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THE RIGIDITY OF POINCARÉ DUALITY ALGEBRAS AND 
CLASSIFICATION OF HOMOTOPY TYPES OF MANIFOLDS 

MARTIN MARKL 

INTRODUCTION 

This paper is devoted to the study of homotopy types of simply connected rational 
Poincaré duality spaces. We will frequently use the language and results of rational 
homotopy theory, a good common reference is the book [14]. 

So, let X be a rational Poincaré duality space of the (top) dimension n, i.e. a simply 
connected space, whose rational cohomology algebra is a Poincaré duality algebra of 
the formal dimension n; see §3. It is well-known (see also §3) that X has the rational 
homotopy type of a space of the form Y Uh eni where Y is a simply connected CW-
complex of dimension < n and h : Sn~l = den —• Y is a continuous map. The space V, 
defined uniquely up to rational homotopy type, will be called (with some inaccuracy) 
the skeleton of X and will be denoted by X<n. If X is a simply connected n-dimensional 
manifold, the construction above can be described even more geometrically: take X \ 
2?", where B" is a (sufficiently small) n-dimensional open disc. It is easy to remark that 
the n-dimensional manifold with boundary, X \ 2?n, has the same rational homotopy 
type as the skeleton X<n} constructed above. 

Recall that two simply connected spaces X and Y are said to have the same k-
homotopy type, where k is a field of characteristic zero, if their Quillen minimal models 
[14; m.3.(l)] are isomorphic over k; this fact will be denoted by X ~k Y. Of course, 
for k = Q we get the usual definition of the rational homotopy equivalence. 

Fix an n-dimensional rational Poincaré duality space X (simply connected by def­
inition). The aim of this paper is to give a description of the set PDS^(X) of all 
k-homotopy types of rational Poincaré duality spaces Y whose skeleta Y<n have the 
same rational homotopy type as the skeleton X<n of X, when X is formal. It is inter­
esting to point out that the set PDS±{X) is, according to rational surgery results [3], 
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for n ^ 0 (mod 4) naturally isomorphic to the set Man^X) of all k-homotopy types 
of n-dimensional compact simply connected manifolds M with M<n ~ Q X<n, 

The first attempt towards the description of PDSk(X) was made in [12], where 
it is stated [12; Theorem 1] that the rational homotopy type of a rational Poincaré 
duality space is uniquely determined by the rational homotopy type of its skeleton, if 
the cohomology algebra of X is fixed. Here we will always suppose that X is formal, 
the hypothesis taken by M. Aubry [1,2]. 

We give here a complete description of the set PDS^(X) in terms of usual algebraic 
objects - Galois cohomology and induced maps - when X is formal. Using this descrip­
tion, we are able to prove, for example, that the k-homotopy type of a rational Poincaré 
duality space is uniquely determined by its skeleton provided that k is algebraically 
closed. We prove also that the set PDSk(X) (and hence also Man±(X)) is finite for 
fields satisfying [£ : k] < oo (for example for k = R, the case of real homotopy types). 
As an example of explicit calculations we construct a large class of Poincaré duality 
spaces X for which the set PDS^{X) consists of the k-homotopy type of X only, k 
arbitrary. On the other hand, we give an example of a manifold M, for which the set 
PDSQ{M) is infinite. 

The algebraic counterpart of the description of PDS^(X) is the following classifi­
cation problem: let H* be a Poincaré duality algebra of formal dimension n, how to 
describe the set PDA^(H*) of all isomorphism classes of Poincaré duality algebras H'* 

with H'*/H'n H*/Hn. Our approach to the study of the set PDAh(H*) is based on 
a rigidity property of Poincaré duality algebras over an algebraically closed field and 
on the usual method of descent. We hope that this approach can be used even in more 
general situation - for the classification of all Gorenstein rings R having the "skeleton9 
R/Socle{R) fixed (see [15]). 

Our paper is organized as follows. In the first paragraph we prove a rigidity theorem 
for Poincaré duality algebras. The proof of this statement is based on a deliberate use 
of the deformation theory; note that this machinery has already been systematically 
used in rational homotopy theory in [4]. As a by-product we obtain a characterization 
of Poincaré duality in terms of Harrison cohomology. These results are in the next 
paragraph applied to the solution of our classification problem for Poincaré duality 
algebras. The main result of this section is Theorem 2.7. In the third paragraph the 
algebraic theory is applied to the study of the set PDS±(X) as introduced above, a 
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description is given in Theorem 3.2. Notice that both Theorem 3.2 and the forthcom­
ing examples explicitely describe the effect of the ground field k on the structure of 
PDSk(X), hence all the material of this paragraph can be considered as a contribution 
to the study of descent and non-descent phenomena in rational homotopy theory in 
the spirit of [10]. 

I would like to express here my thanks to §tefan Papadima for drawing my attention 
to the possible use of descent methods. Also the formulation of the condition iii) of 
Theorem 1.5 is due to him. I wish also to acknowledge my indebtedness to the referee 
for useful comments and references. 

l. RIGIDITY OF POINCARÉ DUALITY ALGEBRAS 

As usually, by a Poincaré duality algebra (over a field k) of the formal dimension 
n is meant a (finite dimensional) graded commutative k-algebra H* = 0,>o H* such 
that Hn is isomorphic to A;, Hx = 0 for i > n and the bilinear form B : H* 0 H* —• k 
of degree —n defined by 

B(x,y) = 
z.y G к ~ Ял for deör(x) + c%(y) = n 
0 otherwise 

is nondegenerate in the usual sense. All Poincaré duality algebras (and Poincaré duality 
spaces) in this paper are supposed to have the same formal dimension equal to a given 
natural number n. 

1.1. For a graded commutative algebra A* denote: 

B(A') = 
all bilinear forms B : A* 0 A* —> k of degree —n such 

that B{x,y) = (-l)^(x)^(»)J9(y,x) for x>yGA* 
M{A*) = {BG B{A*);B{xy,z) = B{xyyz) for x,y,z € A*}, 
P(A*) = {BeM{A*);B is nondegenerate on A>0$A>0 J and 
G(A*) = Aut(A*) = the group of graded automorphisms of A*. 

Notice that all the sets above have the natural structure of a (not necessarily irre­
ducible) algebraic variety. The geometry of M(A*) is extremely simple—as all the 
defining equations are linear, it is isomorphic to an affine space. The set P(A*) is 
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plainly Zariski-open and dense in M{A*). The group G(A*) acts naturaly from the left 
on 8(A*) by 

+{B)(s,y) = B(4-l(z),+-l(9))-

Clearly G{A*)M(A*) C M{A*) and G{A*)P(A*) C P{A*). The action of G(A*) is 
plainly continuous in the Zariski topology. 

We call an algebra A* a fragment, if it is of the form 

A* = H<n := H*/Hn 

for a Poincaré duality algebra H*. The algebra H<n will be called the skeleton of H*. 
Here J5T<n is defined as a quotient, but after having chosen a section, we may as well 
consider it as a subset of H*. 

It is interesting to remark that it is allways possible to decide in finitely many steps 
whether a given graded commutative algebra A* is a fragment or not. To this end, 
find at first a basis of the affine space M(A*). Our algebra A* is then a fragment if 
and only if the polynomial function, representing the determinant, is not equal to zero 
on M(A*) identically. 

This characterization problem for fragments is the special case of the problem of 
deciding when a given local ring is a factor of a Gorenstein ring by the socle, see [15]. 

1.2« For a fragment A* consider the set M(A*) of all graded commutative algebras H* 
with H* = 0 for i > n, Hn ~ k and H^n isomorphic to A*. For H* € M{A*) choose 
an isomorphism r : Hn —• k and define B € M(A*) by B(x,y) = r(x.y) € k. The 
form B is defined canonically up to a nonzero multiple from k. Keeping in mind this 
ambiguity, we can write H* = (A*, B). Notice that H* is a Poincaré duality algebra if 
and only if B€P(A*). 

1.3. Let A* = H<n be a fragment and denote by PDA± (H* ) the set of all isomorphism 
classes of Poincaré duality k-algebras having the skeleton isomorphic to A*. We claim 
that the presentation 1.2 induces a bijection between PDA±(H*) and the orbit space 
P(A*)/G(A*) provided that k algebraically closed. 

To verify this, notice at first that each algebra from PDA^(H*) is isomorphic to an 
algebra H'* with Hf*<n = A*. Hence we can suppose immediately that H'*<n = A* for 
each H'* € PDA*(H*). Let J5P* = (A*> B') and H»* = (A*, B") be two algebras from 
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PDA\i(H*) and suppose that they are isomorphic. This means that there exists an 
isomorphism <f>: A* —• A* and a nonzero a € k such that B"(<fr(x)y$(y)) = aB9(xyy). 
If we choose £ € k such that En = a and define g € ilttt(i4*) by g(x) = E-deg(x) x, 
we see that B"{$ o jf(x),^ o g(y)) = 2J'(x,y), i.e. B* and 2?" are in the same orbit of 
G(A*). On the other hand, it is easy to check that forms belonging to the same orbit 
define isomorphic algebras. 

1.4. Before formulating the central result of this section, recall some necessary facts 
about the Harrison cohomology [13]. Let A* be a graded commutative algebra and 
M* a graded ji*-module. Define on ®mii* a new grading, putting deg(ai 0 • • ® 
am) = 1 + E H ^ t e ) - l) and denote by Cms (A M*) the set of all linear maps 
/ : <g)mii* —• M* of degree p such that /(ai,...,Om) = 0 whenever some a, = 1, 
1 < t < m. The differential 6 of bidegree (1,1) on C*<*(A*,M*) is defined by the 
formula 

6f(ax,..., 0,̂ +1) = ai/(o2,..., am+i) + {-lpm+l) f{ai,..., OmJOm+i-h 
m 

+ J ^ M i ^ / f a l 1 • • • i <V<V+1, • • •,<*m+l), 

where u{j) = ;£'=1(<feflr(at) - 1). The cohomology of the complex (C**(ii*,M*), S) is 
the usual Hochshild cohomology of A* with coefficients in M*. Consider the subspace 
CgJ^iA*;M*) of C ^ P ^ M * ) consisting of all cochains of Cm*{A*yM*) which are 
zero on decomposable elements of the shuffle product in 0A* (see [14; p.18]). The 
subspace CJ^,^*,M*) can be shown to be 5-stable and the associated cohomology 

Harr^M 'jM*) := H M C S A H ^ C ^ A * , M % 6 ) 

is called the Harrison cohomology of the graded commutative algebra A* with coeffi­
cients in Af*. 

For a given fragment A* and an algebra H* € M(A*) there are two natural A*-
modules: the "reduced" algebra H* (= the ideal of the natural augmentation H* —• k) 
with the action given simply by the multiplication and Hn with the trivial action 
(l.h = h and A>0.Hn = 0). The inclusion t: Hn -> if* is a morphism of A*-modules 
and it induces the map 

t* : Harr(A*;ff») Harr(j4*;H*) 
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in Harrison cohomology. In the following theorem we give three equivalent conditions 
on H* E M(A*) to be a Poincaré duality algebra, where A* is a fragment. Recall that it 
means by definition that we a priori assume the existence of a symmetric nondegenerate 
bilinear form on A*. 

THEOREM 1.5 (RIGIDITY THEOREM). Suppose that the ground Geld k is alge­

braically closed of characteristic zero. Let A* be a fragment and let H* be a graded 

commutative algebra with Hl = 0 for i > n, Hn ^ k and JT<n isomorphic to A* (in 

other words, H* 6 M(A*)). Let B 6 M(A*) be the bilinear form corresponding to H* 

as in 1.2. Then the following three conditions are equivalent: 

i) H* is a Poincaré duality algebra, 

ii) the point B € M(A*) is rigid under the action of G(A*)\9 

iii) the map i : Harr*>l(A*]Hn) — Eair*>l(A*\H*) is sero. 

Proof. Define FB : G(A*) -+ M{A*) by FB{g) = g(B). Let us try to describe the 
tangent map TeFB : TeG(A*) -> TBM{A*) at the unit e of G(A*). As the algebra A* 
has finite dimension, we have T€G(A*) Der{A*) (the set of derivations of the algebra 
A* of degree 0). The set M(A*) is isomorphic to an affine space (see 1.1), hence we can 
identify TBM{A*) with At (A*) itself. Using these identifications, we can easily obtain 

TAW**) = - W ( x ) , y ) + B(x,^y))). 

This means that the map TCFB is epic if and only if for each / £ M(A*) there exists a 
derivation <f> € Der(A*) with 

(1.6) f(*,y) = B{4(z),y) + B{z,+(y)) 

for deg(x) + deg(y) - n. On the other hand, we can obtain immediately from the 

definitions that 

Z Harr (A* Hn) = 
bilinear forms / : A* ® A* —* Hn of degree zero 

such that f{x,y) = (-1)^0(*)<M»)+«/(J,, *) 
and f{xy,z) = (-l)*»M/(*,¥Jr) 

fThis means by definition that the orbit G(A*){B) contains a Zariski-open neighbourhood of B, see 
|5] or [91 

226 



RIGIDITY OF ALGEBRAS & HOMOTOPY TYPES OF MANIFOLDS 

and that 

Gkm(A*>^*) ~ jlinear maps <f>: A* -+ H* of degree aeroj, 

while 

6+{z,y) = xfly) + (-l)<M*>+<M»^(x)y- (-l)^(*)^(iy). 

Therefore *.(/) = 6$ in CH„(A*tH*) if and only if 

(1.7) 

f(z,y) = z$(y) + (-l)»*(x)y = B(zj{y)) + ( - l )»^(x) , j , ) 

for deg(x) + deg(y) = n and 

( - l J ^ M f a f ) = x#y) + (- l)^*)+<M*)^)y 

for dey(x) + <fe?(y) < n 

The correspondence / «—• / , /(x,y) = (-1) deg (y) f (x,y) clearly defines an identifi­
cation of Z£l„{A%Hn) and X(A*). Writting in (1.7) (-1) deg (y) /(*,*) instead of 
/(x,y) and (—lJ^W^t*) instead of ^(x), we can easily verify that the map t. is sero 
if and only if for each / 6 M(A*) there exists a linear map ^ : A* —• H* of degree sero 
such that 

(1.70 
/(x, y) = B(x, 4>{y)) + £(y, #x)) for d*7(x) + dc^(y) = n and 

^(xy) = x4>(y) + ^(x)y for de^(x) + <fe$(y) < n. 

Notice that the second equation in (1.7') means that <f> is a derivation of the algebra 

A*, i.e. <f> E TCG(A*). Comparing (1.6) and (1.7*) we see that the following statement 

is valid. 

LEMMA 1.8. The map TtFs is an epimorphism if and only if u is zero. 

Proof of i) iii). Suppose that H* is a Poincaré duality algebra and prove (1.6). 

Let / 6 M(A*). As the form B is nondegenerate, the formula 

(1.9) B(<f,(z)ty) deg (x)/n ̂ f(z(x,y) 
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defines a linear map <f>: A* -* A* of degree zero. By (1.9) and the symmetry of B, 

(1.10) 

B{x,№) = (-l)deg(x) d e g ( y ) ^ ^ B ( m , ' ) 
= Шя1 

ft 
(-1) \deo(x)deg(v) f (x,1) 

= deaív)  n •Я*, у). 

By (1.0) and (1.10), for deg(x) + deg(y) = n, 

B(xMv)) + B{4>(z),y) =deg (x) + deg (y) + ^ ) . / ( x , y ) = /(z,y), 

which is (1.6). It remains to show that 4> is really a derivation of degree sero. This is, 
because B is nondegenerate, equivalent to 

(i.ii) 
B{x*{y),z) + B(*(x)y,z) = B{*(xy),z) 

for each x, y, z € A* with deg(x) + deg(y) + deg(z) = n. 

We easily deduce from (1.9) and (1.10) that 

B(Hxy),z) =deg (x) + deg (y) ̂ ± ^ . f (x,y) 

and that 

*(*(«)* s) = m*),V») = ^ - / f r f * ) = ̂ deg(x) f(xy,z), 
B{x<f>{y),z) = (-deg ( x ) ( y ) l ^ l ' M ' K B M y l z z ) 

= ib*xl.{-l)4"ix)J"iv)f{y,xz) 
= d e g ( y ) ^ - f ( x y , z ) 

Using these formulae, it is easy to verify (1.11), hence TCFB is epic and A* is zero by 
Lemma 1.8. 

Proof of iii) ==> ii). Notice that the points e € G(A*) and B G M(A*) are regular. 
If iii) is satisfied, the map TeFs is epic by Lemma 1.8 and Im(Fs) = G(A*)(B) 
contains an open neighbourhood by standard arguments of the algebraic geometry, see 
for example [9; Lemma 23.5]. 
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Proof of ii) ==> i). Suppose that B is rigid and let U C G(A*){B) be an open 
neighbourhood of B. Then both U and P(A*) are nonempty open subsets in the affine 
space M{A*), hence P(A*)nU ^ 0. They are both G(A*)-invariant and G(A*) acts on 
U transitively, consequently, U C P{A*)> therefore B € P{A*)y i.e. H* is a Poincaré 
duality algebra. 

2. CLASSIFICATION THEOREMS FOR POINCARÉ DUALITY ALGEBRAS 

Our classification is based on the fact that Poincaré duality algebras over an alge­
braically closed field are uniquely determined by their skeleton. 

THEOREM 2.1. Let A* be a fragment and suppose that the ground Geld k is alge­

braically closed of characteristic zero. Then 

#(P(A*)/G(A*)) = 1, 

in other words (see 1.3), the following statement is true: 
Let H* and H9* be two Poincaré duality algebras over an algebraically closed Held 

of characteristic zero such that H<n is isomorphic to H!£n. Then the algebras H* and 

H9* are isomorphic, too. 

Proof. As M(A*) is an affine space, there exists at most one open orbit of G(A*) in 
M(A*). On the other hand, the orbit of every point B € P(A*) is open by Theorem 
1.5 ii). Therefore all points of P(A*) are in the same orbit, in other words, G(A*) acts 
on P(A*) transitively and #(P{A*)/G(A*)) = 1. 

2.2. Warning: Being g : H<n H*n an isomorphism, then the isomorphism of H* 

and H9*, whose existence is guarranteed by Theorem 2.1, is not necessarily an extension 
of g. 

Example 2.3. Let V be a k-vector space and fix an even number d > 0. Let A* be a 

graded algebra defined by A0 = k, Ad = V and A' = 0 otherwise, having the obvious 

product. Every nondegenerate symmetric bilinear form J? on V defines a Poincaré 

duality algebra H* of the formal dimension n = 2d with H<n = A* (see 1.2), this is 

the simplest nontrivial example of a Poincaré duality algebra. 

Clearly, P{A*) consists of all symmetric nondegenerate bilinear forms on V and the 
quotient P(A*)/G(A*) is the set of all equivalence classes of nondegenerate symmetric 
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bilinear forms on V. If the field k is algebraically closed, Theorem 2.1 says that there 
exists exactly one equivalence class of nondegenerate bilinear forms on V. This result 
is classical. 

2.4. Now, starting from the classification over algebraically closed fields, we can try to 
obtain a general result using the usual description of the descent by Galois cohomology, 
see [11]. Let us introduce the following notation and terminology. 

Let K be an extension of k and let M be an object (vector space, algebra etc.) 
defined over k. Denote MK = M ®k K. Two objects M and N, defined over k, are 
said to be K-isomorphic (M k N)} if there exists a K-isomorphism between the 
K-objects MR and JNTK- Fix now a Poincaré duality k-algebra H* and let A* = iT<n 
be its skeleton. The central object of our study is the following set 

PDA^H*) = k-isomorphism classes of all Poincaré 
duality k-algebras H'* with H»n ^k A* 

Unfortunately, this set is not approachable to apply the descent method directly. We 
are led to consider also the following sets (i denotes the algebraic closure of k): 

Ék = k-isomorphism classes of Poincaré duality 
k-algebras H'* with H'* ~t H* 

Ék = k-isomorphism classes of graded commutative 
k-algebras A" with A" ~t A* 

and define the map Fk : J5?k E* by Fk(H'*) = #'*<». The sets Ek and JEk are 
related with PDAk{H*) as follows: 

LEMMA 2.5. Let k be a field of characteristic zero. Then there exists a natural 
correspondence between the elements of PDA*(H*) and algebras IP* € satisfying 
F±{H'*) ~k A* 

Proof. By Theorem 2.1, H'* ̂  H* for each H» € PDAk(H*), the rest is trivial. 

The following description of the descent for graded algebras can be obtained by a 
slight modification of the proof of [11; Proposition 1 in 111.1.1], see also the comments 
to the proof given in the russian version of this book (Mir 1068). 
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PROPOSITION 2.6. Suppose that K is a Galois extension of k. Let M* be a graded 

k-algebra and denote by £(K/k) the set of all It-isomorphism classes ofk-algebras AF* 

with M'* ~K M*. 

Then the elements of the set £(K/k) are in a natural one-to-one correspondence 

with the Galois cohomology group H1 (G(K/k); Auf K(-MK)), where the action of the 

Galois group G(K/k) on AutK(M^) is defined by s(f) = (1 ® s) o fo (1 0 a)"1. 

Using the explicit description of the correspondence in the previous proposition, we 
can infer easily from Lemma 2.5 the following classification result. 

THEOREM 2.7. Let k be a Geld of characteristic zero and denote by i the algebraic 

closure of k. Let A* = H<n be a fragment defined over k. Then there exists a natural 

one-to-one correspondence between the set PDA^H*) of all ÌL-isomorphism classes of 

Poincaré duality It-algebras H'* with if<n £*k A* and the set 

Ker{ik : ̂ (Gfk/k); Aut^H^)) Hl(G(k/\), Autk(A*k))) 

where the map ik is induced by the natural homomorphism 

j : AutiiHi) -> Autk(Al) 

given by the restriction. 

We close this section with the following corollary of Theorem 2.7. 

COROLLARY 2.8. Suppose that [S : k] < oo. In this case there exists only Gnitely 

many isomorphism classes of Poincaré duality h-algebras having a given skeleton (i.e. 

#(PDAk(H*)) <oo). 

Proof. A field satisfying the condition [£ : k] < oo is of type (F) in the sense of [11; 
EIA], hence ff^Gfk/k); Attts(J5T|)) is finite [11; ffl.4.3] and the corollary follows from 
Theorem 2.7. 

3. APPLICATIONS TO THE RATIONAL HOMOTOPY TYPE 

By a rational Poincaré duality space (of the formal dimension n) is meant here a 
simply connected CW-complex X such that H*(X;Q) is a Poincaré duality algebra 
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(of the formal dimension n). We show that X has the rational homotopy type of 
a space of the form Y uk en, where Y is a CW-complex of the dimension < n and 
h: S11"1 = den - • F a continuous map, as promissed in the introduction. 

To this end, suppose that (£(Z,/Lt),d) is the Quillen minimal model of X, where 
the generator p} deg(fx) = n - 1, corresponds to the "orientation class" of X in 
Hn(X;Q). Let Y be a space corresponding to the minimal algebra (C{Z)1d\C{Z))J we 
can clearly suppose that Y is a CW-complex of dimension < n. Let h € *n-i{X) be 
an element corresponding (up to a nonzero rational multiple if necessary) to [d(|i)j € 
Hn-*{Z(Z),d\C(Z)) ~ *w_i(JT) ® Q. It follows easily from [14; HI.3.(6)] that Y Ufc 
en ~Q X and Y is what we call the skeleton of X and denote by X<n. It is also clear 
that H*(X<n;k) ~ H*(X;k)<n, see [14; 111.3(9)]. 

3.1. Observe that X is formal if and only if X<n is. Indeed, if AT is formal, then the 
minimal model (£(£,/*), d) can be chosen so that d is quadratic [14; 11.7(5)]. Then 
also the minimal model (C{Z),d\£(Z)) of X<n is quadratic and X<n is formal again 
by [14; 111.7(5)]. On the other hand, if X<n is formal, the formality of X follows easily 
from [12; Theorem 1], [1,2]. The central result of our paper now reads: 

THEOREM 3.2. Let k be a fieid of characteristic zero and let X be a formal rational 
PoincarS duality space of the top dimension n. Then there exists a natural one-to-one 
correspondence between the set PDS±(X) of all i-homotopy types of rational PoincarS 
duality spaces Y of the top dimension n, such that the skeletons X<n and Y<n have 
the same rational homotopy type, and the set <f>H(Ker(iq))9 where the map 

in : ̂ ( W l i ^ ^ Q ) ) ) - + ffW/k); A«ts(ir(X;S))) 

is induced by the natural homomorphism G(i/k) -+ G(Q/Q), and the map 

*Q : ^(G(Q/Q); ArfQ(JR(X;Q))) — ^(G(Q/Q); Au*Q(F*(X;Q)<n))) 

is induced by the homomorphism AutQ(H*(X;Q)) -* AutQ(H*(X)Q)<n) given by 
the restriction. 

The proof is postponed to the end of this section. Although the description in 
Theorem 3.2 seems to be unmanageable, it provides us with a few of corollaries. 
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COROLLARY 3.3. If the field k is algebraically closed, the k-homotopy type of a 

formal Poincaré duality space is uniquely determined by the rational homotopy type 

of its skeleton. 

Proof. If k = k, then the group C?(k/k) is trivial, hence the map 4>h in 3.2 is trivial, 

too. Therefore #(PJ?5k(X)) = 1. 

COROLLARY 3.4. If [k : k] < oo and X is a formal rational Poincaré duality space, 

then the set PDS^X) is finite. Especially, there exists only finitely many real homo­

topy types of rational Poincaré duality spaces with a given (formal) rational homotopy 

type of the skeleton. 

Proof. By the same argument as in the proof of Corollary 2.8 we can easily see that 

the set Hl{G(i/ky,Autt(H*{X;i))) is finite. The rest follows from Theorem 3.2. 

Remember that, for n ^ 0 (mod 4), every rational Poincaré duality space (simply 

connected by definition) has the rational homotopy type of a compact simply con­

nected manifold [3]. Consequently, Theorem 3.2 and the corollaries give in this case a 

description of the set Man^(X) of all k-homotopy types of simply connected compact 

manifolds M with M<n ~ Q X<n. 

In the following example we construct a compact, simply connected manifold M for 

which the set Afanq(M) is infinite. 

Example 3.5. Let us denote by Af the 6-dimensional simply connected compact man­
ifold P3(C)#P3(C). Clearly, H*{M;Q) « Q[u,v]/(uv,u3 - v3), deg(u) = deg(v) = 2. 
It is also not hard to verify that A/<© has the rational homotopy type of P2(C) y P2(C) 
(the one-point union) and that 

/R(Mc.;Q) a Q[«, «]/(««, «3,„3) = {Q[«,•]/(«•,u3 - «3)}<6. 

As every 1-connected 6-dimensional manifold, the space M is formal [6]. 

Every rational Poincaré duality algebra H'* with JI<6 Jff*(M<e; Q) is of the form 

Q[t*, v]/(uv, aw3 -pvz) for some nonzero a, /3 € Q. Notice that for such an algebra H'* 

there always exists a manifold N with H*(N;Q) ^ Hl* and JV<6 ~ Q Af<6. Indeed, 

let N be a formal rational homotopy type corresponding to H'*, as 6 £ q (mod 4) we 

can assume that N is a manifold. Then JV<6 is again formal by 3.1, and JV<6 ~ Q Af<$ 

since J5r*(JV<c;Q) ~Q H*(M<t;Q) by the construction. 
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It can be easily verified that the algebra Q[u, v]/(uv, auz - /Jv3) is isomorphic 
to the algebra Q[u, v]/(uv, a'u3 — /9'v3) if and only if either ab/c or Vf, is of the 
form 93 for some rational number q € Q. Consequently, there exist infinitely many 
Q-isomorphism classes of such algebras. According to the remarks above, the set 
AfanQ(P3(C)#P3(C)) is infinite. 

On the other hand it can be easily seen that ManR(P3(C)#P3(C)) consists of the 
real homotopy type of P3(C)#P3(C) only. 

3.6. Now we aim to describe a family of manifolds (Poincaré duality spaces), whose 
rational homotopy type is uniquely determined by their skeleton. Let H* be a Poincaré 
duality algebra and consider the canonical map / : Aut(H*) —• Aut(H<n) given by 
the restriction. Recall that this map plays an important role in our classification 2.7 
and 3.2. As the subset H<n C H* generates H* as an algebra, every automorphism 
of H* is uniquely determined by its restriction on H<ni hence the map ; is plainly a 
monomorphism. Suppose that the algebra H* can be represented in the form 

(*) H* ~ AV/I,where I={fu..., /,) and deg(fi) ± n for 1 < t < s. 

We claim that in this case the map ; is also an epimorphism. 
To prove this, consider an element g E Aut(H<n). Since clearly 

I T < N * A V * / ( / I +(AK*)*»), 

our map g lifts to some g G Aut(AV*) with g(I<n) C I<n- Because of (*) this implies 
plainly that g(&n) C &n. Since H>n = 0, we know that I>n = (AV*)^, therefore 
in fact g(I) C 7. This means that g projects to an element / € Avt(H*) which clearly 
satisfies j(f) = g. 

Suppose now that X is a formal rational Poincaré duality space whose rational 

cohomology algebra satisfies (*). Then the map ÌQ in Theorem 3.2, induced by /, is 

an isomorphism and <f>H{Ker{i.^)) consists of one element only. Thus we have proved: 

PROPOSITION 3.7. The rational homotopy type of a formal rational Poincaré duality 

space, whose rational cohomology algebra can be represented as in (*), is uniquely 

determined by the rational homotopy type of its skeleton. 

The condition (*) is clearly satisfied by all exterior algebras, hence the conclusion of 

3.7 is valid for a product of odd-dimensional spheres. 
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Example 3.8. Consider the complex grassmannian G{piq) of complex p-planes in 
CP+«, G(pfq) ^ U(p -f q)/V(p) x U(g). This is a formal one-connected compact 
manifold of dimension 2pq. We claim that the cohomology of G(p,q) can be represented 
as in (*) provided (p,q) ^ (2,2). At firat, clearly G(n, 1) s G(l,n) s P*(C) and the 
usual description 

2P(P»(C);Q) ~ Q[c1]/(cf+1)ldŝ c1) = 2, 

has the requisite form. It is not hard to see that the presentation 

B*(G(Piq);Q) = Q[d,..., cp, ci,...,<]/((! + • • • + cp)(l + . •. + c'q) = 1), 

dê (ci) = 2i,deg(cj) = 2;, for 1 < t < p, 1 < ; < g, 

satisfies (*) for (p,q) / (n, 1), (l,n) and (2,2). Hence, by Proposition 3.7, the rational 
homotopy type of G(p,q) is, for (p,g) ^ (2,2), uniquely determined by <2<2p?(/>,<?). 
On the other hand, the same method as in Example 3.5 can be used to show that 
there exist infinitely many rational homotopy types of 8-dimensional rational Poincaré 
duality spaces X with X<S ~Q G(2,2)<8. 

Proof of Theorem 3.2. Let H* = H*{X\Qù and let us denote by PDAK/Q(H*) 

the set of all k-isomorphism classes of rational Poincaré duality algebras J5P* with 
H%N s*Q H^N. Consider now the map A : PDSH(X) PDAH/Q{H*) defined by 
\(Y) = H*(Y;Q). 

LEMMA 3.9. The map A : PDS±(X) -> PDAU/Q(H*) defined above is an isomor­
phism. 

Proof of the lemma. Notice that every rational homotopy type Y E PDS±(X) is 
formal. Indeed, Y<N is formal as Y<N ~Q X<NY hence Y is formal by 3.1. 

A is an epimorphism. For H'* € PDA\L/Q(H*) let Y be a formal rational homotopy 
type with H*(Y;Q) ~Q H'\ Since H*{Y<n;Q) ~Q H'*<N H*<N and both Y<N 

and X<N are formal, Y<N ~Q X<NI i.e. Y G PDSK{X). Plainly A(F) = Hn 

A is a monomorphism. Suppose A(F) = A(Z), i.e. IT*(y;Q) S*k H*(Z;Q). As 
the spaces Y and Z are formal over Q, they are formal also over k [7]. Since their 
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cohomology algebras are isomorphic over k, they have the same k-homotopy type, in 

other words. Y = 2 considered as the elements of PDS^X). We point out that the 

Lemma 3.9 fails in general without X being formal. 

To obtain a description of the set PDA\,/Q(H*)Ì consider the following commutative 

diagram (the notation is the same as in 2.4) 

E\ —-—• J5k 
(зло) ek | |ek 

Eq ———• Eq. 

Using the correspondence of Proposition 2.6 (compare also Theorem 2.7), it is easy to 
identify (3.10) with the diagram 

ЛЧ<7(ЬЛМ«.Ь(Я£)) ns tf4G(I/k);A«.b((^Js) 
(З.И) !•*<„ 

Я Ч Е Д / Д М « М Я * ) ) AS H4G(QmAutQ№<n)s) 

where all the maps are induced in the clear way. Our theorem now follows from (3.11) 
and the evident fact that 

PDAk/Q{H*) = Jm(®k : PDAQ(H*) - PDAk(H*)) 

where, by Lemma 2.5, PDAk(H*) = 2^1((Я^л)к) and PDAq(H*) = F$l(H$u). 
Using the tools developed in the proof above, namely the diagrams (3.10) and (3.11), 

we can obtain also the following classification. 

THEOREM 3.12. Let к be a Held of characteristic sero and let X bea formal rational 
Poincaré duality space. Then there exists a natural one-to-one correspondence between 
the set of all "k-homotopy types of rational Poincaré duality spaces Y with Y<n ~k X<n 
and the set 1т(фн) f] Ker(ik). 
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