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CONTINUOUS COHOMOLOGY AND REAL HOMOTOPY TYPE II 
EDGAR H. BROWN AND ROBERT H. SZCZARBA 

Introduction. 
In our earlier paper "Continuous Cohomology and Real Homotopy Type" [3], we 

studied localization of simplicial spaces at the reals and established an equivalence 
between the category of free nilpotent differential graded commutative algebras of 
finite type over the reals and nilpotent simplicial spaces of finite type localized at the 
reals. In this paper, we extend these results by eliminating the nilpotent condition 
on the algebraic side, thus proving a conjecture of Sullivan [8]. (See Theorem 1.2, 
Part (iv), below.) The main technical work consists in introducing local coefficients 
into continuous cohomology, continuous de Rham cohomology, the Serre Spectral 
Sequence, and the constructions involved in real homotopy type. 

We also obtain information about secondary characteristic classes of G foliations 
in the sense of Haefliger [1,3,4,6], namely that when G is compact, the continuous 
cohomology of the appropriate classifying space injects into the ordinary cohomology. 
This result is stated and proved at the end of Section 2. (See Proposition 2.5). 

Our main results are stated in Section 1. The remainder of the paper is devoted 
to proving these results. 

1. Statements of Results. 
We begin by recalling some of the notation and definitions from [3]. 
Let CA denote the category of differential (degree +1), graded, commutative (in 

the graded sense), locally convex topological algebras with unit over R and AT 
the category of compactly generated simplicial spaces. Let £2£ denote the space of 
C°° differential p-forms on the standard ç-simplex Aq in the C°° topology. Then 
ÇIP = {ÇIP} is in AT, fig = {Q,P} is in CA, and Ci = {£1?} is in AC A Define 
contravariant functors A : CA —• AT and A : AT —• CA by 

1 The first author was partially supported by the National Science Foundation. 
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BROWN & SZCZARBA 

A(A)g = (A, ilq) = the simplicial space of algebra mappings A —* 
*A(X)P = (X, Qp) = the vector spaces of continuous simplicial mappings X —• flp. 
The simplicial structure on 12 gives A(A) a simplicial structure and the algebra 

structure on Q, gives one on M^X). We view A(A) as the simplicial realization of A 
and *A(X) as the algebra of differential forms on X. 

For X G AT and any topological abelian group G, let Cq(X] G) be the space 
of continuous mappings u : Xq —» G with u o SJ = 0,0 < i < q — 1, and define 
* : C«(X; G) — G*+1 (X; G) by 

Su = ^(-i)'"u o a,. 

Here, S{,dj denotes the face and degeneracy mappings of X. The continuous coho-
mology of X with coefficients in G is defined by 

Hm(X;G) = H.(C*(X;G);6). 
The usual deRham mapping defines an isomorphism 

V> : H*(J(X);d) —> H*(X;R) = H* (X). 
(See Theorem 2.4 of [3].) 

We next describe homology of A G C*4with local coefficients. Suppose L is a finite 
dimensional Lie algebra which acts on a finite dimensional vector space V via a Lie 
algebra homomorphism 7 : L —• g£(V) = Hom(V, V). Let C*(L) denote the usual 
cochain algebra on X, that is, CP(L) is the space of alternating, multilinear functions 

u:Lp = Lx Lx - xL- + R 
with d : Cp(L) -> G*+1(L) given by 

du(£u... ,^+1) = ^(- l ) i+M[^,^] ,^i , . . . A . . . l j ,€p+i) 

For A G CA we define X-local coefficients on A as follows. Let l\,... be a basis 
for L, ^J,... the dual basis for L*, and suppose A : C*(L) —* A is a C.4mapping. 
Define dA:A®Vr-+A®Vby 

n 
dA(a ® v) = da ® v + ^ aA(£J) ® ^v. 

*=i 
where £{V = j(£i)(v). It is easy to check that d\ is independent of the choice of 
basis, that d?x = 0, and that d\ is functorial in both A and V. Let H+(A\V\) = 
H*(A®V,dx). 
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Remark 1.1. If A = C*(L), A = identity, j : L —> g£(V), and J : C*(L) <g> V -» 
C*(L;V) is the standard isomorphism, then Jd\ = dyJ where dy : CP(L; V) —* 
C'+1(-^; V) is given by 

c?7u; = duj + 7 Aw. 

Here, 7 is considered as a g£( V)-valued 1-form on L and the wedge product 7 Aw is 
defined using the action of g£(V) on V. 

Suppose now that A G C-4is free and of finite type; that is, A is the tensor product 
of a polynomial algebra on even dimensional generators with an exterior algebra on 
odd dimensional generators and each A7 is a finite dimensional vector space, j > 0. 
According to Proposition 7.11 of [2], we can find a basis ¿1,... , tn for A1 such that, 
for 1 < i < m, 

dt{ = ^2 ajk IJK 
l<i<j<m 

and for m < i < nydti is a polynormal generator for A. One easily sees that, if A 
and J9 are free and of finite type, then A(A <g) B) = A(A) x A(B) and if A = R[x, y] 
with dx = y, then A A is contractible in AT. Hence, up to homotopy type, A(A) is 
unchanged by dividing A by the ideal generated by {ti,dti \ i > m}. Henceforth, we 
include the condition n = m in the notion of free and of finite type. 

Given A as above, let L be the dual vector space to A1 and let ax,... , am be the 
basis for L dual to ¿1,... ,tm. Then L is a Lie algebra with 

m 
[oLj,OLK] = 2^aJfca,-. 

«=i 

The inclusion 
A : C*{L) ~ R[ti,... ,tm]cA 

defines Z-local coefficients on A. As in [3], we define i : A —> A(A(A)) by i(a)(w) = 
u(a). Then z'A : C*(L) —» A(A(A)) defines L-local coefficients on *4(A(A)). Finally, 
if A^ denotes the subalgebra of A generated by ¿1,... ,tm, then C*(L) is naturally 
isomorphic to A^K 

The following result is stated in [8] as "Theorem" 8.1. 

THEOREM 1.2. Suppose A € CAis free of finite type, and that A(1) = C*(L) as 
above. 

(i) Let G = GA be the connected, simply connected Lie group with L(G) = L. 
Then 

7n(AA^) ~ G fori = 1, 

~7Ti(<2) fori>l. 
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(ii) Let V be a finite dimensional vector space on which L acts and X : C*(L) —» A 
the inclusion map. Then the mapping i : A^ -* A(A(A^)) induces an isomorphism 

U : H.(AV>;VX) - Hm(^A(A^));ViX) * H*(AA^;ViX}. 

(Hi) Let A be the quotient algebra of A by the ideal generated by A^. Then 
A<J> C A induces a fibre map A(A) -+ A(A<J)) with fibre A(A) C A(A). (Note 
that A is free, nilpotent, and of finite type and hence the homotopy type of A(A) is 
described in [3].) 

(iv) For any action of L on V, the mapping i : A —> A^A(A)) induces isomorphisms 

im : H.(A; Vx) —> H*(A(A(A)); ViX) ^ #*(A(A); ViX). 
In [8], Sullivan gives a very brief sketch of (i) and(iii) and, asserts that (ii) is "a 

reformulation of the theorem of Van Est". No proof is given for (iv). We give a 
detailed proof of (iv) in general and of (ii) when G = GA in the universal cover of a 
compact group. Actually (i) follows from Proposition 2.4 and (iii) follows from results 
of Section 5. In Section 2, we give an analysis of A(C*(£)) (see Theorem 2.3 and 
Proposition 2.4). Section 3 deals with local coefficients and the de Rham theorem. 
Proposition 2.4, the de Rham theorem with local coefficients, and an unpublished 
result of Graeme Segal are used in Section 4 to prove (ii) when G is the universal 
cover of a compact group. The result of Segal is that the continuous cohomology and 
the ordinary cohomology of the singular complex of a CW complex are isomorphic. 
We give Segals proof in Section 7. 

The development of the proof of (iv) is as follows: Suppose A 6 CA is free and of 
finite type. Then A = *7A<n> where A<°> = R and A<n> = A(n_1) [x[n),..., x[n)] and 
the x*n) have dimension n. We compute £T*(A(A); VJA) by computing H*(A(A(n)); Vix) 
using induction on n. In Section 6, we use Proposition 2.4 to prove Theorem 5.3, 
namely that 

A(A[xu...,xk])-+A(A) 

is a fibration with fibre A(R[xi,..., Xk]). In Section 6 we develop the Serre Spectral 
Sequence for continuous cohomology with local coefficients and apply it to the above 
fibration to prove the inductive step in the proof of (iv). 

Recall that, for A, B € CA> a function complex T{A, B) G AT was defined in [3] 
(following [2]) by ^(A, B)q = (A, £lq <8>i3), the space of continuous differential graded 
algebra mappings from A to £lq & B. If A and B G CA are free and of finite type 
and h : A^ —> B^ is a map in CA define *̂(A, B\ h) to be the simplicial subspace 
of "̂(A, B) whose q simplicies are maps u : A —• Og (8) B which give a commutative 
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diagram 
A(1) h E(1) 

i 3 
A u R, O B 

where i : A^ —> A is the inclusion and j(b) = 1 <g) b. 
Similarly, for X, Y G AT, T(X, Y) G AT is given by T{X, Y)q = (X x A[^],F), the 

space of simplicial mappings from XxA[q] toY where A[q] is the simplicial model for 
the standard ^-simplex. If h : A(1) -» Bw is as above, let T(AB,AA;A(h)) be the 
simplicial subspace of F(AB, A A) whose g-simplicies are mappings / : A[B] x A[q] —• 
A (A) for which the diagram 

A[B] x A[q] 
/ 

A(A) 

3 Mi) 

A(B^) A(h) A (A (1)), 

is commutative, where j(s,u) — u \ A(B^). Just as in [3], Theorem 1.20, we prove 
THEOREM 1.3. Suppose A,B G CA are free and of finite type and h : A(1) —• Bw 
is a mapping in CA Then A : T{A, B) J*(A5, AA) defines a weak equivalence 

A : F(A, B] h) -> ^(A5, AA; Ah). 

The proof of this result is given at the end of Section 5. 

2. The Simplicial Space A(C*(L)). 
We give here an analysis of the simplicial space A(C*(L)) and prove an indepen­

dence result for characteristic classes of G-foliations. Although the results of this 
section are stated for finite dimensional Lie groups, they do hold more generally for 
infinite dimensional Lie groups which are regular (in the sense of Milnor [7]) and for 
which the Lie algebra L(G) is reflexive. In particular, they hold for G = Diff(Af), M 
compact, where L(G) is the Lie algebra of vector fields on M. 

Let X be a manifold, G a Lie group, and let (X, G) be the space of C°° mappings 
/ : X -> G. Let G act on (X,G) by (gf)(x) = gf(x) and let Q}(X;L) C Q}{X,L) be 
given by 

fr(X; L) = {w G ^(X; L) \ dw - w A w = 0}. 
Define p : (X, G) -> Q\X- L) by p(f) = -f^df where 

(f-'dfXv) = dLjfodfiv) G TGe = L(G) 
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for v G TXX. It is easily checked that p(g • /) = p(f) for any / G (X, G), g G G, and 
that d(p(f)) - p(f) A /3(/) = 0. Thus, p defines 

p:(X,G)/G^Cl1(X;L). 

Similarly, we define a : (X, G) -+ (C*(£), O (X)by cr(/)(<*) = /*(a) for a G 
C1(L) = L* where a G 121(G) is the invariant 1-form defined by a. Then a(g • /) = 
cr(/) so 5- defines 

a : (X,G)/G ^ {C'{L),Ü*{X)). 

Finally, we define ^ : O (X, L) Hom(L*; O1^)) by ^(ti;)(a)(t;) = a(u;(v)). One 
easily checks (see [5]) that xj? defines a bijection 

t/> : n1(X;L)^(C*(L),n*(X)). 

THEOREM 2.1. Suppose X is simply connected. Then each of the mappings p and 
G defined above are bijections and the diagram 

(X,G)/G —"-^ fr{X;L) 

A I< 

(C*(L),Sl*(X)) 
is commutative where C(.w) — i/>(—w). 

Remark. If the spaces above are given the C°° topologies, then each of the mappings 
in the diagram is a homeomorphism. 
PROOF: The fact that the diagram of Theorem 2.1 commutes is an immediate con­
sequence of the definitions. Since i¡) : ft(X;L) —> (C*(Zr), £l*(X)) is a bijection, it 
follows that C : &(X;L) (C*(£), £l*(X)) is a bijection so Theorem 2.1 will be 
proved if we can show that p : (X,G)/G —• 01(-X";L) is a bijection. This is an 
immediate consequence of the following. 

LEMMA 2.2. Let U be a neighborhood ofxGX and suppose w G O1 (U, L) satisfies 
dw = w A w. Then there is a neighborhood Uo C U of x and a unique C°° function 
f : Uo —> G such that f(x) = e and w = f_1df. 

For a proof of this lemma, see [9]. 
Let AG denote the simplicial space of C°° singular simplices of G. Setting X — 

A9,g = 0,l,2,...,in the previous discussion yields simplicial mappings 

a : AG —> AC*(L) 

a : AG/G — AC*(I) 

As an immediate consequence of Theorem 2.1, we have 
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THEOREM 2.3. The mapping a : AG/G -» AC*(L) is a simplicial homeomorphism. 
The next result proves part (i) of Theorem 1.2. 

PROPOSITION 2.4. The mapping cr : AG —• AC*(L) is a twisted cartesian product 
with fibre and group G where G is the simplicial group with Gq = G for all q and 
with the identity as face and degeneracy mappings. 

By Theorem 2.3, it is sufficient to show that the natural mapping 7r : AG —> 
AG/G is a twisted cartesian product with fibre and group G. To accomplish this, 
define r : AG/G -» G by r([T]) = T(Vl^(VQ)"1 and h : AG —• (AG/G) xr G by 
h(T) = ([T],T(v0)) where T € (AG/G)q and u0,vi,...vq are the vertices of Aq. 
Then r is a twisting function and h is a simplicial homeomorphism such that the 
diagram 

AG h (AG/G) xrG 

7T T 
AG/G id AG/G 

is commutative. 
We conclude this section with a result concerning characteristic classes of G folia­

tions (in the sense of [5]). According to Haefliger [5], if L is the Lie algebra of a Lie 
group G, then AC*(L) is a classifying space for G-foliations transverse to fibres of 
a product. The following can be interpreted as an independence statement for the 
continuous cohomology characteristic classes of these foliations. 
PROPOSITION 2.5. Let G be a compact Lie group with Lie algebra L. Then the 
homomorphism H*(AC*(L)) H*(AC*(L)6) is injective. 

Here, AC*(L)6 is the simplicial space AC*(L) in the discrete topology. 
PROOF: By Theorem 2.3, it is enough to prove that i* : H*{AG/G) -> H*((AG/G)6) 
is injective. To do this, we consider the commutative diagram 

C*(AG/G) 3 G*(AG)G G*(AG) 

k 
G*((AG/G)*) C*(AG6)G C*(AG6). 

The mapping j is an isomorphism and k is a homology isomorphism by Theorem 
4.9. Using the Haar integral, we can construct a cochain mapping r : G*(AG) —• 
C*(AG)G with r£ = id. (See Proposition 4.4.) It follows that the composite k£j is 
injective on homology so i* is injective on homology. 
REMARK : The analogue of Proposition 2.5 with local coefficients can be proved using 
the techniques developed in Section 4. 
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3 . Local Coefficients and the de Rham Theorem. 
In this section, we describe local coefficients systems in several different ways. We 

also prove a local coefficient version of the continuous cohomology de Rham theorem. 
Let G be a Lie group with Lie algebra L and let V be a finite dimensional vector 

space. Suppose G acts on V via a representation r : G —* GL(V) so that L acts on 
V via a representation 7 : L —» g£(V). In Section 1, we defined a local L system on 
A € CA to be a CAmap A : C*(L) A and a differential 

dx : Ap®V -+ A*+1 <g>V 

given by the formula 

dx(a ® v) = (da) <g> v + (-l)p ^ aA(€J) <g> ¿,1; 
t 

where {^} is a basis for L, {£*} the dual basis for L*,a G Ap and £{V = 7(£t)(u). We 
now translate this into a more familiar form. 

Let V be as above and define £l(V) to be the simplicial topological differential 
graded vector space given by 

ft;(V)=n*(A«;V), 

the smooth differential p-forms on Ag with values in V. For X £ AT, let A(X, V) 
be the differential topological graded vector space with 

JP(X;V) = (X,W(V)), 

the space of simplicial mappings from X to £lp(V). It is easy to see that A(X, V) = 
A(X) <g) V. Note that AC*(L) can be considered to be contained in O1 (L). 

Suppose A : C*(L) —> A(X) is an CA map and let </> = </>x be the composite 

X i A(A(X)) A-̂ } A(<7*(L)) C Q1^) (L) 

where j(x) (u) = u (x). Then <j> £ A -̂X^X) and one easily checks that d<f>(x) + 
<j>(x)A(j>(x) = 0 for all x E Xq. We define d+ : A(X; V) -> A(X, V) by 

d̂ u; = du> + <£Au>. 

Then d\ = 0 and we have 
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PROPOSITION 3.1. Let i : A(X) <8> V —• V) be the isomorphism defined by 
i(to <8> v)(x) = u>(x)v. Then id\ = d< .̂ 
PROOF: If u> e JP(X), v e V, and x e Xq, then 

tcfA(w (8) v)(x) = i((du;) <8> v + (-1)" ^ wA(<J) (8) ^v)(a?) 
< 

= (cfc;)(*)t, + (-1)" ^a>(s)A(£?)(*)^ 
t 

= (dw)(x)v + (-l)po;(x)^(x) 

= d<f>i(uj <g> v)(#). 
since <f>(x) = £A(^ 

i 
We next reformulate these notions into an equivariant setting. Let A be the com­

posite 
X i A(J(X)) A^ AC*(L) 

and let X be the pullback 
X > AG 

p Br 

X 
A 

AG*(L) 
where à is defined in Section 2. Let G act on -4(-X", V) by 

(gcv)(x,T)=gu;(x,g-1T) 

where x G Xq,g G G, and T € (AG)q and let JJ : J{X, V) -» V) be given by 

H(CJ)(X, T) = T • u>(x) 

for a; G .4(X, V) and (x, T) G X. Here 

T • o;(x)(u;1,... , wp) = (TT)(y) • {u(x){wx ,... , u;,)) 

where Y : G —• G£(V) is the homomorphism defined by the action of G on V, 
?/ G A*,wi,... ,Wp G TAJ, and (TT)(y) acts onw(i)(«;i,... ,u;F) G V. 

PROPOSITION 3.2. The map H defines an isomorphism of J(X, V) onto J(X, V)G 
with Hdfi = dH. 

PROOF: The verification that gH(u>) = H(w) is straightforward. To see that H is 
an isomorphism, let O : AC*(L) —> AG be the composite 

AC*(L) AG/G AG 
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where a : AG/G —> AC*(L) is the simplicial homeomorphism defined in Section 
2, fi[T] = T(v0)"1T, and v0 is the initial vertex of Aq. Then H'1 : A(X, V)G 
*A(X, V) is given by 

Я-*(«)0О = 0(\{х)Г*и,{х,0{\{х))). 
In order to prove that Hd<t> = dH, we need the following, which will also be useful in 
the next section. 
LEMMA 3.3. Let M be a manifold, V a finite dimensional vector space, f G 
Q°(M; GL(V)) 
C £l°(M;g£(V)), and u e ft^M; V). Define Af G Q1(M;g£(V)) by Af = fxdf. 
Then 

d(fw) = f(dw + A/A w). 
The proof is straightforward. 
To prove Hdj, = dH, consider w G ̂ X , V), (x, T) G Xg C Xq x AGG, and let 

/ : Aq —> GL(V) be the composite 
AG T G r GL(V). 

Then 0(x) = A / since A(x) = a(T) = T~*dT and we have 
( i f^ ) (x ,T) = (^T).^o;(x) 

= F - (W (X) + A/ACJ(X)) 

= d(f-u,(x)) = dH(u>)(x,T). 
by Lemma 3.3. 

We conclude this section by reviewing the usual definition of local coefficients. 
Let t : Xi —> G be a continuous function satisfying t(d\x) = t{p2x)t{dox) for 

xeX2. Define ^ • C*(J*T; V) -» C*+1(A:; v) hY 

(Stu)(x) = (t (ax, x)u(d0x) + 
n+1 

i = 1 
:(-i)««(a,x) 

for x G -^p+i. Then Sf = 0 and we define 

ff*(X;Vt) = -ff.(C*(X;tO;M-
Suppose A : C*(L) —> .4(.X") with 0, 0, and X as above. Define * = t\ by 

tA(*) = O(*00)(»i) 
where i>o, Vi,... ,vq are the vertices of A' and let G act on C*(X; V) by 

(gu)(x,T) = gu(x,g-1T). 

Define K : C*(X; V) -> C*(X; V) by K(u)(x,T) = T(v0)u(x). 
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PROPOSITION 3.4. The function K maps C*(X, V) isomorphically onto C*(X, V)G 
with Kdt = dK where t = t\. 

PROOF: It is easy to see that K"1 is given by 

K-^uXx) = u(x,Q(X(x))). 

The remainder of the proof is similar to the proof of Proposition 3.2 and we omit it. 
Let £ = V <g> id : J(X, V) -> C*(X, V) where # : A(X) C*(X) is defined in [3]. 

We now have the following local coefficient version of the de Rham Theorem. 

THEOREM 3.5. The map V> induces an isomorphism 

^. : H.{AX;V)G) -> H»(C'(X;V)°) 

and hence an isomorphism 

(K-^H), : H.(JiX,V),dt) - H,(C*(X,V),dt) 

where <f> = <f>\ and t = t\. 
PROOF: In the proof of Theorem 2.4 of [3], natural mappings <f> : C*(X) —> -4(-X") 
and 7 : AP(X) —• AP~1(X) were constructed satisfying ip<f> = id and dj+jd = <t>ip—id. 
Tensoring everything in sight with V gives the desired result. 

4 . The Proof of Theorem 1.2 (ii). 
We now prove part (ii) of Theorem 1.2 in the case where G = GA is compact. 
Let G be a connected, simply connected Lie group G with Lie algebra L. Suppose 

L acts on a finite dimensional vector space V via a homomorphism 7 : L —> g£(V). 
Viewing 7 in C1(X; g£V), define a differential dy on C*(L; V) by 

d-f(a) = da + 7A a 

as in Remark 1.1. Similarly, we define a differential c?»T on >4(AC*(L); V") by 

di~f(uj) — dcj -f (¿7) A co 

where i : C*(L; g£(V)) -> J(A(C*(L)); gl{V)) is the canonical map. The wedge 
product (¿7) A LO is defined using the pairing 

J(AC*(L); g£(V)) <g> -4(AC*(£); V) -> ^(AC*(L); V). 

According to Remark 1.1, part (ii) of Theorem 1.2 is a consequence of the following. 
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THEOREM 4.1. HG is compact, then the mapping 

i : (C*(£; V); dy) -+ (X(AC*(£); V); diy) 

induces an isomorphism on homology. 
The remainder of this section will be devoted to proving this result. 
Define F : G*(L; V) —> J{AG/G\ V) by F(a <g) v)(T) = (T*a) ® v where v e V, 

T e AG, a 6 CP(L), and à € ftp(G) is the left invariant p-form defined by a. Define 
7 = Fj € A (AG/G; flr£(V)) where # is defined as above with V replaced by g£(V). 
Let 

<£y : ̂ (AG/G; V) — ^+1(AG/G; V) 

be given by d^(u) = du + 7 A u where c? is the usual differential on J?(AG/G) and 
7 A v is the wedge product defined using the pairing 

ft*(A*; g£(V)) <g> ft*(A*; V) -> ft*(Ag; V). 

LEMMA 4.2. For any a G G*(L; V),Fd7(a) = d^F(a) and the diagram 

4AC*(L);V) 

1 <7* 

G*(£; ^ ) - ^ ^ A G / G ; F ) 
commutes. 

PROOF: We first verify that the diagram commutes. It is enough to do this when 
V = R in which case each of the mappings is an algebra homomorphism. Since C*(L) 
is generated by one dimensional elements, we need only show that <j*i(a) = F(a) for 
aGL* = CX(L). If T : A9 —• G, we have 

o*i(a)(T) = i(a)(*(T)) 
= <r(T)(a) = a(T~xdT) 

Now T-1dT is the X-valued 1-form on Aq given by (T_1dT)(u) = dLT(t)-idT(u) 
where u is a tangent vector to Ag at t E Aq and L^t)-1 : G —» G is left translation 
by T(t)"1. Thus, a(dLr(t)-idT(tx)) = a(dT(u)) so that a(r"1cfr) = T*(a) and the 
diagram commutes. 

To prove Fdya = d^F(a), we note that dF = Fd so it is enough to show that 
F(7 A a) = 7 A F(a). If7 = /?®Aasan element of G^L) ® g£(V) - G1(L; ̂ (V)) 
and a = ai <g) v as an element of C * (L) V G*(L; V), then 

#(7 A a)(T) = F(0 A ai <g> A(v))(T) 
= T*(^ A a i ) 0 

= (#(7) A F(a))(T) = 7 A F(a)(T). 
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The general case now follows from the fact that any 7 G C1(L\g£(V)) and a G 
G*(L; V) are sums of elements of the form considered above. 

Since a is a simplicial homeomorphism, a* is an isomorphism of differential graded 
vector spaces and i will be a homology isomorphism if and only if F is a homology 
isomorphism. To prove F a homology isomorphism, we will define mappings which 
give the following commutative diagram of differential graded vector spaces: 

(C*(L;V);d^) —L_» (^AG/G; V); dy) 

' 1 [ ' 

(4-3) (0*(G;V)°;d) — ^ - (J(AG; V)a; d) 

-VI ' M 

(ft*(G;V);d) —F—̂  (J(AG;V);d) 

Here, j and j are inclusion mappings. 

PROPOSITION 4 . 4 . Suppose that, in the commutative diagram (4.3), ¡1 and fx are 
isomorphisms, F is a homology isomorphism, rj = id, and rj = id. Then F is a 
homology isomorphism. 

PROOF: It is clearly enough to prove F a homology isomorphism. Now, rj = id 
implies that j+ is infective. Thus (Fj)~* (jF)* is infective and it follows that F* 
is injective. To prove F* surjective, consider u G lf*(«4(AG; V)G; d) and let v = 
r+F"1 j*u. Then F±(v) = u so F+ is surjective and thus an isomorphism. 

We now proceed to define the mappings in diagram (4.3) and prove that the hy­
potheses of Proposition 4.4 are satisfied. We begin by defining an action of G on 
0*(G; V) and on -4(AG; V) which give the middle row of (4.3). 

The Lie algebra homomorphism 7 : L —* g£(V) determines a unique Lie group 
homomorphism r : G —> GL(V) with 7 = dT : L = TGe -> TGL(V)e = g£(V). 
(Recall that G is assumed simply connected.) Define actions of G on ft*(G; V) and 
on A(AG; V) as follows. For g G G,w G n*(G; V), let G OP(G; V) be given by 
gw = Tig^L^w). Similarly, for u : AG -» №(Aq;V) G JP(AG;V),g G G, and 
T G (AG),, let 0tx be the element of ^4P(AG; V) given by (gu)(T) = T(g)u(g~1T). 
Then n*(G;V)G and *4(AG; L)G denote the cochain complexes of elements fixed 
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under the action of G with the standard differential d. It is straightforward to show 
that d(gu) = g{du) for u e ft*(G; V) or u € A(AG; V). 

Define F : ft*(G; V) -» A(AG; V) by F(w)(T) = T*w for w E ft*(G; V), T € AG. 
Then F(dw) = dF(w) is immediate and 

FfouO(T) = T*(gw) 
= TT(g)L*g-iW 
= (id <g> T(g))(T* <g> id)Xj-iu; 
= r ( y ) ( V * r ) ^ = (^F(u;))(r). 

Thus F induces F : (ft*(G, V)G,d) — (A(AG; V)G,d). 
Define mappings 

r : ft* (G; V) -» ft*(G; V) f : A(AG; V) -+ A(AG; V) 

by 
K«0 = jT 9wi Ku)(T) = jG(gu)(T) 

for it; E ft*(G; V), u E -4(AG; V), T € AG, and the integral is the Haar integral on G 
normalized so that the volume of G is one. 
PROPOSITION 4.5. For any g E G,u> E ft*(G; V),u E ^(AGjV), we haveg(r(w)) = 
r(tt>) and g(r(u)) = f(u). Furthermore, dr = rd, df = fd, and fF = Fr. 

The proof of this proposition is straightforward. For example, to prove that Fr = 
fF, we simply use the definitions: 

(Fr(w))(T) = T*r(w) 

= r* JGT(9)l;^W 

T(g)T*L^xv, 

= G T{g)(Lg-iTYw 

= y r ( ^ № ) ( V , T ) = (fJ'(u,))(r). 

It follows from Proposition 4.5 that 

r(ft*(G; V)) C ft*(G; V)G, f(A(AG; V)) C A(AG; V)G. 

Thus, we have established the existence of the lower rectangle of mappings in (4.3). 
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To obtain the upper rectangle in (4.3), we need first of all to define a second action 
of G on n*(G;V) and *4(AG; V). For w G ft*(G,y) and g G G, let g * w be the 
element of ft*(G; V) given by 

g * w = L*g-Xw. 
Similarly, for u G (AG; V), let g * u G *4(AG; V) be defined by 

(g*u)(T) = u(g-1T) 

for T G AG. Then d(g * tu) = g * du> for w G ft*(G; V) or u; G A(AG; y) and we 
let ft*(G; V)G* and A(AG; V)G* denote the subspaces of elements fixed under these 
actions of G. Of course, C*(L; V) can be identified with ft*(G; V)G*. The next result 
gives the corresponding identification for A(AG; V). 

LEMMA 4.6. The natural mapping p : AG —• AG/G induces an isomorphism 

p* : A^AG/G; V),d^) -> (J(AG;V)G*,d-y) 

of differential graded vector spaces. 

The proof is trivial. 
In order to define the mappings ¡1 and ft of diagram (4.3), we first define related 

mappings. Let 

77 : ft*(G; V) -+ ft*(G; V), fj : *4(AG; V) -» A(AG; V) 

be defined by r](u) = T • LO , fj(u)(T) = (T o T) • u(T). 

LEMMA 4.7. The mappings 77 and 77 are bijective. Furthermore, we have i](g*uj) = 
grj(u) and fj(g * u) = gfj(u) for any g G G, u> G ft*(G; V), and u G *4(AG; V). 

PROOF: The inverses to 77 and 77 are defined just as 77 and 77 are denned using 
r-1 : G —> GJ^V^r-^) = r(y)"1, in place of I\ The verification of the two 
equations of Lemma 4.7 are similar; we do only the second, leaving the first to the 
reader. Thus, for g G G, u G *4(AG; V), and T G AG, we have 

(gfj(u))(T) = T(g)fj(u)(g-1T) 

= T(g){Tog-^T)u(g^T) 

= (T(g)T(g-l)ToT)u(g-*T) 

= {ToT)u(g-1T) = ri(g*u)(T). 

As indicated above, any element a G G*(L; V) can be considered as a left invariant 
form OL G ft*(G;F). In particular, 7 G C 1 ^ ; ^ ^ ) ) determines 7 G ft1^;^')) 
where j(X) = j(dLg-iX) for Ar G TG5. Define 

d7 : ft*(G;F) — ft*(G;F) 
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by dytv = dw + 7 A w. Define 7 G -4(AG; < (̂V)) by 7 = F7 where F : ft*(G; V) 
-4(AG; V) is given by F(u;)(T) = T*tu, (see Proposition 4.5), and let 

d^ : J(AG;V)-> J(AG; V) 
be defined by d^u = du + 7 A u. Then c?? = 0 and <i? = 0 and we have 
LEMMA 4.8. For w G £l*(G;V) and u G J^AG\V), we have drj(w) = rf(d^w) and 
dfj(u) = fj(dyu) 
PROOF: Again, the verifications of the two equations are similar so we carry out 
only the proof of the second equation. Thus, 

(dijf(«))(r) = d«(u)(D) 
= d((roT)u(T)) 
= r o T(d«(T) + A(r o T) A «(T)) 

by Lemma 3.3. Now, iiX e TAf, we have A(roT)(X) = dLr(T(t)-i)dTdT(X). Iden­
tifying 7 : L -* gt{V) with dT : TGe -»• TG£(V)e, we have dT = dLT(T(t))'rdLT(t)-i 
(since r is a homomorphism) and 

A(r o T)(X) = jdLT(t)-xdT(X) 
= j(dT(X)) 
= FftXX) = y(X). 

Then 
d(fj(u))(T) = (r o T)(d«(T) + 7 A u(T)) 

= (fj(d^)u)(T). 
According to Lemmas 4.7 and 4.8, 77 and fj induce isomorphisms 

r, : (ft*(G; V)G*;d,) -» (<r(G;V)G;d) 
ijf : MAG; F)G*; d^) - (.4(AG; V) G; d) 

of differential graded vector spaces. Let fj, and p. be the composites 
Ii: (C*(L; V); d 7) ~ (1T(G; V)G*; d») i (N) G? VF) G ; d) 
PL : (A&G/G;V);d^) £ (^(AG; V)G*; d>) X (^AG;V)G;d) 

If F : Q*(G; V)G ^(AG; V)G is the restriction of F : fi*(G; V) -> -4(AG; V), then 
diagram (4.3) is easily seen to be commutative. 

We have now established the commutative diagram (4.3) of differential, graded 
vector spaces. Moreover, the mappings fi and /2 are isomorphisms. Thus, according 
to Proposition 4.4, the proof of Theorem 1.2, part (ii), will be complete if we can 
show that F is a homology isomorphism. For this we need the following. 
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THEOREM 4 .9. Let X be a CW complex, AX the singular complex of X in the 
compact open topology, and AX6 the singular complex of X in the discrete topology. 
Then the natural mapping j : AX6 —> AX induces an isomorphism 

H*(AX) £ H*(AX6) = H*(X). 

We are indebted to Graeme Segal for the proof of this result which we give in 
Section 7. 

To see that F : Q,*(G; V) —* A^AG\ V) induces an isomorphism on homology, 
consider the following commutative diagram 

n*(G; V) F 4(AG; V) 

0 0 
C*(AG6;V) i C*(AG;V) 

Here all differentials are the ordinary untwisted differentials,v is defined in [3], 
Section 5, and t/> is the usual deRham mapping. Now, tp is a homology isomorphism 
by Theorem 2.4 of [3], j* is a homology isomorphism by Theorem 4.9 above, and if? 
is well known to be a homology isomorphism. Thus F is a homology isomorphism 
and Theorem 1.2, part (ii) follows from Proposition 4.4. 

5. Fibrations. 
Suppose G is a connected, simply connected Lie group with Lie algebra L, A G CA, 

and A : C*(L) —> A is a map in CA Let X be a graded vector space with basis 
x\,... ,xjfc, deg Xj = n,j = 1,... ,n, and let {£{} be a basis for L. Let A[X] = 
A[xi,... , Xk] be the free algebra over A on xi,... ,Xk and suppose A[X] has a dif­
ferential d with dA C A and such that 

(5.1) dXi = ^HtyXm + d 

where b{m G R, c{ e An+1 and {£?} is the basis for L* dual to (ei) The relation 
dPxi =0 yields 

(5.2) dCi = Y,^rK^)cm 

Let X* be the dual space of X, {#*} the basis for X* dual to (xi) and define 
/i : L 0 X* -+ X* by 

Kb ® 4 ) = rK^)cm 

The equation d2 = 0 implies that /i defines an action of L on X* as a Lie algebra. 
Therefore, we have a corresponding action of G on X*. 
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Let G G AT be given by Gq = G, Si = Si = id for all q, i and set P = Ai*[X] x G. 
(Here, R[X] G C4with dJf = 0.) We make P into a simplicial topological group and 
define an action of P on A(R[X]) by 

(v,#)(v',sO = (v + g-v',gg') 
(v,g)u; = v + gu 

for 0,0' G Gg = G, v,v',u G A(R[X))q C Qn(A*;X*). 
In [2], Section 5, we defined a map /i0 : flp(Aq) —* Qp_1 (A9) satisfying dfio-\-fi0d = 

id, /io-Sj = SjfiQ for j > 0, and fiodi = oio for i > 0. We extend this map to a 
mapping 

ц0 : ÜP(A9;X*) -+ SI"-1 (Ая ; X*) 
with these same properties by ô(<*> <8) #) = A*o(̂ ) ® x and define c : X —* An+1 by 
c(xi) = c,. 
THEOREM 5.3. The simplicial space A(A[X]) is a twisted cartesian product A( A) x r 
A(i£[-Y]) with group P and twisting function r : AAq —• Pq-\ given by 

r(u) = №oA)(u1)-1((90/i0 - nQdQ)(G(uo\)uoc), G(u o AXvi)"1) 

for u G AAq = (A, Q,q) and vi is the second vertex of Aq. Here O is defined in Section 
3 to be the composite AC*(L) ^ AG/G B AG where 0(T) = Tv TM^T. 
PROOF: We identify (X,£lq), the space of linear mappings from X to ft™, with 
Qn(Ag; X*) by v .—• ^«(xtK, v : X -> ft£. If u G A(A)g, then woe 6 (X,ft£+1) = 
ftn+i(A*;X*) and uo X e A(G*(£)) C ^(A^-L). Thus 

A(A[X])q = (A[X],Slq) 
= {(u, t;) G A(A)q x (X,ftJ) | *;(**) = EftJm(ti o A(^)M*m) + u(*)} 
= {(u, v) G A(A)g x ftn(A«; X*) | dv = (u o A) A v + u o c} 

Note that 

A(*[>r]), = (R| X|, O), 
= {t> : X -* ft, | dv = 0} 

= {«€ ftn(A«;JT) | dv = 0}. 

Define / : A(A), x A(JJ[A-]), -» A(A[X]), by f(u, v) = («,*;') where 

v' = 0(w o A)-1(/i0(C(u o A)w o c) + v) 
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where P([T\) = T(v0)-1T. In order to insure that (u,i/) € A(A[X])q, we need to 
show that dv' = (uoA)Au'+uoc. If (% = <9(u o A) G (AG%, then 

d*/ = DQ,"1 • Oo(Q) • u o c) + v) + O0_1 • (d^o(Q) • o c) + du) 
= -Cg"1 • DA • Of ^^(O • ti o c) + v) + OQ"1 • (Cb • t* • c - /i0(d(Q) • u o c))) 
= -O^dOo Au' + woc - Cf1 - /i0«Ob - woe)) 

since DQF1 = -QR^OBQR1-
We now need the following results. 
If uo A G AC*(£)g is considered an element of ftj(£) (as in the discussion following 

Theorem 2.10), we have 
LEMMA 5.4. dCb = —OQ • u o A. 

PROOF: Identifying AC*(L)q with ft^A^-L), we have 

-O0-1dO = p(Q>) 
= P (O (O A)) = u o A 

by the definition of the mappings involved. 
COROLLARY. O0_1dC\) = -uoA. 
LEMMA 5.5. d(uoc) = uoAAuoc. 
PROOF: The element in On+1(Ag;X*) corresponding to u o c is E(u o c)(xi)x* = 
Sw(ci)a?J. Thus 

d(u o c) = dStx(c,-)x* 
= Eiz(dci)a;* 
= E&S'rauo A(€*)U(CmK 
= (Eu o A(^)^)(E« o c(xm)a4) 
= u o A A w o c. 

COROLLARY. d(Cb • u o c) = 0. 

PROOF: 

d(Cfo - uoc) = (dOo) A u o c + Qo - duo c 
= — OQ - UO A AUOC + Q) - UOAAUOC = 0. 

It follows from the two corollaries above that dv' has the required form. 
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Define / -1 : A(A[X])q A(A)q x AR[X]q by / -1 (","') = (u,v) where 

u = G(u o A)v' - (*o(0(u oA)-uoc). 

It is easy to check that Z""1 is actually an inverse for / . We now determine the 
twisting function r. 

For (u, v) 6 AAq x AR[X]q, set d0(u,v) = (d0u,v). Then /(d0(u,v)) = (a0w,v') 
where 

v' = O(d0(u o A))-1(/i0(C?(ao(w o A)) • d0(u o c)) + v) 
Furthermore, dof(u,v) = (9oti,3ou') where 

a0v' = d0O(u o A ^ ^ M ^ C " o A) - u o c) + d0u) 

Thus, if d0v' = v, we have 

v = O(d0 (u o A)) • d0 G{u o A)"1 (d0 fi0 (Q(u o A) • u o c)+d0v) - /x0 (0(3O (u o A)) • 30 (u o c)) 
It is easy to see that g-fj,o(u>) = fj.o(g-u>) and <9(#o<*) = 0(a)(vi)~"19oO(a) for g £ G, 
w £ ft*(A*; X*), and a € AC*(£). It follows that 

v = O(u o o \)(v1)~1((dofi0 ~ f*od0)(0(u oA)-uoc) + C>(u o AX^i)"1^*) 

so that 

r(u) = (Q(u o AXwO'̂ CSoMo - Hodo)(0(u o A) • iz o c),0(u o A)^)"1). 

The verification that dif = fdi for i > 0 and Sif = fsi is routine and left to the 
reader. 

We conclude this section with a proof of Theorem 1.3. The proof of Theorem 5.3 
of this paper can easily be extended to show that 

(5.6) F(R[X), B) — J\A[X], B) — J\A, B) 

is a twisted cartesian product and hence a fibration in AT. (Theorem 5.3 corresponds 
to the case B = R.) For example, identifying (X, Q.q <g> B) with Q(A9; X*) ® J5)n, we 
have 

J\A[X,B)q = {(u,v) e J\A[X),B) x (Q,(Aq;X*) ® B)n | dv = uAv + uc}. 

The pullback of (5.6) to T(A, B\ h) C F(Ay i?) yields a fibration and a commutative 
diagram 

W * ] , * ) > HA[X],B;h) • F{A, B; h) 

1 - I 1 
?{AB, AR[X]) • J\AB, A(A[X\); Ah) > J\AB, AA; Ah) 
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If we write A — UAn, then induction, the diagram above, and the fact that Ai is a 
weak equivalence gives the theorem for A = An. A limit argument as in the proof of 
Theorem 2.20 of [3] yields the desired result. 

6. The Continuous Cohomology Serre Spectral Sequence with Local 
Coefficients 

Suppose that E = B xT F is a twisted cartesian product in AT with group 
P and suppose 7To(P) = Po- In [3], Section 8, we constructed a local system 
r = r I Bi —> P0, on action of Po on C*(F; P), and a map 

A* : C*(B; G*(P; R)) — C*(B xr F; R) 

which was filtration preserving with respect to the obvious nitrations. In 
general, A* is not a cochain mapping (relative to the usual differential 8 on 
C*(B xT F\ R) and the twisted differential 8T on C*(P; C*(P; R))) but it 
does in fact induce an isomorphism on E^q for r < 2. (See [3], Section 8.) 
Furthermore, if F is splittable, this map gives an isomorphism 

El>9(B xrF)~ H*(B; H*(F; P)). 

Suppose now that L, G, and V are as in Section 3 and t : B\ —* G is a local 
system. If, in the above paragraph, one replaces R by V,6 on C*(E;V) by 
6tp,p : E -+ P, and 8r by St,f : B1 -> P0 x G,f(6) = (r(6),<(&)), then the 
statements remain true with the same proofs as in Section 8 of [3]. Hence we 
have 

THEOREM 6.1. IfFis splittable, then the Serre spectral sequence for H*(B x T 
F; Vtp) converges in the usual way and A* induces an isomorphism 

E™ ~H*(B;H<(F; V)-T). 

We next apply Theorem 6.1 to A(A[X]) = A(A) xr A(R[X]). Let A : 
C*(L) ->Abea map in CA and recall that 

i = iA : A ® V -> (A(A)) <g> V 

is given by i(a <g) v) = i(a) <g> v where i(a)(f) = /(a). 

LEMMA 6.2. If IA induces an isomorphism 

iA : H*(A (8) V, dx) H*(A(A(A)), d^ 
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then the same is true for iA[X] ' A[X] <g) V —• A¥(A(A[X])) <8> V. 
PROOF: Let ^ = K^^H : J(A(A)\V) -> C*(AA;V) be the mapping de­
fined in Section 3 (see Theorem 3.5) and let 

i = $i : A <8> V -+ C*(AA; V). 

It is sufficient to prove Lemma 6.2 with i replaced by i and d0 by dt. Define 
a filtration on A[X] <g> V = A <g> P[X] <g> V by 

Fp = {a ® w <g> v \ dim a > p). 

Exactly as in [3], Lemma 9.4, one checks that i is filtration preserving and 
hence induces a mapping of the corresponding spectral sequences. 

We prove Lemma 6.2 by showing that i for A[X] induces an isomorphism 
at the E2 level. As in [3], Section 9, the Ei term for A (8> R[X] <8> V is 

E™ = Ap ®R[X]* ®V 

and for A(A[X]), 

E™ = C*(A(A),tf*(A(P[X];F))). 

In both cases, d2 is the appropriate local coefficient differential. Furthermore, 

i : R[X] (g) V -> C*(A(R[X]); V) 

induces an isomorphism on homology, this being the untwisted version of our 
theorem which we proved as Proposition 2.8 in [3]. By hypothesis 

IR[X] <8> %A E2 -+ E2 

induces an isomorphism. Thus we must show that i>A[X] induces this map. 
The map induced by IA[X] is the composition 

A[X] (8) V -1+ C*(A(A[X]),V) C*(A(A) xr A(R[X])) 
- i* Y,Cp(A(A),C*-*(A{R[X]),V)) 

where rj is induced by the usual Eilenberg-Zilber map CP(X) <g> Cq(X) —» 
Cp+q(X) involving shuffles of degeneracy maps. 
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For any X, x G X, and w G ftn(X; V), 

фш(х) = К~1ОфНш(х) 
= фНи(х,(Э(ф(х))) 

= / Ни{хуО{ф{х))) 

= / С(ф(х)ш{х)). 

For u G An(A),v G Aq(R[X]), and (a,/9) a (p, q) shuffle, 

f(sau,spv) = (sau, sa((9(uA)_1 fj,oO(u\)uw) + sad}(uA)-1S^U 

The first terms in each factor are sa degenerate, thus will be 5a degenerate 
when evaluated on an element of A[X] 0 V and hence will drop out when we 
integrate. Suppose a G Ap, e G R[X]q and z G V. Then 

if*rj(a 0 e 0 2r)(u)(v) = A.G/ A P + 1 saO(u\)(sau(a)(saO(u\)'~1 spv(e))z 

= f OiuXXz^i^OiuX)-1 f t)(c) 

where £ G (i?[X],Q) is defined by v G J(Aq;X). Similarly 

i$iA ' A ® R[X] <g> y -+ G*(A(A), C*(AJJ[X], V)) 

is given as follows: Note first that the group in question is 7r0(G x P) = G x G 
which acts on R[X] <g) V by 

(0i>02)(e<8>*) = (eflr2,0i*)-

Since G acts on the left of X*, it acts on the right of R[X] and on the left of 
A(R[X]). For u G A(^) the O in this case is (C(uX), O^X)'1 ) (see Section 
5). Hence 

фгА(а <g> e (g) z)(u) = f еО(иХ) 1 (g) <?(uA)u(a)z 
JAP 

and 

iil)iA{a <g> e (8) z •)(ti)(v)= / / (0(tiA)-1v)(e)0(uA)u(a)z 
Ja« Jap 

where G(uX) G ft°(A*; G), u(a) G ftp(A*),v(e) G W(Aq). Comparing this 
with 
if*rj(a <g> e ® Z)(U)(?J) we see they are equal and the lemma is proved. 
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We conclude this section with a proof of Theorem 1.2, (iv). Let A € CA 
be free and finite type so that A = LL4(n), A(n) = A(n_1) [Xn], A0 = R. By 
Theorem 1.2, (ii), i induces an isomorphism 

Hm(AM; Vx) ~ Hm(A(A(AW) <g> ViX) 

By Lemma 6.2 and induction on n, i induces an isomorphism 
ff.(A(n) ® V,dx) » ff.(^(A(AW))®V,dA) 

and hence the same holds for A. 

7. The Proof of Theorem 4 .9 . 
We give here the proof of Theorem 4.9 which was communicated to us by 

G. Segal. 
Let X be a paracompact space and A(X) the singular complex of X in the 

compact open topology. Thus, H*(AX) is the continuous cohomology of the 
simplicial space A(X) and iiP(A(X)5) is the singular cohomology of X. Let 
U be a covering of X which has a partition of unity (Yvi U 6 tf\ subordinate 
to it. Let A(X,IA) C A(X) be the simplicial subspace consisting of those 
T : A* -* X with T(Aq) C U for some U e U. 
LEMMA 7.1. The inclusion mapping A(X,U) C A(X) induces an isomor­
phism 

H*(A(X,U))^>H*(A(X)) 
on continuous cohomology. 
PROOF: Let Cq(X) be the singular chains on X with integer coefficients, 
sd : Cq(X) —• Cq(X) be the usual subdivision mapping, and D : Cq(X) —• 
Cg+i (X) the chain homotopy with dD + Dd = sd — id. The maps sd and 
D are natural and obtained from the first barycentric subdivision of Aq. Let 
sdn be the nth iterate of sd, idq : Aq —• Ag the identity map considered as an 
element of Ag(Ag), and write 

sdn(idq) = J2±T? 
i 

where Rn £ Aq(Aq). Note that the diameter of r^(Aq) approaches 0 as n 
approaches infinity. 

Let p : R —> R be a smooth non decreasing function with p(x) = 0 for x < 0 
and p(x) = 1 for x > \ . Define continuous functions y>n : A{X) —> R by 

c^(T) = p(min £ mm(A|7(T(if (t))))) 

The following may be verified by inspection. 
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LEMMA 7.2. The functions (pn : A(X) —> R satisfy the following. 
(i) (pn is continuous. 
(ii) For each T G A(X), there is an integer N = NT with yn(T) = 1 for n > N. 
(iii) If(fn(T) / 0, then there is a U € U with 

T(r?(Aq)) C supp XuGU 

for all i. 

Remark. The functions if>n = ipi — ipn-i ,*4>o = ^o, define a partition of unity 
subordinate to the covering {An(X,£/),n > 0} where 

An(X,U) = {Te A(X) | sdnT € Cq(A(X,U))}. 

Let sd* : Cq(A(X)) C*(A(X)) and £>* : C*(A(X)) -» C^^ACX)) 
be induced by sd and Z>. We show Hq(A(X)) « Hq(A(X\U)). Suppose 
u G C*(A(X)),£u = 0 and v € C*"1 (A(X;U)) with ^ = tion A(X;U). We 
define vn G Cg_1 (An(X;U)) with £vn = u on An(X\U) by induction on n. 
Let i?o = v and define 

t>n+i = scTt;n — D*u. 

Then, if Svn = w, 

£vn+i = scTtz — (sd*u — u — D*6u) 
= u 

We modify the vn so that they fit together to give an element of Cq~1(A(X)). 
If we Cq(An(X;U)), define <pnw by (<pnw)(T) = <pn(T)w(T). Since sup <pn C 
An(X,£/), we have y>nw G C*(A(X)). Let t G Cq^(A(X)) be denned by 

* | A"(X; U) = tn=Vn- S(J2 v'D'vi - ^ ( 1 - <p*)DmVi) 
*<n t>n 

Since <pl(T) = 1 for i" large, the above sum makes sense. Note that Stn = u 
and that 

6D*Vi =sdv;-v; -D*U 
= vi + 1- Vi 

Hence, for T G An(X;£/) and AT large, 

tn(T) = (VN+i + « E <^IT t;,)(T). 
t<iV 
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It follows that t„+i(T) = tn(T)y t is well defined and St = 0. 
Suppose v G Cq(A(X;U)) and Sv = 0. Let U G Cq(A(X)) be defined by 

u I AN(X,£/) = un = sdnv - 8(^T,<piD*sdiv - ^ ( 1 - VJ^JD^V) 
t<n »>n 

Then for T G An(X,U) and N large 

u„(T) = sdN+xv - S^Y^V*D*sdiv) 
i<N 

Thus it is well defined and U = UQ=V — Sz on A(X\U). This completes the 
proof of Lemma 7.1. 
PROOF OF THEOREM 4.9: We verify that H*{A{X)) satisfies additivity and 
the 
Eilenberg-Steenrod axioms on pairs of CW complexes. Homotopy, additiv­
ity and the dimension axiom are obvious. Excision follows from Lemma 7.1. 
To verify exactness one needs to show that if (X, A) is a CW pair, then 
u G Cq(A(A)) can be extended to v G Cq(A(A)). Let U be a neighbor­
hood of A, r : U —* A a retraction, and a : X —* [0,1] a mapping with support 
in U and with f(a) = 1 for a G A. Define v G Cq(A(X)) by 

v(T) = (mm o-(T(*)))u(r <g) T) 

This completes the proof of Theorem 4.9. 
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