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Introduction

Let M be a compact manifold of dimension n. Let F' be a flat vector bundle on
M. Let H*(M,F) = @_, H (M, F) be the cohomology of the sheaf of locally
flat sections of F'.

If E is a finite dimensional vector space, set det E = A™**(E). Following
an established tradition in algebraic geometry, we define the determinant of the
cohomology of F' to be the real line det H*(M, F') given by
(0.1) det H* (M, F) = (X) (det B! (M, F)) ™"

=0

Let g be a metric on the flat vector bundle F. Assume temporarily that g% is
flat, so that F' can be obtained through a representation of 71 (M) into O(dim F’).
If H*(M,F) = {0}, Franz [F], Reidemeister [Re] and de Rham [Rh1] have shown
how to associate to (F, g%') a positive number, the torsion of F'.

Infactlet F'* bethedualof F'. Let K beasmoothtriangulationof M. Thenthe
cohomology of the simplicial complex (C,(K, F*),d) is canonically isomorphic
to H*(M, F). Itis then a standard fact that there is a canonical isomorphism of real
lines
(0.2) det H*(M, F) ~ (det C, (K, F*))"".

Let B be the set of barycenters of the simplexes ¢ € K. For z € B, let
g% be a metric on F,. Then C,(K,F*) is a Z-graded Euclidean vector space.
We define the Reidemeister metric || || (iff{H.( m,p) to be the metric on the line
det H*(M, F) corresponding to the obvious metric on (det Co(K, F*))~! via the
canonical isomorphism (0.2). The metric || || ﬁ:{m( m,Fy dependson K, B, and

7
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onthe gf=’s (z € B). If H*(M,F) = {0}, then det H*(M,F) ~ R, and
the metric || || fetKH.( v,y on the trivial line det H*(M, F") is now defined by a
positive number, which is the norm of the canonical section 1 € R. This number is

called the torsion of the complex (C.(K, F*),0).

Let g be a flat metric on F, and assume that the g=(z € B) are obtained
by restricting g¥ to B. Then if H*(M,F) = {0}, it is a basic result of Franz,
Reidemeister and de Rham that the torsion does not depend on B oron K. Itisa
topological invariant of the flat Euclidean vector bundle F'. More generally, even if

H*(M, F) is not reduced to 0, one can show that the metrics || ”fsetKH'(M ) do

not depend on B oron K. The metric || ||ﬁ£1.(M ) on det H*(M, F) is then

a topological invariant of F, which we denote by || || %, yre(s.r)-

Suppose that the metric || ||get 7 induced by g on the line det F' is flat.
Assume that the metrics g¥=(z € B) are still obtained by restricting g% to F (z €
B). Then in [Mii2], Miiller has shown that the Reidemeister metric || ||&¥ det H(M,F)

is also a topological invariant, which we still denote || ||%, Ho (M. F)-

Letnow g7 and gF be smooth metrics on TM and F. Let (F,d) be the
de Rham complex of smooth sections of A(T*M)® F over M. Then the de Rham
theorem asserts that

(0.3) H* (F,d¥) ~ H*(M, F).

By Hodge theory, the harmonic forms in (F,d¥) with respect to the metrics

g™ and gF represent canonically the cohomology of (F,dF).

In [RS1], Ray and Singer constructed the logarithm of the analytic torsion of
(F,dF), as a combination of derivatives at 0 of the zeta functions of the Laplacian
actingonformsin F of various degrees. By following a well-known recipe indicated
by Quillen [Q2] for Dolbeault complexes, to g7 and g, we can associate a
metric on the line det H*(M, F'), which is the product of the standard L, metric
on det H*(M, F') (obtained by identifying H*(M, F') with the harmonic elements
of (F,dF)), by the Ray-Singer analytic torsion of [RS1]. This metric is called the
Ray-Singer metric on det H*(M, F), and is denoted || ||&7 yo(5s 7). Ray and
Singer showed that if dim M is odd, then || |27 yo(ps ) does not depend on

g™ and g¢F, i.e. itis a topological invariant of F.



INTRODUCTION

Assume that g% is a flat metric on F. Then the real line det H*(M, F') canbe
equipped with two natural invariant metrics, the Reidemeister metric || |2, gro (a1, r)»
and the Ray-Singer metric || [|{£} yo(y - Ray and Singer [RS1] made the con-
jecture that in this case,

R RS
(0.4) I Naet rerr,ry = I et mocar,py -

They based this conjecture on previous computations by Ray [R] of the torsion of
lens spaces. In celebrated independent papers, Cheeger [C] and Miiller [Mii] proved
that this is indeed the case. The proofs of Cheeger and Miiller are very interesting in
themselves and are based on entirely different principles.

In [C], Cheeger proves that under surgery, the Ray-Singer metric behaves in the
same way as the Reidemeister metric. Then he shows how to pass from M x S8 to
M x S® x S3 by a sequence of surgeries. Using trivial identities for Reidemeister
and Ray-Singer metrics on product spaces, Cheeger [C] finally obtains (0.4).

In [Miil], by using the invariance of the Reidemeister metrics under subdivision
of a triangulation and combinatorial parametrices, Miiller shows first that the ratio of
the Ray-Singer metric to the Reidemeister metric does not depend on the orthogonally
flat bundle F'. Then Miiller [Miil] uses surgery to reduce the proof of (0.4) to the
case of the trivial bundle on the sphere, for which the result was already known.

Assume now that M is odd dimensional, and that only the metric || - ||get F in-
ducedby g” on det F isflat. Thenthemetrics || ||, go(prry @4 || 1155 go(ar.r)
are still topological invariants. By using the methods of Cheeger [C], Miiller [Mii2]
has shown that equality (0.4) still holds.

The purpose of this paper is to extend the results of Cheeger [C] and Miiller
[Miil,2] to the general case, where the metric || |[qe¢ 7 On det F' is not necessarily
flat.

As an important intermediary step, we prove first anomaly formulas for the
Ray-Singer metrics || [|27 o 4y py-  In fact, let (97™,¢") and (g™ ¢'F)
be two couples Euclidean metrics on (TM,F). Let || |ldeer and || |4t r
be the associated metrics on the line bundle det F. Let VTM and V'TM be
the corresponding Levi-Civita connections on TM, and let e(TM,VTM) and
e(TM, V' TMY be the associated representatives of the Euler class of TM in Chern-
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Weil theory. Let &(TM,VTM v'TM) be the class of Chemn-Simons n — 1 forms
on T M such that

(0.5) dz(TM, vTM, v'TM) —e (TM,V'TM) — e (TM,VTM).

Let 6(F,g'F') be the closed 1-form, defined in Definition 4.5, which measures
the variation of the metric || ||}, on det F' with respect to the obvious flat
connection on det F'. The cohomology class of 6(F, gF ) does not depend on gF,
and O(F, g'F) vanishes if and only if the metric || ||, s is flat.

Let || IIifH.(M,F) and || Il:iI:fH'(M,F) be the Ray-Singer metrics on
det H*(M, F) associated to the metrics (7™, g%) and (¢'TM,g'F).

A first result which is proved in this paper is as follows.

Theorem 0.1. The following identity holds,

2

1 e ) LI
(06) Log | —pe——] = / Log( det F ) e (TM,VTM)
M

I ”detH'(M,F) I Naes
—/Ma(F,g’F)'é(TM,vTM,V’TM).

Of course if dim M is odd, the right-hand side of (0.6) is zero.

Let f : M — R be a Morse function. Let X be the gradient vector field of f
with respect to a given metric on M. Let B be the finite set of zeroes of X. If
z € B, let W*(z) and W*(z) be the stable and unstable cells of —X at z. We
assume that X verifies the Smale transversality conditions [Sm1, 2]. The Thom-
Smale complex (C,(W*, F*),0) is a finite dimensional complex whose homology
is canonically isomorphic to H,(M, F*). As in (0.2), we still have

(0.7) det H*(M, F) ~ (det C, (W*, F*))™".

Let g¥ be a smoothmetric on F. Asabove, the metrics g%=(z € B) determine
a metric on det H*(M, F') via the canonical isomorphism (0.7) which we call the

Milnor metric, and which we denote by || ||3"2;)§].( M,F)-

By Milnor [Mil, Theorem 9.3], if g% is a flat metric on F, and if the metrics
g™=(z € B) are the restriction of g¥ to F,(z € B), then the Milnor metric
I Im,;};,.( w,Fy coincides with the Reidemeister metric associated to g*".

10



INTRODUCTION

Letnow g7™ and ¢g¥ be smoothmetricson TM and F. Let X be a gradient
vector field verifying the Smale transversality conditions. Let B the set of zeroes of
X. Themetric g induces metrics g~ onthe F,.’s (z € B). Let || |07, He(M.F)

be the corresponding Milnor metric on det H*(M, F). Let || ||&3 He(M,F) be the
Ray-Singer metric attached to the metrics g7™,¢F on TM, F.
Let %(TM,VTM) be the n — 1 currenton T'M which is constructed in [MQ]

and in [BGS4, Section 3], whose restriction to TM\{0} is induced by a smooth
form on the sphere bundle which transgresses the form e(TM, VTM),

The main purpose of this paper is to prove the following extension of the Cheeger-
Miiller theorem.

Theorem 0.2. The following identity holds,

2
(0.8) Lo <L"L‘—’iﬂ‘fﬂ> =-/ 0 (F,g%) X*o (TM,VTM).
M

[ ey v

The arch-typical application of Theorem 0.2 is the case where M = S; ~ R/Z
and where F' is the trivial vector bundle R, such that for a given o € R*, the flat
parallel transport operator 7 on F' from 0 to t € [0,1] is given by e'®. In this
case H*(M,F) = {0} and so det H*(M, F) has a canonical section 1.

A simple calculation shows that
RS z AT
(0.9) Log (I[]l”det H.(M’F)) = —Log |2smh (—2—>| .

Let g% be the constant metricon F' ~ R. Let f : M — R be a Morse function,
having only two critical points, a maximum at 0, and a minimum at 3 €]0,1[. Let
IR et H. (m,r) denote the corresponding Milnor metric on det H*(M, F). Then
one verifies easily that

(0.10) Log (||11||§'§;Z,{( M,F))2 = —Log |2sinh (%) [2 +a(28-1).

On the other hand, (V£)*y(TM,VTM) is a section of o(TM). In fact on
M\{0, 8}, —2¢(TM,VTM) defines the orientation given by Vf. Moreover

1
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6(F, gF) = 2adt. So we find that
(0.11)

il 1
- [ 0Rg") (916 (2, 9™) = - [“adi+ [ adi= a2 - 1)
M 0 g

So (0.9)-(0.11) fit with (0.8).

Although Theorem 0.1 can be obtained as a consequence of Theorem 0.2, estab-
lishing first Theorem 0.1 is essential in our proof of Theorem 0.2.

Let

(0.12) (F*v):0 > F - F!' - ... 5 F™ - 0.

v

be a flat exact sequence of flat vector bundles on M. Let o be the canonical
nonzero section of the flat line bundle det F'* = @7 (det F7)(=1)’ defined in
[KMu], [BGS1].

By [KMu], to the exact sequence (0.12), one can associate a canqnical Nnonzero
section 7 of the line det H*(M, F*) = ®;‘n=o(det H*(M, Fj))(-l)’.

Let g¥°,..., g™ be Euclidean metricson F°, ..., F™. Let | |ldet 7o be the
corresponding metric on det F'*. Let gTM be an Euclidean metric on TM. Let
I & e poys = I 114t sreas, oy denote the associated Ray-Singer metrics
on det H*(M,F®), -, det H*(M, F™), and let || ||ES ;1o 4y pey be the corre-
sponding metric on the line det H*(M, F**).

As an easy consequence of Theorem 0.2, we also obtain the following result.
Theorem 0.3. The following identity holds,

013)  Log (I o)) = /M Log ([|o]l2., po )e(TM, VTM).

Now, we will briefly describe the general strategy of our proofs of Theorems 0.1
and 0.2, and also the techniques which we use in this paper.

12



INTRODUCTION

1. Ray-Singer metrics and Quillen metrics

In [BL1, 2], Bismut and Lebeau have considered a problem which is formally related
to the problem which we solve here. In factlet 7 : Y — X be an embedding of
complex manifolds. Let 1 be a holomorphic vector bundle which resolves the sheaf
.0y (n). Let A(£) and A\(n) be the inverses of the determinants of the Dolbeault
cohomology of 7 and £&. Then by [KMul], the lines A(¢) and A(n) are canonically
isomorphic. If metrics are introduced on TX,TY,&, 7, let || |[xe) and || |[a)
be the corresponding Quillen metrics on the lines A\(¢) and A(n) [Q2], [BGS3]. In

[BL1,2], an explicit formula was obtained for Log(H:J(%)z in terms of integrals
of certain locally computable currents. One of the ideas of the proof of the main
result of [BL2] is to deform the Hodge theory of (X,¢) to the Hodge theory of
(Y, n) by scaling the considered metrics on £.

Here, at a formal level, X is replaced by M, Y by B, and the current
appearing in (0.7) replaces the currents of [BL2]. This essential analogy will be
further explained.

For a detailed review of various results concerning Quillen metrics and complex
immersions, we refer to the survey [B3].

2. A fundamental closed form

Let g7M gF be smooth metricson TM, F. Let f : M — R be a smooth function.
For T > 0, let g& be the metric on F, gk = e~2Tfg¥. Let dE* be the adjoint
of the de Rham operator d¥ with respect to the L, scalar product associated to the
metrics g”M, gf. Set Dr = d¥ +dE*. Let N be the number operator defining
the Z-grading of F.

Let a;r bethe 1-formon R} x Ry,

dt
(0.14) T =g Trs [N exp (—tD%)] — dT Trs [f exp (—tD7)]
In (0.14), Tr, is our notation for supertrace. Then we prove in Theorem 5.6 that
the form a, 1 is closed. If T is a closed rectangle in R% x Ry, we obtain in

Theorem 5.8 the basic identity

(0.15) /Fa =0 .

13
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Theorem 0.2 will be ultimately obtained by taking f to be a Morse function
such that the gradient field V f associated to the metric g7™ verifies the Smale
transversality conditions, and by deforming the contour I' to the boundary of
R} x R4. In this process, the contribution of each side of the rectangle diverges.
Once divergences are substracted off, we will obtain an identity which is equivalent
to Theorem 0.2.

3. The Witten complex and the Helffer-Sjostrand calculus

Observe that
(0.16) Dr =T/ (e7T1dFeTs 4 eTIgF*e=TF) =TS,

When F = R, the operator e~T/dFeT/ is exactly the twisted de Rham operator
introduced by Witten [W], in his proof of the Morse inequalities.

Set Dy = e=TfDEeT!. Let FI'! be the direct sum of the eigenspaces of the
operator D%, corresponding to eigenvalues A € [0,1]. Then (Fi'l e=T/dFeT/)
is a complex, whose cohomology is canonically isomorphic to H*(M, F'). In [W],
Witten suggested thatas 7' — +o0, this complex is “asymptotic” to the Thom-Smale
complex associated to the vector field —V f.

In [HSj4], when FF = R and when Vf verifies the Smale transversality
conditions, Helffer and Sjostrand established the precise asymptotics as T —
+oo of the complex (FI2'") e=TfdFeTf), in order to give an analytic proof
of the fact that the Betti numbers of the Thom-Smale complex are the same as
the Betti numbers of the de Rham complex. To calculate the asymptotics of the
complex (F0! e=T/dFeTf), Helffer and Sjbstrand used their fundamental results
[HSj1,2,3] on the semi-classical analysis of Schrodinger operators with multiple
wells, to calculate the tunelling effects between these potential wells. An essential
consequence of [HSj1,2,3] is in fact that the eigenvectors of such Schrodinger
operators associated to small eigenvalues are approximated by the W K B solutions
of certain transport equations on adequate regions of M. When F' = R, Helffer
and Sjostrand [HSj4] used in fact the results of [HSj1,2,3] to approximate the
eigenvectors of the operator 5% associated to eigenvalues A € [0, 1], by solutions
of WK B transport equations, which are themselves closely related to the Thom-
Smale complex of —V f.

14
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Let ]F[TO’I] be the direct sum of the eigenvectors of D% corresponding to
eigenvalues A € [0,1]. Then (]F[;’ll,dF ) is a complex, whose cohomology is
canonically isomorphic to H*(M,F). Now lF[;f’l] is naturally equipped with
the Ly metric associated to the metrics g™, gf. Let || ||5e grear,r) r be the
corresponding metric on det H*(M, F). In our proof of Theorem 0.2, a crucial
role is played by Theorem 7.6, where we calculate the asymptotics of the metric
| l3et #re(as,ry,r @ T — +oo in terms of the Milnor metric on det H*(M, F).
Roughly speaking, to calculate this asymptotics, we need informations on :

— the eigenspaces of D? associated to eigenvalues A €]0, 1].

— the kemnel of D2, i.e. the harmonic forms in F associated to the metrics

g™ and ¢7.

When F = R, what is needed concerning the nonzero eigenspaces of D2
is essentially contained in the asymptotic description by Helffer-Sjostrand [HSj4,
Proposition 3.3] of the complex (Fio'l e=TfdFeTf). Here instead F is a vector
bundle, and moreover the metric g is in general not flat, so that the operator 5?_}
contains extra terms with respect to the corresponding operator considered in [HSj4].
Still, the results of [HSj1,2,3] and the techniques of [HSj4] can be adequately adapted
to treat the more complicate problem which is considered here. Nevertheless, we
have been forced to devote the whole Section 8 to summarize some of the essential
results of Helffer-Sjostrand [HSj1, 2,3], and to adapt the techniques of [HSj4] to
our problem. Unsurprisingly, one important result of Section 8 is contained in
Theorem 8.30, where we show that still in this case, as T' — +oo, the complex
(FI%! ¢=Tf4FeT1) can be asymptotically described in terms of the Thom-Smale
complex (Co(W*,F*),d).

Let us finally point out that if the metric g% is flat, the results of [HSj4] can be
directly adapted, since in this case, the operator 1~)2T is essentially the one considered
in [HSj4].

The potential which appears in the Schrodinger analysis of [HSj4] is exactly
|df|>. As shown by Witten [W], this explains the localization of the eigenvectors
of D2 as T — +oo near the potential wells for |df|2, i.e. on the critical points
of f. In [BL2], the submanifold Y described before is exactly the locus where
a nonnegative operator V2 has a nonzero kernel. This explains partly the analogy
between [BL2] and our work, where Y is in fact replaced by B. Nevertheless, there
is a fundamental difference : in [BL2], because of algebraic geometry considerations,
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there exists ¢ > 0 such that for T large enough, the analogue of 1~)2T has no
eigenvalue in [0, 1] other than 0. To the contrary, the small eigenvalues play here
an essential role. In fact in [BL2], the Morse inequalities are in fact equalities, and
this explains why no ‘instanton’ analysis is needed, the difficulty being concentrated
in the geometry of Y. Here B is simply a collection of points, and the analytic
difficulties come in fact from the tunelling effects.

4. The de Rham map, and its extension by Laudenbach to
Thom-Smale complexes

Our main result, in Theorem 0.2, compares two different metrics on the line
det H*(M, F'). This implies in particular that the cohomology groups of the de
Rham complex (F,d”) and of the Thom-Smale complex (C,(W",F*),8) have
been canonically identified, and besides that this canonical identification appears
explicitly in the analytic process of deformation of the de Rham complex to the
Thom-Smale complex.

If K is a smooth triangulation of M, the de Rham map, which one obtains
by integrating smooth forms on the simplexes ¢ € K provides the canonical
identification of the cohomology groups of (F,d¥) with the cohomology groups of
(Co(K, F™),0).

For general Thom-Smale complexes, it is more difficult to identify explicitly the
de Rham cohomology with the cohomology of the Thom-Smale complex. In the
Appendix, for gradient vector fields X which have a standard form near their zero
set B, Laudenbach provides us with a complete answer to this question. In this
case, the closure of the stable and unstable cells of the gradient vector field are in
fact manifolds with conical singularities, on which smooth forms can be integrated,
and the obvious analogue of the de Rham theorem still holds.

Asexplained before, the canonical identification of the de Rham cohomology with
the Thom-Smale cohomology should appear explicitly in the analytic deformations
process itself. This is shown to be the case in Section 9, as a consequence of our
extension of the results of Helffer-Sjostrand [HSj4] established in Section 8.

Let us point out that in [BL2, Section 10], the quasi-isomorphism of certain
Dolbeault complexeson X and Y appears also explicitly in the analytic deformation
process.
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S. Local index theory and Berezin integrals

As in [BL2], local index theory techniques play an important role in the paper. In
fact the term

-/ 0 (F,g") Xy (TM, VM)
M

in the right-hand side of (0.8) appears through local index theory techniques. Let us
here just point out that in the case where the metric gF is flat, it is easy to see that the
local index contribution is identically zero, essentially because of Poincaré duality. In
general,we need more sophisticate local index techniques. In principle, the Clifford
rescaling techniques of Getzler [G] could be used in the whole paper. However, it is
much more convenient to use a different local index theoretic technique, associated
to the Berezin integral formalism. As explained in [BL2], standard index theoretic
techniques produce in principle local Quillen’s superconnection forms [Q1]. Here
we obtain instead Berezin integrals. While, by Mathai-Quillen [MQ], we know
that the forms produced by the superconnection formalism or the Berezin integral
formalism are equivalent, it is here much more convenient to manipulate Berezin
integrals, if only because they exhibit natural symmetry properties which are difficult
to see in the superconnection formalism. Section 3 is entirely devoted to develop
the Berezin integral formalism in the context of Morse theory, and also to establish a
mysterious identity of differential forms, which is in fact also a consequence of the
proof of Theorem 0.2.

Another difficulty in the application of local index techniques is that the usual
‘fantastic cancellations’ conjectured by McKean-Singer [McKS] do not occur here.
Part of the difficulty is often to calculate the second term in an asymptotic expansion
of the supertrace of heat kernel. This difficulty ressembles superficially a similar
difficulty already considered in Bismut-Gillet-Soulé [BGS2] and also in [BL2].
Again, the Berezin integral formalism is very useful to make the required calculations,
which are very different from the ones in [BGS2] or [BL2].
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6. The asymptotics of two parameters supertraces

Set D =d+d*,c(Vf) = df A +ivy. Inthe course of the proof, it is essential to
calculate the asymptotics as ¢ — 0 of Trs[f exp(—(tD +Te(Vf))?)] for T < 1,
for T ~ %, and for T > % In a different context, this problem was already
encountered in [BL2]. In fact for T < % this term explains the appearancc of
— [y O(F, gF)X*(TM,VTM), in the right-hand side of (0.8). For T ~ 1, the
harmonic oscillators near the critical points of f are ultimately responsible for a
modest term Log(7), whose role is ultimately to cancel another Log(m) coming
from the asymptotics of the complex (]F[ﬁ’” ,dF). We hope to show in a forthcoming
paper that, as in [BL2], harmonic oscillators may express themselves in a more

forceful way.

As in [BL2], the difficulty is to establish estimates which take into account the
painful transition from the region T’ < to the region T’ > . Although here, the
geometry of B is trivial (while in [BL2], the geometry of the embedding 1Y - X
played an essential role), the fact that one needs to go beyond the first term in the
asymptotics introduces new difficulties with respect to [BL2].

7. Some simplifying assumptions on the metrics

As we already explained, we prove first the anomaly formulas of Theorem 0.1,
by using the local index techniques and the Berezin integral formalism, which we
described before. This allows us to reduce the proof of Theorem 0.2 to the case
of one single couple of metrics (g7, gF'), which we choose to be as simple as
possible near the critical points of f. Incidently, note that using the techniques of
this paper, a direct proof of Theorem 0.2 with arbitrary metrics would break down.

8. From Milnor metrics to Milnor metrics : Cerf’s theory and
Laudenbach’s description of a one parameter deformation of the
Thom-Smale complex

By Theorem 0.2, we deduce a formula which compares the Milnor metrics associated
to two gradient vector fields.
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It is natural to expect that a formula comparing two Milnor metrics could be
established directly, without comparing first these metrics to the Ray-Singer metric.
Now, given two Morse functions f and g, Cerf’s theory [Ce] allows us to connect
f and g by a one parameter smooth path of smooth functions, which are Morse
except at a finite number of values of the parameter, corresponding to the birth or the
death of critical points. In the Appendix, over such a path, Laudenbach constructs
a smooth path of gradient fields, which verify the Smale transversality conditions
[Sm1], except at a finite number of values of the parameter, where he describes
explicitly the bifurcation of the Thom-Smale complex. In Section 16, this allows
us to give a direct proof of the formula comparing two Milnor metrics, which does
not use Theorem 0.2. Thus, if the reader is willing to take for granted the results of
the Appendix and of Section 16, we only need to prove Theorem 0.2 for one single
gradient vector field X.

This paper is organized as follows. In Section 1, we construct the Reidemeister
and Milnor metrics and in Section 2, the Ray-Singer metrics.

In Section 3, we describe the Berezin integral formalism in connection with
Morse theory, which we apply in Section 4 to the proof of the anomaly formulas of
Theorem 0.1 for Ray-Singer metrics.

In Section 5, we construct the closed form a;, 7.

In Section 6, we give various properties of the integral
- / 8 (F,gF) X*y (TM,VT™) .
M

In Section 7, we state nine intermediary results whose proofs are delayed to
Sections 8-15, and we prove Theorem 0.2.

In Section 8, we describe the results of Helffer-Sjostrand [HSj1—4], and we extend
their results on the asymptotics as T' — +oco of the complex (F'l, e=T/dFeTf),

In Section 9, we calculate the asymptotics of the metric || ||3.; go(ar )7 2
T — +o0.

Sections 10-15 are devoted to the proofs of the remaining intermediary results
stated in Section 7, which concern in particular the two parameter supertraces
described before.

Finally, in Section 16, we compare two Milnor metrics directly, by using results
of Laudenbach proved in the Appendix.
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We now say a few words concerning our notation. If A is a Z,-graded algebra,
if A,B € A, we define the supercommutator [A, B] by the formula

(0.17) [A,B] = AB — (—1)d8AdeeBp 4,

It is now time to describe our debts. We first owe a special mention to Tangerman
[Ta] who announced some five years ago that he was trying to give a new proof
of the Cheeger and Miiller theorem using Helffer and Sjostrand’s results [HSj4]
on the Witten complex. As far as we know, his program has not been terminated.
Apparently, Tangerman’s idea was to use a combination of Helffer-Sjostrand results
and of surgery techniques, which should make his program very different from ours.

We have had many discussions with F. Laudenbach, whose contribution to the
success of our program has been essential.

We owe our hearty thanks to J. Sjostrand. He helped us to orient ourselves in his
papers with Helffer, and patiently answered our many questions.

Also we are very much indebted to J. Cheeger for many discussions, for the
encouragement he gave us in our study of nonorthogonally flat metrics, and also for
his friendly questioning of our final formula.

The results contained in this paper were announced in Bismut-Zhang [BZ].
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I. Reidemeister metrics and Milnor metrics

In this Section, we construct the Reidemeister metrics and the Milnor metrics on
the determinant of the cohomology of a flat vector bundle.

This Section is organized as follows. In a), we recall some elementary properties
of the determinant of a finite dimensional complex, and of the corresponding metrics.

In b), we construct the Reidemeister metrics on the determinant of the cohomol-
ogy of a flat vector bundle associated to a smooth triangulation.

In c¢), we describe the Thom-Smale complex associated to the gradient vector
field of a Morse function.

Finally in d), we construct the Milnor metrics on the determinant of the coho-
mology of a flat vector bundle, associated to a gradient vector field.

a) A metric on the determinant of the cohomology of a finite
dimensional chain complex

If )\ is areal line, let A~! be the dual line. If F is a finite dimensional real vector
space, set

(1.1) det E = A™*(E).
Let
(1.2) (V',0):0—>V°;>---;»V"—>O

be a chain complex of finite dimensional real vector spaces, so that V* = @;_, V*.
Let H*(V) = @}_, H(V) be the cohomology of (V*,d).
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Set

(1.3) det V* = é (det Vi)',
1=0
det H*(V) = é (det (V) V"

i=0
Then by [KMu], [BGS1, Section 1a)], there is a canonical isomorphism of real lines
(1.4) detV*® ~det H*(V).

Let || |lgetvo, -+, || |ldet v» be metrics on the lines det VO, ... det V™. We
equip the dual lines (det V°)~!,... (det V*)~! with the dual metrics

I Negesvoy=rs=sll Hliaes vmy-1-
Let || ||qet ve be the metric on the line det(V'*),
n
(1.5) I et ve = QN lgep yeyns-
i=0

Let || |laet me(v) be the metric on the line det H*(V') corresponding to the metric
|| |ldet ve via the canonical isomorphism (1.4).

Let ¢¥°,---,g"" be Euclidean metrics on V°,---, V™, inducing the metrics
Il llaes vo,..., || llaetv= on detV® ... det V™. Weequip V = @}, V"’ withthe

metric gV = @7, g"", which s the orthogonal sum of the metrics g**,---,g"".

Let 0* be the adjoint of & with respect to the metric g¥'. Using finite
dimensional Hodge theory, we have the canonical identifications
(1.6) HWV)~{veVidw=0,0v=0}, 0<i<n.

As a vector subspace of V', the vector space in th¢ right-hand side of (1.6) inherits
an Euclidean metric from the metric g¥". Let g#'(V) be the corresponding metric
on H'(V) via the identification (1.6). Then the line det H*(V') inherits a metric

I Idet He(V)-

The metrics || |lget sre(v) and | |qet mo(vy do not coincide in general. We
describe the discrepancy. Set
(1.7) D=90+0".

The Laplacian D? = 90* +8*9 preserves the splitting V* = @}_, V*. Let P be
the orthogonal projection operator from V on Ker D? ~ H*(V). Set Pt =1-P.
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Let N € End(V) be the number operator of the complex (V*,d), i.e. N acts on
Vi(0 < i < n) by multiplication by 1.

Set
(1.8) vt=@Pviv =V
ieven todd

Then V = V* @ V~ is a Z,-graded vector space. Let 7 = £1 on VE I
A € End(V*), we define the supertrace Tr,[A] by the formula

(1.9) Tr,[A] = Tr[rA].
For s € C, set
(1.10) 6Y(s) = = Tr, [N (D?) " P*].

Let D?>% be the restriction of the operator D? to the orthogonal space to
Ker D? in V*. Then

(1.11) 6V’ (0) = Tr, [N Log (D*>°)] .

The following result is proved in [BGS1, Proposition 1.5].

Theorem 1.1. The following identity holds,

1 ’
(1.12) | llaet oqvy =1 ldet Ho(v) exp {59‘/ (0)}-

Remark 1.2. It should be pointed out that the metric || ||qet #e(v) only depends
on the metrics || |lget vo,--,|| |ldet vn, while the metric | |ge¢ mo(v) and also

6"’ (0) depend in general on the metrics g¥*°,---,g"".
b) The Reidemeister metric on the determinant of the cohomology
of a simplicial complex

Let M be a compact manifold of dimension n. Let F' be a real flat vector bundle
on M, andlet F* be its dual.
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Let F be the locally constant sheaf of flat sections of F. For 0 < ¢ < n, let
Hi(M,F) be the i-th cohomology group of F. Set

(1.13) H*(M,F) = éH*(M,F).

=0

Definition 1.3. Let det H*(M, F') be the real line

(1.14) det H*(M, F) = é (det Hi(M, F)) ™"
=0

Let H,(M,F*) = @;_, Hi(M, F*) denote the singular homology of sections
of the flat vector bundle F™*. Then

(1.15) H'(M,F) = (H;(M,F*))* 0<i<n.

Let K be a smooth triangulation of M. Then K consists of a finite set of
simplexes ¢ whose orientation is fixed once and for all. Let B be the finite subset
of M of the barycenters of the simplexesin K. Let b: K — B and 0 : B — K
denote the obvious one-to-one maps.

For 0 < i < n, let K* be the union of the simplexes in K of dimension < i.
For 0 < i < n, K*\K‘"! is the union of simplexes of dimension :.

If 0 € K, let [o] be the real line generated by o. Let (Co(K, F*),0) be the
complex of simplicial chains in K with valuesin F*. For 0 < ¢ < n, we have the
identity

(1.16) Ci(K,F)= D llerFy,).
o.eKl'\Ki—l

The chain map d maps C;(K, F*) into C;_;(K, F*). Also the homology of the
complex (C,(K, F*),0) can be canonically identified with the singular homology
H,(M,F*).

If 0 € K, let [0]* be the line dual to the line [0]. Let (C*(K, F),8) be the
complex dual to the complex (C,(K, F*),0). In particular, for 0 < ¢ < n, we
have the identity

(1.17) CHK,F)= @ I[o]" @& Fyo)-
o.eKi\Ki—l

24



REIDEMEISTER METRICS AND MILNOR METRICS

The cohomology of the complex (C*(K,F), ) can be canonically identified to
the dual (H,(M, F*))* of H,(M,F*). In view of (1.15), the cohomology of
(C*(K,F),d) canbe identified with H*(M, F).

The complex (C*(K, F),8) can be described more explicitly. In fact, let K*
be a smooth cell polyhedral decomposition of M which is dual to the triangulation
K. Then B is also the set of barycenters of the polyhedra in K*. Again, we fix

once and for all the orientation of the polyhedra of K™*.

Let o(T' M) be the orientation bundle of TM. Thenif 0 € K andif o* € K*
is the dual polyhedron, there is a canonical identification of lines

(1.18) [0]" 2 [07] ® o(TM)p(c)-

From (1.18), we deduce the canonical identification of complexes

(1.19) (C° (K, F) ,5) & (Cnes (K*,F @ o(TM)),8(~1)"+1) .
Using (1.19), we obtain the Poincaré duality isomorphism

(1.20) (H*(M,F))" = H**(M,F* ® o(TM)).

Set

(1.21) detC, (K, F*) = é) (det C; (K, F*)) D"

=0
det C* (K, F) = () (det € (K, F)) ™"
=0

Then
(1.22) (det C* (K, F)) = (det C, (K, F*))™".

Using (1.4), we get a canonical isomorphism of real lines

(1.23) det C*(K, F) ~ det H*(M, F).

For every z € B, we equip the line det F,, with a metric det F,. For every
o € K, we equip the line [0] with the trivial metric || ||;) suchthat ||o|[j,) = 1.
Forevery z € B, theline det([o(x)]* ® F) inherits a metric || |ldet((o(z)]*®Fs)-
For 0 < i < n, we equip the line det C*(K, F) with the metric || ||qet ci(k,F)
which is the tensor product of the metrics || |laet((o]*® Fyoy) (0 € K \K'™1).
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Let || |laet co(k,F) be the metric on the line det C*(K, F') associated to the
metrics ” ”det Ci(K,F) a8 in (15)

Definition 1.4. The Reidemeister metric || |35,y ) ontheline det H*(M, F)

is the metric corresponding to the metric || ||qet co(k,F) Via the canonical isomor-
phism (1.23).

We equip the line o(T'M) with its canonical trivial metric. For z € B, let

I lldet(F*@o(TM)), be the metric on the line det(F™* ® o(T'M)), associated to the
metric || ||det 7, on det F,. Let || ||f;f{1;,(M,F,®O(TM)) be the Reidemeister
metric on the line det H*(M, F* ® o(TM)) asssociated to the cell decomposition

K™ and to the metrics ” "det(F‘®o(TM)),,$ € B.

By (1.20), we obtain the canonical isomorphism
(1.24) det H* (M, F* @ o(TM)) ~ (det H*(M, F))(™""" |

The identification (1.24) also identifies the Reidemeister metrics || ||(ﬁ’£;.( M,F*®0(TM))
and (|| || 4o e ar,my) D" This is a result of Milnor [Mi2].

Remark 1.5. Assume that F' can be equipped with a flat metric g¥. This
metric induces metrics || ||get 7, On the lines det F(z € B). The associated
Reidemeister metric || ||%F,, (m,F) Was constructed by Franz [F], Reidemeister
[Re], and de Rham [Rh1] (see [Mil, Section 8]). They showed that the Reidemeister
metric || ||3uie(a,py iS invariant by simplicial subdivision. We thus obtain a
metric || ||%, ;. (m,F) Oontheline det H*(M, F) which is a topological invariant.
Recently, Miiller [Mii2] extended this result to the case where the line det F' posseses
a flat metric || ||get r, and where the lines det F,(z € B) are equipped with the
corresponding metrics || ||get F, -

¢) The Thom-Smale complex of the gradient field of a Morse
function

Let M be a compact manifold. Let f : M — R be a Morse function. Let B be
the set of critical points of f, i.e.

(1.25) B = {z € M;df(z) = 0}.
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If z € B, recall that the index ind(z) is the number of negative eigenvalues of the
quadratic form d2 f(z) on T, M.

Let g”M beametricon TM, andlet Vf € TM be the corresponding gradient
vector field of f. Consider the differential equation

(1.26) )

Equation (1.26) defines a group of diffeomorphism (¢;):er of M.
If x € B, set

wi(e) = {y e i lim i) =},
(1.27)
We(z) = {y €M; lim 4u(y) = 9«‘} :

The cells W*(z) and W*(z) will be called the unstable and stable cells at z.

We assume that the vector field Vf verifies the Smale transversality conditions
[Sm1,2]. Namely, we suppose that if z,y € B, z # y, W¥(z) and W*(y)
intersect transversally. In particular if ind(y) = ind(z) — 1, W*(z) N W*(y)
consists of a finite set I'(z,y) of integral curves y of the vector field —V f, with
Y—oo = T, V400 = Y, along which W*(z) and W*(y) intersect transversally.

By [Sm1, Theorem A}, given a Morse function f, there exists a metric g7 on
TM suchthat V f verifies the transversality conditions.

We fix an orientation on each W*(z),z € B.

Let z,y € B with ind(y) = ind(z) — 1. Take v € I'(z,y). Then T,W*(y)
is orthogonal to T,,W*(y) and is oriented. So for ¢ €] — 0o, +0o0], the orthogonal
space T;-W*(y) to T,,W*(y) in T,,M carries a natural orientation. Also for
t €] — oo, +00f, the orthogonal space T, W*(z) to —V f(7;) in T,,W*(z) can
be oriented in such a way that s is an oriented base of T W*(z) if (—V f(v:),s)
is an oriented base of 7., W*(z). Finally since W*(z) and W*(y) are transversal
along v, for t €] — oo, +oo[, T;W*(y) and T) W"(z) can be identified, and
their orientations can be compared. Set

ny(z,y) =41 if the orientations are the same,
(1.28)
= —1 if the orientations differ.
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If z € B, let [W*(z)] be the real line generated by W*(z). Let F' be a flat
vector bundle on M, and let F'* be its dual. Set

Co (W, F*) = P [W*(2)] @ F;,
z€B

C:(W*F)= @ [W"a)®sF:.

*€EB
ind(z)=1

(1.29)

If + € B, the flat vector bundle F* is canonically trivialized on W*(z). In
particular, if z,y € B are such that ind(y) = ind(z) — 1, and if v € I'(z,y),
f* € F}, let 7,(f*) € F; be the parallel transport of f € F} into F; along v
with respect to the flat connection of F™.

If x € B, f* € F}, set

(1.30) a(W*(@)@f)= > Y (@ y)W(y) @ 1 (f7).

€B
ind(y)iind(z)—l v€l(z.y)

Then 0 maps C;(W*, F*) into C;—(W*,F*) .

We now recall a basic result of Thom [T], Smale [Sm2].

Theorem1.6. (Co(W*, F*),0) isa chain complex. Moreover, we have a canonical
identification of Z-graded vector spaces

(1.31) H.(C,(W* F*),0) ~ H, (M, F*).

Remark 1.7. In the Appendix, if X has a canonical form near B, Laudenbach
gives a proof of Theorem 1.6, and he constructs the CW complex associated to the
cells W*(z)(z € B). Moreover he shows that the closures of the W*(x)’s are
manifolds with conical singularities.

Remark 1.8. If Vf verifies the Smale transversality conditions, V(- f) verifies
also the Smale transversality conditions. Let W'*(z), W'*(z)(z € B) be the
corresponding unstable and stable cells. Clearly, if € B,

W' (z) = W*(z),

(1.32) ,
W é(z) = W¥(z).
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If = € B, let [W*(z)]* be the line dual to the line [W*(z)]. Let (C*(W*, F),d)
be the complex which is dual to (C,(W*, F*),d). For 0 < ¢ < n, we have the
identity

(1.33) cC'wWY,F)= @ W) r F.

z€EB
ind(z)=1

Then by Theorem 1.6,

(1.34) H* (C* (W™, F) ,8) = H*(M, F).

Fix an orientation on each W*(z). Then one easily verifies that

(1.35) (C° (W, F) ,5) & (Cnee (W*,F ® o(TM)) ,8(—1)"*1).
Using (1.35), we recover Poincaré duality

(1.36) (H*(M,F))* = H*™*(M, F* ® o(TM)).

We will make more explicit the canonical identification (1.31). Here we follow
Milnor [Mil, Section 9].

By a result of Smale [Sm1, Theorem B], we may and we will assume that f isa
nice Morse function, i.e. f takes the value ¢ on the critical points of index i. For
t €N, set

(1.37) vi=ftoi+ -;-]

Let S(F*) be the complex of singular chains in M with value in F*. For
0<i<mn, let S‘(F*) be the complex of singular chains in Vi with value in F*.
Then the S¢(F*) define a filtration of S(F*),

(1.38) 0C SOF*)...C S*(F*) = S(F*).

By Morse theory, we know that for 0 < i, p < n, H,(V*, V=1 F*) isnonzero
only for p = ¢, and moreover

(1.39) H;(V,Vi"l F*) = C;(W", F*).
Set
(1.40) E? Sp=o(F")

(pe) = SII;:;(F*)
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Then (E?p,q),do) is the first term of the spectral sequence (Ef, ;,,d") associated
to the filtration (1.38). By definition

(1.41) Elp g = Hp—o(VP,VF~1, F).

The previous considerations show that

(1.42) ELq=Co(W* F*), ifqg=0
= {0}, if ¢#0.

Then, (E',d!) is a chain complex. In view of (1.42), one verifies easily that the
complexes (E(, ),d") and (C,(W*, F*),d) are identical.

Also by (1.42), the spectral sequence degenerates at E2, i.e. the chain map d2,
vanishes. Tautologically

(1.43) B}, = H.(C.(W",F*),8) if ¢=0,
{0} if ¢ #0.
Let
(1.44) 0C G H (M,F*) C ... C G"H,(M,F*) = H,(M, F*)

be the filtration on H,(M, F*) induced by the filtration (1.38). Then a basic result
on spectral sequences asserts that

GPH,_o(M, F*)
GP—1H,_,(M,F*)

2 =
(1.45) EGo=

By (1.43), (1.45), we see that for 0 < i < n,

(1.46) H;(M,F*) = G'H;(M, F*),
G 'H;(M,F*)=0.

By (1.45), (1.46), we get

(1.47) El, 0y = Hyp(M, F*).

By (1.43), (1.47), we obtain (1.31).
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d) Milnor metrics on the determinant of the cohomology of a flat
vector bundle.

We make the same assumptions and we use the same notation as in Section 1c). By
(1.4) and by Theorem 1.6, we know that

(1.48) det C* (W, F) ~ det H*(M, F).

For z € B, let | ||det r, be ametric ontheline det F;,. Asin Section 1b), the
metrics || ||qet 7, (z € B) induce a metric || |lget co(ww,r) On det C*(W*, F).

Definition 1.9. The Milnor metric || [|3%; %%y ) ontheline det H*(M, F) isthe
metric corresponding to the metric || ||qe¢ co(w,F) Via the canonical isomorphism
(1.48).

Remark 1.10. Assume that F' can be equipped with a flat metric g%'. This metric
induces metrics | |ldet F, onthelines det F;(x € B). The corresponding metrics
%Y He(m,r) Was constructed in Milnor [Mil Section 9]. It was shown in
[Mi1, Theorem 9.3] that the metric || |35 der H.( m,ry does not depend on Vf, and
coincides with the Reidemeister metric || ||, .. (m,F)- More generally, assume

that g% is a metric on F, such that the induced metric | |ldet 7 on det F' is flat.
The same arguments as in [Mil, Theorem 9.3] show that the corresponding Milnor
metric || % H.( m,F) coincides with the Reidemeister metric || IZ, He(M,F)-
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II. Ray-Singer metrics and the de Rham map

In this Section we construct the Ray-Singer metrics on the determinant of the
cohomology of a flat vector bundle. Also we describe the de Rham map, which
identifies the cohomology of the de Rham complex and the cohomology of the
simplicial complex associated to a smooth triangulation. We also explain the
extension of this result by Laudenbach in the Appendix to certain Thom-Smale
complexes.

This Section is organized as follows. In a), we introduce the Ray-Singer metrics.
In b), we construct the de Rham map for simplicial complexes and in c), we describe
the de Rham map for Thom-Smale complexes.

a) The Ray-Singer metric on det H*(M, F)

Let M be a compact manifold, let F' be a flat vector bundle and let F™* be its dual.
Let g™™, gF be smooth metrics on TM, F. Let { )r and ( )a(r-m)er be the
corresponding scalar products on F' and A(T*M) @ F.

Let F = @], F* be the vector space of smooth sections over M of A(T*M)®
F =@ (A (T*M)® F).

Let VF denote the flat connection on F. Let d¥ denote the obvious action of
VF on F. Then

(2.1) dF? = 0.

By the de Rham theorem, we know that the cohomology groups of the complex
(F,dF) are canonically isomorphic to H*(M, F).
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Let dvys be the volume form on M associated to the metric g7™. Let * be
the Hodge operator associated to g7™ acting on A(T*M). The operator * also
actson A(T*M)Q® F.

If a,a’ €F, set

(2.2) (a,0f)p = /M (@Axd)p.
Equivalently
(23) @)= [ (@00 mer @dou(o)

The Fi’s (0 < i < n) are mutually orthogonal in F with respect to the scalar
product ( , )g. Let d¥* be the formal adjoint of d¥ with respect to the scalar
product ( , )r. For 0 <i < n, set

]F{O},z={fEF’l’dezo,dF*f=0}’

FO) = HFO},

=0

(2.4)

By Hodge theory, we know that for 0 < i < n, H(M,F) and F{°} are
canonically isomorphic. As finite dimensional vector subspaces of the F*’ s, the
F{0}i* 5 inherit the scalar product { , ). Let g7 (M-F) denote the corresponding
metricon H*(M, F). Thustheline det H*(M, F) inherits ametric | |3 ;o p. s
which is also called the L, metric.

Set
(2.5) D =dF +dF*.

Then D? = dFdf* 4 dF*dF is the Hodge Laplacian associated to the metrics
g™ oF . Let F{%hL denote the orthogonal space to F{°} in F with respect to
the scalar product { , )g. Let P, PL denote the orthogonal projection operators
from F on F{0} F{°h1  The Hodge Laplacian D? acts as an invertible operator
on F{°}L  and its inverse is denoted (D?)~!.

Let N be the operator defining the Z-grading of F, ie. N acts on F' by
multiplication by i.

If A € End(F) is trace class, we define its supertrace Tr,[A] as in (1.9).
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Definition 2.1. For s € C,Re(s) > n/2, set
(2.6) 6F(s) = — Tr, [N (D%) ™" P].

By a result of Seeley [Se], 6%(s) extends to a meromorphic function of s € C,
which is holomorphic at s = 0.

Definition2.2. Let || || {5 ;o s, ) betheRay-Singer metricontheline det H*(M, F)
1 96F
e s = Eran e {350)-

Remark 2.3. The quantity exp{%%f(o)} was originally called by Ray and Singer
[RS1] the analytic torsion of the complex (F, d¥). The holomorphic analogue
for Dolbeault complexes was introduced by Ray and Singer [RS2]. Quillen [Q2]
constructed the corresponding Quillen metric on the determinant of the holomorphic
cohomology. Quillen metrics have been the object of several recent developments
[BGS1, 2, 3], [BL1, 2], some of which will be central to our understanding of the
Ray-Singer metric.

Let gF" be the metric on F* induced by the metric g¥ on F. We equip
the orientation line o(T'M) with the trivial metric. The vector bundle F* ®
o(TM) is then equipped with a metric g™ ®TM). Let || ||&Y 40 01 pego(rany)
be the Ray-Singer metric on det H*(M, F* @ o(T'M)) attached to the metric
g™ on TM and the metric gF ®(TM) on F* ® o(TM). It is easy to see
that under the isomorphism (1.24), the metrics || ||&% ge s, pogo(rary) 20d

(I et zreaz,)) """ correspond.
Remark 2.4. When M is odd dimensional, Ray and Singer [RS1, Theorem 2.1]

proved that the metric || ||lget mre(as,7) is a topological invariant, i.e. does not
depend on the metrics g7™ or gF.

When M is even dimensional and oriented, if the metric gF is flat, it follows
from Ray and Singer [RS1, Theorem 2.3] that

(2.8) I &S seary = 1ES Ho(at,p)-

Remark 2.5. Assume that the metric ¢* is flat. Let || ||, ;o5 ) denote the
corresponding Reidemeister metric on the line det H*(M, F'), which is constructed
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in Remark 1.5. It was conjectured by Ray and Singer [RS1] that if M is odd
dimensional, the Ray-Singer metric || ||} zo(5s ) and the Reidemeister metric
I NE, 4 (M,F)> Whichare both topological invariants, are equal. This was proved in
celebrated papers of Cheeger [C] and Miiller [Miil]. Miiller [Mii2] recently extended
this result to the case where the metric || ||qet 7 On the line det F' is flat.

b) A quasi-isomorphism of complexes : the de Rham map for
smooth triangulations

Take a smooth triangulation K of M asin Section 1b). The flat vector bundle F' is
canonically trivialized over each simplex o € K by using the flat connection V¥

The line [o] has non zero a canonical section o. Let o* € [0]* be dual to
o € [0], sothat (0,0*) = 1. If € F, theintegral o* ® [ « liesin [0]* ® Fy(o).
Of course if o € F*, [ o is nonzero only if o € K*\K*~!.

Definition 2.6. Let P,, be the map

(2.9) a€F - Poa= Y a*®/aeC‘(K,F).

oc€K

Theorem 2.7. The map P, is a quasi-isomorphism of the Z-graded complexes
(F,d¥) and (C*(K, F),g), which provides the canonical identification of the
cohomology groups of both complexes.

Proof. Clearly P, maps F' into C'(K,F). Take 0 € K, f* € bo): BY
definition, if o € F, then

(2.10) (Por,0 ® f*) = <f/aa>
Then
(2.11)
(Pod"e,0® f*) = <f /a dfa) = <f*, /a aa> = (P, 8 (0 ® f*))
= <5Pooa,a®f*>.
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From (2.11), we see that P., is a homomorphism of complexes. The de Rham
theorem asserts that P, is a quasi-isomorphism, i.e. it identifies canonically the
cohomology groups of (F,dF) and of (C*(K, F),0) . O

¢) A quasi-isomorphism of complexes : the de Rham map for
Thom-Smale complexes

We use the same notation as in Section 1c).

Let f : M — R be a Morse function, let g7™ be a metricon TM. Let B be
the set of critical points of f. If z € B, let ind(z) be the index of f at z. We
assume that for any z € B, there exists a coordinate system y = (y!,...,y") near
z such that O represents x, and moreover, near z,

n
g™ =" |dy' P,
1

(2.12) e L o
fly) = fz) - 5 > |y'|2+§ > W
1 ind(z)+1

Let V£ be the gradient vector field of f. We assume that V f verifies the Smale
transversality conditions.

In the Appendix, Laudenbach proves that the closed cells W(z) (z € B) are
submanifolds of M with conical singularities. Therefore smooth forms can be
integrated on the W*(z)’s (z € B).

The vector bundle F' is canonically trivialized over each cell W*(z).

If 2 € B, the line [W*(z)] has a canonical nonzero section W*(z). Let
W(z)* € [W*(z)]* bedualto WH(z) € [W*(z)], sothat (W*(z), W*(x)*) =
1. If a € F, the integral W*(z)* ® fwu(m)a lies [W¥z)]* ® Fy. Clearly if
a € F, [iyu,, @ is nonzero only if ind(z) = i,

Definition 2.8. Let P., be the map

(2.13) a€F - Poa=) [W')]'® /_ o€ C* (W F).
z€B Wu("?)
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Theorem 2.9. The map P, is a quasi-isomorphism of the Z-graded complexes
(F,d¥) and (C*(W*,F),d), which provides the canonical identification of the
cohomology groups of both complexes.

Proof. We use the notation of Section 1 c). Let (D’'(M, F*),d¥") be the complex
of currents on M with values in F*. If z € B, let 6W“(z) be the current of

integration on W' (z).
Take B8 € Co(W*,F*). Then 3 can be written in the form
(2.14) B=Y BIW"()®f:, B:€R, fi€F;.

z€B

If f2 € F}, weextend f to aflat section of F* on W' (z), which we still note
fa. Set

(2.15) 18)=)_ B 26T ()
z€B
Then I(B3) € D'(M,F*). By aresult of Laudenbach [Appendix, Proposition 7],
I is a quasi-isomorphism from (C,(W*, F*),8) into (D'(M,F*),dF"). Let
I H,(C(W*,F*),0) — H,(M, F*) be the induced isomorphism.
Take 7,0 < ¢ < n, B € C;(W*, F*). Then I() vanishes near 8V, and

dI(B) = I(9P) is supported in Vi~l. So I(B) defines a homology class in
H(Vi, V=1 F*) = C;(W*, F*) which coincides tautologically with 3.

It follows from the previous considerations that } is indeed the canonical
isomorphism H,(C(W*,F*),0) ~ H,(M,F*). Alsoif oo € Q*(M,F), B €
Co(Wy, F*), then

(2.16) (Pooar, B) = (o, I(B)).

Therefore P, is the transpose of I. Theorem 2.9 follows. ]
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III. Berezin integrals and Morse functions

In this Section, we recall the construction by Mathai-Quillen [MQ] of Thom
forms and of the transgressed Euler forms for Euclidean vector bundles in the
Berezin integral formalism. Also we establish certain identities on Berezin integrals
involving the gradient vector field of a smooth function. Finally when this function
is a Morse function, we prove certain mysterious identities involving currents which
are constructed using Berezin integrals.

This Section is organized as follows. In a), we introduce the Berezin integral. In
b), we construct the Thom forms of Mathai-Quillen [MQ] on the total space of an
Euclidean vector bundle with connection. In c¢), we recall results of [BGS4] on the
convergence of the Mathai-Quillen Thom forms, as a parameter T' tends to +oo.
In d) we construct a transgressed Euler class, which is a current on the total space of
a vector bundle.

In e), we specialize the previous considerations to the case of the tangent bundle.
In f), we establish a crucial symmetry property for a Berezin integral involving a
gradient vector field. In g), we introduce a canonical section of an exterior algebra.
Inh), we establish transgression formulas for currents which are expressed as Berezin
integrals. In i) and j), we take the limit, as a parameter 7" tends to +oo, of certain
identities of currents associated to a Morse function. Finally, in k), we consider the
case where the metric on the tangent space is flat near the critical points of the Morse
function.

As we will see in Section 7e), the identity established in Section 3j) is in fact a
consequence of the proof of Theorem 0.2. It has seemed convenient to us to give a
direct proof of these identities. Also the symmetry property of Section 3f) will be of
constant use in the sequel.

39



J-M. BISMUT, W. ZHANG

For an introduction to Berezin integrals and their application to the construction
of Thom forms and of Euler forms, we also refer to Berline-Getzler-Vergne [BeGV,
Chapter 1].

This Section is self-contained.

a) The Berezin integral

Let E and V be real finite dimensional vector spaces of dimension n and m.

Let gf be an Euclidean metric on E. Let ey, ---,e, be an orthonormal base
of E, and let e!,---,e™ be the corresponding dual base of E*.

Assume temporarily that E is oriented and that e;,---,e, is an oriented base
of E. Let fB be the linear map from A(V*)@A(E*) into A(V*) which is such
that if o € A(V*),8 € A(E*), then

B
(3.1) /a,B:O if degf < dimE,
B n1n+]!
/ ael/\.../\en=(__1)_ﬂ_2___a_
T2

More generally, let o(E) be the orientation line of E. Then [ B defines a linear
map from A(V*)RA(E*) into A(V*) ® o(E). The linear map fB is called a
Berezin integral.

In the sequel, we do not assume any more that E is oriented. Let A be an
antisymmetric endomorphism of E. We identify A with the element of A(E*),

(3.2) A=% S (e Aes) el Ae.
1<i,j<n

By definition, the Pfaffian Pf[£] of & is defined by the formula

” [ e () =ri[2].

Then Pf[£] liesin o(E). Clearly Pf[£] vanishes if n is odd.
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b) Vector bundles and Berezin integrals : the Mathai-Quillen
Thom forms

Let M be a real manifold of dimension m. Let 7 : E — M be a real vector
bundle of dimension n. Let g€ be an Euclidean metric on E.

Let VE be an Euclidean connection on (E,gF) and let R® = (VE)? be the
curvature of VE. Then RF is a smooth section of A?2(T*M) ® End(E).

Also 7*V¥ is an Euclidean connection on 7*(E, g¥) and =*RF is the curva-
ture of 7*VZ. Moreover 7*RE is a smooth section of A?(T*E) ® End(7*E).

Let eq,---,e, be an orthonormal base of E and let el,---,e™ be the corre-
sponding dual base of E*. Let fi,---, fn beabase of TM, and let f1,..., f™
be the corresponding dual base of T* M. We identify RF with the section RE of
A%(T*M)RA%(E*)

1

(34) RE=2 3 (eaRE(fifi)es) N F7 e AeP.
132755
Equivalently
g1
E
(3.5) RP=5 3 (easRPeg)ene’.
1<a,f<n

The connection VE defines a horizontal subspace T#E of TE such that
TE=THEQ®E. Let PE be the projection TE — E andlet PF*: E* - T*F
be the transpose of PE. Then PZ isasectionof T*E® E. If we identify E with
E* by the metric g, P® can be considered as a section of T*E ® E*. Clearly

(3.6) PE = Xn: (PE*e') .

1

Let Y be the generic element of E.

Definition 3.1. For T > 0, let A7 be the element of (A(T*E)@7*A(E*))ever,

*pDE
3.7) Ap="1 f +VTPE + T|Y).
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Recall that we identify E with E*. If e € E, we will often write € when e is
considered as an element of A(E*), and we still denote PZ*e the corresponding
element of A(T*E).

The connection 7*VE acts as a differential operator on smooth sections of
A(T*E)®7*A(E*). Alsoif e € E, the interior multiplication 3. acts naturally on
A(E*), and also as a derivation of the graded algebra A(T*E)®@7*A(E*). To indi-
cate clearly that i, only acts on the second factor 7*A(E*) of A(T*E)®n*A(E*),
we will write i instead of .. In particular we have

(3.8) Z (eas (7 *RF) eﬂ> e A eﬁ

1<aﬁ<n

n
E=ZPE*61'A€¢'
1

The following result is proved in [MQ, Section 6] and [BeGV, Lemma 1.85 and
Propositions 1.87 and 1.88].

Theorem 3.2. The following identities hold

~

8A v
*— E . _ T — x— E .
(3.9) [7r VE 4 oVT zy,AT] =0, £ [n v+ 2T ig, = =

Proof. The Bianchi identity asserts that

(3.10) [n*vE,w*RE] =0.
Also

(3.11) |:2\/T 15, —] = VT Z <7r*REY ea> eo.

1<a<ln

Moreover, one verifies easily that

(3.12) [W*VE,\/TPE] =vT ¥ (n*REY,eq)em.

1<a<ln
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From (3.11), (3.12), we get

(3.13) [2\/_ io TE] + [VE,\/TPE] =0.

Moreover

(314) [r'VET|YP] =2TPP'Y,  [2VTip,VTPF| = —2TP"'Y,

and so
(3.15) (" VE, TIY ] + [2VT ig, VT PE| =o0.
From (3.10), (3.13), (3.15), we get the first identity in (3.9). Moreover
0
3.16 S AT = —PE Y|
(3.16) SmEe Y]

Using (3.16), one obtains the second identity in (3.9).

O

Let 7, denote the integral along the fibre of forms on E taking valuein 7*o(E).

We will apply the formalism of the Berezin integral developed in Section 3a),
with V = TE. If w is a smooth section of A(T*E)®n*A(E*) over E, wa is
a smooth section of A(T*E)®7*o(E), i.e. a smooth differential form over E with

values in 7*o(F).
Set

(3.17) ¢ (E,VF) = Pt [1;:]

Then e(E, VE) is a smooth closed section of AY™ E(T*M) ® o(E). The form
e(E, V¥) isa Chern-Weil representative of the rational Euler class of E. Of course,

if n = dim F is odd, then
(3.18) e(E,VE) =0.

Definition 3.3. For T > 0 and T > 0, let ar and S be the forms over E

B
aT=/ exp (—Ar),
(3.19)

B o
,3T=/ 23//7 exp (—Ar) .
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We will establish a fundamental result which was first proved in Mathai-Quillen
[MQ, Theorem 6.4].

Theorem 3.4. For any T > 0, the forms ar have degree n, are closed and their
cohomology class does not depend on T. For T > 0, the forms ot represent the
Thom class of E, so that

(3.20) oo =1
For T > 0, the forms (31 have degree n — 1. Finally

ag =T7"e (E,VE) ,

—’iyOlT
(3.21) Pr=—5—T>0,
6aT
5T = —dpr, T > 0.

Proof. Elements of A(T*E)®A(E*) have a partial degree in A(T*E) and also
a partial degree in A(E*). Then Ar is a sum of forms of type (p,p), and so
exp(—Ar) is also a sum of forms of type (p,p). Therefore the forms ar have
degree n, and the forms (37 have degree n — 1.

If w is a section of A(T*E)®A(E*), then

B
(3.22) / igw=0.
Using Theorem 3.2, we get
(3.23) [7*VE + 2VT ig,, exp (~ A1)] = 0.
Therefore, by (3.22), (3.23), we obtain
B B
(3.24) d/ exp (—Ar) = / [W*VE +2VT i3, €Xp (—AT)] =0,

and so the forms ar are closed.

By (3.3), we get the first identity in (3.21). Also

(3.25) iwyAr = VT Y.
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Therefore
(3.26)

iy /B exp (—Ar) = ’ (—tyAr)exp(—AT) = /B (—\/T }7) exp (—Ar).

The second identity in (3.21) follows.
Moreover by using Theorem 3.2 and (3.22), we get

Odar B oAr
(3.27) 5T =" / a7 <P (—A47)

B ~
= —/ |:7r*VE + 2\/T 1,?, 5—% exp (-—AT)] = —d Br.
Finally, for 7' > 0

B -~ —~
(3_28) T QT =/ exp (—Tlle) Tn/2/ (_1)nPE*el Ael A...\PExem Aen
E

B
= / exp (=T|Y )2 T"/? / (1) pErI A APE* M AGIA- - NG = 1.
E

The proof of Theorem 3.4 is completed. O

¢) Convergence of the Mathai-Quillen currents over E

Let o(TM) be the orientation bundle of T'M. We identify M to the zero section
of E. If k€ N, andif K isacompactsetin F, let || ”C}‘((E) be a natural norm

on the Banach space C% (E) of forms in E with values in 7*o(T'M), which are
continuous with k continuous derivatives, and whose support is included in K.

Let 6)s be the current of integration on M. If u is a smooth compactly
supported form on E with values in 7*o(T'M), then [ g MoM = / Va2

Theorem 3.5. Let K be a compact subset of E. There exists a constant C > 0
such that for any smooth form p on E with values in n*o(T M) whose support is
included in K, for T > 1, then

| nter =) < Zo ey

l/ pBr| <

(3.29)
C
T3/2 ”/‘l”Cl K(E) "

45



J.-M. BISMUT, W. ZHANG

Proof. The proof of Theorem 3.5 is essentially the same as the proof of [BGS4,
Theorem 3.12]. It is left to the reader. O

d) A transgressed Euler class

Definition 3.6. Let y(E, VE) be the current on E with values in o(E),

(3.30) ¥ (E,VE) = e BrdT .
0

The restriction of ¢(E,VZ ) to the sphere bundle of E was first constructed in
Mathai-Quillen [MQ, Section 7]. In view of Theorem 3.5, it is clear that the current
Y(E, VE) is well-defined.

Recall that M is identified to the zero section of E. The normal bundle to M
in F isexactly F.

Let ¢’F be another metric on E, and let V'® be an Euclidean connection on E
withrespectto g’'%. Let &(E, VZ, V'F) denote the Chern-Simons class of forms of
degree n — 1 over M with values in o(E), which is defined modulo exact forms,
such that
(3.31) de (E,VE,V'E) =e(E,V'F) —e(E,VF).

If n is odd, then
(3.32) ¢(B,VE,V'E) =0.

For the definition and properties of the wave front set of a current, we refer to
[Ho, Chapter VIII].

Theorem 3.7. The current (E, V) hasdegree n—1. If ) isasmooth function on
E with values in R*, under the map e € E — )e € E,y(E, VF) is changed into
Y(E,VE) for X >0, into (~1)"¢(E,VE) for A < 0. The current y(E,VE) is
locally integrable on E. The wave front set of ¥(E,VE) is included in E*. Also
Y(E,VE) verifies the equation of currents over E

(3.33) dy (E,VE) = n*e (E,VE) - 6u.

The restriction of —y(E,VE) to the fibres of E coincides with the solid angle
form of the fibre associated to the metric gF .
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If ¢'E isanother metricon E, andif V'E isaconnectionon E whichpreserves
the metric ¢'F, then

(3.34) o (B,V'E) -y (E,VE) = 7€ (E, VE,V'") modulo exact currents.

Proof. By Theorem 3.4, (E, VF) has degree n — 1. By proceeding as in [BGS4,
Theorems 3.14 and 3.15], we see that ¢ (E, V) is locally integrable, and that the
wave front set of (E,VF) is included in E*. Equation (3.33) follows from
Theorems 3.4 and 3.5.

By (3.21) and (3.33), we know that iy = 0,iydy = 0. Soif X is a smooth
function from E into R*, we see that ¢(E,VF) is invariant under the map
Y € E — )\Y € E. Using the explicit formula (3.19), we find that under the map
Y € E— -Y € E,4(E, VE) is changed into (—1)"¢(E, VE).

Let w be the volume form in the fibres E. Using (3.21), one verifies easily that
the restriction of —(E, VE) to the fibres of E is given by

I'(n/2) iyw
which is the solid angle form of the fibres.

Finally equation (3.34) follows from equation (3.33) and from a simple deforma-
tion argument which is left to the reader. O

Remark 3.8. Assume that dim F < dim M. Let s be a smooth section of E. Set
(3.36) M' = {z € M;s(z) = 0}.

Suppose that over M’, ds has maximal rank dimE. Then M’ is a smooth
submanifold of M. Let Ny /p be the normal bundle to M’ in M. Then
ds : Nyiym — Ejpe is anidentification of vector bundles. Since the wave front set
of ¥(E,V¥) isincluded in E*, by [Ho, Theorem 8.2.4], the pulled-back current
s*(E,VF) on M is well-defined, and its wave front set is included in Ny, /-
Moreover

(3.37) ds*y (E,VE) = e (E,VE) = épr.
Also by proceeding as in [BGS4, Theorem 3.15], one verifies easily that the current
s*¢(E, VE) is locally integrable on M.
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e) The Berezin integral formalism over the tangent space.

Let s be a smooth section of £ over M. Recall that for T > 0,Ar is a
smooth section of E over A(T*E)®n*A(E*). The pull-back s*Ar, where the
pull-back acts non trivially on the factor A(T*E), is now a smooth section of
A(T*M)RA(E*).

Let gTM be a smooth metric on TM. Let VIM be the Levi-Civita connection
on (TM,g™™), and let RTM = (VTM)? be its curvature. Let VT'M be the
corresponding connection on 7* M.

We will apply the construction of Sections 3a)-3d) to (TM,gT™) equipped
with the connection VTM | In particular = now denotes the projection TM — M
and n is the dimension of M. Also, for T > 0, A7 is a smooth section of
AT*TM)@r*A(T*M). If s is a smooth section of TM over M, s*Ar isthen
a smooth section of A(T*M)RA(T*M).

If w is a smooth section of A(T*M), we identify w with the section w®1
of A(T*M)®A(T*M). Also & will denote the corresponding section 1 ® w of
AT*M)® A(T*M).

Let e;,---,e, be an orthonormal base of TM, and let e!,---,e™ be the
corresponding dual base of T*M. We identify RTM to the smooth section RTM
of A(T*M)RA(T*M) given by

(3.38) R™™ — i Z (€a, R™ (ei,e;)eg) e’ Ne?d NE* NEP.

1<4,5<n
1<,a,8<n

Recall that we identify TM and T*M by the metric g™,

Proposition 3.9. Let s be a smooth section of TM. Thenfor T > 0, the following
identity holds

RTM "o -
(3.39) s*Ap = —2—+\/Tze'Avg;Ms+T|s|2.
1
Proof. Formula (3.39) follows directly from Definition 3.1. O

48



BEREZIN INTEGRALS AND MORSE FUNCTIONS

f) Berezin integral and gradient vector fields : a symmetry
property

We make the same assumptions as in Section 3 (¢). Let f be a smooth function
of M into R. The differential df is a smooth section of T*M. Let Vf be the
corresponding gradient vector field, which is a section of T'M.

From Proposition 3.9, we get the following identity.
Proposition 3.10. For T > 0, the following identity holds

s TM n . ———
(3.40) (Vf)*Ar = RT +VT ) e AVIMVf +T|df|*.
1

Let ¢ be the algebra homomorphism from A(T*M)®A(T*M) into itself,
which is such that if w € A(T*M), then

plw) =0,

3.41
341 p(@) = w.

Proposition 3.11. For T > 0, the following identity holds

(3.42) e(Vf)*Ar = (-V )" Ar.

Proof. The basic symmetry property of the curvature tensor R7M immediately
shows that

(3.43) @ RTM = RTM

Also

(3.44) Y e AVIMYS = Z(vgﬁ‘Mdf,e,)e"/\Ef.
1 1

Since the connection VTM is torsion free, we get from (3.44),

(3.45) ie‘/\vﬁﬁf = i(vﬁ'Mdf,ej>ei Aéi,
1 1
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and so
0 (2": el A vg/fl\w) - Zn: <v£‘Mdf,ej> e nel
(3.46) ! !
= - Z e; N\ Vfﬁf
1
Proposition 3.11 follows from (3.45), (3.46). O

The Berezin integral [ B maps smooth section of A(T*M)RA(T*M) into
smooth section of A(T*M) ® o(TM).

Definition 3.12. For T > 0, let By be the smooth section of A(T*M)RA(T*M)
over M,

(3.47) Br = (Vf)* (Ar).
In the sequel, we will say that o € A?(T*M)@AY(T*M) is of type (p,q).

Theorem 3.13. Let o be a smooth section of A(T*M)®A(T*M) which is of type
(p,p) (0<p<n). Then,

B B
(3.48) [ aexp(-Br)=(-17 [ pla)exp (-Br).

Proof. One has the easy identity

(3.49) / Ca= (1 / ” ().

If we apply (3.49) to aexp(—(V f)*Ar), using (3.42), we get
B

B
(3.50) /aexp(—(Vf)*(AT))=(—1)"/ (o) exp (—(=V )" (A1)).

Also one verifies easily that if « is of type (p,p), then

(3.51)
B

B
[ el@rexp(~(-91)y (40)) = (-1 [ p(a) exp (~(V )" ().

From (3.49)-(3.51), we get (3.48). a
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g) The canonical section of A(T*M)QA(T*M)
We make the same assumptions as in Sections 3e), 3f), and we use the same notation.
Definition 3.14. Let L be the smooth section of A(T*M)RA(T*M)

(3.52) L=§ZI:e Ael.

Clearly L does not depend on the choice of the orthonormal base ej,- -, e,.

Proposition 3.15. The following identity holds
(3.53) [VIM L] = 0.

Proof. Since the connection VIM is torsion free, we get (3.53) . O

h) A variation formula for forms over M
We make the same assumptions as in Section 3f).

Proposition3.16. Forany T > 0, thefollowing identity of sections of A™**(T*M)®
o(TM) holds

B B
(3.54) ai:r / Lexp(_BT)=—\/:FfaiT / exp (—Br)

4 () o

Proof. Using Theorem 3.2, we get

o [* a):
(3.55) ET/ Lexp(—-BT)=——/ L 5T exp (—Br)

=_/BL
df

d (8L - B .
=_§/ ﬁdfexp(~BT)+/ [VTM+2\/Tz§},L] 2ﬁexp(—BT)-

df
™ .
VY +ovT gy —2\/_ exp (-Br)
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By Proposition 3.15, we know that

(3.56) VTM +2VT za,L = —VT df.

So using (3.56) and Theorem 3.4, we get

. ~
(3.57) / (VTM L oyT igy L] 2?};_, exp (—Br)
5 -
__d / fdf exp (—Br) + fd / iexp(—BT)
=——/ fdf exp (-Br) = VT f— / exp (—Br).

From (3.55)-(3.57), we get (3.54). O

Theorem 3.17. For any Ty > 0, the following identity of smooth sections of
A" (T*M) ® o(TM) holds

(3.58) /B L (exp (—Br,) — exp (=Byg)) = —/Tof /B exp (—Br,)
L[ ([ eoenn) 2
_g/on (/B (% + f) (Zfexp(—BT)) dT.

Proof. Using (3.54) and integrating by parts, we get (3.58). 0O

i) The limit as T — +oo of certain currents over M

We now assume that f is a Morse function, i.e. f has isolated critical points
L1, -+ Tq,--- such that d?f(z,),---,d%f(z,),--- are nondegenerate quadratic
forms over T, M,---Ty M,---. For i =1,---,q,--- let A;, be the self-adjoint
element of End(T,, M) such thatif U,V € T,, M, then

(3.59) (Az,U, V) = d®f(z:)(U, V).

Let ind(z;) be the index of f at z;, i.e. the number of negative eigenvalues of
A,
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Theorem 3.18. Let K be a compact subset of M. There exists a constant C > 0
such that if g is smooth function from M into R whose support is included in K,
and if p is a smooth 1-form on M whose support is included in K, then

B .
T
B C
l/Mg/ Lexp(-Br)| < ﬁ"g”C}’{(M)?

B
~ C
‘ | ou [ @ exe(=B)| < g ey

[# ] oo

Proof. For notational simplicity, we assume that M is compact, and that f has
exactly ¢ critical points. Let a > 0 be the injectivity radius of (M,g7™). For
0 < 7 < a, let BM(z;,n) be the open ball of center z; and radius 7.

Take ¢ > 0 such that 0 < € < a/2 and that the balls BM(z;,2¢) do not
intersect each other. Clearly, there exist ¢ > 0,C > 0 such that for T' > 0,

c
(3.60) < 7 lgllez oy »

C
S o7 sl s (ary -

(3.61) lexp (—Br)| < cexp(—CT) on M\UBM (zpy€).
1

We fix p,1<p<gq. Let y = (y},---,9") € T, ,M be a geodesic coordinate
system centered at z, such that (%r, . %) is an orthonormal base of T';, M,
with respect to which the matrix A, is diagonal with diagonal entries A1, - -, Ay.
Of course 0 € T, M is identified with z, € M.

For T > 0, let or bethe map y € T, , M — 25’? € T, M. Then

ooy [ of * Lexp(=Br) = Gy " Lexp(=Br).
w

No
(3.63) opL=—=) € A&
Using (3.61)—(3.63), we easily obtain the second inequality in (3.60).
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Also

1. . o~ 2
3.64) 0*Br = — RTM T*M . iAo Y
(3.64) 07Br = o R+ 3 <Ve.- df,e]>_\/%e Ne +T}df (—ﬁ)

1<i,j<n

Moreover

(365)  (079)(y) =9(x) +g (xp)f *lgll=can © (l’—’l’ )

3 (v;{.‘Mdf, e,~>§= NI+ T ‘df (%)

1<i,j<n
=Y nend+ 3 R

1<i<n 1<in
1 - - . A.
+— Z <VT MyT™Maf(x ),e~>e’ Ael
VT 2 \Vy Ve )G
1<4,5<n

+% [l 2(2p)]® (9, ,9) + %0 (ly? + |v]*) .

The key fact is that in (3.65), the terms which appear with the weight 71? are odd

polynomials in the variables (y!,---,y™), whose integral with respect to a Gaussian
measure is 0. By proceeding as in (3.28), we obtain the first inequality in (3.60).

Clearly
(3.66)

By proceeding as before, we find easily that

B
3.67 lim T / o / df (—y—) exp (—o7B
(3.67) Totoo  Jyy|<evT T# d vT (=71 Br)
B n n
—— . —, i 2
B /T M ﬂ(-’vp)/ Az, yexp (’Z Ndy' Ady' =) N o] ) -0
zp 1 1

From (3.67), we easily deduce the third inequality in (3.60). To prove the last
inequality, we use (3.63) and we proceed as before. O
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j) An identity of currents over M

By Theorem 3.18, it is clear that the currents over M

(3.68) /0+°° ( /B exp (—Br) — ¥ (~1)n4(=») 631’) % |
/0+oo (/B (% + f) c?fexp(_BT)) dT,

Observe that if n is even, then

(3.69) /B Lexp (— R;M) =0.

Theorem 3.19. The following identity of currents of degree n withvaluesin o(T M)
holds

(3.70) /BLexp (—RZM)
+o00 B . dT
~L [ ([ e - Sipeos, ) 4

AL () doncan)a

Proof. Clearly, for Ty > 0,

B To B
@) Vif [ ew-Br)-3 [ 1 [ ew-Bn 2

_ \/ﬁf </B exp (—-BTO) _ Z(_l)ind(“)ét’)

To B
2 (/ exp(—BT)—Z(—l)i“"Wéz,) =

Then we use the estimates of Theorem 3.18, and we make T, — +oc0o in (3.58). We
get (3.70). O

are well-defined.
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k) The case where the metric gTM is flat near the critical points

From now on, we assume that near any critical point z, of f, there exists a system
of coordinates y = (y*,---,y™) such that

— 1z, is represented by 0.
— The metric g7 is exactly 37 |dy’|?.

— There are non zero constants Ap, - - - A, such that near z,
1 ~ i12
(3.72) @) = fe) +5 N Iyl
1

Of course if f is a Morse function, there always exists a system of coordinates
(y',---,y™) near the z,’s and a metric g™ on TM such that the previous
assumptions are verified. Recall that A, is the self-adjoint element of T, M
associated to the quadratic form d?f(z,). Then the matrix of A, with respect to

the basis 52, - has diagonal entries Ay, - -+, \,.

Yy ) 3yn

Let g be a smooth function on M with valuesin R. We calculate g”(z,) using
the coordinates (y',---,y") near z,. Then g”(z,) is a symmetric bilinear form
on T, M. We identify g"(x,) to a self-adjoint element of T, M. Then g —

Tr[AZ -2 g"(zp)] defines a current of degree n on M, which we note Tr[A; 25” -

Similarly let x be a smooth 1-form on M, which we write near , as

(3.73) p= pi(y)dy'.
1
Set
90 10 i
379 T 4575 | = Yy ek

Equation (3.74) defines a current of degree n — 1 over M, which we note
Tr[AzP Em
Theorem 3.20. Let K be a compact subset of M. There exist constants c > 0,
C > 0 suchthat if g is a smooth real function whose support is included in K and
if p is a smooth 1-form on M whose support is included in K, thenfor T > 1,
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(3.75)

/M . (/B Lexp(—Br) + % Z(__l)ind(:cp) Tr [A;,,l] 5%)

< C
=7 ”g"C}((M)’

‘/Mg(f /B exp (—Br) — E(_l)ind(zp)f(xp)ézp

_ Zlf (Z(_l)ind(z,,)r_[wr{ A;:] 6y + 3 (—1)ndC=n) f(xp)Tr[A;,%:,]))‘

C
< gz 19l oy

B
- 1 ind(zp) 20
‘/M 7 (/ df exp (=Br) + 5573 > (1) Tr [Az,, By
C
< Tz ||#||cg((M)-

Proof. As in the proof of Theorem 3.18, we assume that M is compact. Also we
use the notation in the proof of Theorem 3.18. Here ¢ > 0 will be chosen small
enough so that for any p, over BM(z,,2¢), the assumptions which are stated at
the beginning of this Section 3 k) hold.

Then over BM(z,,2¢), RTM = 0. Therefore

(3.76) /mg g / * Lexp (—Br)

B n _ n '
=/ g/ Lexp (‘ﬁZAidyiAdy‘—TZ/\?Iy‘lz)
lyl<e 1 -
B n n
y L N L1
= - _ _ Nedu® A dyt — )2 -
/Iylseﬁg(ﬁ)/ ﬁexP( 21: y' Ady le ,|y|>

Also one finds easily that

B n - n .
(3.77) / / Lexp (— > Ndyt Adyt - N |y’|2))
szM 1 1
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( l)md(:c,,) n 1
2 A

From (3.28), (3.76), (3.77), we get easily the first inequality in (3.75).
Similarly,

B

_ I fa) 4+ LS A 2
(3.78) gf | exp(-Br)= Iylscﬁg(ﬁ)(f( p) + 2T21:/\k|y | )

lyl<e
exp (— Z Nidy' A Jg} - Z)\f |yi|2) .
1 1
Also
379 g (%) = g(p) + %)y 2Tg”(wp)(y, y)+ Tgl,,z (lyF) -

We now use the trivial identities

1 a2 1 g _g? 1
. — =0 : — dr = =
(3.80) ﬁ/mxe =0 ﬁ/mx ¢ ®Ey

and we easily obtain the second inequality in (3.75).

Let p be a smooth 1-form on M, which we write as in (3.73) near z,. Then

: d —Byp) = — Y
(3.81) /MSEu/ if exp (—Br) /|y|5e~/7\/7(21:“ <ﬁ y)
B n . n ] — n )
[ () (- Srwrn@ S,
Also

68 () = map) + i) e+ 7O ().

Using (3.28), (3.60), (3.81), (3.82), we obtain the third inequality in (3.75). The
proof of our Theorem is completed. 0O

Remark 3.21. By adding (3.58) and (3.70), for any 7, > 0, we obtain the identity
B B )
(3.83) / Lexp(-Br,) = —VTof ( / exp (~Br,) - _(-1)"4é,,
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+o0 B . dT
_é A (/ exp (—Br) — Z(_l)lnd(wp)(szP) _\_/__1__1

d +o00 B L - 2
+= —+ f ) dfexp(—B T
s\ (F5+s) Few-Bo
Clearly both sides of (3.83) have asymptotic expansions as Ty — +oo.

By Theorem 3.20, the coefficient of 7;,—0 in the asymptotic expansion of the
left-hand side of (3.83) is given by

(3.84) —% Y (~1)nd) Ty [A;:] 5z,

By Theorems 3.18 and 3.20, the coefficient of -\717; in the asymptotic expansion of
the right-hand side of (3.83) is given by

- %Z(-l)“‘d("’) Tr [471] &,
(3.85) — 5 S (1)) ) T [ 45267

- S ) Te [ 4

Now the sum of the last two terms in (3.85) is trivially equal to 0. Then (3.84) and
(3.85) effectively coincide.
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IV. Anomaly formulas for Ray-Singer metrics

The purpose of this Section is to establish the anomaly formulas for Ray-Singer
metrics, which were stated in Theorem 0.1 of the introduction. These anomaly
formulas will play an important role in our proof of our main result stated in
Theorem 0.2.

To establish these anomaly formulas, we use local index theory techniques, in
combination with the Berezin integral formalism of Section 3. Our local index
techniques are different from the techniques of Getzler [G], even if they have some
obvious relation to them. They will be used again in Section 13.

This Section is organized as follows. In a), given a flat Euclidean vector bundle
(F,g¥), we associate a connection V¢ preserving the metric gF. Inb), we
construct the closed 1-form 6(F,g¥), which plays a critical role in the whole
paper. In c¢), we give the anomaly formulas, which compare the Ray-Singer metrics
associated to two couples of metricson TM and F.

In d), we introduce the Clifford algebra of an Euclidean vector space E, and its
natural actions on A(E*).

In e), we establish a crucial Lichnerowicz formula for the Hodge Laplacian D2.

In f), we state a classical formula evaluating the variation of the Ray-Singer
metrics as the constant term in the asymptotic expansion of the supertrace of a heat
kemel.

In g), we introduce an extra Clifford variable o, which will considerably simplify
our local index calculations. In h) using local index techniques, we obtain an explicit
infinitesimal formula for the variation of the Ray-Singer metric. Finally in i), we
establish the anomaly formulas.
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In this Section, we use the assumptions and notation of Section 2a) and of
Section 3.

a) A canonical connection on a flat Euclidean vector bundle

Let M be a compact manifold of dimension n. Let F' be areal flat vector bundle
of dimension m on M, and let V¥ be the flat connection on F. Let F* be the
dual of F, andlet V" be the corresponding flat connection on F*.

Let g¥ be an Euclidean metric on F. Let g be the corresponding metric
on F*. Let i be the corresponding identification F' — F*. The connection
VF* = =1V F" js also a flat connection on F', which coincides with V¥ if and
only if g¥ is flat. Once F and F* are identified, it will often be convenient to
view F' as a vector bundle equipped with two flat connections V¥ and V#*.

Definition 4.1. Let w(F,gF) be the 1-form on M taking values in self-adjoint
endomorphisms of F'

(4.1) w(F,g") = (¢) 7" VFgF.
Then
(4.2) v =vF 1w (F,g").

Definition 4.2. Let V¢ be the connection on F

(4.3) vie = vF 4 -;-w (F,¢").

From (4.2), (4.3), we get

(4.4) vhe = —(VF+vF*).

1
2
One verifies easily that the connection V¢ preserves the metric gF. Ttis
canonically determined by the metric g¥'.

Let VF+¢ be the connection on the flat vector bundle F* which is associated
to the metric g7 . Then

(4.5) vhe = jm1yfie,
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Proposition 4.3. The curvature (V)2 of the connection V¢ is given by
e\ 2 1 2
(46) (vFe) = =k (0 (Rg")".

Proof. Clearly
2

(4.7) [VF,w(F,¢")] = - (w(F,g"))".

Equation (4.6) follows from (4.7). O
Remark 4.4. Let g™ be a metric on TM. The metric g7 determines a
canonical connection V7™ which is the Levi-Civita connection of T'M. Then
the metrics gTM, gF on TM, F determine canonical connections VI'M V¢ on
TM,F. This is very similar to what happens in the holomorphic category, where

a metric canonically determines a connection. This formal analogy will play an
essential role in our work.

b) A closed 1-formon M and its cohomology class

The homomorphism u € GL(m,R) — Log|detu|> € R permits us to construct
an element c¢ in the first Cech cohomology group of M, which measures the
obstruction to the existence of a flat volume form on F'.

Definition 4.5. Let §(F,gF) be the real 1-form on M
(4.8) 6 (F,g") = Tr [w (F,¢")] .

One has the trivial result.

Proposition 4.6. The form 6(F, g¥) is closed. Its cohomology class in H'(M,R)
is equal to c.

¢) An anomaly formula for Ray-Singer metrics

Let gTM be an Euclidean metric on TM. Let VTM be the associated Levi-Civita
connection on TM and let RTM be its curvature. Recall that the Pfaffian of an
antisymmetric matrix was defined in Section 3a).
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Following (3.17), set

(4.9) e (TM,VvT™) = pf [R;M] .

Then e(TM,VTM) is aclosed n-form on M with values in o(TM). The form
e(TM,VTM) represents the Euler class of TM in H™(M,o(TM)).

If gTM, ¢'TM are two metrics on TM, and if VIM, V'TM are the corre-
sponding Levi-Civita connections, let &(TM,VTM v'TM) pe the Chern-Simons
class of n — 1 smooth forms on M valued in o(T'M), which is defined modulo
exact n — 1 forms, such that

(4.10) de(TM,VT™ v'TM) = ¢ (TM,V'™) — e (TM, V™).
Of course, if n is odd,

(4.11) e(TM,vTM v'TM) — 0.

Let now gT™, ¢'TM be two Euclidean metrics on TM, and let g¥,g'F be
two Euclidean metrics on F. Let || |laet 7» || |l4et # be the metrics on the line
bundle det F' induced by the metrics g, ¢'F . Observe that

2

/
(4.12) dLog (HA) —0(F,g"F) -0 (F,q).
det F

Let || |25 g ar,r) and | ||;§£9H,( w, ) be the Ray-Singer metrics attached to
the metrics (g7, g%) and (¢'™M,g'F).

The purpose of this Section is to establish Theorem 0.1, which we state again for
convenience.

Theorem 4.7. The following identity holds

’ 2 ’
|| ”dI:tSH‘(M,F) || ”dzetF ™
(413) Log| —gme———=| = [ Log| -—3%E |e(TM,V )
M

2
I Naes 2o, ) I e

_/ 0 (F,gT)e(TM, VM, v'TH),
M
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In particular, if dim M = n is odd, then

| 1 |
I et H*(M,F)
Proof. Theorem 4.7 will be proved in Sections 4d)—4i). O

Remark 4.8. Equation (4.14) is the well-known basic result of Ray and Singer
[RS1, Theorem 7.3].

d) Clifford algebras and exterior algebras

Let E be a real finite dimensional vector space of dimension n. Let g¥ be an
Euclidean metric on E.

The exterior algebra A(E*) is Z-graded, and so it posseses a natural Z,-grading.
If A € End(A(E*)), let Trs[A] be the supertrace of A, as defined in (1.9).

If e € E, let e* € E* correspond to e by the metric g©. Set

c(e) =e* A —i.,
(4.15) R
cle) = e* A +ie.

The operators c(e),c(e) acton A(E*). If e,e’ € E, then

c(e)c(e’) + c(e)c(e) = —2 (e, €'),
(4.16) de)ale) + e ele) = 2 (e, €y,

c(e)é(e’) + ¢(e')c(e) = 0.
From (4.16), we deduce that the maps e € E — c(e), ¢(e) extend to representations
of the Clifford algebra c¢(E) of E. Also, End(A(E*)) is generated as an algebra
by 1 and the c(e),c(e)’s.

Let e;,-- -, e, bean orthonormal base of E, let e!,---,e™ be the dual base of

E*.

Proposition 4.9. Among the monomialsinthe c(e;),c(e;) s, only c(e;)c(e1) - - - c(en)
C(en) has a nonzero supertrace. Moreover

(4.17) Trs [c(e1)e(e1) - - c(en)e(en)] = (=2)"
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Proof. Assume that n = 1. Then 1, c¢(e;),c(e;) have a supertrace equal to 0.
Moreover

(4.18) c(e1)d(er) = 2e' Ao, — 1,

and so

(419) T&’s [0(61)8(61)] = -2.

Equation (4.19) immediately extends to (4.17). O
We consider the vector space £ @ E. Then e;,---,e, still denotes an

orthonormal base of the firstcopy of £ in E®FE, and €3, - -, €, the corresponding

orthonormal base of the second copy of E. Also el,---,e™ and €',---,e™ denote

the dual bases of the first and second copies of E* in E* @ E*.
For t > 0,e € E, if e* € E* corresponds to e by the metric g%, set

e* .
ct(e) = m A —t1/4’le,
(4.20) -

e*

ale) = 77 A +t%5,

The operators c;(e),¢;(e) act on A(E* @ E*) = A(E*)®A(E*). Moreover if
e,e € E,

ci(e)ei(€') + ci(e)ei(e) = =2 (e, '),
(4.21) ci(e)ei(e') +ci(e')ci(e) = 2 (e, €'),

ci(e)ei(e') + ¢i(e')ei(e) = 0.
Using (4.16), (4.21) we see that there is ahomomorphism of algebras v, : End(A(E*))
— End(A(E* @ E*)) which for e € F, maps c(e) in c;(e) and c(e) in Ci(e).

Now the operators e A--- e’ A& A--- &4 Aig, -~'ie,,p, ie’,: . --ie: are lin-
q

early independent in End(A(E*)®A(E*)). Moreover, if u € End(A(E*)), ¥1(u)
is a linear combination of such operators.

Definition 4.10. For u € End(A(E*)), let {¢:(u)}™** € R be the coefficient of
the monomial e’ A---Ae™ A€l A--- A€" in the expansion of ¥;(u).

Proposition 4.11. If u € End(A(E*)), then for any t > 0,

(4.22) Tr.fu] = 27(=1) "7 1% {u(w)}™™.
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Proof. Equation (4.22) follows from (4.17). O

e) A Lichnerowicz formula for the Hodge Laplacian

Recall that dF denotes the natural action of V¥ on F. Also df* is the formal
adjoint of d¥ with respect to the scalar product (, ).

Asin (2.5), set
(4.23) D =dF +df*.

The connection VTM induces a connection VA(T™M) on A(T*M). Let V, V©
be the connections on A(T*M) Q@ F'

V=vMI'M)a14+1QVF,

(4.24) ‘
Ve = vA(T M) R1+1Q® VF’e.

Let e;,---,e, be an orthonormal base of TM, let e!,--.,e™ be the corre-
sponding dual base of T™ M.

Proposition 4.12. The following identity holds,
(4.25) D= ;c(ei)vzi - %Z:E(ei)w (F,9%) (ei).

Proof. Since VTM is torsion free, it is clear that

n
(4.26) dF =3 e V.,
1

Then a trivial computation shows that

(4.27) dF* ==Y i, (Ve, +w (F %) (e3) -

From (4.26), (4.27), we get (4.25). O
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Let now e;,---,e, be a locally defined smooth section of the bundle of
orthonormal frames of 7M. Let A, A€ be the Bochner Laplacians

NS (V2 - Vorme,).
1

A¢ = f: (vgf - VeveTiMe‘) :
1

(4.28)

The Laplacian A€ is self-adjoint with respect to the scalar product (2.2) on F.

Let K be the scalar curvature of (M, gT™). Now we prove the following
extension of Lichnerowicz’s formula [L].

Theorem 4.13. The following identity holds

(4.29) D? = —A° + % + % Z <ek,RTM (e,', ej) eg>
1<i,jk,e<n
cledeles)eleniled) + 3 3 (@ (Fg") (o)’
1<i<n
5 20 (eledeles) — alele) (w (F,g"))” (eives)
1<i,j<n
—-}I Z c(e;)ele;) (ng (F, ") (ej) + Viw (F,g%) (ei)) .
1<i,j<n
Proof. Set
(4.30) D = ic(e,-)vgi.

1
Then D° is an operator of Dirac type acting on F.

If A€ End(TM) is antisymmetric, A acts on A(T*M) as a derivation, and
its action is given by
1 N
(4.31) T (Aenes) (eledeles) — aledales)-

1<i,j<n
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Also (V)2 is given by (4.6). By using an obvious extension of Lichnerowicz’s
formula [L] and also (4.31), we see that

(43)  (DP=-At Az T (R (ene)er)

4 1<i,j,k<n
cled)eles)oleriled) — 5 O eleileles) (v (FrgP))’ (eives)-
1<i,j<n

Moreover by (4.16) and by Proposition 4.12, we get

(4.33) D*= (DO)2+ Z (e, +_ Z (ei)cle;)
1<z<n 1<1,]<n
(w (F,95))* (eire5) % Y cles)ales) (Verw (Fyg™) (e5)) -
1<i,j<n

Using (4.7), we obtain
1
(4.34) VI*w (F,g") (e;) = VEw (F,g%) (ej) + 3 (w (F,g7))* (eire;)

= 3 (V5 (R () + 5 (RF) @9)

From (4.32)—-(4.34), we get (4.29). a

f) An infinitesimal variation formula for the Ray-Singer metric

Let £ € R — (gfM,gf) be a smooth family of metrics on TM, F. Let %, be
the Hodge operator associated to the metrics g; TM_ Let D, be the operator D
defined in (4.23) attached to the metrics (g7 ™,g;"). Let || |25 go(pr, i) 0 be the
corresponding Ray-Singer metric on det H*(M, F)).

Theorem 4.14. If n is even, as t — 0, for any k € N, there is an asymptotic
expansion

k
(4.35) Tr, [( *y 1?; +(g¢)” agﬁ )exp(—tD?)] = D Mj+o(t).

j=-n/2
Also if n is even,

F) 2
(4.36) 57 08 (|| [ He(M,F) e) = Mo, -
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Moreover if n is odd,

9 RS 2
(4.37) 57 o8 <|| et H-(M,F),e) =0.

Proof. Our Theorem follows from similar computations which are done in Ray-
Singer [RS1, Theorems 2.1 and 7.3] and Bismut-Gillet-Soulé [BGS3, Theorem 1.18].
Note that in the case where n is odd, (4.37) is a consequence of the fact that there
is no constant term in the asymptotic expansion of the left-hand side of (4.35). O

Let ey,- -, e, bean orthonormal base of TM with respect to the metric g7 ™.

Proposition 4.15. The following identity holds
_1 0% 1 -1 0gfM ~
1276 — _ - TM\=2 293¢ . .. : ).
(4.38) (*e 5 ) > 5 <(ge ) 57 e,,e;>gTM c(ei)cle;)

Proof. Clearly

10k 1 _1 0gTM
4.39 177¢ _ ™ 2 e
(4.39) (*e) ¢ 2 21: <(ge ) a0 €€ .
T™
- Z <(9?M)_1 %g;—ei,ej> ei Nie;.
1<i,j<n gT™M
Equation (4.38) follows. O

g) A Clifford algebra trick

Let o be an auxiliary even Clifford variable, such that 02 = 1. So ¢ commutes
with the c(e;) ’s, the €(e;) ’s and more generally with all the previously considered
operators.

Let A, B € End(F) be trace class. Then A 4 0B liesin End(F)®R(c). Set

(4.40) Tr?[A + 0 B] = Tr,[B].
Definition 4.16. Set
(441) (D))" =3 1<§<nc<ei)6(ej) (VE@(F.g") (e5)+ VEw(F g7 (),

(D%)even — D2 _ (D2)Odd .
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The operator (D?)°44 is in fact odd in the Clifford variables c(e;) or c(e;), while
(D%)even is even in the Clifford variables c(e;) or ¢(e;).

Let dvps e be the volume form on M with respect to the metric g7 ™.

Definition 4.17. Let P, o(z,z’)(resp .Q ¢(x,2’)) be the smooth kemel with re-
spect to the volume form dvys.(2') associated to the operator exp(—tDj}) (resp.
the operator exp(—t((DZ?)°Ve" + a(D3?)°44))).

Theorem 4.18. If n is even, and if M is oriented, for any x € M,t > 0, the
following identity holds

0 10
(4.42) Tr, [*;1§Pt,e(x,x)] =Trd [*e I%Qt,e(:x,x)] .

Proof. Since M is oriented, the operator *, maps F into itself. Also *2 is a
constant operator, and so

6*3 6*£ _
(4.43) *KW + W*e =0.
Set
—10%¢
(4.44) C=x IW,
From (4.43), we get
(4.45) *eC*Zl = -C.

In fact (4.45) can be directly verified by using (4.38).

Also (D%)°ve™ and (D3?)°d4 preserve the Z-grading in F. Moreover one easily
verifies that

(446) *o (D§)even *e_l — (Dg)even :
v (D)™ 471 = - (D)™

Let h be a smooth function from M into R. Since *, is an even operator
acting on F (ie. it preserves the Z,-grading of F), and since supertraces vanish
on supercommutators [Q1], we see that

(4.47) Tra [xehCexp (—t (D)™™ + 0 (DF)*) ) 7]
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= Tr, [hC' exp (—t ((D%)even +o (DE)Odd))] .
On the other hand, by using (4.45), (4.46), we get
(4.48) Trs [hC exp (—t ((D%)wen +o (D?)Odd)) *Zl]

= —Tr, [hC exp (-—t ((Dﬁ)eve" -0 (D%)Odd))] :
From (4.47), (4.48), we conclude that
(4.49) Tr, [hC exp (—t ((Dﬁ)eve" to (D%)Odd))]

. [hCexp (—t ((Dg)even o (D%)Odd))] )

Since (4.49) holds for any smooth function h : M — R we easily get (4.42). O

h) The small time asymptotics of the supertrace of certain heat
kernels

We make the same assumptions as in Sections 4f) and 4g). Let V7™ be the
Levi-Civita connection on (T'M,gf™), andlet R]™ be the curvature of V7M.
Let p be the projection M x R — M. Let gTM:tot be the metric on p*TM

which coincides with g7 ™ over M x {¢}. Let VTM:tot pe the connection over
pTM

0 1 -10g9TM

TMptot _ x—oTM T™ 4

(4.50) \Y =p*VIM 4 de (6[ = (ge™) 350 )

Then VTMstot preserves the metric g7M*°t, The curvature (VTM:tot)2 of
VIMtot jg given by

ot)2 * 9 1 -1 agTM
(4.51) (VTMtet)? _ ZM+d£(aeV —§[V{M,(yeTM) = | )

Definition 4.19. Set
(4.52)

8 8 1 -1 ggFM
% (TM) = abe[ (R"’TM“(an E[V{M’(JM) gfﬁt o

By a standard argument in Chern-Weil theory, we know that

0.
at°

(4.53) e(TM,ViM VM) =&, (TM).
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For z € M,e > 0, let BM(z,¢) be the open ball of center z and radius € in M
with respect to the metric g7, and let BT=M(0,¢) be the open ball of center 0
and radius ¢ in T, M with respect to the metric g7=™.

Theorem 4.20. Assume that n is even. Then

(4.54) Mj,g =0 for j <0,
Fy-1 99¢ ™ F\ o
M0,£=/ Tr (gl) W— C(TM,Ve )—/ 0(F,ge)ee(TM).
M M

Proof. In the whole proof, we will use the notation of Section 3 on the Berezin inte-

gral. We first calculate the asymptotics as ¢t — 0 of Trs[(g/” )‘1931; exp(—tD?)].
Here the metric g7™ will be fixed. Also we will often omit the subscript .

First we proceed as in Getzler [G]. Let a > 0 be the injectivity radius of
(M,g™™). Take ¢ suchthat 0 < € < a/2. Take z € M. Let e1,---,e, be
an orthonormal base of T,M. We identify the open ball BT=(0,¢) with the
open ball BM(z,¢) in M using geodesic coordinates. Then y € T, M, |y| < ¢
represents an element of BM(z,¢). For y € T, M, |y| < €, we identify T, M, F,
to T, M, F, by parallel transport along the geodesic ¢ € [0,1] — ty with respect
to the connections VTM v Fe,

Let I'TM.z be the connection form for VI'M in the considered trivialization of
TM. By [ABoP, Proposition 4.7], we know that

o1
(4.55) Ty = SR M (y,) + O(lyl*).

The induced connection form F'y\(T; M) on A(T} M) is given by
(4.56)

PQ‘T”‘“”% Y ((BIM(y:-)eires) + O(ly)) (clei)ele;) — Bles)ele;)).-

1<i,j<n

The operator D? now acts on smooth sections of (A(T*M) ® F), over BT=M(0, ¢).
If h is a smooth section of (A(T*M)Q® F), over T, M, set

(4.57) T,h(y) = h (%) .
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Let K, be the operator
(4.58) K; = T, 'tDT;.

Then K, is a differential operator with coefficients in the algebra spanned by the
c(ei) ’s, the ¢(e;) ’s and elements of End(F),.

Let L; be the operator obtained from K; by replacing the Clifford variables
c(e;),c(e;) by ci(ei),ci(e;) defined in (4.20). Let AT=M be the flat Laplacian
over T, M for the metric g7=™ . Using (4.29), (4.56), one concludes easily that as
t — 0, the coefficients of L; converge uniformly over compact sets together with
their derivatives to the coefficients of the operator Ly given by

1 . .
(4.59) Lo=-ATM 4 3 E (ek,R{M (eirej)ec)e’ ANe? A RN
1<i,j,k,0<n

If we use the notation in (3.38), we get
RTM
(4.60) Lo=—ATM 4 =
Let dvys be the volume element on TM with respect to the metric g7™
Here dvys is viewed as a section of A™(T*M) ® o(T'M). Using Proposition 4.11,
equation (4.60), and proceeding as in Getzler [G], we see that as ¢ — 0,

(461) | (of) ™ % p, (@,2)] dow )
Fy B 5TM
— (Tr [(g{')—l %-] / exp (—R )) (z) uniformly on M.
ot 2
Moreover
(4.62)
F
T ()" 2o (-10)] = [ [0 Zip (0,0)] aom (o)
From (4.61), (4.62), we get
(4.63)

lim Tr, [( F)” agg exp (— tpg)]= /M Tf[(g{)‘l %’f—]e(TM,gTM).
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Now we assume that the metric ¥ on F is fixed, and that the metric g7 ™ on
TM depends on £. We will calculate the asymptotics of Trs[(*, ) %t exp(—tD7)].
Clearly

(4.64) Tr, [*e 686 exp (— th)] = /M Trs [*;1(?% P, y(z, a:)] dvup ().

Take = € M. We assume first that M is oriented. Then by Theorem 4.18, we get

(4.65) Tr, |* [ 7 aa 7 P, o(z, a:)] [ -10%¢ Qt oz, :c)]

In the sequel, e;,---,e, is an orthonormal base of T, M with respect to the
metric g7 M, and e!,---,e" is the corresponding dual base of T M .

We consider R equipped with its canonical Euclidean metric. Let a = 1 € R,
let a* € R* correspond to a by the metric of R. For ¢ > 0, set

(4.66) S f;\ i,
If ¢+ do € R[o], then
(4.67) c+doy=c+ cf;f tig.

In the sequel, the operators a*A and ¢, will commute with all the other operators
considered before.

Take = € M. We trivialize TM and F on BM(z,¢) as before. Then
the operators (D?)ver (DZ%)°4¢ act on smooth sections of (A(T*M)® F), on
BT=M(0 ¢). We define T; as in (4.57). Set

(4.68) K =T ((D})™" +0 (D)) T..

In K, wereplace c(e;) by ci(e;), ¢(e;) by ¢i(e;) and o by o;. So we obtain a
new operator Lj. Let A{ M be the Laplacian on T, M with respect to the metric
gf =M Using (4.29) and (4.56), one verifies easily that as ¢ — 0, L} converges to
o given by
(4.69)
Ly= AT M+ RIM_ 1 *A Z e'ned (Ve w(Fg )(ej)+Ve,w (F,gF)(e;)).
1<4,5<n
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Let C; be the operator obtained from *, 2% by replacing c(e;) by ci(ei),

oL
and C(e;) by C;(e;). Using (4.38), we find that
. _ 1 ™ -1 agg‘M . ) i -~
(4.70) }1_1}5 ViC, = — 1<iZj:<n 3 <(ge ) —67—61,61 - e Nel.

By Proposition 4.11, by equations (4.69), (4.70), and by proceeding as before,
we deduce easily that

(4.71) lim Tr, [*Zl%l’t,e(x,x)] dv ()

B ™
1 -— 3 i -~
] (b 5 (89
i< p
5TM R
exp <—Re2 ) A % Z e Nel

1<i,j<n
Tr [Vf.-“’ (F, ") (e;) + Vf;.w (F,g%) (ei)] }(x) uniformly on M.

When M is not orientable, equation (4.65) does not hold any more. However
the evaluation of the asymptotics of the left-hand side of (4.71) is local near = € M.
By embedding the considered local neighborhood in an orientable manifold, we see
that (4.71) remains valid in full generality.

Recall that ¢ was defined in Section 3f). Then
(4.72) o8 (F,gF) =30 (F,gF) (e:)e'.
i=1
By (4.7), (4.72), we get

(4.73) -;- Y e"/\e?'Tr[ng(F,gF)(ej)+vfjw(F,gF) (e,-)]

1<i,5<n

= Z e Ael Tr [Vf'_w (F,gF) (e;)] = vTM g (F,gF) .
1<i,j<n

Using (4.64), (4.71), (4.73) and Stokes formula, we find that

«TM
exp (—th)]

(4.74) lim Tr, [*;1 9 af n
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T™ Lo~
L o )
1<1_7<n oM
iy '
exp | ——5 Agb (F,g") ».

Set VIM = yTM  Then the connection VI ™ given by

(4.75) ViM =vT™ 4 2( gfM) T yTMgTM

preserves the metric g{M . Its torsion 7T, is such thatif X,Y € TM,
(076) To(X,¥) = 3 (oF™) ™ (VEMGEM) ¥ - 2 (o) ™" (VEMaP™) X.

From (4.76), we deduce that

0 1 -1 0g9TM
(4.77) B Te(X,Y)je=0 = (EVEM ((g? ") 73;‘—) Y
Yo (T -1 997 M
2V ((g ) ot )* le=o0
Set
(4.78) Se=VIM _yTM,

From (4.75), (4.78), we get

(4.79) 9 Vi — > [VT M (gF™)

or 2

o) _os
15)4 |e=0 ot |l=0.

Let ( , ) be the scalar product on TM for the metric gd ™. Since VM is
torsion free, one sees easily thatif X,Y,Z € TM,

(4.80) <an (X)Y, z> <%M=O(X, Y), Z>

+ <%IZ=O(Z,X),Y> - <‘967;‘ (V,.2), X> =0.

Using (4.77), (4.80) we get

(4.81) <Y %‘Z"’ o (X)Z > =- <g—€le=0(y, Z),X>.
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Set

9Se 1/ 85, o
4.82 == = 2 95, ' P o
(4:82) O ye=0 Z 2 <e’°’ EY] |e=o(e')ee>e NeF Aet.

1<ij<n

Using (4.77), (4.81), (4.82), we see that

(4.83)
@ (—— =-V = Z <(ge ) —i—-—ei,ej> e'Nel | .
So from (4.74), (4.83), we get
(4.84) lim Tr, |*;! 0% exp (—tD3)
o T ‘ le=0

L ) () )
(3 (3)) ()

Using now Theorem 3.13 and (4.84), we find that

. 0%
-1 D2
(4.85) P—I»Itl) Tr l:*e 57 P ( tDe)] o

B RTM 4 85S¢

0 Ry ™ + 5% o=

- _ F o _ [¢=0

= /MG(F,g ) abexp( ( 5 i
b=0

From (3.3), (4.52), (4.79), (4.85), we finally get

(4.86) lim Tr, *Zléﬂ exp (—tDj) =- / 8 (F,g%) e (TM).
t—0 ol |e=0 M

Of course (4.86) also holds for arbitrary £. The proof of Theorem 4.20 is completed.
O
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i) Proof of Theorem 4.7

By Theorems 4.14 and 4.19, we get

6 2
(4.87) 57 Log (|| [l H-(M,F),e)
-1 0gf ™ Fy o
::/ Tr (ge) W e(TM,Vz )—/ o(F,ge)Ce(TM).
M M

Using (4.53) and (4.87), we obtain (4.13 ).
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V. A closed 1-form on R} x Ry

In this Section, given a smooth function f : M — R, we exhibit a closed
1-form oy, on R} x R, which s calculated in terms of the supertraces of certain
two parameter heat kernels. This 1-form is very similar to .a corresponding 1-
form obtained in Bismut-Lebeau [BL2, Theorem 3.3] in a different context. By
integrating o, 7 on aclosed contour I', we will obtain an important identity. In the
next Sections, by a suitable deformation of the contour I', we will ultimately derive
Theorem 0.2 from this identity.

This Section is organized as follows. In a), we introduce the family of smooth
metrics e~2TfgF on F. Inb), we calculate the Witten Laplacian D2. [W]
associated to the smooth function T'f. In c), we construct the 1-form a; 7. Ind),
by integrating o, on a contour I', we obtain an identity, which is the main result
of this Section.

Here we use the assumptions and notation of Section 2a) and of Sections 4a),
4b).

a) A family of smooth metrics on F

Let M be a compact connected manifold. Let F' be a real flat vector bundle on M.
Let g”™ be a smooth metric on TM, let g¥ be a smooth metric on F.

Recall that dF denotes the natural action of the flat connection V¥ on F.
Moreover (, )a¢r+m)gF still denotes the scalar product on A(T*M) ® F which
is attached to the metrics g7 and gF. Also w(F,gF), 6(F,g") are defined by
4.1), (4.8).

Let f : M — R be a smooth function.
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Definition 5.1. For T > 0, let g4 be the smooth metric on F

(5.1) gF = 21",

We equip F with the L? scalar product ( , )7 attached to the metrics g7¥,
g% on TM,F. Namely, if o, 8 € F, we have

(5.2) (o B)g 1 = /M (0 Bz myar ()T O dun (2).

Let df* be the formal adjoint of ¢¥ with respect to the scalar product { )g,r
on F. Clearly

(5.3) dE* = e2TfgF*e2T1,
Set
(5.4) Dr =df +dE*.

The operator Dr is self-adjoint with respect to the scalar product ( ). Also
D% = dFdf* + dE*dF is the Hodge Laplacian associated to the metrics g7, gF.
on TM,F.

Let df € T*M be the differential of f. We identify 7*M to TM by the
metric 7M. Let Vf € TM be the corresponding gradient vector field.

Let Lvy be the Lie derivative acting on F

(5.5) va = dFin + ivde.

Proposition 5.2. The following identities hold

(5.6) df* = dF* + 2Tivy,
D% = D? + ZTLVf.

Proof. The first identity is obvious. The second identity follows easily. a

82
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b) The Witten Laplacian

(5.7) dE = e TfdFeTf,
65 = eTfdF*e~ TS,

The operators d%., 6% were introduced by Witten [W]. Clearly
(5.8) (dF)* =o.
The complex (IF,dk) will be called the Witten complex.

Then 6% is the adjoint of df with respect to the scalar product ( , )g =
( ) )IF,O-
Proposition 5.3. The map
(5.9) aeFoe TlaeF
induces an isomorphism of the Euclidean complexes (F,d¥,( , )rr) and
(F,d%,( ’ >1F)
Proof. This is obvious. O

Let 57 be the operator

Proposition 5.4. The following identities hold

~

(5.11) Dr = e T/Dre™/,

13% = e‘TfD%eTf.
Proof. This follows from (5.4), (5.10). a
Let L3, be the adjoint of Ly with respect to the scalar product (, )r- Then

Ly + L% is an operator of order 0 acting on F. Also &(Vf) is defined as in
(4.15).
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Proposition 5.5.
df = d¥ + TdfA,
(5.12) 6F = df* + Ty,
Dr = D+ TaVy).

Moreover
(5.13) D%} = D? + T (Lvs + L) + T?|df 2,
D} =D? - Tw (F,g") (VH+T Y <V£'Mdf,ej> c(e:) E(e;) + T?|df 2.

1<i,j<n

Proof. The identities in (5.12) are obvious. Also

(5.14) D% = D*+ T (d¥ivy + ivsd") + T (dF*df A +df AdF*) + T2|df 2.
From (5.5), we get

(5.15) df*df A+df AdF* = Ly,

The first identity in (5.13) follows from (5.14), (5.15). Using the last identity in
(5.12), we obtain

(5.16) D% = D? + T[D,&VF)] + T?|df|*.
By (4.16) and by Proposition 4.12, we find that
(5.17) [D,aVHl= Y ele)e(VeMVSF) —w (Fg") (VH)
1<i<n
Using (5.16), (5.17) we get the last identity in (5.13). O

¢) A basic closed 1-form

Here we prove an essential result, which is an analogue of a result of Bismut-Lebeau
[BL2, Theorem 3.3].

Theorem 5.6. Let oy T be the 1-formon R} x Ry

(5.18) oy = %’I\rs [N exp (-tD%)] — dT Tr, [f exp (-tD%)] .

Then oy T is closed.
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Proof. We proceed as in [BL2]. The vector space F is Z-graded, and so it is
Z,-graded. Let 7 € End(F) be the operator defining the Z,-grading, i.e. 7 = +1
on Fe¥e® 7 = —1 on F°4¢. Then End(F) is a Z,-graded algebra, the even (resp.
odd) elements of End(F) commuting (resp. anticommuting) with 7. Now the key
fact is that d¥',dE* and D7 are odd operators. Clearly

91 \
T2 — Tr, [N exp (—tD7)]
10

-12 {’I‘rs [Nexp (—tD% - [DT’ aalerD] }b=0 |

Since the supertrace Trs vanishes on supercommutators [Q1], we get

(5.19)

d 1
(5.20) o773 1 Ve (D7)
Y 0Dt
__5%{’1&5 [[DT»N]GXP (_tD ~r oT )]} =0
Now
(5.21) [Dr, N] = —d" +d7*.

Moreover, using (5.3), (5.4), we get

8DT

(5.22) = [2£,d77].

So from (5.20)—(5.22), we obtain

J 1
(5.23) 573 s [N exp (-tD%)]
9 . .
= 57 (T [(@ = dF*) exp (D + b [dF", /)] } oy -
Also
(5.24) [dE*, D2] = 0.

Using again the fact that Tr, vanishes on supercommutators, from (5.23), (5.24),
we get

01
oT 2t

9
= o5 {Trs [[d7",d" — df*] exp (~tD% + bf)] },,

(5.25) — Tr, [N exp (—tD?%)]
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= % {Tr, [DF exp (~tDF +bf)] },_,
— % {Tl‘s [f exp (—tD% + bD’?l‘)] }b=0

=~ 2, [fexp (~1D3)].

The proof of our Theorem is completed.
Theorem 5.7. For t > 0,T > 0, the following identity holds

(5.26) ayr = gm [N exp (-tb%)] — dT Tr, [ Fexp (-tﬁ%)] .

Proof. Equation (5.26) follows from Proposition 5.4.

d) A contour integral

We fix constants €, A,Ty suchthat 0 < e <1< A < 400,0 < Ty < +00.

Let I' = I'c 4,7, bethe contourin R} x R}

t A
I,
A <
AT
Y 1
Iy
e >
ry |
|
- >
0 TO T




A CLOSED 1-FORM

As shown in Figure 1, the contour I' is made of four oriented pieces.

I': T =T, e<t< A
[2:0<T<Ty, t=A4;
(5.27)
I3:T =0, eSt< A4
Iy:0<T<7Tp, t=e.
The orientation of I'y,---,T'y is indicated on Figure 1.
For 1 <k <4, set
(5.28) = / a
Tk
Theorem 5.8. The following identity holds
4
(5.29) Y =o.
k=1

Proof. This follows from Theorem 5.6.

Remark 5.9. The proof of Theorem 0.2 will now consist of two steps :

— A first step is to make an adequate choice of the function f, and of the metrics

gTM and gF.

— A second step will be to make A — +o00,Ty — 400, — 0 in this order
in equality (5.29). Each term Ip(1 < k < 4) will diverge at one or several of
these stages. Once the divergences will have been substracted off, we will ultimately

obtain an identity which is exactly Theorem 0.2.
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VI. Some properties of the integral
— [, 0(F, gF)(V ) (1M, VM)

Let f: M — R be a Morse function, and let Vf be the gradient field of f
with respect to a given metric on T M.

In this Section, we show that when the metrics g¥,gTM vary, or when the
gradient field Vf varies, the variation of — [, 0(F,g")(Vf)*¢(TM,VTM) is
essentially the one which is predicted by the anomaly formulas for the Ray-Singer

metric, which were stated in Theorem 4.7.

As explained in Section 7 b), this step permits us to reduce the proof of Theorem
0.2 to the case where the metrics g7™ and g% are as-simple as possible.

A by-product of Theorem 0.2 is that the integral — [, 0(F,g")(Vf)*y(TM,
VTM) only depends on the metrics g7™, gF and on the Thom-Smale complex
associated to V f. In this Section, we give a more cohomological expression for
this integral in terms of Chern-Simons forms and of the Euler number of a vector
bundle on a cycle of codimension 1.

This Section is organized as follows. Ina), we show that the integral — f,  6(F, g")
(VF)*¢(TM,VTM) is unchanged when replacing V£ by another gradient field
for f. Inb), we give variation formulas for this integral. Finally in c), we express
the integral in a more cohomological form.
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a) Homotopy invariance of the integral

We make the same assumptions and we use the same notation as in Section 4. In
particular M is a compact manifold and F' is a flat vector bundle on M.

Let f: M — R be Morse function. Let B be the set of critical points of f. If
z € B, let ind(z) be the index of f at z.

Let (g7M,g%) and (9™, g'F) be two couples of metrics on TM, F. We use
the notation of Sections 4a) and 4b) for the couple (g7, g'). The corresponding
objects associated to (g’7M, g'F) will be denoted with a /. In particular, Vf and
V’f denote the gradient vector fields of f with respect to the metrics g”™ and
gT™. Let || |laetF and || ||}, r be the metrics on the line bundle det F' induced
by ¢F and ¢'F

Recall that the current (T M, VTM) on TM was constructed in Section 3d).
By Remark 3.8, (Vf)*(TM,VTM) and (V' f)*y(TM, VTM) are well-defined
locally integrable currents on M with values in o(T'M), which are smooth on
M\B. Moreover they verify the equation of currents

(6.1)  d(VH) % (TM, V™) =e(TM, V™) = > " (-1)g,,

z€EB

d(V'f)" o (TM, V™M) = e (TM,VTM) — Y~ (~1)ind@)s,,
Tz€B

Proposition 6.1. The following identity holds
(6.2)

-/ 0 (F,g") (V)¢ (TM,VTM) =-/ 0 (F,g") (V' f)*y (TM,VTM).
M M

Proof. For ¢ € [0,1], set

(6.3) M = (1-0)g™ + g™
Let V,f be the gradient of f with respect to the metric g7/™. Then V,f
has the same zeroes as Vf. Using the current equation (6.1) over M x [0,1],

we deduce that the closed current (Vf)*y(TM,VIM) — (V' f)*(TM,VTM) is
exact. Since the form 8(F, gF') is closed, equation (6.2) follows. a
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Remark 6.2. The vector fields V’f are exactly the gradient vector fields for f in
the sense of [Sm1]. Let g : M — R be another Morse function having the same
critical points as f with the same indexes. Laudenbach has shown to us that in
general, the vector fields Vf and Vg are not homotopic in the class of vector fields
whichexactly vanishon B and are nondegenerate at B. Alsoin general the integrals
- fM H(F,gF)(Vf)*dJ(TM, VTM) and — fM O(F, gF)(Vg)*¢(TM7 VTM) take
different values. The counterexample of Laudenbach is very simply constructed on
the 2-dimensional torus.

b) Variation formulas for the integral
— I O(F, g7 )(V £ (T M, VM),

Here we study dependence of — [, 0(F, g*)(V f)*¢(TM,VTM) in terms of g¥
and VM,

Theorem 6.3. The following identity holds

©64) =[ 0(RgT) (V)0 (@M TN [ 0(Fg") (V)w (TM,TH)

=/ 0g<” IIdetF)e(TM,VTM)—/ G(F,g,F)g(TM,VTM,V,TM)
M M

" “det F

_ Z( l)md(z)L og (” “det F,) )

eB I et £

Proof. Clearly

I Naee 7
Using the equation of currents (6.1), and (6.5), we get
(6.6) - /M (6 (F,g'F) — 6 (F,gF)) (VF)*¢ (TM,VTH)
| s ~ W
= / Log # e (TM, VTM) _ Z (_l)lnd(z) LOg get F, )
M I Naes 7 z€B I et F,
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Also by (3.34), we obtain
67) - /M 0 (F.g'") (V)¢ (TM, V™) — (Vf) 9 (TM,VTM))
= -/ 0 (F,gF)e(TM,vTM v'THM),
M

Then (6.4) follows from (6.2), (6.6), (6.7). a

Let z;,- -+, x4 be the elements of B.

Let ({/,z) € Rx M — fy(z) € R be a smooth function such that fo = f.
Then there exists € > 0 such that if |[¢| < 2¢, f, is a Morse function. Let B, be
the set of critical points of f,. Thenif € > 0 is small enough, there are smooths
maps £ €] — e,e[— z;0 € M (1 <i<q) suchthat z1,,---,24, are the critical
points of f, and their index does not depend on ¢.

Proposition 6.4. For |{| < ¢, the following identity holds

0

(6.8) 5 (— /M 0 (F,g") (Vfe)* ¢ (TM, VTM))

S (%)

Proof. Using again the fact that the form 6(F,g¥) is closed and the equation of
currents (6.1), we get (6.8). O

Remark 6.5. A comparison of formulas (3.13) and (6.4) shows that they are not
unrelated. Theorem 0.2 gives a precise content to their similarity.

In Section 16, by using Laudenbach’s explicit description of the deformation of
the Thom-Smale complex along a Cerf path [Ce] connecting two Morse functions,
and also Proposition 6.4, we will give a direct proof of a formula calculating the ratio
of two Milnor metrics, which does not rely on Theorem 0.2.
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¢) A cohomological expression for the integral
- fM 0(F7 gF)(Vf)*¢(TM7 VTM)‘

Let K' be a smooth triangulation of M such that K '"~1 B = . Over each
simplex o € K ™\K "1, the 1-form § has a primitive V,, ie.

(6.9) dV, =0 (F,g") ono.
Of course V, is smoothon o.

Let V be the locally integrable current of degree 0 on M, such that for any
o € K'™\K'"!, V coincides with V, on o. Obviously, there is a closed current
7 of degree 1, whose support is included in K'»~1, such that

(6.10) dv =0 (F,g") — .
In particular the support of v is included in M\B.

Over M\B, the vector bundle TM has a nonzero section Vf. By Chemn-
Simons theory, there is an unambiguously defined class &(TM,Vf,VTM) of
smooth forms of degree n — 1 on M\B, which is defined modulo exact smooth
forms on M\ B, such that

(6.11) de (TM,Vf,VTM) = e(TM,Vv™™) on M\B.
Of course,
(6.12) E(TM,Vf,VIM) =0 ifn is odd.

The quotient vector bundle /4y is well-definedon M\B. Let e({7y) denote
the corresponding Euler class. Then e(4y) is acohomology class on M\B, with

values in the orientation bundle o( {5%y) of Ty. Of course,

T™
6.13 e (—) =0 ifnis even.
(6.13) &5
Moreover it is clear that
T™
6.14 o| ——= | =o(TM) over M\B.
(6.14) (fo77) =T over b\

Therefore fye(;[%%) is a cohomology class on M with values in o(T M), and the
integral [,, 'ye({%—]‘;}) is well-defined.
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Theorem 6.6. The following identity holds

(6.15) -/Mo(F,gF) (Vf)*¢(TM,VTM)=/ Ve (TM,VTM)

M
- Y ()rev(E) -

g s - (Be))

Proof. Using (6.1), (6.10), it is clear that
(6.16) - [ 0(F.g") (V1% (M, 97H)
M

- / Ve (TM,9T™) = T (~1)md@V (z) - / Y (V)" % (TM, VTM).
M

z€EB M

Let TM* be the orthogonal bundle to Vf in TM over M\B. Then over
M\B,TM = {Vf}®TM*. Over M\B, wecanequip TM = {Vf} o TM*
with the connection VM = V{Vf} ¢ VTM™ which is the direct sum of the
projections of V7™ on {Vf} and TM<. The connection VTM still preserves
the metric g7™. Using (3.34), we find that

617) (V1) (TM,7M) = ()" (T2, 57)

=7 (TM, vTM GTM ) on M\B.
Also one sees easily that

(6.18) E(TM, vTM GTM ) = —&(TM,Vf,VTM)

Moreover by using the explicit formula (3.19), one finds that if ﬁT is the form
Br in associated to the connection VTM | then

o exp (-T|Vf]?) n
(619) (Vf) Br = — 2\/;1—.; |Vf|6 (TML,VTM ) )
and so
(6.20) (V) (TM, 6TM) = —%e (TML,VTM*) .

Using (6.16)-(6.20), we get (6.15). o
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Remark 6.7. When n is odd, (6.15) takes the form

(6.21) —/M()(F,gF) (V)" ¢ (TM, V™M)
- _ _1)\ind(z) z le lj\_l_
;L;( D )J’/M”? ({Vf})'

Equations (6.15) and (6.21) exhibit clearly how the integral — [,, 0(F, g¥)(Vf)*
Y(TM,VTM) depends on the gradient field V f.
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VII. An extension of a theorem of Cheeger and Miiller

In this Section, we establish the main result of this paper, which was stated in
Theorem 0.2. Namely we give an explicit formula relating Ray-Singer metrics to the
Milnor metrics on the determinant of the cohomology of a flat vector bundle. This
generalizes the basic result of Cheeger [C] and Miiller [Mii 1,2]. Also, we establish
Theorem 0.3.

This Section is organized as follows. In a), we restate for convenience the main
result of this paper in Theorem 7.1. Inb), by using the results of Sections 4 and 6, we
show that we only need to establish Theorem 7.1 under simple assumptions on the
metric 7™ on TM, on the Morse function f, and on the metric g on F. In
c), we state without proof nine intermediary results, which will play a crucial role in
establishing Theorem 7.1. The proofs of these results are delayed to Sections 8-15.

In d) starting from the crucial identity ";_, IJ = O established in (5.29),
we study separately the terms IP(1 < k < 4), by making in succession A —
+00,Ty — +o00,e — 0. Each term diverges at one or several stages. In e), we
verify that the divergences of the terms I)(1 < k < 4) are compatible with our
basic identity. We obtain in Theorem 7.19 an identity, which is shown in f) to be
equivalent to Theorem 7.1. Finally, in g), we prove Theorem 0.3.

The organization of this Section is closely related to the organization of Section 6
in Bismut-Lebeau [BL2]. We have tried to make the resemblance as obvious as
possible, although at many stages, the arguments are of an entirely different nature.

Throughout the Section, the assumptions and notation of Sections 1-6 will be in
force.
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a) An extension of the Cheeger-Miiller theorem

We make the same assumptions as in Section 1.

Let g™, g be arbitrary smooth metrics on TM, F. Let || ||&S 5.\ 5 be
the corresponding Ray-Singer metric on the line det H*(M, F').

Let f: M — R be a Morse function, and let B be the critical points of f. Let
X be the gradient vector field of f with respect to a given smooth metric g7 on

TM (which does not necessarily coincide with the metric g7™ ). We assume that
the gradient vector field X verifies the Smale transversality conditions [Sm1,2].

The metric gF on F induces metrics || |lget 7, on the lines det F, (z € B).
Let || |2 det H.( m,F) be the corresponding Milnor metric on det H*(M, F).

The main result of this paper is the extension of a theorem of Cheeger [C] and
Miiller [Mii 1,2], given in Theorem 0.2, which we restate for convenience.

Theorem 7.1. The following identity holds

2
(71)  Log <M) = -/MO(F,gF) X*4 (TM,VTM)

I 13es ke o,

Proof. The proof of Theorem 7.1 will occupy the rest of this Section. It relies on
nine intermediary results stated in Theorems 7.6-7.14, whose proofs are delayed to
Sections 8-15. (W]

Remark 7.2. Assume that the metric g% is flat, or more generally that the metric
| llaet 7 on the line bundle det F* is flat. Then by Remark 1.10, || ||det He(M,F)

coincides with the Reidemeister metric || || %, Ho(M,F) Also O(F, gF) = 0. From
Theorem 7.1, we thus effectively recover the theorem of Cheeger [C] and Miiller
[Mii 1,2].

b) Some simplifying assumptions on the metrics gTM , gF

Let ¢'TM ¢'F be another couple of metrics on TM, F. We denote witha ' all

the objects associated to the metrics ¢'7™, ¢'F
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By Theorem 4.7, we know that
2 1
— maH%MF) ==/'U%<u|@ap)eumLVTM)
Il ”det He(M,F) M I llaet 7
-/ 0 (F,g'F)e(TM,vTM v'TM) .
M

If z € B, let ind(z) be the index of f at z. By the very definition of Milnor
metrics, it is clear that

2
(73) Lo (!I_!Id_et_H_‘(_w) Z( 1)1nd(z) Log (” ”det Fa:) .

II ”detH‘(MF) z€B II ”detF,;

So from (7.2), (7.3), we get
| ’ IS :
(7.4) Log |:i;[t I;'(M 22N I ( det H*(M, F))
” "det He*(M,F) ” ”det He*(M,F)

2
=/ Log (“ ”gaF) TM VTM / F gIF TM VTM VITM)
M ” "detF

_ Z( l)md(:c) ( ”detF )

r€B "det Fa

Using Proposition 6.1, Theorem 6.3 and (7.4), we see that

2 2
(7.5) Log ”“th# ~ Log (” ||detH-<MF>>
G R
=_/ 9(F,9’F)X*¢(TM,V'TM)+/ 0 (F,g") X"y (TM, V™).
M M

By (7.5), it is clear that to establish Theorem 7.1 in full generality, we only need
to establish (7.1) for one given couple gTM F of metncs on TM F. Soin the
sequel, we may and we will assume that ¢g7M = gI'M je. gTM is exactly the
metric from which the gradient vector field X is defined. Equivalently, we will
suppose that X = V. Also we will assume that the metric g is flat near B.

For z € M,a > 0, let BM(z,«) be the open ball of center z and radius o
with respect to the Riemannian distance associated to g7™
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By a simple argument of Helffer-Sjostrand [HSj4, Proposition 5.1], for any
a > 0, there exists a Morse function f, : M — R, and a metric gI™ on TM,
which have the following properties :

— for9ZM coincide with f, g™ on M\|J,.5 BM(z,a). Moreover f,
has the same critical points as f with the same indexes.

— Near z € B, there is a coordinate system y = (y!,---,y™) on M centered
at z, such that near z

n
gaM ="yl
1

ind(z) n

(7.6) )= f@) =5 3 W4y 3 Wl

ind(z)+1

— The gradient vector field V, fo of f, withrespecttothe metric gZ™ verifies
the Smale transversality conditions. Also if (C*(W*,F),d) and (C*(WZ, F),0)
are the Thom-Smale complexes associated to the gradient vector fields Vf and
Vafa, the obvious map C*(W* F) — C*(WX, F) identifies the two Thom-

Smale complexes.
Let || "ﬁiif-fh, ) by the Milnor metric on the line det H* (M, F) associated
to the gradient vector field V,f, and to the metrics || ||qet 7, on the lines

det F; (z.€ B). Since the Milnor metric only depends on the associated Thom-
Smale complex and on the metrics || |det 7, (z € B), itis clear

M7Vf M’Vorfﬂ
(7.7) I Naet Hoar,ry = I Waet Ho(ha, Py -

Let VIM be the Levi-Civita connection on (TM,gZ™). Let || | yo(rr.r) .0
be the Ray-Singer metric associated to the metrics (g2, gF) on (TM,F). By
(7.2), (1.7), we see that

IS et 1 ey
(7.8) Log M.Vafa —Log| —m¢vr
R R

= _/ 0 (F,g")e(TM,vTM vIM),
M
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Using Theorem 6.3 and (7.8), we see that

2 2
” |Idet H*(M,F " "det He*(M,F)
(79) LOg ( M.V, ff: ) - LOg -”——”fM:V—f—

I ”det He*(M,F),a det H*(M,F)

=~ / 6 (F,g") (Vafa)s (TM, VM) + / 0 (F,g") (Vfa) s (TM,VTM).
M M

Since Vf = Vo fo on M\J,cp BM(z,a), by using Theorem 6.6, it is clear that
for o > 0 small enough, then
(7.10)

~ [ 0(F.g") (V10 (TM,V74) = - [ 0(F,g") (V1)b (T, 97H).
M M

So from (7.9), (7.10), for o > 0 small enough, we get

e : I :
det H*(M,F det H*(M,F
(7.11) Log( o ) ~ Lo (_W(_‘)>

” "det H*(M,F),a " "det He*(M,F)

=~ / 6 (F,g") (Vafa)s (TM,VIM) + / 6 (F,g%) (V)*$ (TM,VT™).
M M

So we deduce from (7.11) that, to establish (7.1) in full generality, we may and
we will assume that :

—For any = € B, the metric g¥ is flat near B.
— For any z € B, there is a system of coordinates y = (y,---y™) centered at
z such that near z

ind(z) n

(112) g™ =S|, s =f@ -5 > Wy 3 Wl
1 1

ind(z)+1

Remark 7.3. Recall that the vector field Vf depends on the metric g7™. Using
Proposition 6.1 and Theorem 7.1, one deduces that the Milnor metric || ||3,'2;\;f. (M,F)

does not depend on the metric gTM. A direct proof of this result is given in
Section 16, by using the results of Laudenbach in the Appendix.
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¢) Nine intermediary results
For 1 <i < n, let M* be the number of z € B of index i. Set
X(F) =) _(~1)'dim H (M, F),
0

(7.13) .
X' (F) = (-1)'idim H'(M, F).
0

Then x(F) is the Euler characteristic of F, and x/(F) is the derived Euler
characteristic of F'. Clearly,

(7.14) X(F) = tk(F) ) (=1)=d(),
z€B
Set
(7.15)  X'(F) =1k(F) ) (-1)™® ind(z) = tk(F) Y (-1)"iM",
z€B 1=0
TP[f] = D (-1)™@ f(a).
zEB

We use the notation of Sections 3 and 5. In particular for T" > 0, Br is given by
(3.47) and the scalar product ( , )r,r on F is defined in (5.2).

Definition 7.4. For T > 0, let F[})’ll(resp . ]F]})’ll,resp .]F;O}) be the direct sum of
the eigenspaces of D?. associated toeigenvalues A € [0, 1](resp . A €]0,1],resp. A = 0)
Let Dg:lo’l](resp . Dg:lo’l]) be the restriction of D% to Flg’ll(resp. to F]})’ll).

For T > 0, let P7[9 ’1](resp .Pflro ’ll,resp .Pr) be the orthogonal projection
operator from F on ]F‘[;f’l](resp .F]})’ll,resp .]F{T0 }) with respect to the scalar product
(, Yrr. Set Photl=1_ pl&1,

Definition 7.5. For T > 0, let | |33 yo(ps 7 be the Lz metric on the line

det H*(M, F) constructed in Section 2a), which is associated to the metrics g7, g4
on TM,F.

In the sequel, we assume that the simplifying assumptions of Section 7 b) are
verified.
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We now state without proof nine intermediary results, which will play an essential
role in the proofs of Theorem 7.1. The proofs of these results are delayed to Sections
8-15.

Theorem 7.6. The following identity holds,

2
, | lies req,p).7
(7.16) ETOO {’I‘rs [N Log (D%lo,ll)] +Log( ;;S (M,F)
l Idet He*(M,F)

M, VS 2
n - T I ”de He(M,F
+21k(F) Tr? [f]T+(§x(F) - x’(F)) Log (;;)} = Log (———l IRSt IR
det H*(M,F)

Theorem 7.7. Given €, A with 0 < € < A < 400, there exists C > 0 such that
if t €[e,A],T > 1, then

(7.17) ITr, [N exp (~tD3)] - X(F)| < %
Theorem 7.8. Forany t > 0,

(7.18) TETw Trs [N exp (-—tD%) Pfl,}’+°°[] =0.
Moreover there exist ¢ > 0,C > 0 such that for t > 1,T > 0, then

(7.19) ‘Trs [N exp (—tD%) P¥’+°°[” < cexp(-Ct).

Theorem 7.9. For T > 0 large enough, then

(7.20) dim F9 = rk(F) M.
Also

b 21[0’1] —
(7.21)  lim Tr [D34] =o.

Theorem 7.10. As t — 0, the following identity holds,

(7.22) Tr, [Nexp (—-tD%)] = %X(F) + O(t) ifn is even,
B .
= rk(F) /M/ Lexp (—#) % + O(V1) ifn is odd.
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Theorem 7.11. For any t > 0, thereis ¢ > 0 such thatas T — +oo,
(7.23)

Ty, [fexp(—tD%)]=rk(me‘[f1+( B () - 3% (F)) +0(eeT).

Theorem 7.12. For any d > 0, there exists C > 0 such that for 0 < t < 1,
0<T< %, then

R A

() [ f  exp (- Bpa) +1 [ 5@ [ Bd?exp<—BTz>}

Theorem 7.13. For any T > 0, the following identity holds,

129) iy 3 (10 [ (- (204 zE(Vf))"’)] - (F) T2))

- (5xp - Jr (e )) TriT)

Theorem 7.14. There exist ¢ > 0,C > 0 such that for t €]0,1],T > 1, then

<C.

1

(7.26) = (’I‘rs [f exp (- (tD + %(v f))z)] _ rk(F) Tx5[f]

t2

‘T( X(F) - z/(F)))l < cexp(~CT).

Remark 7.15. Sections 8 and 9 are devoted to the proof of the crucial Theorem 7.6,
Section 10 to the proof of Theorems 7.7, 7.8 and 7.9. Each of the Sections 11-15 is
devoted to the proof of one of the Theorems 7.10-7.14.

d) The asymptotics of the | 2 ’s

Here we use the notation of Section 5. We start from the identity (5.29)
4
(7.27) Y R=o.
k=1
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We now will study individually each I? (1 < k < 4), by making in succession
A — 400, Ty — +00,e — 0.

1) Theterm I?. Clearly

o [ dt
a) A— 400
As A — +o00,
1 ) ! 9 \7 4t
(7.29) I} - 5X'(F)Log(4) » I} = | Tr, [Nexp (-tD%,)] 5;

+o0
+/1 (Trs [N exp (-tD%,)] — X'(F)) g .

B) To — +oo
By Theorem 7.7, we see that as Ty — +o0,

(7.30) / Trs [N exp (—tD )] g - _%y'(F) Log(e).

Moreover we have the obvious identity
+oo dt
(7.31) /1 (Trs [Nexp (—=tD%,)] - X' (F)) %
[ v o] 4t [T D2, | plirtool] 8t
= A [ exp tD )PT0 5 + Tr, [N exp (—t To) To ] %

By definition,
(7.32)

/1+°° Tr, [NexP (-tD%,) P,lr‘i By g: /1+°° [NeXP( tD2: 1])] tzi;

and so
dt
2%

=Tr /1 N (et = 1) Zppo
* | Jpzwom 2t" To

To

+1Tv, [NPR] f " e—tgé - % Tr, [V Log (DR*1)].
1

+o0 10,1]
(7.33) /1 Tr, [N exp (~tD3,) P’
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Moreover,

1 dt
—t ]0,1]
(7.34) Tr, [ / " SN (et -1) Py

D WY,

= Tr, [ /Dl ?H[o,l]N(e" 1) P}S; 11] ~X'(F) /

Using Theorem 7.9 and (7.34), we see that as Ty — 400,
(7.35)

o [/[;2'["*1] N (e 1) (21; g’gll] s W) - X'(F))/O (e -1) %.

Similarly,
(7.36) Tr, [NP#}”] Tr, [NPRY] - X (F) .

From Theorem 7.9 and (7.36), we find that as Ty — +o0,

+o0 +o0
(737 T, [NPRY] / e_t% = %(g'(p) ~ Y(F)) / e—t%
1 1

Moreover, one has the trivial identity

1 +oo
(7.38) r'a) = / (-1 %y / e—tdt.
A t ", 1
From (7.33), (7.35), (7.37), (1.38), we see that as Ty — 00,

dt

+oo
(7.39) / Tr, [N exp (~tD%,) PIo! s
1

+3 Ly, [V Log (D3*Y)]

1 ~
= ST R (F) - X(F)).
Also by Theorem 7.8, we find that as Ty — +o0,
+oo wof] dt
(7.40) / Tr, [N exp (—tD7,) Pf}t"" [] %
1
Using (7.29), (7.30), (7.31), (7.39), (7.40), we get

(7. 41)

I T, [N Log (DE°1)] = 12 = ~5X/(F) Log(e)+5T"(1) (X (F)~X(F)).

7) £=0

106



AN EXTENSION OF A THEOREM BY CHEEGER AND MULLER

Set
(7.42) 1 = ST (R (F) - X(F).
Clearly
(7.43) I; + X'(F)Log(e) =

2) Theterm I9. We have the obvious equality

To
(7.44) = / Tr, [f exp (—AD7)] dT.
0
o) A— 4
Clearly,as A — +o0,
To
(7.45) R—-1= Tr, [fPr] dT.

0

Proposition 7.16. The following identity holds

1. (115 ’
(7.46) I} = -5 Log ( de}tzgl (M,F),To) .
| et He*(M,F)

Proof. We proceed as in [BL2, Theorem 6.12]. By.Hodge theory the map s €
F(O} — Prs € F{} is the canonical isomorphism of F{°} with Fi* ( these
two finite dimensional Z-graded vector spaces are identified with H*(M, F')). In
particular, if s € F{°},0 < T < T", then

(7.47) PT'S — PT'PTS.
Using (7.47), we see that if s € F{°} s’ € F{°}, then

0
(7.48) ﬁ (PTS, PTSI)]F,T

8Py 8Py ,
< 5T Prs, Prs’ >]F,T + <PTS, T =L Prs >]F,T —2(fPrs, Prs')p r-

Since P2 = Pr, then

BPT 3PT 6PT
(7.49) = Pr+ Pra— = o

107



J.-M. BISMUT, W. ZHANG

From (7.49), we deduce that 352 maps F}O} in its orthogonal with respect to the
scalar product ( ). We then rewrite (7.48) in the form

0
6T (PTS PTS )IFT = =2 (fPTS PTS )]FT

Using (7.50), we obtain

(7.50)

P 2
(7.51) a7 Log (| i meomyr) = —2Tn [FPr).
From (7.51), we get (7.46). a

B) To — +o0
Tautologically
2

(7.52) o+ %Log (l |detH *(M,F), To) —0.
| |detH°(M F)

7) e=0
Nothing is left.

3) Theterm IJ. Recallthat D = Dy. We have the identity

0 A 2\1 9t
(7.53) I =- Tr, [N exp (—tD?) %
a) A— +oo
Clearly, as A — +o0, then

! dt
(1.54) I3+ %x'(F) Log(A) = I3 = —/ Tr, [N exp (—tD?) %

+oo dt
_ f1 (Tr, [N exp (—tD?)] = X'(F)) 5.

B) To — 400

As Ty — +oo, I} remains constant and equal to IZ.
7) €20

Set

B » n
(7.55) a—y =1k(F) /M/ Lexp (— R:;M) , ag = —2-x(F).
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Observe that

a_; =0 if n is even,
(7.56)
ag=0 if mnisodd.

By Theorem 7.10, we know that as ¢ — 0,

(7.57) Tr, [N exp (—tD?)] =ao+ O(t)  if n iseven,
= 7—--]—0(\/) if n isodd.

From (7.57), we see that as t — 0, then

(7.58) Tr, [N exp (—tD?)] = % + ao + O(V).

Using (7.58), we find that as € — 0, then

B TM n
(7.59)  IZ +rk(F) /M / Lexp <_R . ) % — 2 X(F) Log(e)

_,I:i,"=—/01 (’I‘rs [Nexp(—tDz)]—%_a)g

- /1+°° (Trs [Nexp (-tD?)] - x'(F))g; + 1k(F) /M /B Lexp (—R

8) Evaluation of I3

Recall that the function 6%(s) was defined in Definition 2.1.

Theorem 7.17. The following identity holds

F n
(7.60) B =320 - (3 - o) ro.

Proof. For s € C,Re(s) > d"“ M " using (7.58), we get

(7.61) 6%(s) = —%/ o1 (’I‘rs [N exp (—=tD?)] - %;—.tl - ao) dt

_f‘%s—) /1+°° ot (’I&s [N exp (-tD?)] - x'(F)) dt

e (a-X(F)
TG (-3)  TG+D
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From (7.59), (7.61), we get (7.60). O

4) Theterm IJ. Clearly
To

(7.62) L= ——/ Tr, [f exp (—eD%)] dT.
0

a) A— 400
The term I{ remains constant and is equal to I}.
B) To — 4o

By Theorem 7.11, we know that there exists ¢ > 0 such thatas 7" — +oo,
(7.63)

T, [fexp (~eD3)] = k(F) 1]+ (2(F) - JX(F)) 3 +0 (7).
Using (7.62), (7.63), we see as Ty — +oo,
164 IR T+ () - X)) Log (1)
-2 = —/01 (Trs [f exp (—eD%)] — tk(F) TeB[f]) dT

- /1+°° {’I‘rs [f exp (—eD3%)] — tk(F) TrB[f] - (%X(F) - §X (F)> }

v) e—=0

As in Bismut-Lebeau [BL2, Section 6, eq. (6.57)], this step is quite difficult. Set
(7.65) g = /e
Put

(7.66) JO = — /0 15(’1&5 [fexp (-5’2D2T,e,)] —rk(F)’I‘rf[f]) dT

Jo=— /1 Y1 (Trs [ fexp (—5'203,,5,)] — tk(F) Trf[f]) dT

Jg=_/1+°°€#2{m[fexp( €202, ,2)] — tk(F) Te[f]
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- (3xF) - 3X D) 7 far

(o) =30+ B+~ (E) - JUE)) Los(e).

Clearly

By Theorem 7.12, there exists C > 0 such that for ¢ €]0,1],T € [0,1],

(7.68)

Trs [fexp (—:—:’ZD%/S,)] —rk(F)/Mf/B exp(—Br2)

< Ce?.

] B
+E'/M§ (F,gF)/ df exp (—Br2)

From (7.66), (7.68), we see thatas € — 0,

1 B
(7.69) JO + rk(F) /O { /M f( / exp(—BTz)—Z(-l)ind(z)‘gz)}

z€EB
dTr (%) - Jl = %/01 {/MG(F,gF) /B(ffexp(—BTz)}dT.

(7.70) J§ = —/;e,iz{'l‘rs [f exp (—e'zDg,/e,,)]—rk(F)/M f/Bexp (=B(z/ery?)

Also

0 B
+&’ 5 FgF)/ dfexp (—B(T/e:)z)}dT

I,
_rkilF) 11/e {/Mf (/B exp (= Brs) - Z(_l)ind(x)éz)}dT_f_

z€B

[ o) [ deminmar

By Propositions 5.4 and 5.5 and by Theorem 7.13, we know that for 7" > 0, as
e =0,

(7.71) e,iz (’I‘rs [fexp( 2D§~/e )] — 1k(F) rIi‘sB[f])

~ (3x0 -390 Fy
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With the notation of (3.59), using (7.12), we find that if z € B, then
(7.72) Tr [A7'] = n — 2ind(z).

By Theorem 3.20, we see that for T > 0, as ¢/ — 0, then
(7.73)

B n
= ( |1 [ e (<Beayene) - T.rf[fl) = i (3O - 37P) 73,

1 (60, o (P4
=/ 5(Fg )/ df exp (= B(z/erys) — 0.
& JIM 2

Using (7.71), (7.73), we find that for T > 0,
: 1 '2 12 B
(7.74) Elll_l‘% ?5{'1‘1'5 [f exp (—e DT/EI,)] — rk(F) /Mf/ exp (—B(r/er)2)
0 B
+€,/ 5 (F,gF)/ dfexp (—B(T/el)z)}
M
_(n 1, cosh(T) 1\1
= (4X(F)' 2X(F)) (sinh(T) “T)T

On the other hand, by Propositions 5.4 and 5.5 and by Theorem 7.12, we know that
there exists C > 0 suchthatfor 0 < &’ < 1,¢/ < T <1, then

1

(7.75) E,—z{Trs [fexp (<€2D2,, )| = 1k(F) /M f / " exp (=Bz/ery?)

< C.

6 B
+€’ /M 2 (F,gF) / df exp (—B(T/ef)z)}

Using (7.74), (7.75) and dominated convergence, we find that as € — 0,
14 , B
(7.76) — / , -E-E{Trs [f exp (—s 2 D,f,,/e,,)] — tk(F) /M f / exp (=B(z/ery2)

4 B
+¢ /M-2-(F,gF) / df exp (—-B(T/e,)a)}dT

(e [ (2B F
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Also by using in particular Theorem 3.20, we get

(7.77) /1 Ve /M f ( / ° exp (—Bgz2) — Z(_l)ind(z)éa_,) dT

z€B

IR

z€B

[ (g

z€B

~ i () - ) }dT 5 (3xm - 7).

By Theorem 3.20 and by (7.72), we find that

l/ - f ° exp (—Br2) — Z(—l)i“d(”)éz
€ Jijer UM

z€B

(7.78)

s (M) - X)) Jar

Using (7.77), (7.78), we see that as € — 0,

1/’ B .
(7.79) - EI%EIL)[ {/};{f (/ exp (—Br2) — E(_l)md(z)gz) }dT

z€B

s [ gerea(s

z€B

+(xm) - 320 +0(vA).

< C¢.

Finally, by Theorem 3.18, we find that as ¢ — 0,

(7.80) % /1 e { /Mo(p,gF) / B(Zfexp(-—BTz)}dT
_*%/1"“ {/Ma(p,gF) /Bd}exp(_BTz)}dT.
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From (7.70), (7.76), (71.79), (7.80), we see that as € — 0,

(7.81)  JO + tk(F) / e { /M f ( / ? exp (_Bp) - 2(—1)““%3) }
1 z€
i1 (72) ==~ (3xm -z o) [ (550 1) 7

+ (%X(F) - 3X (F)) /1+°° {/Ma (F,g") /Bd‘fexp(_BTz)} dT.

By Theorem 7.13, we find that for 7" > 0,

(7.82) 21—2 (m [ fexp (-e’ngr /)] _ tk(F) TeB[f]
—c? (%X(F) - 5% (F)) )
- (g~ ) (20 ) 1

Moreover by Propositions 5.4 and 5.5 and by Theorem 7.14, there exist ¢ > 0,C > 0
such that for 0 < ¢’ < 1,7 > 1, then

(7.83)

%(’I&‘s [fexp( 2D2/ )] — rk(F) Te2[f]

—* (2x(P) - 37(P) 1)

From (7.66), (7.82), (7.83), we conclude that as € — 0,

(7.84) S Jb=- (%X(F ) - %?'(F )) f1+°° (Zﬁgi - 1) % '

Using (7.67), (7.69), (7.81), (7.84), we see that as € — 0,

< cexp(-CT).

(7.85) 2+ ( X(F) = = (F)) Log(e)

+ rk(F) / " { /M f ( /  exp(=Bpa) - 2;(—1)‘"“%) } dT (%>
0 €
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— 3= %/om {/Mo(F,gF) /ijexp(_BTz)}dT
-(po-o) ([ (559-7)F

(&m0 F)

) Evaluation of I}

Theorem 7.18. The following identity holds

(7.86) = % /M 0 (F,g") (VF) v (TM, V™M)

+ (%X(F) - %55’(1«“)) (Log(w) + I'(1)).

Proof. By (3.19), (3.30), it is clear that

(7.87) % /0 e { /M 0 (F,q") / Bd}exp(_BTz)}dT

=l/ 0 (F,gF) (VF)" ¥ (TM,VTM).
2Jm
Clearly
cosh(T) 27T
(7.88) sinh(T) = 1—e2T"

Let ((s) be the Riemann zeta function. By (7.88), we easily deduce that for
s € C,Re(s) > 1, then

(7.89) ﬁ /0 " 7! (g’—;‘% - 1) dT = 2'7%((s).

Also for s € C,Re(s) > 1, we have the identity
1 (% . 1 (cosh(T) R T (cosh(T) 1)
o0 w5 ) (S )@ - [ (S 1)
1 Foo s—1( cosh(T) 1 1
i) (D )Ty ey
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Both sides of (7.89) of extend into a meromorphic function of s € C, which is
holomorphic at s = 0. Using (7.89), (7.90), and taking derivatives at 0, we get

! fcosh(T) 1Y\dT +oo [ cosh(T) daT
(7.:91) /0 (sinh(T) B T) T +/1 (sinh(T) - 1) T
+I(1) — 1 = —2Log(2)¢(0) + 2¢'(0).

Classically,

(792 0 =3

¢'(0) = 3 Log(2n).

Using (7.91), (7.92), we find that

! fcosh(T) 1\ dT +o° /cosh(T) ar
(7.93) /0 (sinh(T) - iﬁ) T +/1 (sinh(T) _'1) T 1
= — Log(m) — T'(1).
From (7.85), (7.87), (7.93), we get (7.86) . O

e) Matching the divergences

Theorem 7.19. The following identity holds

(7.94)
R NN 4 B [ Ao 1
R+ +I - 5Llog| —zg——— | — (mx(F) - 5X(F) ) Log(m) =0.
| ldet zre(a,F)
Proof. Recall that by (7.27),
4
(7.95) S =o.
k=1

As A — +oo, the following divergences which concern the terms I and I3 in
(7.29) and (7.54) appear

(7.96) —%x'(F) Log(A) + %X'(F) Log(A) = 0.
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Since these divergences cancel out, we get from (7.95)

(7.97)

>
iingl
n

.

By Theorem 7.6, we know that

2
(7.98) _lim {%Lo (l Id“”(MF)T") +5 I, [NLog(D "‘”])]
To—mtoo | ldetH'(MF)

n 1._ T
+1k(F) T2 (AT + (x(F) - 3R(F) ) Log (;)}
2
_ lL (” "det He(M, F))
2 I Idet He*(M,F)
In view of (7.41), (7.52), (7.64), (7.97), (7.98), we find thatfor 0 < £ < 1,
(7.99)

1 (R s\
.[12+I32+I42 L ( det H*(M,F)

: ) - (gxm- ész'm) Log(r) = 0.

I Idet He*(M,F)

As ¢ — 0, the following divergences appear, which concern the terms IZ, IZ, I?
in (7.43), (7.59), (7.85),

(7.100) ( ¥(E) - 2(F) + 2x(F) - 3% <F>) Log(e)

+rk(F)(/M/BLexp <— M)
+ /0 "~ { /M f ( / Bexp(—BTz) - Z(—l)‘“d“)«sz) } dT) %

z€B

Because of (7.99), the sum of these divergences should be 0. This is exactly the
case for the coefficient of Log(¢). The coefficient of % must also vanish. This is
in fact a result which was proved in Theorem 3.19.

From (7.99), (7.100), we get (7.94). O
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f) Proof of Theorem 7.1
By (7.42), (7.60), (7.86), (7.94), we get
(1101) {3 (R(F) = X (F)) = x(F) + 3¢ (F) + Bx(F) - 3X(F) ()
n F
+(5x0) - 370 - (3x0) - JUE) ) ) Logt) + -;-%im)
2
~1Lo <M) . / 0(Fg") (V) o (TM, V™) = 0.
2 | |det H*(M,F) 2Jm

The coefficients of (1) and Log(w) in (7.101) vanish identically. Equation
(7.101) is then equivalent to

2
(7.102) Log ("";&,#) = ]MG(F,gF) (VF)* 4 (TM, V™M),

I et zrecar, )

which is exactly Theorem 7.1. O
g) Proof of Theorem 0.3
Let
(7.103) (F*,v):0F" - F' ... - F™ >0
v v v

be a flat exact sequence of real flat vector bundles on M. Let o be the canonical

nonzero section of the line bundle det F'* = ®(det Fi )(‘l)j constructed in
=0

[KMul, [BGS1, Section 1.a)].

Let 7 € det H*(M,F*) = ®(det H*(M, Fj))(‘l)j be the corresponding
Jj=0
nonzero section constructed in [KMu], which is associated to the exact sequence
(7.103).

Let gF°,..., g™ be Euclidean metricson F°,..., F™. Let || ||t o be the
corresponding metric on the line bundle det F*. Let g7 be an Euclidean metric
on TM.
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Let || || Ho(MFoyr - s |l |I,ﬁ‘fH.(M’F,,.) be the Ray-Singer metrics on thé

. 0

lines det H*(M, FO),...,det H*(M,F™) associated to the metrics g7™,gF",
cgF" Let || IR He(m,pe) denote the corresponding metric on the line

det H* (M, F*).

Now, we will prove Theorem 0.3, which we restate for convenience.

Theorem 7.20. The following identity holds,

RS,
(7.104)  Log (Il %0 ar pey) = /MLog (lo12es o ) (M, 97H).

Proof. We use the notation of Sections 7a)-b). Let || |[0% Ho(M,F0) -
I ||detH.(M Fmy be the Milnor metrics on the lines detH'(M,FO),.
detH'(M F™) attached to the metrics || |lqet Fo,---, | |ldet F» (= € B). Let

[ den H.( u,pey denote the corresponding metric on the line det H *(M,F*).

Clearly, we have the exact sequence of Thom-Smale complexes
(7.105)
0— (C*(W* F%),8) — (C*(W* F'),d) = ... — (C*(W* F™),8) — 0.

Set
(7.106) det C*(W", F*) = R)(det C* (W, F7))(-1’
§=0
By (1.48), we have the canonical isomorphism
(7.107) det C*(W*, F*) ~ det H*(M, F*).
Let 7' be the nonzero section of detC*(W*,F*) constructed in [KMu],
[BGS1, Section 1.a)], which is attached to the acyclic complex (7.105). Then

7' € detC*(W*,F*) corresponds to 7 € det H*(M,F*) via the canonical
isomorphism (7.107). It should now be clear that

(7108) Lo (73 5, rey) = 2%(—1)““*(“ Log (Jloele ) -
T€

Set

(7.109) o(F*,¢"") = i(—l)j()(Fj g7,

3=0
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Since o is a nonzero flat section of det F'*, we see that
(7.110) dLog (|lol3es ) = O(F*,9"").
By Theorem 0.2, we get
(7.111)  Log (”T”ﬁ’?{-(M,F-)) = Log (”T"ﬁﬁigw,m)
- /M 0(F*,gF")X*$(TM, V™M),
Using (7.110) and proceeding as in (6.5), (6.6), we find that
(7.112) - / 8(F,g") (V) p(TM,VTM) = / Log (Ilollﬁet p-)
M M

G(TM, VTM) _ Z(_l)ind(z) LOg (”al‘llﬁet F‘:)
z€B

From (7.108)—(7.112), we get (7.104).
The proof of Theorem 7.20 is completed. a

Remark 7.21. Of course a direct analytic proof of Theorem 7.20 can be given,
which is much simpler than the proof of Theorem 7.1.
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VIII. The asymptotic structure

of the matrix of the df operator
on the Helffer-Sjostrand orthogonal base

The purpose of this Section is to describe the construction by Helffer-Sjostrand
[HS;j1-4] of an orthogonal base for the direct sum of the eigenspaces of the operator
]5% associated to eigenvalues A € [0, 1], and to calculate the asymptotics of the
corresponding matrix of df in terms of the corresponding Thom-Smale complex.
The results of this Section will also be used in Section 9, where the asymptotics of
the L, metric | |&2 He(m,F),r On det H *(M,F) as T — +oo is calculated, and
where Theorem 7.6 is proved.

The results of this Section on the asymptotics of the matrix of d¥ were already
established in Helffer-Sjostrand [HSj4, Theorem 3.1 and Proposition 3.3], in the
case where F' is the trivial Euclidean line bundle R. Here the main difference with
respect to the situation considered in [HSj4] is that F' is a vector bundle, and more
fundamentally that the metric g¥ is not flat.

In [HSj4, Sections 2 and 3], in the case where F' = R, the solutions of the
WKB equations for the eigenvectors of 5% associated to eigenvalues \ € [0,1],
were calculated, by solving in particular transport equations near W*(z) and
We(z)(z € B). If the metric g¥ on F is flat, then the calculations of [HSj4]
can be used without change. If not, the operator l~)2T which we consider here is
more complicated than in [HSj4]. In fact the analogues of [HSj4, Proposition 2.3
and 2.4], where Helffer-Sjostrand calculate the leading term of the WKB equation
for D% along W*(z) and W*(z) are Propositions 8.24 and 8.25. On W*(z),
parallel transport with respect to the connection V¥ is used to solve the transport
equation, while on W*(z), it is the dual connection V¥* (which itself depends on
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the metric g% ) which is needed. This reflects in fact Poincaré duality for flat vector
bundles which are not orthogonally flat.

Because the situation we deal with is different from the one in [HSj4], we have
felt necessary to give a detailed exposition of some of the results and techniques
of Helffer-Sjostrand [HSj1-4], referring when necessary to the original work. Our
own contribution in this Section is in fact to simply apply the general techniques of
[HS;j1-3] to a situation which is slightly more complicated than in [HS;j4].

This Section is organized as follows. In a), we introduce the Agmon metric
\Zik gT™  Inb), we recall simple results of Witten [W] on the harmonic oscillator
one can attach to each z € B. Inc), we describe the results of [HSj1-3] concerning
eigenvectors of the operators 15% with certain Dirichlet boundary conditions. In d),
we construct a corresponding orthonormal base of eigenvectors.

In e), following [HSj1-3], we construct an orthonormal base {€r,z .} v S8

of the eigenspaces of 13% associated to eigenvalues )\ € [0, 1].

In f), we describe the WKB equation for 5%. In g) and h), we solve the
corresponding transport equation over W*(z) and W*(z)(z € B). Finally in 1),
we establish in Theorem 8.30 the main result of this Section, which is the asymptotic
structure of the action of the operator df on the considered eigenspaces of DZ.
This generalizes a corresponding result of Helffer-Sjostrand [HSj4, Proposition 3.3].

In this Section, we use the notation of Sections 1, 2,4 and 7. Also the simplifying
assumptions of Section 7b) will be in force in the whole section.

a) The Agmon metric |V f|2 g™

If z € M,e >0, let BM(z,¢) be the open ball of center z and radius ¢ with
respect to the Riemannian distance associated to the metric g7, andlet BT-M (0, ¢)

be the open ball of center 0 and radius ¢ in (T, M, g%=M).

In the sequel, we assume that € > 0 is small enough so that the balls BM(z, 2¢)
(z € B) do not intersect each other, that (7.12) is verified on the balls BM (z,€)
(z € B), and also the metric g is flat on the balls BM(z,¢) (z € B).

122



THE HELFFER-SJOSTRAND ORTHOGONAL BASE

Definition 8.1. Let gZ{M be the Agmon metric on 7'M associated to the potential
[V£|?, ie.

(8.1) gaM = |Vf[Pg™.
Then g:;’;M is a degenerate metric on 7'M, which degenerateson B C M. Let

dM(-,-) be the Agmon distance associated to the metric g7™. By [HSj1, Section 6],

we know that if z,z’ € M, there exists a minimizing geodesic ~y for the distance
d¥, which is smooth on v\B.
Take z € B. For z € M, set

(8.2) z(2) = d (,2).

Then, ¢, is a Lipschitz function.

b) The harmonic oscillator of Witten

Recall that by (7.12), if = € B, there exists a coordinate system y = (y!,---,y") €
R on BM(z,¢) such that O represents , and moreover,

g™ =" |ay'|,
1
(8'3) ind(z)
fly) = f(z) + ( Z|y|+ Z Iyl)

ind(z)+1

l\DlI—'

One verifies easily that if |y| < e, then
1 2
(8.4) oly) = Syl

Recall that for = € B, the metric g% is flat on BM(z,¢). On BM(z,¢), we
trivialize ' by using the connection V¥ = V¢, The fibres of F on BM(z,¢)
are identified to F}.

Then R™ splits canonically into

(85) R™ = Rind(z) D Rn—ind(z)'
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Recall that we have identified an open neighborhood of z € B in M to an open
neighborhood of 0 in R™. At z € B, the splitting (8.5) coincides with the obvious
splitting

(8.6) T.M =T, W*(z) ® T,W*(z).

Since T, W*(z) is oriented, we find thatin (8.5), Ri*4(*) inherits the corresponding
orientation. Let p, be the volume form of the Euclidean oriented vector space

Rind(=), Of course, one can assume that the coordinates y!,---,3""4(®) are such
that
(8.7) pr=dyt A--- Adyd®),

From (8.5), we deduce that near z,
(8.8) A(T*M) = A (]Rind(:c)*) A (R(n—ind(z))*) .
Of course at z, (8.8) corresponds to
(8.9) A(T*M) = A(TaW*(z)) RA (TaW3(z)) .

Let N—,N* be the number operators acting in A(R»4(2)*) A(R(r—ind(2)+)),
sothatnear z, N = Nt 4+ N~. Let AR" be the usual Laplacian on R"”. We now
give a simple formula of Witten [W].

Proposition 8.2. Near = € B, for any T > 0, the following identity holds,
(8.10) D2 = —AY 4 T?|y]> — Tn + 2T (N* + ind(z) - N7).

Proof. Equation (8.10) follows easily from (4.29) and (5.13). O

Let 13%:’]1:;" be the obvious action of the operator (8.10) on the vector space of
smooth sections of A(R"*) ® F, over R". Another simple result of Witten [W] is
as follows.

Proposition 8.3. The operator IAjo”“y has discrete spectrum and compact resolvent.

Its spectrum is exactly 2T'N. The kernel 53:,]:” is of dimension rk(F'). More
precisely

— o n n/4 2
(8.11) Ker D3%" = {(Z) e“z'%”'pz} ® F..

s

124



THE HELFFER-SJOSTRAND ORTHOGONAL BASE

Proof. Let Gp bemap f(y) — f(7"=T=) . Then
(8.12) GrDXR'Gi'=T (_A“‘" + ly|* - n) + 27 (Nt +ind(z) - N7).

The operator —AR" + |y|? — n is twice the harmonic oscillator. It has compact
resolvent and its spectrum is exactly 2N. The operator 2(N*t +ind(z) — N7) is
nonnegative and its spectrum is included in 2N. Also the kernel of —AR” +|y|2 —n
acting on smooth real functions is one dimensional and spanned by the functions
e~W/2 Finally if @ € A(R™*)® F,, then (Nt +ind(z) — N™)a = 0 if and
only if & € A"4(@)(Rird(2)*) @ F,. Equation (8.11) follows. ]

¢) The estimates of Helffer and Sjostrand for the eigenforms of
D% with Dirichlet boundary conditions

For n > 0,z € B, set

(8.13) M,=M\ |J B,

ind(e) Sind(z)
For n > 0 small enough, M, is a smooth manifold with boundary.
Let F, = @;_, F. be the vector space of smooth sections of A(T*M)Q F =
D, A'(T*M) ® F over M,. We equip F, with the scalar product ( , )g
given by

T

(8.14) a,0' € Fp — (a,a)p =/ (o, &) (7= 1) F FVM-
M,

Let D%, be the obvious action of D% on F, with Dirichlet boundary conditions
on OM,.

Definition 8.4. For 0 <i<n,T >0, let 132T’fz be the restriction of EZT,,_. to F..
For T > 0, let K[TO’ ’xl] = ®., I{,E,f’”:]’i be the direct sum of the eigenspaces of
l~)2T,w associated to eigenvalues A € [0,1]. Let QI}]’”

T
1
operator from F, on K 59 ’x].

be the orthogonal projection

Take ¢ > 0. Following [HSj3, Lemma 1.5], we will write that as T' — +o0,
(8.15) A(T) =0 (e7T)
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if for any v > 0, there exist n(y) > 0 suchthatif 0 < n < n(y), as T — +o0
(8.16) A(T) = 0 (=Tt
Ifin (8.16), A(T) and ¢ depend themselves on an extra parameter, it is understood
that (8.16) is uniform in this parameter.

For 0 < < n, set

B' = {z € B;ind(z) = i},

(8.17) M* = card(B").

We first state a result of Helffer-Sjostrand [HSj4, Theorem 1.4 and Lemma 1.6].

Theorem 8.5. For T > 0 large enough, then
. tk(F i ¢ = ind(z),

(8.18) rk (KR = (F) 4 (=)
’ 0 if i #ind(z).

If p€ I([To’;l]’i"d(x) isof norm 1, as T — +00,

(©.19) (s = § (e-HiemY
Set

8.20 e =2 inf d¥(z,y).
( ) ¢ yeBind(z)—lUBinltﬂz)+luBind(z)\{x} A (x y)

If X is an eigenvalue of D%, in [0,1], then

(8.21) A=0 (e*=T).

Proof.. The main difference with [HSj4] is that here, the kernel of the operator
ﬁ%ﬁn considered in Proposition 8.3 is of dimension rk(F') and not necessarily of

dimension 1. However all the arguments of [HSj1, Section 4] on which [HSj4] is
based can still be used in this case. O
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d) An orthonormal base for Dirichlet eigenspaces associated to
small eigenvalues
Definition 8.6. For z € B,T > 0, let r7, be the map

(8.22)  seFnd® _pp 5= (%)"’ o€ (A‘"d(’) (T*M) ® F)z.

Let v be a smooth function defined on R with values in R*, such that

v(a) =1 for asg,

(8.23)

=0 for a>e.
If y € R™, set
(8.24) u(y) = 7(lyl)-

We can consider x as a smooth function defined on M with values in R*, which
vanishes on M\ ,c5 BM(z,¢).

Set
(8.25) ar = /}R #*(y) exp (=T1y[*) dy.
Clearly, there exists ¢ > 0 such that
7rn/2 e
(826) aT = m + 0 (6 T) .

Recall that if z € B, on BM(z,¢€), the fibres of F' have been identified to F,.

Definition 8.7. For z € B,T > 0, let Jr, be the linear map from F, in Fiy4(®)

T|y|?
2

(827) fe€F: = Jr.f(y) = (;lﬂu(y) exp (— ) ps Q@ f € Find(®),

aT)

Clearly Jr is anisometry from F, into Fr® | Also

()™
(828) rT,a:JT,:cf = (;:FTP:L- ® f,
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so that by (8.26), as T' — +o0,
(8.29) rredTef = pa ® f+ 0 (e7T) |If]l.

Theorem 8.8. Take n > 0 small enough. There exists ¢ > 0 such that for any
z€B,f€F,, thenas T — +oo,

(8.30) QP Jr.f — Jraf =0(e™T) || fllp, uniformly on M,.
In particular, if f € F,, as T — +o0,
(8.31) rra Qs Iref = e ® £ = 0 (™) If, -

Proof. We proceed as in [BL2, Section 10]. Let § be the oriented circle of center
0 and radius 1/2 in C. By (8.21), we know that for T > 0 large enough,

01 _ 1 _52 \7!
(8.32) Qs = — /5 (A DT@) dA.
Moreover, if A € C*, then
N D3Jr.f
2 ) —_— —T 2
(8.33) (A-D3.) 2t - gpap = -T2,
and so
Jrof ~5 \7! _ ~> \ 7! 5%‘,xJT,If
(834) —)\'— - ()\ - DT,,,) JT,:cf == ()‘ - DT,:L') T

For p > 1, let F,, be the p-th Sobolev space of sections of A(T*M) ® F over
M. Since u(y) =1 for |y| < €/2, we deduce from Proposition 8.3 that for any
p > 1, thereis ¢ > 0 such that

(8.35) ||5%JT,xf

_ —cT
. O (e ).

Let F2 be the vector space of sections s € F, such that sjom, = 0. Take ¢ € N*.
By [Tay, p. 108], there exists C > 0 such that if s € F2, then

£ Hlsllo)

Also using (5.16), (5.17), we see that there exists C’ > 0 such that for A € §,T >
1) S e F.‘L‘9

(8.36) lsllg, ,, <C (|| D%

(8.37) “ (r- D%+ D) s

S C,T2 ”s”]Fz,gq__z °

z,2q—2

128



THE HELFFER-SJOSTRAND ORTHOGONAL BASE

By (8.36), (8.37), we find that there exists C” > 0 such thatfor A € §,T > 1,s €
F, then

(8.38) lsllg, ,, < C” (|| (r-D%)s|, +7 ||s||]Fz’2q_2) .

Using (8.38), we see that there exists C > 0 such that for A € §,T > 1,5 € F?,
then

(8.39) lsllg, ,, < CT? (|| (r-D%)s .

z,29—2

; ||snm,,.,) .

By Theorem 8.5, we know that for 77 > 1 large enough, if A € 6, then
A ¢ Sp(D% ). More precisely, there exists C’ > 0 such that for 7 > 1 large
enough, s € [F,, then

(8.40) “ (A~ D%.) s

z,29-2

< C'|lsllg, , -
]Fz,o

Moreover for A € §,T > 1 large enough, if s € F,, then (A — D% ,)"'s € F2.

Using (8.39), (8.40), we see that there exists C” > 0 suchthatif A € 6,7 > 1,
s € F,, then

(8.41) H (/\ - ]5%,2) - s < C'T? “3“]},2,“_2 .
Fz,29
From (8.35), (8.41), we deduce that there is ¢ > 0, such that for 7" > 1 large
enough,
(8.42)

=0 (e~°T) Ifllr, uniformlyin X € 6.

Fz,29

|(3-B%.) " Bhamas

Using (8.42) and Sobolev’s inequalities, we see that there exists ¢ > 0 such that for
T >1, forany f € F,,
(8.43)

N2 1y —cT :
A—D7,) Di,Jr.f|<0(e™")||fllp, uniformlyon M.

From (8.32), (8.34), (8.43), we obtain (8.30). Equation (8.31) is an obvious
consequence of (8.29) and (8.30). O

Let (Q[TQ”;]JT,,,)* be the adjoint of Q[})”;IJT,,;. Then (Q[_,(fi]JT,z)* maps K 59, ’xl]
into F.
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Definition 8.9. For z € B, set
(8.44) Hr, = (Q%2)r.) @Rl ur...
Then Hr, is self-adjoint in End(F;).

Theorem 8.10. For T > 0 large enough, for any x € B, the linear map
(8.45) fE€F - QPNir. f e KRn®)
is one to one. Also there is ¢ > 0 such that as T — +oo, for any = € B, then

(8.46) Hr,=1+40 (e=°7).

Proof. Recall that Jr, is an isometry from F, into F,. From (8.30), it follows
that for T' large enough, the linear map (8.45) is injective. By Theorem 8.5, for T
large enough, F, and K g’,’;]’i"d(” have the same rank, and so the linear map (8.45)

is one-to-one. Since Jr . is an isometry, (8.46) follows from (8.30) and from the
previous considerations. O

For every z € B, let f;1,---, fz (F) be an orthonormal base of F, with
respect to the metric g¥=. This base is fixed once and for all. By (8.46), for T' > 0
large enough, Hr . is invertible.

Definition 8.11. For 7' > 0 large enough, 1 < j < rk(F'), set

(8.47) P10 = QualIr Hy Y fo .

Proposition 8.12. For T > 0 large enough, ¢1.2,1," ", PT,z k(F) IS an orthonor-

mal base of the vector space K’El(“),’zl]’ind(z).

Proof. This is a trivial consequence of Theorem 8.10. O
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e) The orthonormal base of Helffer-Sjostrand of the eigenspaces
of the operator 5% asssociated to small eigenvalues

For n > 0,y € B, let 6, be a smooth function defined on M with values in [0, 1]
such that 6, =1 on BM(y,n), and 6, = 0 on M\BM(y,2n).
If z € B, set
(8.48) Xe=1- Y 6,
yEB\{r}

ind(y)=ind(z)

For n > 0 small enough, X, vanisheson J ,esnizy BM(y,7).
ind(y)=ind(z)

Definition 8.13. For T' > 0 large enough, set
(849) "’Z)T,:c,j = Xz¥PT,xz,j > 1 S ] S I'k(F)

For T' > 0 large enough,and 0 < ¢ < n, let @?’ll’i be the vector subspace of F*
spanned by the ¢, ; ’s with ind(z) = 14,1 < j < rk(F). Set

n
(8.50) Gyl = Peh.

1=0
Definition 8.14. For 0 < i < n,T > 0, let DX’ be the restriction of D% to
Fi. For 0 < i < n,T >0, let Fol = @ F'M be the direct sum of
the eigenspaces of D2 associated to eigenvalues A € [0,1]. Let P! be the

orthogonal projection operator from F on FITQ’” with respect to the scalar product
(,)roncF.

If Hy, H, are closed vector subspaces of a Hilbert space H, if pH*, pfz are
the orthogonal projection operators from H on H,;, H,, set

(8.51) 7(H1,H2) — ”pm _szle “ - ”pm _lesz“.
For 0 <1 < n, set
(8.52) St = inf d¥(x,y).

z,y€B*
TH#Y

The following result is proved in [HSj3, Theorem 1.2], [HSj4, Proposition 1.7].
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Theorem 8.15. For T > 0 large enough, for any i,0 < i < n, the eigenvalues of
the operator D?F” contained in (0,1] can be put in one-to-one correspondence with

the union of the eigenvalues of the operators 5%'3 (z € B?) contained in [0,1],
so that the difference of the corresponding eigenvalues is O(e=5'T).

For T > 0 large enough, for any i,0 < i < n, the vector spaces F!})’l]’i and

@L_,?’l]’i have the same dimension tk(F)M', and moreover
(8.53) 4 (fgl}ml,i,@gg,lln‘) -d (@llq,ll,i,ﬁlﬁ,ll,i) - (e"TS‘) -

Remark 8.16. As pointed out in Helffer-Sjostrand [HSj4, Corollary 1.8], Morse
inequalities for H*(M, F) immediately follow from the fact that for T large

enough, dim Fi = rk(F) M.

For = € B, set
(8.54) UT,z,j = 1’5;9’1]1/)1",;,,]' 1<j5;< I‘k(F)
If z € B,z € M, set

(8.55) 6.(z') =

=  inf d¥(z,y) +d¥ (y,2")) .
.- S CACURACES)

By [HSj2, eq.(2.1.17)], [HSj4, eq. (1.38)], we know that
(8.56)

(VT2 — YT.2;) (&) = O (e“s"(”')T) uniformly together with its derivatives.
From (8.19), (8.56), we deduce that

(8.57) vrzi(z') =0 (e"Td%(z’z')) uniformly together with its derivatives.
Definition 8.17. For 0 < ¢ < n, and for T" > 0 large enough, let V:,’l be the
(tk(F)M?,rk(F)M?) self-adjoint matrix

(8.58) Vi = (V1,0,j,vT,j')p> &Y€ B, 1<j,5 <1k(F).

As in [HSj2, Section 2.1], we observe that for 0 < i < n, if z,y € B}, 1 <
J,3' < tk(F) then
(8.59)

(vT,l‘,j) vayaj,)]F = (wT""",j’ wT’y’jl)]F - (vTﬂ"aj - ¢T,E,j, UT’y’j' - wT»%j')]F *
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From(8.59), Helffer and Sjostrand [HSj2, Section 2.1], [HSj4, eq. (1.43)] deduce
important estimates on the matrices Vq’l. A trivial consequence of (8.56), (8.57) is
that for 0 < 7 < n, there exists ¢; > 0 such that as T' — o0,

(8.60) Vi=1+40 (e7%7).

In the sequel, for 0 < 7 < n, we consider (vr,s,;) .es:  as a linear map
1<5 Srk(F)

from RTK(FM* into FIOM | which we note vi.

Definition 8.18. For T' > 0 large enough, 0 < ¢ < n, set

~; i i\—1/2
(861) € = U (VT) / .

. ) - . ~[0,1],i
The linear map €. defines vectors (€7,z,k) .epi iN Fioohe,
1<k<rk(F)

Proposition 8.19. For T > 0 large enough, for 0 < i < n, {€rz,;} e IS

1<5 <ek(F)

an orthonormal base of ]I~*“[79’ll‘i. Alsoas T — +oo, for x € B,1 < k < tk(F),

(8.62) éri(z') =0 (e“Td%(”z')> uniformly together with its derivatives.

Proof. The first part of the Proposition follows from Theorem 8.16 and from
(8.60). Equation (8.62) follows from (8.57) and from the estimates on the matrices
V(0 < i < n) proved in [HS;j2, Section 2.1], [HSj4, eq. (1.43) and (3.12)]. a

f) The W KB equation for 5%

Let U be anon empty opensetin M. Let Fy = @, Fi, be the vector space of
smooth sections of A(T*M)® F = @_, A'(T*M) ® F over U. We equip Fy
with the scalar product ( , ), which is the obvious analogue of the scalar product
(,)ronkF.

If Y is a smooth vector field on U, let Ly be the Lie derivative operator
associatedto Y. Then Ly actson Fy. Let L} be the formal adjoint of Ly with
respect to the scalar product ( , )r, .

Let ey,--+,e, be an orthonormal base of T M.
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Definition 8.20. If A : U — R is a smooth function, let 7(k) be the first order
differential operator acting on Fy

(863) T(h) = va + L*Vf + Lyp — L*Vh

Proposition 8.21. For any smooth function h : U — R, the following identity holds
(8.64)

r(h)=2Ven+ Y. (VI Mdf, e; ) c(es)ele;) + Ah+w (F,gF) (V(h - f)).

1<i,j<n
Proof. 'We have the trivial formula
(8.65) Ly;=Vys+ Z <VZ;MVf, ej> e'A ie,»-
1<i,j<n
From (8.65), we deduce that
(8.66) Ly, = -V —Af+ Y. (VIMdf,e;)ei ie,—w (F,gF) (V1)
1<i,j<n

Similar identities hold for Ly, LY, . Equation (8.64) follows. a
We now reprove a formula of [HSj4, Lemma 2.1].

Proposition 8.22. Let h : U — R be a smooth function. Then
(8.67) eT"D%e~Th = D? + T7(h) + T2 (|df|* — |dh|?) .

Proof. Using (5.12), we get

eThdfe=Th = a¥ 4 Td(f — h)A,

(868) eTh(S;e—Th — dF*

+ Tiv(s+h)-

From (5.10), (8.68), we obtain
(8.69)
e™ D3e ™" = D* + T (Lvs + LY ; + Lon — Ly,) + T2 (|df* — |dh[?) .

Equation (8.67) follows. O

Take now z € B. Recall that ¢, is the function p.(z') = d¥(z,a’). If
z' € W"(z), there exists an integral curve 7 of the vector field —V f, with
Yeoo = Z,Ya = &'(—00 < a < +00). This integral curve is obviously unique. In
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particular it avoids the points in B\{z}. By proceeding as in [HSj4, Appendix 2],
we see that v is the unique geodesic connecting z and z’ with respect to the
Agmon metric g4™. It easily follows that the function ¢, is smooth on an open
neighborhood of 7([—o0,a[). Therefore ¢, is smooth on an open neighborhood
of W*(z). Similarly ¢, is smooth on an open neighborhood of W*(z).

Let V' be an open neighborhood of W*(z) U W*(z) such that ¢, is smooth
on V. Then ¢, verifies the Hamilton-Jacobi equation

(8.70) Voo = |Vf? on V.
Now, we proceed as in [HSj4, Section 2]. Set
1
f&= 3 (e + f = f(2)),

_ 1
£ = 2 (pe— F 4 1(2)).
With the notation of Helffer and Sjostrand in [HSj4, eq. (2.6)], then

(8.71)

(872 fr=ge £z = 3o
Clearly

<P:L‘=f:-+fz—'

The functions f} and f, are positive Lipschitz functions, which are smooth on
V.

Using (8.70), (8.73), it is clear that
(8.74) (ViF,Viry=0.
Also by proceeding as in [HSj4, Lemma A.2.2], we see that
(8.75) ¢z =f - f(z) on W*(z),
= —f+f() on W)

Since over W*(z) UW*(z), the minimizing geodesics for the Agmon distance are
integral curves of the vector field —V f, we find easily that
(8.76) Vo, =Vf on W?(z),

=-Vf on W%().
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From (8.76), we deduce that f} vanishes to order 2 on W*(z), and f, vanishes
to order 2 on W*(z).

Let
(8.77) ar =

be a formal power series with values in smooth sections of A(T*M) ® F over V.

We now look for a solution of an equation of W KB type

1 ~ 1
(8.78) ﬁeT‘P" D e T¢:qp =0 (wa> ar on V.
Using Proposition 8.22 and (8.70), we see that equation (8.78) is equivalent to
1 o 1 1
(8.79) (T—ZD + 77 (<pz)) ar=0 (F) ar onV.
By cancelling the coefficient of —}- in the left-hand side of (8.79), we get
(8.80) T(pz) 0 =0
Equivalently, by using Proposition 8.21, we find that
(8.81) <2VV% + Z <V£'Mdf’ ej>c(e,-)’c‘(ej)
1<4,5<n
+Apz +w (F’gF) (V(pz — f))>a0 = 0.

Equation (8.81) holds in particular at =, where Vf = 0, Vy, = 0. Therefore
(8.82) ( Z (VIMY f(z),e;) c(e:)Tle;) + Acp(m)) ap = 0.
1<4,5<n

Now we use the notation of Proposition 8.2. By (8.3), equation (8.82) is
equivalent to

(8.83) 2 (N* +ind(z) — N~) ap(z) = 0

The same argument as in the proof of Proposition 8.3 shows that (8.83) holds if and
only if there is g € F, such that

(8.84) ap(z) =p: ®g.
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Then once oy (z) taken asin (8.84) is fixed, since the operator N4 +ind(z)—N_
is nonnegative and self-adjoint, one sees easily that equation (8.81) has a unique
solution.

Recall that near z, (8.3) holds. We trivialize F on BM(z,¢) using the flat
connection V¥. Moreover since the metric g% is flat on BM(z,¢), w(F,g")
vanishes on BM (z,¢). As in Proposition 8.3, we extend p, ® g into a “constant”
section of A(T*M)® F on BM(z,¢). Then
(8.85)

Vve, (pz ® g) =0 on BM(z,¢),

( > (VIMVYfe;)c(e)e(e;) + Ape +w (F,gF) (V(soz—f))) (p= ® g)

1<i,5<n

=0 on BM(z,¢).
Therefore, on BM(z,¢), the constant ap = p, ® g is exactly the solution of
equation (8.81). Also, on BM(z,¢), D? = —AR", and so we see that
(8.86) D?(p, ®g) =0 on BM(z,¢).

So by Proposition 8.21 and by (8.85), (8.86), we find that

1 o 1 M
(5.87) (D% +37(62)) (2 ©9) =0 0 B¥ (5,0).
By Proposition 8.22 and by (8.70), (8.87) is equivalent to

(8.88) el D2e~ T (p, ® g) =0 on BM(x,¢).

The fact that (8.88) holds permits us to assume that in (8.77) ,

(8.89) forany j>1,a; =0 on BM(z,¢).

If V is small enough, the equivalent equations (8.78) and (8.79) can then be
solved by a trivial recursion procedure.

As in Helffer-Sjostrand [HSj4, Section 2], it will now be crucial to solve the
transport equation (8.80) along W#(z) and W*(z). In fact Vf is tangent to
W*(z) and W*(z). By (8.76), Vi, istangentto W*(z) and W*(z) and so the
same is true for Vf,
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g) The transport equation on W?(z)

By (8.3) and (8.4), it is clear that near z,

1 < ;

fFw=5 lv'[*,
ind(z)+1
ind(z)

f;(y)=% 3 1
1

Using (8.90), we see that near z, fF vanishes exactly to order 2 on W*(z).
Moreover by (8.71), (8.76), Vft = Vf on W#(z), and so on Wé(z), Vf}
only vanishes at z.

(8.90)

Let V' be an open neighborhood of W#(z). From the previous considerations,
we see that if V' is small enough, the restriction of Vf} to V' vanishes only on

Let (y!,---y™) be the system of coordinates near = considered in (8.3) . Then

(yla'

As in [HSj4, eq. (2.21)], we consider the transport equation

- yind(2)) is a system of coordinates on W*(z) near z.

(8.91) Lg+y;=0 1<j <ind(z),
Yjiws(z) = Yj|we(x)-

Equation (8.91) means exactly that (7', - - -, 7"4(#)) is constant along the trajecto-

ries of the gradient vector field Vf}. The considerations we made before guar-

antee that (7', --,7"4(®)) defines a system of coordinates transverse to W*(z),

which vanishes on W*(z). Note that near z, (7*,---,7*4(®)) coincides with

(yl’ .. ,yind(z)).

Over W*(z), we define the section 7, of Ai"d(#)(T*M) by the formula
(8.92) P, =dy Ao Adg™d®,

Of course, near z, j, restricts to the section p, of Ai"4(=)(T*M) considered in
(8.7). Similarly, if g € F,, we extend g to a smooth section g, of Fjys) by
parallel transport with respect to the connection V¥,
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Near z, p, ® §, coincides with the restriction to W*(z) of the section
pz ® g which was considered in (8.84). We now prove the analogue of [HSj4,
Proposition 2.3].

Proposition 8.24. Over W*(z), if g € F, then the following identity holds

(8.93) 7(¢z) (P ® 3;) = 0.

Proof. By (8.63), (8.70), it is clear that

(8.94) 7(¢pa) = 2Ly s — 2Lg,—.

Since g, is aflat section of Fjw (), from (8.91), we get

Using (8.66), we know that
(8.96)
Ly =~V =0+ Y (VIMdf; e;) e nigy —w (F,07) (VS7).

1<i,5<n

As we saw after (8.76), f. vanishes to order 2 on W*(z). Then, one verifies
easily that
(8.97)

(—Af;+ > <V£‘Mdf;,ej>e"’\iej) (P, ®3,) =0 on W*(a).

1<4,5<n
Also VfZ =0 on W#(z). Using (8.96), (8.97), we get
(8.98) Ly, (7. ©7.) =0.

Equation (8.95) follows from (8.94), (8.95), (8.98). O

h) The transport equation on W¥(z)

The coordinate system y = (y!,---,y") near z € B is still taken as in (8.3). Then
(yird@+1 ... ym) is a system of coordinates on W*(x) near z.
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As in [HSj4, eq. (2.30)], instead of (8.91), we consider the transport equation on
W (z)

L\-,f_yjj =0 ind(z)+1<j<n,
(8.99) D
Yiwe(z) = Yiwe(z):

The same considerations as the ones we made after (8.90) guarantee that equation

(8.99) has a unique solution near W*(z). Then (F"4(®+! ... 7") is a system
of coordinates transverse to W*"(z), which vanishes on W*(z). Also near
x, (Frd@+ —") coincides with (yird(®)+1 ... ym)  Since TW¥(z) is

oriented, dy"‘d(’”)+1 - Adg™ is a section of A"~ "E@)(T* M) ® o(TM).
Recall that * is the Hodge operator for the metric g7 . Set

(8.100) ,5:. — ( 1)md(a:)(n ind(z)) * (d—md(x)+1 . /\dgn)

Then, p isa section of A"4(®)(T*M). Also near z,p% coincides with p,.

Take g € F;. Let g; be the flat section of Fjy«(,) with respect to the flat
connection V¥*, defined in (3.2), which extends g to W*(z). Since the metric
g% is flat near z,g* coincides with g near z.

Near z, g} ®g; coincides with the restriction to W*(z) of the section p, ® g,
considered in (8.84).

We now prove the following important extension of [HSj4, Proposition 2.4].
Proposition 8.25. Over W*(z), the following identity holds
(8.101) 7(¢z) (P2 ® 32) =0

Proof. Recall that ¢ : F — F* is the canonical identification of F' and F*
associated to the metric g¥. Let LE", be the analogue of the operator Ly,

viE
acting on smooth sections of A(T*M) ® F*. Clearly
(8.102) v =—(r@1)TILT L (+®1).
Using (8.94), (8.102), we see that
. . _ F* F* x
(8.103) (x @ 1)T(pz)(x® 1)1 =2Lg, — LVf,

Comparing with (8.94), we find that the operator (8.103) is still an operator of the type
7(pz), with F replaced by F*, and f by —f. We can then use Proposition 8.24
and obtain (8.101). O
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Remark 8.26. The proof of Proposition 8.25 reflects Poincaré duality in a rather
subtle way.

We now describe the solutions of the W K B equation (8.78) on W*(z)UW*(x).
Recall that r7, was defined in Definition 8.6.

Theorem 8.27. Let a(g) = (L)*/4 33 %) pe the WK B solution of

1 Te: 12 —T ( 1 )
—e'¥*Dre” ¥ a(g) =0 | = | a(g),
(8104) T2 T (g) T® ( )
TT,za(g) = Pz ®g‘
Then
e =p,®G, on W?x),
(8.105) o(9) =0 ®7 (z)
=pL®7, on W().
Proof. This follows trivially from Propositions 8.24 and 8.25. O

i) The matrix of d¢£ in the base &1, ;

By [HSj4, Lemma A.2.1], we know thatif x € B,y € M,
(8.106) i (z,y) 2 f(2) - f(y).
Proposition 8.28. Let z € B, y € M. Then
(8.107) di (z,y) = f(=) - f(y)
if and only if y € W¥(x). Moreover if y € B,y # z, and if (8.107) holds, then
(8.108) ind(z) > ind(y) + 1.
Proof. If z € B,y € W"(z), then (8.107) holds. Therefore (8.107) also holds on
We(z).

Conversely assume that (8.107) holds. For a € [—oo, +00], let [—o0,+00] U
-+ -U[—00, a] be a finite union of intervals [—oo, +00] and of the interval [—oo, a).
We denote by —co the first of the —oco. Let t € [—c0,+00]U -+ U [-00,a] —

v¢+ € M be a minimizing geodesic with respect to the Agmon distance d%, such
that y_s = =, 7, = y. By [HSj4, Lemmas A 2.1 and A 2.2], we find that v isa
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generalized integral curve of the vector field —V f, and f is decreasing along . If
v is parametrized by [—oo,a], it is obvious that y € W¥(z). If ~ is parametrized
by [—00,+00] U[—00,a], set Tz = V4c0. Then x5 € BNWH(x), zo # x. As
before, y € W_“(a:—z) Now by [Ro, Lemma 1], or by Proposition 2 in the Appendix,
since Vf verifies the Smale transversality conditions, then W (z3) C W¥(z),
and so y € W“_(a:) A trivial recursion argument shows that in full generality,
y € Wu(z).

Suppose that y € B,y # = and that (8.107) holds. Let x5 € B be the first
critical point of f distinct from z visited by . Then

(8.109) W*(z) N W*(z3) # 0.
Since the vector field Vf verifies the Smale transversality conditions, we find that
(8.110) ind(z) > ind(z2) + 1.
By iterating (8.110), we get (8.108). O

Remark 8.29. Proposition 8.28 is very important, since it guarantees that assump-
tion H1 of Helffer-Sjostrand [HSj4] is verified.

Assumption H2 of [HSj4] is verified because V f satisfies the Smale transver-
sality conditions.

If 2 € B, recall that [W*(z)]* is the line dual to the line [W*(x)]. Let
W(z)* € [W*(z)]* bedualto W¥(z) € [W¥(z)], so that (W*(z)*, W¥(x)) =
1. Then C*(W*,F) is spanned by the W*(z)*® f’s (z € B, f € F3).

The metric g¥ induces metrics gf= on F, (z € B). Thelines [W*(z)]* (z €
B) canbe equipped with the obvious metrics which give thenorm 1 to W*(z)* (z €
B). Therefore if z € B, [W"(z)]* ® F; is naturally equipped with a scalar
product. We equip C*(W*,F) = @, p[W*(z)]* ® F, with the scalar product
( )ce(ww,F), whichis the direct sum of the previous scalar products.

We now establish an extension of a fundamental result of Helffer-Sjostrand
[HS;j4].

Theorem 8.30. For 0 < i <n, z € Bt 2’ € B, for 1 < k, k' < tk(F), as
T — 400,

T\'/? :
(8.111) O (_7;) o~ T(H(2)=£(z")
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_ 1
(<8(W"(x’)* ® forur), W(2)" ® f’”‘k>0°(Wu,F) +0 (m)) '

Proof. We essentially follow Helffer-Sjostrand [HSj4, Section 3]. Still we have to
modify their argument and computations, because of the presence of the flat vector
bundle F.

Take 7, with 0 < n < $d¥(z,2’). Let X, be a smooth function from M
into [0, 1] such that

1
Xeo =1 in BY (a:, §df{!(m,x') - 17) ,
(8.112) 1
=0 in BY (x', Edf{'(x,:c’) - 17) .

Recall that for T' large enough, the Y. ;’s (z € B,1 < j < rk(F')) were
defined in Definition 8.13, and depend also on 1 > 0.

By proceeding as in [HSj4, Theorem 3.1], and using Proposition 8.28, we find
that there exists o > 0 such thatas T' — +o0,
(8.113)

e e 2 —a—d¥ (z,z’
(dFer,er b, €T,k ) g = = (VT2 k> AXaa? A YT0 h ) + O (e( ariale ))T) '
Using (8.19), (8.49), it is clear that

(8.114) (T2, X ar A YTat o) = O (e—dﬁ‘ (2T,

By (8.106), we know that f(z) — f(z') < d¥(z,z'). If f(z) — f(z') <

d¥(z,z'), from (8.113), (8.114), we deduce that there exists o/ > 0 such that
(8.115) (dfero b, 81,0 k) = € TUE=IEDO (e“"T) :

Moreover if there was an integral curve 7 : [—00,+00] of —Vf with y_o, =
T,74+00 = 2’ it would follow that f(z)— f(z') = d¥(z,2'). Soif f(z)—- f(z') <
d¥(z,2'), then W*(z) N W*(z') = 0. From (8.115), we find that (8.111) holds.
So we now consider the case where f(z) — f(z') = d¥(z,z’). By Proposi-
tion 8.28, we know that z’ € W(z). Since ind(z') = ind(z)—1, W*(z)NW*(z')
consists of a finite set I'(z, z’) of minimizing geodesics v for the Agmon distance,

With Y_oo =T, Y400 = T'.
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Take v € I'(z,z"). Let V, be an open neighborhood of v in M. Using (8.19),
(8.49), it is clear that there exists o/ > 0 such that

(8.116) — (VT,2.kr WXz ot A YT, k)

~ M ! "
= — Z / <dX:c,:L" A ’Q[)T’zl’kl N *¢T,a:,k>p + 0 (e—(dA (z,z )+Ot )T) .
~y€l(z,z') Vy

Recall that o7, (1 < k < 1k(F')) was defined in Definition 8.11. By (8.30),
(8.46), (8.47), there exists ¢ > 0 such that as T' — 400, then

(8.117) Tk = JTofe i+ O (e"CT) uniformly on M.
Take € > 0 as in Section 8a). Let Fpm(, ) o be the Hilbert space of the Lo
sections of A(T*M) ® F over BM(z,¢). By [HS]l, eq. (5.9)] and by (8.89), if

n > 0 is small enough, there exists a (rk F,rk F') orthogonal matrix cr ., such that
(8.118)

T nf4 rk(F) , 1
PT,x,k = (;r-) e~ Te= Pz ® Z C”},z,kfz,k' +0 (T_°°) in Fgme)o-
1

Comparing with (8.117), we obtain

T n/4 B 1 .
(8.119) 1ok = (—7;) e T 0, @ foi+ O (T?) inFpm(z,e)0-

We use the notation of Theorem 8.27. Let 'W be an open neighborhood of

Y\BM (z,n). By [HSj1, Theorem 5.8] and by (8.119), we see that if n > 0 and W
are small enough, forany j € N, as T — +o0,
1
=0 (ﬁm-—-) '

From (8.49) and (8.120), we deduce that if 7 > 0 and ‘W are small enough, then

T nf4 j o (fz k) 1
v ()" 550 (k)
Fw o

(8.120)

T "’42" o (fe)
T‘Pa: L T,
€ PT,x .k — (_> q

T 5 T

Fw o

(8.121)

T T
0
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Let W’ be an open neighborhood of Y\B™ (z’,7). Thenif n > 0 and W’ are
small enough, the analogue of (8.121) is

nf4 J
, T o, (leykl) 1
(8122) €T¢’ '(pT,xl’kl —_ (;) Z z_j"z— = O (W) .
0 ]Fw',o

By (8.71), we know that
(8.123) pu(t) + 9w (t) = f(z) - F(&) +2 (FH®) + (1),
and so
(8.124) pa(t) + 9o (t) 2 f(2) — f(a").

Let (7*,---,7") be the system of coordinates transverse to W*(z') taken as in
(8.91). Similarly, let (z%,---, E"""l) be the system of coordinates transverse to

W*(z) considered in (8.99) (under the name of 7*t!,...,7™). Asin [HSj4, proof
of Proposition 3.3], we observe that since W*(z) and W*(z') are transversal, the
forms dg',---,dj', dz'---dz*~*"! are linearly independent near .

Equation (8.73) is equivalent to

(8.125) Ly, f#=0.
Using (8.90), (8.99), (8.125) we find that
(8.126) i =3 Z |2]| near W*(z).
Similarly

1 8 /
(8.127) =3 ; near Wé(z').

From (8.121), (8.122), (8.124), we deduce that if » > 0 and V, are small
enough, then for j large enough,

(8128) —'/ (dX:c,:c' A ¢T,z’,lc’ A *wT,-’b‘,k)F

Vy

n/f2
=_(z> / / dxa z,AZO‘z (fz k) A % Zat fz' &) e~ T(patogr)
T

+e~TU@=1E) (1),
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Let Nwu(z)/m> Nws(zry/m be the normal bundles to W*(z), W#(z'). Using
Theorem 8.27 and (8.123), (8.126), (8.127), we find that

nf2
(8.129) — (%) / (dXa,ar A oo(for jr) A xato(fo k) p e~ TPt eer)

~

, N2 ) ~
= —_e~TU @D | = ,
© ((7!') n(n=1)/2 /7<f-"«",k”f:c,k>FdXx,:c

e"ﬂ’dgl/\---/\dg"/

NW“(:)/MI_Y

Js

e~ azt - Adzmi +0(1)).

W’(z’)/Mh

We orient 7 positively by the standard orientation of [—o0,+00], i.e. from z
to ', and we denote by 7 the corresponding oriented geodesic. One sees easily
that, if n,(z, ') is defined as in (1.28), then

1 - —*
(8.130) - m/y <f,:,,k,,fz,k>Fdxz’x:
/ e gt A A dg‘/ e dzt A A dEn
NW"(E')/MI,1 qu(z)/Ml‘Y

=- /7 <.fz’,k:’,fz,k>FdXx,x'n‘y(xaxl)-

Now recall that f, s is parallel along  with respect to the connection V¥, and
that f7, is parallel along  with respect to the connection VE*, 1t follows that

(Far gt Fo k) F is constant along 7. Also — f? dXz o = 1. Therefore

(8.131) - /_, <f_:c’,k'a f:,k> dXz,e' = (fz' 0 (), fz,k>Fz' :
5
Also it is clear that

(8.132) Z <f:c’,k’(x)a fz,k)pz n,,(a:,x')

v€l(z,2')

- <5(W"($')* ® for ), W¥(2)" ® f‘”*")c-(Wu,F) '
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The same argument as in (8.129) can be used to handle the other terms in (8.128).
Using (8.112), (8.116), (8.128)—(8.132), we find that

T\'/? :
(8.133) (AEe 0 4,70 k) = (;> o~ T(H (@)= 5"

(<5(W“(x')* ® for k), WH(2)* ® f”*’“>co(wu,p) +0 (T_ll/i)) ’

i.e. we still get (8.111).
The proof of Theorem 8.30 is completed. O
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IX. Proof of Theorem 7.6

The purpose of this Section is to prove Theorem 7.6, i.e. to calculate the
asymptotics of T — +oo of

RS 2
Tr, {N Log (DzT,]o,l])] +Log (|| d;;;{%M,FLT) -
det H*(M,F)

A key input is provided by Theorem 8.30, which allows us to calculate the
asymptotics of the matrix of d¥ on ]FL‘,?’”. This asymptotics contains exponentially
small terms. A first step is then to modify the scalar product on FL_,?’” so that these
exponentially small terms disappear.

Once this is done, a second key and essentially new step in the proof of
Theorem 7.6 is Theorem 9.15, where the asymptotics of the scalar product on
the cohomology of (]F[_,Q’ll, dFf) with respect to the new scalar product on ]F[_,Q’ll
is calculated in terms of the corresponding scalar product on the cohomology of
(C*(W*,F),d). This uses again the WK B approximation of the eigenvectors
of D2 associated to eigenvalues A € [0,1], which was given in Section 8. The
de Rham map P, : (F,dF) — (C*(W*, F), ), which identifies H*(F,dF) and
H*(C*(W*, F),8), appears explicitly from the analysis.

By putting together these two arguments, we establish Theorem 7.6.

This Section is organized as follows. In a), we define a new scalar product on
]F!_g’ll. In b), we construct the corresponding harmonic elements in (]I*‘g?’l],dF )-
In c), we establish the key Theorem 9.15, in which we calculate the asymptotics
as T — 4oo of the modified scalar product on H*(M, F'). In d), we obtain the
asymptotics of the corresponding metric on det H*(M, F). Finally, in e), we prove
Theorem 7.6.
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In this Section, we use the notation of Sections 1, 4, 7, 8. Again, the simplifying
assumptions of Section 7 b) will be in force in the whole Section.

a) A modified scalar product on 11*’[19’1]

Recall that for T > 0, the scalar product ( )rr on F was defined in (5.2).

{0,1]
T

Also the finite dimensional Z-graded vector space F' was defined in Definition

7.4. In the sequel, we will often write FL‘,Q’H” instead of F [}”1], to emphasize the
Z-grading.

The operator d actson Fi''**. Then (FI>''h*,d¥) isacomplex, and morever

(9.1) H* (Fp'*,dF) ~ H*(M, F).

Let (,) be the scalar product on ]Fl})’l] induced by ( , )rr. The

For
2,[0,1] . . . . [0,1]
operator D7 is exactly the associated Laplacian acting on F7"".

From (1.4) and (9.1), we deduce that
(9.2) det H*(M, F) ~ det Fi'l*

The Z-graded vector space j}“?ITQ,l] was defined in Definition 8.14. Recall that for
T > 0 large enough, for 0-< i < n, {€rzk} .esi isthe orthonormal base of

1<k<rk(F)
F[ﬁ’”’i with respect to the scalar product induced by ( , )r, which was defined in
Definition 8.18.
Definition 9.1. For T > 0 large enough, = € B, set

(9.3) €Tz k = eTfET,x,k 1<k <tk(F).

By Propositions 5.3and 5.4,for 0 < ¢ < n, (erz,k) -epi isanorthonormal
1<k<rk(F)

base of IF[; 1% with respect to the scalar product induced by { , )g,r.

Definition 9.2. For T > 0 large enough, for 0 < i < n,z € B, let Fi2) be the

0,1],i
vector subspace of IF[T’ bi spanned by €71, ", €Tz rk(F)-

150



PROOF OF THEOREM 7.6

For 0<:7< n, ]F(;’ll‘i splits orthogonally into

(9.4) F'h = @ Frl.

z€ B}

Definition 9.3. For T > 0 large enough, let ( , )’ be the scalar product on

oY,
]F[ﬁ’l] , which is such that

— The various Fi2] *s are mutually orthogonal in Fio!l withrespectto ( Ygo.
) L

—If z € B, and if o, 8 € Fiy'2), then
7\ ind(z)—n/2
(9.5) (@, BYgon 7 = (7) 2T (a, By 1

Definition 9.4. For 7' > 0 large enough, z € B,1 < k < rk(F'), set
ind(z) _n/4

T 2
(9.6) T2k = (;) e T @er g k.
For z € B, €751, "> €T 4 i F) is an orthonormal base of IF[ ’ ] with respect

to the scalar product (-, -)’ Lo,
T ’

Theorem 9.5. For 0 < i < n, if x € B*t1,z' € B, for 1 < k,k' < 1k(F), then
as T — 400

’
(97) <dFe{T’z,,kl, e&’»:’”k>]F,[19’l],T
~ 1
— u N * ' u * —_— R
= <8(W (.’L‘) ®f:c ,k),W (:L‘) ®fz’k>C°(W“,F)+O(T1/2)
Proof. By Proposition 5.3 and by (9.5), (9.6), it is clear that
(9.8) (dFer ot 6T,:c,k>]F,T = (d¥er o o, €T,k )p

1/2
F s ’ / T —f(z' m F
(d eT,z,,k,,eT’z’k>F[;,,]’T=e (f(2)-f(=") (T) (d¥eT o ks T ok )p 7

Using Theorem 8.30 and (9.8), we get (9.7). O

Definition 9.6. For T' > 0 large enough, let F be the operator acting on ]F!ﬁ’ll by
multiplication by f(z) on ]F[0 1].
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The operator JF is self-adjoint with respect to the scalar product ( , )go.u -
T 9

Moreover, if o, 3 € ]F[;’l]’i, then

i—-n/2
(99) (@ Bonp=(F) (7™ By 1.

Recall that dF and dE* act on Fio!l.

Definition 9.7. Let df*' be the adjoint of the restriction of d¥ to FE_,Q’” with

respect to the scalar product ( , ) o, .-
T

Proposition 9.8. The following identity of operators acting on IFL_,Q’” holds

(9.10) dbx = %e_ﬂ F §F 2T

Proof. The operator e™? is self-adjoint with respect to the scalar product (-, )01 .-
T
Using (9.9), (9.10) follows. O

Definition 9.9. For T > 0 large enough, set
(9.11) ]F,:,io} = {s € Flr_?w’ll;dFs = O,d;*ls = 0} .

Let II7 be the orthogonal projection operator from [‘,9’1] on F’T{O} with respect to

the scalar product ( , );F""” -
T

In the sequel, we write often F°"* instead of F,\°}, to emphasize the Z-
grading.

b) The harmonic elements in Ff[zg’ll for the new scalar product

Recall that (Flﬁ’l]’. ,dF") is a complex. Then ]F;fo} is the vector space of harmonic
o o+ BY (O, it s

clear that there is a canonical identification of Z-graded vector spaces

elements in IFE,Q’” with respect to the scalar product ( , )

(9.12) F{°h* ~ H*(M, F).
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Recall that qu? 1 is the orthogonal projection operator from F on IF[TO’” with
respect to the scalar product ( , )F,T.

Take [w] € H*(M,F). Let w be any closed current on M representing [w].

Then since P}? !l has a smooth kemel, Pp 1y, is well-defined and lies in FE_,Q 1,

Theorem 9.10. For T > 0 large enough, if |[w] € H*(M,F), if w is a closed

current on M representing [w], IITP,E? Ay, only depends on [w]. The map
(9.13) w] € H*(M, F) — O7 PV e F%

is in fact the canonical isomorphism H*(M, F) ~ ]Fi_,fo}.

Proof. Let D'(M, F) be the vector space of currents on M with valuesin F'. The
map P : (D'(M, F),dF) — (Fi! dF) is a quasi-isomorphism of complexes.
Our Theorem is now obvious. o

If [w] € H*(M,F) is taken as in Theorem 9.10, we will write TI7P{""[w]
instead of HTP;P ’1]w.

Recall that the scalar product ( , )ce(w«,r) on C*(W*, F) was defined in
Section 81i).

Definition 9.11. Let 8* be the adjoint of & with respect to the scalar product
( , )Co(Wu.,F) on C.(Wu,F). Set

(9.14) cw, F)={hec (W",F),0h=0,8"h =0}

By Hodge theory, we have a canonical identification of Z-graded vector spaces

~
.

(9.15) clh(w, F)~ H* (C*(W", F),d)

Definition 9.12. Let II,, be the orthogonal projection operator from C*(W*, F')
on C1O:*(W*, F) with respect to the scalar product { , )ge(ws,F)-

Recall thatif o € F, P € C*(W*, F') was defined in Definition 2.8 by

(9.16) Pea=) W%2)'® o
z€B We(z)
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Theorem 9.13. If [w] € H*(M,F) and if w € F is a smooth closed form
representing (w], Il Poow only depends on [w]. The map

(9.17) [w] € H* (M, F) — M Poow € C1OH*(WH, F)
provides the canonical isomorphism H*(M, F) ~ C{0b¢(Wu F).

Proof. By Theorem 2.9, the map « € (F,dF) — Pya € (C*(W*,F),d) isa
quasi-isomorphism. Our Theorem is now obvious. O

If w,[w] are taken as in Theorem 9.13, we will write II.,Ps[w] instead of
IIoo Poow.

Remark 9.14. The class of closed currents w to which Theorem 9.13 applies is
larger than the smooth ones.

¢) The asymptotics as 7' — +oo of the modified scalar product
on H*(M, F).

The following result is one of the essential results of this Section.

Theorem 9.15. For any [w], [w'] € H*(M, F), then
(9.18)

lim <1'ITP[°’1][w] HTPIO’”[w’]>, = (oo Poo[w], Moo Poo[w']) o ) -
T—+o00 T ) T ]F{To'l],T ’ C (W 9F)

Proof. Take i,0 < i < n, and assume that deg[w] = deg[w'] = i. Let w,w’ € F*
be smooth closed representatives of [w], [w’]. Clearly, for T > 0 large enough,

(9.19) PPUwl= ( / (wA*eT,z,k)Fe'sz) €T,z k-
M

::EB"
1<k<rk(F)

Using (9.3), (9.6), (9.19), we see that
(9.20)

0.1] T nf4—i/2 _ r ,
PT ’ [w] = Z (;) (/M (w A *eT,a:,k)F e (f—f(z))) €T z.k>

zeB"
1<k<rk(F)
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and so,
(9.21)
(0.1] T nf4—1/2 T ,
IrPpwl= ) (—) ( / (WA*eTz k) pe” <f-f<f>>) zer , k-
m M

1512?;(;‘)

Let Wui—1 be the union of the cells W¥(z),z € B,ind(z) < ¢ — 1. Then,
the class [w] can be represented by a smooth closed form on M which vanishes on
an open neighborhood V' of Wu»i—1, In effect by Proposition 7 by Laudenbach in
the Appendix, [w] can be represented by a current y which is a linear combination
of the g8y, (Where z € B? and g is a flat section of Figr*(z))- By de Rham
regularization [Rh2, Chapter XV], we obtain a closed form w € F* which has
the required property. Another simple proof of this fact is as follows. Assume
temporarily that f is a nice function. Then with the notation of Remark 1.8,
H(V;_1,F) = 0. So any closed form in F* is exact on V;_;. This implies that
[w] can be represented by w € F* having the required property. In the sequel we
assume that w is chosen in this way.

Recall that by (8.62), if =z € B,

~

(9.22) erer =0 (e79T) | 1<k <1k(F).
Also by [HSj4, Lemma A.2.1],if t € M,
(9.23) ex(t) + f(t) — f(z) 2 0.

By Proposition 8.28, if there is equality in (9.23), then ¢t € W¥(z).

Let W, be an open neigborhood of W¥(z) in M. From (9.22), (9.23), we
deduce that there exists ¢ > 0 such that for z € B¢,

T nf4—i/2
(9.24) (—) / (w N *ET,Z,,C> e_T(f—f(Z))
T M

T nf4—i/2 _
W,

Recall that 6, was defined in (8.55). By [HSj2, Section 2.1] and [HSj4, eq.
(3.12)], we know that

~

(9.25) €Tz k — Vo = O (e7%7).
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Using (8.56) and (9.25), we get

(926) gT,:r:,k — '¢T,:c,k = 5 (6_6’T) .

By [Ro, Lemma 1] or by Proposition 2 in the Appendix, we know that W*(z)
is obtained from W*(z) by adding certain W*(z’) C W*i~1. So we find that
Wu(z)\V C W*(z). Moreover W4(z)\V is compact. Therefore there exists
o > 0 such that

(9.27) 6z > gz +a on Wy(z)\V.
So if W, is small enough,
(9.28) 6z > oz +a/2 on W \V.

By using (9.26), (9.28) and [HSj1, Theorem 5.8] as in (8.120), we find that if
n >0 and ‘W, are small enough, then
(9.29)
1
=0 (Tj+1—n/4> :
Fw z\v,0

(s (1) S (24))

Recall that w vanishes on V. Using (8.71), (9.29), we get for j large enough,

T nf4—i/2
(9.30) (_) / (@ A $87,04) p e~ TI=FE)
W

T

_ 1 T, -2Tf] -
(YL (o () ) ] o).
We use now the coordinates (gnd=+1 ... F™) transverse to W*(z) which

were constructed in Section 8h). By using Theorem 8.27 and by (8.126) we find that
as T — +o0,

T nf2—if2 + .
9.31 p / w A xag(fo ) €T — W, Fer) -
030 (3) [ wnren(se) IRCE

Over W¥(z), f:k is parallel with respect to the connection V*. Then, we see
that

(9.32) /Wu(x) <w, f:,k)F = </Wu(x) w, f:c,k>
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The other terms in the sum appearing in the right-hand side of (9.30) can be
dealt with in the same way as in (9.31). Using (9.24), (9.30)-(9.32), we find that as
T — 400,

T nf4—if2
(9.33) (—) [ onsenanpe o=@ o ([ wge)
™ M Wu(z) F,

Let d” be the matrix of d¥ with respect to the base (eli””*’“)xfffw) of ]FL_,?’”,

and let O be the matrix of & with respect to the base (W*(z)* ® fz k) (<58 of
C*(W*,F). Then by Theorem 9.5,as T — +o0,

1
(9.34) dr _a+0(T1/2)

Moreover, and this is essential, by Theorem 1.16 and by (9.1), the complexes
(F9! gFy and (C*(W*,F),d) have the same Betti numbers. Let II; be the
matrix of Il with respect to the base (e, ,) =es -, andlet Il be the matrix

1<k< K(F)

of IT,, with respect to the base (W"*(z)* ® fx k) B It follows from (9.34)
thatas T — +o0,

(9.35) O, — I

EL oo

Let w’ be a smooth closed form of degree ¢ representing [w’'] and verifying the
same support conditions as w. The obvious analogue of (9.33) still holds. Using
(9.21), (9.33), (9.35), we find that

(9.36) Tlll}’_l (HTPT[w] HTPT[w D]F[o 1] T

rGB"
Z </ w,, fa:',k"> l—Ioo (Wu(x,)* & f:c’,k’)> )
. Weu(z') F, Ce(Wu,F)

1<k<rk(F)
z'GB‘

1<k! <rk(F)

which is equivalent to (9.18). a
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d) The asymptotics of the modified metric on det H*(M, F')

Definition 9.16. Let || ||,., pio.11.0 . be the metric on the line det lF[79’11" asso-
T 9
ciated to the scalar product ( , )pio. , on FL})’”. For T > 0 large enough,
T

let || ||’ be the metric on the line detF [2’1]” associated to the scalar

det 1o,
0’1 bl ~ ~,,
product { , Yyso.n 5 o0 Fp. Let || 3 oo,z | as mrecor, ),z e the
metrics on the line det H*(M, F') corresponding to the metrics || ||,_, O 7o

I ||:1et FOle 7 via the canonical isomorphism det H*(M, F') ~ det IF[TO’”".

Proposition 9.17. For any T > 0, the following identity holds
(9.37)

2 ~ 2
Log(llldetH(MF)T> +Tr, [NLog( ,101])] Lo (" ”detH‘(M,F),T) -

Idet H*(M,F) | Idet He*(M,F)

Proof. Using [BGS1, Proposition 1.5], (9.37) follows. O

Proposition 9.18. For T > 0 large enough, the following identity holds,
(9.38)

, 2
Log(" "i“”‘(M’”’T) = 25k(B) BEYIT + (5P - X(P) s (T ).

[y H*(M,F),T

Proof. This follows trivially from (9.9). O
The following result is now crucial.

Theorem 9.19. The following identity holds

' 2
|15 WY
(9.39) lim Log DT ) pog |
T—too | |detH'(MF) | |detH°(MF)

Proof. Recall that the vector space F 10} \was defined in (9.11). By (9.12), we get

(9.40) det F{°) o det H*(M, F).
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Let | | be the metric on the line det ]F;go} induced by the scalar

det FA°M T
’ !
. {0} ~, .
product ( , ) o1 7 restrictedto Fp . Let | |32 go(p,p),r bethe corresponding

metric on the line det H*(M, F') via the canonical isomorphism (9.40).

Let D7 be the operator acting on Flo 1
(9.41) Dy = df + dE¥.
Then D/ is self-adjoint with respect to the metric ( , >;F[°’” o+ Also (9.11) says
T
that
(9.42) F;° = Ker Dy

Let D:_,?’>° be the restriction of D7? to the nonzero eigenspaces of D32. By
[BGS1, Proposition 1.5], we know that
(9.43)

2 ) 2
Lo g(” ”det He(M,F), T) _ Log(l| 'det H'(M,F),T) +Tr, [NLog (D?’”)] .

| Idet H*(M,F) Idet He(M,F)

Recall that F{°} was defined in (2.4). Clearly F{°} = F{*}. By Theorem 9.10,
for T' > 0 large enough, the linear map

(9.44) w e FO - 11 PO, e 7%

is one to one and provides the canonical isomorphism of F{°} with F;fo}. By
Theorem 2.9, the linear map

(9.45) w e F% L 1 Pow e COH WY F)
is one to one and provides the canonical isomorphism of F{°} with C{0}(W*, F).

Let | |getciode(we,r) be the metric on the line det C1°b*(W*, F) induced
by the scalar product ( , )ce(ww,p). Let | | e H.( m,r) be the corresponding
metric on the line det H*(M, F'). Using Theorem 9.15, it is clear that

| I:,t,H (M,F),T ’ | Igté:rf(M F)
: € ® L)y € ° )
©048)  lim_Log | s = Log (—-R-S——)

det Ho(M,F) | ldet #e(ar, p)

2
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Let D? be the matrix of D7 withrespect to the orthonormal base {eT e i} =<8

1<k<rk(F)
0,1
of Fll. Set

(9.47) D' =38+ 6"
Then,
(9.48) clOY (W F) =Ker D'

Let D'2>0 be the restriction of D'2 to the eigenspaces of D'2 associated to
positive eigenvalues. By [BGS1, Proposition 1.5], we know that
2

M, Vf
(9.49) Log (”I:I;:tv#) =Tr, [N Log ( D'2’>°)] .

det Ho(M,F)

Let D? be the matrix of D'2 with respect to the orthonormal base {W*(z)*
®fzk} =es ) of C*(W*", F). By Theorem 9.5, it is clear that as T' — +o0,

1<k<tk(F
(9.50) DZ - D2

Also for T' > 0 large enough, the Z-graded kernels of the matrices 1_);? and _]._)'2
have the same dimension. From (9.50), we deduce that as T' — +oo,

(9.51) Tr, [N Log (D;?’”)] — Tx, [N Log (D'2’>°)] .
Using (9.43), (9.46), (9.49), (9.51), we get (9.39). O

e) Proof of Theorem 7.6

We now prove Theorem 7.6, which we restate for convenience.

Theorem 9.20. As T — +oo,

RS 2
(952) lim {'I‘rs [N LOg (D%]O,ll)] + LOg (I |d;;SH.(M’F)’T>
e | Idet He*(M,F)

2
n - T I ||gi’7ff- M,F
+2rk(F) Trf[f]T+(—2'X(F) - X/(F)) Log (;)} = Log ( | Rst L
det H*(M,F)

Proof. This follows from Propositions 9.17 and 9.18 and from Theorem 9.19. O
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X. The asymptotics as T' — +oo of certain traces
associated to the operator D?.

The purpose of this Section is to establish Theorems 7.7, 7.8 and 7.9. These
results concern the asymptotics as T — +oo or t — +oo of supertraces involving
the operator exp(—tD%) and also the asymptotics of the eigenvalues X € [0,1] of
D2.

To establish these results, we use the techniques of [BL2, Sections 8 and 9],
where a much more difficult problem was considered.

This Section is organized as follows. In a), we describe the operator ET near
B. Inb), following [BL2], we prove Theorem 7.7, in c), we establish Theorem 7.8,
and in d), we prove Theorem 7.9.

a) The operator ET near B

By (5.12), we know that

(10.1) Dr =D +T&Vf),
and so,
(10.2) D% = D* + T [D,&Vf)| + T?|df|*.

Observe that by (5.17), [D,¢&(Vf)] is a matrix valued operator, i.e. an operator of
order 0.

Also, |df|? is positive on M\B. Therefore the situation is formally identical
to the one described by Bismut and Lebeau in [BL2], with Y replaced by B and
V2 by |df|?. We will pursue this analogy further.
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Take 2,0 < i < n. We equip R™ with its canonical scalar product, and we
identify R™ and R"™* by the scalar product. We split R™ orthogonally into

(10.3) R* =R @ R"".
Then
(10.4) AR™) = A (R) 84 (R=9") .

Let N,N~,N* be the number operators on A(R"), A(R™*), A(R(™~9*), so that
(10.5) N=N*t+N".

If y € R™, we write y in the form

(10.6) y=y +yt; y eR, yteR"

Let F be the vector space of smooth sections of A(R™) ® R*¥ over R". Let Fy
be the space of square-integrable sections of A(R™) ® R¥ over R™. We equip Fy
with the scalar product

(10.7) o,B € Fo — (o, B)p, = /m (a A xB)ps .

The operator d + (y* — y~)A acts on F. Its formal adjoint with respect to the
scalar product (10.7) is the operator d* + 4(,+_,-). Set

(10.8) D* = d+ (y* —y7) A+d" +igr—y)-

Let AR" be the flat Laplacian on R”. By Proposition 8.2, we know that
~R™ 2 n

(10.9) (D ) =A% 4y -n+2(N* +i-N7).

Let p be the volume form of R’ with respect to the Euclidean scalar product of R’
equipped with its canonical orientation.

Proposition 10.1. The kernel of the operator (5“" )2 isof dimension k. If f1,---, fk

~ 2
is an orthonormal base of R*, then Ker(D®")? is spanned by ﬁ;e‘uﬁl‘p ®
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[ A —l® : k
1 s ma7ge” 2 pQ® fr. Moreoverif f € R, then
d + _ e_‘l}lz'Ii ()
(d+ @ =y)N) | —Zaref] =0
(10.10)

_ly?
* | e 3
(d +’(y+—y“)) (W;‘p@f) =0.

Proof. The first part of our Proposition was already established in Proposition 8.3.
Moreover (10.10) follows from an easy direct computation. O

b) Proof of Theorem 7.7

By Proposition 5.4,
(10.11) Tr, [N exp (—tD%)] = Trs [N exp (—tb’?r)] :

In view of (10.2) and of Proposition 10.1, we see that the situation is formally similar
to the corresponding situation in Bismut-Lebeau [BL2, Theorems 6.4 and 8.3]. Of
course it is much simpler here, since the set B = {y, |df|?(y) = 0} is finite, while
its analogue Y in [BL2] is a union of submanifolds. Also by Proposition 8.2, if
z € B, the operator 13% is exactly an harmonic oscillator on a whole neighborhood
of z, while in [BL2], only the corresponding infinitesimal analogue is true. Since
B consists of isolated points, the analogue of the operator DY in [BL2] is the zero
operator acting on P, ¢ 5 Fx.

So by proceeding as in [BL2, Section 9], we find that for £, A with 0 < € <
A < 400, there exist ¢ > 0,C > 0 suchthatif e <t < A,T > 1, then

(10.12)

Tr, [N exp (~tD%)] - 1k(F) 3 (=1)™® ind(z)| <
z€B

5l°

Using (10.11), (10.12), we get
(o
10.13 Tr, [N exp (-tD%)] = ¥ (F)| < —=,
( ) l [ P( T)] X'( )l =T
which is exactly Theorem 7.7.
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¢) Proof of Theorem 7.8
Recall that ]3159 1l was defined in Definition 8.14. By Proposition 5.4, we get
(10.14)  Tr, [Nexp (-tDF) PR+l = Tx, [N exp (~D) PR+

Let A = A4 UA_ be the oriented contour in C

y
+1
<71 3
A
-1 0 +1 X>
Y
» - - >—
A -1 A,
Figure 2

The analogue of the operator DY in [BL2] is the zero operator acting on
®ze g Fz. By the analogue of [BL2, Theorem 9.25], we find that for T' > 0
large enough,

(10.15) Sp (TJT) na=0.

Take p € N,p > n+2. Let f, be the unique holomorphic function defined on
C\v—-1R with values in C, which has the following properties :

— As X — %00, fp(A) — 0.
— The following identity holds

700 _
(1016) (T_——l-)-r = exp (—Az) .

164



THE ASYMPTOTICS AS T TENDS TO INFINITY OF CERTAIN TRACES

Using (10.15), we see that for T" > 0 large enough,

=9\ Bll+oo _ 1 )2 D -1
(10.17) exp( tD )P 27l_z/Aexp( tA?) (/\ DT) d).

Equivalently

LAY fp \[,\ 5\ 7P
(10.18) exp( tDT) Py 27” p DT) dX.
Also
(10.19) / f" ,\ PdA =0

Using (10.18), (10.19) and by proceeding as in [BL2, Section 9g)], we find that
(7.18) holds. Also by proceeding as in [BL2, Section 9h)], we get (7.19). The proof
of Theorem 7.9 is completed. O

d) Proof of Theorem 7.9

Let D% be the restriction of D2 to F*. Recall that M* = card(B’). By using
Proposition 10.1 and by proceeding as in [BL2, Section 9], we see that forany ¢ > 0,

(10.20)  lim Tr [exp( tD?_;")] = tk(F)M".

From (10.20), and from elementary properties of the Laplace transform, (7.20) and
(7.21) follow. The proof of Theorem 7.9 is completed. O

Remark 10.12. To prove Theorems 7.8 and 7.9, one can also proceed as in [BL2,
proof of Theorem 9.25], by using in particular the analogue of [BL2, eq. (9.154),
(9.155)]. However the conclusions of [BL2, Theorem 9.25] are not valid any more.
In [BL2, Theorem 9.25], one shows that for T' > 0 large enough, if A € R is an
eigenvalue of the analogue of ﬁ% which is such that [A| < 1, then A = 0. This
follows from a purely algebraic argument, which has no equivalent here. In general,
Morse inequalities are indeed inequalities and not equalities.

Theorem 7.9 can also be proved by using the much stronger Theorems 8.5 and
8.15.
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XI. The asymptotics of Trs[N exp(—tD?)] as t — 0

The purpose of this Section is to prove Theorem 7.10, i.e. to calculate the
asymptotics as ¢ — 0 of Trs[V exp(—tD?)]. This asymptotics has already been
obtained by Dai and Melrose [D] in the case where the metric gF is flat.

We will obtain Theorem 7.10 as a trivial consequence of Theorem 4.20.

Here we make the same assumptions as in Section 2, i.e. we may work with an
arbitrary metric g™ on TM.

We use the notation of Section 4. Let eq,---,e, be an orthonormal base of

TM. Then one has the trivial
1 — n
11.1 N== ;)cle;) + =.

(111 5 2 c(e)eled) + 5
By proceeding as in the proof of Theorem 4.20 (and more specifically as in (4.55)—
(4.63)), we find easily that if n is odd
(11.2)

) B »T M
}i_rg \/Z'I‘rs[(%lec(ei)e(ei))exl)(_tly)] =rk(F)/M/ Lexp <_R2 )

If n is odd, using standard results on asymptotic expansion of traces of heat kernels,
we get the second identity in (7.22).

We now assume that n is even. In view of Theorem 4.14, of Proposition 4.15
and of equation (4.74) in the proof of Theorem 4.20, it is clear that

(11.3) lim Tr, [(% 21: C(ei)a(ei)) exp ('tDz)]
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_ _/M{/BVTM (%) exp <_R2M) /\<p9(F,gF)}.

By Proposition 3.15, we get

(11.4) vIML =0

From (11.3), (11.4), we deduce that

(11.5) }1_{1(1) Trs [(% Zc(ei)ﬁ(ei)) exp (—tDﬂjI =0.
1

Incidently note here that (11.5) also follows directly from Proposition 4.15 and from
Theorem 4.20.

By standard properties of traces of heat kernels, we find from (11.5) that as
t—0,

n

(11.6) Tre [(% Zc(e,-)é‘(e,-)) exp (—tDZ)] = O(t).

1

Moreover by the McKean-Singer formula [McKS], we get
(11.7) Tr, [g exp (~tD?)| = %X(F).

From (11.1), (11.6), (11.7), we obtain the first identity in (7.22).
The proof of Theorem 7.10 is completed.
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XII. An asymptotic expansion for
Trs[f exp(—tD%)] as T — 400

The purpose of this Section is to prove Theorem 7.11, i.e. to caculate, for a fixed
t > 0, the asymptotic expansion for Trs[f exp(—tD3)] as T — +oo.

This Section is organized as follows. In a), we give an estimate for the kernel
of exp(—tD%) away from B. In b), using the fact that the metrics g7 and

g are flat near B, we show that near B, the kemel for exp(—tD%) is well
approximated by the kernel of a corresponding harmonic oscillator. Finally in c), we
prove Theorem 7.11.

Let us point out that in our proof of our mains results in Theorem 7.1, we only need
to establish Theorem 7.11 for ¢ = £ small enough. This simplifies the arguments
of Section 12 b), where part of the difficulty comes from the fact that we establish
certain estimates for arbitrary (i.e. not necessarily small) ¢ > 0.

As already explained, we suppose the simplifying assumptions of Section 7 b)
(which concern the form of g7™, f and gF near B') to be in force.

a) An estimate of the kernel of exp(—tﬁ%) on M\U,cp BM(z,¢)

Definition 12.1. For ¢t > 0,T > 0, let P, r(z,2')(2,2/ € M) be the smooth

kernel of the operator exp(—tD2.) with respect to the volume element dvy over
M.

Thenif s € F, forany z € M

(12.1) exp (—tﬁ%) s(z) = /M P, 1(z,2")s(2")dvp (2').

169



J.-M. BISMUT, W. ZHANG

Proposition 12.2. For any t > 0, > 0, there exist ¢ > 0,C > 0 for which if
z € M issuchthat d(z,B) > «, for T >0,

(12.2) | P, 1(2,2)| < cexp(—CT).

Proof. Using (10.2) and the fact that [DX,(V f)] is an operator of order 0, (12.2)
can be proved by the same methods as the stronger [BL2, Proposition 13.1]. a

Remark 12.3. The proof of [BL2, Proposition 13.1] uses the nonnegativity of the
operator D32, and also probabilistic estimates for Py 7(2,2). Still using the

nonegativity of ]5% and an argument using finite propagation speed, one can also
give another proof of (12.2).

b) A harmonic oscillator approximation for the kernel of
exp(—tD?2) near B

Let r > 0 be the injectivity radius of (M, gT™).

Take ¢ €]0,7/2] small enough so that forany = € B, the balls BM (z,2¢)(z €
B) do not intersect each other, that (7.12) holds on BM(z,¢), and moreover the
metric g¥ isflat on BM(z,¢).

Take x € B. We use the notation of Section 8 b) or of Section 10, with
T.M = T,W¥(z) ® T,W*(z) replacing R® = Ri @ R"~. In particular, if
y € T, M,y* and y~ denote the orthogonal projection of y on T,W?(x) and
T.W*(z). Alsorecallthat TM and T*M are identified by the metric.

Let F, be the vector space of smooth sections of (A(T*M)® F), on T M.
Let dvur, s be the volume element of T, M with respect to the metric g7=M. We
equip F, with the scalar product

(123)  a,d € F, > (@,a')p, = /T (@) anon, W)dvr.u(y)

x

The operators d¥ + T(y* —y~)A and dF* + Ti,+_,- acton F,.
Definition 12.4. Set
DIM =d¥ + T(y* — y™) A+d™ + Tiye_y-,

(12.4) -
DM = dF 4 (y* — y™) A+d™* +ipe_y-.
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Let G be the map

(12.5) s(y) EF, — s (%) e F,.
Then
(12.6) GrDEFMGL! = VT DT=M,

Let AT=M be the standard Laplacian on (T M, g™=™). By Proposition 8.2, we
know that

~ 2
(12.7) (D%M ) = _ATM L T2|y|2 — Tn + 2T(N* +ind(z) — N7).

Let £ be the harmonic oscillator

(12.8) L= 5 (-ATM 4|yt —n).
Then
~ 2
(12.9) (DFM)" =27G7! (L + N* +ind(z) - N7) Gr.

Definition 12.5. For t > 0,T > 0, let Qf 1(y,y')(y,y’ € Tx M) be the smooth

kernel associated to the operator exp(—t(DT=M)2) with respect to the volume
element dvr, p.

We then use the coordinates y = (y',---,y™) considered in (7.12) near z. In
particular if z € M,d™(z,2) < €,Q7 1(2,2) is well defined.

Theorem 12.6. For any t > 0, there exist ¢ > 0,C > 0 such that if x € B,
z € BM(z,¢),T >0, then
(12.10) 1(Pur - Q21) (2,2)|| < cexp(~CT).

Proof. Let PP(z,2')(z,2' € BM(z,e)) be the smooth kemel associated to the

operator exp(—tD?2.) and Dirichlet boundary conditions on BM (z,¢). We claim
that there exist to > 0, C > 0 for which, given t €]0, t,], there is ¢ > 0, such
thatif 2 € BM(x,¢),2' € BM(z,¢),T > 0, then

(12.11) | (P.z — P2r) (2,2)|| < cexp(—-CT).

To establish (12.11), we will use a simple probabilistic method.
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In fact by Theorem 4.13 and by (5.16), we know that there exists smooth sections
Ag, Ay of End(A(T*M) ® F) such that forany T > 0

(12.12) D% = —A°® + Ao + TA, + T?|df]?.
For z € M,z € M, let R! _, be the probability law on €([0,1]; M) of the

z,2'

Brownian bridge s € [0,1] — = € M associated to the metric 9%, starting at z
and ending at z’. Tautologically, R ., (20 = z) = R. (21 = 2’) = 1. Under
R} ./, z. isexactly the Brownian motion associated to the metric 9—;, starting at
z at 0 and conditioned to be z’ at 1. For the definition of the Brownian bridge,
we refer to [B2, Chapter 2]. Let E®. be the expectation operator associated to
R; ..

For 0 < s <1, let 70 be the parallel transport operator along the curve z from
(A(T*M)Q® F), into (A(T*M)® F),,. Set 7§ = (72)~1. Observe that by [B2,
Chapter 2], these operators are well-defined for any s € [0, 1], Ri,z, a.s. .

Under R! _,, consider the differential equation

, dveT
(12.13) ds
Vo'l = 1 mer),
In (12.13), VT lies in End,(A(T*M) ® F).
Let S be the stopping time
(12.14) S =inf {s > 0;2, € 0BM(z,¢)} .

Let ATM be the Laplace-Beltrami operator on M, and let py(z,2')(t > 0,2,2' €
M) be the corresponding heat kernel associated to the semi group etA™ A
standard application of Ito’s formula shows that if z,2’ € BM(z,¢), then

(12.15) (P.r — Pr) (2,2")

, 1
= pi(z, 2') B [exp {—tT2/ Idf(zs)|2ds} Vlt’TT(}ISSI] .
0

Clearly, there exists v > 0 such that forany ¢ > 0,7 > 0,

= V15 (tAo(2s) + tT A1 (25)) 72,

(12.16) lvf’T| < exp(y4(1+ T)).
From (12.15), (12.16), we deduce
(12.17) |(P.r = PPr) (2,2")] < exp(vt(1+ T))pi(2, 2")
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. 1
B [op {1 [ e as b s
0

Estimating the right-hand side of (12.17) is now a scalar problem. We fix ¢ > 0.
In the sequel, the constants ¢’ > 0,¢” > 0--- may depend on ¢t > 0 but not on
T > 0. Clearly

. 1
(12.18) ERw [exp{—tT2/ Idf(zs)|2ds} 1551]
0
, 1
< ERe [exp{—tTZ/ Idf(zs)lzds} 1551/2]
0

, 1
+ER [exp {-—th/ |df(zs)|2ds} 11/25551] :
0

By using time reversal, the two quantities in the right-hand side (12.16) are deduced
from each other by exchanging 2 and z’. So we only need to estimate the first one.

Set

(12.19) SH:hf{sZSJ,ELJaBM(Mg)}.

y€EB

Then for 0 < a < 1/4, we have the obvious

. 1
(12.20) ER:x [exp{—tT2/0 |df(zs)|2ds} 1551/2]
<R!,[S<1/2,8 -5<q]

z,2!

R! 2 Sta
+ER+ |exp _tT/S |df (zs)[%ds p 1s<1/2,5—5>a | -

Now there exists 3 > 0 such that

2 mM( £
(12.21) JdfP>8 on M\|JB (y,2).
y€B
Therefore
(12.22)

. S+a
ERz,z' [exp {_tTZ.[g |df(zs)|2ds} 1551/2,5'_32.1] < exp (—ﬂath) .
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Let R be the probability law on €([0,1]; M) of the standard Brownian motion

. - TM .
z on M associated to the metric £—, with R}(z = z) = 1.

Recall that ¢ > 0 isfixed. By [B2, Definition2.4], onthe o-field B(z;|s < 3/4),
Rg,z, has a bounded density with respect to R’. Using the estimates of Varadhan
[V, Proof of Theorem 5.1] on Ri, one finds easily that there exists ¢/ > 0 such that
for z,2' € BM(z,¢), 0 < a < 1/4,

2

) t L[S < ' / L
(12.23) R, [§<1/2,8' -8 <ad]<c exp( 32at)

From (12.17)—(12.23), we find there exists ¢” > 0 such that for T > 0,
0<a<1/4,
(12.24)

2

|(Pi,r — Pir) (2,2)] < ¢ exp(7#(1+T)) <C' exp (—3%5) + exp (—ﬁath)) :

Take
(12.25) PR —

V328 tT

It is clear that for T > 0 large enough, then 0 < a < %. Also

(12.26) & T e/ 2T
' 32t O TEV3;
Set
evpB
12.27 to = Y2,
( ) 0= 3,
Then, if t < t

(12.28) e\/g —t>0.

Using (12.24), (12.28), we get (12.11).

By a strictly similar proof, we see that for 0 < t < ?, there exists ¢ > 0 such
thatif z,2’ € B, z # 2’ and if z € BM(z,¢),2' € BM(2',¢), if T > 0, then

(12.29) |P.1(2,2")| < cexp(—CT).
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Also an application of Ito’s formula shows that

1
(12.30)  Pu1(z,2) = pi(z, 2) E%ee [‘*xp {‘th / |df (zs)I° dS} Vf’T] '
0
Take A > 0. By (12.16), (12.30), there exists ¢ > 0, such that for ¢ €]0,A],T €
0,1,z € M,

Cc

(12.31) |Prr(z2)| < o7 -

Since the operator (Dr)? is nonnegative, for any z € M, the function ¢ €
RY — Tr[P, 7(z,2)] is decreasing. Moreover Py r(z,z) € End(A(T*M)Q® F)
being self-adjoint and nonnegative, we find that if | | denote the norm of trace,
t — |P,r(z)| is decreasing. In particular, forany ¢ > 0, for T > 1,z € M

(12.32) 1Py 1(2,2)| < |P+,T(z,z)|.
From (12.16), (12.31), (12.32), we find for ¢ €]0, A],T > 1,

(12.33) |P,.7(2,2)| < T2,

From (12.31), (12.33), we find that given A > 0, there exists ¢ > 0 such that for
0<t<AzeM,

c . 1

(12 34) IPt’T(Z,Z)l S t"T lf 0 S T S ;,
) 1

< cT™? ifong?

Since exp(—tﬁ%) is a self-adjoint positive operator, if 2,2’ € M ,
(12.35) IPuz(z,2)] < |Pur(z, 2)IF 1P, 21

Take ¢ > 0 which we fix once and for all. For m € N large enough, ﬁ €]0, to].
If z € B, andif z € BM(z,¢), then

(12.36) Poz(z,2) = / Py (2,31 Py 1(31,57) -
Mm—l

- Pr p(Tm-1,2)dvpm(21) - - doy (Tm-1) -
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Using (12.2), (12.29), (12.34)(12.36), it is clear that given ¢ > 0, there exist
¢ >0,C" > 0 suchthatif = € B,z € BM(z,¢), T > 1, then

(12.37) IPt,T(ZaZ) - /

(BM(z,e))™? Py r(z,21) - Py r(Em-1,2)dvm (21)
z,e

codopy (Zm—1) | < dexp(~-C'T).

Also the same argument as in (12.30)—(12.34) shows that given A > 0, there is

¢ > 0 such that if ¢ €]0, A],T > 0, thenif z € BM(z,¢),
1
Pr(z2)| < o #0ST<3,
(12.38) 1
<cr? i T> -

So, by proceeding as in (12.35), we get for 2,2’ € BM(z,¢),
1/2 1/2
(1239 |[PB()| < [P 2| 7 [PE .

From (12.11), (12.34), (12.37)—(12.39), we find that given ¢ > 0, there exist
¢’ > 0,C"” > 0 such that for T > 1,

(12.40) |Pt,T(z, 2) - /( i

( ))m_l Pg,T(z’wl)"'Pg,T(mm—l’z)de (g;l)

ordupyg (Tm—1) | < dexp(-C"T).

Moreover
(12.41)

Pirz) = [

By P2 (2,21)--- P2 1(¥m-1,2)dva (21) - dvps (Tm—1).

From (12.40), (12.41), we deduce that given any ¢ > 0, there exist ¢’ > 0,C" > 0
such thatif z € BM(z,¢), T > 1,

(12.42) |(Pir = P%) (2,2)| < " exp(—C"T).

Let Qf”f})(z, 2')(z,2' € BT=M(0,¢)) be the smooth heat kernel associated with
the operator exp(—t(D+**)?) and Dirichlet boundary conditions on dBT=¥(0, ¢).
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One can prove as in (12.11) that there exist o > 0,C > 0 such thatif 0 < ¢ < 1,
there is ¢ > 0 such that if z € BT=M(0,¢),T > 0, then

(12.43) (@22 - Qi) (2,2)| < cexp(-CT).

The obvious analogue of (12.34) holds. Moreover the kemnel Qf 1(z,2") isexplicitly
known by Mehler’s formula [GlJ, Theorem 1.5.10]. One can then easily obtain
estimates at infinity for Qf (2, 2’), and show that the analogue of (12.37) holds.
We deduce that given ¢ > 0, there exist ¢’ > 0,C” > 0 such that if z €
BT=M(0,¢),T > 0, then

(12.44) I(QZT - Qf,’ql?) (2, z)l < cexp(=CT).
Finally, if 2 € BM(z, ), one has the obvious

(12.45) PPr(2,2) = Q57 (2,2).
Equation (12.10) now follows from (12.42), (12.44), (12.45). O

¢) Proof of Theorem 7.11

Here t > 0 is fixed. By Proposition 5.4, we get

(12.46) Trs [fexp (—tD})] =T, [fexp (~tD%)] -
Moreover,

(12.47) v, [fexp (~tD3)] = /M Tr, [f(2) Pour(z, 2)] o (2).

By Proposition 12.2, we know that there exist ¢ > 0,C > 0, such that

(12.48)

Tr, [£(2)Pyr(2, 2)] dvoaa (2)| < cexp(~CT).

/M\U,EB BM (z,¢)

Also by Theorem 12.6, there exist ¢ > 0,C’ > 0 such thatif z € B,

(12.49) < dexp(-C'T).

[ Tl (Pur - Qi) (=, dow ()
BM (z,e)
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Using (12.9) and Mehler’s formula [GLJ, Theorem 1.5.10], we get for y € T, M,

TeZtT ) n/2

(12.50) Qir(y,y) = (m

exp {—T tanh(tT)|y|*} exp {-2¢tT (N* + ind(z) — N7)}.
Moreover by (7.12), if |y| < e,

(12.51) 1w = 5@ + 5 (1w - )
Then
(1252) S T @i )] o)

TeZtT n/2
= {rk(F)f(:r) e (m) exp {—T tanh(¢T)|y|* } dy

lvl<e 2 ’ orsmb)) P T tanh( yl*} y}

Tr;\(T; M) [e—ZtT(N++ind(:c)—N‘)] .
Also

TeZtT n/2
(12.53) /< (27rsmh(2tT)) exp (=T tanh(tT)|y|?) dy

( ) e—lvl’ dy :
1—e 2T |y|<[Ttanh(tT)]1/2e (m)n/2

and so there exists ¢ > 0 such thatas T — +o0,

TeZtT

n/2
_ 2 — —cT
(12.54) e <—_27r sinh(2tT)) exp (=T tanh(¢T)|y|*) dy =1+ 0 (e™*").

Moreover

(12.55) /
—[2) e-lul? %Y

1 Te2tT n/2
3 |y+| = v~ )(—-—e ) exp (~T tanh(tT)|y|*) dy
+ 2
(1 - C—2iT) 2Ttanh(tT) |y|<[T tanh(¢T)]1/2e (ly I B |y | ) an/2’

27 sinh(2tT)
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From (3.80), (12.55), we deduce that there is ¢ > 0 such thatas 7" — +o0 ,
(12.56)

1 T 2tT n/2
/I I< 2 (|y+|2 - |y_|2) (27r Silfh(?tT)) exp (-T tanh(tT)|y|*) dy
Yy|se

_ 1 : —cT
=TT (n—2ind(z)) + O (™).
Also, there is ¢/ > 0 such thatas T — +o0,

(12.57) TI.;\(T;M) [e—ZtT(N++ind(a:)—N“)] — (_l)ind(z) +0 (e—cT) .

Using (12.46)—(12.57), we get (7.23). The proof of Theorem 7.11 is completed.
O
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XIIL An estimate for Trs[f exp(—(tD + Te(V f))?)]
intherange 0 <t <1, OSTS%

The purpose of this Section is to prove Theorem 7.12, i.e. to establish an
estimate involving Trs[f exp(—(tD + T&(Vf))?)] in the range ¢ €]0,1],T €
[0,% . The results of this Section are essential in explaining the appearance of
the term — f,, 0(F, g")(Vf)*y(TM,VTM) in Theorem 7.1.

The proofs rely on the Berezin integral formalism of Section 3, and also on the
local index techniques we developed in Section 4.

This Section is organized as follows. In a), we show that the problem considered
in Theorem 7.12 is local on M. Inb), we prove certain estimates on the kernel of
the operator exp(—(tD + T¢(V£))?) in the range t €]0,1],0 < T < Tp. Inc),
we extend these estimates to the range ¢ €]0,1],0 < T < % on compact sets of
M\B. Finally in d), we prove Theorem 7.12.

In the whole Section, the simplifying assumptions of Section 7 b) will be in force.
Also we use the notation of Sections 3 and 4.

a) Localization of the problem
Let 7 > 0 be the injectivity radius of (M, gT™). Take b €]0,r/2].

Definition 13.1. For ¢t > 0,T > 0, let Sy r(2,2') (2,2’ € M) be the smooth
kernel associated to the operator exp(—(tD + T¢(Vf))?) with respect to the
volume element dv,y.

Comparing with Definition 12.1, we get
(13.1) S,1(2,2") = Pp z(2,7).
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Definition 13.2. Given z, € M, let St[,’:,’f“(z, 2')(z,2' € BM(20,b)) bethe smooth
kernel associated to the operator exp(—(tD + T¢(Vf))?) and Dirichlet boundary
conditions on 8BM (z,b).

Proposition 13.3. For any d > 0 there exist ¢ > 0,C > 0 such that if zy €
M,t€]0,1],T € [0,d/t],z € BM(29,b/2), then

(13.2) I(St’T - Sff“) (2, z)l < cexp (-C/t?).

Proof. In view of (10.2), and of the fact that [D,¢(V f)] is of order 0, the proof of
Proposition 13.3 is the same as the proof of [BL2, Proposition 11.10]. a

b) An estimate for the kernel of exp(—(tD + T¢(Vf))?) in the
range t €]0,1],T € [0, Tp)-

In the sequel, dvys is considered as a section of A*(T*M) ® o(T'M).

Theorem 13.4. For any Ty > 0, there exists ¢ > 0 such that if z € M,t €
10,1],0 < T < Ty, then
(13.3)

B B
Trs [St,T(z,z)]de—rk(F)/ exp(—BTz)—td/ 15

50 (F, gF) exp(—Br2)| < Ct2.

Proof. Let e;,---,e, be an orthonormal base of TM. By Theorem 4.13 and
Proposition 5.5, we know that

t?’K  t?
(13.4) (tD+TVH)' = A+ —=+ = D (ex R (eirej)er)
1<4,5,k0<n

2 2
c(e)elep)e(er)Sled + 5 Y (w(Fgh) (e)

1<i<n

LY (eledeley) -2 ele) (@ (BeF) (ennes)
ISi,an

t2 R - . . i

- > cle)le)) (Ve,.w(F,g ) (e;)+ VEw (F,g )(ei))

1<i,j<n

—tTw (F,g%) (V) +1T <v’;’“M df, ej> c(e:)e(e;) + T2|df|>.
1<i,j<n
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Take z € M. We identify BT-M(0,b) with BM(z,b) using geodesic co-
ordinates centered at 2. Also if y € T, M,|y| < b, we identify TyM with
T.M (resp. F, with F,) by parallel transport with respect to the connection
VTM (resp.VFe) along the geodesic s € [0,1] — sy € M. Therefore if
y € BM(z,b),(A(T*M) ® F), is identified with (A(T*M) Q F),.

Let v be a smooth function R — R4 such that

v(s) =1 if s <1/2,

(135) =0 if s> 1.

If yeT,M, set

(13.6) o) =7 (1).
Then

(13.7) p(y) =1 if |y| < b/2,

=0 if Jy| > b.

Let F.(resp.F.o) be the vector space of smooth (resp. square integrable)
sections of (A(T*M)® F), over T, M. Let AT-M be the Euclidean Laplacian
on T, M.

Let Jtl”; be the operator acting on F,
(13.8)  Ji7 = (1- () (—2ATM + T?) + p*(y) (¢D + TE(V ).

Let S,7(y,y')(y,y' € T, M) be the smooth kernel associated to the operator

exp(—Jtl,’;) with respect to the volume element dvr, ps. By Proposition 13.3, there
exist ¢ > 0,C > 0 such thatif ¢ €]0,1],T € [0,d/t], then

2 C
(13.9) Sy, 1(z,2) — Stl,’T(O, 0)| < cexp (_t_2) .

Let H; be the linear map

(13.10) s(y) €F. - s (¥) eF..
t

Set

(13.11) T = Hy VR Hy.
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Let e;,---,e, be an orthonormal base of T, M, and let e!,--.,e™ be the
corresponding dual base of Ty M. For 1 < i < n, set
el .
C; (ei) = '—\/7 — Vi,
(13.12) .
e

¢ (ei) = ﬁ+ﬁia-

Let Jf’ 7. be the operator obtained from Jf; by replacing the operators c(e;), ¢(e;)
by c(e;),c(e;) (1 <i<n). Let Sf,’;f«(y,y’)(y,y' € T.M) be the smooth kernel

associated to the operator exp(—Jf', *%). Then Sf,’;(O, 0) can be expanded in the
form

(13.13)
S'f,’r_f»(0,0) = Z e A---Ae'P Ael /\---/\e'r'/\zeh ey
1§i1<i2--~<ip§n
1<4) <y~ <ipy <m
1<n<j2---<jg<n
1<l <jp<jy<n
: . jl 9"'jq1.7'; 9“'j;l . jl 7"'quj;""j‘,’l E d F
zej; "'2‘;1.";’ ®Qi1,'"ip,i',,"-i;, ) Qil,"‘ip""p”'i;/ € End(F;).
Set
3.2 max
(13.14) [527(0,0)] " = Q1m,1,n € End(F2).

By Proposition 4.11, it is clear that

(13.15) T, [S17(0,0)] =27(-1) ™% T [s35(0, 0)]max .

Let ['TM T'Fe pe the connection forms for VI'M VI with respect to the
considered trivializations of TM, F' near 2. By [ABoP, Proposition 3.7], we know
that

1
rTM = LRTM G+ 0 (),

I =0(lyl).

(13.16)
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In the sequel for m € Z, O(|y|™) denotes any matrix valued operator depending
smoothly on y, which may also depend on ¢ > 0, and is such that for any k£ € N,
there is Cx > 0 such that

(13.17) |00 (lyI™)| < Cilyl™*.

The geodesic coordinate system y = (y!,---,y™) defines a canonical trivi-
alization of TM near x (which is distinct from the one considered before). It
is well-known that in this trivialization, the Christoffel symbols of the connection
VTM still vanishat y = 0. If e € T, M,y € T. M, |y| < ¢, let 7(e)(y) be the
parallel transport of e along the geodesic s € [0,1] — sy € M with respect to this
trivialization. It follows that

(13.18) re(y) =e+ O ([yf?).

Then by using (4.28), (4.31), (13.4), (13.8) and proceeding as in the proof of
Theorem 4.20, we find that
(13.19) Iof = (1= p%(ty)) (-ATM 4+ 12)

t
+p2(ty){_(vei+t20(|y|2)+Z Y {(RTM (y,e5) +tO (ly[*)) ex, ec)
1<k e<n

((e’“ A—tie,) (ef A=tie,) — (¢ A+tig ) (8 A +tig)) +£20 (|y|))2

+% z ({ex, RTM (¢, e;) ee) + 10 (Jy]))

1<i,,k,0<n

(¢ A —tic,) (e —tic,) (& +tig, ) (e + i)

+T Y ((vg‘Mdf(z),ej>+t0(lyI))

1<i,j<n

(¢ ~ tie,) (&9 +tiz) + T2 (1df (=) +t0(ly))

—t [% Z ((e" A —tie,.) (ef A —tiej>

1<i,j<n
_ (8‘ A +tia) (e? A +ti;;)) ((w, (F,gF)) (es, e5) + t0(|y|))
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+i > (eFn-tie) (9 A+tiz) (VEw: (FgF) (es)

1<i,5<n

+9 5w, (F,6") )+ 10()) +T (wx (F,97) (V) +10(u)) | + tZO(l)}.

Now we use the notation of Section 3 f). Set

(13.20) Jog =—ATM 4 Bra,
3,2 1 TM
Kyr=-3 > (RT™(y,e;) ex,er)
1<4,k,f<n
- 1
(e;c Aes— e A ee) Ve, + 3 Z (ek, (e,,eJ) ee>
1<i,5,k0<n

(e" AeA (zaé} A+ex A za) — (Geej A+e Nig, ) EF A 6”)

+7 3 <v£‘Mdf(z),e,-> (e*' Nig, — ie,af/\)

1<i,j<n

_[.;. 3 (€ ne & AT) (ws (F o))" (eie;)

1<i,j<n

Z e'Ned (Vsz (F,g%) (e;) + VE w: (F,g F (e ))+Twz (F,gF)(Vf)].

1<z,]<n

In the sequel, Or(t?) denotes a second order differential operator acting on
F., whose coefficients are O(t2) as t — 0. From (13.19), we see that there
is an explicitly computable matrix valued operator Lr(y), depending linearly on
y € T,M suchthatas t — 0,

(13.21) 75 = Jgh+ t (Ko + Li(w)) + Or(#2).

Let Soa(y,y')(y,y’ € T-M) be the smooth kemel associated to the operator
exp(—Jg 7). Clearly,

. 1
(13.22) 807(0,0) = oz exp (=Bra,.) .
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We define [Sg:;(O, 0)]™»* as in (13.14). From (13.22), we deduce that
n(n41) 3.z max B
(1328)  2"(-1)*FH T [$55(0,0)]  dow =1k(F) [ exp(-Bra,z).
For ¢t € [0,1],s > 0, let S} ,(v,¥')(y,y' € T:M) be the smooth kernel

associated to the operator exp(—stT) In particular,

(13.24) SyR. =Sy

If ps(y,y’) denotes the standard scalar heat kernel associated with the operator
exp(sAT:M), then

(13.25) 807+ (¥, ') = ps(y, ') exp (—sBr2).

By Duhamel’s formula, we know that

20 S, -Shi.= [ Sl (- ) St
8188

From (13.24), (13.26) we get

(13.27)

(s07 - 557) 0,0 = / e (5350, (97— 722) 8271, ) (0,0)dsy
S813

+ / (sf; (Jg;; I )s;',’ . (Jg:; - JfT) SS,T,l_s,) (0,0)dsy dss.
<81 <32<1

Take Ty > 0,59 €]0,1]. By proceeding as in [BL2, Theorem 11.31], for any
30 > 0, one easily obtains uniform bounds in s € [sg,1],¢ € [0,1]0 < T < Tp, on
t T.+(y,y') together with its derivatives over compact sets of T, M x T;M, and
also uniform bounds in s € [0,1],¢ € [0,1],0 < T < Tj, on S’t 'r,s @S an operator
acting on F, . Incidently note that one here does not need the complicate system
of L, norms with weights depending on the grading which is used in [BL2], this
essentially because in (13.19), (RTM(y, e;), ek, es) appears with the coefficient ¢,
while in [BL2], a similar term appeared with the coefficient 1. The standard Lo
norm over F, ; is here quite enough.

Similarly, using the techniques of [BL2, Theorem 11.30], or finite propagation
speed methods, one can obtain adequate uniform controlin s € [0,1],¢ € [0,1],0 <
T < Ty, of the kernels S> 7.5, (¥,9) as |yl or |y'| = +oo.
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From (13.21), (13.27), we find that as ¢t — 0,

(13.28) (st7 - s37) (0,0)

’

==t [ (S (K3F+L50)) Shacs,) (0,00ds1 +Ox(£),
<81 Sl

and in (13.28), Or(t2) is such that there exists C > 0 for which if ¢ € [0,1],0 <
T < Tp, then,

(13.29) lor(#)| < Ct2.

We now use (13.25). Since Lp(y) depends linearly on y, it is clear that for
0<s <1,

(13.30) (8550, L1(®)S3 514, ) (0,0) =

Also by Proposition 3.10, Br: is a sum of forms of type (p,p), and so for
0 S $1 S la

(13.31) [exp (—s1Br2) e’ A e exp(—(1 — 51)Br2 )]ma‘x =0,
[exp(—slBTz) et Aei exp(—(1— sl)BTz)- e =0,

. . : max
[exp (=s1Br2) e A (ig@+ Ghig; ) exp(—(1 - 51)Bra)] =0,
[exp(—S1BTz) (ze'e] A+et A e, ) e ne exp( (1- sl)BTz)]max =0,
[exp(_slBTz)ez /\iej eXp(—(l —31)BT2) =0,

[exp (—s1B712)ie; A& Aexp(—(1 - s1)Br2)]" " =0.
So from (13.20), (13.25), (13.30), (13.31), we get
(13.32) — 27(=1)"5™ [/

0581 sl

= /B exp (—Br2) (% > €Ae (Vf;w (F,97) (ej) + Vew (Frg") (e"))

1<i,j<n

(52 (K2 L50) 55 1000, JO.01 ]

+Tw (F,g%) (VS )) .
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Using (4.73), (13.32), we obtain
(13.33)

a(nt1) . s s z e
~2n(-1)™% ﬁ[/ 5550, Q<3:T+LT(y>)s§,T,1_s,)(o,0>ds1] don
Osslsl

B
1_~ . -
= / (-2-V0 (F,g") + zTe}O (F,gF)) exp (—Br2).
Now by Theorem 3.2, we see that

B
(13.34) d / %o (F,g*) exp (—Br2)
B 1 ~ - .
=/ (§V0 (F,g%) +iT670 (F,g )) exp (—=Br2).

From (13.15), (13.23), (13.28), (13.29), (13.33), (13.34), we get (13.3). The
proof of Theorem 13.4 is completed. a

¢) An estimate for the kernel of exp(—(tD + T¢(Vf))?) in the
range t €]0,1],T € [0, %]

Theorem 13.5. Take o > 0, d > 0. There exists C > 0 such that for any z € M
with dM(z, B) > a, for any t €]0,1],T € [0,d/t], then

(13.35) | T, [S¢,(z, 2)] dows — rk(F) / ¥ exp (_Br)
—td(/B %g(F,gF) exp (—BTz))I < Ct.

Proof. Foruniformly bounded T, (13.35) was proved in Theorem 13.4. To establish
(13.35), we will take advantage of the fact d™(z, B) > o

We may and we will assume that in Proposition 13.3, b < 5. By (13.2), it is
clear that to establish (13.35), we only need to work ‘locally’ near z € M. This
exactly means that all the constructions in the proof of Theorem 13.4 remain valid.

Set

= 1 2
(13.36) B d(z,}B%fza/z |df|*(z) A 1.
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We will use Duhamel’s formula as in (13.26), (13.27). The main point is that
since T < 4, the norm of pointwise estimates on the kemels Si T canbe improved
by a factor exp(—sBT?). This can be proved by using the Feynman-Kac formula.

Alternatively, by proceeding as in [BL2, Section 11], one can show that for any
k €N, for t €)0,1,0 < T < %, the estimates we established for the kernel
Sf’”;(y, y') in Theorem 13.4 remain valid here for the kernel Tka,’f}(y, y).

Now J&T - JﬁT is quadratic in T'. By proceeding as in (13.28), (13.29), it
easily follows that (13.28), (13.29) hold uniformly in T € [0,d/t].

As in the proof of Theorem 13.4, we get (13.35). O

d) Proof of Theorem 7.12

In the sequel, the constants ¢ > 0,C > 0 may vary from line to line.

Take € €]0, 7] small enough so that the metric g% is flat on |J 5 BM(z,¢),
and (7.12) holds on |J, 5 BM(z,¢). Clearly

(13.37)  Tr, [f exp (— (tD + T&(V f))z)] - /M F T [Se7(2, 2)) dvas.

Then

(13.38) / fTrs [Si,1(z,2)] dum
M
= /{z;d(z,3)>§} f Trs [Se,1(2, 2)] dvm + /{z,d(z,3)5§} fTrs [Se,1(2,2)] dom.

Now by Theorem 13.5, for ¢ €]0,1],0 < T < d/t,
(13.39)

B
8 t Z,Z v - T ex _B 2
/{z,d(z,3)>%} P Sur(z 2l don /{z,d(z,B)>%} f( k(F)/ p(=Br)

_td/B %a(F, gF) exp (=B ))

< Ct.

Now, we use the notation of Section 12 a). If z € B, let A7 be the operator
actingon F,,

(13.40) rp=—ATM 4 T?|y|> — ntT +4T (Nt +ind(z) - N7).
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With the notation of (12.7), AZ, = t2(D75,")>.

Definition 13.6. Let U7r(y,y’)(y,y’ € T-M) be the smooth kernel associated

to the operator exp(—Af 7). Let U 3" (3,4')(v,y' € TeM, |yl ly'| < €) be the
smooth kernel associated to the operator exp(—Af ), with Dirichlet conditions on
OBM(z,¢).

By the same arguments as in the proof of [BL2, Proposition 11.10], which were
already used in the proof of Proposition 13.3, we find that if ¢ €]0, 1], T € [0, %], Yy €
BM(z,¢/2), then

13.41 Ugp - UEF < ¢
(13.41) ( T~ t,T)(y,y)|_ceXP -7

In Definition 13.1, we take b = €. Then

(13.42) SOF W) = UM (,9) , y € BM(z,¢).

By (13.2), (13.41), (13.42), we see that if ¢ €]0,1],T € [0, 4],y € BM(z, &),

C
(13.43) |(St,T - Uth) (y, y)| < cexp (_ﬁ) .

So from (13.43), we see that if ¢ €]0,1],T € [0, £], then

(13.44)

/lyl<e/2 f (Trs [Se;z (v, 9)] = Tra [Uir (v, 9)]) dvne

< cexp (_tgz) .

Using Mehler’s formula [GlJ, Theorem 1.5.10], as in (12.50), with Ut”fT =
Qf 100 We get

TexT  \"? T )
13.4 r = —mMM—8MM— -
45 Uz = (rrmprry) o (— 5 kel )

exp (—2tT (Nt +ind(z) - N7)).
Now
(13.46) Trs [exp (—2¢T (N* +ind(z) = N7))]

= rk(F) (1 _ e—2tT)n—ind(:c) e—2tTind(z) (1 _ e2tT)ind(a:) .
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Equivalently,
(13.47)
Tr, [exp (=2¢T (Nt +ind(z) — N7))] = rk(F)(=1)"®) (1 — e~ 2T)" .

So by (13.45),(13.47), we get
(13.48)

' n/2
Trs (U r(y,y)] = (=1)d®) rk(F) (% tanh(tT)) exp (—% tanh(tT)|y|2) .

In particular, we deduce from (13.48) that forany 7" > 0, as t — 0,
(13.49)

. . T2 n/2
T (U2 (0] = (DO E)S (T) e (<T2) +O(F),
which fits with (13.3) and (13.43).
Now using (13.48), we find that
. T2 nf2
(13.50) £ T [Uz2(y, )] dy — (1) rk(F) f (—)
ly|<e/2 lyl<e/2 Q

exp (=T2|y|?) dy

ind(z = ! ”
=(-1) X« )rk(F){/y|55/2(%tanh(tT))1/2f ((Ttanh(tT)) y)

dy y dy
exp (—|y[?) 7z /|y|<e/2Tf (T) exp (—y[*) m}

Recall that y*,y~ are the projections of y € T, M on T,W*(z), T,W*"(z).
Then by (7.12),

(13.51) F@) = 1@+ (v =l T) ol < e
Set

(13.52) T =T

Then

(13.53) (T’ tanh(T")) < T'.
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Moreover

dy dy
13.54) / exp (—|y|?
( lvl< W)

/2

- / exp (—|y|?)
|y|< & (T tanh T7)1/2

d
exp (~|y|*) ;,3—2

/—%(T' tanh T")1/2< |y|< <L’

- 2t

Nowif 0 < a < b< 400,
(13.55)

b
[ e o) 2= [y b Cop o
ly|€[a,b] T .

From (13.55), we deduce that
d

(13.56) / Jexp (—[yP?) 2

£ (T" tanh T <<L 7f

2 1] n—1
< Cexp (—%T' tanh(T')) (%) ;t ( — (T tan h(T'))1/2>

Take now d > 0. Then there exist ¢ > 0,¢’ > 0, such that for 7" € [0,d],

(T )\ 1/2 '3
(1557 | (T’ tanh(T")) | < T,
T' tanh(T") > T 2.

By (13.56), (13.57), we deduce that for 7" € [0, d],

1 dy
13.58 exp -1y
( ) t2 35(T' tanh T' < ( I | ) /2

<of ( )<

t2 dy
L /I (v = 1) exp (<1of?) 2%
t2

_— +2 _ -
T’tanh(T’) |y|$,f—,(T’tanh(T'))”2 (ly | Iy | )exp |y| )71'“/2

. _r
T'tanh(T") T2

Similarly,

1

(13.59) =

<C
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1

+ﬁ

+2 _ )
/%(T'tanh(T’))1/2<| |< £z (|y | |y | exP Iyl ) 7rn/2

- 2t

Also there is C’ > 0 such that if 7" € [0, d],

1 1

(13.60) T taah(T)) _ 17

<C.

Moreover by using (13.58), we get for T” € [0, d],

1
(|y+|2 - Iy | )exP |y|2) W,,/g

T2

(13.61)

/%(T' tanh(T"))1/2< |y|< <&

2

€ '

dy
<= exp (—|y|? <C'
482 J £ (1" tanh(Tr))1/2 < ly| < E (W) o7 w2

By (13.50), (13.51), (13.54), (13.58), (13.59)—(13.61), we find that there exists
C > 0 suchthatif t €]0,1], 0 < T < 4, then

(13.62)

. ¢ 105 02 - (-1 ri(F)

2

T n/2
./||<£f(—> exp (—T2|y|2) dy| < Ct.
Y>3

s

From (13.39), (13.40), (13.62), we see that there exists C > 0 such that if
t €]0,1,,0 < T < 4, then

(13.63)

Tr, [ fexp (- (tD+Ta(v f))2)]
—1k(F) /Mf/B exp (—BTa)—t/M fd/B .;_5(}7‘,91’) exp(—Br:)| < C#.
Also

B
(13.64) /M fd / %Zv (F,g") exp (—Br2)

B
- /M/ df%g(F, gF) exp (—Br2)

B ~
N /M/ %o (F,g") df exp (~Br2).
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By Theorem 3.13, we find that
(13.65
1

)
° lb‘(F,gF) df exp(—Br2) = — [ =6 (F,g") Bc@‘exp(—BT:)-
/M/ 2 /M 2 /

From (13.63), (13.65), we get (7.24). The proof of Theorem 7.12 is completed.
O
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XIV. The asymptotics as ¢t — 0 of
Trs[f exp(—(tD + £e(V£))?)]

The purpose of this Section is to prove Theorem 7.13, i.e. to calculate the
asymptotics as ¢ — 0 of Try[f exp(—(tD + £&(Vf))?)]. In this Section, we
assume that the simplifying assumptions of Section 7 b) are in force. Also we use
the notation of Section 13.

The real number T > 0 is fixed in the whole Section.

Proposition 14.1. Take o > 0. There exist ¢ > 0,C > 0 such that for z € M,
with dM(z,B) > «, and any t €]0,1], then

C
(14.1) |St’%(z,z)| < cexp (—t—z-) .
Proof. In view of (10.2), the proof of (14.1) is identical to the proof of [BL2,
Proposition 12.1]. a
Clearly

(142) T [f exp (—(tD + %(v f))2)] - /M £ Tr, [S, 2.2, 2)] dow.

It easily follows from (13.44), (14.1), (14.2) that there exist ¢ > 0,C > 0 such that
if ¢ €]0,1], then,

(14.3)

| exp(~(0 + Tav )7 | - > /MS% F) T [U2 2 (5,0)] dy
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Take = € B. By (13.48), we know that
(14.4)

Tr, [Uf’% (y, y)] = 1k(F)(-1)rd® (;% ta,nh(T)) " exp (_tZ? tanh(T)|y[2> .

Using (13.51) and (14.4), we see that

(14.5) tl2 { /l e [T V.2 0.9)] dy - xk(F )(—1)i“d(")f(w)}

=rk(F)(—1)‘“d(’”){ f(z) ( / Kﬂ,,mhm)m xp (~[yl*) i/z 1)

1/ 4 dy
+Tta.nh(T) ‘[y|5§£T"nht(T22 92 (Iy | —Iy l )exp( |y| ) an/2’

Clearly there are ¢ > 0,C > 0 such that for ¢ €]0, 1],

dy C'Tta.nh(T)
(14.6) /I‘y|<%!Ttanht!Tnl/2 ( Iyl ) ’n/2 - 1 S CeXp (_—_ﬁ—_—) °
Moreover by (3.80),
1 + 2 —12 2 d
(14 7) 11m m wi<s 'runl.'r 1/2 2 (Iy I - Iy I )exp( |y| ) Y

S -2 2y dy
= Ttanh(T) Jym 2 (|y+| v I") exp (~Iy?) o5

- o (-2 )

In view of (14.3), (14.5)-(14.7), we see that

(14.8)  lim tl2 (m [f exp (—(tD + ga(v f))2)] — 1k(F) "ﬁf‘[f])

n 1., 1
= (ZX(F) T X (F)) Ttanh(T)
This is exactly Theorem 7.13. O
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XV. The asymptotics of Trs[f exp(—(tD + %@(Vf ))?)]
for 0 <t <1, T >1

The purpose of this Section is to prove Theorem 7.14, i.e. to obtain an estimate
involving Trs[f exp(—(tD + £8(V£))?)] intherange 0 <t < 1,7 > 1.

As in Sections 13 and 14, we denote by S, z(z,2')(z,2’ € M) the kemnel of the
operator exp(—(tD + Lg(V£))?).

This Section is organized as follows. In a) we give an estimate for S, r(z, 2)
on the compact sets of M\B. Inb), we show that near z € B, S,z (z,2) is well
approximated by the kernel U hy z (z,2) defined in Definition 13.6. Finally in c), we
establish Theorem 7.14.

The organization of Section 15 b) is closely related to the organization of Sec-
tion 12 b), although we work here in a different range of parameters. Also, in our
proof of our main result, given in Theorem 7.1, we only need to establish Theo-
rem 7.14 for ¢ = ¢ small enough. This simplifies the arguments of Section 15 b),
where part of the difficulty is to extend the estimates in the range ¢ €]0,?o] (with
to €]0,1]) to the range t €]0, 1].

In the whole Section, the simplifying assumptions of Section 7 b) will be in
force. Also we use the notation of Section 13. In particular € > 0 is chosen as in
Section 13 d).
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a) An estimate for S, r(z,2) on compact sets of M\B
7

Proposition 15.1. Take o > 0. There exist ¢ > 0,C > 0 such that for any
z € M with dM(z,B) > o, and any t €]0,1],T > 1, then

CcT
(15.1) ISt,%(z,z)l < cexp (——t-,z,—) .

Proof. We proceed as in [BL2, Proposition 13.1]. Let |S, T (z,2)| be the norm of
the matrix S, z(z,2) withrespect to the trace. Since the operator (D + TV ))?
is self-adjoint and nonnegative, we find that for any 8 €]0, 1],

(15.2) |St,%(z,z)| < ISw,ztg(z, z)|.

Assume that t €]0,1],7 > 1. By taking 8 = # in (15.2), we get

(15.3) |St,%(z,z)| < lS* s (2,2)
VTR

Now ﬁ €]0, 1]. By Proposition 14.1, we obtain,

(15.4) S . yr(2,2)| <cexp (_Q_ZZ) .
VTt t
From (15.3), (15.4), (15.1) follows. O

b) The kernel S, r(z,z) near B and the harmonic oscillator
]

Theorem 15.2. There exist ¢ > 0,C > 0 such that if t €]0,1],T > 1, if
t € B,z € BM(x,¢), then

(15.5) |(St’% - Uf,%) (z,z)l < cexp (—%—21:) .

Proof. Let StD’f(z, 2'))(z,2' € BM(z,¢)) be the smooth kernel associated to the
operator exp(—(tD + L&V f))?), with Dirichlet boundary conditions on 8B (z,¢).
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We claim that there exist ¢ > 0,C > 0 such thatif t €]0,1],T > 1,z € B,z €
BM(z,¢), then

(15.6) l(St,% - Sf’%w) (z,z)l < cexp (—%ZZ) .

To establish (15.6), we use the notation and the methods in the proof of The-
orem 12.6. Recall that S, z = Pp z. s Pt’;"’gr . By (12.15), we get for

2,2 € BM(z,¢),
(15.7)

2 [ Cr2 1 s
(8u3-57) o) = poter B foxp{- T [ e as 1" F o]
i L 0
By (12.16), there exists v > 0 such that if ¢ €]0,1],7 > 1,

2,5
(15.8) Vi | < exp(vT).

From (15.7), (15.8), we get

(15.9) |(St,% - St]’?’%’”) (z,z')l < exp(YT)pe2 (2, z')ERfZ’

As in (12.18), we have

RY T [ 2
(1510)  pe(z ) B [exp{——2 [ 1arcea d$}1551]

< pele B o {- T [P as} 154y
(e, )8 foxp {1 [t ds b ycsa].

By using time reversal, we find that the two quantities in the right-hand side of
(15.10) are deduced from each other by interchanging z and z’. So we only need
to estimate the first one.

We still define the stopping time S’ as in (12.19). By the analogue of (12.20)-
(12.22), we obtain for 0 < h < 1/4,

12 T2 1
(15.11) pea(2, z')ERm' [exp {—t—2/0 |df(2s)|2 ds} 155%]
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2 2
< ptz(z,Z,)ERz.z' [S<1/2,8 — S < h]+ ppa(z,2’) exp {—%ﬁh} .

Let R‘z2 be the probability law of the Brownian motion z associated to the
metric ’%‘:—, with zp = 2. By [B2, Definition 2.4], we know that since h < 1/4,
(15.12)

2 2
ptz(Z,Z')ER'v" [S S 1/2,3’ -S S h] = ER' [1351/2’51_35;1])%2 (Z3/4,Z')] .

For any s > 0, the operator exp(sA™M) is positive. Therefore if 7,z € M,
(15.13) ps(2,7) < p/*(7,2)p}/*(7, 7).

From (15.13), we deduce that there exists C' > 0 such that for s €]0,1],z,z' € M,

(15.14) ps(Z, EI) < iz

Moreover, by [V, proof of Theorem 5.1], we see that there exists ¢ > 0 such that for
any z € BM(z,¢),

2
12 ' __¢
(15.15) R, [$<1/2,58"—S < h]<cexp ( 32ht2) .

So from (15.12)—(15.15), we obtain

' R‘z, T? ! 2
(1516)  po(z, )% [exp {~ T [ lar(e)Pds | 15care
0

C g2 T?
< - [exp (—32ht2) + exp <_—t§_’3h)] .

In (15.16), we take

€ 1
15.17 h=infd—— =\,
(15.17) o {\/732 T 4}

Then we find that there exist ¢ > 0,C > 0 such that if ¢t €]0,1],T > 0,z €
B,z,2' € BM(x,¢),
(15.18)

e T [ c CcT
PtZ(Z,ZI)ER"" [eXp {—t—2/ |df(zs)|2 ds} 1551/2] < 7n CXP (_t_z) .
0
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From (15.9), (15.10), (15.18), we deduce that there exist ¢ > 0,C > 0 such that
for ¢t €]0,1],7 >0,z € B, z,2' € BM(x,¢),

(15.19) |(St,% - St'i;;) (z, z')| < ti" exp (— (C —~t?) tzz) .

Using (15.19), we find that there exist ¢, €]0,1] and ¢ > 0,C > 0 such that
for t €]0,t0],T > 0,z € B, 2,2’ € BM(z,¢), then

(15.20) |(S StDT’> (2,2 )I < t—nexp ( Ct;T) .

So (15.6) is proved for t €]0, to).

By the same arguments as before, we see that if ¢ €]0,t9],7 > 0,z,2’' € B,z #
', if z € BM(z,¢),2’ € BM(2',¢), then

15.21 S, r(z,2' S-c—exp _or .
t,%

Also by (12.34), for any 7 > 0, there exists C’ > 0 such that for ¢ €]0,1],T >
T,2 € M, then

, T n/2
(15.22) |st,%(z, z)| <C (ﬁ) .
Since exp(—(tD + L¢(V£))?) is a positive operator, then if z,z' € M,
1/2 1/2
(15.23) 5,27 < |s.zz2)| " [8.2(2.7)

Clearly there exists m € N suchthatif ¢ € [to, 1], then —= G]O to]. Moreover,
if z € BM(z,¢),

(15.24) S’t,;f_(z,z)=/1.um_1 S0 (z zy1)--

S o 7_(:1:,,, 1,2)dvp (21) -+ - dopyg (Tm—1) -

Using (15.1), (15.20)—(15.24), we see that there exist ¢ > 0,C > 0 such that for
t € [to,1),T > 1,z € B,z € BM(x,¢), then

(15.25)

S - S_¢
t’%(z’Z) /(BM(:c,e))m-l 7’_;,75:(2,.’1:1)
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< cexp (—%) .

By (12.38), we find that for any 7 > 0, there exists ¢ > 0 such that for
t €]0,1),T > 7, z € BM(x,¢),

. S#Tzﬁ (Zm-1,2)dvp (21) -+ -dopy (Tm—1)

T n/2
(15.26) |Sf§(z,z)| <c (t_2) .

Also as in (15.23), i z,2’ € BM(z,¢), then

1/2

1/2
(15.27) |sf_g(z, M| < |st’fg(z, z)| lsfg(z', 2

Using (15.20), (15.21), the fact that if ¢ € [¢o, 1], then 7‘5 €]0, to], and also

(15.25), (15.27), we find that there exist ¢’ > 0,C’ > 0 such thatif ¢ € [to,1],T >
1,z € B,z € BM(x,¢), then

(15.28) |(st,% - StD;) (z,z)| < cexp (-C;—ZT) .

Equation (15.6) follows from (15.20) and (15.28).

Let U % (y,y') (y,y' € BT=M(0,¢)) be the smooth kemel associated to the
operator exp(— A7 ;) with Dirichlet boundary conditions on dBT=M(0,¢). By
proceeding as in (15.7)—(15.20), one finds that there exist ¢y €]0,1],¢ > 0,C > 0
such that if ¢ €]0,¢],T > 1,y,y’ € BT=M(0,¢), then

(15.29) |<Ut’% - Ut[’%z) (v, y')l < cexp (—2—3) .

Moreover the kemel Uz (y,y") is explicitly known by Mehler’s formula [G,

Theorem 1.5.10]. One can then easily obtain estimates at infinity for U, r (y,9")
and show that the obvious analogue of (15.25)—(15.28) holds. Asin (15.6), we deduce
that there exist ¢’ > 0,C’ > 0 such that for any ¢ €]0,1],T > 1,y € BT=M(0,¢),

(15.30) |(Uf’% - Utl’)%z) (v, y)l < cexp (— C;;T) .

Finally, if z € BM(z, ¢), one has the obvious

(15.31) S i (2,2) = UE (2, 2).

204



THE ASYMPTOTICS FOR 0<t<1,T21

Using (15.16), (15.30), (15.31), we get (15.5). The proof of Theorem 15.2 is
completed. O
¢) Proof of Theorem 7.14.

Clearly,
(15.32)

Tr, [fexp( (tD+—c V) )] / £(2) Txs [8, 2 (2,9)] dvwe ().

Now by Proposition 15.1, we know that

/ f(2) Trs [S,,I(Z,Z)] dup(2)| < cexp ('%) :
{2,d(z,B)>¢} ‘

Moreover if z € B, by Theorem 15.2, we get

(15.33)

c'T
(15.34) f(y) Trs [(St,l - Utzz) (y,y)] dy| < ' exp (——2——) .
lyl<e ‘ o t
Also by (14.4), we have
(15.35) / f(y) Trs [Ut’fz(y,y)] dy
lyl<e !

f ('———t————y) exp (—[y[*) L8
ly1<$(T tanh(T))1/2 ~ \ (T tanh(T))/2 /2

Equivalently, using (13.51) and (15.35), we find that

(15.36) /M<e F(y) Trs [U:f;(y,y)] dy

nd(a dy

= e ){f (=) exp (=[y*) —75
ly|< $(T tanh(T))/2

t2 1

5 (151 = lom") exp (1) 05 |

+—
T tanh(T) lyl< £(Ttanh(T))1/2 2

Clearly,
(15.37)

d
exp (—[yl?) —pg =

dy
nn/2 (—Iyl ) /2

- J
ly|<$(T tanh(T))*/2 Iyl>%(Ttanh(T))‘/2
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So there exist ¢ > 0,C > 0 such thatif ¢ €]0,1],7 > 1

(15.38)
: dy CT
1—/ yl? < cexp (__>
& ( |y|5%(Ttanh(T))1/2 ( ly] ) n/2) 2
Also by (3.80),

1/ 42 \ (11,
(15.39) /T,M 3 (Iy |" = |v~] )exp (-lyl*) =% 7‘_"/2 = (Zn - -2—md(a:)) .
From (15.39), we deduce that

(15.40) l[——tz— (| 2= |y )
2 Ttanh(T) y|<i(Ttanh(T))1/32

d 2 /1 1.
exp (—|y|2) Wn—z;,_, - T (Zn - -2-1nd(:c))]

- 1 42 a2
_Ttanh(T) ul>< (Ttanh(T))1/22 (I I |y~ |)exp y*) =7 n/2

+% (m - 1) (i—n _ -;—ind(x)) .

Clearly, there exist ¢ > 0,C > 0 such that for ¢ €]0,1],7 > 1,

1 L +p2 -2 2y 9y
T tanh(T) |y|>%ma..h(T))1/z§(|y I* =y [*) exp (~181?) —72

< cexp (--C-t'-;) .
Moreoveras T — 400,

(15.42) %(m ) —0(-2T)

Using (15.36), (15.38), (15.40)—(15.42), we find that there exist ¢ > 0,C > 0
such that for any z € B,t €]0,1],T > 1,

J S0 [z )] d

(15.41)

1
(15.43)

— tk(F)(=1)™ ( )+ tT (%n - %ind(x)))’ < cexp(=CT).
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From (15.33), (15.34), (15.43), we see that there exist ¢ > 0,C > 0 such that if
t €]0,1],T > 1, then

1

(15.44) t—z{ Tr, [f exp (~(tD ; %a(vf))z)]

—k(F) TP ) - (3xm-37m)}| < cem-c)

The proof of Theorem 7.14 is completed. a
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XVI. A direct proof of a formula
comparing two Milnor metrics

Let M be a compact manifold. Let F' be a flat vector bundle on M, and let
g¥ be a smooth metric on F.

Let f,g : M — R be two Morse functions. Let g™, ;7™ be two smooth
metrics on M, and let X, X', be the gradient vector fields of f,g with respect
to the metric g7 ™, gtl)TM

We assume that X and X’ verify the Smale transversality conditions.

Let B and B’ be the zero sets of X and X’. As in Section 7 a), let
I ||detH.(M ) and || ||ﬁ;)1(1.(M ry be the Milnor metrics on the line det H*(M, F)

determined by the gf'(z € B) and the gF (2’ € B').

Let gTM be a smooth metric on T'M, and let VTM be the Levi-Civita
connection on (T M, gTM).

Theorem 16.1. For any smooth metric gT™ on TM, the following identity holds

” “det He*(M,F)

2
161) Lo ("_”d_”’_(_f‘iﬁ)_) _ / 0 (F.4T) X'+ (T, v7)
M
-/ 0 (F,g") X*y (TM,VTM).
M

Proof. Clearly (16.1) is a trivial consequence of Theorem 7.1. Here, we will give a
direct proof of (16.1).
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By Proposition 6.1 and Theorem 6.3, we see that the right-hand side of (16.1)
does not depend on the metric gTM.

Assume first that f = g. Then X and X' are gradient vector fields of f.
Observe that one can modify f sothat X and X' are still gradient vector fields
for f, and f takes distinct values on B. By Proposition 6.1,

(16.2) /Ma(F,gF) X'*y (TM,vTM) - /M 0 (F,g") X*y (TM,VT™) = 0.

In the Appendix, Laudenbach constructs a smooth path ¢t € [0,1] — X; of
gradient vector fields for f, which verify the Thom-Smale transversality conditions
except at a finite set {t1,---,t,} C [0,1], with 0 < ¢; < --- < t, < 1. For
t & {t1,---,t.}, let (C*(W,F),8;) be the Thom-Smale complex associated to
Xi. As the notation indicates, the Z-graded vector space C*(W,F) does not
depend on ¢, only the chain map 9; depends on t.

Clearly 9; is constant on the intervals [0, ¢, [,]¢1,%2[,---,]tq,1[- For 1 <i<g,
let (C*(W, F),0;;) and (C*(W, F),8}) be the Thom-Smale complexes on the left
of t; and on the right of ¢;. By aresult of Laudenbach given in Propositions 9 and 11
of the Appendix, there is an invertible linear map A, acting on the Z-graded vector
space C*(W, F), which is a chain homomorphism from (C*(W,F),d;,) into
(C*(W,F),8{) and which identifies canonically the corresponding cohomology
groups. By the Appendix, it is clear that for 1 < j < g, the determinant of the
action of A oneach C(W,F)(0 < j < n) isequalto 1. It then follows from the
previous considerations that for 1 < i < g,

M.X, MX 4
(16.3) I Naes mrom,ry = I Naes moqar, py -
We deduce from (16.3) that

M,X M, X'
(16.4) I Naet mrocar,my = I Naet recaa,ry -

Using (16.2), (16.4), we see that if X and X’ are the gradient vector fields of a
common Morse function f, both sides of (16.1) are equal to 0.

Since the Milnor metric || l|3’£;)§].( m,ry depends only on f, we will write

M, . M,X
I ”detfH'(M,F) instead of || ||gei 5o s, r)-

Let now f and g be arbitrary Morse functions. Let ¢t € [0,1] — f; be
a smooth Cerf path [Ce] of smooth functions mapping M into R, such that
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fo = f,f1 = g, which are Morse, except at a finite set of parameters q,---,1%,
suchthat 0 < t; --- < t, < 1, where two critical points y; and y;’ of index j and
j+1 (0 < j<n-—1) appear or disappear at a birth or death point y € M. The
form of fi(x) near (¢;,y) is given by Laudenbach in the Appendix, equation (8).

We claim that the continuous function ¢t € [0, 1\{t1,---,t} — [, 8(F,g%)
(VF)* »(TM,VTM) € R extends to a continuous function ¢t € [0,1] — R. In
fact we only need to consider the case where t = t;(1 < i < g). If 8(F,gF)
vanishes near the birth or death point y € M, it is clear that ¢; is also a point of
continuity. More generally, there is a closed form '(F, g¥'), which vanishes near
y € M, which is cohomologous to 8(F,g¥), i.e. there exists a smooth function
V : M — R such that

(16.5) o' (F,g") — 6 (F,g") = av.

By using the equation of currents (3.33), we see that if ¢ € [0, 1]\{¢1,---,t,} and
if B, is the set of critical points of f;, then

(16.6%4 0 (F,g") (V) ¢ (TM,VvTM) = /M ¢ (F,g%) (Vf) ¢ (TM, V™M)

e ™™\ _ __1)ind(z) z).
[ Ve @) - & )vE)

Now the first two terms in the right-hand side of (16.6) are clearly continuous at
t = t;. Assume that when t increases, y is a birth point of two critical points, of
index j and j + 1. Then

(16.7) Y (-)™MEV (@)= Y (-1)MEV(2) + V(z) - V(z).
:I:EBd. :cEB"_

Equivalently, the function }_, . g (—1)"4®)V(z) extends to a continuous function
near t;. Of course this is still true if y is a death point. We have thus proved that
L OCF, gF)(Vf)* $(TM,VTM) extends to a continuous function on [0, 1].

By Proposition 6.4, we know that

168) ([ 0(g")(vry v (T3, 9™)

- / 0 (F,g™) (Vfo)" o (TM, VM) )
M
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Z( 1)lnd(3)9 ) (%_x_) on [0’ 1]\{t1,...’tq}'

.’L‘GBg

On the other hand, it is clear from the equation of f;(z) near (t;,y;) giveninthe
Appendix, equation (8), that the right-hand side of (16.8) is an integrable function
on [0,1]. Since the function t € [0,1] — [, 6(F,g")(Vf)*y(TM,VTM) —
Jag O(F, g5 )(V fo)* (T M, VTM) is continuous, we have the equality of distribu-
tions on [0, 1],

(16.9) % ( /M 0 (F,qF) (Vf)* & (TM,VT™)

- [ 6(F.g") (V50" v (T3,97))
= > v (rgf) (52).

IGB;

Take ¢ € [0,1]\{t1,---,t,}, and let g7 be a smooth metric on TM, such
that the corresponding gradient vector field V f; verifies the Smale transversality
conditions. Then for ¢’ € [0,1] close enough to ¢,V f; still verifies the Smale
transversality conditions, and the Thom complex (C*(Wy, F'),d), for V fy canbe
identified to the complex (C*(W,, F'),0) for V f,, but of course, the identification
is in general not isometric. In fact one has the easy identity

aft
(16.10) gLog (“ llget H'(M,F))

W7
ot I Naet Becar, )

2

= Z (—1)ind=)g (F,gF) (%Sf-) on [0,1]\ {t1,---,tq}.

:ceB,

We claim that the function ¢ € [0, 1]\{tx, - £} — Log(\_laeiir 2 ¢ R

I Wact o cm,my
extends to a continuous function from [0,1] into R. Take 7,1 < 7 < ¢ and let

gT™ be a smooth metric on T'M taken as in the Appendix with respect to ¢;. Then
for ¢ # t; and t near t;, the Thom-Smale complex (C*(Wi, F'),9) is constant on
the left and the right of ¢;. Assume again that y € M is a birth point of two critical
points y;,y; ofindex j an j+ 1. In particular, for ¢ > t; close enoughto %;, we
may identify F; and Fy» to F, by using a flat trivialization of F' near y.
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Let (Cy(F),0") be the complex concentrated in degree ¢ and 7 + 1

(16.11) O—)Fy: —;Fy;l — 0.

In (16.11), @' denotes the canonical identification of Fy; and Fyu. Of course
(Cy(W, F),d") is acyclic.

Then by Propositions 8 and 11 of the Appendix, there exists a linear automorphism
A of the Z-graded vector space C*(W,-,F) ® C;(F'), which has determinant 1
in every degree, such that

(16.12)  (C* (Wi, F),8) = (C* (W,-,F) & Cy(F), A" (90 8)4),

which induces the canonical identification of the cohomology groups. Also the
identification (16.12) identifies the metrics. Since A has determinant 1, it preserves
the obvious metric on det(C*(W;,,F) @ Cy(F)). Clearly

(16.13)  det (C* (W, F) @ Cy(F)) = detC* (W, F) ® det Cy(F).
Using (16.12), (16.13), we see that
(16.14) det C* (W}, F) = detC* (W, F) ® det C; (F).

Now g;‘z and 951’ can be considered as metrics on F,. Also det Cj(F') hasa

canonical section (detd’)~!, and moreover

AN

—1y2 :

(16.15) [[(det &) llldetC;(F)::(det (E;—)) '
Yi

In particular

16.16 I ” detd')™ =1

(16.16) lim |l(det &) det C3(F)

t—t;

Using (16.12)—(16.16), we find that

| s 2
(16.17) Log | —ertt0 | =0,
YT
I Naes 5o car,p)
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i .
We have thus proved that Lo (——I-‘J{%’-’——(M)z extends to a continuous function

I Nae'mrocn, py

of t € [0,1]. As in (16.9), we deduce from (16.10) that we have the equality of

distributions on [0, 1],
9 I e b o,y
(16.18) 5 Log ——M—fo—' =Y (-1)@4g (F,
I et e at, ) z€B,
From (16.9), (16.18), it is now clear that for ¢ € [0, 1],

[
(16.19) Log | — e

II ”det He*(M,F)

= / 6(F,9") (V£)" (TM, V") - / 6(F,g") (Vo) ¢
M M

By taking ¢ = 1 in (16.19), we get (16.1).
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Appendix. On the Thom-Smale complex
by Francois LAUDENBACH

Morse theory has been much studied and still it is the source of very interesting
papers (Witten [W], Floer [F1], [F2] ; see also the review and comments by Bott
[B]). Therefore, it seems very hard to write down any new ideas on the subject.
Nevertheless, the generic structure of the gradient field of a Morse function is always
hidden, though it should be very simple. The aim of this paper is to uncover this
simplicity, at least partially. Then some applications to de Rham currents are given.
The bifurcation theory in 1-parameter families of gradient fields is also considered.

From now on, M isa C* closed manifold (i.e. compact, without boundary),
f: M — R is a Morse function and X is the gradient field of —f with respect to
ametric on TM. If & is a critical point, W*(z) (resp. W*(x)) will denote the
unstable (resp. stable) manifold of z for the vector field X. We recall that W*(z)
is a submanifold (non closed), diffeomorphic to an open ball whose dimension is
the index i(z) of f at x. In the sequel, we make the assumption (7°), which is
generically satisfied in the space of gradient vector fields [S] :

(T') For any pair z,y of critical points, the manifolds W*(z) and W*(y) are
transversal.

A gradient vector field X satisfying (T") will be said to be Morse-Smale. Then
it is known [R] that the closure W (z) of W*(z) is obtained by adding a union of
unstable manifolds of smaller index. This will be proved again in a special case. For
an arbitrary Morse-Smale vector field, this closure may be very complicated ; but
when the vector field is gradient and is of special Morse type near the singularities
(see the condition (SM) below), the structure of W (z) is very simple and we
will describe it.
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a) Submanifolds with conical singularities

We define submanifolds with conical singularities (abridged : smcs) of dimension k
in a smooth manifold N? of dimension p by recursion on the dimension k. For
k = 0, it is a discrete set of points. A stratified set ¥ = (£o,%;,...,Xk) ina
manifold N? is a smcs of dimension & if the following conditions are satisfied.

(1) Forany ¢ < k, ¥; — ¥;41 is a smooth submanifold of dimension k — %
(2) For any point z € ¥; — £,4,, there exist a neigbourhood V diffeomorphic to

a product of discs D*~% x DP~*+i and asmcs T = (Tp,...,T;) of dimension
i in DP~F+i guch that :

Vn(Zo,2,...,5) = D x (To, ..., Ti,0,...,0).

(3) If z € Ty, thereisa C! p-ball B centered at = such that :
Y =¥ NHOB isasmesof dimension (k — 1) inthe (p— 1) -sphere,
and
(B,BNZXy,...,BNEk_1) = (B,cZy,...,cZk_1),
where cX} denotes the cone on X! with respect to the linear structure of the C?-
parametrized ball B.

Of course, a submanifold with boundary is a smcs. Also the singular locus of ¥
lies in ¥;, but some strata of ¥; may consist of regular points of ¥. When one
does not need to label each stratum, one denotes a smcs by ¥ or by (Xg,X;).

The following facts may be easily proved by recursion on the dimension :

(4) There exists a neighbourhood V' of ¥; in N and a deformation retract of
(V,VNXy) onto L.

A submanifold S is said to be transversal to a smcs ¥ if S is transversal to
each stratum.

Lemma 1. /) If a submanifold S of codimension q in NP is transversal to

= (%, ...,2k), then (SN, ...,SNEk_q) isa smcs of dimension k — q
in S.
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2) Suppose that S has a product neighbourhood S x D in NP, with S =
S x {0}. Then there exists a germ of diffeomorphisms H of S x D? along S x {0}
commuting with the projection on D9, such that H(X) C (¥NS) x D1.

Proof. 1) The first part is local. For instance, take z € S N Xx_q. By (2), there
is a chart near = suchthat ¥ = D7 x (T, ...,Tk—q, where T = (Tg, ..., Ti—q)
is a smecs in DP~9, The projection p : D? x DP~9 — DP~? induces a local
diffeomorphism ¢ : S — DP~9. In the corresponding charton S, SNY =T,
andso SNX isa smcs.

2) One has a local stratified projection ¢~p : D? x DP~9 — S; by stratified
projection we mean a C'-map which is the identity on S and preserves the
stratification T; — SN T;.

It is easy to construct a stratified projection n’ defined on a small tube U around
S glueing together local stratified projections by means of partition of unity.

On the other hand, one has the projection 7" : U — D? given by the
trivialization of the normal bundle of S. Then (7’,#") is a diffeomorphism near
S which is the wanted H. O

b) The main result

If z is a critical point of index k of the Morse function f, the Morse lemma states
there exist coordinates z1,...,z, near x such that

(5) fxi,oo o zn)=flz) =2 . —ah + 2 +...+ 22

The gradient vector field X is said to be Special Morse (SM) if, near every critical
point, there exists a coordinate system (z;, ...,Z,) such that f can be written as
in (5), and that X is the gradient of —f with respect to the canonical Euclidean
metric associated to the coordinates z, ..., Z,.

Proposition 2. Assume that X verifies (T) and (SM).

a)If = is a critical point of index k, then (W' (z),W" (z) - W*(z)) is a smcs
of dimension k.

b) W' (z)— W*¥(z) is stratified by unstable manifolds of critical points of index
strictly less than k.
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Remark 3. This proposition says that the unstable manifolds give rise to a structure
of CW-complex on M, with one cell for each critical point, the attaching maps of
the cells being given by the retractions of (4). In [T], René Thom anticipated such a
decomposition.

This result can probably be extended to the case where X verifies only (T') .
To do this, one needs to change the definition of a smcs by delinearizing the cone
construction.

Proof of Proposition 2. Let x be a critical point of f. For a € R, set
Sa(z) = W¥(z) N {f = a}. Thenif a < f(z) is close enough to f(z), S(z) is
asphere. As a decreases, this picture remains stable, as long as a does not coincide
with the value of f at a critical point &', which, by (T'), is such that i(z") < i(z).
The set W' (z) N f~1(f(z') —€) is no longer a smooth manifold. However the next
lemma states it is a smcs and that its structure remains of the same type as we pass
the other critical values of f. The singular strata of this set will be also described.

Let W C R™ be the canonical Morse model : it is a cobordism from a level set
Vo1 = S*1 x D" to Vi, & D x S*»~i~1, Itis equipped with the canonical
Morse function ¢ = —z?-.- — 2? + 22, + --- 4+ 22. The gradient field X
of —q is calculated with respect to the canonical Euclidean metric. Of course
Vi ={g=%1}nW.

Put S =S""! x {0} in V_; and §’ = {0} x S~ ! in V,,.

Lemma 4. Let (X',X)) be a smcs of dimension k in Vi, transversalto S’ with
non empty intersection. Let 3 (resp. L) be the closure in V_, of the set of points
which lie on a gradient line descending from ¥’ (resp. ¥}). Then ¥ contains S
and (X,%, S ) is a smcs of dimension k.

Proof. In V_; (resp. Vy1), weuse polar coordinates (¢,,r) € Si~1x Sn~i-1x
[0,1]. With these coordinates and when r > 0, the map (V4 — S') — (V-1 = S)
is the identity. Set K = ¥/ N S’, which is a smcs by the transversality condition.

First, suppose that £’ is D' x K C D' x S"~~1, that is :
Y — K = {(¢,¢,r)|¢ € S, € K,r > 0}.

In V_,, £—5 is given by the same formula and therefore onehas: £ = S'~! xcK,
which is a cone fibration, whose vertices lie in S. More generally, by Lemma 1,
there is a diffeomorphism H of the form H(yp,v,r) = (p,%(p,%,r),r) with
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¥(p,%,0) = ¢, such that H(D' x K) = ¥ near {0} x K. Then ¥ can be
expressed locally as the image of Si~! x cK by the map H, which is the map H
considered as a map from S*~! x D"~* into itself. Because the radial derivatives
of H exist and are continuous, one verifies easily that H is C'-diffeomorphism.
Therefore ¥’ is a smcs. O

Remark 5. 1) ¥ isnot transversal to S, both sides of the cobordism don’t play the
same role.

2) The proof of the lemma shows that each stratum of W " (z) is C*. However
the way in which strata adhere to each other may only be C?.

Now, we prove Proposition 2. By condition (), W (z) N f~1(f(z') + ¢€) is
transversal to the sphere S’ of the Morse model of /. Then W' (z)Nf~1(f(z)—¢)
is a smcs with a new singular stratum. One then proceed by recursion. The proof
of Proposition 2 is completed.

O

¢) The Thom-Smale complex

In this section, we make the same assumptions as in Proposition 2. An orientation is
chosen on each W*(z).

For critical points « and y of f, with i(y) = i(z) — 1, we define the integer
n(z,y) asfollows: n(z,y) =0 when W¥(y) doesnotlie inthe closure of W*(x);
otherwise, near W*(y), W"(z) consists of ny + n_ connected components,
W*(y) being the oriented boundary of n, of these. Then n(z,y) =ny —n_.

Here is an alternative definition for n(z,y). As W?*(y) is co-oriented (ie.
transversally oriented), to each gradient line in W*(z) "W *(y) (which is the union
of a finite number of gradient lines), one can attach a sign and n(z,y) is the sum of
these signs.

Let Cj denote the free abelian group generated by the critical points of index k.
The boundary operator 0 : Cy — Ci—1 is defined by

(6) 9z = In(z,y)y,
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the sum being over all critical points of index i(z) — 1. On the other hand, as
the geometry of W*(z) is “finite” near its boundary, we can consider the oriented
W"(z)'s as currents, and we have the following Stokes formula.

Proposition 6. For any smooth differential form w of degree k —1 on M, one
has :

() [ do=Yn@y [ w.

W(z) W*(v)

Proof. Let U be a neighborhood of W' (z) — W*(z) which has property (4) in
Section a). We apply Stokes theoremto w on Wd“(x) —U. Aswelet U shrink, the
Stokes formula is seen to converge to the right-hand side of (7), because the singular
locus of W*"(z) — W¥(z) is negligible with respect to the (k — 1)-dimensional
Lebesgue measure. o

Corollary. 000 = 0.

Proof. For any critical point y of index k — 2, there exists a (k — 2)-form whose
integral over W*(y) is nonzero and which vanishes over the other (k — 2)-unstable
manifolds. The result then follows from (6), (7) and from the fact that dod = 0. O

Let I, : Cy — R, be the map, with values in the complex R, of de Rham
currents, which associates to each critical point = the current of integration over the
oriented manifold W"(z). By (7), I, is a morphism of complexes. Of course, as
the W*(z) ’s are the cells of a CW -complex, it is known that the homology of C.,
is canonically isomorphic to the singular homology of M [M1, Appendix A]. But,
in our context, the weaker result with real coefficients may be stated as follows.

Proposition 7. I, : C, ® R — R, induces a homology isomorphism.

Proof. The stable manifolds are naturally co-oriented and give rise to a complex
(C.,d), graded by the co-index of critical points : i(z) = n — i(z). The pairing
(z,z) = 1,{z,y) = 0 when z # y, satisfies (9z,y) = +(z,0y) and creates a
duality between C,,_, and C,. Then H,_(C.;R) = Hom(Hy(C.);R).

Like the unstable manifolds, a co-oriented stable manifold of dimension n — &
defines a current, which can be paired with smooth n — k forms twisted by
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the orientation bundle of TM. The de Rham regularization operator [Rh,§15]
transforms such currents into smooth differential forms of degree k, and maps 9 to
d.

Let 0 € C, be acycle. If o is not homologous to 0 in C, , there exists a
cycle & in Cn_j such that (5,0) # 0; then the de Rham regularization operator
transforms & into a closed k— form w such that (7,0) = [ w. Therefore o is
not homologous to 0 as a current, and so, I, is injective in homology.

By duality, to show that I, is surjective in homology, we only need to prove
that if w is a closed k-form on M such that [ w = 0 for any o € Cj with
0o = 0, then w is exact. In fact, there exists £ € Cp,_r ® R such that for any
critical point z, (§,z) = [, w. Since ({,0) = 0 for any cycle o, one has
& = 9n,n € Cr—gs1. By de Rham regularization, ¢ is smoothed into a form o',
which is the differential of the de Rham regularized of 7. Then, fz« ,,(w—w') =0
for any z. The form w — «’ is shown to be exact by climbing the skeleton, and
applying the Poincaré lemma to each cell ; this is detailed in [ST ; 6.2, Lemma 3].
In fact the structure of the closure of the unstable manifolds allows us to proceed in
the same way as with the simplices of a triangulation. a

d) The Thom-Smale complex with local coefficients

Let F' be areal flat vector bundle on M. Let Ci(F') be the vector space generated
by the 2 ® f, where x is a critical point of index k, and f € F,. Thenif z,y
are critical points of f such that i(y) = i(z) — 1, W*(z) N W*(y) consists of a
finite number of gradient lines. To each of these gradient lines, one can attach a sign
€ and an identification o : F, — F,. Set 0 = Zea. Then the obvious analogues
of the results of c) still hold.

e) Bifurcation of the Thom-Smale complex in a 1— parameter
family

Now we consider a smooth path of pairs (f;, X:), t € [0,1], where X; is the
gradient of — f; with respect to a metric u;. We assume that f, and f; are Morse
functions, and that X, and X; verify (T) and (SM). One may ask how the
Thom-Smale complexes of X, and X; are related to each other. Observe that
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the given path can be modified into any other path having the same ends. We allow
ourselves modifications which are based on classical tranversality arguments, as well
as on a by-product of the universal unfolding of the z* singularity. So we assume
that the following assumptions are verified:

a) Except on a finite set {¢,,...,tx} with 0 < t; <... < t, <1, f; is a Morse
function.

b) Near ti, the path f; is an “elementary” path of birth or death of a pair of critical
points. The word “elementary” means the path is described as in [C, p. 244 -
246] : near the degenerate critical point the path of functions is given by,

1
(8) fi(z) = gwi‘ —(t —te)zy £ 22 ... £ 22 4 const.

for t € [ty — €,tx + €], when the birth happens for increasing ¢.
c) For t € [ty — €, tx + €], the metric y; is constant. In the chart where (8) holds,

¢ is a small C°-perturbation of the canonical Euclidean metric, so that (SM)
holds at the two new critical points (£+/€,0,...,0) of fi, te.

d) The stable and unstable manifolds of X, are transversal ; at the cubical
singularities, they are manifolds with boundary.

e) Forany ¢ and any critical point z of f;, distinct from the critical points which
appear in the birth/death process when ¢ €]t — €,tx + €[, the condition (SM)
is satisfied at « with respect to the metric ;.

f) At the end points ¢t = ¢, + €, assumption (T) is verified.

To describe the modification of the Thom-Smale complex along such a path, we
consider in succession the following two problems: how does the complex change
when one passes a birth-death point, and how does it vary along a path of Morse
gradient fields, at the points where (T') is not satisfied.

f) Modification of the Thom-Smale complex near a birth-death
point

Change the orientation of the t-axis if necessary and assume that t; is the birth
point of a pair of critical points of index %,z + 1.

Set g— = fix-e» 90 = fte» g+ = fut+e Let z be the cubic singularity
of go ; let =’ (resp. z") be the index ¢ (resp. i+ 1)-critical point of g4 just
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created from z. The point z is a degenerate critical point with index <. Its local
unstable manifold is a half-disc of dimension ¢+ 1 and its local unstable manifold is
a half-disc of dimension n — ¢ ; they meet only at z which lies in their boundaries.
The kernel of the Hessian at z is the unique direction tangent to the stable and
unstable manifolds. The singularities of g, all quadratic, are those of g_ plus z’
and z”.

If y (resp. z)isacritical pointof index ¢+1 (resp. ) of go, the integer n(y, z)
(resp. n(z, z)) is well defined because the transversality condition is assumed for
go = fr, : it is the algebraic number of gradient lines descending from y to z
(resp. from z to z).

The formulae which calculate the complex (C,d4) associatedto (g4, gradgy)
from the complex (C_,d_) associated to (g—,gradg_) are the following :
O+p = O_p for any critical point p of g4

9
®) withi(p) #i+ 1,i+2and p # 2,

(10) o4z =2' + Z n(z,2)z,
i(z)=1
(11) 04z’ = — Z n(z,z)0-z,
i(2)=1
(12) Ory = 0-y+ n(y,o)le’+ Y n(z,2)z,

i(z)=1
for any critical point y of g4, i(y) =i+ 1 and y # 2" ;
(13) 04y = 0-y — n(0-y,z)z"
for any critical point y of g4,i(y) =%+ 2.

In (13), n(a1y1 + - - - + %Yk, ) = a1n(y1,21) + - - - + ey, ), where the
«; ’s are integers and the y; ’s are critical points of index ¢ + 1. These formulae
are complicated, but, except when ¢ is 0, n — 1 or n — 2, one can easily make all
the n(z,z) and n(y,z) zero, in which case they become trivial. This is the case
when the box where the new pair of critical points of index ¢,¢ + 1 is far from the
unstable manifolds of points of index 7 + 1 and from the stable manifolds of points
of index 1.
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All these formulae are consequences of the following geometrical fact : if L is
alevel setof g, justbelow z’, then L N W*(z') is the boundary of L N W*(2")
which is a small deformation of L N W*(z) ; if L is a level set just above z”,
then L N W*(z") is the boundary of L N W*(z’) which is a small deformation of
LNW?(z).

Now we put these formulae in a more concentrated form. For this, we introduce

the split extension (C¢,9¢) of (C_,5_) by the acyclic complex 0 — Zz" RN

Zx' — 0.

Consider the following automorphism A of C¢ : in degree distinct from
i, 1+ 1, itis the identity. For i(y) =i+ 1,y # 2", put A(y) = y+n(y,z)z” and
A(z') = 2’ + Zj(;)=:i n(, z)z. This automorphism is “elementary” in the sense of
algebraic K -theory. We get

Proposition 8. (C;,0;) is obtained from (C_,0-) by setting Cy = C° and
0y =A"100% 0 A.

g) The Thom-Smale complex near points where (7') is not satisfied

After the above discussion, we are reduced to consider a path of Morse functions
fi, t € [0,1], where both ends f;, 7« = 0,1, are equipped with gradient vector
fields X; satisfying (T') and (SM). The Morse lemma holds with parameters and
the space of Morse charts of a given Morse function, near one fixed critical point, is
connected, up to the Euclidean symmetries of the model (Alexander trick). Then it
is easy to construct a path of metrics p, suchthat X; = —grad,, f; satisfies (SM)
forevery t € [0,1] and coincides with the given vector fields for ¢ = 0, 1.

Now, by approximation, we can suppose that X, satisfies the transversality
condition (T') except for 0 < #; < ... < t, < 1 ; moreover, the fu ’s have
distinct critical values. The lack of transversality in a 1— parameter family can be
described generically as follows : let L be aregularlevelof f = fu, L = f ~(a),
just above a critical point z of index i. In f~1([a,+oc[) andin f~1(] — o0, a]),
the transversality condition (T') is valid for the stable and unstable manifolds of each
cobordism considered alone. The unstable manifolds of critical points of f, with
critical values > a, induce on L some stratification St with conical singularities.
Let S C L be the trace of the stable manifold of z: S is non transversal to
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exactly one stratum ¥ of St; there is a unique point p where ¥ and S meet non
transversally and the tangency at p is a “codimension 1 ” singularity.

The stratification of the space of embeddings S — L induce by X is described
in [C, p.123]. When going from ft; —e 1O ft; +e» the picture of the stable-unstable
manifolds is itself stable above L and below L. But the glueing of both pictures
in L is not stable; it crosses a codimension 1 stratum in the space of embeddings
mentionned above.

In the following, we only consider failures of transversality which a priori
generate modifications of the associated algebraic complex. They are of two types:

Firsttype. dimY+dimS = dimL =n—-1. Inthiscase ¥ = W*(y)NL, where
y is a critical point of index ¢ + 1 ; during the transition, some pair of gradient
lines descending from y to z is created or cancelled. But the integer n(z,y) is
preserved and the algebraic complex does not change.

Second type. dim¥ + dimS = dimL — 1.

In this case y is a critical point of index ¢. The transition is pictured in L :
we have a small disc A cutting S in one point and one moves from ¥_ to ¥
through A.

As unstable manifolds are oriented, ¥ is orientedand S is transversally oriented;
therefore, the above operation comes with a sign €. The boundary morphism changes
from O_ to 04 according to the following formulae :

(14) 04+(2) =0-(2) —en(z,y)z if ind(z)=:+1,

(15) O04(2) = 0-(2) if ind(z) =4 and z # y,
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(16) 04 (y) = 0-(y) + €0_(x),
and, for the other critical points, 8 = 0—.

Here is a sketch of proof for (16). Let L’ be alevel setof f justbelow f(z); as
A is a small meridian disc of S, the gradient lines descending from OA intersect
L’ along a sphere parallel to L' N W*(z). If ¥/ (resp. ¥ ) denotes the trace in
L' of the gradient lines descending from X, (resp. ¥_)then ¥/, isthe connected
sum of ¥’ with a sphere parallel to L' N W*(z). Formula (16) follows.

If A isthe “elementary” automorphism of the module C, defined by A(p) =p
for any generator p # y and by A(y) = y + ez, then we get :

Proposition 9. (C4,04) is obtained from (C-,0-) by setting Cy = C_ and
6+ =A—1 03_ o A.

The formulas from (9) to (16) still make sense with local coefficients. Then,
if for some adhoc system of coefficients the complex becomes acyclic, its torsion
(Franz-Reidemeister or Whitehead) does not depend on the pair - function, gradient
vector field - chosen at the beginning. Of course, this fact is well known ( compare
Milnor [M2, §9]).

h) Final comments and complements

The only new fact proved in this appendix is that the pair (f,X) of a function
and a gradient vector field (with some conditions) produces an embedding I. of
the Thom-Smale complex C, into the complex R, of de Rham currents, because
the unstable manifolds of critical points are currents. Then, by Proposition 7, we
have a canonical isomorphism between the Thom-Smale homology (homology of
the Thom-Smale complex) and the de Rham homology. In this Section, we will
verify directly that the identifications of complexes of Proposition 8 and 9 induce the
corresponding canonical identifications of their homology groups.

When we need to specify the pair (f, X) whichisused, C.(f,X) and L(f, X)
will denote the Thom-Smale complex and the corresponding embedding into the de
Rham complex.

First, let us consider a one-parameter family (f;, X;), ¢ € [0,1], of Morse
functions and gradient vector fields satisfying both conditions (T') and (SM) on
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the whole interval. In this case, C.(fo,Xo) and C.(f1,X;) are the same as the
critical points of both functions are in canonical correspondance and we have two
embeddings of the same Thom-Smale complex. We claim that I,(fo,Xo) and
I.(f1,X1) are homotopic; this means that there exists a morphism K of degree
+1 from C, to R, such that

I*(fl,X]_) - I*(fo,XO) =0oK+Kod

This equation is satisfied if for each generator = of Cy(fo, Xo), we set K(z) =

UW“(:vt). Here z; is the critical point of f; corresponding to z and K(z) is
1
of course a (k + 1)-dimensional current; it is the direct image by the projection

M x [0,1]to M of the obvious current UW”(a:t) x {t} in M x [0,1]. Asa
4
consequence, one has the following result.

Proposition 10. I,(fo, Xo) and I.(f1,X1) induce the same isomorphism in homology.

The crossing of an “accident” along the path (f;, X;) - failure of transversality
or birth-death point - involves a little bit more technicality. But with the notation of
Propositions 8 and 9, and using homotopies like above, one can prove the following.

Proposition 11. 1) Near a generic no-transversality point, the morphisms I.(fy,
X4+) and I.(f-,X_) o A induce the same isomorphism in homology.

2) Near a birth point, I,(f+,X+) and I.(f-,X_) opo A induce the same
isomorphism in homology, where p is the natural projection of C¢ onto C_.

To conclude this Appendix, we give a Fubini formula which only makes sense by
our use of currents. Here (f,X) is a pair satifying the (T") and (SM’) conditions,
w is a closed k-form, Q is a closed orientation-twisted (n — k)-form; the k-
dimensional unstable manifolds are oriented and the (n — k)-dimensional stable
manifolds are co-oriented.

Proposition 12.

(17) / wAQ= / w/ Q,
M zx: W) JW'(z)

where the sum is taken over all the critical points of index k.
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Proof. The transpose of I} maps the cocycle w to acycle of Cp,_, given by
S o
z YW (2)

which itself gives rise to the twisted closed current

=2 (/W"(z)w> /W’(:c) '

z

Thus the homology class of o only depends on the cohomology class of w.
Therefore, the right-hand side of (17) only depends on the cohomology classes
ofw and . The same is obviously true for the left-hand side. So we are reduced to
the case where w vanishes near the (k — 1)-skeleton of the stratification by unstable
manifolds and  vanishes near the (n — k — 1)-skeleton of the stratification by
stable manifolds. Then w A Q vanishes everywhere except on blocks D¥ x D"k,
usually called handlebodies. On each handlebody the formula reduces more or less
to Fubini. a
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