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EXPONENTIAL SUMS AFTER BOMBIERI AND IWANIEC 

by 

M.N. HUXLEY 

BOMBIERI and IWANIEC [BI1, BI2] obtained 9 = 9/56 for the Lindelof 
exponent (the least 9 for which the Riemann zeta function satisfies 
C(l/2 + i<) = 0(te+£) as <->oo.) 

They remarked that their method might not be special to the Lindelof 
problem; in fact, as the saying goes, "they wrought [worked] better than they 
knew". 

To show that one property is uniformly distributed with respect to another 
property, one forms exponential sums 

5 = 
2 M - 1 

M 
e{f[m)) , (1) 

where 
e(x) = exp 2nix, f(m) = TF(m/M) 

with F(x) in the function class Cn[l — <5,2 + 6] for some 6 > 0 and n > 4. 
The case F(x) = log x gives Dirichlet series. If F(x) is a polynomial of degree 
d with rational coefficients, denominator g, and if T = Md, then the sum 5 is 
approximately 

MSJq , 

where Sq is a complete exponential sum with denominator q. One imposes 
conditions to prevent F(x) from being well approximated by a polynomial for a 
long interval of values of m. A sufficient condition is that F(x) be holomorphic 
on a neighbourhood of the segment 1 < x < 2 of the real axis, and satisfies 
there 

F'(x) = (l + o(l))x-s 
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for some real s > 0. This condition is called the "virial" or "monomial" 
condition. It holds in many applications. 

There are three useful ideas for treating exponential sums : 
O. Subdivide the range for ra, 
A. Cauchy's inequality, 
B. Poisson summation. 
The name "Step A" is usually given to Weyl's differencing lemma, which may 
be analysed as subdivision, followed by Cauchy, followed by averaging. Van der 
Corput's method [see GK, I or Kjconsists of iterating these steps. The simplest 
form of Van der Corput's method, applying steps O, A, B (read from left to 
right) gives 

S = 0(Mll2Tl'«) . 

The method can be applied to exponential sums in several variables, and it 
becomes extremely complicated. 

Bombieri and Iwaniec obtained 

S = 0(M^2T9^e) 

by taking the steps in the order O, B, A. The method is arithmetic, and is essen­
tially limited to one variable. Their subdivisions correspond to approximations 
to f(m) by quadratic polynomials with rational coefficients. If the denominator 
q of the leading coefficient is small, the short interval is a "major arc", length 
N say, and the sum over the short interval is approximately 

NSJq . 

If q is large, the short interval is a "minor arc", and one expects the sum over 
the short interval to be small. This behaviour is seen in computer studies of 
exponential sums, notably those of DESHOUILLERS [D]. The Cauchy inequality 
is employed to show that the minor arc contribution is small in Lp norm (for 
some suitable p). In some ways the treatment resembles applying Hardy and 
Littlewood's Farey dissection to 

l 
0 

N 

n=1 
e(f(n + aM))da . (2) 

If all arcs are treated as major (steps 0,B alone), one gets 

5 = 0 ( M 1 / 2 T 1 / 6 + £ ) . 
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This method is no worse than that of Van der Corput. 

At the same time JUTILA [J 1-8] has been considering sums 

2 M - 1 

M 
r ( m ) e ( / ( m ) ) , (3) 

where r(m) is the divisor function or the Fourier coefficient of a modular form, 
beginning with steps O, B where O is subdivision according to the rational 
approximation to the first derivative, B is Voronoi or Wilton summation. In 
this context the numbers r(m) e(—am/q) are the coefficients of the modular 

form twisted by the matrix q —a 
0 q 

, and the Wilton summation formula is 

still available. These ideas could extend to any motivic L-series characterised 
by the three conditions : 

D. An ordinary Dirichlet series with denominators n" s , 
E. An Euler product, 
F. Functional equations for the L-series and its twists. 

One may fit Bombieri and Iwaniec's ideas into this frame by taking r(m) 
to be the theta-function coefficients, 2 if m is a perfect square, 0 if not, and by 
considering F(x) as a function of x2. This change ̂ of variable explains why the 
derivatives do not correspond. 

There are two successful applications of the Bombieri-Iwaniec method to 
sums with an extra variable. The Weyl step O, A replaces the sum 5 of (1) 
with double sums of the form 

2H-1 

h=H 

2 M - 1 

m—M 
e(f(m + h)-f(m)). (4) 

This sum suggests the simpler sum 

2H-1 

h=H 

2M-1 

m—M 

e(hf'(m)). (5) 

The sum (5) was estimated by IWANIEC and MOZZOCHI [IM] using the 
same method. The rational polynomial approximation to hf(x) is found by 
multiplying the approximation to f(x) by fe, so h must not be too large. HEATH-

BROWN and HUXLEY [ H B H ] estimated (4) - actually in the form 

2H-1 

h=H 

2M-1 

m—M 

e(f(m + h)- f(m-h)). (6) 
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This in turn gives estimates for 

J-u 
\S(T0+T)\2dT, (7) 

where S(T) is the sum (1) considered as a function of T, if H goes up to TQ/U 
in size. 

More general multiple exponential sums have not been treated, since one 
cannot find a good approximation by a rational polynomial. 

The Iwaniec-Mozzochi sum (5) is connected with numerical integration. 
The prettiest case is the discrepancy for a circle (or more generally a smooth 
closed curve), the number of integer points minus the area. For a circle radius 
i?, approximating the circle by a polygon whose sides lie along lattice lines x = 
integer, y = integer shows that the discrepancy is O(R). Voronoi's method, 
applied by Sierpinski, approximates the circle by a polygon with rational 
gradients. Sierpinski obtained a discrepancy 0 ( i ? 2 / 3 ) if the centre of the circle is 
at an integer point. The method can be modified [H2] to give 0(i? 2 / 3 ( log i? ) 4 / 3 ) 
in general. 

Exponential sums are introduced by way of the row-of-teeth function 

p(<) = [ < ] - * + 1 / 2 = 
h=0 

e(ht) 
2nih 

Thus 

m 
pU{# - m 2 ) ) 

can be expressed in terms of terms of the sums (5). The subdivision in step O 
corresponds to the sides of the Sierpinski polygon, with q as the denominator 
of the rational gradient a/q. 

Minor arc contributions can be classified as follows. 

El. The "main term", estimated in Lp norm, 
E2. Edge effects from ends of ranges of summation, 
E3. Approximation errors in each summand in each Poisson summation. 

The O, B, A sequence is dangerous because the errors of types (E2) and 
(E3) from each short sum in the subdivision must be added. For the sum S 
of (1) there is a finite Poisson summation modulo g, followed by a Poisson 
summation in m, giving an Airy integral. For the double sums (5) and (6) 
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Poisson summation in m is followed by Poisson summation in h. The second 
Poisson summation gives the Bessel function 

Hi.1/2(t) = V 
2 

.nt 
e-it, 

with an (E3) error term because the Bessel function is given by an integral from 
0 to oo , and one only integrates over a bounded range. 

The main term on a minor arc is a sum over vectors x of an exponential 
e(x1y1 + x2y2 + x3y3 + x4y4). 

For the sum (5) 

x = (kl,l,lVk,l/Vk) 
summed over a range (depending on the minor arc) of the form 

L1 < l < L2, max(Ki, c1xl2) <k< m i n ^ , c2l2). 

The exponent is really a power series in l/\/k, but the further terms can be 
treated as type (E3) errors. The vector y is y(a/q) indexed by the gradient a/q 
of the Sierpinski polygon : 

y 
a 
q 

ab 
q 

v 
q 

l 

V(µq3) 
k 

V(µq3) , 

where a, b and q are integers, a being the inverse modulo g, and /c, // and v are 
real, all depending on the minor arc. The obvious technical difficulty, that the 
ranges for k and £ are not independent and vary with the minor arc, can be 
overcome. For this and other technical reasons the sum is squared, and the x 
vectors are replaced by differences 

x(k1,k2,l1,l2) = (k1ll-k2l2,...). 

The treatment of the sum (6) is analogous but more complicated. The Bessel 
integral is perturbed, with larger (E3) errors, and the third entry of the vector 
is 

ky/l(l + l 2/48k 2). 

The simpler sum (1) gives a very similar y vector and an x vector 

X (Л) = (h\h,h3'2,h1'2). 
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One raises the sum to the r-th power and uses 

x (h1,...,hr = x(h1) + ··· + x(hr). 

Cauchy's inequality takes the form of the Large Sieve [B], generalised to be 
symmetric between the "integer" x and the "rational" y vectors. 
Moreover vectors of each type may coincide with one another, so that instead 
of the number of vectors, one counts the number of coincident pairs. For the x 
vectors, this is like the Hilbert-Kamke problem. BOMBIERI and IWANIEC [BI2] 
gave a bound for r = 4 using ingenious exponential sum arguments. WATT 

[Wl] gave an elementary argument based on the fact that the variety 

h\ + . • • + h2

r = fej+1 + • • • / 4 , 
hi H h hr = / i r + i H h2r 

is an affine cylinder. One wants to show that most coincidences are the trivial 
ones when hr+i to h2r are hi to hr permuted. This is easy for r = 3, but false 
for r > 7. WATT [W3] has a weaker result for r = 5, combining elementary 
and exponential sum methods. HUXLEY and KOLESNIK [HK] have essentially 
settled the case r = 5. IWANIEC and MOZZOCHI [IM] treated the corresponding 
&r, lT coincidence problem elementarily; see also [W2]. For the sum (6) Heath-
Brown noticed that the perturbing factor (1 + ^ 2/48fc 2) can be neglected in a 
range of h in which the h3 term in (6) cannot be neglected. 

Bombieri and Iwaniec gave a bound for the number of coincident y vectors 
in the case F(x) = logx only. HUXLEY and WATT [HW1] gave the same 
bound for general F(x). KOLESNIK [GK] later found a simpler idea which 
leads to the same bound. All five authors only assume that the entries yi and 
2/3 coincide; this uses / " (as a/q) and the residual term in f^. The entries 
2/2 and J/4 involve / ' also, and are harder to use. The coincidence of y vectors 
may be regarded as resonance between different arcs of the curve. The possible 
resonances correspond to matrices in the modular group SX(2,Z). One would 
like to show that most matrices of 5L(2, Z) give no resonance. Further progress 
may entail the use of "Kloostermania", the Fourier theory of 5L(2, Z). 

The various sums (1) to (7) may be averaged over a family of related 
functions fi(x). This is important in many of JUTILA'S applications [J3-8]. In 
some cases [HW1,W4] one uses the second and fourth entries of the minor arc 
vector y. 

The latest results for the sum 5 of (1) are 

S = 0 [ M 1 / 2 T 8 9 / 5 6 0 + e ] 
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by WATT [ W 3 ] , giving 9 = 8 9 / 5 6 0 in the Lindelof problem, and a corresponding 
bound for sums with an exponential and a Dirichlet character [ W 4 ] , and 

s = OIMWT11'1**] 

for M near T 1 / 2 by HUXLEY and KOLESNIK [HK] . The latter result gives 
only 9 = 17 /108 in the Lindelof problem ( 11 /70 = 0 . 1 5 7 1 . . . < 17 /108 = 
0 . 1 5 7 4 . . . < 8 9 / 5 6 0 = 0 . 1 5 8 9 . . . < 9 / 5 6 = 0 . 1 6 0 7 . . . ) . 

For the sum (5) IWANIEC and MOZZOCHI [IM] and HUXLEY [H3] get 

O HT1/4+e HT 

M 

1/10" 

which becomes 0{M) for 

H = o(MT-7i22-e), 

and gives the discrepancy estimate 0 ( i ? 7 / 1 1 + e ) for the circle [IM] or a more 
general smooth closed curve [H3]. The same bound for the sum (6) in [HBH] 
estimates the integral (7) as O(MU) for 

JJ > ji7/22+e 

It leads indirectly to 

•T 

0 
|C(l/2 + it)\2 = T(logT/27r + 2 7 - 1) + 0 ( T 7 / 2 2 + £ ) . 

This implies 9 = 7 / 4 4 in the Lindelof problem, but 7 / 4 4 = 0 . 1 5 9 0 . . . is worse 
than WATT'S 8 9 / 5 6 0 [ W 3 ] . 

JUTILA [J 1-8] has many bounds for the sum (3). Two applications are 

X mod D 

,T+T2/3 

JT 
L 

1 

2 
+ it, x 

A 
dt = O ( D T 2 / 3 ( D T ) £ ) 

where r(n) is the divisor function and 

X mod D 

•T+T2/3 

T 
x 

1 

2 
+ it, x 

2 
dt = 0(£>r2 /3(£>r)£) 
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where r(n) is the Fourier coefficient of a modular form, and (p(s, x) 1S its Hecke 
L-series, normalised to have critical line Re s = 1/2. 

FOUVRY and IWANIEC [FI1] have also considered using steps B and 
A without subdivision, but in several variables, provided that the monomial 
condition holds in each variable. This idea should give new exponents in some 
classical problems. 

Finally, in the spirit of the Journées, some problems. If 

y = / ( x ) , M < x < 2M 

is a smooth curve, then there are connections between 

a) the exponential sum 5 of (1) over the interval M to 2M — 1, 
b) the rounding error sum Y,p(f(m)) over the same interval, 
c) the number of integer points within a distance 6 of the curve, 
d) the number of integer points on the curve. 

BOMBIERI and PlLA [BP] have an upper bound 0(T£) for problem (d). 
For (a) there is the classical Van der Corput iteration, whilst for (c) there is an 
analogous elementary iteration [H5], in which Step A is differencing, and Step 
B is interchanging the variables x and y. Is there an iteration for the rounding 
error (b) ? 

What conditions ensure that the Diophantine approximations to / , / ' and 
/ " at integer values of x are independent ? A quantitative result could allow 
one to count coincidences among minor arc y vectors properly, or even to avoid 
putting moduli round the minor arc sums. 

Are there any counterexamples of curves which are not rational algebraic 
curves of genus zero and of low degree, but for which the sums (a), (b) o\ (c) 
are unexpectedly large ? 
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