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SOME REMARKS ON ELLIPTIC CURVES 
OVER FUNCTION FIELDS 

Tetsuji SHIODA 

In my lecture at the Journées Arithmétiques in Geneva (entitled "Mordell-
Weil lattices and sphere packings"), I talked on 
1) a brief survey on lattices and sphere packings, 
2) basic results on Mordell-Weil lattices, and 
3) application to sphere packings via supersingular surfaces. 
For these topics, the following references are available: 1) [CS,Ch.l], 2) [S3], 
[S4] and 3) [E], [Oe], [S5]. 

In this note, instead of reporting on these, I would like to treat some re­
lated topics on elliptic curves over a function field, especially some results on 
the L-function of an elliptic curve over a function field with a finite constant 
field. Most of them must be known to experts, but the approach based on 
surface theory and Mordell-Weil lattices seems to provide a natural setting 
for this subject (cf. [T2],[G],[Mc]). In particular, this method enables one to 
write down explicit examples of such an X-function in some nontrivial cases. 

The contents of this paper are as follows: 
1. Elliptic surfaces 
2. The i-function of an elliptic curve 
3. Supersingular case 
4. Rational elliptic surfaces 

The present work has been done during my visit to Max-Planck-Institut, 
Bonn and the University of Geneva. I would like to thank Professor F. Hirze-
bruch and Professor D. Coray for their kind invitation. 

S. M. F. 
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T. SHIODA 

1 Ell iptic surfaces 

Let us review first some basic results on elliptic surfaces, fixing the notation. 
Let k be an algebraically closed field of arbitrary characteristic and let K/k 
be a function field of one variable over fc, i.e., K = k(C) for some smooth 
projective curve C over k. Let E/K be an elliptic curve with a if-rational 
point O, and let / : S —• C denote the elliptic surface associated with E/K 
(the Kodaira-Neron model). The elliptic curve E is recovered from / as its 
generic fibre and, as is well known, the If-rational points of E can be identified 
with the sections of / ; for each P £ E(K), (P) denotes the image curve in S 
of the section P : C —• S. We always assume the condition (*) that / has 
at least one singular fibre. 

Now let N = NS(5) be the Neron-Severi group of 5; it is a free module 
of finite rank p (=the Picard number of £ ) , which is an (indefinite) integral 
lattice with respect to the intersection pairing. We denote by T or L the 
trivial or essential sublattice of JV; by definition, T is the sublattice generated 
by the zero-section (O), a fibre and all components of reducible fibres of / , 
and L is the orthogonal complement of T in N. In particular, we have 

(1.1) N (8) Q = (T ® Q) © (L (8) Q) 

and 

(1.2) p = rkT + r k i . 

Further we have 

(1.3) rkT = 2 + E K - i ) 
vec 

where mv is the number of irreducible components of the fibre / - 1 ( v ) , and 
rkX is equal to the Mordell-Weil rank of E/K: 

(1.4) r :=ikL = ikE(K). 

Actually there is a natural isomorphism 

(1.5) L ® Q ~ E(K) (8) Q, 

which takes the intersection pairing on L to the height pairing on the Mordell-
Weil group (up to the sign change); indeed this is essentially how we defined 
the structure of Mordell-Weil lattices (see [S4] ) . 

Next we consider the cycle map 

(1.6) 7 : N - ^ H = H2(S,Q,(l)) 
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where H stands for the Z-adic cohomology group with a fixed prime number 
/ ^ char(fc) (cf. [Tl]). It is injective and takes the intersection pairing of N 
into the cup-product pairing in H. Let us denote by Trans(S) the orthogonal 
complement of Im(7) in H, whose elements are called transcendental cycles 
on S, and by W the orthogonal complement of y(T) in H. The space W 
corresponds to what Weil called the essential part in the second homology of 
S (cf. his comments to the paper [1967a] in [W, III]). Then we have 

(1.7) H ~ (N ® Qi) © Trans(S) ~ (T ® Q,) © W 

and 

(1.8) W ~ (L ® Q/) © Trans(S) 

The Lefschetz number of 5 is defined as 

(1.9) A := dim Trans(5) =b2-p (6 2 = dim H2(S)) 

which is known to be a birational invariant of 5. 

Proposition 1 The dimension w of the vector space W is given by 

(1.10) w = r + \ = b2-TkT. 

//char(fc) ^ 2,3, then 

(1.11) w = 4g-A + fi + 2a 

where g is the genus of C (or of K) and \i (resp. a) is the number of singular 
fibres of multiplicative (resp. additive) type. 

Proof The first part is immediate from (1.7) and (1.8). The second 
part is also well-known (cf.[R],[Sl]). Let us briefly recall the idea of the proof. 
From the standard facts in surface theory, we have 

b2 = c2 + 2bi - 2 (c 2 = Euler number of S) 

where &i = 2g since we are assuming the condition (*). On the other hand, 
we have the following formula for char(fc) ^ 2,3: 

(1.12) c2 = Yjev (^v = Euler number of / _ 1 ( t ; ) ) 
V 

(cf. [K],[Ogg],[Ogu]). Then, by (1.9) and (1.3), we have 

w = 4g - 4 + £ ( e v - mv + 1). 
V 
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It remains to check that 

ev = mv or mv + 1 

according as the fibre f-1 (v) is of multiplicative or additive type, which can 
be done using the classification of singular fibres([K],[N],[T3]). q.e.d. 

It may be worthwhile to mention the following direct consequence. Simply 
note that we have A > 0 in general and A > 2pg (pg: geometric genus of S) in 
characteristic 0. 

Corollary 2 //char(fc) ^ 2,3, then 

(1.13). r < w = 4g - 4 + \L + 2a. 

Corollary 3 Assume char(fc) = 0. Then 

(1.14) P g < l w = 2g-2 + ̂  + a 

(1.15) c 2 = 12(pg -g + l)< 6(2g -2 + fi + 2a) 

and 

(1.13'). r < 4g - 4 + fi + 2a - 2pg. 

Remark, (a) In case char(fc) = 2 or 3, (1.10) is still valid, but (1.11) 
should be modified by adding an extra term caused by wild ramifications (cf. 
[Ogg],[R],[Sa]). In other words, each ev in (1.12) should be replaced by ev + SV 

with a well-defined non-negative integer 6V so that the right hand side of (1.11) 
should have the term f>v 
(b) The idea behind equality of expressions in (1.10) and (1.11) was first 
used by Igusa [I] to define a correct Betti number 62 of an algebraic surface, 
and later it was formulated in a more general situation as the so-called Ogg-
Shafarevich formula (cf. [R]). 
(c) The above (1.14) or its equivalent (1.15) seems to have been proved by 
many authors again and again, though it was explicitly stated in [Sl,Cor.2.7] 
in 1972. In particular, (1.15) is sometimes called Szpiro's conjecture (cf. 
[Sz,p.l0]); note that we make no assumption of semi-stability (a = 0) in the 
above argument. 

102 



SOME REMARKS ON ELLIPTIC CURVES OVER FUNCTION FIELDS 

2 T h e L-function of an elliptic curve 

From now on, we consider the following situation. Let ko = Fq be a finite 
field with q elements and let k be its algebraic closure. Let Ko = k0(C) be 
the function field of a curve C defined over fc0, and let E be an elliptic curve 
defined over KQ. 

In this section, we shall show that the ^-function of E/KQ is essentially the 
characteristic polynomial of the Frobenius on the space W introduced above. 

The X-function L(E/Ko,s) is defined by the eulerian product 

(2.1) L(E/K(hs) = l[Pv(s)-1 

V 
where v runs over the closed points of C/ko (equivalently, over the places of 
Ko/ko) whose residue field Fv is a finite field with qv elements and where 
(2.2) 

' 1 - (qv + 1 - Nv)q~s + ql~28 if f'\v) is smooth 
Pv(s) = I 1 — evq~s if / _ 1 ( f ) is of multiplicative type 

1 if / _ 1 ( v ) is of additive type. 

Here Nv is the number of Fv-rational points of the elliptic curve / _ 1 ( i ; ) , and 
ev = 1 or — 1 is determined as follows: in the multiplicative reduction case, 
the minimal Weierstrass model of E at v reduces to a rational curve with a 
node, and ev = 1 or — 1 according as the tangents at the node axe Fv-rational 
or not (cf. [T3,(5.2)], [Se2]). 

On the other hand, regarding E as an elliptic curve over K = fc((7), we 
consider the associated elliptic surface 

/ : S — > C 

as in Section 1. We use the same notation as there unless otherwise mentioned; 
an exception is that v denotes a closed point of C/ko rather than a geometric 
point. 

Note that, in the present situation, the surface S is defined over ko] namely 
there is a smooth projective surface, say 5o, ovei ko such that S is equal to 
the base extension .So (8) k. 

Now the Galois group G = Gal(fc/&o) naturally acts on N = NS(5) and 
H = H2(S, Q/(l)) ( / char(fc)) and their subspaces T, i , W, etc. appearing 
in Section 1. It is easy to see that all the maps or the direct sum decomposi­
tions there axe compatible with the G-action. Letting a G G be the Frobenius 
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automorphism of k: 
a : x — • x 9 , 

we can consider the characteristic polynomial of a or a 1 (called the geomet­
ric Frobenius) on these vector spaces. 

Theorem 4 The L-function L(E/KQ, S) of E/KO is a polynomial in x = ql~s 

of degree w = dim(W) and it is equal to the characteristic polynomial of a~l 

on W: 

(2.3) L(E/K0, s) = det(l - xa~l \ W) 

It satisfies the functional equation (corresponding to x —» l/x ) : 

L(E/K0,2- s) = (-l)wdet (a\W)q(S-VwL(E/K0,s). 

Proof This is implicit in [T2] where a more general situation is treated. 
For the convenience of the reader, let us give a complete proof in the case 
under consideration. First recall that the zeta function of the curve C (or the 
surface S) over the finite field feo is given as follows: letting u = g~5, we have 

(2-4) «C/ko,*) = 

and 

(2-5) C(5/fco,») = 

(1 - «)(1 - gu) 
and 

P1(u)P1(qu) 
(1 - u)P2(u)(l - q*u) 

where P{(u) is the characteristic polynomial of the Frobenius endomorphism 
(p acting on ff*(5, Q/). That the same Pi(u) appears both for C and 5 is 
a consequence of the fact that the Picard variety of S is isomorphic to the 
Jacobian of C (cf. [S4,Sect.4]). Now, by a general property of zeta-functions 
(cf. [Sel]), we have 

(2.6) C ( C / f c 0 ) 5 ) = N r ^ - 7 
y i - qv 

and 
(2-7) <(S/k0,s) = Uar1(v)/Fv,s) 

V 
where v runs over the closed points of C/feo- Note that a closed point v 
determines and is determined by a G-orbit in C(fc), say { v1 ..... , vd} where 
d = deg(v),qv = qd. We put 

d 

i = 1 
T-VicN 

P1 (u) 
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where is the sublattice of N generated by the (fc-)irreducible components 
of f~l{vi) other than the component meeting the zero section. Writing mv for 
the common value of ( = the number of irreducible components of Z" 1 ^)) , 
we have ikTv = deg(v)(mv — 1). 

Lemma 5 With the above notation, we have 

(2.8) C ( / - M / F . , « ) = ( j _ q-1) (1- 1-s)q . ,,.,)det(1 _ „v , Tw) 

where Pv(s) is as defined by (2.2). 

Assume this for a moment. By (2.7), (2.6), (2.1) and (2.2), we have 

(2 9) C(S/kn s) - C ( C y * , , « ) C ( C / * » , * - l ) 

In view of (2.4) and (2.5), this implies 

P2(«) (2.10) L{E/K0,s) = 
( l -9w )2n ,de t ( l - t t^ |T, )" 

Since the numerator (resp. denominator) in the right hand side is the char­
acteristic polynomial of ip on H' = H2(S, Qi) (resp. T), the quotient is equal 
to the characteristic polynomial of <p on the space W C H' corresponding to 
W C H. Further, noting that 

(2.11) P2(s) = det(l - wp I H2(S, Q,)) 

= det(l-9«<7-1 | ^2 (5 ,Q , (1 ) ) ) , 

(cf. [Tl,Sect.3]), we have proven (2.3) by setting x = qu = q1'8. 
The functional equation for L follows from that of Pi (which is a conse­

quence of the Poincaré duality for 5 ) , since the denominator in (2.10) also 
satisfies a similar equation (see Lemma 6 below). 

To prove Lemma 5, we need 

Lemma 6 Let m = rav, d = deg(v) and x = (qu)d. Then 

(2.12) det(l - wp I Tv) = (1 - x)m~l 

if every irreducible component of f~l(vi) is rational over Fv. Otherwise, let e 
be the degree of the smallest extension ofFv, say k\, over which the condition 

L(E/K0, s) IL det( l - wp \ Tv) 
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holds. Then e is either 2 or 3, and the characteristic polynomial of cp on Tv 

is equal to one of the following : 

(2.13) 

1 _ x2)^ IM (m : odd) e = 2 
1 - x)(l - x 2 ) 2 ^ 2 IM {m : even) 
1 - a-)"-*(l - a 2 ) J6* (m = 6 + 5) 
1 - x2) IV (m = 3) 
1 _ xf(l _ x2)2 / y * ( m = 7 ) 

1 _ x)(\ _ a-3) J* (m = 5) e = 3 

Proof of Lemma 6. By an easy argument (linear algebra), we can reduce 
the proof to the case d = 1. Assume d = 1 (i.e. v 6 C'(fco)) so that Fv = fc0. 
Then the first assertion is obvious because then the Frobenius endomorphism 
(p acts by multiplication by q on Tv. To see the other assertion, recall that 
the dual graph of a singular fibre (vertices correspond to m — 1 irreducible 
components) is a Dynkin diagram of type A m _ i , -Dm_i or EM_\. The Galois 
group G induces a cyclic automorphism group of this graph, which can be 
nontrivial only for type A, D or EQ (cf. [B, Ch.6]), i.e., only for the singular 
fibre of type 7 m , II or IV* (e — 2) or IQ (e = 3). If the number of the vertices 
fixed by G is a, then the characteristic polynomial is equal to (1 — x)a(l — xe)h 

where b = (m — 1 — a)/e. Then, checking case by case, we can verify the above 
formulas, q.e.d. 

Proof of Lemma 5. In case f~x{v) is smooth (an elliptic curve), this is 
well-known. Assume that f~l(v) is a singular fibre. By using Lemma 6, we 
can assume that v has degree 1 (replace Fv by ko and qv by q). Let D denote 
the support of f~l{v) and D its normalization. The latter is a disjoint union 
of m smooth rational curves, of which a + 1 are rational over ko and the rest 
are rational over &i, grouped into e curves conjugate over ko. (We use the 
same notation as above.) Therefore we have (cf. (2.6)) 

C ( / _ 1 ( f ) / * o , « ) = C ( P 7 * o , « ) t t + 1 C ( P 7 * i , « ) * ( i - « ) n ( i - « T ' 

where n (or n') is the number of closed points of degree 1 (or e) on D which are 
mapped to singular points of D minus the number of singular closed points of 
degree 1 (or e) on D. It is easy to count these numbers using the classification 
of singular fibres, and we can verify the required formula (2.8) by noting that 
the sign ev = —1 occurs precisely when we have either Im(m > l ) , e = 2 or 
I\ (a rational curve with a node) having irrational tangent lines at the node. 
q.e.d. 

This completes the proof of Theorem 4. 
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Theorem 7 The L-function ofE/Ko is the product of the characteristic poly­
nomials ofa~l (the geometric Frobenius) on the Mordell-Weil group E(K) and 
on the space of transcendental cycles Trans(S'); 

(2.14) L(E/K0, s) = det(l - xa~l \ E{K) ® Q) det(l - xa~l | Trans(5)). 

The first factor is a polynomial of degree r = rk E(K) in x which is a product 
of cyclotomic polynomials and whose order of zero at x = 1 is equal to the 
Mordell-Weil rank ro := ikE(Ko). 

Proof The first assertion follows from Theorem 4 in view of (1.5) 
and (1.8). As for the second, let k\ D ko be the smallest extension such 
that E(K) = Eik^C)) (the "splitting field" of E(K)). Then the action of 
G = Gal(fc/fc0) on E(K) factors through the finite cyclic group Gal^/fco). 
Hence the action of a on E(K) ® C is diagonalizable, and the multiplicity of 
the eigenvalue 1 is precisely the rank of E(Ko) = E(K)G. 

Remark. From the above, one can easily deduce the equivalence of the 
Birch-Swinnerton-Dyer conjecture for E/Ko: 

(2.15) oids=lL(E/K0,s) = r0 

and the Tate conjecture for S/ko: 

(2.16) oidu=1/qP2{u) = po := rkiVo, 

where we denote by 
No := №(S/k0) = NS(5)G 

the subgroup of NS(5) generated by &o-rational divisors. Indeed, both are 
equivalent to asserting that the second factor in (2.14) has no zero at x = 1, 
i.e., to the claim Trans(5)G = 0. 

Furthermore the other part of the Birch-Swinnerton-Dyer conjecture in­
volving the Shafarevich-Tate group is equivalent to the Artin-Tate formula 
for S/ko involving the Brauer group, i.e., the statement (d) of [T2] is true in 
the present case. In fact, in view of Theorem 3.1 in [T2] saying that 

(2.17) UI(E/K0) - Br(S/fc0), 

the equivalence reduces to verifying the equality (cf. [T2,(4.4)]) 

(2.18, d.tNs(5) = d . t N s ( 5 ) M | | № » d e t r . 

This can be seen easily from the formalism of Mordell-Weil lattices based on 
a new definition of the height pairing on E(K) (cf. [S4]). 
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Finally it is known that the Artin-Tate formula is true provided the Tate 
conjecture (2.16) holds (see [T2, Th.5.2], [Milne]). Noting that NS(5) is 
torsionfree (cf. [S4]), we can state the result as follows: 

Theorem 8 Assume that (2.15) or (2.16) is true and write L(E/KQ,S) = 
(1 — x)r°h(x). Then the value h(l) is given by 

/« , Qx hm [Br(5/fc0)] det NS(S/fc„) 
(2-19) = ^ ( s ) 

or, equivalently, 

hh\ [mE/K0)}det(E(K0)/ (tor)) G 
(2-20) h(l) = qa{s)[E(Ko)tor]2 detT° (To = T ) 

where a(S) = x ~ 1 + 9> X being the arithmetic genus of S. 

3 Supersingular case 

A surface S over k is called supersingular if 

(3.1) Trans(S) = 0 

or equivalently if A = 0 or p = 62- F°r example, rational surfaces and more 
generally unirational surfaces are known to be supersingular ([S2, Lem.2]). 

(N.B. This notion has nothing to do with that of a "supersingular" elliptic 
curve.) 

Keeping the same notation as before, we first note: 

Proposition 9 Given an elliptic curve E/KQ, the L-function is trivial: 

L(E/K(hs) = l 

if and only if the associated elliptic surface S is supersingular and the Mordell-
Weil group E(K) is finite. 

Proof By Theorem 4, the L-function is trivial if and only if W is a 
vector space of dimension 0. By Proposition 1, w = 0 is equivalent to r = 0 
and A = 0. q.e.d. 

(Note that the above condition is a "geometric" one: both S and K are 
considered over the algebraically closed field k.) 
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Theorem 10 For an elliptic curve E/Ko such that the associated elliptic 
surface S is super singular, the L-function L(E/Ko^s) is equal to the char­
acteristic polynomial of the geometric Frobenius on E(K)/(tor), which is a 
polynomial in x = ql~s of degree r = rk E(K) of the form 

(3.2) L(E/K0, s) = (1 - x)r°h(x), h(l) ? 0 

where r 0 = ikE(Ko) and h(x) is a product of cyclotomic polynomials. The 
rank r is equal to w given by (1.10) or (1.11), and h(l) satisfies the formula 
(2.20). 

This is obvious from Proposition 1 and Theorems 7, 8. 

Thus the Birch-Swinnerton-Dyer conjecture and the Tate conjecture are 
true for this class of elliptic curves E/KQ and elliptic surfaces S/ko. Also it is 
evident from (3.2) that the sign of the functional equation of the L-function 
is ( - l ) r o . 

The above theorem applies for instance to unirational (in particular, ratio­
nal) elliptic surfaces. 

Example 1 Consider the elliptic curve 

(3.3) E : Y2 = Xs + t m + 1 

over KQ = ko(t),ko = F 9 , m being a natural number not divisible by p = 
char(fco)- Assume for simplicity that m = 0 (mod 6). Then the elliptic 
surface S has no reducible fibre so that rkT = 2,detT = 1. In this case, we 
have 

(3.4) w = r + X = 2m-4 

(cf. [S5, Prop.3.4]). 
Now S is unirational (hence supersingular) if pe = —1 (mod m) for some 

e > 0 (Prop.4.1, loc.cit). Take q = p2e. Then we have E(K) = E(K0) is of 
rank r = 2m — 4 and torsionfree. By (2.20), we have 

(3.5) [W(E/K0)] det(E(K0)) = ( p e ) 2 % 

since a(S) = pg. This fact was used in Remark 4.5 of [S5]. 
In general, it is hard to separate the first factor from the second one (called 

the regulator), but in this case it can be achieved by means of a crystalline 
method; see Proposition 4.3, loc.cit. 
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Remark. In characteristic 0, we can show that the rank of the elliptic 
curve (3.3) over C(t) for any m is universally bounded by 68 and that the 
rank is equal to 68 if m is a multiple of 360. As far as we know, this is the 
largest rank of an elliptic curve over C(t) at the moment. 

Also, in characteristic p > 0 not satisfying the condition pe = — 1 (mod m), 
the surface S is not supersingular in general; for example, for p ordinary (i.e. 
p = 1 (mod m)), the rank has the same bound as in characteristic 0. 

In any case, the L-function of (3.3) can be expressed in terms of certain 
Jacobi sums. We hope to discuss these elsewhere. 

4 Rat iona l elliptic surfaces 

Suppose that S is a rational elliptic surface over k. This means that the 
function field k(S) of S is a purely transcendental extension of dimension 2 
over k. Then K = k(C) is also purely transcendental over i.e. K = k(t) (a 
rational function field) and g = 0. Further we have p = 62 = 10 and A = 0 so 
that S is supersingular. In the statement of Theorem 10, the formula (2.20) 
reduces to 

[U1(E/K0)} det(E(K0)/(tor)) _ h(l)  
K ' ' [E(K0)tor]> detTo 

since a(S) = pg = 0 for a rational elliptic surface S . 
On the other hand, by (1.10), we have 

(4.2) r = 8 - E d e g ( v ) ( m v - 1) < 8. 
V 

The structure of E(K) is well understood by the theory of Mordell-Weil lat­
tices (cf. [S4], [OS]). It is especially interesting for relatively large r. For 
r = 8,7 or 6, it is isomorphic to JE'g, E% or or JDg, where Er and Dr are the 
root lattices and * indicates the dual lattices. 

The Galois group of k/ko preserves the lattice structure in general. Hence, 
by Theorem 8, the ^-function L(E/ko(t), s) is equal to the characteristic poly­
nomial of some automorphism of these lattices (in fact, of some element in the 
Weyl group W(Er)y etc.), and it is a product of some cyclotomic polynomials. 
Can we determine them more explicitly? 

Yes! It can be done with the aid of "algebraic equations arising from 
Mordell-Weil lattices" (cf. [S6], [S7]). Here are some examples. 

Example 2 Let us consider the elliptic curve E defined by 

(4.3) Y2 = Xz + (1 + t2)X + (1 + t + t2 + *4) 

110 



SOME REMARKS ON ELLIPTIC CURVES OVER FUNCTION HEWS 

over Ko = Fp(t). We have studied this curve over Q(t) in [S7, Ex.7.4]) and 
the information below has been obtained in the course of it. The Mordell-Weil 
group E(k(t)) (^.algebraic closure of Fp) is of rank 6 and isomorphic to El 
for any p / 2, 137, 15784603. 

In the following table, we determine the Z-function L(E/Fp(t),s) as a 
product of cyclotomic polynomials in x = pl~s for 2 < p < 137. We denote 
by hn the n-th cyclotomic polynomial; thus 

h2 = 1 + x, h3 = 1 + x + x 2 , . . . , h9 = 1 + x3 + x 6 , . . . 

p L-function cycle type No. 
3,29,41,67,97 /19 (9) 3 14 
5,11,23,37,71,73 (1 - xfh (1) ' (5) 5 15 
7,127 (1 — x)h2h$h§ (3)(6) 4 +1 23 
13 (1 - xfh^ (1) 5(2)(4) 5 18 
17,61,79 h3h12 (3)(12) 2 13 
19,103,109 (1 - x)h2h5 (2)(5) 3(10) 25 
31 (1 - x)h\h^ (1)(2) 3(4) 5 -1 19 
43,47 (1 — x)h2h^hß (1)(4) 2(6)(12) 24 
53,89 (1 - x)h2hs (1)(2)(8) 3 20 
59 (1 - xfh\hA (3)(6) 4 -1 10 
83 (1 - xfh\hA (1)(2) 3(4) 5 +1 5 
101 (1 - xyh'i ( l ) 7 (2 ) a 2 
107 (1 - x)2h2

2h6 (1) 3 (2) 3 (6) 3 +1 7 
113 (1 - x)h2hl (3) 5 (6) 2 22 
131 (1 - xfh\hz (1)(2) 4 (3) 2 (6) 2 8 

To verify this table, we need to determine the Frobenius element crp in the 
Weyl group W^i*^), up to conjugation. 

This group, say G, acts naturally on the dual lattice hence on the set of 
54 minimal vectors, forming two orbits of 27 elements. In this way, G embeds 
into the symmetric group 527- It is known that G has 25 conjugacy classes, 
and they are determined by the cycle type of an element g G G viewed as 
an element of 527, plus the knowledge of tr(g) (trace of g on Es) (in case the 
cycle type does not uniquely determine the class); see [Sw, Table 1]. In the 
above table, the 3rd column gives the cycle type of crp, the 4th the value of 
Mi = tr(crp) + 1 (when necessary) and the 5th the numbering of conjugacy 
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classes following Swinnerton-Dyer. The characteristic roots for each conjugacy 
class can be found in his table (loc.cit). 

On the other hand, we have an algebraic equation of degree 27 whose 
roots describe the minimal vectors of E(K) ~ which in the case under 
consideration is given by Eq. (7.3) of [S7]: 

(4.4) F(X) = X27 + 12X25 + 60X 2 3 + • • - + 5888X - 4096. 

For each p, decomposing F(X) mod p into irreducible factors, we get the 
cycle type of ap\ for instance, for p = 3, F(X) mod p splits into a product 
of 3 irreducible polynomials of degree 9; we denote the corresponding cycle 
type by (9) 3 , and similarly for other cases. Further Mi can be computed by 
counting the number ap of Fp-rational points of the surface S: 

(4.5) tr(*p) = {p2 + 4p+l-ap)/p. 

Once the conjugacy class is determined, we can apply the result of Swinnerton-
Dyer to get the characteristic polynomial. In this way, we can verify the table. 

Let us derive some consequence from the above table. First observe that 
the formula (4.1) becomes 

(4.6) [W(E/K0)} det(E(K0)) = ^ 

since det To = det T = 3 and E(K) is torsionfree in our case. Also note that 
Sdet(E(K0)) is an integer (=detJV0). 

Now, for p = 3,29,41, • • •, we have r 0 = 0 and h(l) = 3. Thus the Mordell-
Weil group E(Fp(t)) is trivial. Further, using the general fact that the order of 
III is a square or twice a square (cf. [T2]), we conclude that the Shafarevich-
Tate group is also trivial: 

UI(E/Fp(t)) = 0. 

Also we can see that JVo = NS(5/fco) is an indefinite lattice of rank 4 with 
det = 3. 

Similarly, for p = 5,11,23, • • •, we have ro = 2 and h(l) = 5. By the same 
argument as above, we see 

m(JS7/P,(*)) = 0, det(E(P,(t))) = | . 

We can also give generators of the Mordell-Weil group E(Fp(t)) explicitly. 
Namely, in this case, the algebraic equation (4.4) has exactly 2 roots in F p 
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(look at the cycle type). For example, for p = 5, they are given by X = 

- 1 , - 2 modp; by the theory of Mordell-Weil lattices of type Ee (cf. [S7], 

[S6]), we see that there are 2 rational points A,B in E(Fp(t)) of the form 

A = (-* + 6, t2 + dt + e), B = ( -2* + 6', ^ 2 + d't + e'). 

To show that these points generate the full Mordell-Weil group E(Fp(t)), we 

have only to check the Gram matrix to be 

<A,A> <A,B>\ ( 4/3 - 1 / 3 \ 

< A,B> <B,B> ) [-1/3 4/3 J 5 

which is an easy exercise in computing the height pairing (cf. [S4]). 

In my original plan, this paper should also have included some other type of 

examples (not necessarily supersingular), for instance, those related to elliptic 

modular surfaces or to Jacobi sums. Because of space and time limitation, 

however, I hope to treat them in some other occasion. 
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