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INTRODUCTION 

Avec le soutien du C.N.R.S et de la D.R.E.D, l'année académique 1990/91 
fût une année spéciale consacrée aux méthodes semiclassiques. 

A l'origine les méthodes semi-classiques désignaient les techniques utilisées 
par les physiciens pour essayer de comprendre les relations subtiles existant en
tre la mécanique classique de Newton et la mécanique quantique de Heisenberg-
Schrôdinger (lorsque la constante de Planck h devient négligeable par rapport 
aux autres grandeurs physiques: masse, énergie, distances, . . . ). L'exemple fon
damental est la méthode B.K.W (Brillouin, Kramers, Wentsel ) qui consiste à 
construire des solutions asymptotiques, par rapport à la constante de Planck, 
de l'équation de Schrôdinger. Cette méthode est restée longtemps formelle. La 
justification mathématique rigoureuse a nécessité l'élaboration de théories so
phistiquées qui ont vu le jour dans les années 1970 (indice de Maslov, opérateurs 
intégraux de Fourier-Hôrmander). A partir de ces travaux de base, de nom
breux mathématiciens se sont attaqués avec succès à divers problèmes issus de la 
physique et se traduisant par l'étude spectrale d'opérateurs pseudo-différentiels, 
dépendant de paramètres. Citons quelques exemples parmi les plus connus: 

• le comportement du spectre de l'opérateur de Schrôdinger lorsque la 
constante de Planck tend vers zéro ( régie de Bohr-Sommerfeld, effet tunnel ) 

• le comportement asymptotique des grandes valeurs propres ( formules du 
type Weyl) 

• la trace du noyau de la chaleur lorsque la température tend vers zéro et 
les invariants géométriques associés 

• diffusion quantique ou acoustique: problèmes à plusieurs corps, problèmes 
inverses, résonances 

• systèmes périodiques: analyse du spectre de bande, problèmes inverses 
• description de certains systèmes quantiques désordonnés: potentiels quasi 

périodiques, équation de Harper, chaos quantique 
• limite thermodynamique. 

Durant ces quinze dernières années, les méthodes semi-classiques se sont beau
coup enrichies avec le développement de l'analyse microlocale des équations 
aux dérivées partielles et de leurs solutions. De nombreux mathématiciens (et 
physiciens!) ont participé à ce développement. Parmi les travaux que l'on 
peut considérer comme fondamentaux mentionnons en particulier ceux de S. 
Agmon, Y. Colin de Verdière, J. Chazarain, L. Hôrmander, V. Ivrii, J. Leray,V. 
Maslov, R. Melrose, J. Sjôstrand, A. Voros (je cite ces noms car il me sem
ble bien représenter le rapprochement fructueux qui s'est effectué durant cette 
période entre l'analyse des équations aux dérivées partielles et la physique-
mathématique ). 
Deux volumes de la collection Astérisque regroupent les actes de l'Ecole d'Eté 
et du Colloque International organisés à Nantes, en Juin 1991. L'Ecole d'Eté 
était centrée sur quatre cours: V. Ivrii (Asymptotiques Spectrales); M.A Shu-
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INTRODUCTION 

bin (Théorie spectrale sur les variétés non compactes); A. Soffer (Problèmes 
à N-corps) et G. Ulhmann (Problèmes inverses). Le Colloque International 
comportait vingt conférences portant sur des thèmes variés, illustrant la puis
sance des méthodes semi-classiques appliquées aux équations de la mécanique 
quantique ou à l'équation des ondes acoustiques. Les sujets abordés concer
nent principalement l'équation de Schrôdinger sous différents aspects: N-corps, 
champs magnétiques, limite thermodynamique, solitons, cristaux. Deux exposés 
sont consacrés à la diffusion acoustique par un obstacle et à la conjecture de 
Lax-Philips sur les résonances. 

En conclusion, je voudrais remercier les institutions et les personnes qui 
ont permis le succès de cette année spéciale sur les méthodes semiclassiques, 
en premier lieu le C.N.R.S en la personne de J.P Ferrier et la D.R.E.D en la 
personne de J. Giraud. Je remercie également tous ceux qui ont participé à 
l'organisation des différents colloques qui se sont déroulés entre Novembre 1990 
et Juin 1991, en particulier les collègues suivants: J. Bellissard, J.M.Bismut, A. 
Ben.Arous, J.M. Combes, C. Gérard , A. Grigis , J.C Guillot, B. Helffer, A. 
Martinez, J.F.Nourrigat, F. Pham, J. Sjôstrand, A.Unterberger, A. Voros. 
Je remercie l'université de Nantes et le conseil général de Loire-Atlantique pour 
le soutien qu'ils nous ont apporté. 
D. Macé-Ramette a assuré avec dévouement et compétence le secrétariat de 
cette année spéciale, je l'en remercie. 

Nantes, le 21 Décembre 1992 

D. Robert 
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RESUMES 

1. IVRII Victor. Semiclassical spectral asymptotics 
These lectures axe devoted to semiclassical spectral asymptotics with accurate 
remainder estimates and their applications to spectral asymptotics of other 
types.In 0.Introduction, the brief description of the hyperbolic operator method 
is given. In I. Why one should study local semiclassical spectral asymptotics? 
we show how starting from rather classical theorems concerning LSSA (local 
semiclassical spectral asymptotics) one can weaken their conditions. In 2. How 
local semiclassical spectral asymptotics yield standard spectral asymptotics? we 
show how LSSA yield asymptotics of eigenvalues tending to +oo for operators 
on compact manifolds and for operators on R d with potentials increasing at 
infinity and asymptotics of eigenvalues tending to —0 for operators in R d with 
potentials decreasing at infinity. In 3 How can one derive local semiclassical 
spectral asymptotics in the general case?, we present basic ideas permitting us 
to use the hyperbolic operator method for general matrix operators and for 
operators on manifolds with boundary. In 4. Propagation of singularities, we 
apply the short-time propagation of singularities in order to justify the previous 
section construction; then in 5. Tauberian theorem, we derive LSSA. We treat 
the long-time propagation of singularities in order to improve the remainder 
estimate in LSSA in 6. How to improve remainder estimate in the case of non 
periodic trajectories? and in 7. How to improve remainder estimate in the case 
of periodic trajectories?, In the last case the final formula contains non-Weylian 
term. In 8. Eigenvalue estimates and asymptotics for spectral problems with 
singularities, we split LSSA and Lieb-Cwickel-Rozenbljum eigenvalue estimate 
and derive estimates above and below for the number of the eigenvalues for the 
Schodinger operator. Taking this operator depending on some parameters we 
obtain asymptotics with respect to this parameter. In 9. Generalizations. Non-
Weylian asymptotics, more advanced development of the theory is presented. 

2. SHUBIN Michael.Spectral theory of elliptic operators on non-compact man
ifolds 
General aspects of spectral theory of elliptic operators on non-compact mani
folds are studied. Methods of proving the coincidence of minimal and maximal 
operators are descibed and a review of the known results are given. Exponential 
weight estimates for the decay of the Green function on manifolds of bounded 
geometry are proved. Applications of these estimates to Schnol type theorems 
are given (these theorem give conditions of growth to be imposed on a non-
trivial generazed eigenfunction to garantee that the corresponding eigenvalue is 
in the spectrum). This is done in particular on manifold of bounded geometry 
with the exponential growth of the volume of the balls. Estimates of growth of 
generalized eigenfunctions for almost all points in the spectrum (with respect 
to the spectral measure) are given. 
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3. SOFFER Avy. On the many body 'problem in quantum mechanics 
I describe some of the main ideas and tools of the N-body scattering theory. 
Emphasis is given to the recent developments based on phase space and time 
dependent techniques. Also, the relationship to some problems in harmonic 
analysis, PDE and spectral theory, is noted. 

4. ULHMANN Gunther. Inverse boundary value problems and applications 
In these notes we give an overview of inverse boundary value problems. In 
these problems one attemps to discover internal properties of a body by mak
ing measurements at the boundary. We concentrate mainly in the problem of 
determining the conductivity of a body by making measurements of voltage 
potentials and corresponding fluxes at the boundary. This problem is often 
referred to as Electric Impedance Tomography. We give applications to inverse 
scattering as well as inverse spectral problems. 

We consider first the isotropic case. In this case the conductivity does 
not depend on direction. We reduce the problem to an inverse boundary value 
problemfor the Schródinger equation, at zero energy, for a compactly supported 
potential. More precisely the known information is encoded by the it Dirichlet 
to Neumann map. In this notes we describe how the construction of exponential 
growing solutions allows to prove that the potential is uniquely determined by 
knowledge of this map in dimension n > 2. We also discuss progress made in the 
two dimensional case. The method allow also to find reconstruction methods 
as well as to obtain estimates of the potential in terms of the given Dirichlet to 
Neumann map. The same techniques are used to prove similar results for the 
inverse scattering problem at a fixed energy. In the most general case in which 
the conductivity depends on direction, usually referred to as anisotropic case, 
there is a natural obstruction to uniqueness. We report on the progress made 
on this problem. 
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SEMICLASSICAL SPECTRAL ASYMPTOTICS 

BY VICTOR IVRII 

0. Introduction 

The problem of the spectral asymptotics, in particular the problem of 
asymptotic distribution of eigenvalues is one of the central problems of the 
spectral theory of partial differential operators. It is also very important for 
the general theory of partial differential operators. Apart from applications 
in the quantum mechanics, radiophysics, continuum media mechanics (elas
ticity, hydrodynamics, theory of shells) etc, there are also applications to the 
mathematics itself and moreover there are deep though non-obvious links with 
differential geometry, dynamic systems theory and ergodic theory; even the 
term "spectral geometry" has arisen. All these circumstances make this topic 
very attractive for a mathematician. 

This problem originated in 1911 when H.Weyl published a paper devoted 
to eigenvalue asymptotics for the Laplace operator in a bounded domain with 
a regular boundary. After this article there was published a huge number of 
papers devoted to the spectral asymptotics and numerous prominent mathe
maticians were among their authors. The theory was developed in two direc
tions: first of all this theory was extended and there were considered more 
and more general operators and boundary conditions as well as geometrical 
domains on which these operators were given; on the other hand the theory 
was improved and more and more accurate remainder estimates were derived. 
Namely in the later way the links with differential geometry, dynamic systems 
theory and ergodic theory appeared. Even the theory of eigenvalue asymptotics 
for the Laplace (or Laplace-Beltrami) operator has a long, dramatic and yet 
non-finished history. At a certain moment apart of asymptotics with respect 
to the spectral parameter there appeared asymptotics with respect to other 
parameters; the most important among them are (in my opinion) semiclassical 
asymptotics, i.e. asymptotics with respect to the small parameter h (Planck 

s. M. F. 
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V.IVRII 

constant in physics) tending to +0. For a long time these asymptotics were in 
the shadow: most attention was paid to the eigenvalue asymptotics for oper
ators on compact manifolds (with or without a boundary); the results which 
had been obtained here then were proved again for operators in Rd such as the 
Schrodinger operator — h2A + V(x) with fixed h > 0 and with V(x) —• +00 as 
|x| —* 00; less attention was paid to semiclassical asymptotics (i.e. asymptotics 
of eigenvalues less than some fixed level A as h —• +0); moreover the asymp
totics of the small negative eigenvalues were considered in the case of fixed h 
and V(x) decreasing at infinity as | x | 2 m with m G (—1,0); under reasonable 
conditions in this case the discrete spectrum of an operator has an accumula
tion point —0 and the essential spectrum coincides with [0,+00). The result 
of the development of the theory described above was that at a certain mo
ment there existed four parallel (though not equally developed) theories and 
the statements in each of them had to be proved separately. However now this 
plurality has been finished (at least in my papers) because all the other results 
are easily derived from the local semiclassical spectral asymptotics (LSSA in 
what follows), which are the main object of these lectures All other results are 
obtained as their applications. 

In his papers H.Weyl applied the variational method (Dirichlet-Neumann 
bracketing) invented by himself; later this method was improved in various di
rections by many mathematicians. Other methods also appeared later and 
I would like to mention only the method of a hyperbolic operator due to 
B.M.Levitan and Avvakumovic1^. All the asymptotics with the most accu
rate remainder estimates were obtained by this method. It is based on the fact 
that the fundamental solution to the Cauchy problem (or the initial-boundary 
value problem) u(x,x,t) for the operator Dt — A is the Schwartz' kernel of the 
operator expitA (where Dt = — idt, etc) and it is connected with the eigenvalue 
counting function of an operator A by the formula 

(0.1) u(x,x,t)dx = e i t A dxN(X); 

in the case of a matrix operator A u(x,y,t) is a matrix-valued function and 
in the left-hand expression it should be replaced by its trace. Here and below 
N(X) is the number of eigenvalues of A less than A (and in this place we consider 
only operators semi-bounded from below with purely discrete spectra). Then by 
means of the inverse Fourier transform we can recover N(X) provided we have 
constructed ?x(x,y, t) by means of the methods of theory of partial differential 
operators. However, in fact we are never able (excluding some very special 

i) This method is a special case of Tauberian methods due to T.Carleman; resolvent 
method, method of complex power and method of heat equation are other Tauberian meth
ods. The method of the almost spectral projector due to M.Shubin and V.Tulovskii lies 
between variational and Tauberian methods. 
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SEMICLASSICAL SPECTRAL ASYMPTOTICS 

and rare cases when all this machinery is not necessary) to construct u(x, y, t) 
precisely and for all the values t G R. Usually (now we assume that A is 
an elliptic first-order pseudo-differential operator) the fundamental solution is 
constructed approximately (modulo smooth functions) for t belonging to some 
interval [—T,T] with T > 0. As a consequence we obtain modulo 0(\~K) with 
any arbitrarily chosen K an expression for 

(0.2) Pt xT(t) u(x,x,t)dx = XT(T - X)dxN(X) 

where x is a fixed smooth function supported in [—1,1], XT(£) = X t 
T and a 

hat as well as Ft-+T mean the Fourier transform. Then if we know the left-
hand expression, using the Tauberian theorem due to Hormander we are able 
to recover approximately N(X) by the formula 

(0.3) N(X) = 
A 

—oo 
(Ft^TXT(t)a)(r))dT + 0(Xd-1) 

where d is the dimension of the domain, 

(0.4) f(t) u(x,x,t)dx 

and the explicit construction of u(x,x,t) in this situation yields the formula 

(0.5) N(X) = c0Xd + O(Xd-1) 

with the leading coefficient 

(0.6) co = (27r)-d 

a(*,0<l 
dxd£, 

where a(x,£) is a principal symbol of A. 
We see that the crucial step in this approach is the construction of the 

fundamental solution. This construction by means of Fourier integral opera
tors2) is standard and well-known now, provided we consider a scalar operator 
for an operator with constant multiplicities of the eigenvalues of the principal 
symbol and we construct u(x,y,t) at the compact K contained in the interior 
of our domain X (and T depends on the distance between K and dX). If one 
of these assumptions is violated then the construction is more sophisticated 
and possible only under some very restrictive conditions. In the presence of a 
boundary (but only in the case of the constant multiplicities of the eigenval
ues of the principal symbol) this construction was realized in certain papers 
due to R.Seeley, D.VasiPev, R.Melrose. However, it is possible to avoid all 
the troubles by means of another approach suggested by V.Ivrii[4] (see also 
L.Hormander [3]) based on the investigation of the propagation of singularities 

2) This construction due to L.Hormander played a very important and stimulating role 
in the development of Fourier integral operators theory. 
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V.IVRII 

for u(x,y,t) and construction of an "approximation" (in a rather exotic sense) 
for this distribution leading to an approximation in the reasonable sense for 
a(t) for \t\ < T with appropriate T > 0. For /i-pseudo-differential operators 
which are the main subject of this article this approach is essentially more 
simple and transparent because there is a selected parameter h. We'll discuss 
this case below. We'll be able to prove in this way the asymptotics (0.3) for an 
arbitrary self-adjoint ra-th order elliptic operator with m > 0 and the spectral 
parameter A m now on a compact manifold without or with a boundary (in the 
former case the boundary conditions are also supposed to be elliptic), scalar 
or matrix, semi-bounded from below or non-semi-bounded at all (in this case 
iV(A) is replaced by iV ±(A) which is a number of eigenvalues lying between 0 
and ± A m ) ; the formula for co should be changed if it is necessary. 

At the same time the two-terms asymptotics 

(0.7) N(X) = c0Xd + ciA**-1 + oiX*-1) 

suggested by H.Weyl (who also gave a formula for ci) fails to be true unless 
some additional condition is fulfilled. It is certainly wrong for d = 1 and for the 
Laplace-Beltrami operator on the sphere Sd of any dimension (this is due to 
the high multiplicities of its eigenvalues). Moreover, this asymptotics remains 
wrong in the case when this Laplace-Beltrami operator is perturbed by a poten
tial or even by a symmetric first-order operator with small coefficients; in this 
case all the eigenvalues of high multiplicities will generate narrow eigenvalue 
clusters separated by lacunae. On the other hand under some conditions of the 
global nature the asymptotics (0.7) is valid. For a scalar operator on a compact 
manifold without a boundary this condition is "The measure of the {set of all 
the points of the cotangent bundle periodic with respect to the Hamiltonian 
How generated by the principal symbol } equals to 0" 3). This condition is 
more complicated for matrix operators. For a scalar second-order operator on 
a compact manifold with a boundary one needs to consider only trajectories 
transversal to the boundary and reflecting according to the geometrical optics 
law. Though there are some points of the cotangent bundle through which 
such infinitely long trajectory doesn't pass, but the measure of these dead-end 
points vanishes and we do not have to take them into account. For higher-
order operators as well as for matrix operators the trajectories reflected from 
the boundary can branch and in this case it is necessary to follow every branch. 
This makes the situation much more complicated and the following additional 
condition (which isn't automatically fulfilled now) appears "the measure of the 
{set of all the dead-end points} equals to 0". 

Let us clarify for the scalar first-order operator on a manifold without 
boundary a link between asymptotics (0.7) and periodic Hamiltonian trajec-

3) This condition appeared first in the papers of J.J.Duistermaat and V.Guillemin. 
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SEMICLASSICAL SPECTRAL ASYMPTOTICS 

tories. It is well-known that singularities of the solutions of the hyperbolic 
equations propagate along Hamiltonian trajectories. This fact leads us to a 
conclusion that the singular support a(t) is contained in the set of all the pe
riods of the Hamiltonian trajectories including t = 0; in particular t = 0 is an 
isolated point of this singular support (this fact remains true in very general 
situations). Hence if there is no periodic trajectory with the period not exceed
ing T, we know that on the interval [—T,T] the distribution a(t) is singular 
only at t = 0 and hence we know a(t) on this interval modulo a smooth func
tion. The Tauberian theorem permits us to obtain that the remainder in the 
asymptotics (0.7) doesn't exceed c T A

d " 1 + 0 ( A d - 2 ) with the constant C which 
doesn't depend on T; however "O" here isn't necessarily uniform with respect 
to T. Hence if t = 0 was the unique period (I am aware that it is impossible!) 
then we would choose T and obtain the remainder estimate o(Xd^1). In the 
general (realistic) case one should consider the partition of unity given by two 
pseudo-differential operators Qj for every chosen T such that the support of the 
first operator contains no periodic point with the period not exceeding T and 
the measure of the support of the symbol of the second operator is less than 
e with arbitrary chosen e > 0 (due to our condition all periodic trajectories 
with the period not exceeding T form a closed nowhere dense set of measure 
0). Applying the Tauberian theorem to every term 

Nj(Y) = Qje x, x, A dx 

in N(X) we obtain the remainder estimate c 
T A**"1 + 0(Xd~2) for j = 1 and 

CeXd~l + 0(Xd~2) for j = 2 and these estimates imply (0.7) again. Here and 
in what follows e(x, y, A) is a Schwartz' kernel of the spectral projector. More
over, under certain more restrictive conditions to the Hamiltonian flow one can 
improve the remainder estimate in (0.7) to 0 ( A d _ 1 / l o g A ) or even 0(Xd~1"6) 
with a small exponent 6 > 04\ 

It has been discovered recently that even in the presence of the periodic 
trajectories and in the presence of eigenvalue clusters one can have the two-term 
asymptotics of the form 

(0.8) N{\) = coXd + f(X)Xd~1 + o(Xd^) 

with the explicitly calculable function /(A) which is bounded and oscillating 
as A —> +oo with the characteristic "period" of oscillations x 1. In particular, 
this fact enables us to obtain an asymptotic distribution of eigenvalues inside 
of clusters5). Moreover, under some assumptions including an assumption that 

4) See papers of P.Berard and B.Randoll and more recent papers of A.Volovoy and the 
author. 

5) See papers of Yu.Safarov and more recent papers of the author. 
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V.IVRII 

all the trajectories are periodic one can obtain the asymptotics (0.8) with the 
remainder estimate 0(XD~2)\ 

It is well-known that in a large number of cases the Weylian formula fails 
to be applicable in its standard form. In these cases it is necessary either to 
remove from the domain of integration some part of the phase space or to 
divide variables x and £ in two parts: x = (x ' ,x") , £ = (£',£") and consider 
only the variables (x',£') as Weylian; that means that one should consider 
the operator in question as a (partial) differential operator with respect to 
x' with operator-valued coefficients and apply the Weylian procedure to this 
operator. In a more general case one should divide the phase space in a few 
parts. One of them should be removed from consideration and in the other 
parts the "Weylevization" (preceded by a certain transform) should be made 
only with respect to certain variables. 

These remarks do not pretend to be a survey (even an incomplete one). 
Their goal is only to motivate this article in particular and all my works in 
general. I would like to recommend to the reader the books of M.S.Birman and 
M.Z.Solomyak [1] and G.Rozenblyum, M.Z.Solomyak and M.Shubin [11] as the 
best surveys. One can find accurate references in these books and additional 
references in the book of D.Robert [10] and in the author' preprints [7.1-7.9]. 

1. Why One Should Study Local 
Semiclassical Spectral Asymptotics 

Local semiclassical spectral asymptotics (LSSA) are asymptotics of 

(1.1) TV</>£(Ai,A2) = ^ (x) tr e(x, x, Ài, \<i)dx 

as h —> +0 where E(\i,\2) is a spectral projector of the operator A = Ah 
depending on a small parameter h and corresponding to the interval [Ai,A2), 
e(x,y,Ai,A2) is its Schwartz kernel, ^ is a CQ°-function and Tr and tr mean 
operator and matrix traces respectively (for scalar operators tr in the right-
hand expression is absent). If ijj = 1, we obtain iV(Ai, A2). Therefore we hope 
that taking an appropriate partition of unity we can obtain asymptotics for 
N(Ai, A 2) starting from LSSA. 

Moreover, it is often better to start from microlocal semiclassical spec
tral asymptotics when is an /i-pseudo-differential operator with compactly 
supported symbol. 

Now I would like to present a few well-known results (in a slightly stronger 
form6)) and show how they can "improve themselves". We consider only the 

6) The improvement is that the remainder estimates are uniform and that no condition 
outside the ball 5(0,1) is assumed to be fulfilled. This enhancement adds no difficulties in 
the proofs but is very important for applications. 
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Schrôdinger operator 

(1.2) A = -h2 A + V(x) 

in the domain X cM.d, where we assume that X contains the unit ball B(0,1) 
and V is uniformly smooth in this ball: 

(1.3) \DaV\ <c Va : |a| < K 

where K = K{d) is large enough. We assume that A is self-adjoint in L2(X), 
D(A) D Co(-8(0,1)) and in B(0,1) operator A is given by (1.2). One can take 
Ai = —oo now and without any loss of generality one can take A2 = 0. 

Theorem 1.1. (duetoJ.Chazarain). Let A be a self-adjoint operator of 
the form (1.2) and let condition (1.3) be fulfilled in £(0,1) C X. Then for 
h e (0,1] 

(i) In the general case 

(1.4) |e(x, j / , -oo,0) | < Ch~d Vx,y G B 0 
J 
1 
2 

where C = C(d, c); 
(ii) If B(0,1) is classically forbidden, i.e. if 

(1.5) V > e in 5(0,1); 

for some e > 0 then 

(1.6) \e(x,y, - o o , 0 ) | < C'ha Vx,y G B 0 x 
E 

2 1 

where s is arbitrary and C = C ;(d, c, 5, e); 
(jiij Finally if 0 isn't a critical value ofV, i.e. 

(1.7) 1^1 + I W | > e 0 
Vx G B(0,1) 

then 

(1.8) I t/>(e(x,x,-oo,0) - x{x)h~d)dx\ < C / i 1 _ d 

where 

(1.9) x{x) = (27r)-d 

{KI 2+v(*)<o} 
dZ = {2n)-dudVl, 

V± = max(±Vi 0), cok is a voiume of the unit ball in Rk and we assume that 
W E Cko B 0 n 

1 
2 and 

(1.10) \D°il>\ < c Va : |a| < K 

We don't discuss here (1.8)-type asymptotics without spatial mollification 
(this asymptotics holds when 0 isn't value of V) and or asymptotics with more 
accurate remainder estimate (when some condition on the classical dynamic 
system should be assumed). In this theorem the boundary conditions are not 
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important (because the boundary doesn't intersect B(0,1)) and, moreover, the 
nature of the operator and domain outside J3(0,1) isn't important (the self-
adjointness is the only assumption of the global nature). 

In order to improve this theorem let us reformulate it first for ball 2?(x, 7) 
with arbitrary 7 > 0. By dilatation x n e w = 1 

1 x — X and multiplication by 
p 2 this case can be reduced to the previous one; we consider 7, p as additional 
parameters. After reduction we obtain an operator of the form (1.2) again 
with hnew = h 

pi 
and with Vnew = p 2V(x + jx). Then one should assume that 

FONEW € (0,1] i.e. that 

(1.11) frf > h > 0 

instead of the previous condition h G (0,1] and in order to fulfill conditions 
(1.3),(1.10) after reduction one should assume that 

(1.3)' \DaV\ < c p 2

7 - | a | Va :\a\<K 

and 
(1.10)' \Daif>\ < c 7 " | a | V a :\a\<K 

where now W E CoK B x 1 
2 7 = Taking in account that e(x,x, — 00,0) is a 

density i.e. that e(x,x, —oo,0)dx is invariant in this procedure we obtain 

Theorem 1.1'. Let A be a self-adjoint operator of the form (1.2) and 
let in B(x,7) C X condition (1.3') be Mulled. Then for h < (Tf 

(i) In the general case 

(1.4)' \e{x,y, - o o , 0 ) | < C T r V Vx,y € B x n 
1 
2 

7 

where C = C(d, c); 
(ii) If i?(x,7) is classically forbidden i.e. if 

(1.5)' V>ep2 in B(x,7); 

with some e > 0 then 

(1.6)' | e (x ,y , -oo ,0) | <C'hap-s

1-d-a Vx,yeB x 2 
1 
3 7 , 

where s is arbitrary and C = C'(d, c, 5, e); 
(Hi) Finally, if 0 isn't a critical value ofV i.e. 

(1.7)' \V\ + I W | 7 > top2 Vx € 5(x ,7) 

then 

(1.8)' I ^ ( e ( x , x , - o o , 0 ) - x{x)hTd)dx\ < C / i ' - V ' V ^ 

where x is given by (1.9) and tp G C B E 1 
1 
2 7 satisfies (1.10)'. 

14 



SEMICLASSICAL SPECTRAL ASYMPTOTICS 

Let us treat the case p = 7 = 1 without condition (1.7). Let us introduce 
the function 

(1.12) 7 = e i ( | y | + | W | 2 ) * + / i i 

Then it is easy to check that 

(1.13) | V 7 | < 1 
2 

for small enough constant ei = eAd.c) and that for x G B 0 J 
3 
2 in B(3,7) 

conditions (1.11) and (1.3)' are fulfilled with p = 7 = 7(x). Moreover, for 
7 > 2h% condition (1.7)' is also fulfilled. Let us take a 7-admissible partition 
of unity {^n} in B 0 3 

3 
4 this means that x/jn is supported in B x 2 

1 
i 7 xn 

and satisfies (1.10)' with 7 = 7 ( x n ) and that the multiplicity of the covering 
of B 0 , 

3 
4 by balls J B(x n , 7 (x n ) ) doesn't exceed Co = Co(d). Condition (1.13) 

implies that this partition exists. Then the contribution of every ball with 
7 (x n ) > to the remainder estimate in (1.8) doesn't exceed 

C / i 1 " d 7 ( x n ) 2 d - 2 = h1-V~2 

B(xn,7(xn)) 
dx 

and therefore the total contribution of all the balls of this type doesn't exceed 
Ch~d for d > 2 and hr% for d = 1. According to (i) e(x,x, —00,0) < Ch~"s 
if 7(x) x and hence the total contribution of this zone to every term of 
asymptotics (1.8) can be estimated in the same way. 

We have therefore proved 

Theorem 1.2. In frames of theorem 1.1 estimate (1.8) holds in the gen
eral case for d>2. Moreover, ford = \ the left-hand expression of (1.8) doesn't 
exceed Ch~%. 

Let us treat case d = 1 more carefully. 

Theorem 1.3. Let d = 1 and conditions of theorem 1.1 be fulfilled. 
Then 

(i) If 

(1.14) l ^ | + | ^ | + - " + l ^ ( n ) l > ^ o 

for some n > 1 then the left-hand expression of (1.8) doesn't exceed C(\ log h\ + 
l)71-1 where now K = K(n) in conditions (1.3), (1.10). 

(ii) In the general case the left-hand expression of (1.8) doesn't exceed 
Ch~6 with arbitrary 6 > 0 where now K = K(6) in conditions (1.3), (1.10). 

Proof, (i) For n = 1 this statement has been proved. Assume we have 
proved it for n < n and let us consider the case n = n. Let us introduce the 
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function 

7(x) = ci E 
0<fc<n-l 

|V(k)| n 
n-k 

X 
n 

+ h 2 
n+2 

with small enough 61 = ei(n,c,e 0 ). It is easy to check that (1.13) is fulfilled 
and that in B(x, 7) conditions (1.3)', (1.10)' are fulfilled with 7 = 7(x) and o = 
7$. Moreover, if 7 > 2/i 2 n+2 then after dilatation and multiplication condition 
(1.14)n_2 is fulfilled; so contribution of this ball doesn't exceed C(\logh\ + 
l)71"1 (more refined estimate doesn't improve the final answer). Furthermore, 
it is easy to check that under condition (1.14) n 7(x) > €2 min/ |x — x^\ for 
appropriate points X(j) with I = 1,..., L < Lo = Lo(c, n), e\ = ei(c, n, eo) > 0 
and then the total contribution of these balls (intervals) to remainder estimate 
in (1.8) doesn't exceed C(| log h\ + l ) n _ 1 . Moreover, it is easy to check that the 
contribution of remaining L intervals doesn't exceed C(\\ogh\ + l ) 7 1 " 1 either 
and then the induction step is made. The statement (i) is proved. 

(ii) Applying the same arguments as before and using (i) we obtain the 
remainder estimate C7i~ 2/( n+ 2)(|log h\+l)n~2 with arbitrary n because (1.14) n 

isn't assumed to be fulfilled. This yields (ii). 

Remark 1.4- This proof can be extended to a wide class of scalar oper
ators in other dimensions. On the other hand, even in dimension d = 1 the 
propagation of singularities arguments improve the final answer. 

2. How LSSA Yield Standard 
Spectral Asymptotics 

Now I would like to discuss three examples which show how LSSA yield 
asymptotics with respect to the spectral parameter. 

(i) Let X be a compact Riemannian manifold without a boundary, A 
the Laplace-Beltrami operator on X. Let us consider the Schrodinger operator 
Ah = —h2A + V(x); we know that 

N-(AH) = c0hTd + O{h1-d) 
with the Weylian constant CQ provided either d > 2 or 0 isn't a critical value 
of V(x) (otherwise asymptotics with a worse remainder estimate holds). I 
recall that N~(Ah) is the number of negative eigenvalues of Ah counting their 
multiplicities. The Birman-Schwinger principle implies that 

N-(Ah)-N-(Ao) = N(h-2) 
where N(X) is the number of eigenvalues \i € (0, A) of the spectral problem 
(—A + fiV(x))u = 0 and N~(A0) = lim/^+o N~(Ah) < 00. These two equali
ties immediately yield the asymptotics 

(2.1) N(X) = CQX 
d 2 + o 3 d-i 

2 
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provided either d > 2 or 0 isn't a critical value of V(x). Let somebody try to 
obtain this result directly in the case when V(x) vanishes at some point! This 
is striking that nobody has yet observed this non-trivial new result (provided 
0 isn't critical value of V) which trivially follows from two well-known facts! 

(ii) Let us consider the Schrodinger operator A = — A + V(x) in Rd where 
A is the Laplacian and a real-valued potential V(x) satisfies the following 
conditions: 

(2.2 \DaV\ < c(x)2m-a Va : |a| < K, 

(2.3) V > € 0 | x | 2 m for x : \x\ > c 

where (x) = ( |x| 2 + 1) 1/2 here and in what follows. Let us take a 7-admissible 
partition of unity with 7(x) = 1 

4 
(x) If we make a dilatation transforming 

£(x ,7 (x)) into £(0,1) and multiply A-Xby A" 1 we obtain for |x| < CX1'2™ 
in B(0,1) the Schrodinger operator with standard restrictions on potential and 
with m = 1 

j(x)y/\ . 
Let us apply theorems 1.2,1.1 (then one should assume that 

either d > 2 or V — X is non-degenerating, i.e. 

(2.4) | W | > eolxl 2 " 1 - 1 for |x| > c); 

then we obtain for spatial means of e(x, x, A) in B(xt 7(1)) the Weylian asymp-
totics with the remainder estimate 0{h>-d) O E d-i 

2 7 ( x ) d " 1 

; here is no ad
ditional factor because e(x, x, A) is a density but not a function. Summing with 
respect to the partition of unity we obtain remainder estimate C X A ^ - 1 ^ ) with 

E = 1 
2m 

D + m . If we consider the ball J5(x,7(x)) with |x| > CX 1 
2m then after 

dilatation and multiplication of A — X by p 2 (x ) with p(x) = ( x ) m we obtain 
the Schrodinger operator with standard restrictions on the potential v(x) > e\ 
and with h = 1 

7(x)p(x) 1 then we derive an estimate |e(x,x,A)| < ChSrf(x) 

with an arbitrary s and hence the contribution of the domain |x| > CX 1 
2m 

in the remainder estimate is 0(X s) where we decrease s if it is necessary. We 
obtain also the asymptotics 

(2.5) N(X) = Af(X) + 0 ( A ( d - 1 ) z ) 

with 

(2.6) M A ) = co (X-V) d 
t dx 

as A -> +00 and A/YA) x Xdl. 
(iii) Let us consider the Schrodinger operator in Rd with a potential V(x) 

satisfying (2.2) with m £ (—1,0) and let now A < 0 be a small parameter. Then 
for the same p and 7 as before the dilatation of f?(x, 7(x)) into i?(0,1) and mul
tiplication of A — X by p~2(x) give the Schrodinger operator with the standard 

restrictions on the potential and with h = 1 
7(x)p(x) provided |x| < |A| 1 

2m ì hence 
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for the spatial mean of e(x, x, A) in i?(x,7(x)) the Weylian formula holds with 
the remainder estimate 0{hl~d) = O f p f x i ^ S f x ) ^ - 1 ) (provided that either 
d > 2 or condition (2.4) is fulfilled). On the other hand, for |x| > CUI 1 2 m 
dilatation and multiplication by |A| 1 give the Schrodinger operator with the 
standard restrictions to potential v(x) > ei and with h = l 

V(x)V|Y| Hence the 

estimate |e(x,x, A)| < Chsj(x) d holds again. Summing with respect to the 
partition of unity we obtain asymptotics (2.5)-(2.6) as A —> - 0 with the same 
/ as in (i); moreover, Af(X) x |A|d* provided 
(2.7) ^ < - 6 i l x | 2 m for x : |x| > с 
in some non-empty open cone in R d . 

In these three cases for d = 1 without the non-degeneracy condition the 
final remainder estimate is slightly worse. 

3. How One Can Derive LSSA 
in the General Case 

The only possible (or at least the best) way to derive spectral asymptotics 
with accurate remainder estimate is the hyperbolic operator method (I don't 
discuss here special cases when one can find eigenvalues explicitly). There are 
few implementation of this method for semiclassical spectral asymptotics; for 
example, for Schrodinger operator one can consider U(t) = exvith~1B with 
either В = A or В = A l m where m = 2 is the order of operator. The second 
definition leads to the wave equation h2D^u — Ани which is hyperbolic in the 
classical sense and has the useful finite speed of propagation property; however, 
difficulties arise in the case when A isn't semi-bounded from below and in the 
case of higher-order operator make this way rather poor. The best way is 
to consider U(t) = expith^A; the corresponding non-stationary Schrodinger 
equation 

(3.1) hDtu = Ани 

isn't hyperbolic in the classical sense but it has all the useful properties of 
hyperbolic equations (with reasonable modifications). In particular, there is a 
finite speed of propagation property in the compact domains of the phase space. 
Thus, as we have mentioned, one should apply methods of partial differential 
equations and construct Tr QU(t) at some interval [—T,T] 3 t and then use 
the formula 

(3.2) Ft^h-iTTrxT(t)QU(t)=T x (T - A)T 
h 

d\TrQE(\) 

and the Tauberian theorem in order to recover asymptotics of TrQ£ ,(ri,T2); 
here and below Q is an /i-pseudo-differential operator with a compactly sup
ported symbol. For a scalar operator A in the interior of domain (or in similar 
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cases) the construction of QU is well-known for T = const > 0 (or even on 
longer interval under very restrictive conditions); however, for matrix opera
tors and near the boundary this explicit construction at this interval is either 
very complicated or impossible. The idea which was suggested eleven years 
ago by the author in order to avoid this difficulty is very transparent in the 
semi-classical case: to construct QU for a shorter interval [—T',T'] (with T' de
pending on h) and then to prove that Tr QU is negligible at [-T, -Tf) U [T',T]. 

In order to make the first step we apply the successive approximation 
method. Let us consider the equation (3.1) with the initial data 

(3.3) U\t=o = S(x-y). 

Hence 

(3.4) (hDt - AW* = Tih6{x - y)6(t) 

where U± = 9(±t)U and 9 is Heaviside function; therefore 

(3.5) f/± = TihG±6(x - y)6{t) 

where G± is the parametrix of the problem 

(3.6) (hDt-A)v = f, v\±t<o - 0. 
On the other hand, (3.4) yields that 

(3.7) (hDt - A)!/* = Tih6(x - y)6(t) + BU± 

where A = A(y, hDx, 0) is operator obtained from A by freezing coefficients at 
y and dropping lower-order terms (in the semi-classical sense) and R — A — A. 
Therefore 

[/± = TihG±6(x - y)6(t) + G±RU± 

where G is the parametrix of problem (3.6) for operator A. Iterating this 
equality and using (3.5) once we obtain that 

(3.8) U± = Tih E 
n<N-l 

(CPRyCPSix - y)6(t) T ih{G±R)NG±6(x - y)6(t) 

with arbitrarily large N. Let us notice that 

(3.9) R = R + R' = E 
l<M+k<Af-l 

hk(x-y)aBaik(y,hDx)+ 

E 
\a\+k=M 

Ba,k(x,y,hDx). 

Let us substitute (3.9) for (3.8) and let us move all the factors (XJ —yj) to the 
right. If one factor reaches 6(x — y) the corresponding term vanishes; so the 
term survives only if this factor is killed on his way. The factor can be killed 
by commutation either with some /i-pseudo-differential operator or with some 
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parametrix. In the first case a factor h arises. In the second case one can apply 
equality 

(3.10) [G±,xj-yj] = G±[A,xj-yj]G± 

and the similar equality for A, G\ the first equality is due to identity 

(hDt - A)(xj - yj)v = -[A,Xj - yj)v + (XJ - Vj)(hDt - A)v 

which yields that 

(XJ - yj)v = -G±[AiXj - yj]v + G±(xj - yj)(hDt - A)v 

provided v\±t<o = 0; substituting v = G±f with /|±*<о = 0 we obtain (3.10). 
Thus, in this commutation (XJ — yj) is replaced by an additional factor h and 
an additional parametrix appears. 

The Duhamel formula yields that the operator norms of G± and G± in 
Ь2([-Т,Т\,Ъ*) don't exceed С T 

h . Let us note that in the original expansion 
every parametrix was accompanied either by h or by (XJ — yj) factors. This 
yields that under the condition 

(3.11) T < h1/2+6 

with arbitrarily small 6 > 0 for M = M(d, 5,6) and N = N(d, s, 6) the remain
der term (with n = N) in (3.8) is negligible (i.e., less than hs) and the equality 
(3.8) remains true modulo negligible terms if one replaces R by R7\ 

Now only operators with symbols not depending on x remain and the 
Fourier transform on x and Fourier-Laplace transform on t provide us with the 
final answer: 

(3.12) Ft^h-lTTrQU± = ± F(T,y,t,h)dydt 

for > 0 and 

(3.13) Ft^h-iTTrQU = ?(т,у,£,К)ау(1£ 

for r € R. Here F is a sum of the terms of the type 

tr(r - аЫ))-%(у,С)(т - o (y ,0 ) - 1 • • • 

br-i(у, 0(T - a(y,OrXiv,t)h~d+n 

(a is the principal symbol of A) and T{r,.,.,.) = F(T—i0,.,.,.)—F(r+i0,.,.,.). 
Thus at rather short time interval Tr QU is constructed modulo negligible term. 
Multiplying Tr QU by ip(hDt/L)xT(t) with \ € q f ( [ - i , i ] ) , x = i on _ 1 

2 
1 
2 , 

7) In fact this deduction works only under some restrictions on A. It is sufficient to 
assume that its symbol is compactly supported; otherwise the appropriate cutoff should be 
done. 
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Xr(t) = x(t/T), <p e C^(R) , LT > h1'6 and setting t = Owe obtain complete 
asymptotics of the spectral mean 

(3.14) Ø T 
L 

Tr QdrE(r) ~ 
E 

n 

h-d+n Ø T 
L 

x'k(r)dT 

provided L> 6 . 
In order to derive asymptotics without mollifications additional argu

ments linked with propagation of singularities should be applied. 

4. Propagation of Singularities 

In fact, the results of this type (namely, locally finite speed of propagation) 
were used in order to justify the construction in the previous section. However 
here more refined results are necessary. 

Let us assumefirst that A is a scalar operator._ Let V be a small neighbor
hood of the point (x,£) such that a(x,£) = 0; if |a(x,£)| > e > 0 then standard 
elliptic arguments yield that Ft^h-\TQXU = 0(hs) for |r| < e\ = ei(d, c, e) > 0 
provided the symbol of Q is supported in V. Let us assume first that 

(4.1) | V € a ( i , | ) | ^ c " 1 ; 

without loss of generality one can assume that 9^a(x,^) > eo; otherwise one 
can reachit by change of co-ordinates. Then singularities in the neighbor
hood of (x,£) propagate with velocity disjoint from 0 in the xi-direction (one 
can obtain this from the classical Hamiltonian system) and since at t = 0 
all the singularities of U lie on {x = = — r?} then for 0 < ±t < To 
all the singularities of QU lie in { t (^I — Vi) ^ ±^o^}; therefore there is no 
singularity of QU\x=y in [—R0,T0] \ 0 where T 0 = T 0 (d,c,€ 0 ) > 0 is small 
enough. Then Ft^h-iTx'TQU\x=y = 0{hs) and Ft^h-iT^TTvQU = 0(hs) for 

X E c K 
o 

-1 5 
_ 1 

2 
u 1 

2 5 
D and 0 < T < To; this estimate is uniform for T 

disjoint from 0. However, this result can be improved by means of dilatation 
method and the derived estimates are uniform for hl~8 < T < To with arbi
trarily small exponent 6 > 0 (this restriction is due to uncertainty principle). 
Therefore under the above condition the construction of the previous section 
provides us with Ft_>h-\TXTTvQU for T = To (because intervals [—To, — h1"6] 
(or [h1-6^]) and [-ht+6,h*+6] overlap for small 6 > 0). 

This and the arguments at the end of the previous section yield immedi
ately the complete asymptotics for spectral means with mollification parameter 
L > h1-6. 

The asymptotics of TtQE(ti,T2) without mollification and with remain
der estimate 0(hl~d) follows from the construction of section 3 (extended to 
interval [—T0,T0] now) via the Tauberian theorem (see below). Moreover, one 
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can replace condition (4.1) by condition 

(4.2) |V*,£a(x,£)l > e 0. 

Actually, if this condition is fulfilled one can always reach (4.1) by means of 
symplectic change of phase co-ordinates (and there is always implementation 
by unitary Fourier integral operator preserving trace but not restriction to the 
diagonal8)). Moreover, referring to above elliptic arguments one can replace 
(4.2) by 

(4.3) W + I v * , £ a l > ¿0 in V. 

Then we obtain the asymptotics of the above type for \TÌ\ < t\ with a small 
enough constant €\ > 0.9) Finally, the condition that V is small isn't necessary: 
one always can use an appropriate partition of unity. 

This construction is done rigorously in [Ivrii 7.2]. There is also generaliza
tion to matrix operators and condition (4.3) is replaced by microhyperbolicity 
condition 

(4.4) ((Ta)(x,t)v,v) >e0\v\2-c\a(x,t)v\2 Wv 

for appropriate T E TXi^V depending on (x,£) and such that |T| < 1. Moreover 
this construction can be done near the boundary but with more sophisticated 
microhyperbolicity condition involving also the boundary operators [Ivrii 7.3]. 
One of the main statements obtained in [Ivrii 7.2] is the following 

Theorem 4.1. Let A be a self-adjoint h-pseudo-differential operator in 
X = R d and let Q be a (fixed) h-pseudo-differential operator with the symbol 
supported in Q, c {|x — x| < c, \x — £| < c}. Let at every point (x,£) E fi the 
microhyperbolicity condition (4.4) be fulfilled with T e T{x^)T*X, \T\ < 1. 
Then the estimate 

(4.5) | T r Q E ( T U T 2 ) - x0h-d\ < Ch1"1 VTI,T 2 € [-ei.ei] 

holds with 

(4.6) x0 = (2n)-d tr q°(xi £)£(x, £, TI , T2)dxd£ 

where q° is the principal symbol of Q, E the spectral projector of a(x,£) and 
C = C(d, c, c'), ei = ei(d, c, eo); here d is a constant in the routine smoothness 
conditions to symbol of Q. 

5. Tauberian Theorem 

The following Tauberian theorem (a variant of Tauberian theorem due 

8) Therefore we cannot replace (4.1) by (4.2) in the case when we are interested in 
asymptotics without spatial mollification. 

9) The condition (4.1) can be changed in a similar way. 
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to Hôrmander) and its modification linked with Fourier transform plays the 
central role in the proof of our results: 

Theorem 5.1. Let V(T) be a monotone non-decreasing function such 
that 

(5.1) HT)\<M\\T\ + IY V r e R . 

Let y € CQ([—1,11) be a fixed function equal to 1 on _ l 
2 , 

l 
2 . (i) Let us assume that 

(5.2) n B(r - T')dr'u(r')\ <M'ha Vr€[ -e , e ] 

with T > h1'6, 6>0. Then 

(5.3) W(T)-V(0)\ <C'Mha-q Vr € -
e 
2 5 

e 
2 

where q = q(6,p), K = K(s, <5,p), C = C"(s, <5,p, e, x ) ; 
(ii) Let us assume that 

(5.4) X?(r - T')dT,v(T) = i?(r) VrG [-e,e] 

with h~p >T> h1-6. Let <$> <E Cg([-c, c}) bea Gxed function. Then 

(5.5) | (U(T) - U{T') - Q{T,T'))<t>{T')dT'\ < 

CMT~l + C'M'ha-q Vr € -
e 

2 , 
e 
2 

where 

(5.6) e(T,T,) = h-1 

T 

V 
tf(r"Wr", 

C = C((j),x, e); -W = supj_£ £j |$(r)| and If, 9, C are the same exponents and 
constants as before. Moreover, if 

(5.7) |t?(r)| < M 0 + M|r | Vr€ f-e,e] 

then 

(5.8) n (i/(0) - i/(T') - 0(O,r'))</>(r')dr'| < 

CMoT" 1 + CMhT~2 + C'M'ha-q Vr € -
e 

2 , 
e 

2 . 

Thus, one can see easily that in order to obtain a good remainder esti
mate in spectral asymptotics one needs to construct Tr QU(t) for large T and 
estimate Ft^h-iTXTÌT~) Tr QU(t) in an appropriate way (the condition that Q 
is non-negative definite operator provides that u(r) = Tr QE(0, r) is monotone 
non-decreasing function; one can easily extend the final remainder estimate to 
an arbitrary /i-pseudo-differential operator Q). In the proof of theorem 4.1 the 
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microhyperbolicity condition is used twice: in order to go from T = h?*6 to 
T = const > 0 and in order to estimate Ft^-\rXT(j) TrQU(t) when it has 
been calculated by the method of successive approximations. 

6. How to Improve Remainder Estimate 
in the Case of Non-Periodic Trajectories 

The above Tauberian theorem yields that in order to improve the remain
der estimate in the asymptotics one should increase T in our analysis. We treat 
only scalar operators in this and in the following subsections; certain general
izations can be found in [Ivrii 7.2,7.3]. In this section we consider the easiest 
case when all the singularities of Tr QU(t) in[-T,T] lie in fact in [—T',Tf] 
with V — hl~6 where T is either a large constant or even temperately large 
parameter; in view of section 4 one should prove that intervals [—T, —To] and 
[To,T] contain no singularity, where T 0 > 0 is an arbitrarily small constant 
(if T is a large parameter then one should prove that Tr QU (t) is uniformly 
negligible at these intervals). The properties of the trace yield that TvQU(t) 
can be replaced by Tr QU(t)Qf in this analysis. Moreover, taking an adjoint 
operator we obtain Tr QiU{-t)Q[ with Qx = Q'* and Q[ = Q*. Therefore it 
is enough to consider only one of the intervals [—T, — To] and [To,T], This is 
quite different from the analysis of resonances. 

It is well-known that in the scalar case singularities propagate along clas
sical Hamiltonian trajectories. This means that all the trajectories of the length 
< T starting from supp Q' in the positive (or negative) direction don't meet 
the boundary and don't leave the zone where the coefficients of the operator are 
regular. If for To < t < T they are disjoint from supp Q then interval [To,T] 
(or [—To,T] respectively) contains no singularity of QU(t)Qf and both intervals 
contain no singularity of its trace; in the latter case Q and Qf are supported in 
the neighborhood of the same point. Here and below a support of h-pseudo-
differential operator means a support of its symbol. If we refer to classical 
results then "disjoint" means that distance is greater than some positive con
stant. However, it is possible to obtain the same result for "disjoint" meaning 
that the distance is greater than 7 = h*~~6 with an arbitrarily small exponent 
6 > 0. Moreover , we can treat the case when T is a large parameter; in this 
case one should assume that T < h~a, \J\ < h~a and |£>aa/?| < h~a along 
trajectories where ap are coefficients of operator, J means a Jacobi matrix of 
the Hamiltonian flow and a = a(d, 5, s) > 0 is a small enough exponent. 

The easiest proof uses the Heisenberg' representation. Let us introduce 
Qt = U(—t)QU(t). To prove that QU(t)Q' is negligible it is sufficient to prove 
thatQtQ' is negligible. Moreover, 

( 6 . 1 ) DtQt = -h-1[A,Qt] 
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and 
(6.2) Qo = Q-
Let us assume for a moment that Qt is a /i-pseudo-differential operator. Then 
Cauchy problem (6.1)-(6.2) yields a sequence of Cauchy problems for different 
terms of the symbol. We can prove under our hypothesis that this sequence of 
problems has a solution belonging to the appropriate symbol class. Then the 
quantization of this symbol Qt satisfies Cauchy problem (6.1)-(6.2) modulo a 
negligible operator. It is easy to show that Qt — Qt is also negligible. Here the 
conjecture that Qt was a pseudo-differential operator was used only in order to 
pass from the operator to its symbol but we can write the Cauchy problem for a 
symbol formally, and justify this conjecture a posteriori when we prove that the 
solution is an admissible symbol and therefore operator Qt is an appropriate 
operator. 

Moreover, even the case when the trajectory meets the boundary can be 
treated under certain hypothesis (see [Ivrii 7.3]). Let us assume diamsupp Q < 
7 = h?~6 1 0 ) Then the arguments of the previous sections yield the estimate 

(6.3) | 0(r)(lVQ£;(r,O)-E(T,O))dT|< 

chl-dT-l 
E0nV 

d/io + Ch1-***'!2*-1 + C'h8 

where Q{r',r) is given by (5.6) with #(T) = Ft^h-iTXT{t)TbQU(t), E r = 
{(x,£) : a(x,£) = r } is an energy surface in the phase space, [iT = dxd£ : da\zT 

is a natural density on E r , V is a 7-neighborhood of supp Q, a' = cr'(d, 6) > 0 
is a small enough exponent and under weak conditions C depends on T but 
under more restrictive conditions C doesn't depend on T. 

Let us take partition of unity of diameter 7 in the neighborhood of 
supp Qo where Qo is a /i-pseudo-differential operator supported in a fixed ball 
in the phase space. Applying estimate (6.3) we obtain the estimate 

(6.4) u <i>(T)(TrQE{T,0) - h-dxo(r,0) - /i1_<i>«-i(T,0))dT| < 

C E 
0<i<n 

hl-dT-l 
A.DV 

dfjio + Chl-d+a' + C'h3 

where A4 (i = 1,..., n) are closed subsets of Eo on which appropriate conditions 
discussed above including the condition of non-periodicity 

(6.5) dist((x,0,$*(z ,£))>7 

10) In our analysis x and £ are of equal right and we should remember about uncertainty 
principle Ax • A£ > h1"6. 
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are fulfilled with instead of T and A 0 = E 0 \ (Ai U • • • U A n ) , T0 = 1. Of 
course, one can take A* depending on h and under appropriate conditions the 
right-hand expression of (6.4) is o(hl~d) or even better (up to 0 ( / l 1 ~ d 4 " o ' , ) ) . 

7. How to Improve the Remainder Estimate 
in the Case of Periodic Trajectories 

Let us consider the case when all the trajectories are periodic (or at least 
there is a domain ft, in the phase space such that all the trajectories starting 
in ft remain there and are periodic). As before we consider the scalar case and 
we assume that 

(7.1) | V a | > e 0 in ft. 

It is well-known that under these conditions generic period is a function of the 
energy level (exceptional subperiodic trajectories are possible): 

T(x,Z) = T{a(xiÇ)) V(x,E) E G. 

Replacement A-* Ax = f(A) yields T(x,£) -> Ti(x,£) = T(x,£)/ / ' (a(x,£)) 
where prime means the derivative here; taking / ' ( r ) = T(r) we obtain T\ = 1 
(at least for (x,£) E ft). On the other hand, spectral projectors of A and f(A) 
are linked obviously. Therefore without loss of generality one can assume that 

(7.2) Øt(M) = M, * I ( I , 0 = ( X , 0 V (x,E) E M 

It is well-known [3,10] that in this case 

eih lAQ = eiBQ 

provided Q is compactly supported in ft. Here B is an /i-pseudo-differential 
operator with the principal symbol 

6(x,E) = R ( x , 0 " 1 

T(x,E) 

0 
a s ( $ t ( x , 0 ) d t + a 

(with T = 1 here but this formula is invariant under the above replacement) 
where as is the subprincipal symbol and a = aihrl+OL2 is the Maslov' constant: 
ai = action/T and 4a2/7r is the Maslov' index of closed trajectory (a,ai ,A2 
don't depend on trajectory in our case). Without loss of generality one can 
assume that a = 0. In fact, A —• A + \i yields B —> B + h~ln for constant fx. 

In order to understand the role of B let us assume first that B = 0. 
Moreover, let us assume that elh A = I (from the heuristic point of view 
these assumptions are almost equivalent); then 

(7.3) eith~1A _ j 

for t e Z and therefore eith *A = e i t , h *A for £ E R where t' is the fractional 
part of t. Therefore in order to construct Tr QU(t) on R it is sufficient to 

construct it on the interval - l 
2 - e, l 2 + e with arbitrarily small e > 0 and 
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then apply the partition of unity 1 = J2nez x(t — n) on R with appropriate x € 
Ck0 - U 

2 - e, 1 
2 + e , However , this doesn't lead to better remainder estimates in 

semiclassical spectral asymptotics because one can estimate \Ft_+h-irXT Tr QU\ 
only by CTh}~d for large T and increasing T we gain nothing (see the Tauberian 
theorem). It is reasonable: equality (7.3) yields that Spec(^4) C Z and therefore 
eigenvalues of A are highly degenerated (with multiplicities x h}~d). In this 
case we can obtain complete asymptotics inside spectral gaps. 

Let us consider a more general case and let us assume that 

(7.4) eih lAQ = eir>BQ 

for all /i-pseudo-differential operators Q supported in f2. Here B is an fr-pseudo-
differential operator and rj e ( / i n , / i 6 _ 1 ) is an additional parameter. A small 
parameter rj can appear because first terms of "original" B vanish and large 
parameter 77 can appear because one perturbs A by rjhA'. 

One can then easily prove that einh~ AQ = einif]BQ for n G Z, |n| < e/hrj 
and Q compactly supported in Q where e > 0 depends on dist(supp Q, dCl) and 
that 

(7.5) eith-1 AQ = eit' h-1 Aeit" nh-1 BQ Vt : |t| < e 
hrj 

for same Q and e as before, where t" = [t]hr] and £' = {t}. Hence one can study 
a long-time propagation of singularities in this case: singularities propagate 
along Hamiltonian trajectories of a drifting with velocity hr\ along Hamiltonian 
trajectories of b. The uncertainty principle yields that one can notice this drift 
only for \hrjt\ > h}~6 . Let us assume that 

(7.6) | V E 6 | > e0 at E R 

where V e means differential along E T . Then the periodicity of trajectories is 
destroyed for |n| > h~6 r; - 1. If T] > h~6 then the periodicity of trajectories is 
destroyed after one turn and if we assume that 

(7.7) There is no subperiodic trajectory of a 

then the singularity of Tr QU(t) located in a neighborhood of 0 is the only 
singularity in the interval [—T,T] with T = e/hrj. The Tauberian theorem 
yields then the standard semiclassical spectral asymptotics with the remainder 
estimate Ch1~drj~1. 

Let us assume that 77 < h 6 . Then (under condition (7.7)) singularities of 
TiQU(t) in [-T,T] are located in [-T',T] where T = e/hrj and V = l/h6r). 
Then 

(7.8) ÌFt^rXrTrQUl^Crh1^ 
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and the Tauberian theorem yields the semiclassical spectral asymptotics with 
the remainder estimate 0(h2~d~6) and with additional term h1~dF(r, r/h) due 
to singularities of Tr QU{t) located in [-T",T"] and different from 0. Namely, 

(7.9) F(t,z) = (27r)-d 

ET 
T(z — r)b)dfjLT 

where T(z) is 27r-periodic function on R equal to n — z at [0,27r). Moreover, 
under conditions (7.6) and (7.7) more accurate calculations yield the estimate 
(7.8) with V = 1/rj + 1 and we obtain the remainder estimate 0(h2~d). Thus 
the estimate 

(7.10) I Tr Q £ ( r ' , r) - X 0 (T', T)h~dxl(r', r)hl-d - F(r, r/h)h}-d\ < 

Ch2-d(l + r,) 

holds. 
In this asymptotics the non-Weylian term F(r,r/h)h1~d is of the same 

order as the second Weylian term xih1~d. However, at intervals of the length x 
h oscillations of the non-Weylian term are of the same order as the oscillations 
of the principal term (at least in the situation described below). 

The detailed analysis and generalizations can be found in [Ivrii 1.2]. In 
particular, conditions (7.6) and (7.7) are weakened there. Moreover, there is 
proved that under conditions (7.1),(7.2),(7.4) Tr QE(T', T) is negligible when r' 
and T belong to the same gap in the semiclassical approximation to spectrum. 
These gaps are defined (for 77 < e only) by the condition 

(7.11) \b(x, £, h)rj - ihrxr - 27rra| > erj Vra € Z. 

In the case of r and r' belonging to different gaps complete asymptotics 
(with oscillating non-Weylian terms) is derived. 

8. Eigenvalue Estimates and Asymptotics 
for Spectral Problems with Singularities 

Singularity means the non-smoothness of the coefficients and (or) bound
ary, unboundedness (exit to infinity) of the domain X or of the classically 
allowed zone {x,V r (x) < r } for the Schrôdinger operator etc. For a sake of 
simplicity we consider only Schrôdinger operator in dimension d > 3. It is 
well-known that in this case (under Dirichlet boundary condition) 

(8.1) N~{A)<coh-d VJdx. 

This is the Lieb-Cwickel-Rozenblyum estimate and many other estimates of 
this are known for the Schrodinger operator and more general operators. Under 
certain conditions it is possible to combine this estimate and local semiclassical 
spectral asymptotics. Namely, let us consider the Schrodinger operator in Rd 
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or in a domain X cRd (in this case we refer to LSSA near boundary), D > 2. 
Let us assume that in X functions 7 and p are given such that 

(8.2) 7 > 0, P > 0, IV7I < 1 

and in subdomain X' = {x € X, p-f > h} the following conditions are fulfilled: 

(8.3) 
yeX',xeB(y,"/(y)) => c - 1 < 

P(Y) 

P{X) 
< c, |Vp| < CP7"1, 

(8.4) \DaV\ < c/9 2

7-l ûl Va :\a\<K 

and 

(8.5) X n B(y, 7(3/)) = {x f c = <t>k(xk) D B(y, 7 ( y ) ) , 

\DA4>K\ < C7 1 ~I Q I Va : 1 < Id < K 

for some k = k(y) where X£ = (x i , . . . , Xfc-i, • • •, %k+i £<*)• Furthermore, 
let us assume that 

(8.6) For y € X' on dX D B(y,^(y)) either the Dirichlet or the Neumann 
condition is satisfied. Then 

N-{A) = 'e(x, x, —00,0)dx + %l)"E{XÌXÌ — oo,0)dx 

where ^ + ^ " = 1» V*' and -0" are supported in (the closures of) {x G X, 07 > 
5 
4 
h EES] X e x,FRF < 6 

4 
2 respectively and 

1 2 ? V I < C7" | q | Va : lai < K. 

Moreover, LSSA and dilatation-multiplication procedure yield estimates 

N- - CR1 < i/j'e(X, x, -00,0)DX < M~ + CRi + C'R2 

where 

(8.7) Af~ = (2n)-dud ib'Vldx 

is the Weylian approximation and 

(8.8) Ri = h}~d 

X'n{V<ep2} 
P^-I'HX, 

(8.9) R2 = hs 

X' 
P-S^-D-SDX, 

e > 0 is arbitrary and C, C depend on e. Therefore 

M~ - CRi <N~ <N~ + CRi + CR2 + ^"e(x, x, —00,0)DX 
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and the lower estimate is derived. In order to derive an upper estimate one 
should derive an upper estimate for /ì/; , fe(x,x ì—oo ì0)dx. Let us consider 
operator A" in the domain X" — {x G X,fry < 2/i}, coinciding in {p7 < 7/i/4} 
with A (taking in account boundary conditions). Let us assume that A" is a 
self-adjoint operator in L2(X") and that the estimate 

(8.10) N-{A" -tJ) <R"(t + l)n V t > 0 

holds for some n and some function J > 0 coinciding with p 2 in X' fi X". 
Then it is possible to prove the following estimate: 

ip"e(x,x, -oo,0)dx < C"R" + C'R2 

where C" depends on n and C, C" doen't depend on the choice of J. Therefore 
the final estimates are 

(8.11) N~ - CRx <N~ <N~ + CRl + CR2 + C"R". 

Moreover, if d > 3 and Dirichlet boundary condition is given on dXn{pj < 2h} 
then one can take A" = A in X" with the Diriclet boundary condition on dX" 
and estimate (8.1) yields for appropriate J that 

(8.12) R" = C 
X" 

VI dx 

There are some useful modifications. Moreover, one can apply LSSA 
with more accurate remainder estimates (under restrictions to Hamiltonian 
trajectories). Finally, other improvements also can be done. 

The same idea of splitting works even for operators non semi-bounded 
from below (for example, for the Dirac operator). In this case it is very useful 
to reduce the original problem to some modified problems via the Birman-
Schwinger principle. This principle is very useful for semi-bounded operators 
too. 

The upper and lower estimates for a number of negative eigenvalues or 
eigenvalues lying in an interval are very useful. Let us take h = 1 (however, 
in the deduction /ieff <C 1 in some balls). Let us consider operator depending 
on other parameter(s). Then estimates derived here yield asymptotics with 
respect to new parameters. Some examples of this type were treated in as in 
section 2. A number of more sophisticated examples can be found in [Ivrii 
5,6,7.7] 

9. Generalizations. Non-Weylian Asymptotics 

I list here some situations when the results of section 8 are not applicable 
and where non-Weylian spectral asymptotics arise. 
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1. Schrodinger and Dirac operators with the strong magnetic 
field. Let us start from local asymptotics. There are two parameters now: 
h <C 1 and a coupling parameter /x » 1. We use the same ideas as before: 
the hyperbolic operator method including the construction of Tr QU at short 
time interval by successive approximations and then extension to larger interval 
based on certain version of microhyperbolicity. Depending on the problem at 
hand, the microlocal canonical form of operators in question is used in both 
parts of analysis in the second one only.Thus the successive approximations 
method is applied either to the original operator or to the reduced one. For 
example, if the magnetic intensity is constant, d = 2,3 and \W\ > eo the 
first (second) approach works for 1 < /x < h5"1 (h~6 < ¡1 respectively). The 
asymptotics derived by this method are different and contain many terms which 
one can calculate only "in principle". However, a comparison of these two 
asymptotics in zone where both of them hold provides much simpler and more 
effective answer. 

When local semiclassical spectral asymptotics are derived we generalize 
them by dilatation-multiplication method. Then in order to attack global prob
lems we use partition of unity, treat the singular zones and derive eigenvalue 
estimates. Finally, we consider operators depending on parameter(s) and derive 
eigenvalue asymptotics with respect to these parameter(s). 

Operators in domains with thick cusps. Spectral asymptotics (with 
accurate remainder estimates) for operators in domains with thin cusps are due 
to results of section 8. However, if the cusp is thick, the remainder estimate is 
not so good or we even may fail to derive asymptotics at all. In this case we 
change the co-ordinates and transform our cusp to the cylinder. Then we treat 
the reduced operator as d'-dimensional one with operator-valued coefficients 
where d' is dimension of the cusp (usually d' = 1). We can obtain local semi-
classical spectral asymptotics for such operator by methods described above. 
Moreover, we can use this approach either only in order to extend the time 
interval (so successive approximations method is applied to original operator) 
or from the beginning of our analysis. The first (second) approach is useful in 
the part of cusp near to (far from respectively) origin and we can split these 
asymptotics. 

The same ideas work for the Schrodinger operator in Rd when V fails to 
tend to +oo along some directions. If the "canyons" in the d + 1-dimensional 
graph of function V(x) are narrow then results of section 8 yield the desired 
answer. Otherwise the similar operators with respect to part of variables in 
the auxiliary Hilbert space should be treated etc. 

The same ideas work also in the case when the operator degenerates on 
a symplectic manifold. 

3. Riesz means. In the framework of section 1 the asymptotics of 
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spectral Riesz means can be treated and the remainder estimate 0(H1+,&~D) 
can be obtained in local semiclassical spectral asymptotics where # is the order 
of the Riesz mean. Moreover, under appropriate condition to Hamiltonian flow 
this remainder estimate can be improved. However, if we apply the approach 
of section 8 in order to treat the case when V has singularities then we may 
or may not be able to recover the remainder estimate obtained in the smooth 
case. It depends on d, # and order of singularity. For example, for Coulomb
like singularity and # = 1 (the most interesting case from the physical point of 
view) the remainder estimate is 0{h2~~d) for d > 5 but we obtain 0{hr2 log h) 
for d = 4 and 0{hr2) for d = 2,3. However, under appropriate assumptions 
we can obtain asymptotics with remainder estimate 0(H2~D) or even better 
for d = 2,3,4. The main idea here is to treat the operator in question as 
a perturbation of the Schrodinger operator with homogeneous potential and 
estimate the difference between / e#(x,x, —oo,0)?/>(x/r)dx for perturbed and 
unperturbed operators where subscript U means that #-th order Riesz means 
is calculated, I/J G CQ(RD) is a fixed function equal 1 near 0 and r is an 
appropriate parameter. This estimate is based on equality 

TR(E*(T;Ai)-E*(T]Ao)) = -tf 
1 

o 
TR Ev-XFCAJBDT 

where At = Ao + Bt and # > l ; f o r O < i ? < l some interpolation arguments 
are used. On the other hand, for 

(^(x) - lj) x 
r 

ev x, x, —oo, 0 DX 

we apply the local semiclassical spectral asymptotics approach (possibly with 
remainder estimates improved by very accurate treatment of propagation of 
singularities near origin). The details and generalizations can be found in [Ivrii 
7.9, Ivrii& Sigal 8.1,8.2]. 

I am grateful to Ms.Izabella Laba who read the paper carefuly and helped 
me to improve my style. 
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S P E C T R A L T H E O R Y OF ELLIPTIC O P E R A T O R S 

O N N O N — C O M P A C T M A N I F O L D S 

M . A . SHUBIN 

Introduct ion 
This paper contains an enlarged and modified part of my five 

lectures given in June 1991 at Nantes during the Summer School 
on Semiclassical Methods. Of course the whole subject as given 
in the title is inexhaustible since even the "simplest" particular 
case of the Schrodinger operator on euclidean space can not be 
exhausted because it contains the whole Quantum Mechanics and 
hence its complete understanding would provide us with the com
plete understanding of a considerable part of the Universe. So I 
did not pretend to be complete in my lectures and I make even 
less pretensions in this paper. Actually this paper contains only 
a description of some qualitative results on the spectra of elliptic 
operators on non—compact manifolds. The lectures contained also 
a beginning of a quantitative theory, namely integrated density 
of states and applications of von Neumann algebra techniques to 
this topic. I hope that these things some day will be described in 
a second part of this paper but they seemed to me too voluminous 
and disorderly to include in this paper now. 

This paper contains two chapters each having an Appendix. In 
Chapter 1 we discuss the first question which natually arises when 
you begin to study a differential operator: what is the natural do
main, where this operator is defined? Actually, if the operator is 
to be considered in a Banach space, one can always take minimal 
and maximal domain arriving in this way to minimal and maxi
mal operators in this Banach space. We concentrate on the ques
tion whether these operators coincide because then they provide 
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a natural operator in the Banach space associated with the given 
differential operator. We describe several methods of proving the 
coincidence based on finite speed propagation for evolution equa
tions, regularity results and estimates of the Green function. The 
necessary technique concerning manifolds of bounded geometry 
and behaviour of the Green function is described in Appendix 1 
to this chapter. Note that a non-trivial difference between mini
mal and maximal operator would mean that boundary conditions 
should be imposed but this certainly goes out of the scope of this 
paper. The only thing we do about it here is that we explain how 
to write the unique solution of the hyperbolic Cauchy problem in 
operator terms in case when the corresponding generating second 
order operator is symmetric but not essentially self-adjoint due 
to the behaviour of lower-order terms at infinity (Theorem 3.4). 

In Chapter 2 we discuss some general topics concerning ellip
tic operators on manifolds of bounded geometry. Namely first we 
apply the general abstract eigenfunction expansion theorem, de
scribed in Appendix 2, to provide weighted Sobolev spaces which 
contain complete orthonormal system of generalized eigenfunc
tions for any self-adjoint operator. We use the ellipticity to nar
row these spaces by use of regularity theorems. Next we discuss 
Schnol—type theorems giving sufficient conditions for the given 
complex number A to belong to the spectrum if a non-trivial 
and non-square -integrable eigenfunction with an appropriate be
haviour at infinity is given. 

Some parts of this paper are based on methods and technique 
that were described in [44] and [45], and I felt free to borrow 
from these papers which were only published in a volume of the 
P D E seminar in Ecole Polytechnique. But many of the results of 
[44] are essentially improved here and also some clarifications are 
added. 

We are very grateful to the organizers of the Summer School 
on Semiclassical Methods at Nantes (and especially to Professor 
D. Robert) for providing the opportunity to lecture there and so 
to see the topics discussed here from a renewed point of view. We 
are also very grateful to the Sloan Foundation and M.I.T. for their 
support during the time when this text was being written, and to 
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Maggie Beucler for her careful work of typing the manuscript. 
Numerat iona l convent ion. We numbered all formulas and 

also Definitions, Theorems etc. separately in every Chapter or 
Appendix. Inside a Chapter or an Appendix we refer to a formula, 
Definition, Theorem etc. from the same Chapter or Appendix 
without any indication of the division where it belongs. 

Chapter 1. Minimal and maximal operators . 
1.1. Abstract preliminaries 
Let TC be a complex Hilbert space, A a densely defined linear 

operator in Ti (the domain of A will be denoted D(A)). Suppose 
that A has a closure A or, equivalently, that the adjoint operator 
A* is densely defined (see e.g. [32]). We shall denote by GA 
the graph of A i.e. the set of pairs {u,Au}, u £ D(A). Then 
G-j = GA, i-e- the graph of A is the closure of the graph of A. 
Moreover ~A = A** = (A*)*. 

Now let A^~ be another densely defined linear operator in 

DEFINITION 1.1. A+ is called formally adjoint to A if 

(1.1) (Au,v) = ( t i , A+v), u e D(A), v G D(A+), 

where (•, •) is the scalar product in 7i. 
If A = A+ then A is called symmetric or formally self-adjoint 
Note that since A, A+ are densely defined, both A and A+ have 

closures. 

DEFINITION 1.2. Let be as in Definition 1.1. Then the 
minimal and the maximal operator for A are defined as follows: 

— — A , AmSiX — (^4."^) • 

Note that both Amin and Ama,x are closed and Amin C AmSiX 
i.e. D(Amin) C D(Am„x) and -4max is an extension of -Amjn. The 
important question that arises in analytic situations and will be 
discussed later is whether Am-m = AmSLX or not. In an important 
particular case A = A~*~ the coincidence Amjn = Amax means that 
A is essentially self-adjoint i.e. A is a self-adjoint operator in 7{. 
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Now let us consider a more general abstract context. Let B,B* 
be complex Banach spaces and a continuous non-degenerated 
pairing B x B1 —> C be given which will be denoted (•>•)• Here 
continuity may be understood as separate continuity i.e. conti
nuity with respect to each variable. Non-degeneracy means first 
that if u G B and (u, t;) = 0 for all v G Bf then u = 0, and second 
that if v G B1 and (u, v) = 0 for all u G # then = 0. Also this 
pairing may supposed to be bilinear as well as hermitean i.e. lin
ear with respect to the first variable and antilinear with respect 
to the second variable (in the latter case we shall denote it by 
( v ) . Now let two pairs Bi^B1^ i = 1,2, be given with continu
ous non-degenerated pairings described as before. Suppose that 
A : B\ —> #2 and Af : B'2 —* B[ are two densely defined linear 
operators. Then At is called a formally transposed operator to A 
if 

(1.2) (Au,v) = (u,Afv), u G D{A\ v G D(Af). 

If we have hermitean pairings between B{ and B\ and (1.1) is 
satisfied for two densely defined linear operators A : B\ —> B2 
and : Bf

2 —> B[ then A + is called formally adjoint to A. In 
both situations the following definition is applicable 

DEFINITION 1.2'. Amin = A, Amax = (A1)* or Amax = (A+)* 
Here A is the operator whose graph is the closure of the graph 

of A in B\ x B2 and (A*)* and (A+)* are naturally defined as 
the maximal operators such that the following natural identities 
hold: 

(1.3) ((Af)*u,v) = (u,Afv), u G D((Afy), v G D(Af), 

(1.3') ((A+)*u,v) = (tx, A+v), u G £>((A+)*, v € £>(A+). 

It is easy to see that Amm is well defined as for the case of Hilbert 
space and Amin G AmaiX. Now it is natural to ask about the 
conditions of coincidence Amin and Amax. 
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Sometimes it is useful to pass from a couple A^Af (or A, A + ) 
to the matrix 

( 1 . 4 ) 
' 0 A] ( [ 0 A \ 

A= [A* Oj (°r [A+ 0 j } ß'2 ф Bi - i 
В2фВ[ 

Then we naturally have a* = a (or a+ = a). 

Propos i t ion 1.3. Equality amjn = amax is equivalent to the si
multaneous fulfilment of two equalities 

( 1 . 5 ) 

^-iriin — ^max Blid (A )min — (A )max (or (A )min — \A )max)-

(So the trick of passing to the matrix operator a allows to 
reduce the proof of the equalities (1.5) to a similar equality for a 
"symmetric" operator a.) 

Proof. It is easy to check that 

a = " 0 A 
A' 0 . 

and a* = " 0 (Af)*~ 
A* 0 

(and similar equalities for hermitean case are valid too). The 
Proposition immediately follows. • 

Now it it well known that for a symmetric densely defined op
erator A in a Hilbert space essential self-adjointness is equivalent 
to two equalities 

( 1 . 6 ) Ker (A* - il) = 0, Ker(.4* + il) = 0 

It easily follows that actually they are equivalent to inclusions 

( 1 . 7 ) Ker(A* - il) C D(A), Kev(A* + il) C D(A) 

(see e.g. [411). Also the following proposition is sometimes useful. 

41 



M. A. SHUBIN 

ropos i t ion 1.4 ([42]). Let /H\^H2 be Hilbert spaces, 

A : Hi - » И 2 , ^ : П2 -> Hi 

a pair of densely defined linear operators and (1.1) is fulfilled. 
Suppose that the operator A+A is densely defined and essentially 
self-adjoint. Then Amm = 4 a x and (A+)min = (A+)max-

This statement actually means that A and A+ are "essentially 
adjoint" to each other i.e. 

A = ( A + ) * and A+ =A*. 

So Proposition 1.4 in a sense gives an inverse statement to the 
well-known fact (first established by von Neumann) that if A is 
a closed densely defined linear operator in a Hilbert space then 
the operator A*A is self-adjoint. 

Now we shall recall some facts concerning a connection between 
self-adjointness and evolution equations (see e.g. [4]). First let 
us consider the following Cauchy problem for functions of a real 
variable t with values in a Hilbert space where a densely defined 
symmetric operator A is given: 

( 1 . 8 ) ü = —A*u, u(0) = ¿(0) = î/i . 

Here u = - ^ j , u = and the derivatives are understood as the 
limits in the norm-topology of 7i and they may be supposed con
tinuous in this topology. Also the solutions u may supposed to be 
defined for all real values of t. Actually we shall only speak about 
the uniqueness of the solutions of (1.8) and in the context given 
all the uniqueness statements are equivalent. So the uniqueness of 
the solution of (1.8) can be formulated as follows: if u : R —> 
u is continuous, u exists in the norm sense and are continuous, 
u(t) 6 D(A*) for every t € R and (1.8) are satisfied for all t with 
UQ = u\ = 0 then u = 0. 
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Propos i t i on 1.5 ([4]). Suppose that A is semi-bounded from 
below i.e. 

(1.9) (Au,u) > -C(u,u), u e D(A) 

with a real constant C. Suppose that we have the uniqueness 
of solutions for the Cauchy problem (1*8). Then A is essentially 
self-adjoint. 

The idea of the proof is as follows: if A is not essentially self-
adjoint then it has at least two different semi-bounded from below 
self-adjoint extensions. But for any such an extension A we can 
write the solution of (1.8) in the form 

( 1 . 1 0 ) u{t) — (cos VÀt) sin yAt 
H 7=—ui 

VA 

(the choice of the branch of the square roots does not matter 
because both functions 

sin fit 
[I i—• cos /it, /i i—• 

are even). So using two different semi-bounded from below exten
sions A\ and A<i in (1.10) and taking the difference u = — u^ 
of two solutions ui and u<i obtained in this way with the same 
initial values u0,ui £ D(A) we shall come to a non-zero function 
satisfying (1.8) with vanishing initial values. 

Observe that if, vice versa, A is essentially self-adjoint (and 
semi-bounded from below) than even the uniqueness of the weak 
solution of (1.8) can be easily proved by the use of the Holmgren 
principle. 

There is a possiblity to use a first-order evolution problem (of 
heat equation type) 

(LU) ù = — A*u, u{0) = UQ. 
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Then the statement of Proposition 1.5 is still t rue if we change 
(1.8) to (1.11) in this statement (and the proof does not change). 
But there is also a possibility to avoid the semiboundedness re
quirement (1.9) by considering a Schròdinger-type evolution equa
tion 

(1.12) ù — iA*u, u(0) = UQ. 

Let us introduce "deficiency indices" 

(1.13) K± = dimKer(A* ± il) 

(which may be non-negative integers or +oo) 

P r o p o s i t i o n 1.6 ([4]). Suppose that K+ = K - and there is the 
uniqueness of solutions for the Schrôdinger type Cauchy problem 
(1.12). Then A is essentially self-adjoint. 

Here the uniqueness should be understood in the sense which 
is similar to that described before Proposition 1.5 for the problem 
(1.8) (of course only continuity of u and ù is required). The idea 
of the proof is also similar to the one of the Proposition 1.5 (the 
condition A v + = K - is necessary and sufficient for self-adjoint 
extensions to exist and K+ = K - > 0 implies that there are at 
least two such extensions). 

1.2. Minimal and maximal operators , essential self-
adjointness for differential operators (basic definit ions 
and nota t ions ) . 

Let us consider a linear differential operator 

(2.1) A : С°°{Х,Е{) C°°(X.Eo). 

where X is a C°°-manifold, E\,E2 are complex C°°-vector bun
dles over X , C°°(X, Ei) is the space of all C°°-sections of E{ over 
X. 
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When we want to study such a differential operator, especially 
spectral properties of this operator, the first thing to be done 
is to supply it with an appropriate domain so as to make it a 
reasonable operator in a Hilbert space or, more generally, in a 
Banach space. So we begin by describing different possibilities to 
do this. 

Let ft = ft(X) be the vector bundle of (complex) densities (or 
1-densities) on X. Integration of densities gives a linear map 

j : C0°°(X,ft) uj H — • j a;, 

where C£°(X,E) for any vector bundle E over X denotes the 
space of all compactly supported C°°-sections of E over X. Now 
for any vector bundle E over X we define (following [3]) the dual 
bundle E* = Hom<c(i?, ft). Hence we have a natural bilinear 
pairing of bundles E x E* —> .ft, hence applying integration we 
obtain natural bilinear pairings in sections 

(2.2) 
C0°°(X,£) x C ° ° ( X , £ * ) -> C, C°°(X,E) x C0°°(X,£*) C, 

which we will denote (•,•). Now the transposed operator to A is 
a differential operator 

At : C°°(X,EZ) C°°(X, #!*), 

defined by the identity 

(2.3) (Au,v) = (u,Afv)y u e CZ°(X,E), v e C0°°(X,F*). 

Now let ty(X,E) denote the space of all distributional sections 
of E over X which is the dual space to C£°(X,E*), i.e. the 
space of all linear forms on CQ°(X,E*) which are continuous in 
the usual sense (see e.g. [22], Ch. 2). Then we have a natural 
inclusion C°°(X, E) C X>'(X, E) and the identity (2.3) allows then 
to extend A to a linear operator 
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(2.4) A : V\X,El)-^V\X,E2) 

which we denote A again because it does not lead to a confusion. 

DEFINITION 2.1. Suppose that we are given Banach spaces 
BUB2 such that C0°°(X,£;) C Bi C V\X,E{), i = 1,2, and the 
inclusions Bi C T)\X,Ei) are continuous in the weak topology of 
V\X,Ei) (which means that if lim = u in the norm of Bi 

k—+oo 
then lim (uk,ip) = (u,ip) for every i/> G Cg°(X,Ef)). 

k—+oo 

The minimal operator Amin : B\ —* B2 is the closure of 
A : C0°°(X,Ei) C£°(X,E2) i.e. a linear operator from B\ 
to ^ 2 such that its graph in B\ x B2 is the closure of the set 
of pairs {u,Au} with u G C£°(X,Ei). The maximal operator 
is a linear operator Amax : # i —• #2 such that its domain 
D( imax) = G B\, At/ € # 2 } , where A is applied in the 
sense of distributions (i.e. as in (2.4)) and Amax is a restriction 
of the operator (2.4) (i.e. AmSLXu = An if u G D(AmSLX)). 

It is easy to see that the minimal operator is well defined and 
Amin C Amax i.e. D(AmiTi) C D(Ama,x) and 

Amsix 1S an extension 
of Amm. The important question we will discuss below is whether 
Amin and Amax coincide or not. 

An example of the spaces Bi appears if we have an hermitean 
metric on each bundle £ ¿ , ¿ = 1,2, and also a positive C°°-density 
dfi on X. Then we can define a space LV(X, Ei), 1 < p < 00 which 
is the completion of CQ°(X, Ei) with respect to the norm 

H I , = [/ Kr)№(*)]1/P, 
JX 

where \u(x)\ denotes the norm of u(x) induced by the hermitian 
metric in the fiber. So we can take Bi = LPi(X, Ei), i = 1,2, and 
speak about the coincidence of Am-in and Amax from to Lp2. 
In case of pi = p2 = p we will just speak about the coincidence 
of Amin and Amax in Lp. 

The case when Bi = LPi(X,Ei) can be also viewed as a par
ticular case of the setting described in Sect. 1.1 if we take B\ — 
LPi(X,E*) with l/p5 + l /Pi = l . 
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Now instead of the usual space L°°(X,E) it is often more 
convenient to use the Banach space C(X,E) of all continuous 
sections of E vanishing at infinity. We shall also denote this 
space by L°°(X,E). It also has a natural non-degenerated dual
ity with Lr(X, E) but is more convenient than L°°(X, E) because 
C0°°(X, E) is dense in L°°(X, E) (but not in L°°(X, E)). We shall 
also define L?(X,E) = LP(X,E), 1 < p < oo, to be able to use 
the whole scale LP(X,E), 1 < p < oo. 

Now instead of linear duality between E and j£* we can also 
consider an hermitean duality. We will actually use only the case 
when E = E* so E is supplied with a fiberwise positive hermitean 
map E x E Q(X). Then we get a Hilbert space L2(X,E). 
Suppose that we have E\ = E2 = E in (2.1) and A is symmetric. 
Then the coincidence Amin = Amax means that A is essentially 
self-adjoint. 

1.3. Fini te speed propagat ion and essential 

se l f -adjointness . 
Here we describe how the finite speed propagation for hyper

bolic equations and systems allows to make use of abstract Propo
sitions 1.5 and 1.6 in order to prove essential self-adjointness of 
some differential operators. The idea to apply uniqueness for evo
lution equations to prove essential self-adjointness is due to A. Ja. 
Povzner ([31]), it was formulated in an abstract form by Ju. M. 
Berezanskii ([4]) and later rediscovered and applied in geometric 
situations by P. Chernoff ([9]). 

Let X be a Riemannian manifold, A is the scalar Laplacian on 
X. This means that A = -6d where d : C°°(X) -+ A\X) is the 
standard differential (AX(X) is the space of all smooth 1-forms 
on X ) , 6.: A1(X) —• C°°(X) is the formally adjoint operator to 
d. The simplest example of the application of Proposition 1.5 is 
given by the following 

T h e o r e m 3 .1 . Let X be a complete Riemannian manifold i.e. 
all geodesies can be extended indefinitely. Let A : C°°(X) —» 
C°°(X) be a linear differential operator of the form 
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( 3 . 1 ) A = -A + B, ordB < 1. 

Suppose that A is formally self-adjoint and semibounded from 
below on C Q ° ( X ) . Then A is essentially self-adjoint. 

Proof. Consider the Cauchy problem 

( 3 . 2 ) 
d2u _ 

dt2 ~ 
-Au, u\t=o = w 0 , 

au 
t=0 = U\. 

The equation in (3 .2 ) is strictly hyperbolic, the bicharacteris-
tic flow is essentially the geodesic flow on X. Hence due to 
the finite speed propagation we can always find a solution u 6 
C°°(R, C Q ° ( X ) ) provided 1*0,^1 £ C0°°(X). (Here C°°(R, C£°(X)) 
denotes the space of functions u : R x X —> C, such that 
t »—• u(t,-) is a C°°-function of t with values in C £ ° ( X ) ; this 
implies in particular suppu fl ([—T, T] x X) is a compact for ev
ery T > 0 ) . Hence the standard application of the Holmgren 
principle gives the uniqueness of the Cauchy problem required to 
apply Proposition 1.5. • 

Theorem 3.1 was formulated in a slightly weaker form by P. 
Chernoff ([9]) (for the case when ord B = 0 i.e. when A is the 
Schrodinger operator) though the reasoning given in [9] works 
for the operator ( 3 . 1 ) too. The arguments in [9] directly use the 
evolution equations like (3 .2 ) considering invariance properties of 
domains of operators i.e. they do not appeal to abstract state
ments like. Propositions 1.5, 1.6. Therefore they allow to prove 
the self-adjointness for all powers of A as well as for self-adjoint 
geometric matrix differential operators e.g. Laplacians or signa
ture operator d + S on differential forms on complete Riemannian 
manifolds. Remark that the proof of essential self-adjointness of 
d+8 can be done by use of Proposition 1.6 if we use the Friedrichs 
theory of symmetric hyperbolic systems ([13]). Besides any zero 
order terms (which do not change formal self-adjointness) can be 
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added to d + 6 without changing the essential self-adjointness. As 
we will see below this is in a sharp contrast with the behaviour 
of the second order operators where lower order terms may be of 
crucial importance. 

Observe that the essential self-adjointness of pure Laplacian A 
(without lower order terms) on differential forms on a complete 
Riemannian manifold was first stated and proved by M.P. Gaffney 
[14-16] with the help of cut-off functions and Friedrichs mollifiers, 
and independently by W. Roelcke [34]. H.O. Cordes [10] used a 
beautiful inequality technique to prove essential self-adjointness 
of the powers of the scalar Laplacian and some Schrodinger opera
tors. The essential self-adjointness of generalized Dirac operators 
on complete Riemannian manifolds was proved by M. Gromov and 
H.B. Lawson ([21]). 

There exist a lot of results about essential self-adjointness of 
elliptic operators in Rn or in open subsets of Rn. We shall mention 
only a very small part of them which is most closely connected 
with the results on manifolds that we have discussed here. 

The essential self-adjointness of semi-bounded elliptic second-
order symmetric operator in Rn was first proved by E. Wienholtz 
([49]; see also a very simple exposition for the Schrodinger oper
ator in the Glazman's book [18]). 

Now let us mention the following Titchmarsh-Sears theorem 
(see [48], [39] and an exposition in [5]). 

T h e o r e m 3 .2 . Let A = —A + V(x) be a Schrodinger operator 
on Rn and V(x) > —Q(\x\), where Q is a positive non-decreasing 
function on [0, oo) such that 

(3.3) 1 Q(ry^2dr = oo 

Then A is essentially self-adjoint. 

Observe that condition (3.3) is satisfied for Q{r) = (1 + r)a if 
and only if a < 2. On the other hand the Schrodinger operator 
with the potential V(x) = — (l + \x\2)a/2 is essentially self-adjoint 
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if and only if a < 2 (see [5]) which shows that the condition 
(3.3) is relatively precise. Note that if we consider the classical 
Hamiltonian on R2n 

tf(p,<?) = H 2 - ( i + M2r/2 
corresponding to the quantum Hamiltonian A = — A — (1 + 
|a:|2)Q'/2 then the condition a < 2 is equivalent to the complete
ness of the classical dynamics for H (i.e. the existence of solu
tions for the corresponding Hamiltonian system for all values of t-
variable). Hence in this example the properties to be well-defined 
for the corresponding classical and quantum systems are equiva
lent though no direct connection has been established. Note that 
the completeness condition for the manifold in Theorem 3.1 (and 
in other similar more general results mentioned before) are also 
in fact conditions of completeness of the corresponding classical 
systems. We refer the reader to P. Chernoff [9] for a beautiful 
speculation why lower order terms do not mat ter for the first-
order operators from this point of view: first-order operators cor
respond to relativistic systems and no conditions are needed to 
infinity because the particle never gets there. 

Theorem 3.2 was improved and generalized in many directions. 
T. Ikebe and T. Kato ([23]) extended it to Schrôdinger operators 
with magnetic field so as to include quantum Hamiltonians of 
Stark and Zeeman effects. Many improvements and generaliza
tions (e.g. for the cases where no spherically symmetric minorante 
is required) were made by F.S. Rofe-Beketov and his collabora
tors (see e.g. [37], review papers [35], [36] and references there). 

T. Kato ([24]) used the evolution equation approach by P. 
Chernoff to prove that if A = —A + V is a Schrôdinger oper
ator in Rn with a real valued V G C°°(Rn) and A > —a — b\x\2 
on C£°(Rn) with some constants a and b then A is essentially self-
adjoint. This means that we can use a minorante like —a — b\x\2 
not only for the potential V but also for the operator A itself. 

Many other results and references about the essential self-
adjointness of Schrôdinger operators in Rn can be found in [32], 
vol. II. 
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Recently Igor Oleinik ([30]) proved the following generalization 
of Theorem 3.2 to manifolds. 

T h e o r e m 3 .3 . Let X be a Riemannian manifold, and aasume 
that there exists a point XQ G X such that the exponential map 
expXo : TXQX — J » X is a diffeomorphism. Consider the Schrodinger 
operator A = —A + V(x) on X and suppose that V(x) > —Q(r), 
where r = dist(x, x$) and Q is a positive non-decreasing function 
on [0, oo) satisfying (3.3). Then A is essentially self-adjoint. 

The condition on the exponential map is probably not nec
essary but let us mention that it is satisfied for all rotationally 
symmetric manifolds (e.g. for the hyperbolic space). 

The proof of Theorem 3.3 may be given along the same lines 
as for the euclidean case X = Rn with the standard metric (see 
e.g. [5]) but with the use of refined Green's formulas and cut-off 
functions. 

Now we turn to the situation when a formally self-adjoint el
liptic second-order operator is not essentially self-adjoint due to 
the lower order terms. What happens with the solution of the 
corresponding hyperbolic Cauchy problem like (1.8)? Can it be 
expressed in operator terms by a formula like (1.10)? We shall 
give now a more precise statement of the problem and the answer 
in a simplest case. 

Let X be a complete Riemannian manifold and A = A + V 
be the Schrodinger operator with a real-valued potential V G 
C°°(X). Hence A is formally self-adjoint but not necessarily 
semibounded. We can consider the Cauchy problem (3.2) which 
will be a strictly hyperbolic problem, hence well posed in spaces 
like C0°°(X), C°°(X) , L2COMP(X), L2OC(X) etc. due to the finite 
speed of propagation. 

Now suppose that UQ,U\ G CQ°(X). Then we can find a 
unique u G C°°(R, C0°°(X)) which is a solution of (3.2). Ob
viously G D{A) = CQ°(X) for all t G R, in particular 
u(t, -) G D(AM-M) for all t G R n . How can this solution be ex
pressed in operator terms? 

Note that A is a real operator hence it has equal deficiency in
dices (complex conjugation interchanges Ker(A* — il) and 
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Ker(A* + ¿7)). Therefore there exists a self-adjoint extension 
of A which we shall denote A (it may not be unique,namely when 
the deficiency indices do not vanish). 

We shall need cut-offs AM for the operator A which are defined 
as E((—N, oo); A)Aj where E(I] A) means the spectral projection 
of A corresponding to the interval I i.e. E(I; A) = Xi(A) where 
Xj : R -» {0,1}, X/(A) = 1 if A € / , X/(A) = 0 if A $ I. Hence 
AN > —NI. Now for every u0,ui G CQ°(X) we can consider 

( 3 . 4 ) û j v ( * ) = (ca&ty AN)UQ -
sin t\J Â]Sf 

j==—^\ 
V AN 

(The choice of the branch for the square root is not important be
cause the functions A i—• cost>/Â and A i—• (sin ty/\)/y/X are even; 
the fraction in the right hand side of ( 3 . 4 ) should be understood 

as the result of substitution of AN into the second function.) Now 
we can state the result. 

T h e o r e m 3.4 . Let A be a Schrôdinger operator on a complete 
Riemannian manifold X with the real potential V G C°°(X). Let 

u be the solution of (3.2) with initial values u0,ui G Co°(X), A 
a self-adjoint extension of A , UN are defined by (3.4). Then 

( 3 . 5 ) ùN e C°°(R,L2(X)) n C°°(R x X) 

and 

( 3 . 6 ) lim ûN = u in C°°(R x X). 
N—•oo 

In particular the limit in (3.6) does not depend on the choice of 

the self-adjoint extension A. 

Proof. The inclusion G C°°(R,L2(X)) is obvious since UQ,UI 

belong to the domain D(Ak) hence to D(AkN) for every k G Z+. 
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The operator inclusion i c i * and the ellipticity of A imply now 
that uN e C°°(R x X). 

Let us decompose Uj, j = 0 ,1 , as follows 

UJ = Uj,N + UJ = U 

U'j,N 

Then (3.4) can be rewritten as 
4K> u"j,N 

= E((-cx>,-N};Ä)Uj. = Я( ( -ЛГ,оо) ; 

ÜN(t) 

where 

v!N(i) = cosi AjsfuL N 
s i n t \ / ' A N 

\/'AN 
" U0,N + *W1,JV " U0,N + *W1,JV 

Now note that u9N is the solution of the Cauchy problem (3.2) 

with u$,ui replaced by UO,NIUI,N because AkNu^N = Akul-N for 

every k 6 Z+, j = 0 ,1 . Since lim Akuf! N = 0 in £ 2 p f ) for every 

k £ Z, it follows due to the ellipticity of A that lim u9\ N = 0 

in C°°(X) , j = 0 , 1 , hence lim uft = 0 in C°°(R x X ) and 
N—•00 

lim u\ N = w7- in C°°(X) , 7' = 0 ,1 . It remains to notice that 
then lim u'N = u in C°°(R x X ) due to the well known local 

N-+00 7V V Y 
energy estimates for the Cauchy problem (3.2). • 

1.4. Minimal and maximal operators on manifolds of 
b o u n d e d geometry . 

We shall use definitions, notations and facts about manifolds 
of bounded geometry, which are collected in Appendix 1 to this 
Chapter. 

Let X be a manifold of bounded geometry, E, F are vector 
bundles of bounded geometry on X and 
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(4.1) A: CZ°(X,E)^CZ°(X,F) 

is a C°°-bounded uniformly elliptic differential operator of order 
m. Recall that A can be extended to a bounded linear operator 

(4.2) A : W™(X, E) - Lp(X, F), 1 < p < oo 

Lemma 1.4 from Appendix 1 easily implies that Amjn = ^4max in 
LP(X, E) if 1 < p < oo. More exactly 

P r o p o s i t i o n 4 .1 . If 1 < p < oo and A is a uniformly elliptic 
operator (4.1) then AmiIi = Amax in LP(X,E) and 

(4.3) £>(Amin) = D(Am!,x) = W™(X,E). 

Proof. Clearly due to the continuity of A in (4.2) 

W™(X,E)cD(Amin)cD(A 
max / 

But Lemma 1.3 from Appendix 1 implies that 
£>(Amax) C W?{X,E\ hence D(Amin) = D(Am*x) = W?(X,E). 
• 

Corollary 4 .2 . Let A be as in Proposition 4.1 with E = F and 
let E have a hermitean C°°-bounded scalar product on fibers, 
(•,•) is the scalar product on L2(X,E) induced by the scalar 
product on ubers and the Riemannian density on X. Let A be 
formally self-adjoint with respect to this scalar product. Then A 
is essentially self-adjoint in L2(X,E). 

Proposition 4.1 does not cover exceptional values p = 1 and oo 
but actually Amjn = AmSiX also for the case p = 1. As to the case 
p — oo, a natural modification is necessary: we have to consider 
L°° = C instead of L°° (see notations in Sect. 1.2). So we have 
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T h e o r e m 4.3 ([45]). Let A be a, C00-bounded uniformly elliptic 
operator acting as in (4.1). Then Amin = Amax in LP(X,E) for 
all p G [1, 00]. 

Following [45] we shall give a proof that uses the theory of 
operators with a parameter. A much more complicated parabolic 
operation approach was suggested by Yu. A. Kordyukov [27],[28] 
who proved the same statement in the case where E = F and A 
has a positive-hermitian principal symbol. Many authors have 
obtained the equality Am\n = AmSiX (in L1 or C) or results which 
imply this in various special cases. E.B. Davies [12] obtains such 
results for second order operators on homogeneous spaces, Lie 
groups and on some more general manifolds. The work of R.S. 
Strichartz [47] also treats the second order case on manifolds. T. 
Kato [25] studies the Schrodinger operator on Rn with non smooth 
potential. H.B. Stewart [46] studies strongly elliptic operators in 
the Euclidean case and obtains resolvent estimates in the case 
p = l ,oo . He also refers to some unpublished seminar notes of 
Masuda. 

First we shall suppose that the following Agmon-Agranovich-
Vishik condition is satisfied: 

(H) E = F and there exist constants p £ C and C > 0 with 

\p\ = 1 such that| |(am(i/) - /QA)—11| < C for all v 6 T * X 

with \v\ = 1, A > 0. 

Here am is the principal symbol of A, \u\ means the norm of the 
cotangent vector v with respect to the given Riemannian metric 
and || • || is the operator norm in fibers of E which is taken in 
local trivi&lizations of E making it a vector bundle of bounded 
geometry (see Appendix 1). 

The following Lemma summarizes the necessary part of the 
Agmon-Agranovich-Vishik theory of the operators satisfying (H) 
(see e.g. [1], [2], [7], [40], or [41]): 

L e m m a 4.4. There exists Ao > 0 such that for A > Ao the 
operator A - Xpl : W™+\X,E) W{(X,E) is bijective for 
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every £ 6 R with a bounded inverse (A - A/))"1 : W$(X,E) -> 
W ^ ' O ^ - E ) satisfymg the estimate 

(4 -4: | | ( Л - A / O ^ u l U - n + У'т\\(А - Xpy^Wm+t-! + ... 
+ \\\(A-\p)-1u\\i<C\\u\\i 

for every u € W^X, E). Here \\-\\3 denotes the norm in W^X, E) 
and C > 0 is a constant which is independent of u and of A. 

Proof. We first notice that it is enough to prove the result with A 
replaced by p~xA, which satisfies ||(/?_1am(:r,£) — A)""11| < C, x £ 
X, |£| = 1. This is the usual uniform Agmon condition so we can 
apply the Seeley construction of a local parametrix of A — A) 
which will satisfy uniform estimates. (See [40].) We then get 
a global parametrix by using the uniform partition of unity of 
Lemma 1.3 in Appendix 1. (Making use of the fact that A is a 
differential operator, one can give simpler proofs, see for instance 
[ 4 1 ] . ) • 

Later on we shall abbreviate W£(X,E) to W2S, LP(X,E) to 
Lp etc. 

Let / € C°°(X) have the property that u(x,dx)f is a C°°-
bounded function for every C°°-bounded vector field v. Then: 

(4.5) e ^ o i o e * = A + Bf, 

where Bf is a C°°-bounded differential operator of order m — 1. 
We then have: 

ef o (A - Xp) o e"f = (A - Xp) + Bf, 

and if we choose A > Ao, where Ao is given in Lemma 4.1, then in 
the sense of bounded operators from W2m+^ to we can write 

(4.6) o (A — Xp) o e * = (l + Bf(A-\p)-1)o(A-\P). 

56 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

If A > 0 is large enough (depending only on the bounds of daf for 
I < \a\ < min canonical coordinates), the norm of Bf(A—A/))""1 : 
L2 —* L2 is smaller than ^. We conclude that the right hand side 
of (4.6), viewed as an operator W™ —> L2, is bijective with a 
uniformly bounded inverse when A > Ai, and Ai > 0 is large 
enough. The identity (4.6) is of course to be understood in the 
sense of distributions, but we have: 

L e m m a 4.5. Let f be as above. Then there exists a constant 
Ai > 0 depending only on the bounds of daf for 1 < \a\ < m 
(in canonical coordinates) such that for A > Ai the uniformly 
bounded inverse, G\ of the operator A — \p : W™ —• L2 (which 
exists according to Lemma 4.4) has the following property: The 
operator o G\o (which a priori maps L2nSt into W™loc) has 
a bounded extension L2 —• W™, and the norm can be bounded 
by a constant which is independent of A and of /. 

Proof. If / is a bounded function, then multiplication by is 
a bounded operator on all the spaces and we see that o 
G\ o e~f is the inverse of the operator (4.6), and the proposition 
follows in that case. If / is not a bounded function, we let ip(s) 
be a smooth increasing real valued function with ip(s) = s for 
- 1 < s < 1, ij>(s) = 2 for s > 3, if>(s) = - 2 for s < -3 and 
put %l>€(s) = e"V (es ) , for 0 < e < 1. Notice that \d*ip€(s)\ < Ck 
for k = 1, 2 , . . . , where Ck are independent of s and of e, so that 
the functions f€=:tp€of satisfy \daf€(x)\ < Ca for 1 < |a | < m, 
with Ca independent of e. We can then apply Lemma 4.5 with 
/ replaced by f€. We conclude that e^€ o G\ o e~f€ is bounded 
as an operator L2 —> W™, uniformly with respect to A and e. If 
u G L2 fl then for e > 0 small enough, we have f€ = / on 
the support of u, and if K is an arbitrary compact subset in X , 
then for e > 0 small enough, we have e^G\e^^u = efeG\e~f€u 
on K, hence \\e^G\t~fu\\mj< < C||u||0, with a constant C > 0 
which is independent of u and K. Here || • \\M,K denotes the W2m~ 
norm over K. Since K is arbitrary, we conclude that G\t~^u 
belongs to W2m and G\e~^u\m < C\\U\\Q. It is then clear that 
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o G\ o e ^ extends to a bounded operator L2 —» W™. • 

Notice that the distribution kernel of oG\oe~~f is of the form 
ef(x)~~f(y)KGx(x,y), if we denote the distribution kernel of G\ by 
Kox(x,y). Also notice that JiTg^ is C°° outside the diagonal. We 
shall apply the above result with / = fx(y) = (t + l)d(x, y), where 
d is the function constructed by Kordyukov (see Lemma 2.1 in 
Appendix 1). Here x may be an arbitrary point of X , and t > 0 
may be arbitrary but fixed. Then the hypotheses of Lemma 4.5 
are satisfied uniformly when x varies in X and as in Theorem 2.2 
of Appendix 1 we obtain: 

L e m m a 4 .6 . Let t > 0. Then there exists \(t) > 0 such that 
for X > X(t) we have the following: For every S > 0 and all 
multiindices a,/3 there exists CQ q & > 0 such that 

(4.7) 
№d¡Gx(x,y)\ №d¡Gx(x,y)\ for all x, y € X with d(x. y) > S. 

The study of Kqx m the region d(x,y) < 6 goes through ex
actly as in section 3 of Appendix 1, and we obtain the following 
analogue of Theorem 3.7 of Appendix 1: 

T h e o r e m 4 .7 . Let t > 0. Then there exists X(t) > 0 such that 
for X > X(t) we have the following: For all multiindices a, /3 there 
exists a constant Cayp > 0 such that when m < n and x ^ y: 

(4.8) №d¡Gx(x,y)\ < Ca^d(x,y m-n-\a\-\/3\e-td(x,y) 

and when m > n and x ± y: 

(4.9) 
№d!Gx(x,y)\ 

< Ca,p(l +d(x,y m-n-\a\-\ß\ J l o g ^ y))\)e-td(X>y> 

We here also notice that it is well known that the kernel is 
locally integrable in y for every fixed x and in x for every fixed y. 

We have the following result where the only assumption is that 
X is of bounded geometry: 
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L e m m a 4.8. Let B(x,r) = {y € X]d(y,x) < r}. There exists a 
constant C = C(X) such that for all x £ X and r > 0: 

(4.10) Vol(B(xyr)) < eCr. 

Proof. We supply a simple proof for the sake of completeness. 
A more general result due to Bishop, can be found in the book 
of M. Gromov [20]. We shall use reasoning as in the proof of 
Lemma 1.2 of Appendix 1. Let us take a maximal system of 
points {xj\j = 1 , 2 , . . . , N} C B(x, r) such that the balls B(xiJe) 
and B(XJ,S) do not intersect if i ^ j . Then B(x, r) will be covered 
by the balls B(xi,2s), ¿ = 1,2, . . . ,N. Now evidently 

N < Ci (e )VolB(s , r ) , where d(e) = [inf VolB(x,e)]. 

Since the ball B(x,r -f s) is covered by the balls B(xi,3e), i = 
1 , . . . , iV, we have 

Vol V(x,r + e) < C{e) Vol V(x,r) 

where C(e) = Ci(e) sup Vol B(x,Ze). Now (4.10) evidently fol-
xex 

lows. n 
Using the lemma one obtains the following corollary of Theo

rem 4.7. 

Corollary 4.9. There exists A0 > 0, such that if A > A0, then: 

(4.11) 

sup 
xEX 

\KGx(x,y)\dy < +oo, sup 
vex 

\KGx{x,y)\dx < +oo. 

Proof. Using (4.8), (4.9), it is easy to see that 
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sup 
x£Xy\x — y\<6 

\KGx(x,y)\dy < + 00, 

sup 
yex\x-y\<6 

\KGx(x,y)\dx < + 0 0 , 

so we only have to estimate the corresponding integrals over the 
domain |x—y\ > 6, and here we may use (4.7): We get for A > X(t) 

J\x-y\>6 
KGx(xjy)\dy<Ct 

r+00 

0 
e-td(*>y)dy = Co 

+ 00 

Jo 
e " t r W ( r ) , 

where V(r) = Vol(i?(x, r ) ) . We choose t strictly larger than the 
constant " ¿ 7 " which appears in Lemma 4.8. Then the last integral 
is convergent and an integration by parts gives: 

poo 

Jo 
e"irdV(r) 

poo 

Jo 
te-frV(r)dr < f 

'0 

tetc-t)rdr = t/(t-C). 

The same estimate is valid for the x-integrals and the corollary 
follows. • 

From now on we take A > 0 sufficiently large so that Corollary 
4.9 applies. By Schur's lemma (see e.g. Lemma 18.1.12 in [22], 
vol. 3) we then know that the restriction of G\ to CQ° has a 
unique bounded extension Lp —> Lp, when 1 < p < 00. It is also 
easy to see (using also (4.11)), that G\ has a unique bounded 
extension, L°° —• L°°. Working with some fixed p, we denote this 
extension G\. For u £ CQ° we have (A — \p)G\u = u, and using 
the continuity of G\ in Lp and the continuity of A — Xp for the 
weak topology of distributions, we get: 

(4.12) (A - \p)Gx = I on Lp 
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Let u £ D(Ama>x) so that u and Au belong to Lp. Then if <p £ CQ°, 
we get formally: 

(4.13) 
{GX{A - Ap)«, y ) = ( ( A - \P)u, G*x<p) = (ti, ( A - A,)*Gfr) , 

where the scalar products are taken either in L2 and * indicates 
that we take the formal complex adjoint in the sense of distri
butions. To justify these manipulations we may use the cut-off 
functions constructed as follows: 

(4.14) XN{X) E 
l<i<N 

XN{X 

where {<fii\i = 1 , 2 , . . . } is the partition of unity described in 
Lemma 1 .3 of Appendix 1. Clearly XN € C Q ° ( X ) , 0 < XN < 1 
and for every compact K C X there exists N such that XN = 1 
in a neighbourhood of K. Moreover IC^XAH ^ Ca in canonical 
coordinates uniformly with respect to TV. Now we can begin with 
the obvious equality 

(GXXN(A - \p)u, tp) = (u, (A - \P)*XNG*X<P) 

and then take limit as TV —» oo. Using the boundedness G\ : 
Lp —+ Lp in the left-hand side and the estimates ( 4 . 8 ) , ( 4 . 9 ) in the 
r ight-hand side we shall conclude that the limits exist and ( 4 . 1 3 ) 
is fulfilled. Now (A — \p)*G\ip = as can be seen by replacing 
u by a C£°-section ifr in ( 4 . 1 3 ) and using that G\(A — \p)ift = 
G\(A - \p)ib = tf>. Thus ( 4 . 1 3 ) reduces to: 

( 4 . 1 5 ) (G\(A - \p)u,(p) = (u,<p). 

and varying <p we conclude that: 

(4.16) GX(A -Xp) = I on D(Am!lx). 
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Thus we have proved that for A sufficiently large, (A — Xp) is 
bijective from D(AmaiX) onto Lp and that the inverse is G\. 

We can now end Proof of Theorem 4.3. First suppose that (H) 
is satisfied. Let u £ D(AmSLX) and v = Au. Let Wj, j = 1 ,2, . . . 
be a sequence of C^-sect ions converging to v — Xpu in Lp, and 
put Uj = G\Wj £ Lp fl C°°. Then Uj —> u in Lp and Auj = 
Wj + A/ray —• u in Zp. It only remains to prove that Uj belongs 
to D(Am\n). We note that if Qj = supp(^j ) then 

SUP* fnji1 X i v ( ^ ) ) | A ' G A ( ^ , y ) M ? / and 
suPj,eftj f('L~~XN(X))\KG\(x'>y)\dx tend to zero when TV tends 

to infinity, and similarly when (1—XN(X))KGX 1S replaced by some 
z-derivative of the same function. (Indeed, this is proved in the 
same way as Corollary 4.9.) Hence (still with j fixed) XNuj uj 
and A(XNUJ) —* AUJ in Lp when N —>• oo, and the proof is 
complete provided (H) is satisfied. 

Now consider the general case. Here we just have to apply 
Proposition 1.3. We may assume that E and F are uniformly 
C°°-bounded hermitean vector bundles. Let A+ denote the for
mal complex adjoint of A, and consider the uniformly elliptic C°°-
bounded formally self adjoint operator: a : C°°(M;F 0 E) —• 
C°°(M; F 0 E) given by the matrix 

a = / 0 A\ 
L 4 + 0 

We notice that a satisfies (H) with p = \ / - - I 7 so we know that 
amax = cimin. It follows due to Proposition 1.3 that Amax = Amjn 
q.e.d. • 

A p p e n d i x 1. Analys i s on manifolds of b o u n d e d geome
try. 

In this Appendix we mostly follow [44]. 
A l . l . Prel iminaries . Let X be a Riemannian manifold 

n = d i m X . In what follows we shall always suppose for the sake 
of simplicity that X is connected. Then the Riemannian distance 
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d : X x X —> [0,+00) is well defined; namely d(x,y) is the 
infinium of Riemannian lengths of all arcs connecting x and y. 

Denote by TXX the tangent space of X at a point x G X and 
let expx : TXX —• X be the usual exponential geoddesic map: 
exp^. v = 7(1), where 7 ( i ) is the geodesic (with a canonical param
eter which is proportional to the arc length) starting at x with the 
initial speed v G TXX, i.e. 7(0) = 7(0) = v. We shall always 
suppose that X is complete or equivalently that expx is defined 
everywhere i.e. for every x G X and v G TXX the corresponding 
geodesic *y(t) can be defined for all t g R . The exponential map 
exp^. : TXX —* X is a diffeomorphism of a ball Bx(0, r) C TXX 
of radius r > 0 with the center 0 on a neighborhood VXyT of £ in 
X . (Actually for a fixed x this neighborhood /7x?r will be the ball 
B(x,r) of the radius r centered at x on the manifold X with re
spect to the distance d induced by the given Riemannian metric, 
provided r is sufficiently small). Denoting by rx the supremum 
of possible radii of such balls we can define the injectivity radius 
of X as rinj = mfX£xrx- If rinj > 0 then taking r G (0,rt-nj) 
we see that expx : Bx(0,r) —> Ux,r will be a diffeomorphism for 
every x G X. Euclidean coordinates in TXX (associated with an 
orthonormal frame in TXX) define coordinates on Ux^r (by means 
of expx) which are called canonical. 

DEFINITION 1.1 (see e.g. [8] or [33]) X is called a manifold of 
bounded Geometry if the following two conditions are satisfied: 

a) Tinj ^ 0 

b) |V* i2 | < Ck, k = 0,1,2, . . . (i.e. every covariant derivative 
of the Riemann curvature tensor is bounded). 

Note that a) implies that X is complete i.e. all geodesies can 
be extended indefinitely. It follows that X is complete as a metric 
space witlj the metric given by the Riemannian distance and 
every ball {x\d(x,XQ) < r} is compact whatever XQ (E X, r > 0. 

The property b) can be replaced by the following equivalent 
property which will be more convenient for the use here 

b') let us fix any r G (0, rinj) and let UXjr, Ux^r be two domains 
of canonical coordinates y : UXjr —> R n , y ; : Ux^r —> IRn such 
that UXyr fl Ux'ir 7^ 0 : consider the vector function y1 0 y-1 : 
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y(Ux,r D Ux;r) -*• Rn] then 

\d^(y'o y-1^ < CQ>r 

for every multiindex a. 
Examples of manifolds of bounded geometry are Lie groups or 

more general homogeneous manifolds (with invariant metrics), 
covering manifolds of compact manifolds (with a Riemannian 
metric which is lifted from the base manifold), leaves of a foli
ation on a compact manifold (with a Riemannian metric which is 
induced by a Riemannian metric of the compact manifold). 

Below we shall always use only canonical coordinates with a 
fixed r G (0)rinj). Then all the change of coordinate functions 
have bounded derivatives of all orders. This property allows to 
formulate a correct notion of Cfc-boundedness (k = 0 ,1 ,2 , •••) 
or C°°-boundedness for functions, vector fields, exterior forms 
and other tensor fields on X. Namely a function / : X —> 
C is called C*-bounded if / € Ck(X) and \d«f{y)\ < Ca for 
every multiindex a with | a | < k and for any choice of canonical 
coordinates. A function / : X —» C is called C°°-bounded if 
/ e C°°(X) and / is C*-bounded for every k = 0 ,1 ,2 , • • •. Let 
C*(X) be the space of all Cfc-bounded complex-valued functions 
on X (here k = 0,1,2, • • • or k = oo). Of course C*-boundedness 
of a function / G Ck(X) is equivalent to the estimate |Vfc/(a:)| < 
C but the formulation in local coordinates is sometimes more 
convenient. 

Similarly a vector field, an exterior form on any general tensor 
field on X is called C*-bounded (k = 0 ,1 ,2 , • • • or k = oo) if all 
components of the field in any canonical coordinate system are 
Cfc-bounded as C*-functions of corresponding coordinates (with 
bounds depending only on the order of the differentiation but not 
on the chosen coordinate neighbourhood). 

Let A : C°°(X) C°°(X) be a differential operator of order 
m with C°°-coefficients. We shall call it C°°-bounded if in any 
canonical coordinate system A is written in the form 
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( i . i ) A = E 
|or|<r 

"AVK 

where the coefficients aa are (complex-valued) functions satisfy
ing the estimates \d^aa{y)\ < Cp for any multiindex ¡3 (with a 
constant Cp which does not depend on the chosen canonical neigh
bourhood). A C°°-bounded vector field defines a C°°-bounded 
differential operator of order 1. 

Let E be a complex vector bundle on X. We shall say that 
E is a bundle of b o u n d e d geometry if it is supplied by an 
additional structure: trivializations of E on every canonical co
ordinate neighbourhood U such that the corresponding matrix 
transition functions guw on all intersections UnU' of such neigh
bourhoods are C°°-bounded i.e. all their derivatives dyguuf(y) 
with respect to canonical coordinates are bounded with bounds 
CQ which do not depend on the chosen pair U,U*Examples of 
vector bundles of bounded geometry are: trivial bundle X x C, 
complexified tangent and cotangent bundles TX(g)C and T*X(g)C, 
complexified exterior powers A£T*X ® C of the cotangent bundle 
(C°°-sections of A£T*X ® C are exterior complex-valued ^-forms 
on X ) , complexified tensor bundles etc. The definition of C°°-
bounded differential operator is easily generalized to the case of 
operators 

(1.2) A : C°°(X,E) -+ C ° ° ( X , F ) 

acting between spaces of C°°-sections of vector bundles of bounded 
geometry E, F (the definition is the same as for scalar operators 
but with the use of the representation (1.1) in canonical coordi
nates and chosen trivializations. Examples of C°°-bounded dif
ferential operators in this more general context are the exterior 
differentiation de Rham operator d : A£(X) A^+1(X) where 
Al(X) = C°°(X, A^T*X <g> C), operators of covariant differentia
tion of tensors, Laplace-Beltrami operators on functions or forms 
etc. 
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If E is a vector bundle of bounded geometry on X then the 
notion of C^-boundedness and the corresponding spaces C%(X, E) 
of C^-bounded sections are also defined for i = 0 ,1 ,2 , • • • or £ = 
oo. Also the space LP(X,E) of the sections with the integrable 
p - t h power of a fiber norm (1 < p < oo) is naturally defined as 
well as the spaces LP(X,E), 1 < p < oo. 

The following Lemma is essentially due to M. Gromov [19]. 

L e m m a 1.2. There exists So > 0 such that if e £ (0,£o) then 
there exists a countable covering of X by balls of the radius 
e : X = \jB{xi,e) such that the covering of X by the balls 
B(x{, 2e) with the double radius and the same centers has a unite 
multiplicity. 

Here the multiplicity (or index in the terminology of [19]) of 
the covering by balls is the maximal number of the balls with 
non-empty intersection in this covering. 

Proof. Let us choose So > 0 so that 3so < ^inj^ hence the canon
ical coordinates are defined on the ball B{x,%s) for every x £ X 
and the transition functions from one set of canonical coordinates 
to another have bounded derivatives of every order (see Definition 
1.1). Also the components gij and gx* of the Riemannian metric 
have bounded derivatives of every order in chosen canonical co
ordinates. It follows in particular that there exists C > 0 such 
that 

c - 1 < 
V(x,r) 
V{y,r) 

< C, x,yeX, r £ (0,3e0), 

where V(x,r) = Vol B(x, r) (here Vol means volume with respect 
to the standard Riemannian density). 

Let us choose a maximal set of disjoint balls B(xiye/2), 
B(x2,e/2)i... (such a set exists due to Zorn Lemma and is ob
viously countable). For every x £ X there exists i such that 
d(x^Xi) < e (otherwise we could add B(x,e/2) to the chosen 
balls). Hence X = l)B(xi^e). 

Now if y £ B(xi,2e) then B(xi,e/2) C B(y,3e). Hence if y is 
covered by each of different balls B(xikJ2e), k = 1 , . . . ,TV, then 
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^2i<k<N ^(Xhfe/^) — V^Vi^6) an(l we Se^ the required estimate 
of multiplicity 

i V < ( s u p V(y,3e))( MV(x,e/2)). 
vex x^x 

Lemma 1.1 implies the existence of "uniform" partition of unity 
which is subordinate to a covering by balls from Lemma 1.1. Let 
us choose e < r/2 where r G (0, r,-nj) is fixed as before. 

L e m m a 1.3. For every e > 0 there exists a partition of unity 
1 = E^jC/pj on X such that 

1) (pi > 0, (pi G C0°°(X), supptpi C B(xiy2e), 
where {x{} is the sequence of points from Lemma 1.2; 

2)\d^i(y)\<Ca 
for every multiindex a in canonical coordinates uniformly with 
respect to i (i.e. with the constant Ca which does not depend on 
i). 

This Lemma is a useful tool to construct global objects on X 
from their local prerequisites. One of the important examples is 
the uniform Sobolev or Besov spaces W*(X\ s G R, 1 < p < oo 
(see e.g. [33] in case p = 2). First introduce the Sobolev norm 
||-IU,p o n CQ°(X) by the formula 

(1.3) \\u\\s,p = ^l\\<PiuKLPIB(Xii2ey 

where | | . | | a i p ; , 2 e ) means the usual Sobolev (Besov or Bessel 
potential) norm of order s in canonical coordinates on B(xi,2s). 
Actually we only need the case s G Z+; then the local Sobolev 
norm can be written for every open set Q C Rn as 

I M k j > ; « = ( s | < * | < * IVvWdy)1'', 1 < p < oo, 

||v | |a,oo;n = S | a | < s e s S S U p | 9 a v ( y ) | 
fi 
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Also if we choose a system Y\, • • • , Yjv of C°°-bounded vector 
fields on X such that Y\(x),-- ^Y^(x) generate TXX for every 
x G X then we can introduce the following norm which is equiv
alent to (1.3) 

(1 . 30 

и р и *,р - У . E 
k=0 l < i i < t 2 < - - - < i f e < A r I. \Yix • • • Yiku(x)\pdx, 1 < p < oo, 

where dx is the standard Riemannian density on X , 

^ s ,oo 

s 

= E E 
fc=0 l < i i < 2 2 < - - - < i f c < i V 

ess sup 1 ^ • • • Yiku(x)\. 
X 

Another equivalent norm for s £ Z+ is given by 

?/ P _ y» \Vku(x)\pdx, 1 < p < oo, 

^ 5,00 

S 

<E 
fc=0 

ess sup \X?ku(x) 
X 

(here | * | is understood as the norm induced by the Riemannian 
metric on tensors). 

Now we can introduce the uniform Sobolev space W*{X) as the 
completion of CQ°(X) with respect to the norm (1.3). The spaces 
Wp(X) have the same properties as the corresponding spaces in 
the case X = Rn. All of them are naturally included in the 
space of distributions VF(X). The space W25(X) has a natural 
Hilbert structure and will be also denoted HS(X). The usual 
embedding theorems are true, e.g. W%(X) = LP(X) if 1 < p < oo, 
Wj(X) C C{(X) if s > k + n/p. If E is a vector bundle of 
bounded geometry then the Sobolev norms of sections and the 
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corresponding Sobolev spaces of sections Wp (X,E) E) are defined 
in the same way. 

Denote W~~>{X) = Us&W^X^W^X) = nseRW^X) and 
the similar meaning have the notations W~°°(X) E), W£°(X, E). 

Let A be a differential operator of order m acting as in (1.2) 
between spaces of sections of vector bundles of bounded geometry. 
The principal symbol of A gives a family of linear maps 

ат(х,0 Ex -> Fx 

where x G X, (#,£) € T*X is a cotangent vector based at Ex 
and Fx are fibers of bundles E and F over x. Let us choose 
admissible trivializations of E and F over a neighbourhood of 
x. Then am(x,£) becomes a (complex) matrix. The operator A 
is called elliptic if this matrix is invertible for every (#,£) with 
£ 7̂  0. It is called uniformly elliptic if there exists C > 0 such 
that 

( 1 . 4 ) I«m Ы)\ < c\crm, (*,0 e т*х,<£ ф о. 
Here |£| is the length of (#,£) with respect to the given Riemann
ian metric, la"1 (a, £)| is the operator norm of the matrix a^l1(xJ £) 
in the above mentioned trivializations. 

Let A be a C°°-bounded differential operator of order m on 
M. Then A defines a bounded linear operator A : W£(X) —• 
W°~m(X) for every s € R, 1 < p < oo (if A acts as in (1.2) 
then it defines a bounded linear operator A : Wp(XjE) —• 
Wp~~m(X,F)). Now we shall formulate regularity properties and 
a priori estimates which follow from uniform ellipticity. 

L e m m a 1.4. Let A be a C°°-bounded uniformly elliptic dif
ferential operator acting as in (1*2) between spaces of sections of 
vector bundles of bounded geometry Then for every t € R, p € 
(1 , +oo) there exists C > 0 such that 

(1.5) H k P < C(\\Au\\8_m,p + |M|tjP), u e C?{X,E). 
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Moreover if u £ W~°°(X,E) and An £ W^m(X,F) 

then u £ W$(X,E). 

Proof. Let us choose the points x\, x<i,... and e > 0 as in Lemma 
1.1. We have the usual local a priori estimate 

(1.6) IMIÍ,p¡B(*j,e) < Cx(\\Au\\l , £) +" llUll*,p;B(xi,2e)) 

with a constant C\ which does not depend on i. Summing over all 
i we evidently obtain an estimate which is equivalent to (1.5). The 
last statement also follows from the corresponding local regularity 
result and the estimate (1.6). • 

A 1 . 2 . Weight e s t imates and decay of the Green 
funct ion. 

We begin with a construction which gives a substitute with 
natural smoothness properties for the distance d = d(x,y) on a 
connected Riemannian manifold X of bounded geometry. Such a 
substitute will be a function which we shall denote by d = d(x^ y). 
For the case of Lie groups it can be constructed as a convolution 
of d(x,.) with a C^-funct ion ([29]). The general case requires a 
more complicated procedure which we shall give now ([27],[28]). 

L e m m a 2 .1 . (Yu.A. Kordyukov). There exists a function d : 
X x X —* [0, +oo) satisfying the following conditions: 

(i) there exists p > 0 such that 

\d(x,y)-d(x,y)\ < p 

for every x,y £ X; 
(ii) for every multiindex a with \a\ > 0 there exists a constant 

Co > 0 such that 

\dfd(x,y)\ < C a , x,y ex, 
where the derivative dy is taken with respect to canonical 
coordinates. 
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Moreover for every e > 0 the exists a function d : X x X —> 
[0, oo) satisfying (i) with p < e. 

Proof. Let us choose a covering X = UB(xi,2e) and a partition 
of unity 1 = T,<fii described in Lemmas 1.2 and 1.3. We shall 
suppose that an orthonormal frame is chosen in every tangent 
space TXiXj i = 1,2, • • •, so TX{X is identified with Rn and the 
exponential maps at the points X{ can be considered as the maps 
expx. : Rn X . 

Let us choose a function #i € C£°(Rn) such that 9X > 0, 
supp #i C {x\\x\ < 1}, fRn9i(x)dx = 1 and define 0$(a;) = 
S~n0i(x/S) for any £ > 0. Now choosing 8 sufficiently small 
we can define 

(2.1) d(x1y) = V£1<pi(y) 
IR* 

06(expx¡-(y) - z)d(x,expx.(z))dz. 

Subtracting the evident identity 

d(x,y) = Z°li<Pi(y) I 06(expxl(y) - z)d(x,y)dz 

from (2.1) and using the triangle inequality we obtain the estimate 

\d{x,y)-d{x,y)\ < E £ i ^ ( y ) I 96(exp^(y)-z)d(expx.(z),y)dz. 

It follows from the bounded geometry conditions that there ex
ists C > 0 such that d(expx.(z),y) < C8 if y G supp cpi and 
I expl"1(y) — z\ < £, so we obtain 

\d(x,y)-d(x,y)\ < C8 

which proves (i) with small p provided 8 is chosen sufficiently 
small. 

To prove (ii) let us consider first the case \OL\ = 1. 
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Using the notation dj = d/dyj in some canonical coordinates 
we obtain 

( 2 . 2 ) 

aid(ar,y) = s£1 [a i ^ (y ) ] Bs(expx*(y) - z)d(x,expx.(z))dz+ 

S-lVpi(y)S?=1 / bijk(y)[Q—06(expxl(y) - z)]d(x,expx.(z))dz 

where bijk are some functions (in the chosen canonical coordi
nates) which are C°°-bounded uniformly with respect to fc 
and the chosen coordinates. The same arguments as we used in 
proving (i) show that the first term in the right hand side of (2.2) 
is estimated by a constant. To estimate the second term we can 
subtract from it a similar term which is obtained by changing 
d(x,expx.(z)) to d{x,y) (this modified term evidently vanishes). 
Following then the reasoning used for the proof of (i) we obtain 
that the second term is estimated by a constant. 

Further inductive reasoning shows that (ii) is true for every a 
q.e.d. • 

Now we can introduce exponential weights f€^y £ C°°(X) by 

( 2 . 3 ) fe,y(x) = exp(ed(y,x)), x, y € X, 

where £ £ R (usually e will be sufficiently small). 
Let us introduce a weight Sobolev space 

wux) = {u\u e v'(X)je,yu e w;(x)} 

where s G M, p G [ 1 , oo] and y is any fixed point in X. It is easy 
to check that 

frlfe,y2eC?(X) 
for any fixed points yi , j /2 € X. It follows that the space W^£(X) 
does not depend on the chosen point y. The space W^€(X) is a 
Banach space with the norm 
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(2.4) MI*,PÎ«,y — l l / e ,0wll«,p-

These norms obtained by use of different points y are equivalent 
but the dependence on y is sometimes essential. 

Now we shall consider a C°°-bounded uniformly elliptic oper
ator A : C°°(X,E) -+ C°°(X,E) where E is a vector bundle of 
bounded geometry. Then Am\n = Amax in LP(X,E), 1 < p < oo 
(see Sect. 1.4 in Ch. 1) and we denote vp(A) the spectrum of 
^-min (or Amax) in LP(X, A). Let us suppose that A £ C\ap(A) 
for p £ ( l , + o o ) . Then there is a bounded everywhere defined 
inverse operator 

(A - XT)'1 : Lp(X,E) Lp(X,E). 

The L. Schwartz kernel of this inverse operator will be denoted 
G = G(x,y) and will be called the Green funct ion (p and A 
are fixed). We are ready to prove estimates of decay of the Green 
function off the diagonal A = {(x,x)\x £ X} C X xX. Note that 
G is a distributional section of the bundle E (g> E* on X x X (the 
fiber of E <g) E* over a point (x,y) £ X x X is Ex <g> E*, where E* 

is the dual linear space to Ey). We identify the density bundle 
over M with a trivial bundle by use of the standard Riemannian 
densitv. 

T h e o r e m 2.2. Let A : C°°(X,E) -+ C°°(X,E) be a C°°-
bounded uniformly elliptic differential operator. Let p £ (1 , +co) 
and A £ C\crp(A) be £xed, G = G(x, y) the Green function. Then 
G £ C°°(X x X\A) and there exists e > 0 such that for every 
S > 0 and for every multiindices a,/3 there exists Cap& > 0 such 
that 

(2.5) I ^ C ? ( s , y ) | < CQßsexp(-ed(x,y)) if d(x,y) > S. 

Here the derivatives dx and dfjj are taken with respect to canonical 
coordinates and absolute value in the left hand side is taken in 
the corresponding fibers. 
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Proof. Without loss of generality we can suppose that A = 0. 
For the sake of simplicity of notations we shall only considei the 
scalar case i.e. the case of trivial E = X x C. Let us for every 
£ G R , y G X consider a differential operator Ae^y = F€iyAF~y 
where F€iV is the multiplication operator (F€tVu)(x) = fCjy(x)u(x) 
with f€iV defined by (2.3). Choosing any s G R we obtain a 
commutative diagram 

(2.6) 

w;{x) w;~m{x) 

Fe Fe,y 

w:-m(x) 
A 

w:-m(x) 
where the vertical arrows are linear topological isomorphisms and 
even isometries if we use the norm (2.4) in Wp€(X) and the cor
responding norm in Wp~m(X). It follows from the properties of 
d described in Lemma 2.1 that 

(2.7) A€jV — A + sB€iy, 

where {B£^y\y G X , |e| < 1} is a family of uniformly C°°-bounded 
differential operators of order m — 1. It follows that the operator 
norm 

ЦА.,, - A : WAX) wrm(w)\\ 
tends to 0 as e —• 0. The required invertibility of A implies now 
that A defines a linear topological isomorphism of Banach spaces 

A: w;(x)w;~m(x), 

so A€jy in the diagram (2.6) also defines a linear topological iso
morphism if \e\ < So where So > 0 is sufficiently small. Besides all 
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norm estimates are uniform with respect to y G X. Hence A in 
the diagram is also uniformly topologically invertible if |e| < £o-

Now notice that 

(2.8) G(xìy) = [A-16y(.)](x)ì 

where 8y is the standard Dirac ^-measure on X supported at 
y G X. The Sobolev embedding theorem implies that if s < —n/p 
then 8y G n £ 6 R W ^ ( I ) and 8ys,piey < CSjP uniformly over 
y G X and e with |e| < 1. It follows from (2.8) that 

(2.9) ||G(-,y)IU+m,/>;*,j, < CSiP 

if \e\ < e0. 
Now note that 

AxG(x,y) = 0 if x ^ y. 

It follows from (2.9) and the uniform local a priori estimate like 
(1.6) that for every S > 0, s G R, p G (1, +oo), y G X and x G X 
with d(x, y) > 8 

| |G( - ,y ) | |Ä>P|B(x ,« /2 ) < CSìPy6exp(-ed(xJy)). 

The Sobolev embedding theorem implies now that the required 
estimate (2.5) is satisfied if /3 = 0. Now the same reasoning can 
be applied with respect to y because we can use the uniformly 
elliptic equation 

AtyG{x,y) = 0iix^y 

where A* is the formally transposed operator to A defined by the 
equality 

(Au,v) = (u,Aiv), u,veC™(X), 

where 
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(f,9) = / f(x)g(x)dx, 

dx is the Riemannian density on X. This immediately leads to 
the estimates (2.5). • 

Actually estimates (2.5) prove to be adequate only in case of 
subexponential growth of the volume of the balls on X. For the 
case of exponential growth stronger estimates in terms of Lp-
norms are available. 
T h e o r e m 2.3. Let p 6 ( l , + o o ) and A € C\ap(A) be fixed, 
G = G(x,y) the Green function. Then there exists e > 0 such 
that for every 8 > 0 and for every multiindices a,/3 there exists 
Caps > 0 such that 

(2.10) 
x\d(x,y)>6 

\daxd^G(x,y)Y exp(ed(x,y))dx < Caps 

(2.11) 
Jy:d(x,y)>6 

daxdlG{x,y)\p exp(ed(xJy))dy < Cap8, 

where l/p1 + 1/p = 17 the derivatives and absolute values are 
understood as in Theorem 2.2. 
Proof. We should just return to (2.9) but use it a little differently. 
Namely, using the same reasoning as in the proof of Theorem 2.2 
we can evidently conclude from (2.9) that for every s € M 

oo 

E \\G(->y)\\L,B(Xi,6/2 exp(ed(xj,y)) < oo 

where x j are chosen as in Lemma 1.2 (with e replaced by 8 there). 
Then (2.10) obviously follows. To prove (2.11) we should apply 
(2.10) to the transposed operator A1. • 

We need also uniform local estimates of the Green function 
near the diagonal but the simplest way to obtain them is in a use 
of pseudo-differential operators. This will be done in the next 
Section. 

76 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

A 1 . 3 . Uni form properly supported pseudo—differential 
operators and structure of inverse operators . 

We shall introduce here classes of uniform properly supported 
pseudo-differential operators on a manifold X of bounded geom
etry which coincide locally with well-known Hormander classes 
\&m and ^™hg ([22], vol. 3). Such classes were inroduced first on 
Lie groups in [29] and later in the general case in [28] 

DEFINITION 3.1. Uty-°°(X) is a class of all operators R with 
a L. Schwartz kernel KR £ C°°(X x X) satisfying the following 
conditions 

(i) there exists CR > 0 such that KR(x,y) = 0 if d(x,y) > 
CR] 

(ii) \dxd!jfKR(x,y)\ < Cap, x,y G X, where the derivatives 
are taken in canonical coordinates. 

The class U^~~°°(X) will serve as a class of negligible operators 
in our context. Notice that an operator R £ U}if~<x>(X) is not 
necessarily compact e.g. in L2(X). 

In the next definition we fix r £ (0,rjnj) as was already done 
before. 

DEFINITION 3.2. U$m(X) is a class of all operators A : C0°°(X) 
CZ°(X) satisfying the following conditions: 

(i) there exists CA > 0 such that KA(x,y) = 0 if d(x,y) > 
CA (here KA is the L. Schwartz kernel of A); 

(ii) let B(xo,r) be a ball on X , then in canonical coordinates 
on B(xo,r) the operator 

Ax0 = Mc™{B{xQ,r)) : СГ(В(х0,г)) >C~(B(a0 ,r ) ) , 
u I * Au\B(XOyr) 

can be written as 

(3.1) — aXo(% ) -f" RXQ 
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where aXo G S™ uniformly with respect to XQ, i.e. 

I3f 0 1 < cafi(i + K i ) m - | ° ' 1 

with which do not depend on and RXO is an operator with 
a L. Schwartz kernel KRX G C°°(B(x0,r) x B(x0,r)) satisfying 
the following estimates 

№d!KR.0(x,v)\<c'aft 
with constants C'ap which do not depend on xG. 

DEFINITION 3.3. Uty™hg(X) is a class of operators A G U^m(X) 
which have poly homogeneous local symbols aXQ(x^) with uni
form estimates of homogeneous terms in local representations 
(3.1). More exactly it is required that there exist aXQj = aXQyj(x,fl), 
j = 0 , 1 , 2 , . . . , such that the following conditions are satisfied: 

(i) aXQj(x,£) is defined when x G B(xo^r)^ ^ 0 and is 
homogeneous of degree m — j with respect to i.e. 

a*o,jOM£) x G £(a?o,r) x G £(a?o,r), £ G Rn \0 ,* > 0; 

(ii) aSo>i G C°° when £ ^ 0 and |^a?aeo>i(x, 0 1 < CAFIJ 

when a: G B(xo,r) and |£| = 1 with the constants Capj 

which do not depend on Xo] 
(iii) let x G C£°(Rn), x ( 0 = 1 when £ is close to °> and X is 

fixed, then for every N,a,f3,xo 

d?dZ\arJxM x(0)<* •x(0)<*x0,j(x>Œ \capN(i+\t\)m-N 

with CQpjsf which do not depend on XQ. 
So the classes U^m^U^^lhg are just usual Hòrmander classes 

of properly supported pseudo-differential operators but with ap
propriate uniformity conditions. 

78 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

The classes [7#m, UV™hg are defined for all m G R. The class 
U^™hg{X) can be defined also for m G C as a class of opera
tors A G U^Re m(X) such that the conditions (i), (ii), (hi) of 
Definition 3 . 3 are satisfied if we replace m by Re m in (iii). 

The usual algebraic and continuity properties are satisfied for 
the classes UVm(X), U*™hg(X). 

In particular the following statements are easily checked: 

(a) if Aj G UVmt(X), j = 1 , 2 , then AXA2 € t /#mi+m2(X); 
the same is true for the classes U$™hg(X)] 

(b ) if A G UVm(X) (or U*™hg(X)) then A* G UVm(X) 
(resp. Ufy™gh(X) where m is complex conjugate to m). 

(c) if A G UVm(X) then A defines for every s G R, p G 
( 1 , +oo) a continuous linear operator 

A : w ; ( x ) - » v r ; - m ( x ) 

Proposition 3.4. Let A be a C°°-bounded uniformly elliptic 
differential operator of order m on X. Then there exists B G 
17^-™(X) such that I - AB, I - BA G C/*-°° (X) . 

Proof. The operator jB with required properties is easily con
structed by use of inform local parametrices B{ for A in the balls 
B(xi,e) from Lemma 1.2 and then patching them up by the for
mula 

B = Xi^iBiQi, 

where $ ¿ 7 ^ 1 are multiplication operators <&iu(x) = <pi(x)u(x), 
^iu{x) = ipi(x)u(x),<pi is taken from the partition of unity of 
Lemma 1 .3 , ifii G CQ°(-B(XJ,2e)) are chosen to be uniformly C°°-
bounded and such that ifti(x) = 1 in a neighbourhood of supp <pi. 

REMARK 3 . 5 . Choosing e > 0 sufficiently small we can obtain 
the parametrix B with a L. Schwartz kernel K B with 

supp KB C {(x,y)\d(x,y) < d} 
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where 6\ = £i(s) —> 0 as e —> 0. 
Now we can describe the structure of the operator (A — A/)-1 

in case A ^ &p(A) more precisely. 
First note that all the definitions and statements of this Sec

tion can be easily generalized to operators acting in spaces of 
sections of vector bundles of bounded geometry on X. The cor
responding classes of operators A : C Q ° ( X , E) —• CQ°(X, F) will 
be denoted U^°°(X]E,F), U^M(X]E,F), U$™HG(X;E,F) or 
U^-°°(X,E) etc. in case E = F. 

T h e o r e m 3.6. Let A : C^(X,E) -> C0°°(X,F) be a uniformly 
elliptic C°°-bounded differential operator of order m. Let the 
closure of A in LP(X,E) have an everywhere defined bounded 
inverse A - 1 . Then there exists e > 0 and a representation: 

(3.2) A - 1 = B + T , 

where B e UVp^iX; F, E), ThasaL. Schwartz kernel KT £ C°° 
satisfying the following estimates 

(3.3) | ^ # M * , y ) | < Caßexp(-ed(x,y)). 

Also 

( 3 . 3 0 / \dZd;KT(x,y)\*exp(ed(x,y))dx < CQß 
Jx 

(3.3") / \d«dßyKT(x,y)\p' exp(ed(x,y))dy < CQß 
Jx 

where + 1/p = 1- Here the derivatives and the norm in the 
left-hand side are taken with respect to the canonical coordinates 
and canonical trivializations of E and F. 

Proof. For the sake of simplicity of notations we shall consider 
the case of trivial E = F = X x R. It follows from Proposition 
3.4 that there exists B G U^!~™(X) such that 
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AB = I-R, 

where R € U^~°°(X). Multiplying by A-1 from the left we 
obtain (3.2) with T = A~XR. Now it is clear that 

(3.4) KT{x,y) = [A-lKR{-,y)]{x). 

Notice that KR(-,y) £ C0°°(X) and supp KR{-,y) C B(y,r0) 
for some ro > 0 which does not depend on y. Hence it follows 
from (3.4) and Theorem 2.1 that the estimates (3.3) are fulfilled if 
d(x->y) > ro with ro > 0 arbitrarily small so the estimates (3.3) are 
proved outside ^-neighbourhood of the diagonal for every 8 > 0. 

Now we have to prove (3.3) in the set 

{(x,y)\d(xyy) < 8} 

where 8 > 0 can be chosen arbitrarily small. But then (3.3) re
duces to the boundedness of all derivatives which follows from the 
Sobolev embedding theorem and the boundedness of the operator 

A ' 1 : w;(x) -> w;+m(x) 
for every s £ R which is due to the regularity properties (Lemma 
1.4) and the closed graph theorem. 

Now to prove (3.3') we use (3.4) again but apply the bounded
ness of Ajy instead of Theorem 2.2 itself. The estimate (3.3") is 
proved by applying the same arguments to Af instead of A. • 

Now we can prove estimates of the Green function near the 
diagonal. 

Theorem 3.7. Let A,p , À satisfy the conditions of Theorem 2.2, 
G be the Green function (the L. Schwartz kernel of (A — XI)"1). 
Then there exists e > 0 such that 

(3.5) \dQxdlG{x,y)\ <CQßd(x,y)m-n-^-Mexp(-ed(x,y)) 
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provided m < n; 

(3.6) 
№dPG{x,y)\< 

Ctt/,[l + d ( x , y ) m - n - W - ^ log d(x, y)\] exp(-ed(x,y)) 

provided m > n. 

Proof. As usual we shall consider the scalar case. Due to Theorem 
2.2 it is sufficient to prove (3.5) and (3.6) for x,y £ X such 
that d(x,y) < 8 with some fixed 8 > 0. Let us consider the 
representation (3.2). Clearly the L. Schwartz kernel Kt satisfies 
the required estimates due to (3.3). Now we have to consider Kb 
and to do this let us present B locally in B(xo,r) in the form 
(3.1) 

BXQ — bXQ(x,Dx} + 

where the L. Schwartz kernel of RXo satisfies the required esti
mates and bXQ = bXQ(x,£) is a polyhomogeneous symbol with 
uniform estimates. The L. Schwartz kernel of bXQ(x,Dx) in local 
canonical coordinates near XQ is equal to 

KXo(x,y) = F^x-ybX0(x,() = (27r)-n / bX0(x,0ei{x-y^d( 

so to prove the necessary estimates it i's sufficient to use the well 
known properties of the Fourier transform of homogeneous func
tions or their appropriate distributional regularizations (see e.g. 
[22], vol. 1). • 

REMARK 3.8. Most part of the results described here can be gen
eralized to pseudo-differential operators. Namely, Theorem 3.6 
is true for uniformly elliptic pseudo-differential operators A £ 
UV™hg(X]E,F) if m > 0. Also if A £ UVm(X;E,F) is uni
formly elliptic in appropriate sense (see [29] for the case of Lie 

82 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

groups) then the statement of Theorem 3.6 is true with B 6 
U<f>-m(X]F,E). So Theorem 3.7 is also true in the case A € 
UV™hg(X]E,F) if m > 0 (the estimate (3.5) will be true when 
m < n or m — n Z). 

In fact it is not necessary to consider only pseudo-differential 
operators which are properly supported. Everything is true e.g. 
for the operators like the right-hand side in (3.2) i.e. for the 
operators of the form A = A0 + T, where A0 € UV™hg(X; E,F) 
and T satisfies some decay conditions as in the formulation of 
Theorem 3.6. Moreover the requirement of exponential decay of 
the kernel off the diagonal can also be relaxed if the volume of 
balls on X grows even more slowly. The corresponding machinery 
was developed in [29] for Lie groups and is perfectly suitable for 
general manifolds of bounded geometry so we omit the details. 

Chapter 2. Eigenfunct ions and spectra . 
2 .1 . General ized e igenfunctions. 
Let X be a manifold of bounded geometry which we shall sup

pose to be connected for the sake of simplicity, d i m X = n, and E 
a complex vector bundle of bounded geometry on X. We shall al
ways suppose that E is provided with an hermitian scalar product 
of bounded geometry on fibers. In particular the Hilbert space 
of sections L2(X,E) is well defined. We shall construct a special 
Hilbert-Schmidt rigging of this space, hence its negative space 
will contain a complete orthonormal system of generalized eigen
functions of any self—adjoint operator (see Appendix 2 after this 
Chapter). In the elliptic case additional regularity properties of 
these generalized eigenfunctions will be proved. 

Denote Vx(r) = VoLB(:r,r), V(r) = sup Vx(r). Lemma 4.4 

from Chapter 1 immediately implies that there exists a > 0 such 
that 

(1.1) V(r) < ear. 

Also both Vx(r), V(r) are increasing functions on [0, oo) with val
ues in [0,oo), positive on (0, oo). The reasoning in the proof of 
Lemma 4.4, Ch. l shows that there exists C > 0 such that 
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(1.2) Vx(r + 1 ) < CVx(r), r > 1, x e X. 

Taking supremum over x € X on both sides we obtain 

(1.2') V(r + 1) < C F ( r ) , r > 1. 

with the same constant C. Hence (again with the same constant 
C > 0) we obtain 

(1.3) C"1 Vx(r) < Vx(p) < CVx(r) if p € [r - l , r + 1], 

(1.3') cr1 v ( r ) < y(p) < cv{r) if p e [r - I, r + 1 ] . 

REMARK 1.1. It is not always possible to estimate Vx{r) from 
below by C_1V(r) whatever C > 0. For example, if we take 
a manifold X which is diffeomorphic to Rn with coordinates 
x = ( x i , . . . , x n _ i , x n ) = {x1 ,xn) with the hyperbolic metric 
x~2(dxt2 +dx\) in {#|:rn > 1} and the euclidean metric dx12 +dx\ 
in {x|xn < —1} with a smooth transition in {x\ — 1 < xn < 1} 
making X a manifold of bounded geometry then Vx(r) for a fixed 
r varies at least between volumes of the euclidean and the hyper
bolic ball of radius r (the first one being 0(rn) and the second 
growing exponentially as r —• +oo). 

L e m m a 1.2. There exist increasing C°° functions V : [0, oo) —> 
(0, oo), Vx : [0, oo) —• (0, oo) such that 

(1.4) C-xVt{r) < Vx(r) < CVx{r), r > 1, 

84 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

(1.4') C-1V(r) < V(r) < CV{r), r > 1, 

with the same constant C as in (1.2), (1.2!), (1.3), (1.3'). Besides 

(1.5) \dkrVx(r)\ < CkVx(r), \dkrV(r)\ < CkV(r) 

for every k = 0 , 1 , 2 , . . . . 

Proof Let us extend Vx(r),V{r) by 0 on (—oo,0) and then take 

Vx(r) j Vx(r + s)<p(s)ds, V(r) = jv(r + s)<p{s)ds, 

where y € C0°°(R), <p > 0, / <p(s)ds = 1 and supp y C [ -1 /4 ,1 /4 ] . 
The estimates (1.4), (1.4'), (1.5) now obviously follow from (1.3), 
(1.3'). Also VX,V axe increasing due to the same property of 
Vr,V. • 

Now let us define positive weight C°° functions 

(1.6) fx0(x) = Vx0(d(xo,x)), /(*) = V(d(x0,x)), 

where d is the smoothed distance-function constructed in Lemma 
2.1 of Appendix 1. 

L e m m a 1.3. In canonical coordinates 

(1.7) \dafXo(x)\ < CQfX0(x), \dQf(x)\ < CQf(x), x£X 

with constants Ca which do not depend on x. 

Proof. The estimates (1.7) obviously follow from (1.5), the "de
rivative of composition formula", e.g. 
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( 1 . 8 ) daHx) = 

E 
Q>i-\-...-\-a>k = a 

Ca1, . . . ,ûJk(^r^)(rf(a:o ,^))5x1^(:ro,^) . . . dzkd(x0,x), 

and boundedness of the derivatives ¿ ^ ¿ ( 2 : 0 for | a | > 0 (see 
Lemma 2.1 in Appendix 1). • 

Now change fXo,f to real powers of these functions. 

L e m m a 1.4. For any t G R in canonical coordinates 

( 1 . 9 ) \dafL(x)\ < CQ,tfl(x)., | ^ r ( x ) | < Cttf./*(x). 

Proof. Using "derivative of composition formula" like (1.8) we 
obtain e.g. 

(1.10) 

daf\x) : > 
Oti + ..-+ak = o/ 

l«il>° 

cai_,Qkfi-k(x)d^f(x)...d^f(x) 

and (1.9) follows from Lemma 1.3. 

L e m m a 1.5. Ht > 1/2 then /"*,/"* € L2(X). Also 

fr01/2(logfX0 - i / 2 - e ) / - i / 2 ( l o g / : - 1 / 2 - , € L2(X) 

for every e > 0. 

Proof Let us fix * > 1/2. We clearly have due to Lemma 1.2 

J x:d(z,xo)>l 

f-02t(x)dx < Ci V-2t(r)dVX0(r) = 

Ci 
i v . (iì 

A"2sdA < oo. 
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with a consant d > 0. Hence / " * e L2. Now Vx{r) < V(r\ 
therefore V"*(r) < ^ ' ( r ) and < C2fx'0t(x). Hence / - * € 
L2(X). Other inclusions are checked similarly. • 

Now let g : X —• (0, oo) be a positive C°°-function such that 

(1.10) \dQg(x)\ < CQg{x), xeX. 

Examples of such functions are due to Lemma 1.4. We 
could also take /*fl (log fXo )tl or / ' ( l o g / ) ' 1 with ¿,¿1 € R. 

Now let us define the weighted Sobolev space H* = Hg(X,E) 
with 5 £ R as follows 

Hsg(X,E) = {u\u e V'(X,E). gueH^X, E)}, 

where 

HS(X, E) = Wj(X,E) 

is the uniform Sobolev space defined in Sect. A l of Appendix 1. 
Clearly Hsg{X,E) D C^(X,E), hence Hsg{X,E) continuously 

included and dense in L2(X,E) provided s > 0 and g(x) > go > 
0. Therefore in this case we can use Hg as a positive space to 

construct a rigging of L2(X,E). 

L e m m a 1.6. If we use Hg(X,E) with s > 0 and g(x) > g0 > 0 
as a positive space to construct a rigging of L2(X,E) then the 
corresponding negative (dual) space will be equal to H~J1(X^E) 

Proof. Denote = Hg(X, E). Then in the notations of Appen
dix 2 we obviously have: 

H- = {u\ueV'(X,E), g-1ueH~*(X,E)} = H;Jl(X,E) 

due to the standard duality by HS(X,E) and H-3(X,E). 
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Propos i t i on 1.7. Suppose that s > n/2, g G C°°(X) satisfies 
(IAO), g{x) >g0>0 and g"1 G L2(X). Then the rigging of H = 
L2(X,E) with the positive space H+ = H8g(X,E) is a Hilbert-
Schmidt rigging. 

Proof. Choosing an elliptic pseudo-differential operator 
B € U*;{2g(X,E) we may take A = I + B*B € U#;hg(X,E) 
which will be elliptic invertible self-adjoint operator of order s. 
Hence u e H*(X,E) if and only if u € L2{X,E) and Au G 
L2(X,E). Now obviously HS(X,E) = I m ^ " 1 ) , where Ä is the 
self-adjoint operator defined by A on L2(X,E) with the domain 
D{A) = H'(X,E). Hence 

Hsg(X,E] = {g^A^ulu e L2(X,E)} = g-1Ä-1L2(X,E). 

Therefore it is sufficient to establish that g lA 1 is a Hilbert-
Schmidt operator. But his Schwartz kernel is given by 

K(xyy) = g-1(x)G(x,y) 

where •) is the Schwartz kernel of A~x (or the Green function 
of A). Now we can use Theorems 2.3 and 3.7 from Appendix 1 
to conclude that 

/ \G{x,y)\2dy<C < o o 
Jx 

It follows that 

/ \K{x,y)\2dxdy <C 
JXxX 

I g 2(x)dx < oo 

hence g XA 1 is a Hilbert-Schmidt operator. • 

Now applying Theorem 2.3 from Appendix 2 we immediately 
obtain 
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T h e o r e m 1.8. Suppose that s > n/2 and g satisfies the condi
tions in Proposition 1.7. Then for any self-adjoint operator A in 
L2(X,E) the space H~*X(X,E) contains complete orthonormal 
system of generalized eigenfunctions of A in the sense of Defini
tion 2.2 of Appendix 2. 

Corollary 1.9. For anye > 0, S > 0 both spaces H ™/j*2_€6(X, E), 

H f-\?2(\0^f}-ii2-6 contain complete orthonormal system of gener
alized eigenfunctions of any self-adjoint operator A in L2(XyE). 

REMARK 1.10. Using the composition formula for pseudo-diffe
rential operators of classes U^m we can describe the space Hg(X, E 
also in a dual way as the space of all u G T)f(X,E) such that 
gBu G L2(X,E) for every B G U$3(X,E). If s G Z+ then we 
can equivalently write gdau G L2(X,E) for every multiindex a 
with \a\ < s (here dau can be taken in canonical coordinates 
for any piecewise constant choice of such coordinates induced by 
coverings described in Lemma 1.2 of Appendix 1). Using this 
description we can skip the requirement of smoothness of g and 
estimates (1.10) defining e.g. Hp for s G Z+ as the space of 
sections u G L2{X,E) such that [1 + V(d(^x0))]fdQu G L2{X,E) 
for every a with | a | < s. Hence the dual space HJÎt consists of 
distributions which have the form 

v = E 
k<s 

Xi...Xk 

^ . . . ^ [ ( l + VK-^o)))*««], vaeL\X,E), 

where X\,... ,X8 are first-order uniformily C°°-bounded differ
ential operators in C°°(X^E)J the sum is taken over a finite set 
of such tuples X i , . . . , X* with k < s. Similarly for general s > 0 
the space Hj*t consists of sections u G T>\X,E) of the form 

u — 

N 

i = i в л a A-vid f . ,xn) у v i , 
v.- <F L¿• X.E). Bj e uvs(x,E) 
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where N and the set B\,... ,BN depend on u. 

EXAMPLE 1.11. If X = Rn with the standard euclidean metric 
then V(d(x,0)) = cn|x|n and for any e > 0, 8 > 0 we can take 

71 / 2 £ 

the space ^(1+|x|2)-n/4-6(^n) as the negative space containing a 
complete orthonormal space of generalized eigenfunctions of any 
self-adjoint operator in L2(Rn). 
EXAMPLE 1.12. If X = Hn is the hyperbolic space with the 
curvature —1 then Vx(r) = V{r) ~ cne^n"^r as r —• oo. Let 
us denote \x\ = rf(x,0), where 0 is a fixed point in Hn, and 
choose a positive C°°-function x v-+ (x) coinciding with |x| if 
\x\ > 1. Then for any e > 0, 8 > 0 we can take one of the spaces 
H~~n!2~£ - , j v , W o , № ) or H~n[2~:€ 1W WoW v 1/2 , (Hn) as the 

e x p ( — ( n - - l + 6 ) ( z ) / 2 ) V / e x p ( — ( n — l ) ( i : > / 2 ) ( x > - 1 / 2 - 5 V ' 
desired negative space for any self-adjoint operator in L2(№n). 

Now suppose that we consider not a general self-adjoint opera
tor but a uniformly elliptic C°°-bounded self-adjoint differential 
operator A : C°°(X,E) C°°(X,E). Then we can use local 
a priori estimates to increase —n/2 — e up to any s. Actually 
any generalized eigenfunction will be a solution of a uniformly 
elliptic equation, hence it should be a C°°-function (or rather 
C°°-section). Hence we arrive to the following 
T h e o r e m 1.13. Let A : C°°(X,E) -> C°°(X,E) be a C°°-
bounded uniformly elliptic self-adjoint operator. Let g be a posi
tive C°°-function on X, satisfying (1.10), such that g~l € L2(X). 
Then there exist a complete orthonormal system of eigenfunctions 
for A, such that any eigenfunction i\) in this system satisEes the 
following estimates 

(1.11) / \dQxP(x)\2g-2(x) < oo, x e X, 
Jx 

for any multiindex a. 

Now using locally (on balls of a fixed radius) the Sobolev 
imbedding theorem we obtain 
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Corollary 1.14. Under the conditions of Theorem 1.13 there 
exists a complete orthonormal system of eigenfunctions such that 
any eigenfunction ip in this system satisfies estimates 

(1.12) \dQ^(x)\ < CQg(x). 

REMARK 1.15. Clearly g here can be replaced by a positive 
function g\ such that 

C'1g(x)<g1(x)<Cg(x) 

with a constant C > 0. In particular both Theorem 1.13 and 
Corollary 1.14 remain true if we replace g by one of the following 
functions: 

[l + y«.,x0))]1/2+£, [1 + V{d{; Z 0 ) ) ] 1 / 2 log[2 + V(d(; *o))]1+£, 

where e > 0. 
2.2. Schnol—type theorems . 
In the previous section we gave a sufficient condition for a space 

to contain a complete orthonormal system of generalized eigen
functions for a self-adjoint operator. The corresponding eigenval
ues then will be in the spectrum of this operator (at least almost 
everywhere) and actually the closure of the set of these eigen
values constitutes the spectrum in L2. In this section we will 
consider an opposite question: assume that for some A £ C we 
know a solution if) of the equation A%j) = satisfying some esti
mates at infinity; when can we conclude that A is in the spectrum 
<j{A) of the operator A in L2? 

An example of the sort is the well known Schnol theorem ([38], 
[11]) which (with some simplifying restrictions) states that if A = 
—A-\-q(x) is a Schrodinger operator in L2(Rn) with the potential 
q e A?c(Rn)such that v(x) > - c for a11 x e Rn and there exists 
a non-trivial solution tf> of the equation Aij) = A?/> such that for 
every e > 0 
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j>(x) = 0(exp(e\x\)) 

then A £ 0(A). Another Schnol theorem ([38]) also concerning 
the Schrodinger operator states that if the negative part q-(x) = 
min(0, q(x)) satisfies the estimate 

«_(*) = o(|z|2) 

then the existence of a non-trivial polynomially bounded solution 
(i.e. a solution rf> such that ift(x) = 0((l + \x\)N) with some TV > 0) 
for the equation Arj> = Xift implies that A 6 &(A). 

T. Kobayashi, K. Ono and T. Sunada ([26]) introduced. 
DEFINITION 2.1. An operator A satisfies the weak Bloch 
property (WBP) if the following implication is true: 

{there exists a bounded if) ̂  0 such that Aip = A^} = > A 6 &(A) 

So each of the mentioned Schnol theorems implies that the 
Schrodinger operator on Rn with a locally bounded and semi-
bounded below potential satisfies WBP. 

On the other hand the Laplacian A of the standard Riemann
ian metric on the hyperbolic space Mn does not satisfy WBP 
because AI = 0 but 0 £ <r(A). 

It is natural to investigate the following WBP-problem: de
scribe classes of manifolds and operators which satisfy 
W B P . 

It is easy to notice that the WBP-problem is closely connected 
with the problem of coincidence of spectra of an operator in spaces 
LP(X) for different p: if all these spectra for 1 < p < 00 coincide 
then WBP evidently holds because if crp(A) means the spectrum 
of A in LP(X) then the existence of a non-trivial bounded solution 
if> of A%1> = implies that A 6 cr 00(A) so A € <J2(A) = a (A). The 
problem of the coincidence of spectra was considered on discrete 
metric spaces in [43] where it was pointed out that the coinci
dence follows from the exponential decay of the Green function 
off the diagonal provided the space has a subexponential growth 

92 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

of the number of points lying in a ball of the radius r a s r - ^ + 0 0 . 
The exponential decay of the Green function off the diagonal was 
proved in [43] for some operators which were called pseudodiffer-
ence operators, e.g. difference operators with a finite radius of 
action and bounded coefficients on discrete groups etc. 

The same reasoning works also for continuous objects when 
the appropriate estimates of the Green function hold. Such es
timates were obtained in [29] for uniformly elliptic operators on 
unimodular Lie groups and in [27],[28] on general manifolds of 
bounded geometry. It follows (though it was not noticed in [29] 
or [27],[28]) that the spectra of corresponding operators in LP(X) 
coincide for all p G (1 , +00) provided the volumes of balls of ra
dius r grow subexponentially as r —• + 0 0 , and also that W B P is 
satisfied in this situation. The main ideas of this approach will 
be explained here in detail. The important point here is a use 
of some weighted Sobolev spaces with exponential weights. In 
[26] the authors used an entirely different method which is quite 
close to the original Schnol method (see also [11]). The WBP was 
proved in [26] for the Schrodinger operators with periodic poten
tials on Riemannian manifolds X with a subexponential growth 
of volumes of balls and with a discrete group of isometries T such 
that the orbit space X/T is compact. 

Now let A be a complete connected Riemannian manilold, 
d{x,y) be the Riemannian distance between x and y, x,y G X. 
Let A be a differential operator on X. Denote by cr(A) its spec
trum in L2(X). 

DEFINITION 2.2. 
i) The operator A satisfies the weak Schnol property 

(WSP) if the existence of a non-trivial solution t/> of the 
equation Aip = satisfying an estimate of the form 

1 ^ ) 1 = 0 ( 1 + d(x,x0)iV) 

(with some N > 0 and a fixed XQ) implies that À G &(A). 
ii) The operator A satisfies the s trong Schnol property 

(SSP) if the following implication is true: if there exists 
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a non-trivial solution ift of the equation Arj> = Xip such 
that for every e > 0 

Шх)\ = O(exp(ed(x,x0))) 

(with a fixed XQ) then À G 0"(A). 

Clearly SSP implies WSP, and WSP implies W B P We shall 
prove that if X is a manifold of bounded geometry with a subex-
ponential growth of volumes of balls and A is a uniformly elliptic 
differential operator with C°°-bounded coefficients on X then A 
satisfies (SSP) and even stronger property: if for every e > 0 
there exists a non-trivial solution t/>€ of Aij>€ = with 

(2.1) I ^ O O I = O(exp(ed(x,x0)) 

(with a fixed xo) then À G &(A). We even prove the following 
Theorem which does not require any subexponential growth con
ditions 

T h e o r e m 2.3. Let X be a manifold of bounded geometry, E a 
vector bundle of bounded geometry on X, 

A : C00(X,E)-+C00{X,E) 

a uniformly elliptic C°°-bounded differential operator. Let p G 
( l ,oo) , A G C and for every e > 0 there exists ip€ G C°°(X,E) 
such that Aip€ = AT/>£, ij)e 0 and 

(2.2) ï!>€exp(-ed(;x0)) e Lp(X,E). 

Then A G <TP(A). 

Here o-p(A) means the spectrum of Amm = Amax in LP(X,E) 
(see Sect. 1.4 in Ch. 1), 1 < p < oo. 

Before proving Theorem 2.3 we will give its corollaries and 
particular cases. 
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DEFINITION 2.4. Let X be a manifold of bounded geometry. 
We shall say that X has a subexponential growth (or is a manifold 
of subexponential growth) if for every e > 0 

(2.3) V(r) = 0(e€r), r -+ oo 

where V(-) is introduced in Sect. 1. 

Corollary 2.5. Suppose that X is a manifold of subexponen
tial growth, A is a uniformly elliptic C°°-bounded differential 
operator on X and A £ C. Suppose that for every e > 0 there 
exists ij)e ^ 0 satisfying Atye = \tf>€ and the estimate (2.1). Then 
A £ orp(A), 1 < p < oo. In particular (WBP), (WSP) and (SSP) 

are satisfied for A in this case. 

Proof To apply Theorem 2.3 we have to check that 
exp(—sd(-,xo)) £ LP(X) for any e > 0, 1 < p < oo. This can be 
proved if we notice that (2.3) implies for any e > 0, S > 0 

exp(-ed(.,a:o)) < V~1~6(d(-,x0)) < ^ 1 _ Í K ^ 0 ) ) 

and then use the same reasoning as in the proof of Lemma 1.5. 

Corollary 2.5 gives the same sufficient condition for A £ crp(A) 
to be true whatever p £ ( l ,oo) . So we may expect that &P(A) 
does not depend on p in the case of subexponential growth. We 
shall prove this and even give some information about extremal 
cases p = 1 and p = oo. 

Propos i t ion 2.6. Let X,A be as in Corollary 2.5 (in particular 
X has a subexponential growth). Then the spectrum crp(A) does 
not depend on p £ ( l ,oo) . Moreover denoting this spectrum by 
&(A) we have 

(2.4) o-i ( A ) C cr(A), <Too(A) C <T(A). 
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Proof. For the sake of simplicity of notations let us consider the 
case of trivial bundle E with the fiber C. We have to prove that 
if A £ C — cTpQ(A) for some po 6 ( l ,oo) then A ^ ^ ( ^ l ) f°r aU 
p G [1,00]. Now we may also suppose that A = 0. 

Due to Theorem 3.7 of Appendix 1 we obtain for the Green 
function •) (the L. Schwartz kernel of A"1) that 

sup 
y 

\G(x,y)\dx < 00, sup 
X 

\G(x,y)\dy < 00. 

Hence due to the well known Schur lemma (see e.g. Lemma 
18.1.12 in [22], vol. 3) we obtain that the integral operator G with 
the Schwartz kernel £?(-,-) can be extended to a linear bounded 
operator 

G : LP(M)^LP(M) 

for every p € [1, 00]. Let us introduce for any e > 0 a space We 
which contains functions <p £ C°°(X) such that 

\dQ<p(x)\ = O(exp(-ed(x,x0))) 

for every multiindex a (with the derivative da in canonical co
ordinates) and a chosen fixed XQ € X (the condition does not 
depend on x0). The subexponentiality condition clearly implies 
that We C LP(X) for all e > 0, p € [1, 00] and moreover 

(2.5) We С f i f i И?(Х), e > 0. 
p€[l,oo] seR 

Now it follows from Theorem 3.6 of Appendix 1 that G maps 
C0°°(X) into W€ with some e > 0. Evidently AG = GA = I on 
CQ°(X). Note that the first equality implies that AxG(x,y) = 
Sy(x) and the second implies that AtGt = I on CQ°(X), hence 
AyG(x,y) = 6x(y). Another important algebraic corollary is that 
GfAf = I on C0°°(X). 
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Now it is easy to check that AG = I on LP(X) for every 
p G [1, oo] if A is applied in the sense of distributions. In fact 
if u G Lp(X), v G C2°(X) then 

(AGu,v) = (Gu,Afv) = (u.G'A^) = (u,v), 

hence AGu = u. It follows that Gu € DP(A) where DP(A) is the 
domain of A in LP(X). Hence A : Dp(A) —• LP(X) is surjective. 

Let us prove that GA = J on Dp(A), p G [l,oo]. If u G 
Dp(A), v G C0°°(X) then 

(GAu.v) = {Au,Gfv) 

due to the Fubini theorem. Note that Gfv G We for some e > 0. 
So it is enough to prove that 

(2.6) (Au,<p) = (u, AV>, U G £>p(A), ip G 

Let us define a cut-off function 

X n ( z ) = Xi=1<fii(x) 

where <pi are the functions from the partition of unity of Lemma 
1.3 in Appendix 1. It is clear that X N G CQ°(X)^ 0 < XN < 1 
and for every compact K C X there exists N such that XN = 1 
in a neighbourhood of K. Moreover |5aXiv| < CQ in canonical 
coordinates uniformly with respect to N. 

Now we can begin with the equality 

(2.7) (AU,XN<P) = (U,A(XN<P)), u G DP(A), if G W€, 

and try to take limit as N —> oo to obtain (2.6). Note that 
(Au)(p G I^iX) due to (2.5), therefore lim (AU,XN<P) = (Au,<p) 

N—+oo 
due to the dominated convergence theorem. The same reasoning 
can be applied to the right-hand side of (2.7) due to the estimates 
of derivatives of xat , so we obtain (2.6). 
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We have proved that the operators A : Dp(A) —» LP(X) and 
G : LP(X) —• Dp(A) are mutually inverse as required. • 

Proposition 2.6 immediately implies that W B P holds under its 
conditions, i.e. if X has a subexponential growth, A is uniformly 
elliptic C°°-bounded operator on X, A £ C and there exists u £ 
L°°, u ^ 0 such that Au = \u, then A £ ap(A), 1 < p < oo, 
because a^A) C crp(A). But Theorem 2.3 will give us a stronger 
result as mentioned in Corollary 2.5. 

Corollary 2.5 and Proposition 2.6 were proved in the paper 
[44] which was inspired by the beautiful paper [26], though the 
paper [44] relied heavily on ideas contained in [43], [29] and [28]. 
Theorem 2.3 improves the results of [44] extending it to general 
manifolds of bounded geometry. 

Now we are ready for the proof of the main theorem. 

Proof of Theorem 2.3. Let us consider the scalar case and suppose 
that A — 0. We should repeat arguments given in the proof of 
Proposition 2.6. Let us suppose that 0 ^ ap(A). Then we can 
construct the Green operator G = A-1 which has a Schwartz 
kernel •) satisfying estimates (2.10), (2.11) in Theorem 2.3 of 
Appendix 1. 

Using the local a priori estimates it is easy to prove that (2.2) 
implies the same inclusion for derivatives of ift€: 

(2.8) \dQi>J-)\eM-ed(;x0)) e L?(X) 

for every multiindex a (with the derivatives taken in local coor
dinates). But (2.8) and the estimate (2.11) in Appendix 1 imply 
now that GAip£ makes sense due to the Holder inequality if e > 0 
is sufficiently small. Moreover GAip€ = ip€. Indeed for every 
v £ CQ°(X) we obtain using the Fubini theorem and estimates 
(2.10), (2.11) from Appendix 1: 

(GA^v) = (Ai})€,Gtv) = {^AWv) = ( ^ , t ; > 

(the middle equality is obtained by a limit procedure with the 
same use of the cut-off functions as in the proof of Proposition 
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2.6. On the other hand A%l>€ = 0 implies GAip€ = 0, hence ij;e = 0, 
so we get a contradiction which proves the theorem. • 

REMARK 2.7. Suppose that X has a free isometric action of a 
discrete group T such that X/T is compact. Let A be the scalar 
Laplacian on X . Then R. Brooks [6] proved that 0 G ^ (A) if and 
only if r is amenable. Note that we always have A l = 0, hence 
0 G (Too(A) and W B P does not hold on X if T is not amenable. 
However it is not clear whether something like this is true for more 
general operators (e.g. Schrodinger operator with a T-invariant 
potential, which is the case where W B P was proved in [26] for 
the case of subexponential growth). 

Now the amenability of T is equivalent to the amenability of 
X which means the existence of compacts Kj C X, j = 1,2, . . . , 
such that 

l im 
J-+00 

Vol A i h - KA 
Vol Кj 

= 0 

where (Kj)i = {x\6ist(xyKj) < 1}. This makes sense for general 
manifolds of bounded geometry. So it is natural to ask whether 
W B P is true for general C°°-bounded uniformly elliptic operators 
on amenable manifolds. The positive answer for the Schrodinger 
operator in the T-periodic case was conjectured in [26]. 

Similar questions may be asked for WSP and SSP (for SSP the 
natural question is whether the subexponential growth condition 
can be weakened or not). 

REMARK 2.8. There is an essential gap between Theorems 1.8 
(or 1.13) and 2.3. Namely Theorems 1.8 and 1.13 do not allow to 
exclude C°°-bounded functions from negative spaces where we 
are trying to find a complete orthogonal system of generalized 
eigenfunctions. On the other hand the condition (2.2) in Theo
rem 2.3 (in case p = 2) is not satisfied for ipe = 1 unless X has 
a subexponential growth. The gap disappears for the manifolds 
of subexponential growth but it is natural to try to fill it in case 
of manifolds of exponential growth (like Hn). No considerable 
improvement can be expected in Theorem 2.3 because its growth 
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conditions come close to those which exist in examples like Hn. 
On the other hand the abstract Theorem 2.3 from Appendix 2 can 
not be improved in the sense that the condition on the rigging to 
be a Hilbert-Schmidt rigging is necessary if we want the negative 
space to contain a complete orthonormal system of generalized 
eigenvectors for any self-adjoint operator. So possible improve
ment can be made here only if we switch from abstract operators 
e.g. to C°°-bounded uniformly elliptic ones. 

REMARK 2.9. It is sufficient to have only a sequence Sj —> 0, 
and it is not necessary to keep A fixed when we change e. For 
instance in Theorem 2.3 we can only require that there exist a 
sequence Sj > 0, Sj —• 0 as j —• +oo, and sections ifij; ^ 0, such 
that if>j exp(—Sjd(-, XQ)) G LP(X,E), Aipj = with \j —> A 
as j •—• oo. Then we can easily prove by the same reasoning that 
A G crp(A). (Here 1 < p < oo.) 

In case of subexponential growth it is easy to prove, using 
Theorem 1.8, that for the self-adjoint operators satisfying the 
conditions of Theorem 2.3 this condition is also necessary (hence 
necessary and sufficient) for the inclusion A G 0"(A), as well as the 
existence of sequences Xj —> A, ipj G C°°(X, E), tftj ^ 0, such 
that Aiftj = and 1 ^ ( ^ ) 1 — 0(expSjd(x,XQ)) where Sj —• 0 
as j —̂  0. 

A p p e n d i x 2. R igged spaces and general ized e igenvectors 
of self—adjoint operators . 

In this Appendix we shall briefly describe some well-known 
results about rigged spaces and generalized eigenvectors of ab
stract self-adjoint operators. We will mainly follow [5] referring 
the reader to the book for proofs and more details. An alternative 
approach can be found in [4]. 

A 2 . 1 . R igged Hilbert spaces . 
Usually Hilbert spaces arise in Analysis as spaces of square-

integrable functions, sections of a vector bundle etc. But in this 
case usually additional restrictions of smoothness or (and) de
cay may be imposed to form a smaller Hilbert space. Also then 
the dual to this smaller space can be defined as a Hilbert space 
which naturally includes the basic Hilbert space. This situation 
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is described in the following 

DEFINITION 1.1. A rigged Hilbert space is a triple 

(1.1) HJ. СП СП. 

where H, H+, H- are (complex) Hilbert spaces (with the scalar 
products and norms denoted by ( v ) , ( v ) + > ( v ) - > II * II? II " ll+> 
|| • || _ respectively) and the following conditions are satisfied: 

i) Both inclusions 71+ C W and 7i C are linear continuous 
operators with dense image. 

ii) The scalar product (•, •) in 7i can be extended to a continu
ous hermitian form (•, •) : 7{+ x 7Y_ —* C which is non-degenerate 
in the following strong sense: every linear continuous functional 
£ : 7Y+ —+ C can be uniquely represented in the form = (-, / ) 
where / £ 7i- and | | / | | - = ||^|| where ||^|| is the usual (opera
tor) norm of £] similarly, every anti-linear continuous functional 
£9 : 7i- —> C can be uniquely represented in the form = (<7, •) 
with g e H+ and \\g\\ + = ||^||. 

The triple (1.1) is called then a rigging for the Hilbert space 
7Y. Spaces 'H+,'H- (and norms || • | |+, | | • | | - ) are usually called 
positive and negative spaces (and norms) respectively. Actually 
the negative space 7Y_ can be obviously reconstructed if only the 
couple ?{+ C 7i is given with the continuous imbedding operator 
having dense image. 

A convenient general procedure of constructing a rigging for 
a given Hilbert space 7i is to use a continuous linear operator 
K : such that Ker K = 0 and Ker K* = 0 (hence with 
a dense image ICH). Having such an operator we can put 

(1.2) H+ = KH, (Ku,Kv)+ = (K, v), U, v £ 7i. 

Then 7i- can be reconstructed as the dual space to 7i+ or as the 
completion of H with respect to the norm \\h\\- = \\K*h\\. 

Actually without loss of generality K can be chosen self-adjoint 
because replacing K by \K\ — y/K*K does not change the space 

(and its norm). 
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DEFINITION 1.2. A Hilbert-Schmidt rigging is a rigging con
structed with the help of a Hilbert-Schmidt operator K in (1.2). 

Hilbert-Schmidt riggings play a special role in spectral theory 
as we shall see in the next section. 

Supposing that K* = K we may consider A = K~x as a self-
adjoint operator in besides Ker A = 0. If such an operator is 
given then we can construct the rigging by putt ing 7Y+ = D(A) 
and (u,v)+ = (Au,Av). This will be a Hilbert-Schmidt rig
ging if and only if A has a discrete spectrum and its eigenvalues 
{Xj\j = 1 ,2 , . . . } satisfy 

(1.3) 
oo 

£ A 7 2 < ~ 

Note that only separable Hilbert space H may have a Hilbert-
Schmidt rigging in the sense described here. But this is the only 
case which we need in applications. 

A 2 . 2 . General ized e igenvectors . 
First recall a general formulation of the spectral theorem for 

self-adjoint operators (see e.g. [5] or [32]). 

T h e o r e m 2 . 1 . Let A be a self-adjoint operator in a Hilbert 
space 7i. Then there exists a measure space (M, / i ) , a unitary-
operator U : 7i —* L2(M, dfi) and a real-valued measurable 
function a on M which is defined and finite almost everywhere 
such that 

(i) %j> e D(A) if and only ifa(-)(Ut/>)(-) € L2(M,dfi) 
(ii) Iftpe U(D(A)) then (UAU-l<p)(m) = a(m)<p(m). 

In other words A can be represented as a multiplication op
erator Ma given by (Ma<p)(m) = a(m)c^(m) in L2(M, dfi) with 
a real-valued measurable and almost everywhere finite function 
a. More exactly A = U~xMaU with a unitary U. Let us recall 
that under the given conditions the operator Ma with the natural 
domain 

D(Ma) = {<p\if e L2(M,rf/i), aif G L2(M,dfi)} 
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is self-adjoint. 
Now let us consider a rigging (1.1) of Ti. Let A be a self-adjoint 

operator in Ti. Suppose further that we are given a measure space 
(M, fi) and a vector-valued function $ : M —• (which may be 
actually defined almost everywhere) with values in the negative 
space of the rigging. 

DEFINITION 2.2. A vector-valued function $ : M —• H- is 
called a complete orthonormal system of generalized eigenvectors 
(or eigenfunctions) of the operator A if the following conditions 
are fulfilled: 

(i) for any G the function m H-> (/z+, $ (m) ) on M 
belongs to L2(M,d / i ) ; 

(ii) the map h-» ( / 1 + , $(•)) can be extended to a unitary op
erator ¡7 : 7i —> L2(M, d / i ) which gives a spectral representation 
of A as in Theorem 2.1. 

The reader can find motivations and explanations of this def
inition in [5]. Let us remark only that <£(m) is really a general
ized eigenfunction of A with an eigenvalue a{m) in a reasonable 
sense. For example if we take any complex-valued Borel function 
/ : R -> C then 

(2.1) Wm)J(A)g) = f(a(m))(*(m),g) 

for any g € H+ n f{A)~lH+ (i.e. g G W+ D !>.(/(A)) and 
f(A)f G W+) and for almost every ?ri G M . In particular 

($ (m) , Äff) = a (m)($(m ) , f l f ) 

for any g such that # G 7i+ and A(/ € and for almost every 
rn G M. 

Actually the set MQ C M where all relations (2.1) are true 
(and such that ji{M — MQ) = 0) may be choosen independent of g 
provided 7Y-}_ is separable (see [5], Proposition 2.7 in Supplement 

Now we shall remind the main result about riggings and gen
eralized eigenfunctions. It is due to Ju. M. Berezanskii but in 
a weaker form it was proved earlier by I.M. Gelfand and A.G. 
Kostyuchenko [17]. 
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T h e o r e m 2.3. Given a Hilbert-Schmidt rigging (1.1) of H and 
a self-adjoint operator A in H, there exists in (1.1) a complete 
orthonormal system of generalized eigenvectors for the operator 
A. 

A simple proof can be found in [5]. Remark that the condi
tion on the rigging (1.1) to be Hilbert-Schmidt is necessary in a 
natural sense (see [4]). 
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On the Many Body Problem in Quantum Mechanics 

Avy Soffer* 

Section 1. Introduction 

The aim of these lectures is to describe some of the modern mathemat

ical techniques of iV-body Scattering and with particular mention of their 

relations to other fields of analysis. 

Consider a system of N quantum particles moving in R n , interacting with 

each other via the pair potentials Va\ the Hamiltonian (with center of mass 

removed) for such a system is given by 

H = - A + E 
i<3 

Vijixi-xj) on L 2(JT A ' ~ n ) . 

Here 1 < i, j < N, x{ 6 R n . - A is the Laplacian on L2(Rn A " n ) with metric 

x >y = 

N 

=1 

¿=1 
rriiXi • yi ; mi > 0 . 

The rrii are the masses of the particles. The main problem of scattering theory 

is to describe the spectral properties of H and find the asymptotic behavior 

of e~tHtcp(p for (p 6 L 2 , as t —> ±oo . 

There are two reasons for that: one, the behavior is much simpler as 

t —• ±oo . Secondly it determines the full properties of the system. Since the 

•Supported in part by NSF grant number DMS89-05772. 

S. M. F. 
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sum i 
<j 

V{j does not vanish as \x\ —> oo in certain directions, the perturbation 

of —A is not negligible at infinity. The spectral properties and asymptotic 

behavior of H are therefore radically different than that of —A. 

This is the generic multichannel problem. There are many different 

asymptotic behaviors possible, depending on the choice of <p. Thus the main 

theorem can be phrased as: given <p £ L 2 ( R n ) , find hamiltonians Ha and 

Functions cp a= , s.t 

e-iHtp — E 
a 

e~iHat<PÌ « 0 as t —> ±00 . 

Accepting the physicist's dogma that every state of the system is described 

asymptotically in terms of particles (or bound clusters of particles) we con

clude that the only possible Ha are the subhamiltonians of the system: 

tia = H — Ia 

I a = E 
(iJ)Ca 

Vij(Xi ~ Xj) 

and a stands for arbitrary disjoint cluster decomposition of { 1 , 2 , . . . , N}. 

Ia is called the intercluster interaction. The Hamiltonian that describes 

the bound clusters of a decomposition a, is denoted by Ha. Not much is known 

for Multichannel Non Linear Scattering; see however [Sof-We and cited ref.]. 

The approach to studying e~%Uii\) for large |£| is by first reducing the prob

lem via channel decoupling (or other methods) to the study of the localization 

in the phase space of e~tHiip. Then, we develop a theory of propagation in 

the phase space for H. The channel decoupling is achieved by constructing a 

partition of unity of the space, with two main properties: one, on the support 

of each member of the partition the motion e~lHiip is simple (= one channel) 

and can be described by one fixed hamiltonian. The second property is that 

the boundary of the partitions is localized in regions where we can prove that 

no propagation of e~~lHtip is possible there for large times; in this way we 

conclude that no switching back and forth between channels is possible as 

|<| —• 00 which implies the desired results. 

The first part, based on the construction of partitions of unity relies 

mainly on geometric analysis combined with the kinematics of (freely) moving 
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particles. Different techniques are now known, each with its own importance, 
and I will describe some of the main constructions. The second part of the 
proof is analytic; it provides an approach to finding the asymptotic behavior 
of e~lHtip as \t\ —* oo, which is complementary to that of stationary phase. 
As I will describe below it replaces the (central) notion of oscillation by that 
of microlocal monotonicity. The distinctive feature of this approach allows 
the study of general pseudo differential operators H on equal footing with 
constant coefficient operators. 

The first proof of Asymptotic Completeness (AC) for TV-body systems 
along these lines was given in [Sig-Sofl]. Since then, different proofs were 
developed, with new useful implications [Deri, Kit, Gr, Ta] (see also [En2, 
Ger2-3]). Further developments concentrated on the long range problem. The 
three body case was first solved by Enss [En2]. (See also [Sig-Sof3].) Local 
decay and minimal and maximal velocity bounds were proved for JV-body 
hamiltonian, including ones with time dependent potentials in [Sig-Sof2]. This 
approach is further utilized in [Sk, FrL, Ger2 , Ger-Sig, H-Sk]. A method 
of dealing with the problem of AC for long range many body scattering is 
developed in [Sig-Sof4,5]; the case of N = 4 is solved there. 

A final comment; the phase space approach to JV-body scattering origi
nated with the fundamental works of Enss [Enl,2]. A comprehensive descrip
tion of the Enss method can be found in [Pe], including applications to many 
problems in spectral theory. References of many of by now classical results, 
including the works of Mourre, until about 1983 can be found in [CFKS]. We 
refer the reader to this book also as the basic reference used here on spectral 
and scattering theory. 

Section 2. Microlocal Propagation Theory 

Let H be a self adjoint operator on L2(Rn) arising from the quantization 
of a classical Hamiltonian h. By solving the Hamilton-Jacoby equations for h 
it makes sense to talk about the classical trajectories (or bi-characteristics) of 
h (or H). As t —> ±oo the (unbounded) trajectories concentrate, in general, 
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in a certain set of the phase space. 

DEFINITION 2.1. A bounded p.d.o. j with symbol homogeneous of degree 
0 in x is said to be supported away from the propagation set (at energy E) of 
H if the following estimate holds 

±00 
[ 
[ 

± 1 

= a 
(x) 1/2 je-tHtiP\\2dt< e l ic l i 2 for all tP = En(H)rp. 

Here (x)2 = 1 + ar, En(H) is the spectral projection of H with ft any 
sufficiently small interval containing E. 

Our aim is to identify the (conical) set PSE of the phase space, with the 
property that any j is supported away from the propagation set in the sense 
of the above definition if and only if it is supported away from PSE- We can 
therefore think of PSE as the propagation set of H at energy E. 

The main tool to proving that a given conical set K is away from the 
propagation set PSE will be to prove (microlocal) monotonicity of the flow 
generated by H in K. 

The claim is that the classical flow generated by H is moving out of any 
such K monotonically in for large t. By finding a lower bound for this 
monotone flow in K we can then absorb the effects of quantization and other 
potential perturbations of H. 

I chose to describe the above approach first when applied to H = — A, and 
along the way prove some known and new smoothing estimates for —A. The 
proofs are easy but allow the introduction of some of the other fundamental 
notions and arguments repeatedly used later. 

DEFINITION 2.2. The Heisenberg derivative of an operator family F(t), 

DF(t), w.r.t. to H is defined by 

DF (t) = i [H,F] = + dF 
dt . 

DEFINITION 2.3. A bounded family of linear operators F(t) on L2(Rn) is 
called a propagation observable for H if its Heisenberg derivative is positive -
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lower order terms. For some 6 > 0: 

DF(t) > 6B*B - 0((B*By-£) - 0{L\dt)) 

we then say that DF(t) majorâtes B*B {DF(t) > 0B*B). 

Basic Lemma 2.4 Let F(t) be a propagation observable which majorâtes 

B*B. Then 
[ 
[ 

>±oo 

±1 

WBe-^||2fdt < cUf . 

The proof follows by the fundamental theorem of calculus and Heisenberg 

equations of motion: 

d 
dt 

{eiHi^,Fe-iHii)) = (eiHt>iP,DFe-iHtil;) . 

The Basic Lemma reduces the proof that a given j is supported away 

from PS to finding a propagation observable majorating j*(x)~~1j. When F 

is chosen to be a p.d.o., one can often use Gôrding's inequality to check ma

joration, which reduces the problem to finding a lower bound for the Poisson 

bracket {/i, / } . 

Theorem 2.5 (Microlocal Smoothing Estimate) Let j be a bounded homo

geneous of degree 0 (in x) symbol, with support away from 

PS = {(x,t)eT*x\z\\t}. 

Then 

a) 

T 

I 
o 

= 1 
(x) 1/2 

•J(<p)l'2e+iAttl> [ 
[ 

2 
dt < CTU\\ 2 1> € L 2 (R") 

b) 

T 

fi 
0 

II 
1 

(x) 1/2+e (py^-e^f|y|dt < cr||U\\2 • 
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Furthermore, in case the dimension n > 3, CT can be chosen independent of 

T. The same is true in any dimension if -*/;(£) is supported away from 0. 

REMARK. Part b) of the theorem is known as local smoothing estimate. If 

was proved in [Co-S, Sj, V] (see also [Be-K, G-V2, Ka-Ya]) and found since 

then many important applications in both linear and nonlinear PDE see e.g. 

[JSS], [KPV]. 

PROOF. The proof for a general H replacing A is given in [So2]. Here I 

sketch the main steps: By the Basic Lemma we have to find operators Fi, F2 

bounded and s.t. 

DFX > (xy^2J(p)r(x)^^1/2 + 0(l) 

and 

DF2 > (x)-"2-*'1^)^)-1/2-*1/!2 + 0 ( 1 ) 

where O( l ) stands for an operator of order zero (in f ) . Using p.d. calculus it 

is easy to check that 

Fi = 7; = (îi -p + p-Xi) 
1 

2 
i = 1,2 

satisfy both of the above; 

Xi = x/{l + x2 + 9i{x))1/2 

P = P/(P) 9i{x) = 0,02(2) = \x\2 £ . 

REMARK 1.. The original proofs of b) uses stationary phase analysis, and 

therefore does not extend to cases where the kernel of e~liH is not explicitly 

constructible, e.g. H = - A + V, V singular. The above argument trivially 

extends to such general H. 

REMARK 2. The above theorem shows that the notion of propagation set is 

relevant also for finite time behavior of e ~ l H t i p 

The operator 7 comes from regularizing the operator 7 = T>(X -p + p • x). 

Different versions of 7 appeared in scattering theory [L, Ml-2, M-R-S]. 
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Its centrality for the TV-body problem was first realized in [Sig-SoflJ. To 

see its importance, let us compute the Poisson bracket of £ 2 with the symbol 

of y 

{ e 2 , i - O p ß = 2 e - v 1 ( x . o = 
2 

<x) 
(e2 - (x.e )2) 

and it is clear that the above bracket is positive (0(1/x^~y£2)) iff(w, e) is localized 

away from {x|| e}.We can therefore identify the PS of - A with {x||e } , which 

is not surprising since x(t) = XQ + 2£t are the classical trajectories of — A, and 

they concentrate where x 
t = 2£. 

Section 3. Hamiltomans and Kinematics 

Consider an iV-body system in the physical space Rv. The configuration 

space in the center-of-mass frame is 

(3.1) x = {x e RvN I 

N 

E 

2 = 1 

rriiXi = 0} 

where x = (a?i,... ,XTV ) with X{ G R", with the inner product 

(3.2) (x,2/) = 2 
A' 

E 
?:=i 

m, xi . yi . 

Here m-i > 0 are masses of the particles in question. The Schrodinger operator 

of such a system is 

H = -A + V(x) on L2(X) . 

Here A is the Laplacian on X and 

V(x) = Y,Vij{xi - XJ) , 

where (ij) runs through all the pairs satisfying i < j . 

We assume that the potentials V{j are real and obey: Vij(y) are A y -

compact. It is shown in [Com] (see also [CFKS]) that under this condition 

Kato theorem applies and H is self-adjoint on D(H) = -D(A). Moreover, by 
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a simple application of Holder and Young inequalities and by a standard ap
proximation argument (see [CFKS]) one shows that if Vij are Kato potentials, 
i.e. 

Vij e Lr(B?) + (L 8 (Rv )) e> where r > v 
2 if v > 4 and r = 2 if v < 3 , 

and the subscript e indicate that the L°°-component can be taken arbitrarily 
small, then Vij is Laplacian compact. 

Now we describe the decomposed system. Denote by a, 6 , . . . , partitions 
of the set { 1 , . . . ,N} into non-empty disjoint subsets, called clusters. The 
relation b < a means that b is a refinement of a and b ^ a. Then am-in is 
the partition into N clusters ( 1 ) , . . . , (AT). Usually, we assume that partitions 
have at least two clusters. # (a ) = |a| denotes the number of clusters in 
a. We also identify pairs £ = (ij) with partitions having N — 1 clusters: 

(zj) {(ij)(1) . . . (i)... (j)... (N)}. We emphasize that the relation £ C a 
(resp. £ C a) with £ = (ij) is equivalent to saying that i and j belong to 
different clusters (resp. to same cluster) of a. 

We define the intercluster interaction for a partition a as 7rt = sum of all 
potentials linking different clusters in a, i.e. 

(3.3) Ia= E 
e=a 

Vi. 

For each a we introduce the truncated Hamiltonian: 

(3.4) H a = H = 7 a . 

These operators are clearly self-adjoint. They describe the motion of the 
original system broken into non-interacting clusters of particles. 

For each cluster decomposition a, define the configuration space of rela
tive motion of the clusters in a: 

Xa = {x € X I Xi = Xj if i and j belong to same cluster of a} 

and the configuration space of the internal motion within those clusters: 

Xa = {xeX\ E 
Jed 

rrijXj = 0 for all Ci G a} . 
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Clearly Xa and Xa are orthogonal (in our inner product) and they span X: 

X = Xa®Xa. 

Given generic vector x G X , its projections on Xa and Xa will be denoted by 
xa and xa, respectively. 

If i and j belong to some cluster of a, then X{ — Xj = (7rax)i — ( 7 r a x ) j , 
where 7 r a is the orthogonal projection in X on Xa. This elementary fact and 
the fact that —A =(p, p) with p = —iVx (see equation (3.6) and the sentence 
after it) yield the following decomposition: 

(3.5) Ha = Ha e l + 1 e Ta on L2po = L 2 { x a ) e L 2 ( x a ) . 
Here Ha is the Hamiltonian of the non-interacting a-clusters with their 
centers-of-mass fixed at the originating on L 2 ( X a ) , and Ta = 
—(Laplacian on X a ) , the kinetic energy of the center-of-mass motion of those 
clusters. 

The eigenvalues of Ha, whenever they exist, will be denoted by e a , where 
a = (a, m) with m, the number of the eigenvalue in question counting the 
multiplicity. For a = am-in, we set ea = 0. The set { 6 : a , all a} is called the 
threshold set of i f and ea are called the thresholds of if. For a = (a,m) we 
denote |a| = |a| and a(a) = a. 

Our method is based on localization of operators in the phase-space 
T*X = X x X'. Hence and henceforth, the prime stands for taking dual 
of the space in question. The dual (momentum) space X' is identified with 
(3.6) 

X1 = {k e R?N I Tiki = 0} wi th the inner p r o d u c t (fc,u) = E 1 
2mz-

ki . ui. 

Thus |fc|2 is the symbol of - A and - A = |p| 2 . We use extensively the 
natural bilinear form on X x X' : (x,k) = Ea^ • k{. Given generic vector 
k G X\ its projections on X'a and (Xa)f will be denoted by ka and fca, 
correspondingly. Accordingly, the momenta canonically conjugate to xa and 
xa and corresponding to ka and fca will be denoted by pa and p a , respecitvely. 
Thus T a = | p a | 2 . Using the bilinear form above we define the generator of 
dilations as 

A = 
1 
2 ({p,x} + (x,p)) 
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and the self-adjoint operator 7 , 

7 = 
1 
2' 

[fax) + (x,p)) , 

associated with the angle between the velocity and coordinate. Again, for 

decomposed systems A splits into the operator 

Aa = 
1 
2 

l<J>\x") + (x",pa)) 

corresponding to the internal motion of the clusters, and the operator 

Aa = 
1 
2 {(Pa,Xa) + (XajPa)) 

corresponding to the motion of the centers-of-mass of the clusters. 

Finally, we mention some notation. We denote E& = f(H G A) for an 

interval A C R and set HQ = HEQ. P will stand for the orthogonal projection 

the pure point spectral subspace of H. 

Section 4. Partitions of Units 

The configuration space of N particles moving in v dimensions with the 

center of mass removed is 

X = {x G R"N
 I 

N 

E 
?:=i 

rriiXj = 0} . 

Here the rn2's are the masses of the particles and x\ G W their position. Let 

a be any disjoint cluster decomposition of { 1 , 2 , . . . , iV} . Denote by Xa the 

subspace of X given by 

Xa = {x | X{ — Xj = 0 if (ij) belong to the same cluster in a} . 

Define \x\a = mm^j)^a \x{ — Xj\. We can now prove the existence of a two 

cluster partition of unity {ja}-

Proposition 4.1 There exists a partition of unity of X, { j a } # ( a ) _ 2 s.t. 

i) E1 
a 

Ì a 2 ( * ) = 1 on X. 
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ii) Each 0 < ja{x) < 1 is smooth and homogeneous of degree 0 outside 

the unit ball of X. 

Hi) ja{x) = 1 for some neighborhood of Xa/{\x\ < 1} 

iv) ja{x) = 0 for \x\a < ea\x\ for some positive ea. 

The proof follows by finding a covering of the unit sphere of X by neigh

borhoods of X a , = (a) = 2. For each member of the covering we then asso

ciate a smooth characteristic function which we then extend by homogeneity 

to \x\ > 1 and in a smooth but otherwise arbitrary way to \x\ < 1. We then 

normalize these functions so that ]P 3a = 1 • 
a 

The partition constructed in the proposition above is called a two-cluster 

partition of unity and it appeared already in the Haag-Ruelle theory [GJ]. By 

generalizing the construction above to neighborhoods of X a , a any two or more 

cluster decomosition we can construct a fc-cluster decomposition { ja}#(a)<fc 

to obtain 

Proposition 4.2 There exists a partition of unity of X, { 7 * a } s.t. 

0 E ìli*) = 1 
= (a) < k 

ii) Each 0 < ja(x) < 1 is smooth and homogeneous of degree zero outside 
{|| x||<1 } 

in) ja(x) = 1 for some neighborhood of Xa/{\x\ < 1} 

iv) supp ja(x) C {\x\a > <5|#|} f°r some 6 > 0. 

This kind of partitions will allow us to use induction on number of cluster 

decompositions. Such partitions were used extensively in [Ag, Sig-Sof 1]. 

Partitions of unity are the basic tool to decouple channels of propagation 

from each other. In spectral geometry they are used to decouple different 

neighborhoods of infinity from each other [FHP1-2], see also [CFKS chapter 

i i ] . 

Theorem 4.3 (Hunziker Van Winter Zislin) (HVZ) 

<7 e s s(tf) = | J < 7 C S S ( # „ ) #(o) = 2 . 
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PROOF. [Sig 3] Using trail functions it is easy to prove that 

°ess(H) D u 
a 

<7ess(Ha) • 

To prove that ae8S(H) Ç (J a aess(Ha) we use the two cluster partition of unity 

{ j a } # ( a ) = 2 : 

H = 
1 

2 E 
a 

iln + Hil) = E 
a 

ja H ja + E 
a 

Ja\ja,H] 

= E 
a 

jJHa + h)ja + 
1 

2 E 
a 

[ j « , b a , # ] ] . 

Since H = - A + F(x) it follows that 

b'a,L7a , i ï]] = b ' a , b - a , - A ] ] = 0 ( | x | - 2 ) 

by property (ii) of the partitions j a . Furthermore, by property (iv) of j a we 

conclude that 

jaIa = 0(1x1"") . 

Hence 

H = E 
a 

jaHaja + 0(\x\-n+ 0(1x1^) . 

Since 0(\x\ M ) is - A (and hence # ) compact it follows by Weyl's Lemma 

that 

aess(H) = cr e s s ( E 
a 

jaHaja) 

from which the result follows by an elementary argument. 

In the study of the asymptotic behavior of multichannel systems the 

decoupling by ja{x) is not sufficient (see however [D-SJ [Sig3]). This is due 

to the fact that the flow under H can move through the boundary of one 

partition into the other and back. Therefore, to achieve a true decoupling 

between channels a new approach is needed. 
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This has been done in [Sig-Sofl] by introducing a phase space partition of 

unity with the boundary of the partitions localized away from the PSE of H. 

In this way the decoupling is achieved between channels, modulo quantum os

cillations capable of tunneling through the classically forbidden regions. The 

contribution of such oscillations is then controlled by the microlocal propaga

tion estimates as explained in the previous section. 

Proposition 4.4 (phase space partition of unity) There exists a partition of 

XxX'(= T*X),jatE(x,Ça) s.t. 

i) E 
#(«)>2 

ja , E (x , ea )=1 

ii) Each 0 < j a < 1 is homogeneous of degree zero in x 

Hi) supp ja(x,£a) C { |x | a > <5|a:|} and j a = 1 in some neighborhood of 

Xa 

iv) supp V x j a ( x , £ a ) is away from PSE. 

The construction of such partition can be found in [Sig-Sofl]. The main 

building blocks of such a partition are Xx0 (z)? a n ( ^ Xto (£)? Xx0 (
x) is a (smooth) 

characteristic function of a cone in x near the direction XQ and Xf 0(£) in f 

near fo5 the support of the X£0

 1S taken to be either strictly inside that of Xx0 

or strictly outside. It is then easy to see that V x . ( x . C o {x)Xto(0)) ŝ supported 

where x \ \ f. 

The main application of the above partition is 

Theorem 4.5 (Channel Decoupling) Let E be a given non threshold energy 

of H. Then AC follows from the propagation theorem on PSE-

PROOF. 

e - i H t Y = E 
a 

lle-""l> 

= E 

a 

e +i H a t (e iHai j2ae -i Ht Y=. 

It is therefore left to show that 

eiHaij2

ae-iH'rP ^ipf as t - > ±00 . 
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By Cook's method this is reduced to proving that 

[ 
[ \\(Hjl-jlH)e-iin^\\2dt<||cU\\ . 

But 
||Haja2 - j2 a H ) e - iHt Y || 2 dt < c ||Y||. 

j^Ia = 0(|x| **) and for fi > 1 the above estimate holds by local decay since 
E is away from the thresholds (see section 7). 

Haj2

a-j2

aHa = ü(\x\-l)ja(x,ta) 

where Ja{x^a) lives away from the PSE by property iv). Applying the prop
agation theorem to this term the result follows. • 

A very interesting partition of unity of X was constructed in [Gr]. (A 
simpler construction is given in [Der3].) It is an iV-cluster partition of unity 
with further property on the boundary which implies monotonicity of the flow 
there in a certain sense: 

Proposition 4.6 (Monotonic Partition of Unity) There exists an N-cluster 
partition of unity {qa}i furthermore, the derivative of qa along xa on the 
boundary is nonnegative: 

E 

a 
xa<8)Vqa(x) > 0 . 

The idea behind the construction of qa is the observation that VF( |x | < 
c) = - V F ( | x | > c) and qa is a product of such F's with x —• x% and c —> eg. 
One can then cancel the negative terms in the sum Y^xa ® Vg a (x ) by the 

a 
corresponding positive ones, using that 

xa ® VF(\xb

a\ > cb

a) + xh ® VF(\xb

a\ < cb

a) > 0 . 

Using the above partition, one can construct new propagation observables 
with monotone Heisenberg derivative by "clustering" (see [FHP1] for the first 
such procedure) the corresponding two body analog: In one channel nonlinear 
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scattering one uses the propagation observable (p - f ) 2 + V(<p) {V(<p) stands 

for the nonlineari ty), to derive the pseudo-conformal identities for the NLS 

equation [G-Vl]. For AT-body systems, using qa one replaces y by v(x,t) 

where 

v(x, t) = E 
a 

Xa 

t 
Wa 

where wa are appropriately scaled (in time) qa. One can then show that 

-K = lp-v{x,t))2 + V(x) 

is a propagation observable. Other observables can also be constructed, e.g. 

EawaAa/t 

In the study of Long Range Scattering one is led to study the asymptotics 

of TV-body systems at threshold energies. This requires zooming on zero 

velocities (coming from the critical points of the symbols of Ea + Ha) which 

we do by scaling in the time variable (see section 8). A natural partition of 

unity used in such an analysis is multiscaled [Sig-Sof5]: 

Proposition 4.7 (Multiscale partition of unity) There exists a k-cluster {ja} 

partition of X, depending on time, s.t. on support ja(x,t) \x\a > 6ita(a)^ and 

\xa\ < 62b(a)^^ (where of course a(a) > (3(a)). The partition is multiscaled 

since a(a) > c¿(a') if a C a'. 

Just like with the monotonic partition it is possible to cluster operators 

using the multiscale partition leading to new propagation observables. 

Section 5. The Channel Expansion 

Recall that in the two body case the dilation generator A has positive 

commutator with H (= — A + V(x)) for sufficiently regular V(x) and when the 

commuator is localized away from the thresholds of H. The question arises 

whether we can "cluster" A to prove similar bounds for the iV-body case. (See 

[Hul] for the case of classical mechanics.) This was first shown by Mourre in 

the case N = 3 and later generalized for all N in [PSS, FH1, BG2]. In [Sig-

Sofl] it is shown that the commuator of H with certain global observables, 
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including A and 7 , can be approximated to arbitrary accuracy by a sum of 
contributions from the open channels of the system, at the given energy. This 
became a central technical result in the study of spectral and scattering of TV-
body systems. It implies, for example, that the Mourre estimate holds at non 
threshold energies with precise lower and upper bounds on the commutator 
i[H, A]. This section is devoted to proving the theorem using an important 
simplifying idea of Hunziker [Hu2]. 

The channel expansion theorem state that certain commutators with H, 
as well as the identity can be approximated, arbitrarily close, by a finite sum 
of contributions of open channels only. The approximation gets better as 
we add more and more open channels to the sum and shrink the interval A 
around the energy E. We first need a few definitions. 

Let {ej(a)}<jL1 be the eigenvalues of i / a , with corresponding projections 
Pj(a). Here the Pj{a) are all chosen to be finite dimensional. Denote by 
p(«) = N 

3 

Pj(a) = 1 — P(a) the projection on 7ip.p(Ha) and P(a) is the 

projection on the continuous spectral subspace of Ha. 

P»(a) = 
N 

E 
i = l 

Pj(a) and P (a) = l-PN(a) . 

We drop the index a when Ha = H (#a = 1). For the smooth spectral 
projection FA of i 7 a , we let 

F» = FAP\a). 

A cluster decomposition a and a choice of eigenvalue for Ha determines a 
channel a. So, we let Pa be the projection on the channel bound state, pa 

be the channel momentum (pa = p a ( 0 ) ) , T a its kinetic energy ; Ta = T a ( a ) = 
|Pa(a)| 2 == b a | 2 j Tn(a) — order number of the eigenvalue SJ(Q). 

Theorem 5.1 (Channel Expansion) Given E 6 R, 6, e > 0 there exists 
integers {Ni}iLx and a finite set of channels C£: 

aeC£ iff m(a) < TV # ( c v ) . 
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For each a £ C£ there exists a smooth characteristic function of the origin 

Xa, with sharpness less than <5, and an interval A D E s.t. 

0 F»i | i f ,J |F*iF»' | c E E 
QrGCe 5 = ( a 2 , . - - » O A ; . a ( « ) ) 

J , 2 r è x « t ó + e ( a ) - A ) i ; ) i ^ 

|if,J|F*iF»' [ [ E 
E 

v|if,J|F*iF»'||if,J 0 A 2 

£ C e S=(a 2 , . . - ,afc,a(a)) 

where A i C A , and for S = ( a 2 , . . . ,a^,a(a)) 

|if,J|F*iF»'||if,J|F*iF»'| 

PROOF. We sketch the proof before giving the details. The idea is to try to 

mimic the proof of the HVZ theorem, by reducing the problem to Ha using 

the two cluster partition of unity j a . We then get 

|if,J|F* E 
#(«0=2 

jai[H,A]ja + K 

where K stands for a relatively compact operator (w.r.t. H). Next, we want 

to replace i\H,A] by i\Ha,Aa], using that 

H = Ha + Ia and JaIa = K 

and 

A — A" + Aa • 

Doing that, we get 

i\H,A] = E 
* 2 

jaÌ[Ha,Aa]ja + E 
a 2 

\iai\Ha*AaUa+K . 

The first sum on the r.h.s. involves a "one body" commutator and produces 

the 2pi term. It is left to consider i[Ha,A
a), which we rewrite now as 

i[Ha®l+pl®l,Aa] = i[Ha,Aa) . 
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This last commutator is exactly the same as i[H, A] but for a subhamiltonian 
coming from some two cluster decomposition a. We can therefore assume it 
satisfies the theorem and proceed by induction to conclude the proof. 

The difficulty lies at this stage: the original commutator is localized with 
H ~ E, but the new one, i[H°, Aa] has Ha localized near E — 2p2

a which varies 
over a large interval, in general, and can hit bound states of Ha for example, 
where the induction hypothesis is useless. To proceed, we use a resolution of 
the identity 

1 = 
A 

E 
7 = 1 

Pi{a) + PN{a) 

and study 

(HI) Pji(a)^H^A^Pjia) 

(H2) PN(a)i[H\Aa]PN(a) 

(H3) PN(a)i[Ha,Aa]Pj(a) (and its adjoint). 

Case (HI) is shown to contribute zero by applying the virial theorem and 
localization using FA Case (H2) is treated by the induction hypothesis. Case 
(H3) is shown to be small in norm by compactness. The main simplification 
in the proof below compared to [Sig-Sofl] is that the induction hypothesis 
is formulated and used for H(l, rather than Ha. In this we follow Hunziker 
[Hu2]. 

The induction on clusters begins with n = N and descends to 1. For 
n — JV, H is reduced to —A where the proof is straightforward. For the 
sake of notation we only do the last step of the induction: proving it for H 
assuming it for all Ha, # (a ) > 2. Using the IMS localization formula: 

£Ce S=(d2v ,<u.,tt(o))£Ce S=(d2v ,<u.,tt(o)) E 
#(«)=2 

F^jai[Ha,A]jaF^ 

for Ai sufficiently small, and Ni sufficiently large, depending on e. 

£Ce S=(d2v ,t(o)) E 
a 2 

FgjaFAl(Ha)i[Ha,A]F*3(Ha)jaF£ 

for all A 2 D A j , s.t. F A 2 F A ] = FAt. 
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To prove the last inequality we used that for all e' > 0 

\\F^jaFA2(Ha)-F^ja\\<e' 

for IAiI < 6(e') and Ni > N!(e). 

To prove it, observe that since jaJa = K and H = Ha + Ia then 

jaFA2 (Ha) = j a .FA 2 (H) + K = FA2 (H)ja + K . 

Next, we use 

i[Ha,A} = i[Ha,Aa} + 2pl . 

Hence, using the resolution of identity 
N 

2 J 
l 

Pj + FnA = 1 we get 

,A]F«;j E 
a 2 

F£ù,F£i[Ha,A]F«;jaaF£ 

+ E 
a 

F^JaPa2plFlì(pl+ eQ)Paja F /Vi 

ra(a)<7Vi 

+ 
E 

a 2 

F^ja2FA2Pai[Ha2, A]PQFA 2ia 2 JPN1A1^ 

m ( a ) < TV 2 

m(a')<N2 

= Er 

a 2 

F£lJa2F^i[Ha2,A}PaFA2ja2FNA1»l + h.c. 

, (a) >2 

h.c. stands for hermitian conjugate. 

The second term on the r.h.s. is derived by using; the virial theorem: 

Pai[H%A]Pa= 0 . 

The third term is zero, since Pa localizes Ha near ea (in F&2) and Pai localizes 

Ha near ea

f ^ sa (in F&2). Therefore, since eQ,/ ^ e a , choosing the sharpness 

of F&2 sufficiently small either F&2Pa = 0 or F^2PQf = 0 (or both). 

The fourth term and its hermitian conjugate are made smaller than any 

e > 0, by observing that 

F»H[Ha„A]PQ 
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is a (relatively) compact operator, since Pa is compact on L'2(Xa). Hence, 
letting | A 2 1 1 0, N2 —> 00, we see that FNa^2 —0 and hence 

\\F£i[Ha9tA]Pa\\-+0. 

One technical tool used here and in the above compactness arguments is 
reduction to the subspace L2(Xa) using the fibre representation for Ha is 
fibres of pa : 

FA(Ha) = I 
2 

\\F£i[Hat+Pea2)dea 

Since H is semibounded from below the sum over f a extends over a compact 
set. This allows us to use compactness arguments in L2(Xa) for each fibre £ a . 

Similarly, we prove the channel expansion for the identity: 

\\F£i[Ha9 E 
a 2 

FNAij2a 
FNi[Ha9 

= E 
#(«°)=2 

F^jaFl2(Ha)jaF^ 

Since \ \ F £ K F £ N 1 A 1 II < e for all sufficiently small | A j | and large Nt. Writing 

Fl(Ha) = F^(Hay- + (FA2P^-(a)r-

we set 

«') 2 = E 
#(a)=2 

F Z ; j a F £ ( H a y - j a F » N ; 1 1 

+ E 
#(«)=2 

F£jaFl2(ea+Pl)jaF«N1A1; 

and we redefine 
\\F£i[Ha9tA]Pa\\-+0\\F£i+ea-E). 

Using the induction hypothesis and using local compactness to prove 

\\F£i[Ha9tFNA1A]Pja Pa N2 
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the result follows. • 
Next we prove the Localization Lemma: 

Lemma 5.2 Let i = 1,2 be smooth functions s.t. supp i*\ C (-6/2,6/2) 
and supp F2 C [3/4 a oo). Then 

F1(\p\-K)F2(±1-K)= 0(\X\~1) . 

PROOF. Pick F3 so that supp F3 C (-(2/3)6, (2/3)6) and F3 = 1 on supp Fi. 
Denote g = F3(\p\ - K), F^p) = Fj(|p| - K) and F2(j) = F2(±j - K). The 
operator j g = gjg is symmetric and bounded: 

\(x-pgugu)<\\pgu\\\xgu\\ < (K + 
2 
3 6) U H I ' 2 -

where we have used that 

i i * / n < 11/11 • 
This shows that 

±570 < K + 
2 
3 

5 . 

Now observe 

Fi(p)F2(7) = F , (p ) (F 2 ( 7 ) - F 2 ( 7 s ) ) . 

Using the Fourier representation 

F(j) = I F2(s)e^s ds 

and using a continuity argument in order to extend the following result from 
C(R)-functions to smooth bounded functions F2 with C q ° derivatives, we ob
tain 

F2(l) ~ F2(lg) = J +8 

— O O 

F2(s)(eh* - eh°s) ds 

=1 i 
[ +8 

— O O 

dsF2(s)ei''s I du e-ilu{y - S7s)e' ' 7 » u . 
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This implies 

Fi{p)F2(1) = - i 
[+8 
5+8 lsF2(s) f 

Jo 

<u.,tt(o))<u.,tt(o))<u) e iyg u; 

We commute F\(p) on the r.h.s. of this expression through ell^s u \ The 
result is 

F1(p)F2{j) = B, + B2 , 

where 

Bi = - i 
/

00 

-00 

dsF2(s) f <u.,tt(o))<u.,tt(o))<u.,tteiygu 

and 
Bo = i 

/
O O 

- O O 

rfsF2(s) /* 
Jo 

dueimf{8-u)Fi(p)j(l - g)ell*u . 

Next we show that 

(a) [F 1 (p) , 7 ] = 0 ( N - 1 ) . 

Using that 
[Fi(p),7] = S[p,i ; ii(p), 

xi 
(c) + o ( N - ) ) 

and using the commutator formulas [Section 6] we obtain (a). Now the rela
tion 

[F1(p),ei'<t} = -i 
Jo 

e'-(<-*)[Fl(p),1}ei->« ds , 

Equation (a) and commuator formulas imply that 

[F1(p),e^} = 0(\x\-iti). 

Equations (a) and the above equation together with the relations 

Fl(p)(l-g) = 0 

and 

/
00 

-00 

|F 2 (s) | \s\n ds < 00 for n = 1,2,3, 
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imply 

Bi = 0(\x\~1) , ¿ = 1,2. 

Using the Localization Lemma, we can then sharpen the statement of the 

channel expansion theorem, by replacing Xa(pa + €(a) ~ E) by FaXa(Pa + 

e(a) - E)Fai with 

Fa = X(la(a) = \/E - s(a)) . 

Section 6. Some Operator Calculus 

In this section we derive various estimates on functions of self-adjoint 

operators following [Sig-Sof2]. We begin with a few remarks. 

Let A be a self-adjoint operator on L 2(IR"). If / is a measurable function 

with integrable Fourier transform then we define 

(6.1) № = 
[ 
[ 
[ 

f{s)eiA*ds 

where f(s) is the Fourier transform of /(A) and the limit defining the integral 
is taken in the strong sense. With some care this formula can be extended to 
a broader class of functions. For positive powers of positive operators we use 
the representation on D(A[a]^+l) 

(6.2) A = sin7r(a — [a]) 

7T 

[ 
[ 
(oc 

<u.,tt(o)) 

A + W 
dwAla]+i , 

where [a] is the integer part of a. 

Expansion of Commutators 

Let H and A be self-adjoint operators on the same Hilbert space 7i. We 
assume that D(A) fl D(H) is dense in H, and for some n > 1 

(6.3) adk

A(H) extends to a bounded operator for all 1 < k < n. 

Here adh

A(H) = [• • • [if, A], A], • • -A]k-times are defined initially as forms on 
D{A) fl D(H). 
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Property (F): 
We consider a class of smooth functions / whose Fourier transforms / 

obey 

(6.4) l l / ( n ) l l i = 
[ 
[ 
[ 

| / (*) | |* | n d5< OO . 

Here,f (k)stands for the kth derivative of / . We derive Taylor-type expansions 
for the commutator [H,f(A)]. 

Lemma 6.1 (Leibnitz Rule) 
Let for some n > 0 H obey (6.3)and / obey condition (F). Let [H, f(A)] 

be defined as a form on D(An). Then, 

(6.5] [H,f(A)} = 
n-1 
Z 

fc=lE 

1 
k1 f

k)(A)ad>;A(H) + Rn(f) 

in the form sense with the remainder Rn{f) satisfying 

(e.e) \\Rn(f)\\<C\\fin%\\ad^(H)\\ 

Consequently, [H,f(A)\ defines an operator on D(An~i). 

PROOF. We begin with feC™ functions for which representation (6.1) is 
well-defined and then extend the expressions obtained to the class of interest. 
Thus on D(H) x D(H) 

(6.7) [H,f(A)} = I isf(s)[H,eiA°} . 

We have 
[H,eiAs] = eiAs{e-iAsHeiAs - H) . 

Using that 
d 

ds 
{e~iAsHeiAs)=ie-iA*adA(H)eiAs 

and the Fundamental Formula of calculus we compute 

(6.8) e-iAsHeiAs _ H = i 

S 

S 
0 

due~iAuadA(H)eiAu . 

132 



THE MANY BODY PROBLEM 

The above two formulas are first derived with H replaced by H€ = • H 
l + ieH e> 

0. Then, we let e j 0 and use the boundedness of adA{H) to prove that this 

limit exists. 

Subtracting from and adding to the integrand adA(H) gives 

e-iAsHeiAs _H = Í8a¿A(H) + i 1 
0 

du(e~iAuadA(H)eiAu adA{H)) . 

Iterating this relation n — 1 times we obtain 

e-iAsHeiAs _ H = 

n - 1 

E 
=1 

(is)" 

kl 
adk

x(H) + R (S) 

where 

(6.9) Rn{s) = 

s 

! 
0 

dui • • • 

« n - l 

I 
0 

dune-iAu»a<r\(H)eiAUn . 

This together with (6.7) and the relation 

oc 
[ 
[ 

— oo 

f(s)(is)keiA*ds= fh)(A) 

yields 

(6.10) [H,f(A)} = 
n-1 

E 
=1 

1 
kl 

r)(A)adk

A{H) + Rn(f) 

where 

[8.11) Rn(f) = 

oc 

/ 
— oo 

f(s)eLURn(s)ds . 

Since adJiiH) is bounded we have that 

||Ä n(«)||<const.|i|»||ad^(JÏ)|| 
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which yields 

(6.12) \\Rn(f)\\ < const. 
oc-{ 

— oc 

\f(s)\\srds\\aa"\(H)\\ . 

Finally we extend the above analysis to arbitrary function / satisfying 
condition F. 

First assume that H is a bounded operator. Then the form 

A(f)=i[H,f(A)}-
11-1 

E 
=1 

1 
kl 

fik\A)adA{H) 

is well defined on D(An). 
Now, let fjeC$°(R) j = 1,... oo with fj -> / in the F topology 

II/HF = l i b i l i • 

It readily follows that A(fj) —> A(/) in the form sense since /j —> / 
implies 

l l < A ) - ' U - ( A ) - / ( A ) | U - > 0 . 

By the estimate (6.12) 

M / I ) - > * » ( / ) 

with Rn(f) bounded. 
Equality (6.10) then implies 

A ( f ) R n ( f ) = 0 

in the form sense on D(An). 

Since Rn(f) is bounded and 
n-\ 
E 

Ar= 1 

1 
k. f

k\A)adk

A(H) is an operator defined 

on D(An l) the above equality extends to D(An J ) . The result for un
bounded H now follows by approximating H by 77 

l + 7f// and a simple continuity 
argument. 

REMARK. For similar expansions, based on resolvents see [B-Gl and cited 
ref.]. 

Lemma 6.2 Let A(t) be a commutative family of self-adjoint operators with 
common domain V. We assume that A(t) is norm differentiate in t : A(t + 
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6) - A(t) are bounded for 6 small and the following norm limit exist: 

lim 
a 0 

1 
6 

(A(t + 6)-A(t)) = -
dA{t) 

dt . 

Then, we have 
(a) For all bounded smooth functions f, with f^eL1, f(A(t)) is norm 

differentiate. 
(b) Assume that A(t) > 0 for all t. Let a > 0. Then A(t)af(A(t)) is 

differentiate in the strong resolvent sense and the chain rule applies for 
g(X) = Y\°f(\): 

d 
dt 

g(A(t))=g'(A(t)) 
dA(t) 

dt . 

PROOF. 
(a) As in the proof of Lemma 6.1 we derive the formula 

d 
dt 

e'XA^=iX dA{t) 
dt 

eiXA(t) _ 

Using this formula and equation (6.1) we get 

(6.13) 
d 
dt 

f A(t)) = 
dA(t) 

dt f'(Mt)) 

where the limits defining d_ 
dt are taken in the norm sense. 

(b) Since the A(i) have a common domain D, A(t)/(A(s) + ij-1 are 
bounded for all s and t by the closed graph theorem. We can then compute 
directly that 

m 

dt 
A(t)a = aA(t)a~l dA{t) 

dt 

for all positive integers a. Thus by the Chain rule it suffices to consider th< 
case 0 < a < 1. 
To this end we compute 

1 
6 

[A{t + <5)° -A(t)a' == 1 
6 

A(tr [(1 + 6ß(t))a - 1] 

where 

<u.,tt(o)) 
(A(t + 6) - A(t)) 

6 <u.,tt(o)) 
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Note that since A(t) > 0 and norm differentiate and, A(t) are commuting 
for different values of t,/3(t) is a bounded self-adjoint operator for each t. 
Using that by the spectral theorem 

(1 + 6f3)a - 1 = a6P + 0(6) 

the result follows. 

Some Domain Estimates 

Lemma 6.3 Let H and A > 0 be self adjoint operators on a Hilbert space 
H. Assume that D(H) N D(A) is dense in H. Then, for a > 0 s.t. 

(6.15) adk

H(A) are bounded operators for 1 < k < [a] + 1 

we have 
g(H): D{A«) -> D{A«) 

forallg(\)eCS°{R). 

PROOF. By interpolation it is sufficient to prove the lemma for integer a. 
We first show that adA(g(H)) are bounded for 1 < k < [a] + 1; using 

eq. (6.8) we derive, in the sense for forms on D(H) fl D(A) = D,the following 
equality 

[A,eisI1] = eisI1{e-isIIAeisH - A =) 

(6.16) = i e s H 

s 
fi [ 

0 

dfie-^Hadn{A) e ' " / f , 

hence 

(6.17) sup 

11*11=11*11=1 

I < <f>, [A,eisH)rP > I = | | [ A , e ' s " ] | | < s\\adH(A)\\ < cs 

due to (6.15) (with k = 1). 
Iterating the formula (6.16) and using the estimate (6.17) we get 

(6.18) \\adn

A(e>*")\\<cs» n < [a] + 1 
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By (6.7) and (6.18) 

(6.19) | K № ( t f ) ) | | = || 

O O 

[ 
[ 

— oo 

dsg(s)ad'\(e's")\\<C 

OC 

[ 
[ 

— oc 

\sng(s)\ds < oo . 

Since ||ad^(g(if))|| < oo for n = [a] + 1, taking g-real valued we apply 
Lemma 6.1 (with /(A) = Xa , a integer) to get: 

(6.20) [9(h), A°} = 
[a] 

E 
fc=l 

ck 

+8 
adk

A(g(H))Aa-k + Ä[a] + 1 

and ii[ a]+i is a bounded operator due to (6.6). (Note that since a is an 

integer, one can derive eq. (6.20) directly, without reference to Lemma 6.1.) 

Hence, if we let ueD(Aa), then using eq. (6.20) we obtain 

Aag(H)u = g(H)A°u+ [Aa

i9(H)]u 

= g(H)A«u + E 
? = 1 

\\F£i[Ha9tA]P[a]+1uEM 

since B{ = 
2 
31 

ad>Ai(g{H)) are all bounded by (6.19). 

Section 7. Local Decay, Velocity Bounds and Spectral Theory 

Recall the notion of threshold energy: /C a = 0 for some cluster decom

position a(a) and channel a. Here /C a = E — ea where ea is an eigenvalue 

of Ha. Thus thresholds E are eigenvalues of subhamiltonians Ha. The set 

of all thresholds is denoted T. It is known that T is discrete and bounded. 

Furthermore points of T can accumulate (at K £ T) only from below. These 

properties of H follow from the Mourre estimate [see e.g. CFKS] which we 

now turn to: 

For E ^ 7', the channel expansion for H gives (the Mourre estimate) 

[Ml-2, PSS, FH1, BG2]. For more general Hamiltonians see [Der2, Gerì, 

FHP1]. 

EA{H)i[H,A]EA{H) > eEl(H) + K , e > 0 
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with K compact ( £ C A ) . 
Let A C A be s.t. H has no eigenvalues in A. Then E^(H) —> 0 as 

|A| —> 0. Since K is compact, we can choose A sufficiently small s.t. 

EAi[H,A]E^ > 0E\(H) - eE\ >{0- e)El(H) . 

A general spectral theory has been developed with the Mourre estimate 
as the main tool. This theory can be thought of infinitesimal and microlocal 
version of scaling theory in PDE (see also [L]). The Mourre estimate deter
mines the way an infinitesimal scaling affects the operator H. Let us describe 
few notable consequences of the Mourre estimate. (A comprehensive analysis 
of the continuous spectral part of H is done in [ABG], [BG1].) See [Iw] for 
applications to systems of equations and [We] to nonhomogeneous media. 

Theorem 7.1 (Mourre) Assume H satisfies the Mourre estimate for an inter
val A. Then H has only finitely many eigenvalues in A; assume moreover that 
the commutator i[[H, A ] , A] is H bounded. Then H has no singular spectrum 
in A. 

Theorem 7.2 (Local Decay) Assume H satisfies the Mourre estimate for an 
interval A and ad2

A(H) is H bounded. Then local decay holds: 

oo u 
— oo 

\\(A)-~*e-<HirP\\Ut<c\№\\l for all = EAip . 

In case A is the dilation generator it is easy to show that (A) can be replaced 
by (x), in the above local decay estimate. 

Theorem 7.3 (Minimal and Maximal Velocity Bounds) [Sig-Sof2] Assume 
as before that the Mourre estimate holds for some energy E. Let 0m and 9M 
be the lower and upper bounds: 

0mE\ < E A i [ H , A } E A < 0 M E 2 l A . 
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Assume furthermore that ad2

A(H) and ad\ are H bounded. Then 

[ 
[ 
[ 

\\F ( 
A 

t 
<em- e ) e - 7 / V H 2 

dt 
Ta <c\\{x)ß(a)1>g /3(a) = 

1 - a 

2 J 

and 
[ 
[ 
[ 

\\F ( 
Q 

>ÖAF + e)e-"lti>\\ 
dt 

t a 
\ \ { x ) ' 3 ^ g . Y | | 2 

Here ip = 25A ̂ . 

REMARK. The upper bound inequality for i[H, A] is called the reverse Mourre 

estimate. Sharp values of 6m and 6M can be found for a general iV-body 

hamiltonian using the Channel Expansion Theorem. 

A corollary of Theorems 1 and 2 is a proof of asymptotic completeness 

for the two body case. Further results can also be established by the analysis 

leading to the above theorems, e.g. propagation estimates for the region of 

phase space where A < 0 and analytic properties in certain weighted spaces 

of the resolvent of H. But not less important and impressive are the results 

about eigenfunctions of H and its resonances. 

Theorem 7.4 (Froese-Herbst) Exponential decay of eigenfunctions. Let H = 

—A + V where V satisfies: 

i) V is — A bounded with bound less than 1 

ii) x • W is bounded from 7i] to 7i~2. 

Suppose that Hip = Eip. Then eA<J :ty € L'1 for all A 2 < M~{H) - E. 

Here r] £ M(H) iff the Mourre estimate holds at rj = E (see CFKS, ch.4). 

The results on absence of embedded eigenvalues uses: 

Theorem 7.5 (Froese-Herbst) Absence of embedded eigenvalues. Let H = 

—A + V where V satisfies conditions (i), (ii) of the above theorem and fur

thermore, x • V V is A bounded with bound less than 2. Then, if eA<*>V> G L2 

for all A real, then ip = 0 (see CFKS, ch. 4). 

There are also interesting results about the existence and characterization 

of resonances using the Mourre estimate in [Or] and to Nonlinear instability 
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of periodic solutions [Sig2]. See also [FL, J, Na]. 

PROOF. The proof of the first part of Theorem 7.1 is very simple: Let 

{ipn}%Li be eigenfunctions of H with eigenvalues in A. Then 

0 = (1>n,[H9iA]il>n) = (Y1>n,E*[HM]E*1>n) > 0 | | lM | 2 + (1>n,Kil>n) . 

Now, let n —• oo; then (i/jn,Kipn) —> 0 since K is compact. We used also 

the virial theorem to prove the first equality. 

The absence of singular continuous spectrum in A follows from Local 

Decay (Theorem 7.2). 

The original proof of Theorem 7.2 given by Mourre was based on proving 

differential inequality for the complex distorted resolvent of i7, the distortion 

is generated by the group elXA. 

Later a new proof, more general, was given by the methods of microlocal 

propagation estimates [Sig-Sof2]. This proof implied also the minimal and 

maximal velocity bounds as well as pointwise decay estimates (in time) in 

certain regions of the phase-space [Sig-Sof2, Sk, Ger2, H-Sk, Ger-Sig, Her]. 

This approach could also be extended to time dependent hamiltonians of the 

type 

H(t) = H + W{x,t) 

that arise in long range scattering theory. 

IDEA OF PROOF. (Theorems 7.2,3) We construct a sequence of negative 

propagation observables of singular operators. Each one, when used, implies 

a propagation estimate which is then used to control the remainder terms of 

the next, more singular observable. Denote for a moment by X(t) a monotone 

increasing function of ¿, and let a,/3 > 0. Then 

0 a , / ? ( A , t ) = -( 
-X(t) 

10 ) 
a 

F ( 
\(t) 

t 
< -6 ) 

satisfies 

i) <ßa,ß < 0 

ü) ít^A1) > 0 f o r a n y 6 > °-
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The Mourre estimate then suggest the use of 

A(i) - eiHiAe-iHi . 

To make the analysis go, we take <j>aJ3(A,t) = Fa as the propagation observ

ables and work inductively in a. 

Using the Leibnitz Rule for operators and the Mourre estimate we can 

then bound EADFaE& from below, to prove the theorems 2, 3 by invoking 

the Basic Lemma. 

This approach allows very precise localization of the orbit e~~tiHip in the 

phase space. For general two body hamiltonians of the PDO type one can 

prove asymptotic completeness by proving sharp localization of the solution 

near the classical trajectories [Sigl]. The previous approach to this prob

lem required intricate stationary phase analysis and resolvent estimates due 

to Agmon; see [Ho IV, last chapter], see also [Kit-Ku], [Comb] for another 

approach. 

The above method of proving theorems 2, 3 suggests a way of getting 

finite propagation speed behavior to Schródinger type equations and may be 

useful in the study of propagation of singularities. For some progress in this 

direction see [Ger-Sig]. 

Section 8. The iV-body Long Range Scattering 

The results of this section are based on [Sig-Sof4,5]. 

Using the minimal velocity bounds we infer that, for large times, \x\ > c¿, 

when the total energy of the state -0+ is localized away from the thresholds 

of H. 

In the Long Range case, the two body potentials (at least some of them) 

vanish like \x\"^1 with /i < 1. Therefore | x z j | ~ / ¿ ~ t~~fl for large |i| which is 

not integrable. In particular the proof of AC fails, since now 

IaJa=0{\x\-»)£Ll{dt) . 

(by this we mean (ip(t), | z | - ^ ( * ) ) ^ Ll(dt)). 

It can be shown that the asymptotic motions of subsystems cannot be free. 

The modification needed makes the asymptotic hamiltonians time dependent. 
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For each cluster decomposition a we define the hamiltonian 

Ha(t) = Ha + Ia(x\xü) \ X a = V a t . 

Using Ha(t) instead of Ha in the proof of existence of the Deift-Simon Wave 

Operators, the JaIa term is replaced by 

Ja{Ia{x\xa) - Ia{xa,Vat)) = 0 { \ x \ ^ ) \ x a - V a t \ J a 

We therefore need to prove a sharp propagation estimate 

\\Ja\xa - vat\%l>(t)\\ = 0(Vl~e) for some e > 0 

to conclude the proof in the Long Range Case. 

In practice we modify the time dependent part of Ha(t) further, to include 

the known minimal and maximal velocity bounds: 

Ha(t) = Ha + Wa{x,t) 

where 

Wa{x,t)=Fa,E(x,t)Ia{xa,vat) . 

Here F a ? £(x , t ) localizes m < \x\/t < M with m, M depending on a and E. 

We therefore have 

№ d ? w \ < c Q , / 3 ( i + | x | + < t ( o ) ) + < 

Let 
4>a = F{m < 

\x\ 
t 

< M)ja(x,pa) 

where j a is a phase-space partition of unity of T*X. Then it is easy to verify 

that 

Theorem 8.1 
a)J2<f>a + F(lfl < m) + F(Jfl > M) = 1 + 0(t~l) \t\ > 1 

a 

b)(f>a are supported in {\x\fl > 6\x\}n{mt < \x\ < Mt}x{\ka\ < R} = Qa 

c) (t)W+ßd2d?(f)a are supported in fiAa\PSk. 
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Here PSl

E = PSE H {rn < ifl < M} 

We then have (Sig-Sof4) 

Theorem 8.2 (Sharp Propagation Estimate) Assume /i > 0. Let E be away 

from the thresholds and eigenvalues of H. Then, there exists an interval A 

around E s.t. 
(TO [ 
[ 

1 

|| Xa 

t 
-Va\ r'<t>a^t 

|| 
|| 

2 dt 
t 

<u.,tt(o)) 

The proof follows by studying the following propagation observables. Let 

<u.,tt(o)) 
E a 

t 
-vrf + t-^-2 t>l 

and define the propagation observables 

Fa = 0 f l A a </)a . 

The Heisenberg derivative of Fa consists of two (kinds of) terms: 

<a{DAa)(ß(l < 0 

and 

{D(¡)a)Ka(¡)u + (¡)aKaD(t)a . 

This second term lives away from the PSl

E by the properties of 4>a. Hence 

the original propagation theorem for PSi; and the minimal/maximal velocity 

bounds show that this term is L[ (dt) which completes the proof. Alternatively, 

one can use Graf's argument and consider 

E <¡>tiKi<l>a 

and try to arrange that, by choosing different <f>a 

E 
a 

(D<j>a)Aa<t>a + E 
a 

4>aKD4>a<0 + O{Ll(dt)) . 
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This indeed can be done using the monotonic partitions of unity [Gr, Der3]. So 

far we studied the asymptotic behavior of e~tI]tip for t large and E away from 

the thresholds and eigenvalues of H. This establishes Asymptotic Clustering 

Theorem 8.3 (Asymptotic Clustering) Let \i = 1 and E be away from the 

thresholds and eigenvalues of H. Then Asymptotic Clustering holds for any 

number of particles: 

lim 
t-+±oc 

| | e - ¿ / / V - E 
n 

\\F£i[Ha9tA-+0 

The proof follows from the Sharp propagation estimate and construction 

of the Deift-Simon wave operators as in the short range case [Sig-Sof4]. Re

cently, by using an intermediate asymptotic dynamics [Ge-Der] improved the 

above theorem to include all cases of ̂  < fi. 

We now turn to the problem of Asymptotic Completeness in the Long 

Range Case. The new feature is the need to analyze the asymptotic behavior 

of an iV-body system with time dependent perturbation W(x,t) added. In 

this case we have to redevelop all the local decay, velocity bounds, etc. for such 

hamiltonians. The first problem we are faced with is that the energy is not 

conserved by time dependent hamiltonians: EA(Ha)Ua{t) ^ Ua{t)EA(Ha). 

Asymptotic Energy Operators 

To treat the lack of energy conservation, we need the method of asymp

totic microlocalization. We show that asymptotically the energy distribution 

is constant and we will microlocalize using the asymptotic observables build 

from the energy projections [Sig-Sof2-5] see also [Sol]. Let Q be any bounded 

interval. Then 

exists, for any fi > 0. 

Here U(t) is generated by H+W(x, t) and W(x, t) satisfies the conditions 

of this section. Moreover 

\ \ U ( t ) E ^ - E 9 U ( t ) \ \ < C \ Q \ - l ( t ) ^ - u . 
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The proof is simple; it uses Cook's argument to U(t)*EAU(t) and the decay 

properties of W(x, t). Prom now on, we refer to Ua(t) as U(t) (with Ha —• H). 

By considering E £T (the threshold set of H) and letting 

tf,* = E^(H)ip A D E, |A| small enough 

we can prove now asymptotic clustering for U(t)E^. This is because the 

local decay and minimal and maximal velocity bounds can be proved for H(t) 

by the methods of [Sig-Sof2] as for the independent case. The same is true 

for the sharp propagation estimates. The main difference now is that we 

have to estimate Djj^(t)F instead of Djj F for the propagation observables F. 

Furthermore, we need to localize using Ea= instead of EA. Both of these can 

be achieved using the decay properties of W. It is left to consider states in 

the range of the singular asymptotic projections: E^\ 

Let E G T and Q D E. Then, as before E^ exists. Since T is discrete, 

by density argument we can reduce the problem to an arbitrary small interval 

around E. We then are left to consider 

' n h r e s , () = U 
EeT 

{ 
{ 

lm lim 
Mio 
DE 

Et;(HU I v e ü 
} 

1 

The scattering theory for initial states in W îres (H) is fundamentally different 

than that of states in the orthogonal complement. Such states, if they exist, 

can only diffuse in certain channels (open) rather than scatter, because they 

are localized on threshold energies. Consequently the propagation theory is 

very different. To begin with, the Mourre estimate does not hold and therefore 

local decay, velocity bounds fail. 

Asymptotic Microlocalization and Propagation 

We defined the space of (asymptotic) thresholds Wthres.(-H') i n terms of 

the singular projections lim| A | j 0 E^(H) A D J5, E G T. Since we cannot 

expect |x| ~ ct for such states we need another way of getting some local 

decay. The first step is then the following time dependent decomposition of 

the space: 
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(A) | s | < cta 

B \x\ > cta 

for some a < 1. 
In region (A) scattering is not possible. However we treat states in this region 
using the following wave-operator argument: 

W(x,t) = W(x,t)-W(0,t) + W(0,t) = O 8 N 
*2 ) + W{0,t) = 0 ( r 2 + a ) + W{0,t) 

in the region (A). Hence we expect the following wave operator to exist: 

uD(ty [ 
[ 

1 * 1 
ta < 1 ) 1 7 ( 0 fiDa +D • 

By Cook's argument and the observation above, it is reduced to proving 
that DF(Q < 1) e Ll(dt). Since £>F lives in the region ^ ~ 1, the problem 
is reduced to the region |x|ta > 1, where scattering is expected. 

In region (B) \x\ > t a , but the momentum can be arbitrarily close to 
zero. This suggests another sharp decomposition: 

(I) \p\ > et'? 

(II) \p\ < et'0. 
Our aim is now to get positive commutators in the region (I), (II) by using 

that for free flow xa ~ vat. Let us consider a simple example to illustrate this 
approach. Assume that U(t) is generated by a three particle Hamiltonian plus 
W(x,t). (This is the hard case for TV = 4). Let E E T be negative. In this 
case, there is no propagation on the three cluster decomposition, by energy 
conservation. 

Consider the following propagation observable, for any two cluster de
composition a: 

Fa = Fl ( 1*1 
|*| 

> E 
) F2 ( \X(L I 

t" 
> 1 ) F3{\pa\ < act"-1) • 

We estimate D0Fa = D-\Fa. Clearly 

A ) F 3 < 0 since [p„,A] = 0 . 
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D0F2 = F^t-a(la -
a p t t | 

t ) 
+ 0 ( t - 2 a ) . 

for a > l 

2 
0 ( * - 2 a ) G Ll(dt). F^ localizes Ea 

ZA ~ 1 , hence 

= 
« F o l 

t 
- - a t 0 " 1 . 

Finally, 

\ja\F3(\pa\<ar-1)<at^l+0(t-1) 

by the Localization Lemma. Combining all the above we conclude that 

D0F2 < S t ' 1 + 0(t~la) for some positive 6 , 

on support of F 3 . 

Finally, observe that DF\ lives where \xa\ ~ ea\x\ and therefore on the 

free channel (recall # (a ) = 2 and the total number of particles is 3). There 

is no propagation on support DF\, since E < 0. We therefore conclude that 

D0Fa < 
-6 

t 
FxF^+0(Ll(dt)) . 

To show that the potential parts do not change the monotonicity esti

mate, observe that Fa lives in the region {\x\a > f Q , -y^ < £a} which is a 

two cluster decomposition a with \x\ > cta. Furthermore F a , as a phase 

space operator is independent of p°. Hence the commutator with V decays 

like | t | ~ ( 1 + ^ ) a e Ll(dt). The commutator with W(x,t) is estimated by the 

formulas for the commutator of functions of operators to give a contribution 

of order 

O f r 1 - " * 1 - * ) = O ( r " - û ) e Ll{dt). 

We therefore conclude that — Fa is a propagation observable for H(t), when 

H(t) = H + W(x,t) and i f is a three particle hamiltonian. 

The resulting propagation estimate and similar analysis for |p a | > cda~~l 

and a time dependent two cluster partition of unity, shows that there is no 

propagation in the region |x|ta = 1. Other types of estimates are needed to 

complete the proof for N = 4. 
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Let us consider another case. Let E = 0. Then E 6 T and the system 

can propagate on 3 cluster decompositions, so the previous observable does 

not work, since now we do not know if DF\ 6 Ll(dt). However, in this case, 

we compute 

DF± = 1 
(x) FUr -

\xa\ 
\x\ 

7) + 0 ( | x | - 2 ) . 

We use Fy to conclude that 

0(\x\-2)F2 = 0{r'2a) e L\dt) . 

Furthermore, F[ localizes on three cluster decompositions and 1e 
|x| 

~ ea. On 

three cluster decompositions E 
i<j 

V = 0(\x\-»). 

Hence, if we pull a sharp energy localization projection of the type 

F(\H\ < t~P) from t\) e Wthres., (Recall that now E = 0) we get 

F[F(\H\ < t^)F2 = F[F(\p2 \ < t~3)F2 + Oit-^13) . 

Using now that \p2\ < t & we use the localization Lemma to conclude that 

( s ) - V and ( a ) " 1 7 are both of order t ' Q t ^ 1 2 G Ll{dt) 

if we choose a + /3/2 > 1. A complete solution of the 4 body problem along 

these lines is given in [Sig-Sof5]. 
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Inverse boundary value problems and applications 

Gunther Uhlmann* 

0. Introduction 
The main purpose of these lecture notes, which are a revised and ex

panded version of the survey paper [S-U V ] , is to give an overview of the 
mathematical developments in the last few years in inverse boundary value 
problems. In these problems one attempts to discover internal properties of 
a b o d y by making measurements at the boundary. W e concentrate mainly in 
the problem of determining the conductivity of a b o d y from measurements 
of voltage potentials and corresponding current fluxes at the boundary. This 
problem which is often referred to as Electrical Impedance Tomography arose 
in geophysics from attempts to determine the composit ion of the earth. More 
recently it has been proposed as a potentially valuable diagnostic tool for 
the medical sciences. The methods developed to study this problem have 
lead to new results in inverse scattering and inverse spectral problems. W e 
also give an account of some of these developments in these notes. 

1. Electrical impedance tomography; the isotropic case. 
In this section we formulate the inverse conductivity problem and a 

similar problem for the Schrodinger equation at zero energy. 
Let C R n n > 2, be a smooth bounded domain. If the conductivity of 

Q is independent of direction (isotropic case) it is represented by a positive 
function, which we assume in C 1 , 1 ( Q ) , with a positive lower bound. If we 
assume that there are no sources or sinks of current in fi, the conductivity 
equation for the potential u in fi is 

( l . i ) L^u = div (yVu) = 0 in fî. 

If / represents the induced potential on the boundary (assume / € H* (9f2)), 
u € H1 (Cl) solves the Dirichlet problem 

(1.2) L~u = 0 in Q 
L~u = 0L~u = 

* Partially supported by NSF Grant D M S 9100178. 

s. M. F. 
Astérisque 207 (1992) 153 
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The Dirichlet to Neumann map is then defined by 

(1.3) A 7 ( / ) = 7 
du 

du 

where u is the solution of (1.2) and u is the unit outer normal to the bound
ary. T h e map 

Lau = 0 in Ct Lau = 0 in CtLau = 0 

is selfadjoint and is often called the voltage to current map because 7 ^ 
measures the current flux at the boundary. 

The inverse conductivity problem consists of the study of various prop
erties of the map 

(1.4) 7 - t A 7 . 

These properties include the injectivity, range, and continuity of the map and 
its inverse (when an inverse exists). From the point of view of applications, 
an even more important problem is to give a method to reconstruct 7 (o r at 
least to deduce as much information as possible about 7) from A 7 . 

A closely related problem is to consider instead of the conductivity 
equation, the Schrodinger equation at zero energy 

(1.5) Lq = A - q 

where q € L°° ( f t ) . 
If 0 is not an eigenvalue of La, we can solve the Dirichlet problem 

(1.6) Lau = 0 in Ct 

u\oa = f 

and define the Dirichlet to Neumann map by 

(1.7) A , ( / ) 
du 
du 

where u is the solution of (1.6) . W e want to study the map 

(1.8) 5 A 

g - ^ A g . ^ A g 

A 7 and Aq are related in the following way: If it is a solution of (1.1) then 

1 
w = 7 2 ?x 
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is a solution of Lqw = 0 with q = 
A v / 7 
Av/7 

It is a straightforward computat ion 

to see that 

(1.9) A . = 7 » A 7 7 2 
1 

2 7 

Av/7 

#77 

Thus if we know A 7 , 7 | a n and §^|an we can determine Aq. In the next 

section we shall see that A 7 determines 7 |an and §J|an, so that knowledge 

of A 7 determines Aq. 

2 . Results at the boundary 
Kohn and Vogelius ( [K-V, I]) proved that if 7 € C°°(Cl) one can deter

mine dv3 V j . 

Theorem 2 . 1 . Let n(i = 1,2) be in L°°(Q) with a positive lower bound. 

Let XQ € dCl and let B be a neighborhood of XQ relative to Q. Suppose that 

7 i € C ° ° ( £ ) , » = 1,2 

and 
A 7 1 ( / ) = A 7 2 ( / ) V / € F * ( Ö O ) Q7i(*o) with 

supp f C B fi dÇi, then 

d 

dx 
Q 7 i ( * o ) 

d 

dx' 

Q7i(*o) 

where 

dx 
a denotes 

Ô 

dxi 
a i ... 

d 

dxn 

Q7i(*o) 

Sketch of proof. 
Kohn and Vogelius proved this result by cleverly choosing boundary 

data. W e outline here a different approach taken in [S-U, I] which makes use 
of the fact that A 7 is a pseudodifferential operator of order 1. This means 
that, in local coordinates near #0 € dCl which we denote by x\ and for / 
supported near XQ, 

(2.2) A 7 / ( z ' ) = 
A7/(z') = 

m A7/(z') = 0 0 € d 

XJx',n is the full symbol of A 7 and has an asymptotic expansion for large 
f 

[2.3; A7/(z') = 

A7/(z') = 

A7/(z') =A7/(z') = 
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with A 7 homogeneous of degree j in W e have A 7

 } ( x ' = 7 |dii0c')l£'l 

and it was proven in [S-U, I] that A i / ' ( # ' , f ' ) -determines inductively '(#', f') -
'(#', f') - dft 

(For a simpler proof of this see the paper [L-U] and also the sketch in section 
9 of this paper.) 

The previous result implies the injectivity of $ at real-analytic conduc
tivities. Kohn and Vogelius extended this result further to cover piecewise 
real-analytic conductivities (JK-V, II]). 

Sylvester and Uhlmann ([S-U I]) used the proof of Theorem 2.1 outlined 
above to give continuous dependence estimates at the boundary. 

Theorem 2 .4 . Let ji, i = 1,2 be in L°°(Q) with a positive lower bound. 
Then 

(a) A 7 l - A 7 2 
2 » 2 

C Ti - 7 2 '(#', f') -

If 7 i , 72 are continuous, then 

|7i - 72 L°°(dsi) < Ci A 7 l - A 7 2 '(#', f') -

(b) If 7i ,72 are Lipschitz continuous then 

Bi = A 7 . - 7,-Ai satisfy 

\Bx-B2 hi C2 7i ~ 72 7i ~ 72 

and ||7! - 72||ivi.~(ön) + II¿(71 ~ 72)|U~(an) 

< c 3 
Bi — B2 i 1 

2>2 

A 7 1 - A 7 2 
2» 2 

On the operators we use the operator norm. C\ depends only on Q and 
the lower bound of the 7 t ' s . C21C3 depends only on Q and the j^s are 
normalized to have Lipschitz norm less than or equal to one. 

3 . Linearization at constants; Calderón's approach 
Calderón formulated the inverse conductivity problem in a different way. 

He considered the Dirichlet integral associated to the solution of (1.2) 

3.1 7i ~ 72 

f 
r | v « | 2 , 

Q1(f) measures the power necessary to maintain the potential / on the 
boundary. 
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Polarizing the quadratic form Q1 we obtain the bilinear form 

(3.2) QMg) = 7Vi¿ • V v 

where u is a solution of (1.2) and v solves 

(3.3) LyV = 0 in Q 

v\dü = 9-

The divergence theorem gives 

(3.4) 
v\dü = 9-v\dü = 

an 
dü 

In other words A 7 : H* (dQ) 2 (9f i) is the unique selfadjoint operator 

associated to the quadratic form Q~ with domain H*(dQ). The inverse 
conductivity problem can then be reformulated as the study of the map 

(3.5) 
dü Vu • + qu 

For the Schrödinger equation Lq we look at the Dirichlet form 

(3.6) Qq(f,g) =fhfg 
Vu • 

Vu • + quv 

where u, v solve 

(3.7) LqU = LqV = 0 in Q 

u\dn = / ; v\dii = 9 

and we can consider the map 

(3.8) 9 
Q 

Qq-

Calderón computed the formal linearization of Q near 7. He obtained 

3.9 lim 
e—o 

Vu • + qu 

e 
f,9 

$*ù$ 

Vu • + qu 

with u,v as in (1.2) and (3.3) . 
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A n analogous computation shows that 

3.10 lim 
£ — о 

Qq+€(f Qq, 

S 
f>9. 77 • 

cpuv 

with u<v as in (3.7) . 
Formulas (3.9) and (3.10) imply that the formal linearization of Q (resp. 

Q) at 7 (resp. q) is injective iff the linear span of the inner products of 
gradients of solutions to (3.3)(resp. products of solutions to (3.7)) is dense 
in L2(Q)\ or equivalently that any function orthogonal to all such inner 
products (resp. products) is identically zero. 

Calderón exploited this by proving: 

Theorem 3 . 1 1 . The linear span of the inner products of gradients of solu
tions of harmonic functions (or the product of harmonic functions) is dense 
in L2(Q). 

P r o o f . Calderón chose the complex exponential harmonic functions 

Í3.12) 
и = ex'p 

— X' о 
V = e И 

where p G Cn. These functions are harmonic iff 

(3.13) 77 • к = 0, \r) 

For p = 7i + ik, with ту,fc G Rn, (3.13) is satisfied iff 77 • к = 0, \r)\ = |fc|. 
Inserting (3.12) into (3.9)(resp. (3.10)) yields 

ù*$$ 
(pVu-Vv = -2\k\2 

ù$ 

e2ix(x)dx(x)dx 

and 

ft 

ipuv — 

ù$ 
e2 lx ' k (p (x ) .dx 

In both cases we conclude by the Fourier inversion formula that <p = 0 in ÎÎ. 

4. Special solutions 
Motivated by Calderon's approach, Sylvester and Uhlmann constructed 

an analog for the elliptic equations (3.3) (or (3.7)) of the geometrical optics 
solutions for hyperbolic equations. These solutions behave like the complex 
exponentials ex"p, p • p = 0 for large complex frequencies p. 
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Theorem 4 . 1 . Let q <E L°°(ü) so that q = 0 in Qc. 

Let p 6 C n , n > 2 be such that 

(4.2) p-p = 0 

and 

(4.3; |p|>||(i + N2)*«|U«f 

tien there exists a unique solution to 

Lqu = 0 in R n 

of the form 

(4.4) u(x,p) = ex-p(l + ipq(x,p)) 

where 1>q(-,p) € L2

6(R
n), -1<6<0. 

Furthermore 

(4.5) 
Hm 1Hm

 1 C 

\P\ 
1\ Hm

 1 "s+i ' 
m > 0. 

¿1 R n ) is the weighted L -space 

Hm
 1 

R" 7; l / l 2 (1 + |a;|2)6da; < 00} , 

F Ä - ( R n ) is the corresponding Sobolev space. 
A n analogous statement is valid for the conductivity equation. Extend 

7 € C 1 ' 1 ^ ) to 7 G C 1 ' 1 ^ " ) with 7 = 1 outside a ball. Then the solution 
(4.4) is replaced by 

(4.6) u(x,p) = ex-pj l(l + i>^(x,p)) 

V>9 (resp. ^ 7 ) in (4.4) (resp. (4.6)) satisfy the "transport" equation 

(4.7) Al/jq + 2p • Vt/Jq -qi/jq=q 

(resp. A ^ 7 + 2p • VV>7 — q<yi/>q = g 7 with </7 = Av/7 The solution of 

the singular perturbation problem (4.7) with growth condition at infinity 
is easily seen to be a regular perturbation of the following proposition (see 
[S-U, II], Prop. 2.1) 
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Proposit ion 4 .8 . Suppose 

p. p = 0, \p\ > B > 0 , - 1 < 6 < 0 

and / G £ ¿ + 1 . Then there exists a unique 0 € L\ solving 

A<f> + p . V<t> = /. 

Moreover, 

I* FT-
c(JM) 

H 
11/11%' m > 0. 

Theorem 4.1 has been extended to more singular potentials (see for 
instance [Ch]). Isakov [Is I] has given a different construction of special solu
tions which also applies to other equations with constant coefficient principal 
part. However, he doesn' t obtain weighted estimates for the solutions. 

5 . Uniqueness and continuous dependence, n > 3 

Sylvester and Uhlmann [S-U, II] proved that the map <& (resp. $ ) is in-
jective for smooth conductivities (potentials). The smoothness assumptions 

were relaxed to 7 G C 1 ' 1 ^ ) (q £ L°°(Q)) in [N-S-U]. 

Theorem 5 .1 . (a) Let n > 3, 71,72 € C 1 , x (r2) with a positive lower bound 
and 

A 7 l — A 7 2 , 

then 

7i = 72 • 

(b) Let n>3, qi,q2 G L°°(Q) and 

A g i — Aq2 , 

then 

Qi = 92-

Proof. W e first prove ( b ) . A n easy application of Green's theorem gives 

(5.2) (91 - q2)ulu2 = 
f1Aq1f2 – f2Aq2f1 

where U{ is solution of LqiU{ = 0 and fc = u^n^ i = 1,2. Since Aq is a self 

adjoint map we obtain the identity proven by Alessandrini ([A]) 

(5.3) 
7n 

{qi - q2)uiu2 = 
J on 

h(K - A g a ) / 2 . 
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If Aqi = Aq2 we have 

(5.4) (qi - 92)^1^2 = 0 

for all which solve LqiU{ = 0 , t = 1,2. W e let 

(5.5) u i = ex-"(l + 1>q.(x,pi)) 

with pi as in Theorem 4.1 and choose (in order to guarantee (4.2)) 

(5.6) 
Pi 1 

2 

i(ru + k) 

2 

P2 
1 

2 

i(—roj + k) 

2 

where f],u>,k € R " , |w| = 1, r € R with 

rj-k = T]-uj = u)-k = 0 

and 
\ v \ 2 = r2 + k \ 

Substituting (5.5) into (5.4) gives 

(5.7) 

'ft 

5i = ù$$ 
191 - 92) = ex-p(l 

ft 
elx'k\ 'fai + ^ 9 2 + 1>qi ̂ q2) (Cl - 92) . 

However, the estimate (4.5) implies that ipqi —> 0 in Q as r —• oo . Therefore 

5i = <Z2 .5i = <Z2 . 

and thus 

5i = <Z2 . 

A proof of part (a) follows from the fact that if A 7 l = A 7 2 then A ^ 7 i = 

A q 7 2 with </7. = ^ = p - because of (1.9) and Theorem (2.1) . Now it is easy to 

check (see for example [S-U II]) that qlx = ql2 implies 71 = 72. • 

A very interesting problem is to extend the uniqueness result above to 
the case of piecewise continuous conductivities. Isakov [Is II] has proven such 
a result for conductivities with j u m p type singularities across the boundary 
of an open bounded subset of Q. 
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Alessandrini ([Al]) used the identity (5.3) , the special solutions of The
orem (4.1) and the continuous dependence estimate at the boundary (Theo
rem 2.4) to prove a stability estimate (i.e. a logarithmic continuous depen
dence result, which depends on an a-priori bound in a high Sobolev norm) 
for the conductivity. 

Theorem 5 .8 . Let s > § , n > 3, j { e HS+2(Q) with 

0 < a < ufa) x e Q 

and 

Il7t||ir-+*(n) < 
1. 

a 
t = 1,2. 

Then 

7i - 72 L~>(H) < C a ^ | | A 7 l - A 7 2 | | w ) 

where 

w(t) = 
1 

- l o g * 

6 
1 0 < t < 1 

and <5, 0 < 8 < 1 depends only on n and 5. 

It is not known whether this is the best possible continuous dependence 
result. However, for conductivities having special features better continuous 
dependence results are known. Friedman and Vogelius ([F-V]) have shown 
that if one seeks to find spheres of zero or infinite conductivity inside a 
medium with ambient constant conductivity, then the radii and diameters 
are Lipschitz continuous functions of the measurements in two dimensions. It 
would be useful to understand the mechanism of ill-posedness in the general 
problem in order to better study special problems where the dependence 
could be better. 

6 . C o m p l e x frequency Born approximation, n > 3 
In this section we discuss briefly the relationship between the Dirichlet 

to Neumann map A^ and the function T defined in the 9-approach to multi
dimensional inverse scattering theory by Ablowitz and Nachman ([N-A]) and 
Beals and Coifman ([B-C I]). In one dimension it had been developed earlier 
in [B-C II]. For more details the reader should look at those papers and the 
more recent ones like [N-H], [N] and [No] and the references indicated there. 

Let us assume q € L°°(S}) with q = 0 outside fì. The scattering am
plitude can then be written in terms of the outgoing eigenfunction (see for 
example [Ag]) 

(6 . i ) a(À,0,a;) = cn 

5i = <Z2 . 
r/(x) ,0_|.(A,x,a;)(ix, 
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where A G R , 8,u € Sn 1 and ^ + ( A , x , o ; ) is the outgoing eigenfunction of 
—A + q i.e. is the solution of the Lippmann-Schwinger equation 

(6.2) 
R, 8,u € Sn R, 8,u € 

G$(x - y)q(y)ip+(\,y,u)dy 

where G ì is the outgoing Green's kernel 

(6.3) 
R, 8,u 
€ Sn = ( 2 7 T ) - " 

R, 8 

k2 — X2 — iO 
•dk. 

The outgoing eigenfunction ip+ has the asymptotic expression for large \x\ 
(see [Ag]) 

(6.3 ') 7p+(\,X,ùj) 
R, 8,u 
€ Sn 

a(A,0,u;) 

| x | n 2 
3 a l x l + 0 ( | x | 

R, 8 

2 5 

where 6 = A . 

Moreover the following estimate holds (see [Ag]) 

(6.4) ! . _ ei\x-u, 

1̂2 
C 

A 
9 ¿2' 5 

2" 

^From (6.4) and (6.1) it is easy to derive the Born approximation for the 
scattering amplitude. 

Faddeev [F] proposed to construct exponentially growing eigenfunctions 
of 

(6.5) - A + q)u(x,C) = C2u(x,Q 

where £ € C " is arbitrary but non-real, by solving the integral equation 

(6.6) u(x,0 = e x < - Gç(x - y)q(y)u(y,()dy 

where G^(x) is a new Green's kernel for A — ( 2 : 

(6.7) GAx) = 
1 

( 2 7 T ) n 

R, 8 
R, 8,u 

-\k\2 + 2i<:-k 
dk. 

Notice that Gç satisfies formally 

(6.8) ( A - C 2 ) G C = 6(x). 
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Faddeev proposed using these generalized eigenfunctions for complex pa
rameters C with imaginary part tending to zero as a generalization to 3 
dimensions of the Gelfand-Levitan approach to inverse scattering in one di
mension. 

Notice that hr(x) = e x'(*Gr(x) is the solution of 

(6.9) ( A + 2C • V ) f c c = S(x). 

Proposition (4.8) implies, for C*C = 0 and |C| large, the integral equation (6.6) 
has a unique solution. These generalized eigenfunctions were also considered 
by Ablowitz and Nachman ([N-A]) and Beals and Coifman [B-C 1,11] in 

their 9-approach to the study of the scattering amplitude. In particular, in 
analogy with (6.1) they considered the function 

(6.10) Tq(k,o = e-ix-k q(x)u(x,Ç) R, Sndx 

with u solution of (6 .6) . The point is that the compatibility conditions for 

the d-equation leads to compatibility conditions for the range of the map 

(6.11) q^Tq. 

Henkin and Novikov ([N-H]) gave a characterization of T for sufficiently 
smooth potentials (the derivation in [N-A] is formal and Beals and Coifman 
[B-C] gave proofs for small potentials and (•£ = 0 ) . The relationship between 
T(fc,(j and the physical scattering amplitude has been studied ([L-N ]) and 
[N-H] but there is still not complete understanding of this. W e want to point 
out here the relation between T(fc ,£) (or rather a closely related function; 
see below) and A g . For this we shall give yet another proof of Theorem 4.1 
which appeared in [N-S-U]. We define 

(6.12) t(k,p) = e - i x . k e - x . p q { [x)u(x,p) R, 8,udx 

where u(x,p) is the solution of Lqu = 0 in Theorem 4.1 and we require, for 

k e R n , that p e C n satisfy: 

(6.13) p-p = 0, (ik + p) • (ik + p) = 0, \p\ > 11(1 + |s| 2)*<z(aO|| L~ • 

W e then have 

(6.14) 
^eix>k+x-p 

= 0, Au — qu. 
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Using (6.14) and Green's theorem we see that 

(6.15) t(k,p) = 
€ Sn 

R, 8,u € Sn 

Aqu\da + (ik + p) • vu\dn] dS 

with dS euclidean surface measure on dd. 
Hence we can compute t(k,p) for (fc,p) satisfying (6.13)) if we know Aq 

and the boundary values of the special solution u(x,p). moreover, we prove 
next (see [S-U, I]) that u\da is actually determined uniquely by Aq. 

Proposition 6 .16 . Let qi,q2 G L°°(Q) such that 

Aqi — Aq2. 

Let u\,u2 be solution of 

LqiUi = 0, i = 1,2 

as in Theorem 4.1. Then 
€ Sn

 qiw = 0qiw = 0 

Proof. Let us consider the solution of 

(6.17) Lqiw = 0 

Man = U2-

Let us define 

(6.18) z = 
w in CI 
u2 in Qc. 

Now, z obviously satisfies (6.17) in R n \ c? f2 ; in addition, 

(6.19) 
dz 

qiw an Aqiz\ A 9 l (u2 |an) Aq2 u2\dft 
du2 

du an-

Hence z G CXil(Q) and solves (6.17) in all of R n . Because z satisfies the 
required growth conditions at oo , the uniqueness part of Theorem 4.1 implies 
that w = u\, concluding the proof. • 

Proposition (6.16) implies that, if Aqi = A 9 2 , then <i(fc,p) = t2(k,p) 
with (fc,p) as in (6.13). 
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Now for these (fc,p) 

(6.20) lim t(k,p) = 
|p|-+oo 

qiw = 0 q(x)dx = q(k). 

Proposition (6.16) and (6.20) provide another proof of Theorem 5.1. Equa
tion (6.20) may be thought of as an analog of the Born-approximation for 
complex-frequencies. Nachman ([N]) observed that u(-,p)\dn as in (4.4) sat
isfies a Fredholm integral equation on the boundary. Because q = 0 in 
u(x,p) must satisfy 

(6.21) Au = 0 in fic 

du 

dv 
an qiw = 0 

Because u has the same asymptotics as Gp in (6.7) , it must be a c o m 
bination of the single and double layer potentials 

(6.22) SPf(x) = 
an 

Gp(x - y)f(y)dSy 

(6.23) Bpf(x) = 
Jan 

dGp 

dv 
[x -y)f{y)dSy. 

Nachman showed that U(X,P)\QCI was the unique solution to 

(6.24; f{x,p) = e*-'- SpAq — Bp — 
1 

2 
qiw = 0 

for every x G 
The point is that equation (6.24) does not depend on q and therefore 

provides a direct method for finding u{x,p)\drt without a priori knowledge 
of g. Novikov [No] studied similar integral equations. 
7. T h e two dimensional case 

The Schwartz kernel of the Dirichlet to Neumann map is a distribution 
of (n — 1) + (n — 1) = 2n — 2 variables, while the conductivity itself is a 
function of n variables. Hence the inverse conductivity problem is formally 
overdetermined in dimension n > 3 and formally determined in dimension 2. 
This is reflected in the lack of freedom to choose enough exponential solutions 
as in the proof of Theorem 4.1. The first result in this case was proven by 
Sylvester and Uhlmann [S-U III] for conductivities (resp. potentials) close 
to constant (resp. zero). 

Theorem 7 .1 . 

166 



INVERSE BOUNDARY VALUE PROBLEMS 

(a) Let 7,- G W3>°°(Q), ¿ = 1,2 with positive lower bound. There exists e > 0 
such that if 

Y i - l W 3 .°°(i i) : e, t 1,2 

and 
Aj1 — A 7 2 , 

then 

7i =72-

(b) Let qi G W1,00(Cl) such that t = 1,2 does not have zero as an 
eigenvalue. There exists e > 0 such tiiat if 

q qiw = 0 qiw = 0 = 1,2 

and 
A Ç l — A g 2 , 

then 

qi = 92-

Brief Sketch of proof. Again we only indicate how to prove ( b ) . As in 
the proof of Theorem 5.1, we substitute the special solutions (5.5) into the 
identity (5.4). However, in two dimensions we may not choose pi as in (5.6), 
but must be content with 

(7.2) Pi = 
l + ik 

2 

P2 = 
-l + ik 

2 

where I • k = 0 and \l\2 = \k\2 = | | p | 2 is sufficiently large. This yields esti

mates for the Fourier transform of q\ — q2 for all sufficiently large frequencies. 
W e may estimate the Fourier transform of q\ — q2 at sufficiently low 

frequencies by inserting into (5.4) solutions of LQIU{ = 0 of the form 

(7.3) ui — e x p + 6ui, ôïïi\dn = 0, 

u2 = e x p + 6u2, Su2\dQ = 0. 

If qi q2 are small enough, both estimates combine to produce an inequality 
which can be satisfied only when q\ — q2 is identically zero. • 

The uniqueness question for the inverse conductivity problem for smooth 
conductivity remains open. We report in this section on the progress ob 
tained. The "transport" equation (4.7) has special features in two dimen
sions. 
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Let o G C2 be such that 

(7.4) p-p = 0,\p\> ( î + H 2 ) ^ - . 

W e write such a p in the form 

qiw = 
rj + ik 

2 
77 • fc 

qiw = 
| f c | ; i / ,*€R2, k = (ki,k2). 

Then the equation for ifr in two dimensions can be written in the form 

(7.5) ddij) + (&2 + iki)dip — qil> = q 

where 

(7.6) d = 
1 

2 9xi 
+ * 

d 

dx2 
d = 

1 

2 

d 

dxi 
i 

d 

dx2 

In [S-U, III] it was proven that ip can be written in the form 

(7.7) ijj(x,k) -
a(x) 

k2 + iki + 
b(x,k) 

(k2 + ih)2 

with 

(7.8) IMIir»>llaIU<»(n)ilHlHj ^ c|kllwi.«>(n)-

Moreover a solves 

(7.9) da — q 

¿^0111 Proposit ion (6.16) and the expansion (7.7) we conclude 

Proposit ion 7 .10 . Suppose qi G L°°(Q), i = 1,2, qi = 0 in Qc and Lqi has 
not zero as eigenvalue. Suppose 

AQl — Aq2 

then 
ai = a2 in Qc 

where ai are as in (7.7). 
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We can write a 2 in terms of qi using the Cauchy integral representation 

(7.11) di(x) 
1 

2ni 

X — w 

X — w 
iw A dw. 

For \x\ sufficiently large, we can write 

(7.12) di(x) 
1 

2mx 

oo 

71 = 0 ' 

dw. 
wn 

xn 
dw A dw 

Therefore we conclude from Proposition 7.10 the following result proven in 
[S-U, IV] and [Su, I] 

Theorem 7 .13 . (a) Let ji, i = 1,2 be in W3'°°(Q) with a positive lower 
bound. Assume Q simply connected and 

A 7 l — A 7 2 , 

then 

dw. 
dw. dw. h = 0 

for all h harmonic in Cl. 

(b) Let qi be in W1,co(Q) so that Lqi has no eigenvalue 0, i = 1,2. 
Assume Q simply connected and 

Aqi A q 2 , 

then 

ù$ 
[Qi - Q2)h = 0 

for all h harmonic in Q. 

In particular one can prove the global uniqueness result 

Corollary 7 .14 . Let *yi € W3i°°(Q) with a positive lower bound. Suppose 
72 = constant > 0 and 

A 7 l — A 7 2 , 

then 
7 X = 72 = constant. 

Sun ([Su, II]) has observed that Theorem 7.13 gives the following global 
uniqueness result for conductivities: 
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Theorem 7 .15 . Let ji G W3>°°(Q), i = 1,2 with positive lower bound. 
Assume 7^ is harmonic for some a G R or log 72 is harmonic. If 

A 7 l — A 7 2 , 

then 
7i =72-

Sun also gave a logarithmic continuous dependence result for conductivities 
71,72 as in the hypothesis of Theorem 7.15 under an priori C4(Q) bound 
on 7i 's, i = 1,2. For local uniqueness Sun ([Su, II]) improved on the local 
result, Theorem 7.1, to prove 

Theorem 7 .16 . Let 7» G W3'°°(Q), i = 1,2 with positive lower bound. 
Let 70 G C 3 ( f i ) be such that either (a) 7^ is harmonic for some a G R or 
(fa) 70 = e R e ^ where (/> is an injective conformed map in Q. Then there is 
e > 0 such that if 

\Ы -7o | | ty3,oo ( n ) <e, г = 1,2 

and 
A 7 1 — A 7 2 , 

then 
7i = 72-

All the results assume some a priori restriction on the conductivities or 
potentials besides smoothness. Recently Sun and Uhlmann [Su-U I] proved 
that for almost all conductivities or potentials injectivity and local injectivity 
for the map $ and $ holds. More precisely: 

Theorem 7 .17 . (a) There exists an open and dense set О in И^Д£° (£})*. If 
7 G О there exists an e > 0 such that if 

Wli -l\\w*><~m) < e, t = 1,2 

and 
A 7 l — A 7 2 , 

then 
7i = 72-

r r pos ft) denotes the set of positive functions in W 3 - ° ° ( f t ) . 
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(b) There exists an open and dense set O in W1,OQ(Q). Ifq G O there exists 
e > 0 such that if 

hi - q\\w^(Q) < e , i = 1,2 

and 
Aqi — Aq2 

then 

9i = 92-

For global uniqueness it was proven in [Su-U I]: 

Theorem 7.18. 

(a) There exists an open dense set O in dw. A7l — A72dw.x A7l — A 7 2w.such that 

if (71,72) G O and 
A 7 l — A 7 2 

then 

7i = 72 -

fb) There exists an open dense set O in W^°°{Q) x W^°°{Q) such that if 
U7i ,<7?) G O and 

Aqi — Aq2 

then 

9i = 92-

Sketch of proof. 
We indicate how to prove part (b) of Theorems 7.17 and 7.18. Part (a) 

follows in a similar way to the proof of part (a) of Theorem 5.1 from part 
( b ) . 

The proof of Theorem (7.17) is reduced to show that 

L e m m a 7.19. Let q G L°°(Ü). Then 

Dq = {uv; u, v are solutions of Lqu = Lqv = 0 in Q} 

is complete in L2(Q) forqEÖ where Ö is an open and dense set in W 1 , 0 0 ( Í 2 ) . 

Sketch of proof of L e m m a 7.19 
Consider the g's in W 1 , 0 ° ( í í ) , g = 0 in Qc with ||g||wi,oo(ft) < R. By 

Theorem 4.1 there exists LR > 0 and solutions u,v of. Lau = LnV = 0 in R 2 

of the form 

(7.20) u i (x , fc) = ex'p(l + 1>{x,k)) for \k\ > LR 

u2(x, k) = e-x'p(l + i¡){x, k)) for > L R . 
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W e require further that Lq does not have zero as an eigenvalue (this set of 
g's is easily seen to be open and dense in Wli00(Q)) and denote by U{ the 
solutions of the Dirichlet problem (7.3) . 

Next we define the operator 

(7.22) Aqf(k) = 
fetxk 

txk 

A7l — A72 {i> + i> + i> • i>) for \k\ > LR 

A7l — A72 

txk f(ïïiïï2 - eix'k) for \k\ < LR 

The operator Mq is defined by 

(7.23) Aqf = f + Mqf 

and Kq is defined by taking the inverse Fourier transform 

(7.24) {AqfY = f + Kqf. 

It is easy to see that Dq is complete in L2(Q) if Aq is injective in £ 2 ( R 2 ) . 
The next two propositions are the main technical points of the proof. 

Because of the decay in \k\ of the lower order terms ip and tp and the repre
sentation (7.7) one can prove: 

Proposit ion ( 7 . 2 5 ) . Kq : L2(TLn) £ 2 ( R n ) is compact . 

Moreover the explicit construction of i/> as in (7.7) allows to prove 

Proposit ion ( 7 . 2 6 ) . Kq depends analytically on q, that is, Kqo+\qif has a 

convergent power series in L2 ( R 2 ) for those X's so that \\qo+Xqi\\w1'00^) < R 

and Lqo+\qi does not have zero as an eigenvalue. 

Then for A € C 
(AXqfy = (Id + KXq)f, 

K\q is an analytic function of A for A's so that |A|||g||^/i,oo(^) < R and L\q 

does not have zero as eigenvalue. By the analytic Fredholm theorem then 

(A\qf)
v is an isomorphism except for a discrete set of A's. This sketches the 

proof of Theorem 7.17. For more details see [Su-Ul. • 

The proof of the global result Theorem 7.18 proceeds along similar lines. 

If Aqi = Aq2 relation (5.4) motivates the definition of a similar operator to 

Kq above. Let 91,92 € Wli00(Q) so that HftHw'i.oojn) < R and Lqi, i = 1,2 

does not have zero as eigenvalue. W e define 

(7.27) {Aqi,q2fY — / + Kqijq2f 
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when 

( • ^ 9 i , 9 2 / ) A 

ft , eixkf(4>qi + i>q2 + ipgM, \k\ > LR 

f(uqiuq2 
_ etx-k \k\ < LR 

(7.28) U i = e*r(l + i>qi), 
tx 

ktxk 

is a solution of LqiU{ = 0 i = 1,2 as in theorem 4.1, and uqi solves 

(7.29) Lqiuqi = 0; ïïgi|an = ^xp\dn] uq2\on = e x ' p |an. 

Again, i f g i , g 2 : L 2 ( R n ) —• L 2 ( R n ) is compact and K \ q i i \ q 2 depends analyt
ically on A for A such that ||A<fc||jy'i,oo < i?, i = 1,2. Then by the analytic 
Fredholm theorem A \ q i i \ q 2 is an isomorphism except for a discrete set of 
A's. 

Now if Aqi = A 9 2 , then 91 — 92 is in the kernel of A q u q 2 (see (5 .4)) . Then 
for an open dense set O in Wli°° x W 1 , < x > if (91,92) € 0 and A 9 l = A 9 2 , then 
9i = 92- This finishes the sketch of proof of Theorem 7.17. • 

8. Determining L a m é parameters by boundary measurements 

Another inverse boundary value problem which arises in applications 
is to determine the elastic properties of a material by measuring the stress 
energy to maintain it in a prescribed shape. W e formulate below more 
precisely the mathematical problem. 

Let fi C R n be a bounded domain with smooth boundary which will 
be considered in this paper as a linear, inhomogeneous, isotropic, elastic 
medium. The elastic properties of Q are determined by the pair of Lame 
parameters 7 = (A,/x) € L°°(Q). Moreover we assume the strong convexity 
assumption 

(8.1) a > 0, n\ + 2a > 0 on fi. 

Under the assumption (8.1) we can solve uniquely, with u € i ? 1 ( f i ) , the 
displacement boundary value problem: 

(8.2 

CijkidXkU£ n 
1 d*i CijkidXkU£ 0 in í í , ¿ =• 1 , . . . ,n , 

CijkidXkU£CijkidXkU£CijkidX 

where the elasticity tensor is given by 

(8.3) 0 in íí,¿ =• 1,... ,n,0 in íí,¿ =• 1,... ,n,0 in íí,¿ 

173 



G. ULHMANN 

the displacement vector is denoted by ~u = ( u i , . . . , ^ n ) ? and 6{j denotes the 
Kronecker delta. 

Associated to the displacement vector ~u', there are two tensor fields 

(8.4) u = (ui,.. V u + t v u 

and 

8.5; r ( l ? ) : A(trace e( u ))I + 2/xe( u ) 

which are called the strain tensor and stress tensor respectively. Here "u = 

Oui,.. . ,un), Vu = 
% i l , . . . , n 

j l , . . . , n 
trace 6 (1?) ~u 

• 

I 
-idxjUj. The 

equation in (8.2) simply means that the stress tensor is divergence free (i.e. 
there no source or sinks of stress): 

(8.6) L1~u = V • T(~U) = 0 in 

The energy associated to a solution ~u of (8.6) is given by 

(8.7) Q1(4>) = inf 
u = (ui,.. 

trace( T(~u)e(~v))dx 

ù* 
u = (ui,.. 

Cij M dXiUidXlUk dx 

^£ 
[A| div l t \ 2 + 2ii\e{lt)\2}dx. 

The stress energy form obtained by polarization of (8.7) is given by 

(8.8) 
u = (ui,..u = (ui,.. 

£^ù 
(A div ~u • div ~~u + 2fie(li) • e(~v)dx 

where ~u"v* are solutions of 

[8.9 L1~u — Ly~v = 0 in Q, lJt\dn = <t> > ~v*\dn = V> 

B y using Green's theorem one can easily prove that 

(8.10) 
u = (ui,..~u)u - ~vdS 

ù$^$ 
r(~u)u - ~vdS = 

dQ 
A 7 <j> • ip dS 
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where v denotes the unit outer normal to dQ and dS denotes surface measure 
on dQ. The Dirichlet to Neumann map is defined by 

(8.11) (A 7 ~ ? ) i TÇÏÏ)\dn -v)i 

n 

dn -vdn 

VjCijk£dXkU£\dn. 

Physically, A 7 / = TUl where T measures traction on the boundary. 

The inverse problem is whether knowledge of A 7 <f> for any (/> G H* (dQ), 
which involves only boundary measurements, determines the Lame param
eters A and /i in fi. That is we want to determine the injectivity of the 
map 

L°°(Q) x L°°(fi) 3 7 = (A,/x) A a 7 . 

Because of (8.10) knowledge of the selfadjoint map 

,7 :H*(dQ) -^H~*(dQ) 

is equivalent to knowledge of Q1( <f), V ) for any (f>, ij) G H* (dQ). 

In [N-U] it was proven, in two dimensions, local injectivity of A in a 

W31>°°(Q) neighborhood of constant A,/ / . 
Let 7* = (A* , / /* ) denote a pair of constant Lame parameters in Q 

satisfying (8.1) . Then we have 

(8 .12) Theorem. Let n = 2. There exists e > 0 such that if jj = (Aj, /xj) 

satisfy (8.1) , 

VjCijk£dXkU£\dn.VjCijk£dXkU£\dn.VjCijk£dXkVj$ùù* 
Cijk£ 

and 
A 7 l — A 7 2 , 

then 7i = 72 on fi. 

There are several new difficulties in extending the method used in [S-UII] for 
the conductivity problem to this case. First of all L1 is an elliptic system and 
second we have to determine two functions A, /x of 7 = (A, /i). To underscore 
these difficulties let us look at the linearized problem. The Frechet derivative 
of A at a constant pair 7* = (A*,/x*) in a direction h = (hi,h2) is given by 

( d A 7 * ( ^ ) ( ^ * l d n ) , ( ^ * | d n ) ) = 
(8.13) 

^$ 
hi div ~u* • div ~v* + 2fi2(e(~u*) - e(~v *))}dx 
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where 1 ? * , ! ? * are solutions of 

(8.14) L>ym(~u*) = £ 7 „ ( V * ) = 0 in R 2 . 

W e first construct analogous solutions of (8.14) to the ones considered 
by Calderon for the linearized problem for the inverse conductivity problem. 
Namely we take 

(8.15) 1 ? . = Vex<

t~tfm = V e - * c with C € C 2 ,C "C = 0. 

Notice that ~u+, ~v * are vector-valued harmonic functions. Substituting 
(8.15) in (8.13) we find that 

(8.16) dA*(h)(1i *\dn))(~v*\dn). \k\2 

$ù 
2h2e

ixkdx, 

where 
A* = A 7 with 7 = 7* 

and 

(8.17) C 
1 

2 
Jk + z fc ) , J = 

0 1 

- 1 0 
,fc = (kuk2) € R 2 . 

If dA*(h) = 0, then we get by the Fourier inversion formula h2 = 0 in Q. 

So we need different solutions of (8.14) to get information about hi. 
Ikehata [I] used a different set of solutions of (8.14) other than (8.15) that 
allowed him to prove injectivity of the linearized map (8.16) at the constant 
pair 7*. 

Ikehata found these by constructing new solutions of the biharmonic 
operator Then he used the so called Boussineq-Somigliana- Garlekin method 
to construct solutions of the elasticity system at a constant pair. Namely if 
g solves 

(8.18) A2g = 0 in fi 

then 

(8.19) « = (A* + 2/x,)A<7 - (A. + / x . ) V ( V • g) = F(g), 

solves 

(8.20) Lym (u) = 0 in Q. 
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Ikehata considered 

(8.21) 
m 4 C - 2 ( x - O e - x < x - O e 

92 
_ 1 

~ 2 
c - 2 ( x • -Qe*<, 

with C as in (8.17), as solutions of (8.18) and u* = F(gi),v* = F(g2) as 
solutions of (8.14). Plugging thèse in (8.13) we find that 
(8.22) 

VjCijk£dXkU£\dn.VjCijk jCijk 
jCijk 

4 ù$ 
eix'khx(x)dx + ^l 

\k\2 

4 
eixkh2(x)dx. 

+ ( A * + //*)2J 

jCijk 

3 3 

VjCijk£dXkU£\dn. 

W e already know that h2 = 0 if dA 7 *( / i ) = 0, therefore we conclude 
that /ii = 0 concluding the proof that the linearized problem is injective at 
constant Lame parameters. 

The main difficulty in the non-linear case is to construct for high fre
quencies the analog of the solutions (8.21). This was done in [N-U]. W e 
outline some of the ideas. 

Akamatsu, Nakamura and Steinberg [A-N-S] proved the analog of the 
Kohn-Vogelius result in this case. W e have 

(8 .23) Theorem. (Akamatsu, Nakamura, Steinberg) Let jj G C2(Cl)(j = 
1,2) satisfying (8.1). Assume 

Ai = A2 where Aj — A 7 with A = Aj(j = 1,2). 

Then 
d"yi\dçi = d a y 2 \ d n ( H < 2 ) . 

Hence we may assume 71 - 7 2 G C$(fi),7j - 7 * € C o ( B ( 0 , r o ) ) ( j = 1,2), 

where 5 ( 0 , r 0 ) = {x G R 2 ; \x\ < r 0 } D H. 
Another important fact is that in two dimensions one can diagonalize 

the elasticity system to a system whose principal part is the biharmonic 
operator A 2 . 

(8 .24) Proposition. Let n = 2 and 7 = (A,/x) G C2(Q) satisfying (8.1). 
Moreover let 

T(D) = 
Di D2 

D2 -Dx 
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where Dj l d 
i dxj ' Then 

(8.25) 

T(D)L1(x,D)T(D) = 
A + 2/i 0 

0 
( - A 2 ) / + M 3 ( x , D) + M 2 ( x , £ > ) , 

where 
(8.26) 

M 7 3 ( x , 0 : 2 ^ | 2 
x-Oex-Oe 

x-Oex-Oe 
- ( ( A V ) ^ 

)/ + M3(x, 
)/ + M3(x, D) + M2(x 

3X2 
" 6 

dxi 

and M2(x, D) is a system of second order differential operators whose coef

ficients consist of second order derivatives of 7. 

Let 

(8.27) MJx,D) = - A 2 J + 
A + 2/i 0 

0 fi 

. - 1 

{M*Jx,D)) + M2Jx,D)). 

Factorizing —A in (1.25) we get 

(8.28) M 7 ( x , D) = ( - A ) { A / + M,} D) + M ° ( x , £>)} 

where 

(8.29) 
)/ + M3(x, D) 
+ M2(x)/ + M3(x 

A + 2 ^ 0 

0 /x 

- l 

M73(x ,oiei"2 

and M ^ ( x , D) is a pseudodifferential operator of order 0 such that 

(8.30) My(x,D) = (-A)M°(x,D) 

is a system of second order differential operator whose coefficients are p-th 
(2 < p < 4) order derivatives of 7. 

For each compact set high frequency solutions of 

(8.31) (AI + Ml(x, D) + M^(x,D)lv = 0 or a constant vector in R2 

are constructed of the form 

(8.32) 1Ü = ex<(A0(xX) + A^(xX))X e C2,C • C = 0, 

where AQ(XX)> \C\^-I(xX) are uniformly bounded. Here we remark that 

although ~w is constructed on a compact set, Alv has a natural extension 

to R2 so that it satisfies (8.31). 

178 



INVERSE BOUNDARY VALUE PROBLEMS 

One difference with the conductivity equation is that in that case Ao(x, £) 
is independent of ( (in fact Ao(x,Q = 7"* where 7 is the conductivi ty) . 
Moreover one does not solve the transport equation for A^i in a unique 
fashion in an appropriate weighted class. However, it is solved in every 
compact set. Everything works out since one can check that 

D1{Lj(x,D)T(D)U)} e LP

6(R2) = L P ( R 2 ; (1 + | x | 2 ) ^ d x ) ; 

1 < p < 00, — 
2 

V 
<6<1-

2_ 1 

V 

L~ 
U = = 1, 

where Dk = (da/dxa; \a\ < k) for k e N. Since T(D)2 = -AI one gets by 
standard estimates that in fact 

L 7 ( x , D)T(D)lv = 0 in R 2 . 

One must also match the two types of low frequency solutions that are con
structed (as in [I], but slightly different) with the high frequency solutions. 
Full details are in the paper [N-U]. 

9. Electrical impedence tomography; the anisotropic case 
If the conductivity of fi depends on direction then it is represented by 

a positive definite symmetric matrix 7 = (7 2 J ) in ft which we assume to be 
smooth. Kohn and Vogelius ( [K-V III]]) suggested a constructive approach 
to the isotropic case based on an algorithm developed by Wexler et al ( [W-
F-N]). This consists of minimizing an appropriate functional. The functional 
is not quasi-convex and, therefore, a minimizing sequence will not in general 
converge to a solution, but will in general have limit points which are solu
tions to the "relaxed problem". Kohn and Vogelius computed the relaxation 
of one such problem which turned out to be a variational problem for an 
anisotropic conductivity. Numerical performance of this method has been 
recently studied by Kohn and McKenney ( [K-M]) . Thus the anisotropic prob
lem occurs naturally even when considering isotropic conductivities. W e now 
formulate more precisely the inverse conductivity problem in the anisotropic 
case. 

The conductivity equation is 

(9.1) L~/U = 

n 

L~/U = 

d 
L~/U = h i 3 

d 

L~/U = 
u : 0 in U. 

The Dirichlet to Neumann map is defined by 

(9.2) A 7 / = 

n 

)/ + M3 

)/ + M3(x, 
D) + M2(x 

du 

dxj 
dndS 
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where vx is the i-th component of the unit euclidean conormal, dS represents 
the (n—1) dimensional euclidean surface measure on dCl and u is the solution 
of the Dirichlet problem 

(9.3) L~u = 0 in Q 

L~u = 0 in Q 

It is convenient to define the Dirichlet to Neumann map as a (n—1) form since 
in actual measurements one integrates the current flux rather than measure 
it pointwise. Moreover it helps to understand the invariance properties of A 7 

under the action of diffeomorphisms. W e have, again, using the divergence 
theorem 

(9.4) 
an 

L~u = 0 
n 

i,.7 = 1 

dx{ du dv 

dx{ dxj 
•dV 

where dV is the euclidean volume element in f i , , u as in (8.3) and v solves 

(9.5) L^v = 0 in Q 

v\dn = 3-

Again, instead of considering the map 

(9.6) 7 - ^ A 7 

we can consider the map 

(9.7) 
L~u = 0 in Q 

where Q~ is the quadratic form 

(9.8) L~u = 0 in Q 
n 

1,3 = L 

du du 

dx{ dxj 
dV 

with u solution of (9.3) . 
Unfortunately injectivity of $ (or Q) is not valid in the anisotropic case. 

The following observation can be found in [K-V IV] : Let \£ : Q -+ Q be a 
C°° diffeomorphism so that = Id. Let 

(9.9) 7 

L~u = 0 in QL~u = 0 in Q 

\detDV\ 
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where Z?\£ denotes the differential of \I> and (D^f)T its transpose. The rele
vant point is that 

(9.10) A ~ = A 7 ( Q ^ = Q 7 ) . 

This is a consequence of the following observation: 

Proposition 9 .11 . Let ^ : Q —• Q be a C°° diffeomorphism so that ^\dQ = 
Id. Then if u solves 

L~u = 0 in Cl 

L~u = 0Q be a C°° 

then uoifj 1 = u solves 
L~u = 0 in Q 

y>\dtl = f 

with 7 as in (9.9). 

More generally, let \t : Q —> Q be a diffeomorphism so that \P|an = V*-
Then 

(9.12) Q 7 ( / ) = ^ ( / ° ^ " 1 ) 

with 7 as in (9.9) . 
W e disgress a little to discuss the corresponding relation for A 7 given 

by (9.4). It is convenient to give an invariant interpretation of (9.9) , (9.10) 
and (9.12). For more details see the discussion in the introduction in [Sj. 
Ohm's law (or rather its differential version) in a wire is given by 

z(x) = j(x)du(x) 

where u{x) is the voltage potential, i(x) the current flowing through x and 
j(x) = l/p(x) where p(x) is the resistivity. 

In higher dimensions the current i is represented by an (n — 1) form. 
Then it is natural to interpret the conductivity as a map from 1 forms (du(x)) 
to (n — 1) forms (i(x)). The conductivity is then a map 

(9.13) 7 : A 1 (f i) -> A " - 1 (f i) 

which is symmetric and positive definite as explained below. 
In standard Euclidean coordinates x1,... , x n and the (n — 1) forms 

(9.14) uk = ( - l ) * " 1 ^ 1 A • • hdxk-x A dxk+1 A . . . A dxn 
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then the components 7^ of 7 are given by 

.7)a = *.(7(**a) 
n 

i=l 

.7)a = *. 

with 7U a symmetric, positive definite matrix in fi. 

If : fi —• fi is a diffeomorphism then the push forward of 7 as in (9.13) 
is riven by 

(9.15) ( * . 7 ) a = * . ( 7 ( * * a ) ) 

where ^ c c denotes the pull back of the 1-form a and = ( ^ , - 1 ) * denotes 
the pull back by V-1 acting on the (n — 1) form 7(\P*or). In coordinates 
(9.15) reads 

(9.16) ( * . 7 ( y ) ) ' m 

d*1 
dx* dx> 

del 
dx 

which is exactly the relation (9.9) . Thus we may rewrite the relation (9.9) 
in an invariant way as 

(9.17) 7 = * * 7 

Now we define the Dirichlet to Neumann map by 

A 7 / = jdu\dçi 

which, in coordinates, is just (9.2) . 

If \£ : fi —* fi is a diffeomorphism with * |an = we can define the push 
forward \P*A7 by 

( V U 7 ) / = M*hWf)) 

where ip*f = f o tp'1. Then the relation (9.12) can be rewritten as 

(9.18) A * „ 7 = ^*A7 

Of course, if \P|cM = Id we obtain 

(9.19) A * „7 = A7 

which is (9.10). 
The natural conjecture is that (9.19) is the only obstruction to unique

ness 
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Conjecture 9 .20 . Let 71,72 be smooth anisotropic symmetric and positive 

definite conductivities in Q. Suppose 

A 7 l = A 7 2 . 

Then there exists a diffeomorphism \I> : Q —• Q diffeomorphism such that 
^f\dçi = Id so that 

^*7i = 72 -

Progress has been made in proving the conjecture even though the general 
case remains unsolved. In the two dimensional case Sylvester ([S]) proved 

Theorem 9 .21 . (n = 2) Let 7,- be C3 anisotropic conductivities with 

C3(Ü) M, ¿ = 1,2. 

Then there exists e(Q, M) such that if 

log(det7;] C 3 ( H ) e 1 = 1,2 

and 
A 7 1 = A 7 2 

then there exists a C 3 diffeomorphism \I> with 

71 = #*72, V\dn = Id. 

Sketch of Proof of Theorem 9 .21 . The first step in the proof to use the 
existence of isothermal coordinates (see for instance [A]) to reduce the proof 
to a new isotropic problem. 

Proposition ( 9 . 2 2 ) . (Isothermal coordinates) Given a C 3 anisotropic con-
ductivitv 7 with 

#*72, V\dn =#*72, 

we can ûnd a constant k = k(M), and a C3 diffeomorphism \fr such that 

* : U D = {x e K2;\x\ < 1 } , 

lltflU < k 

and 

(9.23) W * 7 is isotropic. 
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Let ji belong to C3(Q). Then there exists a diffeomorphism #i : Q —• D so 
that 

(9.24) (* i )*7 i = OLie i = 1,2 

where at- € C 3 ( f i ) has a positive lower bound, ¿ = 1,2 and e is the euclidean 
conductivity. 

Let tf;|an = fa for z = 1,2. Then using (9.24) and (9.18) we obtain 

(9.25) A a i e = A ( V l ) # 7 l = C0i )*A 7 l . 

Using the hypothesis A 7 l = A 7 2 , ( 9 . 1 8 ) , and (9.24) we have 

(V>i).A 7 l = ( ^ i ) . ( ^ 2

 1 ) * (V ; 2 ) .A 7 2 = ( ^ ) * A ( ^ 2 ) ^ 7 2 = </>*A a 2 e 

where 

(9.26). <f> = 1>i1>2

 1 

W e conclude that 

(9.27) ( 0 ) * A a 2 e = A a i e 

which is a relation between two isotropic conductivities. The main technical 
result in [S] is 

L e m m a ( 9 . 2 8 ) . Let OLI be C3 isotropic conductivity, i = 1,2 such that 
(9.27) is satisfied. Then there exists a C3 conformal map $ : D —> D, such 
that 

(9.29) $\dD = <f>. 

Assuming the lemma for a moment we complete the proof of Theorem 
9.21. Let $ be as in (9.29). Then by (9.18) and (9.27) 

(9.30) A a i e = (<£)*A a 2 e = A $ ^ ( a 2 e ) . 

Since OL2 is isotropic and $ is conformal, then ($)*(a2e) is also isotropic. 
The smallness hypothesis in Theorem 9.21 and the bounds for \Pt- imply that 
ai is close to 1, i = 1,2. Using now the local result of [SU-II] (see Theorem 
(7.1)) for the isotropic case in dimension 2 we conclude 

ai = $*(a 2e) 
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and by (9.9) since 3> is conformai 

#*72, V\dn =l(t>i)2 

Unwinding the definitions then yields 

71 = (tff 1 № ) * 7 2 . 

It follows from (9.26) that, on the boundary, 

*4>i l(t>i)2 — Id 

which proves the theorem. 

The proof of the lemma begins by constructing a C 2 -diffeomorphism 

$ : Dc Z > c , $ = I d for |x | > R,$\dD = <t> 

such that the (anisotropic) conductivity given by 

(9.31) 712 
0L2 for Ix I < 1 
$*c*i for \x\ > 1 

is in C 1 , : L ( R 2 ) where a2 has been extended as a C 1 ' 1 function to R 2 . To see 
that such a $ exists involves the formal solution to a Beltrami equation as 
well as the computation of the two first two terms in the expansion of the 
full symbol of </>*Aai and A a 2 (see [S], Prop. 3.1). 

A more precise version of the existence of isothermal coordinates allows 
the construction of a unique C 2-difFeomorphism F12 : R 2 —• R 2 such that 

(9.32) ( ^ 1 2 ) . 7 1 2 ( d e t 7 i 2 o ( F 1 ' 2 1 
2e 

where e is the euclidean conductivity. If we consider F12 as a complex valued 
function, it is the unique solution to the Beltrami equation 

(9.33) OF12 = m i 2 F 1 2 . 

which is asymptotic to z at infinity (see [S], Prop 2.1) for a more precise 
description). In (9.33), /¿12 is a rational function in the coefficients of 7 
which is called the complex dilitation. In particular, 

(9.34) / x 1 2 = 0 712 is isotropic . 

Therefore, 

(9.35) F12 = Id <=> 712 is isotropic . 
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This version of isothermal coordinates can be used to prove that the 
special solutions of Theorem (4.1) exist in the anisotropic case; that is, there 
exist unique solutions u(z,k) which are asymptotic to e k z at infinity (it is 
convenient to use complex notation, fc, z £ C ) which solve 

(9.36) L112u = 0 in R 2 . 

Moreover, one can show that 

(9.37) lim 
|*|->oc 

logu(z,k) 

k 
F12 

uniformly on compact sets. 
Arguments similar to those used in the proof of Proposition 6.16 can be 

used to show that 

(9.38) u = 
V 

^ Ui o $ _ 1 

for \x\ < 1 
for \x\ > 1 

where 3> is as in (9.31), v solves the Dirichlet problem 

(9.39) La2v = 0 in D 

v\dft = ui\dn o</> 1 = u1o® 1 \ d Q , 

and ui(z,k) is the special solution of 

(9.40) Laiui = 0 in R 2 

which is asymptotic to e k z at infinity. Now since 712 is isotropic in D we 
have 

(9.41) dF12 = 0 in D. 

For points on the boundary of D, (9.37) implies that (recall that u is smooth 
across 3D) 

(9.42) F12 lim 
|/c| —oo 

\ogu 

k 
lim log 

K —•oo 

Ui(z,k) ol(t>i)2 

k 
F1 o 0 - 1 . 

where F\ is the solution to the Beltrami equation associated to the con
ductivity ai. Since ai is isotropic (9.35) implies that ^1(2:) = z and hence 
that 
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(9.43) F 1 2 \ 9 D = r 1 . 

¿^0111 (9.41) and (9.43) we conclude that F12 is the conformal map with 

boundary value <jrl. Therefore ( F 1 2 ) - 1 is the desired conformal map. • 

The proof above relied heavily on the construction of isothermal coor
dinates This is not available in dimension n > 3. 

J. Lee and G. Uhlmann ([L-U]) have proved conjecture 9.20 in dimension 
n > 3 in the real-analytic category under certain restrictions. 

First we note that in dimensions n > 3 we can identify Riemannian 
metrics and anisotropic conductivities. 

Let j be a smooth Riemannian metric in Q. W e denote by the 
Laplace-Beltrami operator associated to g. In local coordinates 

(9.45) AgU 

n 

1,1=1 

det gki 

-1/2 a 
[det gki)2 gij 

du 

dxj 

where glJ is the inverse of the metric gij. 
W e can solve the Dirichlet problem 

(9.46) Agu = 0 in Q 

u\dn = f 

and define the Dirichlet to Neumann map as map from functions on the 
boundary to (n — 1) forms in the boundary, by 

(9.47) Agu = 0 in QAgu = 0 in Q 

where denotes the gradient with respect to the metric g, dVg is the Rie
mannian volume element and J denotes interior differentiation. (We recom
mend the b o o k by Spivak [Sp] for the reader unfamiliar with the differential 
geometric terms used.) 

Let 7 be an anisotropic conductivity given in local coordinates by 7 U . 
Then if n > 3 

(9.48) gi3 = ( d e t 7

k e ) ^ ( ^ r \ 

is a Riemannian metric with 

(9.49) Ag = A 7 . 

187 



G. ULHMANN 

Conversely, if g is Riemannian metric given in local coordinates by gij, then 

(9.50) y i ( d e t ^ ) 1 ' 2 ^ ; ) " 1 

is an anisotropic conductivity satisfying (9.49). W e shall identify in the rest 
of this section conductivities and Riemannian metrics. 

W e first compute the full symbol of Ag if g is a smooth Riemannian 
metric. For this it is convenient to use boundary normal coordinates. For 
each XQ G dQ, let j X o be the unit speed geodesic starting at XQ and normal 
to dQ. If { x 1 , . . . ,xn~1} are local coordinates for dQ near p G dQ, we can 
extend them smoothly to functions in a neighborhood of p in Q by letting 
them be constant along each normal geodesic j X Q . If we then define xn to be 
the parameter along each yXQ, it follows that { x 1 , . . . , x n } are coordinates in 
Q, which we call boundary normal coordinates determined by {x1,... ,xn~~1}. 
In these coordinates xn > 0 in Q and dQ is locally characterized by xn = 0. 
The metric g takes the form 

(9.51) 9 = 

n-l 

«,/3=1 

gQp(x)dxQdxP + (dxn)2, 

and the Laplace-Beltrami operator is given by 

(9.52) -Ag = D%n +iE(x)Dx~ +Q(x,Dx.) 

where 

E(x) 
1 

~ 2 

n - l 

a,/3=1 

ga^(x)dx«ga0(x), 

Q(x,Dx>) 
n - l 

a,/9=l 

gafi(x)DxaDxfi-i 
n - l 

a,/3=l 

1 

2 
? a / , ( s ) 0 x . l o g r ( x ) + ^ ^ ( x ) ) ^ 

and x = (x',xn). Moreover 

r(x) = det(gij). 

W e use (9.52) to factorize and give an easy way to compute the full 
symbol of the Dirichlet to Neumann map (see [L-Ul Proposit ion 1.1). 

Proposit ion 9 .53 . There exists a pseudodifferential operator A(x,Dx') of 
order one in x1 depending smoothly on xn such that 

(9.54) —A9 = (Dxn +iE(x)-iA(x,Dx>))(Dxn +iA(x,Dx>)) 
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modulo a smoothing operator. 

W e can actually write the full symbol , a(x,£'), of A(x,Dx>) 

(9.55) a(x,£') ~ 

(ak) + 

a j ( x , n t ' e n " - 1 , ( a k ) + 

with a,j homogeneous of degree j in £' and 

(9.56) 
Agu = 0 in Q 

with 92 the principal symbol of Q as in (9.52) 

(x,n t'en"(x,n t 1 

(x,n t'en" 

m<j,k<l 
\K\=j + k-m 

1 

t'en" 
Op(&j)D$(ak) + dxnam - Eam) 

The main point is that 

Proposition 9 .57 . Aaf = 
Op(&j)D$(ak) + dxnam - Eam(ak) + dxna modulo a 

smoothing ooerator. 

Sketch of Proof. This follows from the factorization (9.54). Let u satiusfies 
(9.46). Then using the factorization (9.54) we get that 

(9.58) (Dxn + iA)u — v 

(ak) + dxnam - Ea 

with 

(9.59) (Dxn + Œ - iA)v = he C ° ° ( [ 0 , T ] x R * - 1 ) for T > 0. 

It follows, since (9.59) can be viewed as a backwards generalized heat equa
tion (make the substitution t = T — # n ) , that v is also smooth (see [T]) . 
Therefore from (9.58) and elliptic regularity we conclude (Dxnu) = —iAu 
modulo a smooth function and Agf = \Dxnu\xn=Q in boundary coordinates. 

The computation (9.56), together with Proposition (9.57) shows (see 
[L-U], Prop. 1.3) that one can determine from dj the full Taylor series of g 
in boundary normal coordinates. This is the analog in the anisotropic case 
of the Kohn-Vogelius result theorem in the isotropic case. 

Theorem 9 .60 . Let n > 3. Let { x 1 , . . . , x n 1} be any local coordinates 
for an open set U C dM and let { a J 5 j < 1} denote the full symbol of A in 
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these coordinates. For anyp 6 U, the full Taylor series ofgatp in boundary 
normal coordinates is given by an explicit formula in terms of the functions 
{ r 1 / 2 ^ } and their tangential derivatives at p. 

Now in case that dCl, g\ and g2 are real-analytic and = A92 we 
can use the last result to easily find a collar neighborhood of dCl and a real-
analytic diffeomorphism \I>o ' U —* fi, = so that (see [L-U], Lemma 
2.1) 

®o9i =92-

One needs to extend the diffeomorphism $ o to l ì . In [L-U] this was 
done by analytic continuation along geodesies. W e mention one of the results 
obtained (For a more general statement see Prop. 2.2 in [L-U]). 

Theorem 9 . 6 1 . Let gi, i = 1,2 be real-analytic Riemannian metrics so that 

Agi = A92. Assume Q is simply connected and Cl is strongly convex with 

respect to the metrics gi,Q2- Then 3\& : Cl —* Q real-analytic diffeomorphism 
so that 

V*9i=92,V\dn=Id. 

Theorems (9.21) and (9.61) use special features. In two dimensions 
isothermal coordinates are used to break the diffeomorphism invariance. In 
dimension n > 3, in the real-analytic case, geodesic flow is used to break the 
diffeomorphism invariance. 

Jack Lee has suggested the use of harmonic maps to break this invari
ance. W e discuss this idea in more detail. The material that follows is taken 
f rom[S-U V I ] . 

For a general reference on harmonic maps see [Ha]. W e shall only con
sider the case where the domain and range of a map is Q, with Q a smooth 
bounded domain in R / \ 

Let / : (Q,g) —• (£î, h) be a smooth map where g and h are Riemannian 
metrics in Q. The energy associated to the map / is given in local coordinates 
by 

(9.62) £ ( / ) = 

n 

dxi dxj in 
gt3(x)ha(3 

dfa of? 

dxi dxj 
detgdx. 

The Euler-Lagrange equation associated to the quadratic form (9.62) is given 
by the non-linear elliptic system 

(9.63) 
- 2 

f3eTg 

n 

a,i,j=\ 

d 

dxj 
'det g 9ij> ha3 

dfa< 

dxi ' 

n 

dxi dxj 

9ij 

dfa 

df° 

dxi 

dp 

dxj 
0 V/?. 
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Definition 9 .64 . A C°° map / : (ft, 5) —> (ft , / i) is called harmonic if it is 
a critical point of (9.62) (i.e., it is a solution of (9.63)) . 

Note that if h is the Euclidean metric, then (1.13) simply states that 
the components of / are harmonic functions with respect to the metric g. 

W e are going to reduce conjecture 9.20 to the proof of a uniqueness 
theorem by means of the following Proposition, which follows readily from 
the definition of a harmonic map. 

(9 .65) Proposition. Let (ft, g) and (ft, h) be two smooth bounded domains 
with Riemannian metrics g and h. Suppose there is a harmonic map 

(9.66) 
V> : (ft,g) —• (ft,/i) such that -0|dft = Identity and V> a, diffeomorphism. 

Then the Identity: (ft, g) —» (Çt,ip*h) is harmonic. 
W e shall show that conjecture 9.20 is reduced to prove 

Conjecture 9 .67. Suppose g and h are Riemannian metrics on ft and that 
Identity: ( f t ,g) —• ( f t , / i ) is harmonic and Ag = A ^ . 

Then a = h. 

(9 .68) Proposition. Conjecture 9.67 9.20 if there exists harmonic ip 
satisfying (9.66). 

Proof. If A o = Ah, and there is a ifr with ip\dQ = Identity and An = 
A^*h = Afc. Then using Proposition 9.65 and Conjecture 9.67 we conclude 
that h = t/j*g. 

The solvability of the harmonic Dirichlet problem (9.66) is known if h 
has nonpositive sectional curvature ([H]) or if g and h are sufficiently close 
in the C 3 topology to the euclidean metric ([L-M-S-U]). 

Thus, we have reduced the proof of Conjecture (9.20) to the uniqueness 
statement in Conjecture (9.67), under the additional assumption of the exis
tence of an harmonic diffeomorphism which is the identity on the boundary. 

In [S-U VI] it was proven that the linearization at the identity of conjec
ture (9.67) holds. W e sketch the proof. In analogy with (9.8) the quadratic 
form associated to A ^ is given by 

(9.69) Qg{f>9) 

n 

du dv ft 
9i3 

du dv 

dx{ dxj 
det gdx 

with u,v solution of A ^ ^ = Agv = 0 in ft; U\QQ = g. W e consider the 
linearization of Q at the euclidean metric in the direction of the quadratic 
form m e Co°(f t ) 

(9.70) dQm{f,g) lim Qe+em(f,g) ~Qe(f,g) 

€ 
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A computat ion yields: 

(9.71) dQm(f,g) 

n. 

«»¿=1 
+ kßt 

rriij 
1 

2 
•trra 

v du dv 

dx{ dxj 
dx 

where A u = At; = 0 in fi; U\Q^\ = / ^ l a n = S and t rm = 5^=1 m ^ . 
W e assume that dQm = 0 . As Calderón did for the isotropic case, we 

take 

(9.72) u = e *,v = e s 

where £ eCn,£ = n + ik with r),k e Rn and (t],k) = 0 , \rj\ = |&|. Substi
tuting (9.72) in (9.71) we obtain 

n 

k e Rn 

rriij 
1 

2 
k k e Rn k e Rn = 0 . 

W e rewrite (9.72) in the form 

(9.73) 
1 

2 
trrh k + rf(fh — 

1 

2 
trrh lr? = 0 

where £ denotes transpose and ^ the Fourier transform. 
Now the fact that the identity is a harmonic map implies the following 

system of n first order linear partial differential equations for m = g — h (g 
is the euclidean metric in this computat ion): 

(9.74) - 2 

n. 

*,v = e 

d 

dxj 
*,v = e 

d 

dx0 
trm 0 in Q, 

*,v = e + kßtrfh(k) 

Taking the Fourier transform of (9.74) we obtain 

(9.75) - 2 

n 

7 = 1 

kjfhjß(k) + kßtrfh(k) = 0 , + kßtr+ kßtrffh(k) 

Let us take = ( 1 , 0 , . . . , 0 ) , 77 € fcx with \r)\ = \k\ = 1. Using (9.75) we get 

(9.76) mlß(k) = 0 , ß = 2 , - - - , n + kßtrfh(k) 

mn(Ä;) = 
1 

2 
trm(fc). 
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Using (9.73) we obtain 

(9.77) rhß^ - trrn(k) = -(rhu - trfn)(k), ß = 2, . . . ,n, 7 = 2,. . . ,n. 

Combining (9.76) and (9.77) we conclude 

trin(k) = 0 

Using (9.76) again we see that rhij(k) = 0 i, j = 1 , . . . ,n . Rotating coor
dinates shows that fn(k) = 0 Vfc and therefore m = 0. 

10. T h e Borg-Levinson theorem. We consider in this section an ap
plication of the methods developed for the inverse conductivity problem to 
study an inverse spectral problem. This involves, in an essential way, the 
study of the Dirichlet to Neumann map for the equation A — q + A. 

W e consider the equation 

(10.1) Lq-x = A-q + X 

with q € L°°(n) and A G C . 
The following theorem appears in [N-S-U] : 

Theorem 10 .2 . Let n>2 and qi € L°°(Q,), i = 1,2. Suppose that, as 
meromornhic overator valued functions of A, 

(10.3) A 9 I _ A = A q 2 - \ VA e R . 

Then 
Qi = 92 . 

R e m a r k 10 .4 . For n < 3 it is enough as a consequence of Theorem (5.1) 
to assume A G I _ A 0 = A G 2 _ A 0 f ° r not an eigenvalue of Lqi or Lq2. 

Sketch of proof of Theorem 10 .2 . 
Because we know the Dirichlet to Neumann map Aq-\ for all A (except 

for a discrete set) we may use the scattering solutions (6.2) instead of the 
exponentially growing solutions from theorem (4.1). Let us take 

(10.5) V»+ = eix* + Of » = 1,2 

where & € R n and (assume A > 0) 

(10.6) 
+ kßtrfh(k) 
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and 

(10.7) l i a i l L J < 
C 

'X' 
li ¿2' 

1 

2 
6. 

Using the hypothesis of the theorem we conclude, as in the proof of theorem 

(5-1), 

(10.8) 
la 

(qi - q2)uiu2 = 0 

for all Ui solution of L q i - \ U i = 0, i = 1,2. 

W e fix k € R " and choose 

(10.9) 
L1{U 

L1{ 

U [k + e), k-£ = 0, \k\2 + \£\2 = X 

+ kßt 
1 

2 
+ kßtrfh(k) 

Now replacing (10.5), with £ as in (10.9), in (10.8) and letting I and A —» oo 
we conclude 

5i(*0 = 02 (*0 

which proves the theorem. 

The Dirichlet to Neumann map Aq-\ can be related to the eigenvalues 
and eigenfunctions of the Schrodinger operator A — q. W e give only a formal 
argument here. The reader is referred to [N-S-U] for complete proofs. 

Let q € L°°(Cl) be real-valued and let { A i } ? ^ denote the Dirichlet 
eigenvalues of Lq. Let G ( A , x , y ) , A ^ A z , be the Green's kernel for the 
Dirichlet problem 

( A - ç + À)G = fi(a-i,), G ( À , . , y ) | a n = 0, V y e f t . 

The solution of 

(10.10) Lq-\u = 0 

+ kßtrfh(k) 

has the representation 

(10.11) u(x) = 

/an < 

dG 
\,x,y)f(y)dSy 

where dSy is the euclidean surface measure on dfì. 
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G can be written in term of the A^'s and the corresponding set of or-
thonormal eigenfunctions { < / ^ } ^ i 

(10.12) G(X,x,y) 

oo 

i=l 

+ kßtrfh(k) 

A — A; 

Inserting (10.12) into (10.11) we obtain 

(10.13) u(x) : 
'an 

oc 

i=l 

<Pi(x) 

X,x,y 

du 
(y)f(y)dSy 

and therefore 

(10.14) L1{U du 

du dû i=i 

oo X,x,yX,x,yX,x,y,x,yX,x,y 

A - Xi 

Formula (10.14) and Theorem 10.2 lead directly to the following result ([N-
S-U]; Novikov [No] proved this result independently) which states that the 
Dirichlet eigenvalues and normal derivatives at the boundary of an orthonor-
mal set of eigenfunctions uniquely determine the potential. 

Theorem 10.15. Let qi € L°°{Vt) i = 1,2 be real-valued. Let \j(qi), 
j — 1 ,2 , . . . denote the Dirichlet eigenvalues of L^, i = 1,2 with Xj > Aj+i 
and eigenvalues repeated according to their multiplicity. Assume 

(10.16) Aj(<7i) = Xj(q2) Vj . 

For qi, i = 1,2 we choose orthonormal sets of eigenfunctions {^j(-?^)}iSi 
with 

(10.17) 
d<pj 

du 
> , < 7 i 

difj 

dv 
fa,©)-

Then 
,x,yX,x,y 

Remark 10 .18 . Theorem (10.15) can be thought of as an n-dimensional 
analog of the one-dimensional Borg-Levinson theorem, which states that 
the Dirichlet eigenvalues and the norming constants determine the potential 
uniquely. Alessandrini and Sylvester ([A-S]) have given stability estimates 
for the result Theorem 10.2. Roughly speaking, they showed that if q is a-
priori bounded in some Sobolev norm, then, in some lower Sobolev norm, q 
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depends continuously on its Dirichlet eigenvalues and the normal derivatives 
of an orthonormal set of Dirichlet eigenfunctions. 

1 1 . T h e hyperbolic Dirichlet to N e u m a n n m a p 
W e consider the mixed problem for the wave equation associated to the 

Schrodinger equation 

(11.1) 
a2 

dt2 
- A + 9 u = 0 in Q x ( 0 , T ) 

u\t=o 
du, 

at1 t=o = W, 

,x,yX,x,y,x,yX,x,y 

where q € L°°(Q). 
T h e (hyperbolic) Dirichlet to Neumann map is then defined by 

(11 .2) A j ( / ) 
du 

with u solution of (11.1). Notice that (p,ijj are fixed throughout. As shown 
in [Ra-S] the choice of (p,ip is inmaterial. Rakesh and Symes ([Ra-S]) proved 

Theorem 1 1 . 3 . (n > 2) Let quq2 G L°°(Q). Assume A ¿ = A£ 2 for t e 
[0 ,T] withT> d i am( i2 ) . Then 

5i = 52-

R e m a r k 11 .4 
If one knows A£ ( / ) for all t, then taking Fourier transform in the time 

variable, one obtains the Dirichlet to Neumann map Aq^\2 considered in 

Theorem 10.2. In Theorem 11.3, we require only knowledge of A£ in the 

interval [ 0 , T ] . 

Sketch of proof. 
Rakesh and Symes use geometrical optics solutions concentrated near 

lines with direction u € 5 n _ 1 and an identity similar to (5.4) to prove that 

one can recover the X- ray transform of q knowing A£. 
W e indicate here another way of obtaining this information from the 

hyperbolic Dirichlet to Neumann map. W e consider for simplicity the case 
q e Cg°(Q). Let 51,52 € C ^ ( f i ) such that 

(11.5) 
51,0 < 

Ah 0 < t < T, with T > diam (Q). 
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Let ta,, i = 1,2 be the solution of 

(11.6) 
d2 

dt2 
A + qi)ui = 0 

m = S(t — x • o;),t <C 0 

where u G 571"1 is the direction of the plane wave 6(t — x • u). W e proceed 
now to show that the information (11.5) implies tai = u2 in Clc x [0 ,T j . W e 
proceed as in (6.18). Let 

(11.7) z = 
w in fix [ 0 , 2 ] 
«2 in ficxO,T 

where w solves the initial boundary value problem 

(11.8) 
d2 

at2 
- A + qi)w = 0 

w = < 5 ( t - x - w ) , t < 0 

wlanx(o,r) = «2 |anx(o,r)-

Now 
diu 

du 
Aj1(w |8nx[o ,n) A'1 "•2|ônx[0,T], 

0U2 

Therefore 2 solves 

(11.9) 
d2 

at2 
- A + qi)z 0 in R " x R 

z = 6(t — x • u), t < 0 . 

By the uniqueness of the solution of (11.9) we obtain 

Z = Ui 

proving that 

(11.10) ui = u2 in fic x [ 0 , T ] . 

Now one can use the progressive wave expansion of Courant-Lax ([C-L]) to 
conclude for U{ as in (11.6) 

(11.12) m = 6(t — x • u) + ai(x,u)H(t — x • u) + bi(t,x,u) 
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where 6, E C ° ( R x Rn x 5n_1) i = 1,2, H(x) is the Heaviside function and 

Vai • w = 
- g t ( g ) 

2 
¿ = 1,2, 

a2- = 0 for x • u <C 0. 

Since = u2 in Qc x [0 ,T] we conclude 

ax = a,2 in 12 . 

But a2-, z == 1,2, can be obtained as integration of the potential qi in the 
direction a;, therefore implying that the X- ray transform of gi and q2 coincide 

— oo 

»oo 

qi(x + tu))dt = 
r-oo 

q2(x + tu)dt Va;, a;. 

Now by the inversion of the X- ray transform (fHl) we conclude 

(x + tu))dt 

Stefanov [St] and R a m m and Sjostrand [R-Sj] have extended Theorem 
11.3 result to the case of potentials depending on time. Isakov [Is III] has 
considered the case of wave equation plus first order perturbations. In all 
these works geometrical optics solutions and the relationship between the 
hyperbolic Dirichlet to Neumann and the X- ray transform play a crucial 
role. 

W e now consider the hyperbolic Dirichlet to Neumann map in the 
anisotropic case. In particular we would like to describe the relationship 
of this map and the inverse kinematic problem in seismology. The material 
that follows is taken from [S-U VI] and is part of work in progress of the 
author with Jack Lee, Gerardo Mendoza and John Sylvester [L-M-S-U]. 

Let Q be a smooth bounded domain in R n and g a smooth Riemannian 

metric on Q. W e consider the initial boundary value problem 

(11.13; 
d2 

dt2 " A , u = 0 in Q x ( 0 , T ) , T > 0 

(x + 
du 

dt (x + 
0 in ft 

u|nx(0,T) = / . 

We define the (hyperbolic) Dirichlet to Neumann map by 

(11.14) A j ( / ) 

n 

(x 

(x + du 

dxj da 
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where u is a solution of (11.13). 
As in the elliptic case, it is easy to see that the map 

(11.15) A * a h 
9^g 

is not injective since A ^ „ = Ag for any diffeomorphism i/> : Q —* Q such that 

ip\dn = Identity. One can show,as in the elliptic case, that knowledge of Ag 

determines the Taylor series of g at dCl in boundary normal coordinates. 
If Ago = A9l one can extend go = g\ to Qc such that both are smooth 

and both are euclidean outside a ball. Using similar arguments to the ones 
used in the proof of Proposition 6.16 we have 

(11 .16) Proposition. Let go,g\ the smooth Riemannian metrics on Q. 

Assume A%Q = A ^ . Let ( u 0 , u i ) € £ ' ( R n ) x £ ' ( R n ) , supp uk C ftc, k = 0 ,1 . 

The solution vk of the initial value problem 

a2 

dt2 

0 in R" Vk 0 in R " x ( 0 , T ) 

Vk 0 in R" 

dvk 

at \t=0 
\t= 

satisfìes VQ = vi in Çlc x ( 0 , T ) . 

One can use the proposition above and the geometrical optics construc
tion (2.7) to solve the wave equation with data supported outside fic (saj 
UQ = 6y,y 6 Qc,ui = 0) to conclude that the geodesic distance function foi 
points y, x € fic is the same. W e are going to use an alternative methoc 
which is the Hadamard parametrix construction (see Hormander [Ho], sec
tion 12.4). 

Let Fk(t,x,y) be the solution of 

d2 

dt2 
n Çlc x Fk 

= 0, k = 0,1 

Fk(0,x,y) = 6(x-y),yenc 

dFk 

dt 
(0,x,y) = 0. 

Then, assuming that the exponential map for each of the metrics gk is a 
global diffeomorphism near Q (i.e., no caustics in a neighborhood of Q,), we 
may write 

(11.17) Fk(t,x,y) 

N 

j=0 

A ^ y ) t 2 - (sk(x,y))2) 
- i + i ( n - l ) n Çlc x (0 

,T). 
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where F% G c W - l i M ^ R ^ R ^ x R J ) and A) G C ° ° ( R n x R n ) , k = 0 ,1 . 
Here Sk(x,y) denotes the geodesic distance between x and y in the metric 
gk-, k = 0 ,1 . The distributions 

: ^ 2 - ( ^ 2 / ) 2 ) i 

[t2-(s(Xiy))2 — A 

r ( l - A ) 
0 

for t 2 > ( s ( x , y ) ) 

t 2 < (s(x,y)) 

are defined for Re A <C 0 and have an analytic continuation to A € C . 

Now from proposition (11.16) we know that if Ago = , then Fo(t, x, y) = 

F i ( t , x , y ) in ftc, for t > 0. Therefore, comparing the most singular terms in 

(2.20) we conclude that 

t2 - (s0(x,y))2 
i ( n - l ) 

'f - Mx,y))2) 
Ì ( n - l ) 

Thus we have proved 

Theorem 11 .18 . Let go and g\ be Riemannian metrics with A£ o = A ^ . 

Then if the exponential map is a global diffeomorphism in ft for gk, k = 0,1 
and Sk{x,y) denotes the geodesic distance from x to y in the metric gk, we 
have 

n Çlc x (0,T). n Çlc x (). V x , y G aft. 

The inverse kinematic problem in seismology is to recover g from sg(x, y),x,y G 

ôft. Again this is not possible since if I/J : ft —» ft is a diffeomorphism such 
that i/j\da = Identity, then s ^ + g — s g . As in conjecture 1, the question is 
whether this is the only obstruction to uniqueness. It is proven in [S-U VI 
that the linearized version at the euclidean metric of this conjecture is valid 
using again the harmonic map equation. 

Let g€ be a family of Riemannian metrics in ft, g€ = e + eh, where e is 
the euclidean metric. W e also assume that ge = e in ftc and 

(11.19) Sg€(x,y) = se(x,y) Vc. 

A n easy computat ion shows that 

(11.20) 
(hij) 

(hij)(v,v)dt = 0 

where y(x,t,v) denotes a straight line through x with direction v at time t. 
Formula (11.20) means that the X- ray transform of the quadratic form hij 
vanishes in the direction v. 

W e recall that the linearization at the identity of the harmonic map 
equation (in the direction h) is 

(11.21) - 2 

n 

i=l 

d 

dxi 
hip 

d 

(hij) 
trh = 0, 8 = 1,. . . , n . 
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Integrating (11.21) along the lines with direction v yields 

7(0:, 

Vj^ijjWß — 0 \/w G R with (w,v) = 0. 

Vrguments similar to those at the end of section 9 show that 

j(w,w) = 0 
(hij(w,w) = 0 Vw G R n 

proving that the A-ray transform of hij(w,w) is zero for all w and therefore 
that h = 0. 

12 . T h e scattering amplitude at fixed energy 
In the previous section 10 we related the Dirichlet to Neumann map 

Aq_A to spectral information about q. One can also relate this to scattering 
information, now fixing the frequency À (this is more or less implicit in the 
hyperbolic Dirichlet to Neumann map and in the analog to formula (6.15) 
for the scattering amplitude). 

In the same way that we obtained (6.15), it is possible to show that the 
scattering amplitude satisfies 

(12.1) j(w,w) = 0 
dQ 

j(w,w) = 0 j(w,w) = 0(w,w) = 0 Vw G Rn 

where -0-4- is the outgoing eigenfunction. 
(In [N] and [No] an integral equation was derived for V '+ ldn in terms 

of Aq_\2 similar to (6.24). See also the nice exposition of Colton and Kress 
[C-K] on integral equation methods in scattering theory). 

Arguments analogous to those in proof of Proposition 6.16 show that if 

(12.2) (w,w) = 0 Vw G Rn 

for qi,q2 e L°°(Q) then 

(12.3) v 4 1 } = ^ 2 ) müc. 

with V ' + \ i = 1,2 the outgoing eigenfunction associated to qi. Then using 
(12.1) we conclude that if (12.3) is satisfied, 

ai(Xo,e,u) = a2(X0,e,u) W , w G(w, 

with at- % = 1,2 the scattering amplitude associated to q^. One can prove the 
converse 
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Theorem 12 .4 . (n > 3 ) . Let q{ € L°°(Rn) , supp q{ C ft = { x ; |x | < i ? } , 
i = 1,2 such that 

(12.5) a i (Ao ,0 ,o ; ) = a2(Ao,0,a;) 

for some AQ ^ 0, V0, w G S n 1. Then i f AQ is not an eigenvalue of LQl or Lq2 
(in ft with Dirichlet boundary conditions), 

(w,w) = 0 Vw G Rn 

and therefore 
qi = 92 • 

Sketch of proof 
Let Gq(x,y,Xo) be the outgoing Green's kernel for —A + q — AQ. The 

single-layer operator, which is an invertible operator from (9ft) to H* (dQ), 
is defined by 

(12.6) Sxofi*) = 
rdB(0,#) 

Gq{x,y,X0)f(y)dS)f(y)dS 

where dS denotes surface measure. 
It was proven in [N] (see Theorem 1.6; the proof is also valid in two 

dimensions) that 

(12.7) 
(w,w) = 0 Vw G Rn 

is injective. More precisely (see (1.40) in [N]) 

12.8 A ^ = A _ A j + 5 ^ 1 - ( 5 + ) - 1 ) f ( y ) d S 

where S* is as in (12.6) with q = 0. Next we sketch how to prove that the 
map 

(12.9) S\0 -* A\0 

is injective, where A\0(q) = CL(XQ,Q,UJ). 
This is an old result of Berezanskii ([B]) who showed how to go from 

the far field (*4A0) to the near field ( ^ A 0 ) ^n a quite explicit fashion. One can 
see the injectivity of (12.9) using the asymptotic expansion of the outgoing 
Green's kernel, namely 

(12.10) Gq(x,y,X0) 
ei\0\x\ 

\ x \ ^ 
^(x0,y, e) + o(\x\ 

( n - l ) -I , 
2 _ i 
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with 9 = — -[fy and if>+ the outgoing eigenfunction. Now if A\0(qi) = A\0(q2), 

by (12.10) and (6.3') we eet 

(12.11) Gqi(x,y,\o) - Gg2(x,y,XQ) : 0( |X| 
( n - l ) 

2 - 1 
|y| 

( n - l ) 
2 - 1 ) -

Now 
</?(£,y) = G g i ( a , y , A 0 ) - G 9 2 ( x , y , A 0 ) 

solves 
(-Ax-\2

0)<p = 0 for |x | > R, \y\ > R. 

Therefore by Rellich's lemma we obtain that 

Gqi(x,y,\0) = Gq2(x,y,\o) for \x\,\y\ > R 

proving the injectivity of the map (12.9). 
In two dimensions Novikov [N II] proved injectivity of the map 

(12.12) )f(y)dS)f(y)dS 

for q close to 0. This result can be also proven using the method outlined in 
the proof of Theorem 12.4 and the local result in [S-U II] stated in section 
7. Sun and Uhlmann [S-U II] used the generic results in Su-U I] to prove 
generic injectivity of the map (12.2). More recently in Su-U III] it was 
proven that in two dimensions for a singular potential having j u m p type 
discontinuities across a subdomain, knowledge of the map (12.2) determines 
both the location of the singularity and the j u m p at the singularity. This 
result follows from a corresponding one for the Dirichlet to Neumann map. 

Remark 12 .13 . R a m m stated Theorem 12.4 in several papers. However 
some of his proofs, as indicated by Novikov ([No]), are incorrect (for in
stance [R I]) . A corrected proof appears in [R II].The proof sketched above 
was communicated to us by A . Nachman. Stefanov [St II] has used similar 
ideas to obtain continuous dependence results for the map (12.12). Henkin 
and Novikov ([N-H]) had proved Theorem 12.4 earlier in the case of small 
potentials. Novikov ([No]) sketched a proof of Theorem 12.4 without the 
smallness assumption using the results in [N-H]. 

13 . A n analogous discrete problem 
A discrete version of the inverse conductivity problem described in sec

tion 1 is to consider a network of resistors. The problem is to determine 
the resistances in the network by making voltage and current measurements 
at the boundary of the network. Of course the geometry of the network 
is important for uniquely determining the resistors. For instance it is easy 
to see that two resistances wired in series cannot be determined by making 
voltage and current measurements at the boundary. 
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W e consider rectangular network Q of resistors in the plane. W e follow 
here the approach of [Cu-M 1]. The nodes of Q are the lattice points p = (z, j) 
for which a < i < b and c < j < d with the four corner points ( a , c ) , (6, c ) , 
(a, d) and (6, d) excluded. The set of nodes is denoted by QQ. The interior 
int QQ consists of those nodes in Qo all of whose four adjoint points are in 
QQ. The edges of fii are the horizontal and vertical line segments which 
connect each pair of adjacent points in QQ. The conductivity is a function 

^ : fii ^ R + 

where R"1" is the set of positive numbers and 
7(") 

is the resistance of the 
edge. 

The conductivity equation is easily obtained used Kirkhoff's law: The 
sum of all currents at an interior node is zero 

(13.1) Lyu(p) = 
q~p 

r(p> - u(p)) = 0, pe int Q 0 

where q ~ p means that q and p are nodes connected by a resistance; y(p, q) 
represents the conductivity associated to the edge joining p and q. 

The discrete Dirichlet to Neumann is then defined by 

(13.2) A ? / ( j > ) = j(p,q)(u{q) - u(p)),p E dQo/(p)A 

where q is the unique node in ÇÎQ connected to p by an edge and u is the 
solution to the Dirichlet problem 

(13.3) 
L^u = 0 in int QQ 

)f(y)dS)f(y 

Again A^f(p) is the induced current at p by the potential u induced by the 
voltage / . 

In analogy with the continuous case it is easy to see that if we consider 
the total power to maintain the potential / on the boundary, with u solution 
of (13.3) 

(13.4) Qi(f) = 
9~P 

/(p)A?/(p)./(p)A?/(p). 

then 

(13.5) Qiif) 
pedüo 

/ (p)A?/(p). 
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The inverse conductivity problem for the network of resistances can then be 
reduced to study the map 

(13.6) 
/(p)A?/(p). 

with as in (13.2) or equivalently the map 

(13.7) 7 * 3 

with Q* as in (13.4). 
Lawler and Sylvester ([L-S]) proved the injectivity of the map $ (or 

Q) for conductivities which are a small deviation of constant conductivities. 
They used the analog of the growing exponential solutions of Calderon (sec
tion 2) . In [Cu-M I] completely different solutions of (13.1) are constructed 
which don' t have an analog in the continuous case. This allows to prove not 
only injectivity for $ (or Q) and to give a reconstruction method to get 7 
from A^ but also to give a characterization of all possible A^ which arise 
([Cu-M II]). W e first state 

Theorem 13 .8 . Let QQ be a network of resistors in the plane with edges 
Qi. Let 7i, i = 1,2 be two conductivities 7» : fii —> R + . Assume 

/(p)A?/ 
(p). 

71 = 72 • 

then 
71 = 72 • 

Sketch of proof. 
Similar to the approach taken in the continuous case, we look at 7 1 = 72 • 

Polarizing the quadratic form (13.4) we obtain the bilinear form 

(13.9) 71 = 72 • 

71 = 7 
7(P><Z)M?) - u(p))(v(q) - v(p)) 

where u is a solution of (13.1) and v solves the Dirichlet problem. 

(13.10) L^v = 0 in int QQ 

v\dn0 = 9-
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One can easily prove the corresponding identity to (5.4) in the case 
of a network of resistors. Namely if 7 ; ,z = 1,2, are conductivities so that 
A £ = A ^ 2 , then 

(13.11) 
L1{U 

[7i(p,q) ~ I2(p,q))(ui(p) - ui{q)){u2{p) - u2(q)) = 0 

where U{ is solution of 
L1{Ui = 0, i = 1 ,2 . 

The main technique used in [Cu-M I] is "harmonic continuation". More 
precisely given a conductivity 7 one can show that there exist solutions of 

Lyu = 0 in QQ 

so that u = 0 below any line of slope plus or minus one (of course there is no 
analog of these solutions in the continuous case). B y choosing u\ in (13.11) 
to be zero below the appropiate line of slope one, and u2 to be zero below a 
line of slope minus one, Curtis and Morrow proved 

Proposit ion 13 .12 . Given an edge joining po and qo and two conductivities 
'Yi , ^ 9 in a network, one can construct solutions 

LYIU{ = 0 in int QQ 

so that for q ~ p 

(13.13) (ui(q) - ui(p))(u2(q) - u2(p)) = 6qoPo 

where 

àqopo 
1 q = qo,p = po 
0 otherwise. 

The theorem follows immediately from Proposition (13.12) since we may 
insert ui and u2 as in (13.13) into (13.11) to get 

7i(Po,<Zo) =72(^0,20), 

which proves the theorem. 

This method of proof allowed Curtis and Morrow to give a reconstructive 
procedure to get 7 from A^ and moreover to formulate necessary conditions 
for a matrix A{j to be the Dirichlet to Neumann map associated to a con
ductivity. They have recently proved that these conditions are also sufficient 
( [Cu-M, II]). 

Let f^o be a square network of side nxn and 7 : Qi —* R + a conductivity. 
The Dirichlet to Neumann map A^ is represented by the matrix Aij (if we 
number the boundary nodes clockwise, then the functions which are one at 
the j ' t h node and zero elsewhere form a basis for functions on the boundary) . 
Curtis and Morrow proved 
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Theorem 13 .14 . Let A; j be a 4n by An matrix representing the linear map 

A. Then there is a unique conductivity function 7 on Qi, such that A = A^ 

iff A{j satisfies the four properties listed below. 

( R l ) Let k be an integer with 1 < k < n, and take m = 4n — k + 1. 
Then there is a unique set of numbers a ? i , a 2 , . . . , «fc such that for each i 
with k < i < m, 

A am ~f" 

L1 

¿ = 1 

AijOij = 0 

A similar relation holds for any node in any face, and columns from faces 
either clockwise or anti-clockwise from that node. 

(R2) A 7 is symmetric: A{j = Aj^.Thus, there are relations similar to 

( R l ) involving the rows of A 7 . 

(R3) For each i = 1 , 2 , . . . , 4n, 

4n 

7=1 

L1{U 0 

(DP) Each of the six n x n blocks which lie entirely above the diagonal, 
and each of their transposes has the Determinant Property - A matrix has 
the determinant property if any k by k submatrix M satisfies: det M < 0 if 
k = 1 or 2 m o d 4; det M > 0 i f f c = 3 o r 4 m o d 4 . 

A n interesting open question is to analyze the relationship between the 
discrete and continuous Dirichlet to Neumann map. 

Department of Mathematics 
University of Washington 
Seattle, W A 98195 
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