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A SIMPLE PROOF OF VORONOI'S IDENTITY 

Tom M E U R M A N 

1 Introduction 

Denote by d(n) the number of divisors of n. Consider the function A(x) 
satisfying 

E 
n<x 

d(n) + 1 
V dix) = xlogx + ( 2 7 — 1)2 + 

1 
2 + A(z), (1.1) 

where d(x) = 0 unless x is an integer, and 7 is Euler's constant. We have the 
following well-known and remarkable theorem: 

THEOREM. The function A(x) defined by (1.1) satisfies 

A * = 2 
7T 

00 

E 
n=l 

d(n) 
n 1, 

' O O 

0 
cos(27Tix) sin [ 2TT 

nx 
u 

= dit. (1.2) 

Moreover, the series here is boundedly convergent in any interval 
[xljx2] C (0,oo), and uniformly convergent in any such interval free from 
integers. 

This was proved originally by Voronoi [16], and later by many others, e.g. 
[1], [3] (or [4, Ch. VIII]), [5] (or [13, Ch. 1]), [6] and [7] combined, [10, 
Ch. I], [11], [14], [15]. The proofs are usually long and difficult. Most of them 
depend on the functional equation for the Riemann zeta-function, and the 
simplest of these is due to Jutila [10]. The simplest proof not depending on 
the functional equation is due to Landau [11]. Jutila uses the method of Dixon 
and Ferrar [5] except for the case when x is an integer, where he introduces 
a substantial simplification. Landau uses Poisson's summation formula and 
only real analysis. The detailed proof takes about 20 pages. 

My purpose is to give a comparatively simple proof not depending on the 
functional equation. It has some features in common with Landau's proof, 
but it is shorter and the principle is different. Indeed, the principle can be 
used (as I shall show in a subsequent paper) in the analogous problem where 
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d(n) is replaced by a(n), the nth Fourier coefficient of a holomorphic modular 
cusp form. Landau's method fails here. 

The method of this paper works also when d(n) is replaced by 
d(n) exp(27rign) or by r(n) exp(27ri<jn), where q is rational and r(n) signifies 
the number of ways of representing n as the sum of two squares. It proba­
bly works also for a(n) exp(27riqn). Moreover, there are other more obvious 
generalizations. This may be of some interest, since the modern theory of 
generalizations is based invariably on the functional equations for the rele­
vant Dirichlet series (see e.g. Berndt [2]). 

As to the significance, generalizations or analogues of Voronoi's identity 
the reader may consult [9, Chapters 3, 13, 15], [10, Ch. I], [12], [2] and [8]. 
The last two papers contain many references to the literature of the subject. 

The integral in (1.2) is usually expressed in terms of the Bessel functions 
Yi and Ki as follows (see Watson [17]): 

—y/w(K\{±K\/nx) -f i 
2 

Yi(47r>/nx)). 

It is of practical value that this admits sharp approximations involving el­
ementary functions. However, I prefer (1.2) as it stands, since, as will be 
shown, it is quite easy to obtain such approximations for the integral in (1.2). 
It would be an unnecessary detour to invoke Watson. This appears not to 
have been observed before. Landau evaluates the integral in (1.2) within an 
error O( l ) only, and this is not enough for practical purposes. 

The principle of the proof of the theorem will be explained in the following 
section. The most important new idea lies in the use of the weight function 
exp(—v(u + nx/u)). 

2 The principle 

For 0 < v < l 
2 define 

A(x,v) = 
2 
G 

oo 
E 

71=1 

d(fl) 

n 
F(nx,i;), (2.1) 

where 
F(t,v) = I 8 

e-v(u+yu, c o s ( 2 7 r „ sin(27rt U)du. (2.2) 

Fix t for a moment. Since A 
du 

(e-v(«+iMsin(27Tt/u)) < u~\ it follows easily 
by partial integration that F(t, v) is uniformly convergent in [0, | ] . Moreover, 
for any e > 0 we have limv_>o+ e~v^uJttlu^ = 1 uniformly in [e,l/e]. Hence 

lim 
0 0+ 

F(t,v) = F(t,0). (2.3) 
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Suppose that the following lemma holds: 

LEMMA. For t > t0 > 0 and 0 < v < i 
2 we have 

F(t,v) = 1 
2V2 

t+e -2v^cos UnVt-
4 a f o (-

1 4 ); (2.4) 

where the implied constant in the O-term may depend on to only. 

Fix x for a moment. If A(x,0) is convergent then, since e~2vy/™ is mono-
tonic, it follows by partial summation that 

00 
E 

n=i 

d[n) 

n 
F(nxy0)e-2vVnx 

is uniformly convergent in 0 1 
2 | 
[ 

By the lemma, 

F{nx,v) = F(nx,0)e- 2 v V nx^ + O(n-*). 

Hence also the series A(x,v) is uniformly convergent m [0, el- By (2.3) this 

implies that 
lim 

0 0+ 
A(x,v) = A(x,0). 

Then A(x) = A(z ,0 ) , i.e. (1.2) holds, ii 

lim 
v->0+ 

A(xyv) = A(x). (2.5) 

Therefore, to prove the theorem, we must prove the lemma, the statement 
(2.5) and the assertions concerning the convergence of A(a;,0). 

3 Proof of the lemma 

The argument to be given here could easily be refined to yield an asymptotic 
series. 

Suppose first that v > 0 in (2.2). Clearly 

F(i,v) = y/i 5 
0 

8 
e-vVt(u+i/u) cos(27rv/i«) sm(2nVt/u)du. 

The main term will come from the values of u near 1. Since 

cos(a) sin(p) = 
1 

2 
in (ei(a+b) -ei (a+-b), 

it follows that 

F(t,v) = 
1 

2 
Vtìm(F+ - F-), 
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where 
F± = { 

0 
oo 

e (-t .(tt+l/«)+2xi(ti±l/tt))V?dtttdu 

Consider F and denote g(u) = —v(« + l /u) + 27rz(u — 1/«). Integrating 
twice by parts one gets 

F~ = 1 
I 

[ 
0 

8 ( 1 
g(u) ( 1 

g (u) 
) 
) 
) 

) 
) 
) 

/ 

e9^du, 

since, as TI > 0, the integrated terms vanish at each step. We have 

( 
1 
g1 ( l 9' 

[ 
( ) 

8 
= - ( 

9" 
(g') 

) 
) 
) 

o 
>> 

| 
| 

g'' 

(ff')3 

| 
| 
| 
+ 

|| 
|| 
(9T 
(g') 

| 
| < 

u 2 

(u 2 + l ) 3 
< 

1 
u 4 + l ' 

Hence F = 0(t x ) uniformly in v. 
Consider F + and substitute y = sgn(n — l)y/u + 1/u — 2. Then 

F + = e- 2 ° [ 
O O 

-oo 
f(y)e-*dyt 

where /(?/) = y + \ /y 2 + 4 — 2/y/y2 + 4 and a =(u — 27ri)\/*- Replace / (y ) 
by its Maclaurin polynomial /3(2/), say, of degree 3, and estimate the error in 
the way F~ was estimated. This gives 0(t~l) uniformly in v since 

( 
2 

y 

5 
( 

f(y) - My) 
y ) ] 

' 
< 

1 

y2 + i' 

The terms of My) O I" 0 f l d degree may clearly be omitted. The integral corre­
sponding to the term of degree 2 is integrated (once) by parts. This gives 

F+ = e - 2 a ( l + 0 ( H ) ) U 
O O 

- O O 
e-^dy + Oir1). 

It is well-known that the integral here equals \/ir/a. Hence 

F+ = ( 
7T 

a ) 
2 e -2a + 0 ( H ) . 

We have 

( 
7T 

a 
i 
2 = 

1 
21 r i e x . / 4 = 0 ( „ r J) = 0 ( H e 0 ^ ) . 

Hence 
F+ = 

1 
V2 rJe-2t>VJ+(4TV?+x/4)t + 0(t~*). 

Hence, uniformly in v, 

F(t,v) = 1 
2v/2 

t +e -2 v v t sin (4*V* + 
7T 

4 
+ 0 ( 

t+4 

. 

However, bv (2.3) this holds even for v = 0. 
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4 A(x,v) as an integral 

Suppose that v > 0. Prom the lemma it follows that the series in (2.1) is 
absolutely convergent. Hence, and by (2.2), it may be represented as the 
double series 

oo 

E 
m=l 

oo 
E 
k=l 

1 
mk L 

8 
e-v(u+mkx/u) c o s ( 2 7 r u ) sm(2nmkx/u)du 

= 
O O 

5 
m=l 

oo 

E 
k=l 

1 
k J 

roo 

0 
e-v(mu+kx/u)cos(27rm«)sm(2irkx/u)du = E E / /m,Jfc(«), 

say. This is absolutely convergent, since 

| /m,*(«) | < exp F -
1 
3 

v(u + x/u + Vmkx)). 

Moreover, the double series £ £ / m , j b ( ^ ) is absolutely and uniformly convergent 
in any interval [̂ 1,̂ 2] C (0,oo). Therefore the summations may be taken 
behind the integral sign. This gives (as Im(log) = arg) 

A(x,v) = 2 
7T 

[ 
[ 

oo 
Re ( 

1 
e?" - 1 ) arg(l - e-^u)du, 

where 
P = V + 2 7 T Z . 

5 Truncation and decomposition 

Let N be an integer, N > 2x and R = N + l 
2* 

Denote 

Ai = - 1 
7T 

{ 
{ 

R arg(l - e-™u)du, 

A 2 = 1 
7T 

( 
( 

8 Re 
( 
( 

E 
e?" - 1 

+ 1 ) arg(l - e - ^ / " ) ^ 

and A3 = A(x, v) — Ai — A2. We estimate A3 by partial integration. We have 

0 Re ( 
1 

e p u _ 1 
( 
( du = Re ( 

1 

p 
l o g ( l - e - H 

) 
) . (5.1) 

In any case this is Oil). But for u = R it is 0(v). Hence 

A 3 = 
2 
7T 

5 
( 

8 
Re ( 1 

eP" - 1 ) arg (1 _ e-^du < v + 0 O O 

= d 
du 

arg(l - e-^/") |d«. 
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The last integrand is 0(xu~2), since for t > 0 we have 

d 
dt 

are(l - e-*) = Im ( ( 
p 

eP*- l 
) 
) (5.2) 

and for Re(z) > 0 and |Im(;z)l < 7r we have 

Im ( 2 
e2 - 1 ) = Im 

) 
) 

z + 1 - ez 

e z - l 
) 
) < ||z||. (5.3) 

It follows that A3 < C + x/R, or equivalently, 

A(z, i ; ) = Ai + A 2 + 0 (v + z i T 1 ) . 

6 The integral A x 

Denote ^ ( i ) = t — [t] — | . Writing arg(l — e~2*lt) as a power series we recognize 
the Fourier series of ij){t). Thus arg(l - e~2wit) = -7r̂ («) for * £ Z. For * > 0 
we have 

d 
dv argfl - e~vl) = Im ) ) 

t 
e?* - 1 ) << 

t 

II'II' 
where || t || denotes the distance of t from the nearest integer. Hence, 

arg(l - e - p *) + 7rV>(*) < min ( vt 
\\t\\ 

, i ) < = vt 

Mil ) 
3 

I* (6.1) 

for £ 0 Z and £ > 0. Then an easy calculation gives (as R > x) 

Ai = x n 
oo 

IR 
ip(t)t~2dt + O ( X = ' O O 

2 ( 
vt 

11*11 
= i*r 2 df 

) 
) 

= x(log ( 
R 

x 
) + 1 - 7 ) = 

R 
2 

+ 0(ifr4). 

7 The integral A 2 

Since Rede?" + l ) ^ - 1)) = e2vu - 1 < vu for vu < 1, and since 
| E P u - l | 2 > ( v u ) 2 + 
II u | | 2 > (vu)* || « lis, it follows that 

Re | 
| 

9 
equ -1 + 1 

) 
) = Re 

( 
( 

eu + 1 

eP" - 1 
) 
) = 

e2™ - 1 
| e P U _ l | 2 

< (vtt)̂  || u ||"t . (7.1) 

Trivially arg(l - e - ^ " ) < e~vxlu < ( r a / « ) " . Hence the subintegral / 0

I / a of 
A 2 is 0((v/a;)?). Hence (recall that # = JV + f) 

A 2 = 
1 N 

2: 
n=l 

) i 
2 1 
" 2 

Re ( 
2 

ep(n+u) _ I + 1 ) Ap (u) du + o '( ( ( v 
E ) 

) ) ) . 
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where 
AM) = argfl - e -«*« n +% 

CASE 1: x/néZ. For lui < \ we have 

AJu) = AJO) + O 
( 
( (II x- II"1 *M)« 

71 
) (7.2) 

To prove this, suppose that 4iV|u| < ||x/n|| (the other case being trivial). 
Suppose that \t\ < \u\. Then 

U 
X 

n + t = 
X 
n 

I < 2x|<| < 2N\u\ < 
1 

2 
II X 

n 
II . 

îence | |x / (n-M) | | > ||x/n||. Using (5.2) we get 

4< (0 «II 
X 

n + t II"
1 * - 2 * «II m 

n 
II"1N 

Hence AJu) - AJO) < | | x/n | | - x JV|u|, and (7.2) follows. 

CASE 2: x/n G Z. Put q = v — 2iriu/n. For |u| < l w e have 

V u ) = Aq(0) + O ((N\u\)-*) . (7.3) 

To prove this, suppose that 4iV|u| < 1 (the other case being trivial). Suppose 
that \t\ < \u\. Then |Im(gx/(n + t))\ < n. Hence we may use (5.2) and (5.3) 
to get 

4 ( 0 < \<l\n~2x « n x « N> 

since(5.2) holds also when p is replaced by q. Hence Aq(u) — Aq(0) <C N\u\. 
But Ap(u) = Aq(u)y since (p - q)x/2m{n + u) G Z. Hence (7.3) follows. 

Denote 

O x = 
{ 
{ 

Il «II /o r x é Z , 
l for x ez. 

(7.4) 

To estimate the contribution of the O-terms in (7.2) and (7.3) we use (7.1) 
and the fact that II x/n II > Qx/n if x/n 4 Z. This gives 

< v1/2N3/2 

( E 
/neZ 

L 

712 II 
X 
n 

II 
_3 

4 
+ 

E 
nezi 

i 

n2 
) 
) 
) 

<<v 1/2 N3Qz -3/2 

Consider the contribution of -4,(0). The function Aq(0) is odd in u, while 

Re((e*n+u}-vu - I)"1) 

is even. Moreover, 

(ep(»+«) - l) 1 - ( e

p ( n + u ) - v u - l) 1 < vu 

(vn)2 + tt2 < ( 
V 

n\u\ i) 

1 

2 
. 
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It follows that 

E 
x nez 

) ri 
_ 1 

2 

Re ( 2 
ejH»+«) - 1 + 1 

) 
) Aq(0)du < {Nv)kK 

Consider the contribution of Ap(0). We have 

E 
x/ngZ 

Mo) ( 2 

1 
"2 

Re ) ) 
9 

ep(n+u) _ l ) du << Nv 

since by (5.1) the integral in the summand equals 

2Re ( 
1 

P 
) log ( 

1 + e - ° n +1:2 

1 + e -» (» - î ) 
) 
) 
) 

<< Re ( 1 
P 

) << v . 

Finally, (6.1) with t = x/n implies that 

1 
7T 

E 
x/ngZ 

MO) = - E 
s / n g Z 

0 ( 71 ) + o ( 3/4 N 7/4qz-3/4 ) . 

and we have 

E 
x/n&Z 

= ( 
X 
n ) = 

N 

E 
n=l 

= ( 
) 
) ) = E 

x/nez 
= ( 

) 
) ) 

= x x 
z 
E 
n=l 

1 
n = 

N 
E 
n=l 

E 
m<x/n 

l -
2 
12 + 

i 
2 d(x) 

= x(logiV + 7 ) - E 
n<x 

d(n)-
1 
2 dix -

AT 

2 
+ O ( x 

N . • ) • 

Collecting the relevant formulas in this and the two previous sections and 
using (1.1) we get 

A(x, v) = A(x) + 0{xN-x + v*N*Q-*) (7.5) 

for N > x, N e Z. This implies (2.5). 

8 Convergence of A(x, 0) 

Denote 
/ (n , x) — x+n « cos(47Ty/nx — m 

4 ) 

and 
S = E 

a < n < 6 
d(n) / (n ,x) , 
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where 2 < a < b. By (2.1) and (2.4) it is sufficient to consider b. Let 
0 < e < t . We set out to prove that 

S < x 
3 
4 

a 
-1/4+e + x 1/2+ea-1/2Qx-1, (8.1) 

S < 
3 

£ 4 . (8.2) 

The symbol Qx was defined by (7.4). 
By partial summation and (1.1) we find that S equals 

/ 
Ja 

/ 

V 
d 

d 
f(t,x) 

) 
) d(t) dt+ 

( 
(0 f(<,*)(lQgt + 27)Ä + ) 

) 
(t;x)( A(t)+ 

1 

2 
d((t) || 6 

a 
. (8.3) 

The integrated term is 0 (x*a - *) , since A(t) •< ¿5. The second integral is 
0((xa)~* logo), by partial integration. 

Consider the first integral in (8.3). We have 

d 
dt 

f(t,x) = -2irxH «sin (4ir\/tx — 
7T 

4 ) 
+ o [x 

I 
4 r 

7 
4 . 

The error term here contributes <C i _ i 
4 . 

Then replace A(t) by A(t ,v) , 
where v = 6~2 8. This gives an error 0(x*a * ) , since (7.5) with JV = [62] 
implies that 

/ 
Ja 

\A(t) - A(t,v)\dt < 1. 

Then replace A(t, v) by 

1 
rV2 

O O 

E 
n=l 

t * ( n ) / ( n , 0 e ~ W S = A*(*,t;), 

say, which in view of (2.4) differs from A(t,v) by <C t- 1/4. This difference gives 
an error O (x*a 2 ) . 

We are now left with 
x43 

t 
Ja 

-5/4 B e ! (47rv7x — 7T 
4 

)A*(*,v)d*. 

This is, on integrating A* term-by-term, 

< 
3 

£ 4 

O O 

E 
n=l 

d(n)n * 
{ 
a /a 

£ 1 sin(47r\/ta — 
7T 

4 
. cos 4r B v nt- 7T 

4 
) 

e-
2v^dt 

| 
| . 

Here sin(...) cos(. . . ) is a linear combination of 

sin(4'Ky/i(y/x — y/n)) and cos(4ir>/i(y/x + \ /n)) , 

so that, integrating by parts, the integral is <C a 2\y/x ± y/n\ l . Therefore, 
excluding the term involving Jx — yjn, in which n is the (or a) positive integer 
minimizing |n — x|, the rest of the expression is <C x1/2 + e a -1/2. 
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Denote by Ix the integral in the excluded term. If x £ Z then 
Ix < X 2 a ~ 2 | | ^ | | _ 1 . Otherwise Ix = 0. This completes the proof of (8.1). 

To finish the proof of (8.2) we may assume, by (8.1), that 0 < ||x|| < a~5. 
Split up Ix at c = min(fe, | |x | |~ 2 ) . Then, estimating as before, / c

6 <C # 2 , and by 
the general inequality | siny| < |y|, we have J* <C x - 1/2 
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