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RELATIONS BETWEEN NUMERICAL 
DATA OF AN EMBEDDED RESOLUTION 

W . VEYS 

INTRODUCTION. 

Let k be an algebraically closed field of charasteristic zero and let f G 
k[x,y]. 
Let (X, h) be an embedded resolution of f = 0 in the affine plane A 2 , con­
structed by successive blowing-ups, and denote by E^i G Τ, the irreducible 
components of h~"1(f"1{0}). 
We associate to each E^i G Τ, a pair of numerical data (ΛΓ,·,ι/|), where JVi 
and V{ — 1 are the multiplicities of E{ in the divisor of respectively f oh and 
h*(dx Λ dy) on X. 

Fix one exceptional curve Ε with numerical data (iV, u) and say Ε inter­
sects k times another irreducible component. Denote these components by 
Ει,..., Ek- Then we have the relation 

k 
(*) (xi - 1 ) + 2 = 0, 

i=l 

where <*j = i/; — -̂ JV,- for i = 1,..., fc. 
When f(x,y) is absolutely analytically irreducible, only k = 1,2 or 3 occurs. 
The cases k = 1 and = 2 were shown by Strauss [6, Th.l.] and Meuser [5, 
Lemma 1], and the case k = 3 by Igusa [3, Lemma 2]. Loeser [4, Lemme II.2] 
proved the general relation. 

Now we can obviously extend the definitions above to higher dimensions. 
Even if we only consider surfaces there are two essential differences compared 
with the situation for curves, causing extra difficulties in generalizing the 
relation (*). In dimension one an exceptional curve E, when created by some 
blowing-up, is isomorphic to the projective line P1; and its strict transforms by 
the following blowing-ups of the resolution remain isomorphic to P 1. Moreover 
the number of intersection points with other E{,i G Γ, remains the same 
S.M.F. 
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during the (canonical) resolution process. 
In dimension two an exceptional surface Ε is created as the projective plane 

or as some ruled surface. But its strict transform Ε by the next blowing-
up of the resolution can be either isomorphic to Ε or to Ε with some points 
blown-up. And moreover, in the latter case, there are more intersections of 
other i G Τ, with É than with E. 

Our result is essentially the following. Let Ε be a, fixed exceptional variety. 
There are basic relations (Bl and B2) associated to the creation of Ε in the 
resolution process, generalizing the relation (*). And there are additional 
relations (A) associated to each blowing-up of the resolution that "changes" 
E. 

§1. EMBEDDED RESOLUTION. 

Let k be an algebraically closed field of characteristic zero and let / G 
k[xi,..., x n+i] be a polynomial over k. 
Let Y denote the zero set of / in affine (n+l)-space A n + 1 over k and 1 ,̂ £ G / , 
its reduced irreducible components. We exclude the trivial case / G fc, so Y 
is a subscheme of codimension one of A n + 1 . 
We fix an embedded resolution (X, h) for Y in A n + 1 in the sense of Hironaka's 
Main Theorem II [2, p. 142] by means of monoidal transformations or blowing-
ups. It consists of the following data. 

Set X0 = A n + 1 , y(°) = y, and Y}0) = Yt for all* G / . 
For i = 0, . . . , r — 1 we have a finite succession of monoidal transformations 
gi : Xi+i —• Xi with irreducible nonsingular center D{ C X% and exceptional 
variety E\%+^ C Xi+i subject to the following conditions. 
Let E^L\ y ( t + 1 ) and Y^1^ denote the strict transform of respectively 
E (i), Y (i) and y £

( 0 in by 9 i for j = 1,..., i and all iel. Then 

(1) for i = 0,. . . , r - 1 we have A C Y{i\ codim(Di, X{) ^ 2, and the 
multiplicity on Y^ of all χ G D{ equals the maximal multiplicity on 
y(0. 

(2) (J E^ has only normal crossings and only normal crossings with 
1 <<j<<i 
D{ (in X{) for i = 1,..., r — 1; and 

(3) ( U sj r ) )U(U^ ( r ) ) = ^ 0 ... 0 go)-1 (Y)] red has only normal 
1 <<j<<i l E i 

crossings in X r . In particular all , £ G / , are nonsingular. 
Now we set X = Xr and Λ = gr-\ ο · · · ο g0. 

The numerical data of the resolution (X, h) for Y are defined as follows. 
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For all irreducible components Ε of (h^Y)^ (i.e. for all Ej\l < j < r, 
and all Y^), let Ν be the multiplicity of Ε in the divisor of / ο h on X, and 
let ι/ - 1 be the multiplicity of Ε in the divisor of h*(dxi Λ · · · Adxn+i) on X. 
We have JV,i/ G N0; and if y is reduced, then all Y^ have numerical data 
(JV,i/) = (1,1). 

§2. CHANGES ON AN EXCEPTIONAL VARIETY DURING 
THE RESOLUTION PROCESS. 

From now on we fix one j G { 1 , . . . , r} and drop the j-indices, i.e. we set 
E(i) = E(i) for all i = j ^ r and (jv, I / ) = (JVj, !/,·). 

We describe how the exceptional variety Ej and its intersections with other 
exceptional varieties and with the strict transform of Y change by the blowing-
UPS Qi-, 3 ^ i < r- So we fix one such gi : Xi+i —• Xi and set during this 
section g = gi and D = Dz. 

Since £ ^ has normal crossings with D we have the following important 
fact (see e.g. [l,p.605]). 

The restriction g' : E (i+1) --> E (i) of 5 to E (i+1) is 
(!) . 

the blowing-up of E^ with (nonsingular) center D Π £7^. 

Note that D Π i ? ^ can eventually be reducible. The total blow-up of 
E^ with center D Π E^ can then be considered as the result of consecutive 
blowing-ups of E^ with centers the irreducible components of D Π E^%\ 

Let E* denote the exceptional divisor of the blowing-up g' and Ζ the strict 
transform in E (i+1)of any subscheme Ζ of E^ by g'. Then 

(2) E * = J 5 i ; + 1 1 ) n ^ + 1 ) , 

and if codim(D Π Ε^,Ε^) > 2, we have 

ËpTûËW = Ek (i+1) η E (i +1) and 

(n(0n£W)re, = (γ^ η 2̂ +1>)re</. 

The remaining situation codim(Z) (Ί E^\E^) = 1 occurs if and only if 
D C E^ and dim = η — 1. In this case we have that g! is an isomorphism 
making E* correspond to D. 

(3) 
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When D is not contained in respectively (Y^ Π E^)RED and E^ Π A E(i) 
the statement (3) above is still valid by the same argument. 
Now if some irreducible component of (Y^ Π E^)red is equal to J9, then we 
can have in a small enough neighbourhood of E* either 

(4) yfc(i+1) η E^+V = 0 or (yfc(i+1) η E^)RED = E*. 

If some irreducible component of E^ ΠΕ^ is equal to D, then we have in 
a small enough neighbourhood of E* always 

(5) 4 i + 1 ) n £ ( i + 1 > = 0. 

§3. RELATIONS ASSOCIATED TO THE BLOWING-UPS OF AN 
EXCEPTIONAL VARIETY. 

Fix again one blowing-up gi \E{i+i) : jE,(i+1) - * 2?(i) with DiHE^ φ φ and 
codim(Di ΠΕ^, E^) ^ 2, and one irreducible component D of A DE^. We 
will associate a relation between numerical data to the blowing-up g of E^ 
with center A which can be considered as a composition factor of gi \E(<+I) · 

(Here we suppose g to be the first blowing-up in the decomposition of gi |#(»+ΐ) 
into such factors.) 

Let E'k,k £ T, be the reduced irreducible components of intersections of 
with other exceptional varieties E^l\l ^ t < i, or with components 

Υ^ι\ί G of the strict transform Y^ of Y. According to the statements 
(2) - (5) of §4, the repeated strict transform of E'k in E^ by the consecutive 
9i IEC+I) · £ ^ + 1 ) —> E^\i ^ I < r, is equal to some irreducible component of 
the intersection of E^ with another component of (h~lY)red, say with E^ 
orYir)-
— Furthermore E^ is different from the corresponding E^ and/or Y^ if 
and only if the center of some gi \Εν+\) : E (l+1)—• E^e\i ^ ί < r, contains 
the repeated strict transform of E'k in E^ ! — 

Let E'e denote the exceptional variety of the blowing-up g. Also the repeated 
strict transform of E'e in E^ by the other factors of gi\E(%+i) and the con­
secutive gt |£(£+i) : E^i+1^ —• E^\i + 1 ^ I < r, is an irreducible component 
of the intersection of E^ with some other exceptional variety, say with E^j\ 
— Again we have that E^ is different from E\+x if and only if the center of 

E?(0 
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some gi + l ^ ί <r, contains the repeated strict transform of E'e in 
EW ! -

We have the following relation between the numerical data of E^r\ E^ and 
E[r) orYÏ\k€T. 

Set ae = ue — jfNe and (*k = Vk — jfNk for fcET. Then 

RELATION A . 
a e = Σ Vk{oLk - 1) + d, 

keT 

where d = codim(D, E^) ^ 2 and μ ,̂ k GT, is the multiplicity of the generic 
point of D on E'k. 

§4. RELATIONS ASSOCIATED TO THE CREATION OF AN 
EXCEPTIONAL VARIETY. 

Set from now on Ε = E^\ D = Dj^u Π = ^·_ι \E : Ε —• D and 
k — codim(D,Xj-.i). 

Let E^i G Τ j be the irreducible components of intersections of Ε with other 
exceptional varieties or with the strict transform ofY. The strict transform 
of E[ in 2£ ( r ) by the consecutive ge\E(*+*) : —• E^\j < I < r, is 
equal to some irreducible component of the intersection of E^ with another 
irreducible component of (h~lY)red, say with E\v^ orY^r\ having numerical 
data (Ni,V{). As usual ai = v\ - -^Ni for i G Τ, where (Ν, Ρ) are the 
numerical data of E. 

RELATION Bl. We have 

Y^di(ai-l) + k = 0, 
ieT 

where d;, i G Τ, is the degree of the intersection cycle E\ -F on F for a general 
fibre F =* Ρ*"1 ofU:E-^D over a point ofD. 

When Pic Ό is not trivial we have also 
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RELATION B2. Let d{, i G T, be the degree of the intersection cycle E\ · F 
on F for a general fibre F = Fk~x of Π over a point of D. When d{ = 0, let 
El = U*Bi with Bi G PicD. Then we have 

Σ l irte - !)π*(^) + Σ<α·- - w = ^ 
ieT K a i ieT 
di^O di=0 

in PicD, where KB is the canonical divisor on D. 

Remark. Relation B2 should not be seen as an expression in PicD ® Q 
buth just as a more elegant notation for the expression with integer coeffi­
cients, obtained by reducing to the same denominator. 

Example 1. 

When y is a curve (n = 1), only blowing-ups with a point as center occur. 
We have Ε = Ρ 1 and, since all E\ are points on E, d{ = 1 for i G T. So we 
obtain the familiar relation 

5 > , . - l ) + 2 = 0. 
ieT 

Example 2. 

When y is a surface (n = 2), we only need blowing-ups with a point or a 
nonsingular curve as center. If D is a point, then Ε = Ρ 2 and relation Bl is 

di ( S i - 1 ) + 3 = 0, 
ieT 

where <f2-, i G Τ, is the degree of the curve E\ in E. 
If D is a nonsingular curve, then Ε is a projective space bundle over D with 
fibres isomorphic to P 1. Relation Bl is in this case 

5^d i (a i - l) + 2 = 0, 
ieT 

where cf,·, i G Τ, is the number of intersections of the curve E\ with a "general" 
fibre F of Π. 

If moreover D is projective (when Y has no other than isolated singularities 
only such curves occur as center of blowing-ups), then relation B2 becomes a 
numerical relation by taking degrees in PicD. 
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Let g denote the genus of D and /q = degE'?,i £ Γ, the self-intersection 
number of E[ in E. Then we get 

Iet 
Di # 0 

Ki 
2di («,· - 1) + 

<Λ=ο 

(α,· - 1) = 2g - 2. 

(When E[ = Π*5,· we must have deg-B* = 1 since E\ is irreducible.) 
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