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ELLIPTIC CURVES,
PRIMALITY PROVING
AND SOME TITANIC PRIMES

Abstract

We describe how to generate large primes using the primality proving algorithm of Atkin.

Figure 1: The Titanic*.

1. Introduction. During the last ten years, primality testing evolved at great speed. Motivated
by the RSA cryptosystem [3], the first deterministic primality proving algorithm was designed by
Adleman, Pomerance and Rumely [2] and made practical by Cohen, H. W. Lenstra and A. K. Lenstra
(see [9, 10] and more recently [5]). It was then proved that the time needed to test an arbitrary integer
N for primality is O((log N)°'°81°81°8 V) for some positive constant ¢ > 0. When implemented on a
huge computer, the algorithm was able to test 200 digit numbers in about 10 minutes of CPU time.

A few years ago, Goldwasser and Kilian [11], used the theory of elliptic curves over finite fields
to give the first primality proving algorithm whose running time is polynomial in log N (assuming a
plausible conjecture in number theory). Atkin [4] used the theory of complex multiplication to give

a practical version of this algorithm.

*Taken from Titanic, Destination disaster, The Legends and the Reality by J. P. Eaton and C. A. Haas, W. W.
Norton and Company, New York 1987.
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The aim of this paper is to present some results the author has obtained using his own imple-

mentation of this algorithm in the search for large primes.

2. Elliptic curves. Let K be a field of characteristic prime to 6. An elliptic curve E over K is a
non singular algebraic projective curve of genus 1. It can be shown [7, 23] that E is isomorphic to a
curve with equation:

v’z = 2° + azx2? + b2°, (1)
where a and b are in K. The discriminant of E is A = —16(4a® + 27b?) and the invariant is

a3

4a® + 270%°
We write E(K) for the set of points with coordinates (z : y : z) which satisfy (1) with z = 1,

j = 2833

together with the point at infinity: Og = (0 : 1 : 0). We will use the well-known tangent-and-chord
addition law on a cubic [13] over Z/NZ (see [17] for a justification).

.

/s
\

Figure 2: An elliptic curve over R.

v

In order to add two points M; = (z1,y1) and Mz = (z2,y2) on E resulting in M3 = (z3,y3), the
equations are
{ T3 = M-z -1y
ys = Mz1—2z3)—wn
where
(y2—y1)(z2— 1) if 2y # x4

(3z2 + a)(2yy)™? otherwise.
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3. Primality testing. Let us recall one of the converses of Fermat’s theorem (see for example [6]).
Theorem 1 Let a be such that gcd(a, N) =1, q a prime divisor of N — 1. If

a¥'=1mod N andgcd(a™-V/7 -1, N) =1
then each prime divisor p of N satisfies: p =1 mod q.

Corollary 1 Under the conditions of Theorem 1, if ¢ > /N then N is prime.

A similar theorem can be stated for elliptic curves.

Theorem 2 ([11, 16]) Let N be an integer greater than I and prime to 6. Let E be an elliptic
curve over Z/NZ, m and s two integers such that s|m. Suppose we have found a point P on E that
satisfies m P = Og, and that for each prime factor q of s, we have verified that i # Og. Then if
p is a prime divisor of N, #E(Z/pZ) = 0 mod s.

Corollary 2 Under the conditions of Theorem 2, if s > (VN + 1), then N is prime.

4. Atkin’s algorithm. In order to use the preceding theorem, we need to compute the number
of points m. This process is far from trivial in general (see [22]). From a practical point of view,
it is desirable to use deep properties of elliptic curves over finite fields. This involves the theory
of complex multiplication and class fields and requires a lot of theory [18]. We can summarize the

principal properties:

Theorem 3 Let p be a rational prime number that splits as the product of two principal ideals in K
(i.e. (p) splits completely in the ring class field of K): p = nx' with = an integer of K. Then there
ezists an elliptic curve E defined over Z/pZhaving complez multiplication by the ring of integers of
K, whose cardinality ism = Nx(7—1) = (r—1)(n'—1) = p+1—t with |t| < 2,/p (Hasse’s Theorem)
and whose invariant is a root of a fired polynomial Hp(X) (depending only upon D) modulo p.

The computation of the polynomials Hp is dealt with in [18, 19] (see also [14, 15]).

We now explain how the preceding theorems are used in a factor and conquer algorithm similar
to the DOWNRUN process of [24]. The first phase of the algorithm consists in finding a sequence
No = N> N; > --- > N; of probable primes such that: N;; prime = N; prime. The second then

proves that each number is prime, starting from Ny.
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Procedure SearchN

2. find a fundamental discriminant —D such that (V;) splits as the product of two principal ideals

in Q(v-D);

3. for each solution of (N;) = (x)(#'), find all factors of m, = (7 — 1)(x’ — 1) less than a given
bound B and let N, be the corresponding cofactor;

4. if one of the N, is a probable prime then set N;;; := Ny, store {N;,D,7,m},i:=¢+1, and
go to step 2 else go to step 3.

5. end.

The second phase consists in proving that the numbers N; are indeed primes: For each ¢, find a
curve E whose invariant is a root of Hp,(X) modulo p and check the condition of theorem (2). For

technical details, we refer to [18].

5. Implementation and some timings. I have implemented Atkin’s algorithm on a SUN 3/60
(12 Mo) using the BigNum package described in {12]. For a comparison of my arithmetic with the
one used by Cohen and Lenstra, see [20].

We list in Table 1 the time needed to test a number of d words of 32 bits with my program, for
d = 2(2)20. Time are in seconds.

min | max | mean |st. dev. || d | min max mean | st. dev.
4.7 15.7 8.8 2.6 || 12| 485.7 | 1278.7 | 746.4 227.3
14.6 | 40.5| 25.5 7.1 14| 700.5 | 1413.0 | 1037.3 153.2

46.8 | 126.6 | 85.9 22.2 || 16 | 1106.6 | 3577.1 | 1909.6 668.0
102.4 | 266.7 | 159.1 43.8 || 18 | 1578.7 | 5164.7 | 2858.4 802.4
10 | 191.2 | 609.7 | 357.5 97.0 || 20 | 3233.8 | 9025.3 | 5252.6 | 1483.0

o O N |

Table 1: Time for testing a d word number for primality.

6. Titanic primes. Following Yates [25], a prime number with more than 1000 digits is called a
Titanic prime (see also [21]). Let us explain how the author found some Titanic primes with Atkin’s

algorithm.
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Let D be a squarefree integer congruent to 1 or 2 mod 4. Let ap = a+by/—D and oy = c+ev/—D
be two integers of K = Q(+/—D) (a, b, c, e are in Z). Let k be a positive integer. We define an Elliptic

Mersenne Number to be a number belonging to the following sequence of integers:
Mg(D, a,b,c,e) = Ng(aoek +1).

These numbers were first introduced by D. V. and G. V. Chudnovsky in [8]. They can be seen as
the analogous of the Mersenne primes when considering the N + 1 primality testing algorithm. As a
matter of fact, Atkin’s algorithm works fast for N as soon as we can find a D such that N = Ng(r)
in K and m = Nk(m — 1) is smooth. Here, we see that Mg(D, a,b,c, €) is trivially written as 7=’ in

K with 7 = apa¥ + 1 and moreover,
NK(W - 1) = NK(aoa’f) = NK(ao)NK(al)k,

which is smooth, provided the «;’s are of small norm.
Using some idle time from a network of Sun workstations, the author found that the numbers

given in Table 2 are primes: These are the first Titanic Elliptic Mersenne Primes.

7. Conclusions. We have seen that Atkin’s algorithm is a very powerful algorithm that can test
small numbers for primality in a very short time and also find some huge primes in a reasonable

amount of time.

D)a|blc|le| k |#digits||D|a|b|c|e| k | digits
1 |-1{-1(2(1]1631 1141 21 0(-1]1(1]3833 1830
1 1] 1(2(1]1636 1144 1]-1]-1(2]1]2786 1948
11-1]1]2]1]1812 1267 21 0]-111]1]4743 2264
1 1{-1{3[2]1179 1314t 1 [-1| 1]2(1]4414 3086
11-1]1]2]1]2062 1442
Table 2: Some Elliptic Mersenne Primes.
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