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O n the Representat ion of Large Integers 

b y Integral Ternary Posit ive Definite Quadrat ic Forms 

B. Z. MOROZ 

A few years after the famous work of C. L. Siegel [17] on representa­
tion of integers by a genus of quadratic forms had appeared, Yu. V. Linnik 
[10] initiated a study of representation of integers by an individual ternary 
quadratic form. Due to the efforts of many authors (cf., for instance, [1], [3], 
[9], [11], [12], [15], [19], and references therein), we may now claim a success. 
Let f(x) = \ £ 1< i, j < 3 aijxixj be a positive definite quadratic form with integral 

rational coefficients, so that = a^, â - G Z, 2 | an for 1 < t,j < 3, and let 
r/(n) = card {u I u G Z3, f(u) = n } be the representation number of n by / ; 
let D — det(dij). 

T H E O R E M 1. Suppose that n G Z, n > 1 and gcd(n,2D) = 1. Tien 
r/(n) = r(n,gen/) + 0(ri2~7) for 7 < wiere r(n,gen/) denotes the 
number of representations of n by the genus of f averaged in accordance with 
Siegel's prescription [17]. Moreover, if n is primitively represented by f over 
the ring ofp-adic integers for each rational prime p then r (n, gen / ) >• /,€ n%~€ 
for £>0. 

Proof Let N be a positive integer such that 2D \ N and 8 | JV, and let 
<p G 5o( | , iV ,x) with x(d) = ( i f ) ' suppose furthermore that <p G Wx, in 
the notation of [15]. Thus cp is a 'good' cusp-form of weight | (and char­
acter x) that does not come from a 0-series. Therefore an argument due to 
H. Iwaniec [9] and W. Duke [3], supplemented by the considerations going 
back to G. Shimura [16] and B. A. Cipra [2], leads to an estimate for the 

S. M. F. 
Astérisque 209** (1992) 275 



B. Z. MOROZ 

oo 
Fourier coefficients of <p (cf. also [7]), and on writing cp(z) = $3 a(n)e2*tnz 

n=l 
we obtain: a(n) <CV)7 n " ^ as soon as (n,2Z>) = 1 and 7 < By [15, Ko-
rollar 3], it follows then that 77(71) = r(n, spn/) + 0(rc*"~7) for (n,2-D) = 1 
and 7 < ~ , where r(n, spn/) denotes the representation number of n aver­
aged over the spinor genus containing / (cf. [15]). On the other hand, by [15, 
Korollar 2], if (n, 2D) = 1 then r(n, spn / ) = r(n, gen / ) . Finally, the estimate 
r(n, gen/ ) > "e for 5 > 0 is a consequence of Siegel's work [17, 18] (cf. 
also [14, Satz (3.1)]), as soon as n is primitively representable by / over the 
p-adic integers. This completes the proof. 

R E M A R K 1. The condition (n,2D) = 1 in Theorem 1 has been used 
in the proof twice, to ensure the estimate a(n) <C n^"7 and to deduce the 
identity r (n,spn/) = r(n, gen / ) . The former use of this condition is due to 
the fact that (p G 5( | , iV,x) with x = (ir) (see [13] for the details). It is an 
interesting question to what extent one can weaken the condition (n,2D) = 1 
in Theorem 1. The work of R . Schulze-Pillot [15] (cf. also [19] and references 
therein) is pertinent to this question. 

T H E O R E M 2. Let q be a rational prime congruent to 5 modulo 8 and Jet 
f(x) = x\ + x\ + qzx\. Then rf(n) >9j£ n^~e for e > 0 and n = 7 (mod 8). 

Proof. Let n = </ni, q \ n\ and suppose that n = 7 (mod 8). Consider the 
quadratic form g(x) = x\ + x\ + qmx\, where m = 3 - I when I < 3 and 
m = 0 when ^ > 3; let n2 = ngm"3. Since n2 = 3 (mod 8) if * > 3 and n2 ^ 0 

(mod g) when I < 3, it follows from Theorem 1 that r^(n2) >• n | for £ > 0. 
On writing x\ + x\ = g3~m(n2 — gmy|) one notes that to each solution of the 
equations: n2 = g(y) with y G Z3, g3~m = z\ + z% with ¿1 G Z, z2 G Z there 
corresponds a unique solution of the equation n = f(x) with x G Z3. Since 
g = l (mod 4) it follows, in particular, that 77(71) >> n^~e for e > 0. This 
completes the proof. 

R E M A R K 2. Theorem 2 confirms a conjecture of D . R . Heath-Brown [8, 
p. 137-138], that every large integer congruent to 7 modulo 8 is represented 
by the form x\ + x\ + qzx\ when q = 5 (mod 8) and g is a rational prime. 

DEFINITION. Let n G Z. We say that 71 is square-full if n > 0 and p | n =^ 
p2 I n for each rational prime p. 

C O R O L L A R Y . Every sufficiently large positive integer is a sum of at most 
three square-full numbers. 
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REPRESENTATION OF LARGE INTEGERS BY TERNARY QUADRATIC FORMS 

Proof. By a classical theorem of Gaufl, each positive integer n is either a sum 
of three squares or it is of the shape n = 4*(8fc + 7) with £ 6 Z, k 6 Z. In 
the latter case, however, Theorem 2 shows that the integer n is represented, 
for instance, by the form x\ + x\ + 125x3 if k is sufficiently large. Other 
possibilities are also easily eliminated since the form x2 + y2 + 2z2 is easily 
seen to represent n as soon as n = 4 (mod 8), cf. [8, p. 137]. This completes 
the proof. 

R E M A R K 3. This corollary has been first proved by D. R. Heath-Brown 
[8], by a different method; according to [8, p. 137], it answers a question posed 
by P. Erdôs and A. I vie. 

R E M A R K 4. This note contains the text of my lecture at the 16th Journées 
Arithmétiques (Marseilles, July 1989). Since then a new important paper by 
W. Duke and R. Schulze-Pillot [5] has appeared, which allows, in particular, 
to weaken the condition (n,2D) = 1 in Theorem 1 of this note (cf. also 
Remark 1). Unfortunately, the authors suppress the details of the proof of 
their crucial Lemma 2 [5, p. 50-51]; following [7], where incidentally the proof 
of the corresponding assertion is also omitted, we are content with a weaker 
statement [13, p. 17-19] that leads to the results described above. Finally, we 
cite here two articles [4], [6], throwing further light on our subject. 

A C K N O W L E D G E M E N T . It is my pleasant duty to thank Professor W. Duke 
for a few useful conversations during the conference, relating to his work [3]; 
I am grateful also to Professor R. Schulze-Pillot for a private communication, 
allowing me to reconstruct the proof of Lemma 2 in [5] mentioned above. 
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