
Astérisque

MARTIN C. TANGORA
Computing with the lambda algebra

Astérisque, tome 192 (1990), p. 79-89
<http://www.numdam.org/item?id=AST_1990__192__79_0>

© Société mathématique de France, 1990, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1990__192__79_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


COMPUTING WITH THE LAMBDA ALGEBRA 

Martin C. Tangora 
University of Illinois at Chicago 

and University of Oxford 

We are trying to compute the homotopy groups of spheres. This is an old 
problem now, and a very deep one; and a lecture on the subject is likely to 
be very technical. A number of the experts who know these technicalities are 
among the participants in this Congress. If I were to give a technical talk on 
my work, a few of you would already know what I was going to say before I 
had begun, but most of you would still not know what I had said after I had 
finished. Moreover, I have published elsewhere [6] a detailed account of several 
aspects of the problem that I am currently engaged in. 

Accordingly, I would like to confine myself here to some remarks that 1 
hope will be appreciated by everybody. On the one hand, I would like to 
give an idea of how we have managed to convert an effectively computable but 
realistically intractable problem into a tractable and really computable one. 
Here I will oversimplify the description, since the interested reader can refer to 
more detailed versions in the literature. 

On the other hand, I would like to share with you some reflections on the 
meaning of "proof' as it is variously used in our various disciplines. When is 
a proof really a proof? Let me begin with an assertion made some years ago 
by the American humorist Al Capp, or rather by a character in his comic strip 
Li'l Abner. 

Mammy Yokum's Principle : Good is better than evil, because it's nicer. 

Mammy Yokum's method of proof is well known in many other fields of 
human endeavor, but I submit that it has been neglected by mathematicians 
and computer scientists 
S.M.F. 
Astérisque 192 (1990) 

79 



M.C. TANGORA 

There is a saying among mathematicians that only a graduate student really 
knows what a proof is. Perhaps it is necessary to have published an erroneous 
result in order to appreciate this. 

When we think we have a proof, we submit it to three tests. First, we try to 
find a mistake in it. Second, we submit it for publication, and the referee tries 
to find a mistake in it. Third, it is published, and everyone else tries to find a 
mistake in it. 

This leads me to what I think of as the Mammy Yokum Test for a proof in 
mathematics : a proof of a mathematical result is a good proof if nobody has 
found a mistake in it. 

Later we will offer a Mammy Yokum Test for the correctness of a computa­
tion. 

1. ALGEBRAIC APPROACHES TO THE HOMOTOPY PROBLEM. 

Homotopy groups are algebraic objects occurring in, and defined in, a purely 
topological setting. The definition is a matter of topological spaces and contin­
uous functions. However, a dozen years after the definition had been codified, 
the great difficulty of the problem of computing these groups had become ap­
parent; Hopf complained around 1950 that almost every known result had been 
obtained by a different method [4]. 

Great progress was made in the 1950s and 1960s, but the improvement 
came at the expense of elaborate techniques, and the result was a bewildering 
confusion of data, in which a variety of patterns can be seen to interact in 
complicated and often mysterious ways. It is known, for example, that every 
possible positive integer occurs as the order of an element in the homotopy 
groups of spheres. I attach a little table of the homotopy groups of the 6-sphere, 
extracted from Toda's 1962 book [7], and invite you to try to extrapolate to 
the next few groups. 

The table gives, for each n, the order 0(n) of the homotopy group 7rn(S6). 
A zero denotes a trivial group, and oo denotes an infinite cyclic group. 

80 



COMPUTING WITH THE LAMBDA ALGEBRA 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0(n) 0 0 0 0 0 o o 2 2 24 0 o o 2 60 48 8 

n 16 17 18 19 20 21 22 23 24 25 
0(n) 144 2016 240 6 24 360 2016 16 288 8448 

More optimistically, Brown proved in 1957 that the homotopy groups of any 
finite complex are effectively computable [2]. However, Brown himself empha­
sized that his algorithms were not intended to be of any practical use. 

Meanwhile, work of Steenrod, Cartan, Serre, and Adams led to the consider­
ation of certain algebraic approximations to the homotopy problem, which are 
more amenable to computation. In particular the Adams spectral sequence con­
verges to a filtered version of homotopy groups, and its Ei term is an algebraic 
object for which any finite range can be obtained from a variety of algorithmic 
processes. The issue becomes one of efficiency : all algorithms are effective, but 
some are more effective than others. 

We will confine ourselves now to the problem of computing the E2 term of the 
Adams spectral sequence for spheres, for p = 2. At least four different methods 
have been used. Since the E2 is the cohomology of the Steenrod algebra, it can 
be obtained as the homology of the cobar construction; but this construction is 
very large and the method is too slow and cumbersome. Adams used a minimal 
resolution, but this method seems awkward for large computations, although 
recently Bruner has had surprising success with it on a computer. The May 
spectral sequence is well suited to hand computation but to date has not been 
carried any further on a machine. 

We focus on a fourth method, which obtains the Adams E2 term as the 
homology of the lambda algebra. When this algebra was announced in the 
1960s, it did not seem very promising for computation, but Ed Curtis showed 
the way. George Whitehead has done some extensive calculations by hand, and 
the ideas of Curtis are amenable to algorithmic development and to machine 
computation. 

81 



M.C. TANGORA 

2. THE LAMBDA ALGEBRA. 

For each prime p there is a lambda algebra. To simplify the discussion we 
will only consider p = 2. In this case A is an associative bi-graded differential 
algebra over the field of 2 elements, with a generator An in each non-negative 
dimension n. The algebra is not commutative, so your monomials are ordered 
products Xj where I = (¿1,2*2,... ,z5) is a sequence of non-negative integers. It 
is natural to write I as an abbreviated notation for A/. The algebra is defined 
by the relations 

XiÁ2i+n+l — 
j>0 

A(nJ)\i+n_j\2i+i+j (i > 0,n > 0) 

and the differential 

d(Xn-i) = 
3>l 

AfafiXn-j^Xj-x {n > 1) 

where A(n,j) denotes the binomial coefficient (n~j~ ) reduced mod 2. The bi-
grading of a monomial indexed by I may be written (r, s) where s, as above, 
is the length of 7, and r = i\ + ... -f V Using the relations we can express all 
monomials in terms of the "admissible" ones satisfying 2ij > ij - 1 (1 < j < 
5 -1) . 

Because of the non-commutativity, the algebra grows very fast. Just by 
counting the elements (using a computer, of course) we find an exponential 
growth rate of 1.79 with respect to the r grading. This was recently explained 
by Flajolet and Prodinger [3]. Since 1.7910 is about 345, we see that if you 
have an algorithm that is linear with respect to the number of elements in 
the admissible basis, and if you can compute E2 from dimension r = 30 to 
dimension r = 40 in a month, then you can go from 40 to 50 in about thirty 
years. This may be effective, but it is not effective enough. 

As anyone knows who has worked in computational linear algebra, the key 
is to choose the right basis. Curtis's method of choosing bases may have been 
motivated topologically, but it has the interesting effect of allowing us to set 
aside the vast majority of monomials as being irrelevant. The following discus­
sion is intended to give a rough idea of what I mean by this, and to identify 
the properties of the lambda algebra that make this possible. 

82 



COMPUTING WITH THE LAMBDA ALGEBRA 

Using the natural ordering of the generators, we can proceed to order mono­
mials, polynomials, and even sets of polynomials. Thus each element of a 
certain bi-grading is put in "proper form", meaning that not only are the rela­
tions used to express everything in terms of the admissible basis, but that then 
the resulting polynomial is written with its largest term first. We then seek 
to determine the minimal representative of each homology class, the minimal 
basis for cycles, and for each minimal cycle that bounds, the minimal element 
among those that it bounds, called its "tag". The output of our computation 
is what I call a "Curtis table". In such a table one finds entries of the form c/t, 
where c and t are monomials; c is the leading (maximal) term of a cycle in the 
minimal basis for the cycles; and t is the leading term of the smallest element 
that has c as the leading term of its boundary. It might seem more natural to 
give the complete polynomials of which c and t are the leading terms, but it is 
crucial to the success of our technique that it is usually not necessary to keep 
track of the other terms. 

Why not ? 
Our method is based on the following relations between the differential and 

the ordering. 
(1) In the differential d(A )̂, all terms begin with An where n is less than i. 

(Immediate from the definition.) 
(2) In the product d(\i)\j\k..., all terms begin with An where n is less than i. 

(Proved by Wang [9].) 
(3) If Xnz + y is a cycle in proper form, then z itself is already a cycle. (Follows 

easily from (2).) 
From these relations it is easy to deduce the following key properties of the 
"tags" in the Curtis table. 

(4) Cancellation : If \{X is the tag of \z, then x is the tag of z. 
(5) Propagation : If x tags z then \x tags \z (provided these are both admis­

sible). 

Roughly speaking, if the cycle z is the boundary of 2/, then multiples of z 
are boundaries of the corresponding multiples of y. Thus most of the tags in 

83 



M.C. TANGORA 

the table follow immediately from earlier tags. Each entry z/y gives rise to 
a multitude of entries sz/sy, where s is any string of generators such that sz 
and sy are admissible. We not only don't need to compute these, we don't 
even need to record them, since they can always be recovered by cancelling the 
initial string s. 

Here is an elementary analogy. When we learn to multiply the natural 
numbers, we memorize the multiplication tables for multiples of 2,3, . . . ,9. 
There is no need to "store" the multiples of 0, or of 1, or of 10. At the age of 
eight, none of us was brilliant enough to invent the binary system; but if we 
write our numbers in the base 2, all our multiplications are with 0, or 1, or 
10, and there is nothing to store. Properties (4) and (5) are like division and 
multiplication by 10, but they are valid for every generator. 

Of course, in elementary arithmetic, changing to base 2 does not eliminate 
all the work; it shifts the work from multiplication to addition. In our lambda-
algebra algorithms, the suppressed computations must often be called up in 
order to complete the later work. Still, the net benefit is substantial. 

For example, in the bi-grading (39,17) there are more than one hundred 
million admissible monomials, but the fate of all but three is determined induc­
tively by the cancellation property. One, with I = (6,1,...), is easily seen to be 
a boundary. Another, with / = (2, 4,...), is easily seen to be a cycle. Of the six 
non-obvious elements at (40,16), one begins with a 2 and thus is too small to 
tag (2,4,...) (by property (4)); one is used to tag (6,1,...); and the other four 
are easily seen to be cycles; so (2,4,...) represents a homology class. All this 
is done quickly by inspection. However, the remaining entry at (39,17) is not 
so easily settled. It took 25 minutes of CPU time on an IBM 3081D to show 
that this entry is a cycle (and therefore represents another homology class). 

Another measure, admittedly imprecise, of the success of this approach is 
the following. The growth rate of the lambda algebra itself is exponential, and 
can be proved, either by actual counting or by the method of Flajolet and 
Prodinger, to obey the asymptotic relation 

n(t) ~ (.283)(1.48)t 

84 



COMPUTING WITH THE LAMBDA ALGEBRA 

where t is the total degree (= r + s in the notation above) and n(t) is the number 
of basis elements in that degree. But if we plot the CPU times for each t against 
t, we find a significantly smaller growth rate: 

CPU(t) ~ fe(1.32)' 

where the constant k is .00478 seconds for the mainframe used when degrees 
t = 27 to 48 were computed in 1981 (see 4.8 of the Memoir [6]). 

What is noteworthy is that the growth rate of the computing time is lower 
than that of the algebra, despite the (sometimes staggering) increase in the 
number of terms in a cycle, the number of factors in each term, the number of 
terms in the differential of each factor, etc. 

3. IMPLEMENTATION 

How do you put this problem onto a machine? A list-processing language 
is a natural medium, since polynomials are naturally coded as linked lists. We 
chose to write our programs in SNOBOL4, a general-purpose language with 
good list-processing facilities and quite suitable for symbolic algebra. 

When I was developing these programs I was teaching a course in list-
processing languages that give students an introduction first to LISP and then 
to SNOBOL. So an interaction took place between teaching and research! The 
problem of adding two polynomials mod 2 is a good exercise in such a course: 
given two sorted linked lists, merge them into a single sorted linked list, elimi­
nating identical terms two by two. 

An issue that arises is whether this SUM procedure must leave its arguments 
intact. If you need to conserve storage, you would like to build your SUM with­
out creating any new nodes, just by manipulating the links (pointers) between 
the nodes in the two arguments; but this destroys the arguments. 

The SNOBOL4 language has the reputation of being large and slow. At 
the University of Illinois at Chicago, however, we had access to a SPITBOL 
compiler on an IBM mainframe. Eventually we were using up to four hours 
of CPU time and up to five megabytes of storage. The ultimate limitation 

85 



M.C. TANGORA 

on our computations was neither time nor storage, but a consequence of the 
intense list-processing activity: when the program was competing for the CPU 
in a multiple virtual storage environment, it was brought to a standstill by 
excessive paging activity. 

In trying to optimize the programs with respect to time and storage con­
straints it was necessary to make some compromises. In the inductive lambda-
algebra computations you often enter a loop and call for the differential of a 
certain monomial several times. Therefore, at one extreme, you could have 
your program store each differential, using the extra storage to save the time of 
re-computing. At the opposite extreme you could re-compute every binomial 
coefficient whenever a procedure called for it. In the actual work we store bino­
mial coefficients, the defining relations, and the differential on the generators. 
The difficult question is whether to store the differential on the monomials. For 
a long time we did this locally at each bi-grading. 

Notice how this impinges on the question of whether the SUM procedure 
must preserve its arguments. If one summand is taken from a table, and the 
SUM procedure changes the pointers around, you lose the integrity of your 
table. 

This brings us back now to the question of proof. We alluded briefly above to 
loops that arise in the inductive computation. The ordering and the differential 
have an interesting and useful relationship, as shown by properties (l)-*(5), but 
nothing is perfect. Neither the function c = d(y) nor the relation ux tags zn 
is monotone. Consequently there is a difficulty in proving not only that the 
algorithm is correct, but even in proving that it is finite. 

It took me a little time to see how these proofs should go. As a mathemati­
cian I wanted to prove that the results were correct. This seems quite difficult. 
Eventually I came to understand that the right idea is to prove that the process 
is correct. 

I had read the discussion in Knuth's book about proving an algorithm correct 
[5]. In principle you represent your algorithm by a flowchart or its equivalent, 
and label every arrow with a certain set of assertions, so that the validity of 

86 



COMPUTING WITH THE LAMBDA ALGEBRA 

all these assertions is clear when you begin the process and remains in force at 
every step of the process. 

Looking through the literature, I did not find very many proofs written 
down in such fashion. In mathematics, we like to see the details, but I got the 
impression that detailed proofs of correctness of algorithms do not often get 
into print. I ended up presenting my proofs of the correctness and fmiteness of 
the lambda-algebra algorithms in informal and summary fashion. So far they 
have satisfied the three tests; at least I, the referee, and Curtis have not found 
any mistakes. However, I recently found a gap. 

4. GETTING THE RIGHT ANSWER. 

One of the advantages of the lamb da-algebra over other fast methods of 
computing the E2 term of the Adams spectral sequence is that all the product 
structure of E2 is present. The cohomology of the Steenrod algebra does not 
have just ordinary products, but comes endowed with a rich higher product 
structure, including both Steenrod reduced powers and Massey products. The 
more you know about these higher products, the more you can deduce about 
the Adams spectral sequence and homotopy groups. 

We won't stop to explain what a Massey product is here, but when three or 
more homology classes satisfy certain relations, you can form a Massey product 
on them [8]. Usually it is not uniquely determined, but comes with a certain 
"indeterminacy", which is our way of saying that it's actually not an element of 
the homology group but rather a coset. Anyway, to compute such a thing you 
only need to be able to multiply in the ordinary sense, and when an ordinary 
product is a boundary you need to find something that it's the boundary of. 
What we call a "tag" is not only such a thing but it's a canonical such thing, 
because it's minimal. So the operations used to construct a Massey product 
are more or less the same operations that have already been programmed in 
building the Curtis table. 

So I went back to the programs that I had proved correct, took some of 
the procedures, saluted the flag marked Structured Programming, and started 

87 



M.C. TANGORA 

computing Massey products. Before long I found some serious errors in the 
results from the new programs. How could this be? 

The difficulty turned out to be related to the list-processing issue that we 
discussed above. In the Massey-product programs, the SUM procedure was be­
ing used on arguments that were needed again later. Since the SUM procedure 
altered its arguments, serious errors resulted. 

It was easy to write a new procedure, called SAFESUM, that left its argu­
ments inviolate. But what did all this imply about my proofs of correctness? 

One of the hidden assumptions in my proof had been that if a differential 
was correctly entered into a table, then it remained correct in the table. This 
assumption was never made explicit, of course, and it never caused trouble in 
the earlier programs. After the mistake was found in the new programs, it 
was easy to go back to the earlier ones and verify that in those programs the 
SUM procedure was never called on any argument that would be used again 
afterward. Actually the logic of the algorithms is very tight, and after many 
hours of CPU time without any errors coming to light, one is virtually certain 
that no such mistake has been made. Still, one can say that a gap in the proof 
has been closed. 

Notice the light that this sheds on the difference between the correctness of 
an algorithm and the correctness of a program. 

We conclude, with Mammy Yokum, that a computation is correct if it gives 
the right answer. 

88 



COMPUTING WITH THE LAMBDA ALGEBRA 

REFERENCES. 

[1] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. 
Schlesinger. The mod-p lower central series and the Adams spectral sequence. 
Topology, 1966, vol. 5, pp 331-342. 

[2] E. H. Brown Jr. Finite computability of Postnikov complexes. Ann. Math., 
1957, vol. 65, pp 1-20. 

[3] P. Flajolet and H. Prodinger. Level number sequences for trees. Discrete 
Math., 1987, vol. 65, pp 149-156. 

[4] H. Hopf. Vom Bolzanoschen Nullstellensatz zur algebraischen Homotopiethe-
orie der Sphären. Jahresbericht der deutschen Mathematiker Vereinigung 56 
(1953) 59-76. 

[5] D. E. Knuth. The art of computer programming. 1973, vol. 1, 2nd ed. (see 
Section 1.2.1, pp 14-16). 

[6] M. C. Tangora. Computing the homology of the lambda algebra. Memoirs 
Amer. Math. Soc. No. 337 (1985). 

[7] H. Toda. Composition methods in homotopy groups of spheres. Princeton, 
1962. 

[8] H. Uehara and W. S. Massey. The Jacobi identity for Whitehead products. 
In Algebraic geometry and topology, a Symposium in Honor of S. Lefschetz, 
Princeton University Press, 1957, pp. 361-377. 

[9] J. S. P. Wang. On the cohomology of the mod-2 Steenrod algebra and the non­
existence of elements of Hopf invariant one. Illinois J. Math., 1967, vol. 11, 
pp 480-490. 

Author's address: 
Department of Mathematics, Statistics, and Computer Science 
University of Illinois at Chicago 
Chicago, Illinois 60680 U.S.A. 

The above talk was presented on August 31, 1987, at the International Confer­
ence on Computational Geometry and Topology and Computation in Teaching 
Mathematics, Universidad de Sevilla. 

89 


