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Equivariant Euler-Poincaré Characteristics 
and Tameness 

Ted CHINBURG and Boas EREZ 

Introduction 

In this paper we give a reasonably self-contained discussion of the Euler-
Poincare characteristics defined by Chinburg in the first part of [Chi], We 
show how these arise naturally when studying actions of a finite group G on 
coherent sheaves. More precisely, suppose / : X —> Y is a tame G-covering 
of schemes which are proper and of finite type over a noetherian ring A. 
Let T be a coherent sheaf on X which has an action of G compatible with 
the action of G on Ox- (The construction we will give applies to bounded 
complexes of sheaves having coherent terms, but for simplicity we will assume 
in this introduction that T is a single sheaf.) One then has a naive coherent 
Euler-Poincare characteristic 

x(a,T) = E 

i 
( - ! )« . [JT*(X,r)] 

in the Grothendieck group Go(AG) of all finitely generated AG-modules. We 
will show here how to lift x(G, T) in a canonical way to a more refined Euler-
Poincare characteristic x i?r + ( /*(T)) in the Grothendieck group CT(AG) of 
all finitely generated cohomologically trivial AG-modules. The natural for­
getful homomorphism CT(AG) —• Go (AG) is in general neither surjective nor 
injective. Thus the existence of a canonical x#r +(/*(!T)) in CT(AG) map­
ping to x(G,T) restricts the possibilities for x(G,T) and also provides a more 
subtle invariant of T. 

The motivation for defining xi?r+(/*(T)) is to combine the insight into 
Euler-Poincare characteristics arising from classical algebraic geometry and 
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T. CHLNBURG & B. JEREZ 

from the theory of the Galois module structure of rings of algebraic inte­
gers in tame extensions. For example, many results in algebraic geometry 
have to do with computing the multiplicities of irreducible representations 
of G in various cohomology groups. The connection of these multiplicities 
to character functions, such as Gauss sums, becomes clearer when one uses 
'Horn-descriptions' of Grothendieck groups, as suggested by work on algebraic 
integers. Various results about rings of integers have close geometric counter­
parts, which in turn may suggest new approaches to studying rings of integers. 
As one example, Taylor's Theorem connects the stable isomorphism class of 
the ring of integers in a tame finite Galois extension of number fields to the 
root numbers appearing in the functional equations of L-series. In [Chi, Ch2], 
some conjectural generalizations of Taylor's Theorem to tame G-coverings of 
schemes are discussed, and results in this direction are proved in the case of 
smooth projective varieties over a finite field. Over finite fields, one has an 
alternate approach using Z-adic cohomology to proving the Galois Gauss sum 
congruences which are the deepest arithmetic part of the proof of Taylor's 
Theorem. (See [Chi, Sect. 8].) This suggests looking for a new, geometric 
proof of Taylor's Theorem for rings of integers; at this time we know of no 
such proof. 

In this paper we will focus on how to define xi£T +(/*(r)). The generality 
of the definition makes it possible to consider examples of a widely varied 
nature. At the same time, we would like to stress that the definition provides 
a way of calculating xi2r + ( /„,(T)). 

We now give a quick survey of this paper. Sections 1 - 3 are mainly a 
summary of known results, definitions and examples which prepare the stage 
for the new results presented in Sections 4 and 5. In Section 1 we recall the 
two examples which have motivated essentially all research on Galois module 
theory. Section 2 is an exposition of some well-known applications of Euler-
Poincare characteristics. In Section 3 we recall the notions of G-coverings and 
Galois G-coverings of schemes and of quasicoherent G-sheaves. In Section 4 
we introduce what we call numerically tame G-coverings. These coverings are 
more general than the ones considered in [Chi] and [Ch2], and it is for them 
that we may define x^r + ( / J ) e (r)) . The construction of xRF+(f*{T)) is carried 
out in Section 5. The Appendix contains a proof -based on Abhyankar's 
Lemma- that G-coverings which are tame in codimension 1 are numerically 
tame. 

1. Two basic examples 

The following examples are included to give the reader an idea of the kind of 
information on the Galois module structure of G-coverings one should expect 
to extract from a description of the classes defined in Section 5. 
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1.1. Galois structure of differentials and generalizations. One of the 
first uses of character theory outside group theory was Hecke's determination 
of the Galois module structure of the complex vector space V of cusp forms of 
weight 2 and level a prime number p. Hecke's goal was to simplify the problem 
of studying such cusp forms by decomposing V into isotopic components under 
the natural action of PSL(2,p) (see [He, 1-2]). As is well known V can 
be identified with the space fT°(X,n 1) of holomorphic differentials on the 
Riemann surface X which is the compactification of the orbit space of the 
action by the congruence subgroup T(p) on the upper half plane (see [L], [Sh, 
2.17]): so Hecke was considering the covering X —• Y = P 1 with the group 
PSL(2,p) acting on X and Q 1 . In [C-W] [W2] Chevalley and Weil generalize 
part of Hecke's work and deal with G-coverings X —• Y of compact Riemann 
surfaces with an arbitrary finite group G as group of automorphisms. They 
give a formula for the multiplicity mx of any irreducible character x °f G in 
H° = H°(X, Q1) in terms of the genus and ramification data. We observe 
that this can interpreted as follows. The space H° is a finite dimensional 
module over the semisimple algebra CG and hence determines a class [H°] in 
the Grothendieck group K0(CG) = R(G) of (projective) CG-modules - this 
is of course nothing but the group of virtual characters of G. Since R(G) is 
the free abelian group on the irreducible characters of G, there is a natural 
isomorphism from R(G) to Hom(i?(G), Z); this isomorphism sends [H°] to 
the homomorphism which on an irreducible character x °f G takes the value 
rax. 

These results have been considerably generalized in two directions. The 
first generalization concerns equivariant Euler-Poincaré characteristics of co­
herent sheaves other than the sheaf of differentials, mainly for covers of vari­
eties which are smooth and proper over an algebraically closed field (see for 
example [G-G-H], [E-L], [N,1-3], [V-M]). The second generalization concerns 
Euler-Poincaré characteristics of sheaves for the étale topology. The formulas 
that have been obtained in this case are generalizations of Weil's interpreta­
tion of the fact that in characteristic 0 the determination of the (3-action on 
H°(X, Q1) determines the action on the space of harmonic forms: this space 
is dual to the first homology space of X and so we should study the Tate mod­
ule of the Jacobian of the curve, which plays the role of the first homology 
group for the étale topology. This leads to a formula for the Artin conduc­
tor attached to a G-covering in positive characteristic (see [Wl, p. 79],[SI] 
[Mi],[R]). 
1.2. Galois structure of rings of integers. Let N/K be a finite Galois 
extension of number fields with group G. The ring of integers ON is a ZG-
module and one can show that it is projective if and only if the extension 
is tamely ramified. Suppose N/K is tamely ramified, so there is a class 
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(ON) in the reduced Grothendieck group Cl(ZG) of projective ZG-modules 
(of rank 0). By results of Fröhlich one can describe Cl(ZG) in terms of 
homomorphisms from the group of virtual characters R(G) into the group of 
ideles of an algebraic closure ( Q c ) of Q. The class (ON) is then shown to 
be determined by a homomorphism defined via the Galois-Gauss sums of the 
characters of G (see [F, Ch. 1]). 

We observe that most of the results in (1.1) deal with the determination 
of the actual isomorphism class of the modules involved whereas in (1.2) the 
emphasis is shifted to the determination of the stable isomorphism class. In 
both cases, however, what one really does when computing the classes is to 
determine a homomorphism on the virtual characters. 

2. Applications of Euler-Poincaré characteristics 

In this section we recall some elementary applications of Euler-Poincaré char­
acteristics and of their equivariant generalizations. 
2.1. The Riemann Problem. Let X be a projective variety over an al­
gebraically closed field k. The Riemann problem has do to with determining 
the dimension of the fc-vector space H°(X,T) of global sections of a coherent 
sheaf T on X. The classical approach to this problem has two steps: (a) Find 
an expression for the Euler Poincaré characteristic 

X(T) = 
oo 

E 
¿=0 

(-ly-dimkH^XiT) 

by means of Generalized Riemann-Roch Theorems, and (b) Prove a Vanishing 
Theorem which asserts that under suitable hypotheses, Hl(X,T) = 0 for 
i > 0. For such T, (a) gives an expression for x(T) = dim,kH0(X,T). 

If one has compatible actions of a group G on X and on T, then one 
can refine the Riemann problem by asking for the fcG-module structure of 
H°(X,T), as in Sect. (1.1). In step (a), it is then natural to consider the 
Euler-Poincare characteristic 

X(G,T) = 
OO 

E 
i = 0 

(-1)' .[F*(X,T)] 

in Go(kG). (Recall that Go(k) = Ko(k) can be identified to the ring of integers 
via the dimension map.) If one cannot accomplish step (b), one may be able 
nonetheless to restrict the possibilities for the class of Hl(X,T) in Go(kG) 
for i > 0. For example, one might be able to show that various irreducible 
representations cannot occur in Hl(X,T) for i > 0. In this way one may still 
deduce from x(G,T) information about the class of H°(X,T) in Go(kG). 
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2.2. Group actions on varieties. Euler-Poincaré characteristics are useful 
in studying the possible actions of a finite group G on a projective variety I . 
Suppose for example that G acts freely on X , i.e. that there is a quotient 
morphism of schemes / : X —» Y = X/G which is an (étale) Galois covering 
with group G, in the sense of Definition 3.3 below. Then for any coherent 
sheaf T on X which admists a G-action compatible with the one on X, we 
have the identity 

X(T) = \G\.X((MT))G) 

where ( / * ( T ) ) G denotes the sheaf on Y of invariants in /*(T) (see [Mum, 
Sect. 12, Theorems IB and 2]). In particular |G| must divide xCO* Thus, 
for example, if the arithmetic genus x(Ox) equals 1, then no nontrivial finite 
group can act freely on X . Some interesting X with arithmetic genus 1 are 
given in [Hal, Ex. 11.8.4(f)]. 

By [E-L, Theorem 2.4] and [B-K, Prop. 1.2], one can refine the above 
formula to the equality 

X(G,T) = x((MT)f).[kG] 

in Go(fcG) provided that G acts freely on X. Thus x(G,T) gives a further 
obstruction to the freeness of an action of G on X. This is because there may 
exist non-free actions for which x(G^T) is not the class of a free module in 
Go(fcG) even though |G| divides x(T). 

Suppose now only that / : X —» Y is a tame G-covering of proper schemes 
of finite type over k. Nakajima shows in [Na2] that while the cohomology 
groups Hl(X,T) of a coherent G-sheaf T on X need not be projective kG-
modules in general, one can always express x(G, T) in terms of projective kG-
modules. This result will be a consequence of the more general construction 
in Section 5. For other uses of Euler-Poincare characteristics, see [B-K] and 
[Nl, Sect. 3]. 

3. G-covers and G-sheaves ([SGA 1, Ch. I and V], [Mum, Sect. 5 and 12]) 

In this section we describe the set up for the rest of this paper. Let S = 
Spec(A) be the spectrum of a noetherian ring A. All the schemes we consider 
are of finite type over 5. Let (X, Ox) be an 5-scheme and let G be a finite 
group. In what follows we will assume that the group G acts admissibly on X 
by 5-automorphisms (on the right)([SGA 1, Ch.I and V]). This means that 
there is a morphism / : X —• Y of 5-schemes such that O y - ^ / * ( O x ) G . Then 
Y = X/G is the quotient of X by G. If / is also finite, we will say that / is 
a G-covering. 

183 



T. CHINBURG & B. EREZ 

Definition 3.1. A sheaf T of Oj^-modules is a G-sheaf on X if G acts on T 
in a way compatible with its action on Ox and with the action of Ox on T 
(i.e. Ox x T —• T is a G-morphism). 
Examples: (a) The direct image /*(T) of a G-sheaf T on I is a G-sheaf 
on Y. (b) If G acts freely on X then every G-sheaf T on X is the inverse 
image f~x(F) of some sheaf F on Y ( see [Mum, Sect. 12, Theorem IB]), 
(c) The structure sheaf Ox and the sheaf £î^y5 of relative differentials are G-
sheaves. (d) The sheaf associated to any ambiguous ideal in a Galois extension 
N/K of number fields with group G = Gal(N/K) is a G-sheaf on Spec(Ojv). 
(e) The invertible sheaf L(D) associated to a G-invariant divisor on X is a 
G-sheaf. (f ) If G acts trivially on X , then the identity morphism X —• X is a 
G-covering according to our definitions. In this case a G-sheaf on X is simply 
a sheaf of modules for Ox — G, on which the actions of G and Ox commute. 
Remark: If each of the cohomology groups Hl(X,T) are finitely generated 
AG-modules and almost all of these groups vanish, then one may define the 
Euler-Poincaré characteristic as the alternating sum 

X(G,T) = E 

i 

(- l )*.[ lP(X,r)] (3.2) 

of the classes [H{(X,T)] of the AG-modules H{(X,T) in the Grothendieck 
group Go (AG) of all finitely generated AG-modules. This will be the case, 
for example, if X is proper and of finite type over S and if T is a coherent 
G-sheaf. 

For any scheme Z we denote by Gz the constant Z-group scheme 

Gz = u 
g€G 

z9 

where for all g 6 G, Zg is isomorphic to Z. The group scheme structure of 
Gz is induced by the identity maps ZgXz Zh —> Zgh for h G G. This shows 
that an 5-action of the group G is the same as an action of the group scheme 
Gs. 
Definition 3.3. A G-covering / : X —• Y is Galois if X is a G-torsor over 
F, in the sense that X is faithfully fiat over Y and the map (x,g) (x,xg) 
defines an isomorphism 

X x y Gy ~X x y X. 

A G-covering is Galois if and only if its inertia groups are trivial [SGA1, 
V.2.6]; in particular, Galois G-coverings are étale. 
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Examples: (a) Gy —• Y is called the trivial Galois G-covering of Y. (b) Let 
if be a field. A Galois G-covering X of Y = Spec(K) is necessarily the 
spectrum of a separable finite dimensional if-algebra N. These algebras are 
known as Galois G-algebras. The trivial G-covering gives the standard Galois 
G-algebra Map(G,jfif) of all set theoretic maps from G to K. If N is a field, 
then the isomorphism in Definition 3.3 is nothing but the basic isomorphism 
from Galois theory 

Map(G,N) ~N®KN. 

(c) If ON and OK are the rings of integers in a G-Galois extension N/K of 
number fields, then the natural map Spec(ON) —• Spec(Oic) is a Galois G-
covering if and only if ON is unramified over OK in the usual sense (observe 
that Map(G,ON) is the maximal OJR—order in Map(G,N)). 

4. Tame G-coverings 

We now investigate under which conditions we can ensure that the Euler-
Poincaré characteristic defined in (3.2) can be lifted to the group of finitely 
generated cohomologically trivial AG-modules. Our guiding example will be 
Example (1.2). 
4.1. Cohomologically trivial modules. Recall that a G-module M is 
cohomologically triviali! lot every subgroup H of G, the (reduced) Tate coho-
mology groups Hl(H, M) are zero for all i. This is equivalent to the condition 
that the non-reduced cohomology group iP(G,M) vanishes for two consecu­
tive values of i > 0. K M is an A-module, then Hl(H, M) and Hl(H, M) are 
A-modules. If B is a flat A-algebra, then 

W(H, B®AM) = B®A H\H, M) 

for all i > 0. Thus if B is faithfully flat over A, then M is cohomologically 
trivial if and only if B ®A M is. We also see that M is cohomologically 
trivial if and only if each of the localizations of M at prime ideals of A are 
cohomologically trivial. 

We now recall a well-known sufficient condition for an AG-module to be 
cohomologically trivial. 

Lemma 4.2. Suppose H is a subgroup of G of order prime to the residue 
characteristics of A , i.e. the order of H is a unit in every localization of A 
at a prime ideal. Suppose that M is isomorphic to the induced AG-module 
Ind(§(M/) associated to some AH-module M'. Then M is cohomologically 
trivial for G. 

Proof. By Shapiro's Lemma and Mackey's formula, it will suffice to show that 
M' is cohomologically trivial for H. Let Hf be a subgroup of H and let Ap 
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be a localization of A at a prime ideal P. Then the order of H' is a unit of 
Ap which annihilates 

#*(#', AP ®A M') = AP ®A JT(H' , M') 

for all i > 0. It follows that M' is cohomologically trivial for H', as required. 
4.3. Cech cohomology. Recall now that we can compute the cohomology 
of a quasicoherent sheaf F on a separated scheme Y by means of the Cech 
complex. Choose a finite open affine covering U = {U{}{ of Y and consider 
the family of abelian groups 

CP(U,F) = n 
» 0 < * - , < * p 

F{Uion-..DUip) . 

These form a complex the z-th homology group of which is the group Hl(Y, F) 
(see [Hal, III 4]). Suppose now that G acts trivially on (Y, Oy) and that F is 
a G-sheaf on Y. Since Y is separated, the intersections Ui0 fl- • •PlC/i are affine. 
Hence to show that the CP(U,F) are cohomologically trivial AG-modules, it 
is sufficient to show - say - that for any affine open subset U CY the module 
F(U) is cohomologically trivial. By the preceding remarks this is equivalent 
to showing that the stalks of F at every point of Y are cohomologically trivial 
(see also Prop. 4.7 below). 

Consider the case of a G-covering / : X —• Y and a sheaf F which is 
the direct image /*(T) of a (quasicoherent) G-sheaf T on X, Then the study 
of the stalk of F at any point y of Y can be done by base change. More 
precisely, we will use the following. Let a : Y1 —> Y be a flat base change 
containing y in its image and let fiX'—* Y' and T' be the base change of / 
and T respectively. Then / ' is again a G-covering and for y' G Y' such that 
a(y') = y we have 

(/:r%. = Or-,,- ®oY,y (/.T), • 

In particular—since Oy'.y' is faithfully flat over Oy, y —(f*T)y is cohomolog­
ically trivial if and only if (flT')yi is. 
4.4. Tame extensions of D.V.R.'s. Let R be a discrete valuation ring 
with field of fractions K and residue field k. A finite Galois extension L/K 
with group G is said to be tamely ramified (or simply tame) if for any maximal 
ideal of the integral closure W of R in L the inertia group has order, prime 
to the characteristic of k and the residue field extension is separable ([SGA 1, 
XIII 2], [G-M]). If R is strictly henselian, i.e. if all of its connected étale 
extensions are trivial, then the situation is very simple: L/K is tame if and 
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only if the degree [L : K] is prime to the residue characteristic. Moreover 
since in this case the decomposition group equals the inertia group, we see 
that L/K is cyclic. It is shown in [SGA 1,XIII 2.0.2] and [G-M, 2.2.8] that 
tameness for any extension W/R of D.V.R.'s can be detected by going over 
to the extension W/R of the strict henselizations. Recall that W —> W is 
faithfuUy flat ([EGA IV] [Ra, Chap. VIII.4]). 

Proposition 4.5. ([Ra, X Lemma 1]) Let R be any strictly henselian ring 
and let G be a finite group. Let W be a (finite) R-algebra on which G acts 
in such a way that R = WG. Choose a maximal ideal qofW. Then 

W ~MapH{G,C) 

where C is the localization ofW at q, and where the algebra MapH(G,C) is 
the algebra of elements in the standard algebra Map(G,C) invariant under 
the inertia group H = Iq. 

Thus for example a tame G-extensions of a strictly henselian discrete valuation 
ring is induced from a subgroup of order prime to the residue characteristic 
(compare with the structure of the semilocalization of a ring of integers in 
tame G-extensions of number fields). Observe that in the situation of the 
proposition any WG-module M is isomorphic as an EG-module to a module 
Ind#(M') induced from some RH-module M' (see the proof of Prop. 4.7). 

We now make a geometric definition motivated by the above discussion. 
Definition 4.6. Let / : X —> Y be a G-covering. We say that / is numerically 
tame if for every point y of Y there is a flat morphism Y1 —• Y having y in 
its image and a F'-scheme Z for which the following conditions are satisfied. 
(a) The structure morphism Z —• Y1 is an if-covering for some group H of 

order prime to the residue characterics of Y', and 
(b) There is a homomorphism from H to G for which there is a G-equivariant 

isomorphism of F'-schemes 

X xYY' ~(Z xY> GY')/H. 

Remarks: (a) We do not require the group H to be abelian, we are only im­
posing a condition on its order (this is a "numerical" condition), (b) A surjec-
tive Galois covering / : X Y is clearly numerically tame (take Y' = X = Z 
and H — 1). (c) By (4.4) any tame finite Galois extensions of number fields de­
fines a numerically tame Gal(N/K)-covering 5pec(Ojv) —» Spec(OK)- (d) If 
G has order prime to all of the residue characteristics of F, then / : X —» Y is 
numerically tame, since we can let Y1 = Y,Z = X and H = G. (e) In the Ap­
pendix we relate numerical tameness to a more ramification theoretic notion 
of tameness, thereby giving many examples of numerically tame G-coverings. 
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The following result was proved in [Chi] under the more restrictive hypothesis 
that / : X —• Y is a tame G-covering in the sense of [G-M, 2.2.2] (see also 
A.l of the Appendix). 

Proposition 4.7. Let f : X —• Y be a numerically tame G-covering of S-
schemes where S = Spec(A) and let F = /*(T) be the direct image of a 
quasicoherent G-sheafT on X. Then the following two equivalent conditions 
are satisfied 
(a) all the stalks of F are cohomologically trivial AG-modules 
(b) for every open afRne subset U ofY, F(U) is a cohomologically trivial 
AG-module. 

Proof. If U = Spec(B) in (b), then F(U) is a J5G-module which is cohomo­
logically trivial if and only if for all y G 17, the localization F(U)y of F(U) 
at y is cohomologically trivial. Hence the equivalence of (a) and (b) follows 
from the fact that F(U)y is the stalk Fy of F at y. 

By the remarks in (4.3), to show that Fy is cohomologically trivial, we are 
free to make a base change by a flat morphism Y' —• Y whose image contains 
y. Thus in view of Definition 4.6, we can assume that X = (Z Xy Gy)/H for 
some finite group H mapping homomorphically to G and for some iJ-cover 
Z —• Y. By [G-M, Lemma 1.5.2(iii)] we can replace H by its image in G 
and Z by its image in X so as to be able to assume that i f is a subgroup of 
G. Choose a set S of representatives for the cosets H\G which contains the 
identity element e of G. Over Y we have an isomorphism of schemes 

(ZxYGr)/H = u 
ses 

Zs. (4.8) 

This is a G-isomorphism when we let G act on the right hand side according 
to our choice of coset representatives S and according to the (right) action of 
H on Z. 

Let Tz be the restriction of the G-sheaf T on X = (Z X y Gy)/H to 
the component Z • e on the right hand side of (4.8). Let a : Z • e —• Y be 
the restriction of / : X —» Y. Then we find that the stalk / * ( T ) y = Fy at y 
is isomorphic as a left OyiV[G]-module to the induced module Jnd§a*(rz) y , 
where a*(Tz)y is a left OyiV[H]-module. Because of condition (a) of Definition 
4.6, we can now conclude from Lemma 4.2 that Fy is cohomologically trivial, 
which completes the proof. 

5. Equivariant Euler-Poincare characteristics for numerically tame 
coverings 

In this section we carry out the construction of equivariant Euler-Poincare 
characteristics for numerically tame coverings. In particular, we deal with the 
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problem of producing bounded complexes of finitely generated cohomologi­
cally trivial AG-modules which compute sheaf cohomology. As will be seen, 
we consider a slightly more general situation than the one we have considered 
so far, in that we replace the G-sheaf T by a bounded complex of sheaves. The 
additional freedom this allows is useful in applications, where one considers 
complexes which arise from truncating the de Rham complex ̂ X / A (see [Chi, 
Ch2]). 

As in Section 3, let / : X Y = X/G be a G-covering of schemes of finite 
type over a noetherian ring A, where G is a finite group. Let K+(Y, A, G) 
be the category whose objects are complexes Fm of sheaves of AG-modules 
on Y which axe bounded below. Morphisms between consecutive terms of F* 
are assumed to respect the AG-module structure, where the actions of A and 
G commute. Note that we do not assume that Oy acts on the terms of F*. 
Morphisms in K+(Y, A, G) are homotopy classes of morphisms of complexes. 

Let K+(A,G) be the (homotopy) category of complexes of AG-modules 
which are bounded below. A morphism between two such complexes is a 
quasi-isomorphism if it induces an isomorphism in cohomology. The de­
rived category Z}+(A,G) of 1T+(A,G) is the localization of i f + ( A , G) with 
respect to quasi-isomorphisms (see [Ha2, p.37] or [K-S, Chap. 1 and 2]). 
Since there are enough injectives in the category of sheaves of AG-modules, 
the construction given in [Hal, Prop. III.2.2] shows that there are enough 
injectives in the category of sheaves of AG-modules on Y. Hence by e.g. 
[Ha2, Cor. 1.5.3] the global section functor has a right derived functor 
RT+ : K+(Y, A,G) D+(A,G) . The basic fact that we will need to know 
about RT+ is that under suitable assumptions on Y and F*, one can compute 
RT+(F*) by a Cech hypercohomology complex H(ZY,F9). In the case of a 
complex reduced to the term F in degree 0, this is the usual Cech complex. 
More precisely we will need the 
Facts 5.1. [EGA III, 0.12.4.7] Let U = {Ua} be a finite open affine cover of 
Y and let 

Cl(U,F3) = n 
k0<…<ki 

Fj(Ukon---nUki) . 

One can define differentials on the Cl(U^F^) so as to get a double complex 
C9(U,F*). Let H(ZY, F*) be the total complex of this double complex. Sup­
pose now that Y is separated over A. Suppose further that the terms of F* are 
quasicoherent Oy-modules, and that the A-module structure given on each of 
these terms is compatible with the structure morphism Y —• Spec(A). Then 
H(£/ ,F # ) is isomorphic in £>+(A,G) to RT+(Fm). 

The following result was proved in [Chi] under the more restrictive hy­
pothesis that / : X —• Y is a tame G-covering in the sense of [G-M, 2.2.2] 
and A.l of the Appendix. 
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Theorem 5.2. Let f : X —>Y be a numerically tame G-covering of schemes 
which are proper and of finite type over A. Suppose T* is a bounded com­
plex of sheaves of abelian groups on X which has the following properties. 
Each term of T* is assumed to be a coherent Ox-module which has an ac­
tion of G compatible with the action of G on Ox- The structure morphism 
X —> Spec(A) then makes each term of T* an AG-module. The morphism 
between consecutive terms of T* are assumed to respect the AG-module 
structure (but not necessarily the Ox-structure). Under these assumptions, 
/ * ( T # ) is an object in K+(Y, A, G). Furthermore, there is a bounded complex 
M9 = (Ml) of finitely generated cohomologically trivial AG-modules wich is 
isomorphic to RT+(f*(T*) in D+(A,G). Let CT(AG) be the Grothendieck 
group of all finitely generated AG modules which are cohomologically trivial 
as G-modules. The (equivariani) Euler-Poincaré characteristic 

xRT+(fJT-)) = 
oo 

E 
i= — oo 

{-!)* • [M f] 

in CT(AG) depends only on T* and not on the choice of M*. 

Proof. Since / : X —• Y is finite, the complex F* = / * ( T # ) is a bounded 
complex of coherent Oy-modules. The A-module and G-module structure of 
the terms of T* make F* into an object in K+(Y, A, G). The action of Oy on 
each term of F* commutes with the action of G, and is compatible with the 
A-module structure of this term via the structure morphism Y —> Spec(A). In 
light of the Facts 5.1, as a first approximation to the complex M* we may take 
the Cech hypercohomology complex MQ = H(ZY, F9). By our assumptions on 
T* and U, MQ is bounded. Since the G-covering / : X —* Y is numerically 
tame and the intersections Uk0 fl • • • fl are affine, we know by Proposition 
4.7 that all the F^(Uk0 H • • • fl E/ĵ ) are cohomologically trivial AG-modules. 
So the terms of MQ are cohomologically trivial. We now use the assumption 
that the terms of T* are coherent to get a complex with the same properties 
as MQ , but with finitely generated terms. There is a standard way of doing 
this (see [Ha, III 12.3] [EGA III, 0.11.9.1] [Mum, Sect. 5 Lemma 1] [SGA 6, 
I 1.4]). The idea is as follows. Suppose that L% = (L{) and N* = (N*) 
are complexes with terms in some nice category and let u : L* —• N* be a 
morphism of complexes inducing an isomorphism in cohomology for i > n 
and an epimorphism for i = n. Suppose also that the ra-th cohomology of 
the mapping cone complex of u satisfies some reasonable finiteness condition. 
Then one can modify u in degree n so as to get an isomorphism in cohomology 
for i = n and an epimorphism for i = n — 1 (i.e. we move one step to the 
left). Moreover the modification simply consists of adding to Ln an object 
of the category satisfying the same finiteness condition as the cohomology of 
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the cone. We will apply this with L* = M 0

# , N9 = RT+(F9) and proceed 
by descending induction to get a complex M* with finitely generated coho­
mologically trivial terms and with the same cohomology as KT~*~(F9): the 
assumption on the mapping cone is satisfied since we are considering com­
plexes with coherent cohomology sheaves. The complex M* is not necessarily 
bounded below. We get the complex M* of the statement by truncating M* 
in degree 0 so as not to change its cohomology, i.e. we let Ml = M{ for i > 1 
and M° = M f / i m f J l f f 1 ) . It follows from the fact that we have isomorphisms 
in cohomology that M° is also cohomologically trivial. Suppose now that 
M / # is another bounded complex of finitely generated AG-modules which are 
cohomologically trivial for G, and that there is an isomorphism between M* 
and M'* in the derived category. This isomorphism is represented by a pair 
of quasi-isomorphisms of complexes N* —• M* and N* —• M ' # , where N* 
is bounded below. Applying the construction above, we can replace N* by 
a complex of finitely generated AG-modules which are cohomologically triv­
ial as G-modules. Thus to prove x(M) = S ^ o C " " * ) 1 ' I-^*] e < l u a l s x(M') in 
GT(AG), we can reduce to the case in which there is a quasi-isomorphism of 
complexes r : M* —• M'9. The mapping cone complex L* of r is now acylic 
and consists of finitely generated cohomologically trivial AG-modules. Hence 
0 = x(L*) = x (M # ) — x(M / # ) , as claimed. This concludes the proof of the 
theorem. 

Appendix: A variant of Abhyankar's Lemma 

We define G-coverings of normal schemes which are tame in codimension 
1 and show that they are numerically tame. The statement comes form [G-M]. 
The proof is based on Abhyankar's observation that under suitable regularity 
assumptions one can "eliminate ramification from a tame covering by a tame 
base change which is completely determined by the covering". 
Definition A . l . [G-M, 2.2.2] Let / : X —+ Y be a G-covering and suppose 
X and Y are normal Let D be a divisor with normal crossings on Y which 
is of codimension at least 1. Write U = Y\ D. The covering / is said to be 
tamely ramified in codimension 1 with respect to D if 

a) X X y U is Galois over U with group G (see (3.3)); 
b) every irreducible component of X dominates an irreducible component 

of Y] 
c) / is tamely ramified at every y G D of codimension 1 in the following 

sense. The local ring Oy,y is a discrete valuation ring by our assumptions 
on Y and y. Let K = Q(Gy > y ) be its quotient field. Then we want every 
field component of the function ring of the fiber f~x(y) to be tamely 
ramified over K (as in (4.4)). 
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The assumption on D implies that the local rings of all the points in the 
support of D are regular and that at any point we have nice local equations 
for the components of D after making an etale base change. The functions 
defining these equations together with the orders of the relevant inertia groups 
are the crucial elements needed for Abhyankar's method to work. 

Theorem A.2. A G-covering f : X —> Y of normal schemes which is tame 
in codimension 1 (with respect to some divisor with normal crossings D) is 
numerically tame. 

Proof. We just string a number of propositions from [G-M] and [SGA 1] (note 
that a proof of the theorem is not given in [G-M] nor in [SGA 1, XIII]). For 
every y G Y it suffices to construct an etale neighborhood g : Y' —• Y of y and 
a covering Z of Y1 satisfying the conditions of Definition 4.6. We choose Y' 
to be the spectrum of the strict henselization of the local ring at y. The base 
change / ' : X1 = X xY Y' -> Y' of / is again a G-covering ([SGA 1, V 1.9]). 
Applying Proposition 4.5 to the covering / ' we can replace X' by one of its 
connected components and G by the inertia group of the closed point of this 
component, so as to be able to assume that X' is the spectrum of a strictly 
henselian local ring. The G-covering / ' is tame with respect to a divisor D' 
on Y' having normal crossings ([G-M, p. 27 and 2.2.8]). 

Next we consider the Y'-scheme Y" 

Y" = Spec(0Y,[(Ti)]ieI)/ T m i - ai iEI . 

Here a = {a^} is the finite family of non-unit global sections of Oy defining 
the local equations of the divisor D' at the closed point y' of Y1 and n — {rii} 
is a family of integers determined by the orders of the inertia groups attached 
to / ' (see [SGA 1, XIII 5.2]). The covering Y" Yf comes with an action of 
fin = IL Pi a n ( l * s a Kummer covering in the sense of [G-M, 1.2]. Furthermore 
Y" is the spectrum of a strictly henselian local ring (see the proof of [G-M, 
Lemma 1.8.6]). The main idea of the proof - which goes back to Abhyankar 
(see e.g. [S2]) - is to show that X" = X'xY< Y" is étale over Y"; then since Y" 
is strictly henselian, it will follow that X" —• Y" has a section. Composing this 
section with the natural projection X" —• X\ exhibits X' —• Y' as a quotient 
of the covering Y" —» Y1. (To check this it is useful to apply Proposition 4.5 
to the coverings X" -+ X1 and X" -* Y'.) 

To show that X" —> Y" is étale one reduces to the classical Abhyankar 
Lemma as stated in [SGA 1, X 3.6] by using the Theorem on the Purity of 
the Branch Locus [SGA 2, X 3.4] (see [SGA 1, XIII 5.3.0] for the reduction). 
The rest is all downhill. Since / ; is a quotient of a Kummer covering it is a 
generalized Kummer covering ( X ' , G ) . Then by [G-M, Prop. 1.6.2] there is 
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a generalized Kummer covering (Z,H) such that (X\G) ~ ( (Z x G)/H,G). 
Here Z is the connected component of X' and H is the stabilizer of Z in G; 
compare Proposition 4.5. This concludes the proof. 
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