supported by Centre de Recerca 
Matematica, Bellaterra (Barcelona). 
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DERIVED FUNCTORS OF THE DESTABILIZATION 
and 

THE ADAMS SPECTRAL SEQUENCE 

by Said ZARATI 

Introduction 

Let A be the modulo 2 Steenrod algebra, dVt the category of 
graded A-modules and A-linear maps of degree zero, and *U the 
full sub-category of dVt whose objects are unstable A-modules. We 
denote by D : dVt —> *U the destabilization functor and by Ds, s > 0, 
its derived functors. We have a natural transformation : Ds —> Z 
DSZ"1, s > 0, induced by the adjoint of the identity QD = D Z"1 

where LM, ©fVt —> dVt , m e 2, is the mth suspension functor and £2 
is the left adjoint of I : 11 —-> *U . 

In this note we prove the following theorem wich will be more 
precise in section 2.3. 

Theorem 1.1. Let M be a nil-closed unstable A-module. Then the 
natural map £2DSX"S M —> DSZ~S~1M is an isomorphism for every 
s>0. 

Using the higher Hopf invariants introduced in [7] we prove the 
following property of the Adams spectral sequence, in the modulo 
2 cohomology, for the group {X,Y} of homotopy classes of stable 
maps from X to Y, in certain cases. 

Theorem 1.2. : Let X and Y two pointed CW-complexes such that 
(i) H*(X,IF2) - Z2I where XI is an injective unstable A-module. 
(ii) H*(Y;IF2) is gradually finite and nil-closed. 
Then, the Adams spectral sequence for the group {X,Y} degenerate 
at the E2-term : E2S,S « Ers»s for every r > 2 and s > 0. 
S.M.F. 
Astérisque 191 (1990) 285 
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The infinite real projective space IR P°° is an example of a space Y 
satisfying the hypotheses of theorem 1.2. 

The organization of the rest of this note is as follows. In section 2 
we give a characterization of nil-closed A-modules which allows us 
to prove the theorem 1.1 (see theorem 2.3.3). Section 3 gives the 
proof of theorem 1.2 and an application. We finish this note by a 
remark concerning the case p > 2. 

All cohomology is taken with IF2 coefficients. We write H*( ) for 
H*( ; IF2) and we denote by H*( ) the reduced modulo 2 cohomology. 

2. Derived functors of the destabilization 

2.1. Let A be the modulo 2 Steenrod algebra. We denote by dVt the 
category whose objects are graded A-modules (M = {Mn, n e 
Z}) and whose morphisms are A-linear maps of degree zero. We 
denote by Ti the full sub-category of dVt whose objects are 
unstable A-modules (an A-module M is called unstable if Sqfx = 0 
for every x in Mn and every i > n ; in particular Mn = 0 if n < 0). 

The forgetful functor Ti —> <sfVt has a left adjoint functor D 
: <gfVt —> *U, called the destabilization functor, which satisfies : 
Hom<gfVt (M>N) = Hom^(DM,N) for every A-module M and every 
unstable A-module N. The functor D : dVt —> 11 is right exact, we 
denote Ds : dVt —> *U, s > 0, its derived functors. One of the 
motivations for the study of the derived functors of the 
destabilization is the following isomorphism : 
(2.1) Ext^tM,!) = Hom< (̂DsM,l) 
for every A-module M and every unstable injective A-module I. 

Let Zm : <s(Vt —> <sfVt , m G Z , the m"1 suspension functor 
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which associates to a module M = {Mn, n e 2} the module 
Xm M = {Mn"m, n Z}. The A-module structure on ZmMis given by 
Sq'(Zmx) = ZmSq'x, x in M. The computation of DgZ^M, where M is 
an unstable A-module, is done by Lannes and Zarati [5] for t < s. 
In this paragraph we will compute DSX"(S + 1̂ M for a particular 
unstable A-modules called nil-closed. First let us recall the 
definition and some properties of nil-closed unstable A-modules. 

2.2. Nil-closed unstable A-modules [1], [6] 

Definition 2.2.1 An unstable A-module M is called reduced if the 
cup-square Sqn : Mn —> M2n, x —> Sqnx, is injective for every n 
>0. 

Remark 2.2.2 We can verify easily that an unstable A-module is 
reduced if and only if it does not contain a non trivial nilpotent 
sub-A-module. An unstable A-module N is called nilpotent if for 

every x in Mn, there exist r > 0 such that Sq2 n Sqnx = 0. 

Definition 2.2.3. An unstable A-module M is called nil-closed if 
(i) M is reduced 
(ii) An element x in M of even degree is in the image of the 
cup-square if and only if QjX = 0, for all i > 0, where Qj is the ith 
Milnor primitive in A. 

Example 2.2.4 Let BZ/2 denote a classifying space of the group 
Z/2. The unstable A-module H*(BZ/2) is nil-closed indeed, as a 
graded IF2-algebra H*(BZ/2) is freely generated by one generator 
of degree one. 

2.3.Computation of DSX~(S+1)M, M nil-closed and s > 0. 

2.3.1 To state our result we use the functor Rs : *U —> *Uf s > 0, 
introduction in [5] page 29 (see also [9]) whose main properties 
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are: 
(i) The module RSM is a sub-A-module of H*(B(Z/2)S) <g> M. In 
particular RSM is an unstable A-module. 
(ii) Let H*(BZ/2) = IF2[u] where u is of degree one. We denote by Ls 
= H*(B(Z/2)s)GLs(z/2) the Dickson algebra, that is the sub-algebra 
of H*(B(Z/2)S) of invariants under the natural action of the general 
linear group GLs(Z/2) = GL((Z/2)S). The module RSM is the 
Ls-module generated by the elements Sts(x), x in M. These 
elements Sts(x) are defined inductively by : 

St0(x) = x , x <= M. 
n 

St1(x) = 2̂  u % Sqx , xe M . 
i=0 

Sts(x) = St-| (Stg.-i (x)) , s > 1, x e M 
iii) Let E+G2S be the disjoint union of a base point and a 
contractible space on which the symmetric group <S2S acts freely. 
For any pointed space X, we denote by GT2SX the quotient of the 
space E+(52s A (X A .... A X), X is smashed with itself 2s times, by 
the diagonal action of <S2S (<S2S acts on X A A X by permutation of 
the factors). Let As : B+(Z/2)S A X > G2S X be a "Steenrod 
diagonal" determined by a bijection between (Z/2)sand {1,2,....,2s}. 
The unstable A-module RSH*X is the image of A5* in the modulo 2 
cohomology. 

2.3 .2 Let n : *U -> % be the left adjoint functor of X : *U —> (UI 
that is : 

Hom^(M,ZN) = Hom |̂(QM,N) 
for every unstable A-modules M and N. 
We are now ready to state the main result of this paragraph which 
will be proved in 2.6 
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Theorem 2.3.3 : Let M be a nil-closed unstable A-module. There 
exist a natural isomorphism : 

DSX"(S+1) M = QRSM , s>0 

2.4.Some properties of nil-closed unstable A modules 

In this paragraph we give two characterizations of 
nil-closed unstable A-modules which allow us to prove theorem 
2.3.3 

2.4.1. The first characterization of nil-closed unstable A-modules 
is given in [6] page 314. 

Proposition 2.4.1.1. Let M be an unstable A-module. The following 
conditions are equivalent. 
(i) M is nil-closed 
(ii) Ext^ '^M) = 0 for every nilpotent N in *U and i = 0,1. 
(iii) There exist an injective resolution of M starting 

0 — > M —> K° — > K1 
where K° and K1 are reduced injective unstable A-modules. 

Remark 2.4.1.2. The condition (iii) of the proposition 2.4.1.1 can be 
replaced by the following (see [4] page 163) 

(iii)1 There exist an injective resolution of M starting 

0 ~> M-> II H'(BVo) --->IlH*(BVp) 
a P 

where Va and Vp are elementary abelian 2-groups. We have the 
following easy corollary. 

Corollary 2.4.1.3. Let M be an unstable A-module. The following 
conditions are equivalent. 
(i) M is nil-closed. 
(ii) There exist a nil-closed unstable A-module L containing M such 
that the quotient L/M is reduced. 
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2.4-2. Another characterization of nil-closed. 

Proposition 2.4.2.1 Let M be an unstable A-module. The following 
properties are equivalent. 
(i) M is nil-closed 
(ii) M and Q.M are reduced 

The proof of this proposition is based on the following technical 
lemma. Let Qj, i > 0, the ith Milnor primitive in A and Sq^ the 
cohomology operation defined by Sq^ x = Sqn"kx where x is an 
element of degree n of an A-module (Sqn"k = 0 if n < k). 

Lemma 2.4.2.2 Let M be an unstable A-module. We have the 
following formula : 

(Qi+1 oSq1)(x) = (Sqo0Qi)(x) 

for every x in M and every i > 0. 

Proof. The proof is done by induction on i using Adem's relations. 
Recall that the elements Qj, i > 0, are defined by 

Qo = Sq1 
2' 2' 

q = Q. _ 1 Sq + Sq q _ 1 , i > 1 

The case i = 0. Let x be an element of degree n of an unstable 
A-module, we have : 

Sq1Sq-,(x) = Sq1Sqn"1(x) = 
0 if n s 0(2). 

Sq2Sq-i(x) = Sq2Sqn'1(x) = 

Sq0x if n - 1 (2) . 
0 
Sq2Sq1x 

if 2 >2n - 1 , 
if 2 = 2n -2. 

1 
I C2'f Sq"^ Sq°x 
^ n-2-c ^ ^ c=o 

if 2 < 2n - 2. 

290 



DERIVED FUNCTORS OF DESTABIUZA TION 

0 if n = 1 

SqnSq1x ifn>2. 

These formulas imply the case i = 0 because we have : 

Ql Sq-f x = Sq3Sq-| x + Sq2Sq1 Sq-j x 
= Sq0Sq1x 
= SqQQ1x. 

Suppose QjSq-|X = Sq0Qj.-|X for evry i : 0 < i <j-1 and for every 
element x (of degree n) of an unstable A-module. To prove this 
formula for i = j we consider : 

QjSq^x) = Sq2^Qj.1Sq1(x) + Qj^Sq^Sq-, (x) 

= Sq2 SqQQj_2(x) + Qj.-j Sq2Sq-| (x) , (inductive assumption) 
J-1 2' = Sq0Sq cyxj + c^sq 

J z Sq,M. 

In the last equality we have used the following easy formula : 

SqkSqG = 
0 if k ̂  1(2) 

Sq0Sq 

k 
2 if k - 0(2) . 

If remains to show : 
21 2H 

Q Sq Sq^x) = SqQ2Sq (x). 

Using the unstability of M and Adem's relations we prove : 
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Sq Sq.(x) = 

0 if n < 2J"1 . 

2H 
Sq^q (x) if n > 2H + 1 . 

This formula gives : 

2j 
C^Sq Sq1(x) = 

0 if n<2J"1 . 

2j"1 
QHSqiSq (x) if n > 21"1 + 1 . 

0 ifn<2H . 

Sq0Q.2Sq (x) if n > 2*"1 + 1 , (inductive assumption). 

2J-1 
Ŝq̂ Ĉ .gSq (x) 

2.4.3. Functor Rs and nil-closed A-modules. 

Proposition 2.4.3.1. Let M be an unstable A-module. If M is 
nil-closed then RSM is nil-closed. 

Proof : Let (*) 0 --> M — > n H*(Va) —> n H* Vp be the 
beginning of an injective resolution of the nil-closed unstable 
A-module M (see remark 2.4.1.2). The functor Rs is exact and 
comutes with products (see [6]) ; then, when we apply it to the 
exact sequence (*) we get the following exact sequence : 

O - - - > R M - > I I R H * V —>riReH*vR • 
s s a AA s p 

a P 292 
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The computation of RSHWV, where V is an elementary abelian 
2-group, is done by induction on s (see [6] page 321). Let Vs = 
(2/2)s e V,RSH*V is the sub-module of H*(VS) of invariants under 
the action of the sub-group of GL(VS), denoted GL(VS,V), of 
automorphisms of Vs which induces the identity on V. The 
proposition 2.4.3.1 is now a consequence of the corollary 2.4.1.3 and 
of the fact that the sub-A-module H*(V)G, G < GL(V), of H*(V) is 
nil-closed (see [6] page 314). 

Remark 2.4.3.2. A different proof of the proposition 2.4.3.1 for s = 1 
is given in [3] 

2.5.Proof of the proposition 2.4.2.1. 

2.5.1. First let us recall some properties of the functor Q 
introduced in 2.3.2. Let O : *U —> Vl be the functor which 
associates to each unstable A-module A-module M, the "double of 
M", denoted OM, defined by : 

(0>M)n = 
0 if n - 1(2). 

Mn/2 if n ^ 0(2). 
and Sq'(Ox) = 

0 if i = 1(2). 

<DSqi/2 x if i - 0(2). 

we verify that the map SqQ : OM —> M, Ox »—> SqQx, is A-linear 
and that the kernel and the cokernel of SqQ are respectively XQ-|M 
and £QM where ii-j is the first and unique derived functor of Q. (see 
[5] page 30). We remark that an unstable A-module M is reduced if 
and only if £2-|M = 0. 

2.5.2. Proof the proposition 2.4.2.1. (i) ==> (ii). It suffices to prove 
that £2M is reduced. Let y be an element of (QM)k such that Sq0y = 
0. To prove that y = 0 we envision two cases : 

(*) The case k s 0(2). in this case (QM)k = (I"1 M/lmSq0)k = 
Mk + 1 then y = Z"1x where x is an element of Mk+1. Sq0y = 
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E"'Sq-|X = 0. This implies that Sq'Sq-jx = SqQx = 0 and then x = o 
since M is reduced. This shows that y = X~1x = 0. 

(**) The case k ^ 1(2). In this case (QM)k = (X"1 M/lmSq0)k 
= (M/lmSqQ)k+1 then y = X~1[x] where x is an element of Mk+1. 
SqQy = Z'1[Sq-|X] = X~1Sq-|X = 0 (Sq-jx is an element of M of odd 
degree) ; then, Sq-|X = 0. This implies that Qi + 1Sq-|X = 0 for every 
i>0. Using the lemma 2.4.2.2 we get : Sq0QjX = 0 for every i > 0 and 
then Qj(x) = 0, i > 0, since M is reduced. Now x is an element of even 
degree of a nil-closed A-module M annulated by all the Qj, i > 0 then 
x is in the image of Sq0 and then y = X~1[x] = 0. 

(ii) ==> (j). Since M is reduced then M embeds in a reduced 
injective unstable A-module K (see [6] page 313). To prove M 
nil-closed it suffices to prove that the quotient K/M is reduced and 
to use the corollary 2.4.1.3. If we apply the functor Q, to the exact 
sequence 0 ---> M —> K —> K/M ---> 0 we get the following 
exact sequence : 0 —> Q-|(K/M) —> QM —> QK —> Q(K/M) —> 
0. The module O1 (K/M) is trivial because it is a nilpotent 
sub-A-module of the reduced unstable A-module QM,iii(K/M) is 
nilpotent because, by definition, it is concentrated in 
odd degree. This shows that K/M is reduced and then M is 
nil-closed 

2.6. Proof of the theorem 2.3.3 

Let M be an unstable A-module. Consider the following 
exact sequence introduced in [5] page 32 : 
(*) 0 --> QDSZ"SM —> DSX~(S+1)M — > Q-iDg.-jX^M —> 0 
When M is reduced, the module DSX'SM is naturally isomorphic to 
RsM (t5l Proposition 4.6.2). The exact sequence becomes : 
(**) 0 —> £2RS M --> DS£~(S+1)M — > Q-iDg^S^M --> 0 
The proof of the theorem 2.3.3 is done by induction on s.For s = 0 it 
is the identity DS"1 = QD. Suppose that : (Hk) DkX~(k+1)M = QRkM 
for every k : 0 < k < s-1 and every nil-closed A-module M. 
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To prove (Hs) it suffices to remark that since M is nil-closed then, 
by the proposition 2.4.3.1, RS_-|M is nil-closed. This implies that 
£2Rs_-jM is reduced (proposition 2.4.2.1), that is : Q-|£2RS_-|M = 0. 
The exact sequence (**) and the inductive assumption give, for M 
nil-closed, the following natural isomorphism : DSX"(S+1)M -
£2RSM. 

3. Applications. 

The topological applications of this note are based on the 
higher Hopf invariants introduced by Lannes and Zarati in [7]. Let X 
and Y be two pointed CW-complexes. We donote by {X,Y} the group 
of homotopy classes of stable maps from X to Y. The Adams 
spectral sequencee, in the modulo 2 cohomology, for the group 
{X,Y} is denoted {Ers>s = Ers's (X,Y), s > 0, dr}r>2; dr : Ers's—> 
Ers+r,s + r-1 jS the differential. We have the following theorem 
which will be proved in the section 3.4 

Theorem 3.1 Let X and Y be two pointed CW-complexes such that : 
(i) H*(X) - X2I where XI is an injective unstable A-module. 
(ii) H*(Y) is gradually finite (dim|F2Hn(Y) < + «>, n > 0) and 
nil-closed. 
Then, the Adams spectral sequence, in the modulo 2 cohomology, 
for the group {X,Y} degenerate at the E2-term E2S,S « Ers>s for 
every r > 2 and s > 0. 

Remark 3.2 In [8] (see also [7]) there exist an analogous property 
of the Adams spectral sequence as in theorem 3.1 in the following 
two cases : 
(3.2.1) (i) H (X) is a reduced injective unstable A-module. 

(ii) H* (Y) is gradually finite. 
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(3-2.2) (i) 5>f (X) is an injective unstable A-module. 
(ii) H (Y) is a reduced gradually finite unstable A-module. 

Corollary 3.3. Let X and Y be two pointed CW complexes which 
verify the hypothesis (i) and (ii) of theorem 3.1 and such that the 
Adams spectral sequence for the group {X,Y} converges. 
Then, the natural map : 

h : {S1X,Y} —> Hom<̂ (H*Y, X H* X) 
is surjective. 

Proof. Theorem 3.1 shows that the term E20'1 = Homu(H*Y, ZH*X) 
persists at the infinity. Since the Adams spectral sequences for 
{X,Y} converges, then the natural map h : {S1X,Y} —> 
Homu(H Y,ZH X) is surjective. 

3-4- Proof of the theorem 3.1 

Consider the following diagram whose commutativity is 
proved in [7], [8]. 

Z2,~ 

Es,s 
Hs,s 

Hom.yjRgH* Y, £2I) 

\l 
HomupRgH Y, Mi) 

E2S>S -Ext^Vt^I-s-^V, XI) 
H 

5,5 ® 

a 
Homu(Dsrs'1H*Y)II) 

(zj'̂ oo is the inverse image of Ê f in E2, etf ̂ and AF2 are the Hopf 
invariants at the E^-level and the E2-level respectively). The 
isomorphism 1 is clear since E2S>S = E x t s ^ (£"s H*Y, E2I) = 
Ext<̂ Vt S(X"S_1 H* Y,SI). The isomorphism 2 follows from the fact 
that El is an injective unstable A-module. The isomorphism 3 is a 
consequence of the theorem 2.3.3. 
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By definition of the differential dr : Ers"r's"r+1 — > Ers's we have : 
lmdr <z Z*'^ and Z^1oo = Z^^/ltn dr (see, for example [2]). It 
follows from the commutativity of the previous diagram that Z^oo 

-> Ê S and then the differential dr : Ers'r»s"r+1 — > Ers>s , r > 2, 
is trivial. To prove that the differential dr : Ers»s —> Ers+r's+r_1, r 
> 2, is trivial we use the following isomorphism E2s,t(X,Y) = 
E2s,t+1 (X,SY) which allows us to use the results of [8] (see remark 
Q.2). 

4. The case p > 2 

In this note we can't replace 2 by an odd prime p since the 
proposition 2.4.2.1, which is the main algebraic result of this note, 
is false for p > 2. Here is an example ; the unstable A-module H = 
H*(B(Z/p) ; IFp) is the tensor product, E(u) <g> IFp[v] of an exterior 
algebra on one generator u of degree one and of a polynomial 
algebra generated by v the Bockstein of u. We know that H is 
nil-closed (see [6]) but QH is not ^-projective (X is the 
analog of SqQ for p > 2) ; the element Z"1 v2 of degree three of QH 
is such that : MI"1v2) = Z"13P1 v2 = 0. 
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