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COMPUTATION OF THE TOPOLOGY OF A REAL CURVE 

M.-F. ROY 

The problem of giving an algorithm for the computation of the 
topological type of a real curve from its equation has been considered by 
several authors ([GT] and more recently in the particular case of non 
singular curves by [AM].) The approach presented here relies on a basic 
result in real algebraic geometry, Thorn's lemma; it can be viewed as an 
illustration of the philosophy in [CR]. Our algorithm runs in polynomial-
time, needs no regularity hypothesis on the curve or on the projection and 
seems better adapted to situations where the connected components of the 
curve are small. 

1. TERMINOLOGY AND GENERAL DISCUSSION 

Let us introduce first some definitions. 

1. 1. SEMI-ALGEBRAIC SETS 

LetF=(PiPCi,...,Xn),...,PmC£i,...,Xn)) be a family of polynomials with 
integer coefficients. An F-semi-algebraic set S of IRn is a semi-algebraic set 
contained in ]Rn, described by a boolean combination of sign conditions on 
the polynomials of F. A F-basic semi-algebraic set S of lRn is a semi-
algebraic set contained in lRn, described by a conjunction of sign conditions 
on the polynomials of F. One can know from basic results of real algebraic 
geometry ([B C R]) that a set S is semi-algebraic (because it is described by 
a first order formula of the language of ordered fields, using Tarski-
Seidenberg, or because it is a connected component of a semi-algebraic set) 
without knowing polynomials F such that S is F-semi-algebraic. 

1. 2. CYLINDRICAL DECOMPOSITIONS AND STRATIFICATIONS 

Depending on the problem one wants to solve about semi-algebraic 
sets, one can use several kinds of cylindrical decompositions ([C], [Co]). 

Let S be a F-semi-algebraic set, 11 the canonical projection of W1 on 
JR.11'1. 

S.M.F. 
Astérisque 192 (1990) 17 



M.-F. ROY 

(Di) A cylindrical decomposition of F with respect to n is given by a 
partition of IR71"1 in a finite number of semi-algebraic sets A; , such that 
above each A; 
(a) the real roots of the non-identically nul Pj are in constant number and 
given by continuous semi-algebraic functions Ci,l< •••< Cj, Zj i 
(b) for all x = (x\,...,xn_\) of Aj and all7 = 0,..., ^ the sign of P; 6ci,...,xn_i, X„) 
between £ifj(x) and dfj+i(x) (with the convention Ci,ofo) = -00 and 
Ci, l(+l(x) = + 00 ) is fixed. 

It is then clear that S is a finite union of cells of the cylindrical 
decomposition that is of graphs of £ij , of slices between two Cij and CiJ+1 
and of cylinders of the form A; x 1R. 

Let us remark that we do not ask for the A; to be connected. If they are 
connected (b) is a consequence of (a). 

(D2) An explicit cylindrical decomposition of F is given by a family of 
polynomials F' (containing the polynomials F) and a cylindrical 
decomposition of F such that the sets Aj and the graphs of the \ij are F'-
semi-algebraic sets. 

Cylindrical decompositions give no information on adjacency 
relations: is A/ contained in the closure of A; ' ? if it is the case, how do the 
functions Ci'j glue above A/ i.e. in which case is the graph of Cij contained 
in the closure of the graph of f fj? 

From now on, we shall suppose the polynomials of F monic with 
respect to Xn (which means that considered as polynomials in Xn, their 
leading coefficient belongs to IR). This can always be done by a linear 
change of coordinates. 

(D3) A semi-algebraic stratification ofF is given by a cylindrical 
decomposition of F such that 
(a) for all i, Ai is connected 
(b') for all i and 1 (i) either A; n Af is empty 

(ii) or Ai eadh(Aj') 
(iii) orAfC adh(Aj) 

and given a pair (i, 1) one explicitely knows which is the case 
(c') one knows in case (ii) the adjacency relations between the £ij and the 
£i\j> i.e. for each pair (i, 1) such that (ii) and for all (j,f) with je{l,...,li}, 
j ' e {1,..., If } one explicitely knows whether the graph of f is contained in 
the closure of the graph of ^/v or not. 
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(D4) An explicit semi-algebraic stratification of F is a semi-algebraic 
stratification which is an explicit cylindrical decomposition. 
1. 3. DIFFERENT SORT OF PROBLEMS 

Let us consider now the following problems (S is a semi-algebraic set 
contained in ]Rn : 

(Pi) is S empty? 
(P2) what is the dimension of S? 
(P3) what is the number of connected components of S? 
(P4) what are the topological invariants of S (homology groups)? 
(P5) do two points of S belong to the same connected component of S? 
(Pg) does a point belong to the projection of S? 
(P7) what is the explicit semi-algebraic description of the projection of 

Son IRrt-1? 
(Pg) what is the explicit semi-algebraic description of {xeJRn \ <!>(x)}9 

where O is a first order formula of the language of ordered fields? 

For the problems (Pi) to (P5), one can choose the projection, that is 
one can make a linear change of coordinates, not for the problems (PQ) to 
(P8>. 

A cylindrical decomposition allows to answer to (Pi), (P2) and (P6). 
An explicit cylindrical decomposition also to (P7) and (Pg) (by induction). A 
semi-algebraic stratification to (P3), (P4) and (P5). An explicit semi-
algebraic stratification allows, in case the polynomials are monic with 
respect to the last variable (since in the problem (Pg) to (Pg) one cannot 
change the direction of the projection), to obtain (Pi) to (Pg). 

A typical problem of robotics "a la Schwartz and Scharir ", the piano's 
mover problem [SS] is naturally formulated in term of (Pg) and (P5) : one 
asks whether, semi-algebraic walls being explicitely given, there exists a 
movement allowing to pass from a position of an objet (the piano) to 
another without knocking the walls; one then considers the explicit semi-
algebraic set S of allowed positions (problem (Pg)) and one answers yes if 
the initial and final positions belong to the same connected component of S. 

1. 4. DIFFERENT FAMILIES OF POLYNOMIALS 

It is not surprising that the computations to obtain these different sorts 
of cylindrical decompositions are different. 

Different families of polynomials are to consider. 

(Fi) A family of polynomials F'=(Pkj(Xh...,Xk) k=l,...,n, j=l,...,rk) is 
cylindrifying for F if it contains F and is stable for the following operations: 
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-if P(X\,...,Xk) and QQ£i,...,Xk) are in F' the leading term of P, Q and of the 
subresultants of P and Q with respect to Xk are in F' 
-if P(X\,...,Xk) is in F' the leading terms of the subdiscriminants of P with 
respect to X& are in F'. 

A family of polynomials P\j (Xi),j=l,..., l\, is always cylindrifying; the 
cells of the cylindrifying family are the real roots of the P\j (X\), j=l,..., l\ 
and the intervals between such roots. 

(F2) A family of polynomials P^j (Xlf...,Xk) k=l,...,n, jf=l,...,r^ is 
glueing for F if it contains a cylindrifying family for F, Qkj (Xi,...,Xk) 
k=l,...,n, j=l,...,r'k , and all the derivatives of the Qk,j (X\,...,Xk) with 
respect to X&. 

(F3) A family of polynomials P^j (X\,...,Xk) k=l,...,n, j=l,...,r^ is 
stratifying for F if it is cylindrifying and stable under derivation (i.e. the 
family contains the derivative with respect to the variable X^ of the 
polynomials Pkj)-

Let us consider a real plane curve C of equation P(X,Y)=0, with P 
monic as polynomial in Y, squarefree and with coefficients in Z, let D be 
the discriminant of P with respect to the variable Y. 

Let us precise in this simple situation what are the different families of 
polynomials we have just defined: 

(Fi) A cylindrifying family for P consists of P and D the discriminant 
of P with respect to Y. 

(F2) A glueing family for P consists of P and its derivatives with 
respect to Y, as well as D and its derivatives with respect to X. 

(F3) A stratifying family for P consists of P and its derivatives with 
respect to Y, of the discriminant D and the resultants obtained by 
eliminating Y between the different derivatives of P with respect to Y, then 
of the derivatives in X of D and of these resultants. 

A cylindrifying family gives (Dj), a stratifying family (D2) (in this 
case the cells of the cylindrical decomposition are basic semi-algebraic 
sets). If Pi(Xi,...,Xn) Pm(Xi,...,Xn) are monic with respect to Xn a 
glueing family gives (D3) and a stratifying family (D4). 

The passage from (Fi) to (Di) is done by Collins [C]: one takes the 
polynomials in X\ belonging to the cylindrifying family, one isolates their 
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roots on intervals with rational endpoints, one chooses a rational point in 
each interval between two roots and on the left and on the right of all the 
roots. Above each root and each chosen point, one computes by Sturm 
sequence the number of roots of the polynomials in the variables (X-^X^ of 
the family, one chooses a point on each graph and in each slice between two 
graphs (using rational numbers or interval of rational numbers) and one 
goes by induction to the polynomials P(X1^Xi,...^^Pm(X\,...,Xn).rY}ie 
passage from (F3) to (D2) is similar (this corresponds to the augmented 
projection of Collins [C]) but there, because of properties of stratifying 
families ([BCR]), the choice of a point in each cell allows to give a basic 
semi-algebraic description of the cell: the cell is the set of points for which 
the sign conditions on the polynomials of the stratifying family coincide 
with the sign conditions realized on the chosen point. 

The passage from (F3) to (D4) is given in [CR]: one uses Thorn's 
lemma to get an algorithm giving adjacency relations between cells. 

The aim of this paper is to discuss the passage from (F2) to (D3) in the 
case of plane curves. 

2. THE CASE OF PLANE CURVES 

Let us consider a real plane curve C of equation P(X,Y)=0, with P 
monic as polynomial in Y, squarefree and with coefficients in Z, let D be 
the discriminant of P with respect to the variable Y. 

Let I be the number of the real roots ^i<...<^/ of D, let Ai, i=l,...,2l+l 
be defined as 

Ai = KjA ¿=1,...,/, 
Al+i EiL EiI ¿=1,..., Z+l (with the convention £0= -00, £/+i= +00 ), 

let £ij be defined as the function associating to x e A; the j'th real root of 
P(x,Y). It is clear that (Ai Eij is a cylindrical decomposition of C. 

2. 1. THE ALGORITHM 

The algorithm will compute the topology of the plane curve C, with the 
help of a glueing family. 

2. 1. 1. THE DIFFERENT STEPS 

Ai) Characterize the real roots of D. 
A2) Characterize above each -̂ the roots f of P(Zi,Y) 
A3) Determine on each interval between the roots of D the number of 

branches of the curve C. 
A4) Determine how these different branches glue to the f j 's. 
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With the above information it is clear that one can completely 
determine the number of connected components, of singular points and the 
isotopy type of the curve C. 

2. 1. 2. HOW TO CHARACTERIZE REAL ALGEBRAIC NUMBERS AND 
BRANCHES OF CURVES? 

The computations will be based on the techniques proposed in [CR]. 

Let us recall that we characterize, using Thorn's lemma, a real 
algebraic number by the signs it gives to the derivatives of a polynomial it is 
annulating. The algorithms for coding the roots of a polynomial with 
integer or real algebraic coefficients and evaluating the sign they give to 
other polynomials with integer or real algebraic coefficients are based on 
generalized Sturm sequences and are given in [CR] (algorithm bs to b7>. 

Concerning the characterizing of the branches of a real algebraic 
curve we have the following results. 

DEFINITIONS AND NOTATIONS 
One calls strict sign condition > 0, < 0 or = 0. 
One calls sign condition > 0, < 0, = 0, > 0, < 0. 
If e = (ek), k= 0,..., n-1 is an n-uple of sign conditions 

(> 0,< 0,= 0,> 0,< 0) one notes e the n-uple obtained by relaxing the strict 
inequalities of e, that is by replacing > 0 (resp. <0 ) by >0 (resp. <0). One 
says that the n-uple of sign conditions e'= (e'k), k = 0,..., n-1, is compatible 
with the n-uple of sign conditions e = (ek), k = 0,..., n-1, if for all k =e'k 
or, in the case where ek is >0 (resp. <0), e'k - 0. 

If ^ is an element of R one calls half-branch C%+J (resp. j) ofC 
above E,+ (resp. ) the (germ of the) graph of the function Eij on a small 
interval of the form ] |, £+a[ (resp. ] < -̂a,̂ [ ) where Eij is defined (so i is 
such that Aj contains an interval of the form ]] E,E + a [ (resp. ] <!;-a, <!;[). One 
calls sign taken by Q(X,Y) on Ec+j (resp. C^.j ) the sign of Q(x,dj (x)) just 
to the right (resp. left) of E (i.e. on a small enough interval of the form 

] E,E + a [ (resp. ]£-a', E, [) with a <a such that the sign of Q(x,dj(x)) for x e 
] E,E + a' [ (resp. ]E,-a\E, [) does not change). 

REMARK: 
The definition proposed here is the only reasonable one for the sign of a 

polynomial on 1-dimensional subsets of a curve: the sign of a polynomial is 
not fixed on the whole graph of £¿j for example, so that signs on half-
branches, which are a more local information, have to be considered. This 
is an illustration of the general theory of real spectra (see [BCR]). 
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PROPOSITION 1: 
Let C be a real plane curve given by an equation P(X,Y)=0 with P(X,Y) 

monic in Y and of degree n in Y. Let % be a real root ofD, the discriminant of 
P (with respect to Y) and e= (e^) , &=0,..., n-1 the signs taken by P(X,Y), 
P'Y(X,Y),..., Pd)y(X,Y),... on an half-branch £g+ j (resp. Ec+j) above 
(resp. 

a) The sign conditions e= (ek) characterize Ec+j (resp, above <e;+ 
(resp. 

b) There exists one and only one root C,ofP( ^ ,Y) such that the signs 
e'= (e'k), k=0,...,n-l taken by P(X,Y), P'y(X,Y),..., P(i)y(X,Y),... in (E,C) are 
compatible with e= (e^), k=0,..., n-1. 

The proof of proposition 1 will be a consequence of Thorn's lemma, that 
we recall now. 

THOM'S LEMMA: 
Let P a polynomial of degree n with real coefficients and 

e = (ek), k=0,..., n-1 a n-uple of sign conditions . 
Let A(e) = {xeRIP(U(x) ek). 

Then (i) A(e) is either empty or connected, 
(ii) if A(e) is non empty the closure ofA(e) isA(e). 

proof: Easy, by induction on n; see [BCR] or [CR]. 

proof of proposition 1: 
a) There exists C,ij and a>0 such that for all x e ]£,<!;+a [ (resp. ] 

a,£ [) the sign of P(kHx£gj(x)) ,k = 0,..., n-1, coincides with e^. Choose 
a e] E,E+a [ (resp. ]^-a,^[). Apply then Thorn's lemma to the sign conditions 
e and the polynomial P (a,Y). 

b) The existence of such a root of P (%,Y) comes from the fact that, P 
being monic in Y, the intersection of the closure of the graph of Eij above 
] £+a[ (resp. ]£-a,l;[ ) with the fiber {^}xR is non empty. The set 
A(e) = {yeJRIP(k)(£, y) eJk} is connected, non empty and contained in C, 
hence contains an unique point. It is clear that for all real root of P(£,Y) £" 
such that the signs e"= (e'k), k=0,..., n-1 taken by P(X,Y), P'Y(X,Y),..., 
P(k)y(X,Y),... at (Z>£) are compatible with e= (e^), k=0,...,n-l, f' belongs 
to A(e) 

We are now able to give a more precise version of Ai to A4. 
A'i) Compute the number of real roots of D and determine at the 

different real roots E1;......El §i<...< & of D the signs of the derivatives of 
D. 
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A'2) Compute above each ^ the number l( of roots of P(B>i,Y) and 
determine at the different roots £tj of P(%i ,Y), ^iti<^.<^it ^ the signs of the 
derivatives of P(£i,Y) with respect to Y. 

A3) Determine above Ei , ^+ , ¿=1,..., I the number of half-branches 
of the curve C. 

A'4) Determine on each of the half-branches Cfy+j (resp. C^i-j) *he sign 
of the derivatives in Y of P and deduce how the different C%i+,j 1 (resp. £^ j 0 
glue to the f 's, applying proposition 1 b). 

The steps A'i) andA'2) consist in characterizing the roots of D and of 
the P(^i,Y). Step A'3 can be done by deciding the signs of some polynomials 
with integer coefficients (precisely the leading coefficients of the Sturm 
sequence of P(^i ,Y)) at Ei' 's. Step A'4 can also be done by deciding the signs 
of some polynomials with integer coefficients at < '̂s, using generalized 
Sturm sequences and proposition 1. 

REMARKS: 
1) Let us consider the following condition, called condition (g) :above 

every & there is at most one multiple real root fij of P(^i,Y), that we note 
£iJQ. In this case, we know that, at each j , J*JQ, there is one and only one 
Cfy+j' (resp. C&-j) glueing to Qj, and hence it is sufficient to know the 
total number of half-branches above Ei (resp. Ei+ to know what happens 
in £if JQ , hence above §j. 

So if condition (g) is verified, the step A4 can be replaced by A'g 4 : 
A'^ 4 ) Determine how the different Eei' (resp. Ĉ '-J 0 glue to the 

£ifj's, vising information about multiplicities of the £ij. 
2) It is always possible to realize condition (g) by a linear change of 

coordinates (see [GT]). 
3) It is important to notice that in A'4 one needs the signs of some 

polynomials just to the left and just to the right of real roots of D, and not 
anywhere on the interval between two roots of D. It can very well happen 
that the sign of these polynomials change between two roots of D. On the 
contrary we could choose any point in the interval between two roots of D 
to get the information needed in A3.This is the difference between glueing 
families and stratifying families in the case of curves. 

2. 1. 3. COMPLEXITY OF THE ALGORITHM 

The algorithm runs in polynomial time (in n , defined as being equal 
to the maximum of the degree of P and the length of its coefficients). More 
details are given in [RS 2]. The steps to prove the result are the following. 
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1) The computation of D is polynomial-time. 
2) The coding of the real roots of Dis polynomial-time ([CR] or for 

more details [RSI]). 
3) To determine the information needed in A '2 to A '4 there is a 

polynomial number of sign evaluations at the roots of D. 
4) Each of these sign evaluations can be made in polynomial time 

(using subresultants methods) ([RS 1]). 

2. 2. EXPLICIT COMPUTATION OF AN EXAMPLE 

Since we have for the moment no complete implementation of the 
algorithm, the computation of an explicit example (the choice of the 
example has been suggested by D. Duval whose work on algebraic numbers 
[DD] has influenced my philosophy) appeared to me as the best way of 
explaining how the algorithm works. 

Let us first introduce some notations and remind some results. If R 
and Q\,...,Qk are polynomials in one variable (with real algebraic 
coefficients ) and e = (e\,..., e^) is a sequence of strict sign conditions 
(> 0,< 0,= 0) one notes c£(R; Qi,...,Qk) the number of real roots of R giving 
to Qi,...,Q^the signs £\,...,ek I*1 particular c(R) is the number of real roots 
of/?. 

The generalized Sturm sequence associated to R and Q is defined by 
RQ>0 is R, 
RQ,1 is the remainder of the division of Q by R, 
RQ,i+l the opposite of the remainder of the division of Rqf ¿.1 by RQI . 
One notes vpfQ(-00) (resp. vptQ(+ 00)) the number of sign changes in the 

generalized Sturm sequence associated to P and Q at - 00 (resp. + 00). The 
property of the generalized Sturm sequence is the following: if P and Q are 
coprime, one has c>o(P; P'Q) - c<o(P; P'Q) = UP^QC- 00) - vp^+oo) [B K R]. 
The Sturm sequence of P is the generalized Sturm sequence associated to P 
and P'. 

Let us consider the curve C of equation P(X,Y) = (Y2+X2-1)(Y-X-1), 
union of a circle and a line (so that, knowing in advance the topology we 
shall be able to control the result of our computation in each step). 

Ei) One computes the discriminant by taking Sturm sequence of 
P(XyY), using pseudo-remainders, (we shall need this Sturm sequence 
later)* 

P0 = p = y3 . (X+1JY2 + 0&-VY- (X+VO&-V 
P1= P'y = 3Y2 -2(X+1)Y + 
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P2 =-(X+l)[(X-2)Y - 2CX3-U] 
PS = D = -9X?(X2-1) 

One takes the squarefree part of D. One obtains Q = X&-X with the 
same roots than D. 

One computes the number of roots ofX^-X (by Sturm sequence !). 
Q0 = Q=Xß-X 
Q! = Q' = aX2-l 
Q2=X 
Qa = l 
One finds I>Q,Q'(-OOJ = 3 and VQ^+OO) =0, hence c(Q) =3. 
One characterizes the three roots of Q by the signs they give to Q' and 

Q". This is done by generalized Sturm sequences. 
It is clear that c>0(Q; Q') = 2 and c<0(Q; Q) = 1. 
Let us compute now the generalized Sturm sequence associated to Q 

and Q". 
QQ",0=Q=Xà-X 
Oer л = 6X 
Qo".2 = o. 
One can see that Q and Q" are not coprime, their GCD is X. In this case, 

one makes two different computations and one considers 
a)the roots of R = GCD(Q,Q") and the signs they give to Q' 
b) the roots of S = QIGCD(Q,Q") and the signs they give to Q' and Q". 

For point a) one has in principle to compute the Sturm sequence of R, 
to determine the number of its real roots (here it is not too complicated to 
know that R has a unique root). One computes then the generalized Sturm 
sequence of R and Q'. 

RQ;O=X 
RQA = - 1 

Here R' = 1 hence one has 
c>o(K; Q) - c<0(R; Q) = VRfQ'(-oo) - VRfQ'(+oo)=-l 

and c>0(R; Q) + c<0(R; Q') = c(R) =1, 
hence c>0(R; Q') = c>0-0(Q; Q',Q") = 0 
and c<0(R; Q') = c<0-0(Q; Q,Q") = 1. 

For point b) one has in principle to compute the generalized Sturm 
sequences associateds to S and Q", S and Q'Q". In fact in our example it is 
possible to conclude directly : since the root ofi? verifies Q' <0, the two roots 
of S verify Q' >0, and hence , after Thorn's lemma, one verifies Q" >0 and 
the other Q" < 0. 
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Let us resume the situation: Q has three roots Çi, £2 and £3, 
characterized by the following signs 
11 (S=X2-1=0, Q'>0, Q"<0) 
£2 (R=X=0, Q'<0, Q"=0) 
£3 6S=*2-1=0, Q'>0, Q'Î><V. 

One knows that £i< §2< £3 by looking at the signs of Q" since Q(%) is 
constant (this is a particuliar case of the general algorithm allowing to 
compare the real roots of a polynomial P from the signs they give to the 
derivatives of P (see [CR])). 

E2) Let us determine now the number of real roots of P(t;i,Y), P(%2 >Y) 
and PCCs ,Y). It is not necessary to compute again all the corresponding 
Sturm sequences, since we can use the Sturm sequence of P(X ,Y) 
computed in Ei) and replace in itXby ^ (in the case where ^ is not a root 
of a leading coefficient of the polynomials of the Sturm sequence). 

No problem for PQ and Pi which are monic with respect to Y, nor for 
P3 which is annulated by £1, §2 and £3 • Let us look at what happens to the 
coefficient T=(X+1) (X-2) of P^ and compute the generalized Sturm 
sequence associated to Q and T. 

One has 
QT0 = Q = X?X 
QTFL=T = X?X-2 
QT,2=X+1 
QT,3 = 0. 
Polynomials Q and T are hence not coprime, and have a non-constant 

GCD U = X+l which has only one root. 

One has to determine at the root of U, the signs taken by Q' and Q", 
which allows to know which root of Q is a root of U. One computes the 
generalized Sturm sequence of U and Q' and of U and Q", which means 
exactly since it is of the first degree compute the signs taken by Q' and Q" at 
-1. We get Q' (-1) > O and Q"(-l) < O. By comparing with the signs taken by 
Q' and Q" at E1, £2 and £3 we know that the root of Uis %\. 

One has now more information about ¿1, to and BQ: 
11 (U=X + 1=0,Q' >0, Q"<0,T=0) 
12 (R=X=0, Q'<0, Q"=0) 
13 (S/U=X-1=0,Q'>0, Q'bO). 
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It is clear that, the three roots of Q being now characterized as roots of 
polynomials of the first degree, the computations of generalized Sturm 
sequence are just now evaluations of polynomials at t,\(= -1), £2 (=0) and 
|3 (= +1). Hence one has T(%x) =0, T( & <0 and T( ^ <0. 

One has now the following information: 
l l (U=X+1=0, Q' >0, Q"<0, T=0) 
|2 (R=X=0,Q'<0,Q"=0,T<0) 

|3 (S/U=X.1=0,Q' >0, Q">0, T<0). 

One can then conclude since vp^2,Y) (~°°) - v P(^,Y) ("°°^ = 2 and 
VP(%2>Y) (+°°) = VP(%3 Y) f+00) = 0 that the number of roots of P(^%Y) and 
P(%3,Y) is 2. One notes £2,1 and C2,2 (resp. £ 3 1 and £3,2) the first and 
second root of P(Z,%Y) (resp. P(?a>YJ).' 

Above 42 (resp. £3) the curve has two points C2.I an<i C2 2 
(resp. ^3,1 and f2,2>-

For Prii.YJ, we have to compute again Sturm sequence. One has 
(since 4l is a root of X+1) 

P(^Y)Q=P(^,Y) = Y3 
P(^,Y)V= Py$hY) = 3Y2 
P^I,Y;2 = 0. 

Above | i the curve has a point £1,1-

One determines at the roots of P(|j ,Y) the signs of the derivatives of 
P($i,Y). 

It is clear that Ci 1 is characterized by the signs (P=0, P'y =0, P"y=0): 
Ci,i (Y=Q, P'yr|i,y;='0, P"Y(fHY)=0) 

At £2 one replaces P (^%Y) which is equal to Y3-Y2-Y+l(since ¿¡2 is a root 
of X) by Y%-1 which is squarefree. It is easy to see, by generalized Sturm 
sequences that 

c=0 ( Y2-1; P'y r|2 >Y)) = c(T-l)=l 
c>0 ( Y2-1; P'y r|2 ,Y)) = c<0 (Y+l; P'yC |2 ,Y))=1 
C>0(Y.1;P"Y(^2>Y))=1 

and c<0 (Y+l; P"yf £2,Y)) = 1 
So: 

£2,1 (Y+i=o, p'yf!2,r;<o, P v«a«<0> 
f2,2 <Y-1=0, P'Y(Z2,Y)=0, P"Y(^%Y)>Q). 
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At £3 one replaces P(^Y) which is equal to Y3-2Y2 (since §3 is a root of 
X~l) by Y2-2Y which is squarefree. It is easy to see, by generalized Sturm 
sequences that 

c=0 C&-2Y;P'y(&,Y)) = c(Y) = I 
c>0 (Y2-2Y; P'y( §3 >?» = c<oCY-2; P'yf §3 ,Y» = 1 
c<0(Y;P"YA;3,Y))=l 

andc>0(Y-2;PnY(S3>W)=l. 
So 

C3,i (Y=0,P'Y(S3,Y)=0,P"Y(t;3,Y)<0) 
C3,2 (Y-2=09P'Y tt3,Y)>0, Py (SS,Y)>0). 

E 3 ) One determines above £i_,E1+ ,^2+ > £3+ the number of half-
branches of C. One considers the Sturm sequence of P, computed in Ei, 
and one is interested in signs at E1 , £i+ ,£2+ ,£3+ of leading monomials of 
PQ, PI, P2 and P3. It remains to compute the sign of P3 at Ei+ for ¿=1, 2, 3 
and the sign of T at §1+ (resp. £1J (the sign of T at Ei+ for ¿=2, 3 is negative 
since T is strictly negative at ^ , for £=2,3j. For this one computes the signs 
at §j, for ¿=2, 3, of a number of derivatives of the discriminant sufficient to 
know the variation of D and the signs at £1 of a number of derivatives 
sufficient to know the variation of T; one has D'(t;i) >0, D'(t;2)=0> D"(E,2)>Q> 
D'(&<0, T'(Zi)<0 • 

Hence at £i_ and £3+ the leading coefficient of the Sturm sequence 
have the following signs: 

at -00 - + + -
at +00 + + — . 

Above §1. and §3+ the curve has an half-branch. 
At £1+ and £2+ the leading coefficient of the Sturm sequence have the 

following signs 
at -00 —1 \-
at +00 + + + +. 
Above §i+ and §2+ tne curve has three half-branches. 

E g 4>Looking at the £jj in E2 we can see that condition (g) is satisfied . 
So it is possible to deduce now the topology of C, by Ag^. 

Ci+,3^ /£2+,3 
É2,2 (2) ^ C3,2 

Ci-,i — Ci,i(3) íl+,2 

íl+ ,1 
C24. 

?2+,2 

É2+,l 
C3,l (V 

f3+,l 
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Nevertheless, in order to illustrate our general algorithm, we shall make 
after the complete computation of A4. 

E 4 ) Let us hence describe step A4 in the example. One determines on 
each half-branch the sign of P and of its derivatives with respect to Y. One 
already knows the signs of P'y on the différents half-branches of C: 
-above £i_ (resp. £3+) at Ci^i (resp. C3+,l)^V>0 
-above £i+(resp. \2- > £2+ > <?3- ) at and Ci+,3 (resp. £2-,l and Ç2-,3> C2+,l 
and Ç2+>3, C3-,l and Ç%-tz)P'Y>0, at Ci+,2 (resp. C2-,2> 2+,2 and £3-,2 )P'y<0. 

Let us compute now the generalized Sturm sequence of P and P"y. 
PP"Y,0=P 
PP"Y,1=P"Y 
Pp"Y,2=4 I 27(X+l)2(5X-4). 
At §1., | i+ , |2-. É2+ ^P"y,2<0-
At^3.^3+PP"Y,2>0. 
At 4i-, 4i+, %2+ the leading coefficient of the generalized Sturm 

sequence have the following signs 
at -00 
at +00 + + -

hence above fr., §1+, %2- > $2+ c>0(P; P'yP V - c<o<P; P'YP"Y) = -L 
At I3 . , £3+ the leading coefficient of the generalized Sturm sequence 

have the following signs 
at -00 1-
at+oo + + + 

hence above E3 and £3+ c>0 (P;P'YP"Y) - c<o (P;P'YP"Y) = 1. 

One has at last the following characterization of half-branches of C: 
above §1. C1+, 1 (P'Y>0,P"Y<0) 
above §i+ Cl+,1 (P'Y>0, P"Y<0) 

Cl+,2 (P'y<0,P"Y>0) 
CI+,3 (P'Y>0,P"Y>0) 

above §2- £2,1 fPV>0, p,v<o> 
C2-,2 fP'F<0,PV>0) 
C2-.3 (PV>o,p,v>o; 

above 2̂+ C2+4 (P'y>0,P"y<<» 
C2+.2 rPV<o,p,v>o; 
C2+,3 (P'Y>0,P"y>0) 

above §3. C3-,i rPv>o,p,v<o; 
C3-.2 (P'Y<0, P\<0) 
C3,3 (?V>o,P'V>oj 

above $3+ ?3+,l (PV>0,PV>0j 
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Using Thorn's lemma and the preceeding characterizations of £ij, Ci, j 
and Ci+J in ̂ 4 we get: 

fl+,3 —Í2-,3 
P'y>o P ' y > 0 
P"Y>0 P"Y>0 

C2+,3 —C3-,3 
P'y>0 P'y>' 
P"y>0 P"y>0 

£2,2 
P'y=0 
P"Y >O 

Сз,2 
P'y >0 
P"Y >O 

Cl-,1 — C1-,1 
P'Y>0 P'y=0 
P"Y<0 P"y=0 

Cl+,2 — É2-,2 
P'y<0 P'y<0 
P"y>0 P"y>0 

?2+,2 — Í3-,2 
P'Y<0 P'Y<0 
P"Y>0 P"Y<0 

Í3+,l 
P'y >0 
P"y>0 

£2,1 
P'y>0 
P"y<0 

S3,l 
^Р'у=0 
P"y<0 

С 1+,1 — f2-,l 
Т'у>0 P'Y>0 
P"Y<0 P"Y<0 

C2+,l ?3-,l 
P'y>0 P'y>0 
P"y<0 P"y<0 

Let us remark that Thorn's lemma tells us how to glue the half-
branches of C above 4 2 an(i <?3- Let us remark also that between £2+ and 
£3. the sign of P"Y has changed on the second branch of C: one hence needs 
the sign of this polynomial both to the right of £2 and to the left of £3. 

One gets finally the following drawing: 
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3. FINAL REMARKS 
This paper has been ended in July 1987. Since this time several 

changes occured in the subject. Concerning general discussion in part 1, 
people are interested in new techniques for quantifier elimination, not so 
much on ideas based on general cylindrical algebraic decomposition ([GrV], 
[Gr], [Ca], [Re 1 or 2], [HRS 1,2 or 3]). These new techniques lead to 
algorithms doubly exponential in the number of alternations of quantifiers 
(and not in the number of variables as in [Co]). 

Cylindrical decomposition are still important and useful in the case of 
curves (see the proof of [HRS 3]). The algorithm presented here has been 
studied in more details and improved in [R S 1 or 2], [CuGR]; algorithms for 
the analytic structure of curves have been studied on the same lines 
([CuP3R]). In particiilar uniform techniques avoiding splittings and 
specialization problems have been introduced ([GLRR 1 or 2]). 
Implementations have been given by L. Gonzalez ([G]) in Reduce and F. 
Cucker in Maple and several examples are available. 
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