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MODULAR FORMS AND ALGEBRAIC K-THEORY 
A. J. Scholl 

In this paper, which follows closely the talk given at the conference, I will 
sketch an example of a non-trivial element of K2 of a certain threefold, whose 
existence is related to the vanishing of an incomplete X-function of a modular 
form at s = 1. To explain how this fits into a general picture, we begin with a 
simple account, for the non-specialist, of some of the conjectures (mostly due 
to Beilinson) which relate ranks of iiT-groups and orders of L-functions, sup­
plemented by examples coming from modular forms. The picture presented 
is in some respects wildly distorted; among the important topics which are 
given little mention are: 

(i) the connection between special values of L-functions and higher 
regulators, which is at the heart of the Beilinson conjectures; 

(ii) the conjectures of Birch and Swinnerton-Dyer, and their generali­
sation by Beilinson and Bloch; 

(iii) the theory of (mixed) motives, which underlies the constructions of 
the last section. 

But I hope that it may be of some use as a gentle introduction to the 
subject, and to prepare the reader for a more comprehensive account (see for 
example [9,17,18,21] and above all [1]). 

1. BEGINNINGS 

The story begins with Dirichlet's unit theorem: if F is a number field 
with ring of integers o^, then 

rk o*F = rt + r2 - 1 = o r d 5 = 0 (F{S) 

and there is the analytic class number formula, which at $ = 0 reads: 

CF(0) = 
hFRE 

wF (i) 

where (P(0) denotes the leading coefficient in the Taylor series of (F($) Z& 
s = 0. More generally, let S be a finite set of primes of F, and OP,S the ring 
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of S-integers of F. Then the S-unit theorem says 

rko> 5 = ri + r 2 - l + # S 

= ord 5 = 0 CF,S(S) 

where CF,S( 5) is the incomplete zeta function: 

CFAS) = 
P#s 

'( l-Np- 8 )-1 

and the analogue of (1) is the 5-class number formula. 
Borel found a generalisation of these results to the zeta function at arbitrary 

negative integers: 

Theorem. [5] Let I > 0 be an integer. Then K21OF is finite, and 

ikK2i+iOF = 
T\ + 7*2 / even 
T2 I odd 

= ord s =_/ (F(s). 

Moreover the leading coefficient CF(~0 2 5 ^Q^al, up to a non-zero rational 
factor, to a "higher regulator". 

Remarks: (i) Here KiOp are the higher if-groups of F, as defined by Quillen 
(see section 2). This is a natural generalisation of the unit theorem since 
K\OF = o*F. The fact that KIOF are finitely generated was proved by Quillen. 

(ii) The higher regulator is the determinant of a certain natural homomor-
phism 

K2i+iOF ® R - + R m S mi = oids=_i CF(s). 

(iii) The analogue of the 5-unit theorem for these higher -groups is un­
interesting; on the one hand, one has 

(2) KqoF,s 0 Q = KqoF ® Q = KqF (8) Q 

for every q > 1 (cf. section 2); on the other, the individual Euler factors in 
(F(S) have no poles at negative integer points, so 

ord 5 = _/(>(s) = °^8=-ICF,S(S) 

for any finite set S of primes and any / > 0. 
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2. K-THEORY 

For any scheme X there is a Grothendieck group KQX. It is defined as the 
abelian group generated by symbols [£], where £ runs over all isomorphism 
classes of vector bundles on X , with relations of the form 

[S] = [£'] + [S"\ 

for every exact sequence 0 —> £' —• £ —» £" —> 0. For a ring i? one can 
define if 0i? to be if 0Speci?, or (which amounts to the same thing) as the 
Grothendieck group of projective iZ-modules, with relations [M®N] = [M] + 
[N]. 

In a similar way one also has the group K'0X, generated by [£] for arbitrary 
coherent sheaves £, with relations from exact sequences of coherent sheaves. 

Quillen showed that KQX and K'0X are part of an infinite sequence of 
groups KQX, K'QX for q > 0, constructed as the higher homotopy groups 
7r9+i of certain spaces attached to X. For some of the different ways to define 
them, see [10,16,22]. 

Among the important properties of these groups are: 

(i) There are cup-products KPX x KQX —• KP+QX', 
(ii) For X regular (e.g. a smooth variety) K'QX = KQX; 

(iii) For Y C X a closed subscheme, there is a long exact sequence (the 
localisation sequence) 

••• - K'QY - K'QY -K'QY -K'QY -- y) K'^Y . . . 

'(iv) injects into i^iX, with equality if X = Spec i7* is the spectrum 
of a field. 

(v) The K-groups of finite fields are finite (of known order). 

For a number field F the localisation sequence gives 

> KQ0F -* KQ0F,S -> [J Kq^Op/p Kq^Op -* ... 

which together with (v) gives (2). 

3. L-FUNCTIONS OF AN ALGEBRAIC VARIETY 

Consider a smooth, projective algebraic variety X over Q. Since any va­
riety over a number field may be regarded—by restriction of scalars a la 
Grothendieck—as a variety over Q (in general, not geometrically connected) 
the restriction to ground field Q is not serious. 
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For each integer i in the range 0 < i < 2dimX there is an L-function 
L{hl(X), s), which is an Euler product: 

L(hi(X),s) = l[pM(p-r1. 
P 

The polynomials Pjfi(t) here are defined as follows. Pick a prime £ ̂  p, and 
let H\(X) be the ^-adic cohomology of X/Q, which is a finite-dimensional 
Q^-vector space on which Gal(Q/Q) acts continuously. Let Ip C Dp C 
Gal(Q/Q) be inertia and decomposition subgroups at a prime of Q over p, 
and Frobp = <j)~l 6 Dp/Ip the inverse of the Frobenius substitution. Then 

pW(t) = det(l - tFrobp I H\(Xy>) 

is the characteristic polynomial of Frobp (the "geometric Frobenius") acting 
on the inertia invariants. 

If X has a good reduction Xp at then Pjfi has integer coefficients, and 
does not depend on by Deligne's proof of the Weil conjectures [6]; moreover 
in this case the zeroes of P^(t) all have absolute value p~1/2. For general 
p it is conjectured that P^\t) has integer coefficients, is independent of 
and that its roots have absolute values p~^2 for various integers j < i. This 
is known in very few cases (curves, a class of surfaces and some sporadic 
higher-dimensional examples). For the conjectures that follow to make sense, 
we must assume these local properties are true. It is then conjectured that 
L(hl(X), s)—which is analytic and non-zero for 9ft(s) > i/2 + 1, by the Euler 
product—has a meromorphic continuation satisfying a functional equation 
for the substitution s \—• 1 + i — s. 

4. GENERAL CONJECTURES 

The part of Beilinson's conjecture related to orders of L-functions can now 
be approximately stated: 

Let m be an integer satisfying m < Write q = 1 + i — 2m. Then the 
order of L(hl(X), s) at s = m is equal to the dimension of a certain subspace 
of Kq(X)z ® Q. More precisely, for q > 0 

dimKqX/z ® Q = £ o r d 5 = m L ( / i i ( X ) , s ) . 
(z,m) 

\-\-i—2m—q 

Remarks: (i) The group KqX/z is defined as follows. Let X be a regular 
model for X over Z; in other words, X is a regular scheme, proper over 
Spec Z, such that X ® Q = X. Then 

KqX/z = I m a g e d * KqX). 
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It would be wrong to take KqX by itself; this can be seen already in the case 
of X = Spec F, i = m = 0 (so that q = 1) . For then KXX = F* has infinite 
rank, but KiF/z = o*F has the correct, finite rank. It was Bloch and Grayson 
who observed that in higher dimensions, and for higher 9, it might still be 
necessary to impose a similar integrality condition (see section 5 below). 

(ii) (dimension 0) In the case X = Spec F the conjecture is a consequence 
of Borel's theorem; as there is only one L-function (1 = 0) there is no splitting 
up of the if-groups. These are essentially the only L-functions for which the 
conjecture is known to be true. 

(iii) (dimension 1) If X is a curve, the conjectural picture is still quite 
simple. There are three L-functions: L(h°(X), s) and L(h2(X), s), which are 
respectively C F ( S ) and (F(S — 1) (if-X" is irreducible with constant field F), and 
the Hasse-Weil L-function L(hl(X), 5 ) . There is a parity condition q = 1 + i 
(mod 2). Therefore the even if-groups KqX are expected to contribute to 
the order of the Hasse-Weil L-function at the points s = 1 — qj2\ whereas 
the contribution of the odd groups should be to L(h°(X), s) and L(/ i 2 (X), s), 
and this should be accounted for by Borel's theorem. 

For varieties of higher dimension it becomes necessary to specify a decom­
position of the if-groups into pieces corresponding to the various L-functions. 
There are in fact two (conjecturally equivalent) ways to do this. The first 
rests on certain conjectures on algebraic cycles (which are only known in a 
few cases). Suppose that the decomposition of the cohomology H%(X) into 
its graded pieces is algebraic, in the following strong sense: regard the pro­
jectors 7r,-: Hj>(X) —» H\(X) (for 0 < i < 2 d i m X ) as cohomology classes 
in H^dimX(X x X). Then one wants algebraic cycles II* on X x X whose 
cohomology classes are 7Tj, and whose images in the ring of correspondences 
CH6imX{X x X) ® Q form a complete set of orthogonal idempotents. 

This would follow from Grothendieck's standard conjectures; it is the de­
composition of the "motive" h(X) into submotives hl(X). It is known for 
curves and surfaces: see [15] for more details. 

The ring CH6imX(X x X) ® Q acts on K*X ® Q. So if the projectors II; 
exist, one can write KqX®Q = ®Kqti{X), where Kqti{X) = IU(KqX®Q). 
Let Kqhl(X)/z be the image of the composite: 

KqX (8) Q KqX ® Q -+ Kqti(X). 

The precise conjecture would then be: 

6imKqti(X)/z = o r d 5 = m L ( / i X X ) , 5 ) for q = 1 + i - 2m > 0. 
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Beilinson actually uses an alternative description of the decomposition, 
which is not conjectural, and gives a reasonably computable theory (for ex­
ample, it is compatible with the maps in the localisation sequence when 
suitably interpreted). There are certain operators ^ p (Adams operators) act­
ing on the groups KqX, coming from the exterior power operation on vector 
bundles. Define K^X to be the subspace of KqX ® Q on which ipp acts 
as multiplication by p n , with p > 1. It is known that this is independent of 
p > 1 and that one has a direct sum decomposition: 

KqX <g) Q = ®n>oK^X. 

Defining KJ^X/z to be the image of KqX (8) Q in K^X, Beilinson's precise 
conjecture reads: 

Conjecture 4.1. [1] 

d i m # ( n ) X / z = oxdLs=mL(ti(X),s) 

for q = 1 + i — 2m > 0 and n = l + i — m = q + m. 

Remark: The relation between these two decompositions is almost com­
pletely conjectural. It is only over a number field that one expects the two 
decompositions to be the same—this is apparent even in the case X = Spec F. 

To formulate an S-integral version of the conjecture, let 5 be a finite set 
of rational primes, and Z5 = Z[{j9 - 1 } p G s] , as in the first section. Let Xs = 
X (g) Z5 be the restriction of the regular model to Spec Z5, and define 

K^X,Zs = \ma&(KqXs ® Q - K^X) 

Conjecture 4.2. Let Ls(hl(X),s) be the incomplete L-function (i.e. with 
the Euler factors for p G S removed). Then: 

dimK^X,Zs = o r d ^ m L s ( t f ( X ) , * ) 

for q = 1 + i — 2m > 0 and n = 1 + i — m = q + m. 

Remarks: (i) The order of the incomplete L-function at s = m is the sum 
of the order of the complete L-function and 

£ dimker(Frob p -p m | H\{X)^) 
pes 

(assuming that the action of Frobp is semisimple). In particular, if p is a 
prime of good reduction, then there will be no contribution to the sum unless 
m = i/2. Thus for m < i/2 (ie. q > 1) the order of Ls stabilises as soon 

90 



MODULAR FORMS AND ALGEBRAIC K-THEORY 

as S contains all bad primes. At the same time, KQX/ZS is the kernel of the 
boundary map in the localisation sequence: 

KQX/ZS = ker(KQX - U K'q-iXw,)-
Pis 

For a good prime p, K'^X^ = K^\XYV and Parshin has conjectured that 
this is torsion if q — 1 ^ 0. If this conjecture is true, then the left-hand side 
of conjecture 4.2 also stabilises as soon as S contains all bad primes. 

(ii) Conjecture 4.2 was made by Deligne in [7]. He also asked for the exis­
tence of an 5-regulator analogous to the one for units. A general candidate 
for this has yet to be constructed; for something in this direction see section 
§4.7 of [17]. 

5. MODULAR CURVES 

Let R be a congruence subgroup of SZ^Z) of level n, and let be the 
modular curve, whose set of complex points is the non-compact Riemann 
surface T\S). There is the standard compactification 

XT = UY U (cusps) 

which has the structure of an irreducible curve over the field Q(Cn) (although 
it often can be defined over a smaller field). The Hasse-Weil L-function of 
XY is a product 

L(h1(XT),s)=f[L(fi,s) 
i=l 

where are certain (not necessarily distinct!) newforms of weight 2 and 
some level, and L(/j, s) is the associated Hecke L-series. There is a functional 
equation relating L{hL{X),s) and L{hL(X),2 — s). 

At the point s = m = (1 + i)/2 = 1 one has the conjecture of Birch and 
Swinnerton-Dyer. This fits into the framework of 4.1 because of the relation 
between K$ of a curve and its Jacobian. At other points the functional 
equation determines the order of vanishing of the L-function, and 

o r d 5 = m L(h\X), s) = g for m = 0, - 1 , - 2 , . . . 

Conjecture 4.1 therefore predicts that î 2r-^r/z will have rank at least g, for 
every positive integer r. 

Remarks: (i) As defined here, g will equal <j)(n) times the genus of the curve 
X?. If the chosen field of definition is Q, g will be simply the genus. 

(ii) The levels of the forms need not equal n, or even divide n; however 
they always divide n 2. 
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The simplest case is the point 5 = 0. Here we have the fundamental result 
of Beilinson: 

Theorem, (a) [1] There exists a g-dimensional subspace Vr of K2XY ® Q/ 
its regulator is a non-zero rational multiple of L^9\h1(Xr)1Q). 

(b) [19] VT is contained in K2XY/Z ® Q-

The proof of the theorem involves an explicit construction of elements of 
i^2^r®Q- We indicate here the idea of the construction; for details, including 
the definition and calculation of the regulator, the reader should consult 
[1],[2] or [19]. The basic tool is: 

Theorem (Manin-Drinfeld). Any divisor of degree zero on X? supported 
on the cusps is of finite order in the Jacobian of X?. 

This guarantees a good supply of elements of C?*(£/r)> which are the modular 
units] for example the function A(nz)/A(z) is such a function. Now if 
gi £ Q*(JJV^ w e may form the cup product gU g' G K2UY. The localisation 
sequence gives an exact sequence: 

0 K2XT ® Q K2UT ® Q -2> #i(cusps) ® Q 

(it is exact on the left since K2 of a number field is torsion). 

Lemma. Assume that the cusps are rational over the field of constants of X?. 
Let W be the subspace of K2UT ® Q generated by elements of the form cU h, 
with h G 0*(UY) and c a constant function. Then d(W) = d(K2Ur (g) Q). 

Accordingly for any cup-product g U g', there are ha G 0*(UT) (g) Q and 
constant functions ca such that 

9 U g' + E ^ A U ha G K2XT ® Q. 
a 

By varying g' one thus obtains a subspace Qr C K2X? ® Q. For T' C T 
there is a direct image map: 

0rtr: K2Xr ® Q ^ K2XT ® Q 

and the subspace of the theorem is obtained as 

Pr = (J0r,r'(Gr') 

where T' runs over all congruence subgroups T' C T. 
The proof that dim(T^r) > 5 is by finding the regulators of these elements, 

which reduces to the calculation of a certain Rankin-Selberg integral. The 
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proof that the elements belong to K2XT/Z results from examining the locali­
sation sequence: 

(3) 0 -> K2XT/Z K2XT 4 © K[XT ® Fp 

p 
and using the structure of the reduction modulo p of the modular curves 
[8 ,12] . The key ingredient is the fact that the action of the Hecke algebra 
on supersingular points in characteristic p can be expressed in terms of the 
action on suitable (characteristic zero) cusp forms (see for example [13]). 

For example, consider the first non-trivial case, the modular curve X = 
XO(11)/Q , which has 3 = 1. There are just two cusps 0 and oo, and their 
difference has order 5 in the Jacobian of Xo( l l ) , so that the group of modular 
units has rank 1. If g is a generator, then g U g £ K2 is torsion (as the cup-
product is skew-symmetric). So Qr0(n) = 0> a n ( i modular units on To(ll) do 
not suffice to give a non-zero element of K2. However the covering -Xi(ll) is 
an elliptic curve with 5 cusps, all of them rational (it is the Weil curve 11A of 
the tables in [3]). This curve is one of a number studied by Bloch and Grayson 
in [4]. By calculating the regulator (numerically) they determined an element 
°f 2r x(n) of infinite order. Since the isogeny ^ i ( l l ) —• -Xo(ll) induces 
an isomorphism on <8> Q, this produces the desired non-zero element of 
K2(XQ(11)) ® Q. The integrality of this element was also verified by Bloch 
and Grayson. 

In this setting, conjecture 4.2 states that 

ord 5 = 0 Ls(XT, s) = 9 + ™>p, 
pes 

where mp is the number of times (1 — p~8)~l occurs in the Euler factor of 
L(Xr, s) at p. When 3 = 1, then mp = 1 if the reduction mod p of X? has an 
ordinary double point with rational tangent directions, and is 0 otherwise. 
This is also precisely the rank of K[XT/Fp, suggesting that the boundary 
map d in (3) is surjective, up to torsion. (For a more detailed analysis of 
a more general situation, see §4.7 of [17].) The calculations of Bloch and 
Grayson exhibit, in many cases, non-integral elements of K2(Xr) in partial 
confirmation of this result. 

Consider for example the case of Ao( l l ) . The only bad prime is p = 11, 
where the reduction is split multiplicative, and conjecture 4.2 therefore pre­
dicts that K2(Xo(ll)) has rank 2. Bloch and Grayson found two independent 
elements of K2 by working with functions with divisors with support in the 5 
rational points of XQ(11) (only two of which are cusps). However, unlike the 
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case of the integral elements (Beilinson's theorem), there is as yet no general 
construction of the "extra" elements predicted by conjecture 4.2. 

The results of the previous section have been generalised in various ways. 
One is by considering the behaviour of L(Xr, s) at negative integers s = -/ < 
0. Here Beilinson has proved: 

Theorem. [2] There exists a subspace of dimi^2/+2(^r) ® Q of dimension 
g = oids=_iL(XT,s). 

He also proves that elements constructed have the predicted regulators. We 
should remark that in this case there is, up to torsion, no difference between 
Jf2/+2^r/z a n d i^2/+2^rj since Kj of a (possibly singular) curve over a finite 
field is torsion if j > 1, by [11] . The construction of the elements uses not 
just the modular curves themselves but also the "Kuga-Sato varieties" (fibre 
products of the universal families of elliptic curves). 

It is possible to generalise these results to cusp forms of weight k > 2. If / 
is such a cusp form (assumed to be a newform of some level), then its L-series 
L( / , 5) occurs in the L-function of V*, a Kuga-Sato variety of dimension k — 1. 
(For weight two, V2 is Xp.) Corresponding to the simple zero of L(f,s) at 
the point s = — I < 0, we can construct a non-zero element of if2/+jb(Vjb) ® Q , 
and determine its regulator. For a precise statement of this and the previous 
results, and some indications of the proofs, we refer to §5 of [9]. 

There are very few examples of evidence in support of conjecture 4.2. Other 
than the examples of Bloch-Grayson and the example of the next section, 
there is only the work of Mestre and Schappacher [14] . They consider the 
symmetric square L-function of an elliptic curve E over Q at s = 0 (where it 
vanishes to order 2), and exhibit in many cases an experimental relation with 
Kz(E x E), generalising all the phenomena observed by Bloch and Grayson. 

Let T < PSI,2(Z) be a subgroup of index 7, with two cusps, one of width 
5 and another of width two. It is easy to show (by constructing fundamental 
regions, for example) that up to conjugacy there is exactly one such subgroup: 
one such is generated by the elements 

6. GENERALISATIONS 

7. AN EXAMPLE 

'l 7\ 
0 1 

О - I х 

1 0 
'2 3\ 
11 2 
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The associated modular curve X? has genus zero, and there is a rational 
parameter t on Xr satisfying the equation 

3 = 
(t + 18)(t2 + t - 2 6 ) 3 

(7* + l ) 2 

where j is the modular invariant. (Similar constructions were made by Klein 
and Fricke: see [0] for further examples and references.) Let <f> : E —• Xr be 
an elliptic surface with invariant j ; such a surface may be obtained by taking 
the affine equation 

v2 + xv = x -
36x + l 
? - 17287 

although there are others. Finally let V be a nonsingular model over Q for 
the fibre product E Xxr E. 

Similar fibre varieties were studied in [20], and the same methods can be 
used to show that the interesting part of the L-function L(hz(V), s) is a Hecke 
L-series L( / , s), where / is a certain cusp form on To(35) of weight 4. At 
the bad primes 5 and 7 the Euler factors of the L-series are (1 + 5 1 - 5 ) " 1 and 
(1 _ 7 1 -*)" 1 . 

The functional equation shows L(f,l) ^ 0, and so the incomplete L-
function Ls(/ , s) vanishes at s = 1 if and only if 7 E S. Conjecture 4.2 
predicts that there is a non-zero element £ 6 K2(V) ® Q, which is non-
integral. We now give the construction of such an element. 

Let 00 6 XY be the cusp t = 00. The fibre E^ of <fr is a Neron polygon, so 
there is a canonical (up to sign) inclusion G m ^ Eoo. Therefore (at any rate 
if the model V is sufficiently carefully chosen) the fibre contains a copy 
of G m x Gm = Spec Q[xi, xf 1 , X2, x^"1]. The element 

x1 U x 2 G K2(Gm x G m ) (8) Q 

can be shown to extend to an element of K^V^) <g) Q. By the functoriality 
of iiT'-theory with respect to the inclusion «—» V we obtain an element 

£ 6 K'2(V) <g> Q = K2(V) ® Q. 

Theorem. £ is non-zero. 

We can only give a vague idea of the proof here. It relies on the existence 
of the £-adic regulator map 

KJV) ^ H2tHv,Ui)) 
which takes values in the ^-adic cohomology of V/Q (as distinct from that 
of V/Q). Here as usual Zi(j) denotes the Gal(Q/Q) module which is dual 
to the module of ^-power roots of unity, tensored with itself j times. In 
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this case we obtain a class in H*(V, Q*(3)), and from the Hochschild-Serre 
spectral sequence this maps to an element 

& € H\Gd(Q/Q)tHl(V) <g> Q,(3)) 

or equivalently, to a class of extensions of Galois modules 

0 - Hl(V, Qt) -+ (extension) Q<(-3) — 0 

This extension class is reahsed by a subquotient of the cohomology of the open 
variety V-VQQ-V^ (where is the fibre at the other cusp t = - 1 / 7 ) . Using 
the theory of vanishing cycles, one then shows that the action of Gal(Q7/Q7) 
on this cohomology is highly non-trivial, which is enough to prove the non-
vanishing of £. Full details will appear elsewhere. 

Remark: It should be noted that T is not a congruence subgroup. Indeed, 
for congruence subgroups the analogous elements to £ are always trivial. 
This is an example of the "Manin-Drinfeld principle", and was proved by 
Beilinson in [2] by explicitly constructing elements of if-theory of the open 
varieties, analogous to modular units. I know of no examples of non-integral 
elements of the X-groups of Kuga-Sato varieties for congruence subgroups, 
and it would be of great interest to have a general construction of them. 
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