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CONGRUENCE SUBGROUP PROBLEM 

FOR ALGEBRAIC GROUPS: OLD AND NEW 

A . S. R A P I N C H U K * 

Let G C GL n be an algebraic group defined over an algebraic number 
field K. Let 5 be a finite subset of the set VK of all valuations of K, containing 
the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers 
in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) 
there corresponds the congruence subgroup 

Go(s)(*) = { 9 6 G0(s) \ 9 = En (mod a)} , 

which is a normal subgroup of finite index in GQ(S)- The initial statement of 
the Congruence Subgroup Problem was : 

(1) Does any normal subgroup of finite index in GQ(S) contain a suitable 
congruence subgroup Go(s)(a) ? 

In fact, it was found by F. Klein as far back as 1880 that for the group 
SL2(Z) the answer to question (1) is "no". So a more accurate statement of the 
problem should be: for which G and S does (1) have an affirmative answer ? 
However, till the mid sixties there were no nontrivial examples of groups 
for which this is actually true. Only in 1965 did Bass-Lazard-Serre [1] and 
Mennicke [10] give a positive solution to the congruence subgroup problem for 
SLn(Z) (n > 3). In the course of further investigations, it appeared convenient 

* The author wishes to thank the Department of Mathematics in Geneva for 
editing and retyping the manuscript. 
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to introduce the object measuring deviation from the positive solution of (1) 
and then to view the congruence subgroup problem as the problem of its 
computation. This object (called the congruence kernel) was defined by Serre 
[27] as follows. 

Let us introduce on the group GK of lif-rational points two HausdorfF 
topologies, ra and r c, called ^-arithmetic topology and 5-congruence topol­
ogy, respectively. The complete system of neighbourhoods of unity for ra 

(resp., r c) consists of all normal subgroups of finite index (resp., all congruence 
subgroups) in (?0(5). It is easy to show that these topologies satisfy all the 
properties that ensure the existence of the corresponding ^-arithmetic and 
5-congruence completions G and G. Since ra is stronger than r c, the identity 
map 

(Gjr,r„) -*(GK,Te) 

is continuous. Therefore it can be extended to a continuous homomorphism 
7r: G —• G of the completions. By definition, CS(G) = Kenr is the congruence 
kernel 

PROPOSITION 1. The projection 7r is surjective and CS(G) is a profinite 
group. CS(G) is trivial if and only if the congruence subgroup problem in the 
form (1) has an affirmative solution for Go(s)-

Thus, in general, the congruence kernel CS(G) measures deviation from 
a positive answer to the congruence subgroup problem. So, by the modern 
statement of the problem we mean the problem of determination of CS(G). It 
is well-known (see for example [23]) that this problem can be reduced to the 
main case of an (absolutely) simple, simply connected algebraic group G. Here 
we shall be exclusively concerned with that case. As we have already remarked, 
the first positive result on the congruence subgroup problem for such groups 
is due to Bass-Lazard-Serre [1] and Mennicke [10], who studied the case of 
SLn(Z) (n > 3). Then Bass-Milnor-Serre [2] completed the investigation of 
SLn [n > 3) and Sp 2 n (n > 2) over an arbitrary number field JT, after 
obtaining a description of CS(G) in the following form: 

(2) Cs(G) = i 1 l f 3 V G 5 S U C h t h a t K v * C 

U I E(K) otherwise, 

where E(K) is the group of all roots of unity in K. By further developing the 
methods of [2], Matsumoto [9] extended (2) to all universal Chevalley groups 
different from SL2 (the case of twisted Chevalley groups was considered by 
Deodhar [4]). In the case G = SL2, first Mennicke [11] gave a positive solution 
to the congruence subgroup problem for the group SL2(Z[-]), and then Serre 
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[27] studied the general situation and showed that, provided Card 5 > 1, the 
answer is of the form (2). On analysing the obtained results, Serre [27] for­
mulated the following congruence subgroup conjecture, which gives sufficient 
conditions for CS(G) to be finite or infinite, in terms of the so-called S-rank : 

rang5 G = ^2 ™n8Kv G, 
ves 

where rangp G denotes the rank of the group G over the field P, i.e., the 
dimension of a maximal P-split subtorus in G. 

CONJECTURE 1. Let G be simple and simply connected. Then in case 
rang5 G > 2 and G is Kv-isotropic for all v £ S \ V£, the congruence kernel 
CS(G) should be finite. In case rang5 G — 1, it should be infinite. 

The case of finite CS(G) is the most interesting and important for applica­
tions. In that case, we shall say that the group T = GQ^S) has the congruence 
subgroup property (CSP). In this paper we are going to describe the class of 
groups for which (CSP) is known to hold and outline some new methods of 
attacking the congruence subgroup problem, which, as we hope, will enable 
us to enlarge this class considerably. 

Let us first describe the general scheme for calculating the congruence 
kernel C = CS(G). It follows from our definitions that C can be determined 
from the exact sequence: 

(3) i _ C - + G ^ G - * l 

Let us consider the initial segment of the Hochschild-Serre spectral sequence 
corresponding to (3): 

(4) H\G) 2* H\G) — Hx(cf X H2(G), 

where HL(*) denotes the i-th continuous cohomology group with coefficients 
in the one-dimensional torus E/Z. The term JT1(C ,)G in (4) is connected with 
C as follows: _ 

H 1 ^ = Hom(C/[C,G] , R/Z). 

So one can reconstruct C from Jff1(C)G only under the assumption that C 
is central, i.e., lies in the centre of G. Indeed, in this case firl(C)G coincides 
with the Pontryagin dual C* of C. Suppose now that C is central. Then we 
have the following exact sequence: 

1 -> Cokery? -> C* - » I m ^ -> 1. 
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Ignoring the trivial case rang 5G = 0, in which GQ^S) is finite and conse­
quently CS(G) = 1, we immediately obtain from the strong approximation 
theorem that the group G can be identified with the group GA(S) of 5-adeles. 
Then, using the fact that the sequence (3) splits over the group GK and is 
the "universal" sequence with this property, one can show that Im tp coincides 
with the so-called metaplectic kernel 

M(G,S) = K e r ( # 2 ( G V ) ) -+H2(GK)), 

where GK is endowed with the discrete topology. On the other hand 

Cokerp* [GK,GK]/[GK,GK], 

where the bar denotes closure in GK for the 5-arithmetic topology. Taking 
into account that M(G,5) is always finite (see [17]) and that [GK>GK] has 
finite index in GK (see [8]), we arrive at the following 

PROPOSITION 2. If C is central then it is finite. If, moreover, Coker<£> = 1 
thenC* ~M{G,S). 

In fact, at present it is known that Cokery? is indeed trivial for most 
cases. This depends on the validity for GK of the following conjecture, which 
describes the normal structure. (This conjecture was formulated by Platonov 
[13] in the form of a local-to-global principle for projective simplicity and then 
by Margulis [8] in the final form). 

CONJECTURE 2. Let — VK \ V* be the set of nonarchimedean 
valuations, and let T = {v £ \ G is Kv-anisotropic}. Then for any 
noncentral, normal subgroup N C GK there is an open normal subgroup 
W C GT = n GKV

 S U C A ^at N = W n GK- In other words, any noncentral 

normal subgroup is open (equivalently, closed) in the T-adic topology. 

If Conjecture 2 is true for GK then we say that GK has a standard 
description of normal subgroups. In the situation of Conjecture 1 we have 
S n T = 0 , and so the triviality of Cokery? is equivalent to saying that 
Conjecture 2 holds for N = [GK>GK]- But the latter statement is actually 
true for all groups, with the possible exception of some anisotropic forms of 
types 2 A n , 3 ' 6 Z ) 4 and EQ (see [14]). Thus, in most cases, the calculation of C 
(provided it is central) reduces to that of M(G,S). 

The first computations of the metaplectic kernel had been carried out 
by Moore [12] and Matsumoto [9]. They obtained the description of M(G,S) 
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for Chevalley groups in the form (2). The case of quasi-split groups was con­
sidered by Deodhar [4]. The final result for isotropic groups, due to Prasad-
Raghunathan [17], is of the form: 

(5) M(G,S) = 
1 M(G,S) = Vk 

C E(K) otherwise, 

where E(K) is the group of all roots of unity in K. The author [20] calcu­
lated M(6 f , S) for a large series of anisotropic groups. Here the description 
of M(G, S) is of the same nature as (5), but its precise form may differ from 
(5) by a certain group of exponent 2. The main part of these results is the 
computation of M(G,S) for the groups of type SLi(D). As in the classical 
case of the group SL n, we show that any element x £ M(G, S) gives rise to a 
certain reciprocity law, i.e., to a relation of the form 

wevL 

n (a,b)l- = 1, 

where L is a certain maximal subfield in D and (*,*)«; is the norm residue 
symbol of degree fxw = [E(LW)]. But the difference from the classical situation 
is that this reciprocity law must hold not for all a,6 £ £*, but for all a,6 of 
some specific form. Then we prove a certain version of the uniqueness theorem 
for reciprocity laws of this kind (similar results were obtained by Prasad [16]) 
and derive from it the desired description of the metaplectic kernel. That is all 
that is known about the problem of the precise determination of C under the 
assumption that it is central. Now we shall move on to the methods of proving 
the centrality of C. This is equivalent (as explained above) to its being finite. 

That the congruence kernel is central for the groups SLn (n > 3) and 
Sp 2 n (n > 2), was established by Bass-Milnor-Serre in [2]. The case of split 
and quasi-split groups was considered by Matsumoto [9] and Deodhar [4] 
respectively. For G = SL2, Serre [27] proved that CS(G) is central in the 
case where Card S > 1. Raghunathan [18], [19] completed the discussion of 
If-isotropic groups by proving that they satisfy Conjecture 1, i.e. in fact that 
CS(G) is central for the case rang5 G > 2. The argument in all these papers 
was based on some manipulations with unipotent elements in G^, and so no 
version of it can be applied to anisotropic groups. Until recently, the only 
result which allowed also anisotropic groups was Kneser's theorem [6] for 
spinor groups of quadratic forms. But then Rapinchuk [21], [22] and Tomanov 
[29] extended this theorem to all groups having a nice geometric realization. 

77 



A. RAPINCHUK 

THEOREM 1. Let G be a simple, simply connected K-group of one of 
the following types B n (n > 2), C N (n > 2), D n (n > 5) , G^ or the special 
unitary groups, SU m ( / ) (m > 4), of a nondegenerate hermitian form f over 
some quadratic extension L /K belonging to the type 2 A m _ i . Assume that 
rang5 G > 2 and, moreover, if G is of type C3 then either S contains a nonar-
chimedean valuation or such an archimedean valuation v that rang^ G > 2. 
Then C S ( G ) is central. 

Later Tomanov [30] included into the list of groups in Theorem 1 also 
the unitary groups over the quaternions. 

The proof of Theorem 1 is actually independent of the type of the group. 
It is based on the following two statements. 

PROPOSITION 3 . C S ( G ) is central if the group G K is protectively simple 
and if there is a K-defined subgroup H C G with the following properties: 

1) the natural map C S ( H ) —• C S ( G ) is surjective; 
2) for some nontrivial K-defined automorphism a £ Aut G, the restriction 

CT\H is trivial. 

PROPOSITION 4. Let G act K-rationally on some affine K-variety X , 
and let x £ X K - Assume that, for any normal subgroup N C GQ(S) °f finite 
index, the orbit Nx is open in G Q ( S ) x f° T S-adelic topology (of the space 
XA(S))- Then, if G(x) denotes the stabilizer of the point x, the natural map 
C S ( G ( x ) ) C S ( G ) is surjective. 

We apply these statements to the natural realizations of the groups in 
Theorem 1 as the automorphism groups of some quadratic, hermitian or skew-
hermitian forms. In fact, this method is applicable in many other situations 
besides those described in Theorem 1. For example, it was shown in [23] how it 
can be used to establish the centrality of the congruence kernel for the group 
SLn (n > 3) . On the other hand, it is inapplicable to the groups which have 
no nice geometric presentation, in particular to most exceptional groups. Here 
the solution of the congruence subgroup problem was obtained by Rapinchuk 
[22] through another approach, using the intrinsic structure of the group. 

THEOREM 2. Let G be a simple, simply connected K-anisotropic group 
of one of the following types: E7, Eg, F±. Assume that: 

1) if G is of type Ei or Eg then rang5 G > 2; 
2) if G is of type JP4 then there is v £ S such that rang#v G > 2. 

Then C S ( G ) is central. 
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A crucial role in the proof of Theorem 2 is played by the fact that all 
groups of the enumerated types split over some quadratic extension L/K with 
a special local behaviour. This result is a consequence of the Hasse principle 
for the Galois cohomology of simply connected groups and the fact that the 
centres of these groups have order at most 2. 

All these results confirm Serre's conjecture for most types of simple 
groups. However, there is a very important class of groups, viz. the groups of 
type SLi(D) where D is a division algebra, for which these methods fail to 
work. Even for the case of a quaternion algebra £>, until recently there was 
not a single example of a group of type SLi(D) with property (CSP). But 
a few months ago it appeared that such an example can be obtained on the 
basis of a new approach to the congruence subgroup problem developed in 
Minsk. 

This approach is based on the use of some abstract algebraic concepts. 
The first step in its foundation was a purely algebraic proof of centrality for 
the congruence kernel of the groups SLn (n > 3) (in fact, for all Chevalley 
groups of rank > 2) and of SL 2(Z[|]) (see [26]). To be more precise, it was 
shown that the centrality of the congruence kernel for these groups follows 
directly from commutator relations. It seems plausible that this argument 
can be extended to all (or most) isotropic groups where commutator relations 
of the same type hold. On the other hand, it is inapplicable to groups for 
which no explicit presentation of a convenient form exists (or is known), i.e. 
to the most interesting case of anisotropic groups. It is clear that the algebraic 
approach here should be based not on the analysis of particular relations, but 
on the specification of some abstract properties of arithmetic groups which 
would imply the finiteness (or centrality) of the congruence kernel. At present, 
we know a few properties of this kind, the first of which being the property 
of bounded generation. 

DEFINITION. We say that an abstract group V has the property of 
bounded generation (BG) if there are elements 7 i , . . . , 7 * £ T such that 
r = ( 7 1 ) . . . (7*), where (7,-) is the cyclic subgroup generated by 7^. 

This property is clearly of a combinatorial nature. However, the author 
failed to find any mention of it in the works on combinatorial group theory. It 
should be emphasized that this abstract definition was strongly motivated by 
a result of Carter and Keller [3], according to which any matrix in SL n(0), 
where O is the ring of integers in an algebraic number field and n > 3, 
is a product of a certain bounded number of elementary matrices. In fact, 
this paper of Carter and Keller was aimed at the solution of a problem from 
algebraic if-theory, viz. the question of the triviality of the SKi-functor for so-
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called non-standard models of the rings of integers. Their result quoted above 
is precisely equivalent to this triviality. However, the technique employed in 
that paper was borrowed from the works on the congruence subgroup problem 
(Mennicke symbols, etc.). The analysis of that paper, and also of some other 
facts, induced the author to formulate the following conjecture. 

CONJECTURE 3. Let G be a simple, simply connected algebraic group 
over an algebraic number field K, and let S C VK be a finite subset containing 
V*£. Then for the group V = GQ(S) of S-integral points the properties (CSP) 
and (BG) are equivalent. 

Some further evidence in favour of this conjecture appeared when Tavgen' 
[28] established (BG) for arithmetic and 5-arithmetic subgroups of all Cheval-
ley groups of rank > 2, both of normal and of most twisted types. (The (CSP) 
property for these groups was proved by Matsumoto [9] and Deodhar [4].) 
There are also some examples of the reverse character. For the groups SL2(Z) 
and SL2(0) , where O is the ring of integers in an imaginary quadratic field, 
both properties (CSP) and (BG) fail to hold. In all these cases, (CSP) and 
(BG) are proved or disproved independently, and somehow it happens that 
they simultaneously hold or fail to hold. But the real question was whether 
there is some direct connection between these two properties in the general sit­
uation. The first result which established such a connection was the following 
theorem, proved by the author [24]. 

THEOREM 3. Assume that the group GK admits a standard description 
of normal subgroups. IfT = GQ(S) has (BG) then the abelianized congruence 
kernel CAB = C/ [C, C] is finite. 

Subsequently it turned out that the technique invented for the proof of 
Theorem 3 can be pushed further, so that, for ̂ -arithmetic groups of bounded 
generation, property (CSP) can be proved in full (see Corollary 1 below). 
This fact was obtained as a consequence of some more general results (to be 
described a little later), obtained independently by Platonov-Rapinchuk [15] 
and A. Lubotzky. It is worth mentioning that this enables us to present new 
examples of 5-arithmetic groups with (CSP). Namely, recently F. Grunewald 
found by computer some explicit examples of groups with (BG) among the 
groups of the form Gz(s)> where G = SLi(D) for some quaternion algebra D 
over Q and S = {oo,p} (p prime). This gives the first examples of quaternionic 
groups with (CSP). Now I would like to formulate a conjecture, the proof of 
which would provide a proof of Serre's congruence subgroup conjecture. 
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CONJECTURE 4. If G is simple and rang5G > 2 then T = GQ(S) ^ A S 

bounded generation. 

There is no doubt that groups with (BG) (and especially their profinite 
analogues) deserve some special treatment. They have interesting structural 
properties and, under additional assumptions, they satisfy an important prop­
erty from representation theory - the property of finiteness of the represen­
tation type (see [25], [26]). However, at present it is not quite clear how to 
determine in general whether a particular group has bounded generation or 
not. For this reason we had undertaken a search of other abstract proper­
ties of arithmetic groups, which should also ensure (CSP) but be (or at least 
look) more constructive than (BG). Now, I am going to describe some results 
in this direction, which have been obtained by Platonov and Rapinchuk [15]. 
We shall need some new definitions, bearing not on the 5-arithmetic group V 
itself but on its profinite completion V. 

DEFINITION. Let A be a finitely generated profinite group. 
1. A has bounded generation as a profinite group (property (BG)pf) if there 

exist elements ¿ 1 , . . . , St G A such that A = (Si)... (6t), where (Si) de­
notes the closure of the cyclic subgroup generated by Si. 

2. The n-th Burnside factor An of A is the factor group A / A N modulo the 
closed subgroup A N generated by n-th powers of all elements of A . (Note 
that, according to [31], A N is finite for any n.) 

3. A has polynomial growth in the orders of its Burnside factors (property 
(PG)pj) if there are constants c and k such that | A N | < cnk for all n. 

4. A has property (PG)pf if, for any integer n > 0 and any prime g, there 
exist c and k such that | A N ^ | < cqkl for all i > 0. 

It is easy to show that property (BG) for T implies (BG)pj for T. On the 
other hand, for arbitrary A we have 

(BG)pf =• (PG)pf => (PG)'pf . 

No other relations between these properties are known. So it would be inter­
esting to find out whether properties (BG)p^ and (PG)pf are equivalent or 
not. (Our results show that this is certainly true for the profinite completions 
of 5-arithmetic groups; see Corollary 2 below. Moreover, as follows from [5] 
and [7], for a pro-p-group A each of the conditions (BG)pf, (PG)pf, or (PG)'pf 

is equivalent to analyticity.) 
Now we may formulate: 
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THEOREM 4. Assume that GK admits a standard description of normal 
subgroups and suppose SHT = 0. If the profinite completion T of the group 
T = GQ(S) satisfies (PG)'pf, then T has property (CSP). 

Naturally, for the proof we show that (PG)pj implies that C = CS(G) is 
central. It should also be noted that, after the paper [15] had been prepared 
for publication, A. Lubotzky informed us that he also managed to establish 
the centrality of C under the condition (PG)pj for T. 

COROLLARY 1. With the assumptions of Theorem 4, if the group T has 
property (BG)pf (in particular, ifT has property (BG)) then T has (CSP). 

Now it should be pointed out that the converse statement to Theorem 4 
is true without any additional assumptions on the group G. This follows from 

THEOREM 5. Let G be a simple, simply connected K-group, and let 
S C VK be a finite subset containing V£. Then the group GAS(S) °f S-
integral S-adeles is a profinite group satisfying (BG)pf. 

COROLLARY 2. If GK has a standard description of normal subgroups 
and S H T = 0 then each of the conditions (BG) F 9 (PG) f, and (PG)PF for 
f, is equivalent to (CSP) for T. 

Now, to close this survey, we show that, for example in the case of 
r = S L m ( Z ) (m > 3), the condition (PG)pf can be straightforwardly checked 
by purely algebraic means, while condition (BG) requires some rather deli­
cate arithmetic considerations (cf. [3]). (There is no direct proof of condition 
(PC) ^ for this group either.) 

It is well-known that Y = SLm(Z) (m > 3) is generated by elementary 
matrices (i,j = 1, . . . ,ra; i\ ̂  j). These satisfy the following commutator 
relations 

(6) [eS ,eSJ=eS? 

for all pairwise distinct subscripts i,^, fc. Clearly, the profinite Burnside factor 
T n is the maximal finite factor group of the discrete Burnside factor Tn = 
T / r n , where Tn is generated by n-th powers of all elements of T. It is known 
that any noncentral normal subgroup in T is of finite index (see [8]). So Tn 

is finite and |T n | = |T n | for any n. Denote by En the normal subgroup in 
T generated by {e^} . Evidently, we have £ N C T n ; so it suffices to estimate 
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| r / fJ n | . Now we fix an integer n > 0 and a prime p, and we estimate \T/Enp<x |. 
Assuming a > 8 we have 

|r/E n p cc | = c \Enp* JEnp<* |, 

where c = [T : Enp*\. Consider now the profinite group A = l i m E n p s / E n p « , 
the limit being taken over a > 8. Using the relations (6), it is easy to show 
that for any a > 8 the group Enp<* /Enpa+2 is an abelian p-group. Thus A is 
a pro-p-group. On the other hand, we have 

2 
Enpio C Enp8 C Enps. 

2 
In particular, [Enp&, Enps] C Ev

np%. Applying Lazard's criterion for analyticity 
(see [7]), or the results on the so-called powerful pro-p-groups (see [5]), we 
deduce that A is analytic. Then it has each of the properties (BG)pp (PG)pp 
and (PG)'pf. This clearly implies that \Enp*/Enp<* | grows polynomially in pa. 
Hence the same assertion holds for \T/Enp<* |, and we are through. 
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